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Abstract. Group signatures allow a user to sign anonymously on behalf of a group of users while
allowing a tracing authority to trace the signer’s identity in case of misuse. In Chaum and van Heyst’s
original model (EUROCRYPT’91), the group needs to stay fixed. Throughout various attempts, includ-
ing partially dynamic group signatures and revocations, Bootle et al. (ACNS’16, J. Cryptol.) formalized
the notion of fully dynamic group signatures (FDGS), enabling both enrolling and revoking users of the
group. However, in their scheme, the verification process needs to take into account the latest system
information, and a previously generated signature will be invalidated as soon as, for example, there is a
change in the group. We therefore raise a research question: Is it possible to construct an FDGS under
which the validity of a signature can survive future changes in the system information?
In this paper, we propose Everlasting Fully Dynamic Group Signatures (EFDGS) that allow signers
to generate signatures that do not require verification with any specific epoch. Specifically, once the
signatures are created, they are valid forever. It also guarantees that the signer can only output such
a signature when she is a valid user of the system. We realize the above new model by constructing a
plausibly post-quantum standard-lattice-based EFDGS.
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1 Introduction

Group Signatures and Dynamicity. Group signatures, originally proposed by Chaum and van Heyst
[30] and later formalized by Bellare, Micciancio, and Warinschi [12], allow a person, among a group of users,
to sign on behalf of this group. Moreover, the output group signatures do not leak the signers’ identities.
In addition, a group signature scheme must have a special authority, whom we call the tracing authority,
responsible for tracing signers’ identities behind the signatures in case of misconduct. Specifically, a group
signature has a group public key gpk and a group of users where each user, with an identifier id and a signing
key skid, is allowed to sign on behalf of all users in the group. The tracing authority has a special secret key
skta enabling her to trace the identifiers behind the signatures produced by the group.

Nevertheless, early results of group signatures focus on the “static setting”: once created, the group users
cannot be changed. Although this kind of setting attracted a lot of developments [31,23,27,76,26,5,4,3], it
restricts the applicability of group signatures to many potential applications. A trivial way to change the
group of users is by generating a new group with the desired users. However, as we can imagine, this will
cause a lot of inefficiency since we need to create new keys for the users and the tracing authority. A related
approach, by updating the keys, is implemented by [81,16].

Partial Dynamicity. During the development of group signatures, new models and constructions of group
signatures were proposed for obtaining the dynamicity of group signature schemes. Bellare, Shi, and Zhang
[13] introduce the new notion called dynamic group signatures. In a dynamic group signature scheme, besides
the users and the tracing authority, there is another authority called the issuer, who enrolls new users into the
system by issuing new signing keys for newly enrolled users. The dynamic group setting in [13] is usually called
partial dynamicity, while the issuer can be called the group manager in other results. In this manuscript, we
call the issuer (as well as the group manager) the system authority. The model of partially dynamic group
signatures was later improved by Kiayias and Yung [48] to allow the system authority to enroll new users
via some interactive protocol to prevent the system authority from learning the signing keys of the users
in the system. This model leads to the formalization of partially dynamic group signatures, which requires
such a secure scheme to satisfy correctness, traceability (a.k.a. security against misidentification attacks),
and non-frameability. Correctness guarantees that, if the signatures are generated honestly, they are always
valid. Traceability prevents any corrupt user from creating new signatures traceable by the tracing authority
outside the set of corrupt users. Non-frameability prevents framing a signature to some honest user that the
adversary does not have the corresponding signing key.
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The notion of partial dynamicity certainly does not support user revocation. Hence, this leads to certain
security and efficiency concerns, e.g., a revoked user still keeps the signing key for authorizing messages in the
future (security concern), or, to revoke, simply re-generating the system with the group of unrevoked users
only (efficiency concern). Consequently, another line of research work about revocation and full dynamicity
has appeared.

Revocation and Full Dynamicity. Early attempts to enable revocations include the following themes. The
first theme from [20,65,55,54] is for showing that the signer’s identifier is not in a public revocation list.
Another theme from [25,84,24,32,73] is for using updatable accumulators to accumulate the set of unrevoked
users’ identifiers into a short representation. [81] and [16] update the signing keys of unrevoked users. Other
themes including verifier-local revocation (VLR) [21,17,66,56,49], direct anonymous attestation (DAA) [22],
and traceable signatures [47] are also taken into consideration in which only verifier knows the revocation
list while signers do not.

Until 2016, the concept of fully dynamic group signatures (FDGS) was formally proposed by Bootle et
al. [18,19], encompassing a long line of approaches attempting to formulate and incorporate the revocation
mechanism into the group signature schemes. An FDGS scheme is not only partially dynamic, where the
system authority can enroll new users via some joining mechanism, but also allows the system authority
to revoke users when necessary. This notion is formalized by having the system maintain a public system
information of each epoch. Here, an epoch is an interval of time in which there is no change in the group of
users. Suppose a change to the group happens, namely, by enrolling new users or revoking some users. In
that case, the system is moved to the next epoch by having the system information updated accordingly.
In other words, if we do not update the system information when changing the epoch, a revoked user still
remembers her signing key for further signings. Hence, when verifying the FDGS signatures, the verifier must
verify with inputs containing the corresponding public system information, the message, and the signature.

This model of Bootle et al. is later followed by [60,33,83,82,9], and other variants including fully dy-
namic attribute-based signatures [58], fully dynamic group encryptions [70,75,71], and fully dynamic secret
handshakes [2].

Drawbacks of FDGS Model from Bootle et al. [18,19]. As said above, the FDGS signatures in the
model from Bootle et al. require verification with the public system information of a specific epoch. That is,
creating a signature with system information of epoch τ while verifying it with system information of epoch
τ ′ can only succeed if and only if τ = τ ′. If τ ̸= τ ′, the FDGS signature is deemed to be invalid. When
implemented in real systems, this model requires the signer to create each FDGS signature, with respect to
system information of the current epoch (current time or latest epoch), and to send it immediately in the
same current epoch for verification. However, this strategy of creating and verifying signatures with the same
system information of a specific epoch may incur some drawbacks. We consider the following examples.

Inability to Delay Publishing Signatures. If a user is an employee of a company and will leave the company
soon, in this case, we assume that this user is revoked in the next epoch of the group signature scheme.
However, when being an employee of the company, this user authorizes a valid signature of some contract for
some secret deal with another partner of the company. For some confidential purposes, this contract should be
kept private for verification between the two companies. The signature may later need to be publicly verified,
for example, under police investigations or when the signer would like to claim some rewards from signing the
contract for the company to obtain some achievement. However, at the moment, the group information has
already changed, and the signer is no longer with the company. We cannot verify the validity of the signature
since the mentioned signature was authorized in the past. This can be explained as follows. Suppose the
signer was revoked from the company. How can we know either (i) the signature was created when the signer
was an employee of the company or (ii) the signer was revoked while keeping the signing key for authorizing
with respect to the old system information?

A potential solution for this situation is to publish the message and the signature immediately. However,
as said earlier, some private deals should not be published early due to compliance with business secrets.

Denying Ownership of Old Signatures. Consider another example. Assume that some users abuse the system
by signing bad messages, e.g., corruption, which may affect the company’s reputation. For later investigation,
if this user is revoked from the system, she can deny the signatures she created by stating that those signatures
are invalid with respect to the current system information, as she is no longer a valid user. Moreover, since
she keeps the old keys, she can create garbage signatures that cannot be distinguished from those before
being revoked.
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Nature of Signatures. Notice that the nature of signatures, i.e., ordinary signatures, ensures that signatures
are valid forever without being limited in any time interval. Additionally, the signer cannot deny the signa-
tures that she created.

Hence, practical necessity demands an FDGS scheme whose verifications at different epochs do not require
the associated system information. In addition, we can trust that the signatures were generated appropriately
when the signer was a valid user in the system. In other words, whenever a valid signature is created, we
trust that it is generated honestly by an existing user in the group and not from anyone outside the group
(including revoked users). At the same time, verification is not necessarily immediate (at the current epoch)
with respect to the most updated system information, and abuse users cannot deny the signature when
epochs flow. Hence, we ask the following question.

Can we construct an FDGS scheme whose signatures are valid forever
while simultaneously allowing delaying publishing them?

A recent result [86] attempted to answer the above question. However, their construction requires updat-
ing the group public key after every change of epochs. Doing so is not fundamentally different from altering
the system information, as a once-valid signature will become invalid under the updated group public key.

Heavy Cost of Maintaining System. As a trivial approach, one may consider compiling an FDGS [18,60,19]
into some other scheme allowing validity forever as follows. A user issues an FDGS signature and sends it
to the system authority for publishing to some public ledger. Then, the user later can produce a ZK proof
saying that there is an FDGS in the ledger at some epoch (only known to the user), she is a valid member
at the time of publishing the FDGS, and the FDGS signature is valid with respect to the mentioned epoch.
By the ZK property, we can hide the epoch. However, we should note that the ledger expands when more
FDGS signatures are added. Hence, producing and verifying such a ZK proof requires the ledger’s state to
be included as an input. We would need a large and immutable database representing the ledger (realizable
by blockchains with additional costs for miners/validators to maintain).

1.1 Our Contributions

We answer the above question with the following contributions.
We propose a new FDGS scheme called everlasting fully dynamic group signature (EFDGS) scheme that

allows signers to generate signatures that do not require verification with any specific epoch. Specifically, once
the signatures are created, they are valid forever (hence “everlasting”). It also guarantees that the signer can
only output such a signature when she is a valid user of the system. In brief, we model this privacy-preserving
signature scheme by attaching an additional mechanism for the signer to request pre-signatures authorized
by the system authority for binding the message with the most updated system information. Additionally,
we prohibit the system authority from knowing the message being requested for pre-signatures. We only
know the message when its pre-signature is transformed into an actual EFDGS signature. And no one but
the signer can link the pre-signature and actual EFDGS together. By doing so, we can address the above
issues as follows.

– We enable delaying publishing EFDGS signatures. Specifically, even being revoked/unrevoked, the user
can publish a valid EFDGS if its corresponding message was issued a pre-signature at the time she was a
valid member. For example, secret deals between companies can be delayed from being published due to
some confidential policy, police investigations about some cases should not be published early, or ballots
may be delayed for some time.

– Signers of EFDGS signatures cannot deny ownership of old EFDGS signatures even after being revoked,
since the signatures are everlasting.

– No cost incurs for maintaining a database of signatures.

We realize the above new model by constructing a plausibly post-quantum lattice-based EFDGS based
on standard lattices.

2 Notations, Conventions, and Structure of the Paper

Notations and conventions are in Section 2.1. This paper’s structure is presented in Section 2.2.



4 Yimeng He , San Ling , Khai Hanh Tang , and Huaxiong Wang

2.1 Notations and Conventions

Define b := 1− b for b ∈ {0, 1}. We denote by N the set of positive integers, namely, {1, 2, 3, . . . }. For a set

S, we denote by x
$← S the action of uniformly sampling x from S. For ℓ ∈ N and x = (x1, . . . , xn) ∈ Zn

q ,

we denote by binℓ(x) ∈ {0, 1}nℓ its binary representation where, for i ∈ [n], xi is decomposed into ℓ bits
xi,1, . . . , xi,ℓ such that xi =

∑
j∈[ℓ] 2

j−1 · xi,j . All vectors in this paper are column vectors, except otherwise

specified. For any two vectors a and b, we denote by (a∥b) = [a⊤|b⊤]⊤. We write pλ ≤ negl(λ) (respectively,
pλ = poly(λ)) for (pλ)λ to indicate that there is some negligible function ϵ(λ) (respectively, a polynomial
f(λ)) and a value λ0 such that pλ ≤ ϵ(λ) (respectively, pλ ≤ f(λ)) for λ ≥ λ0.

2.2 Structure of the Paper

The technical overview for defining EFDGS and its lattice-based instantiation is presented in Section 3. In
Section 4, we define EFDGS. In Section 6, we briefly describe our lattice-based instantiation of EFDGS
and defer the detailed description to Appendix B. Some necessary preliminaries for discussing Section 6 are
presented in Section 5, while other more detailed preliminaries are presented in Appendix A.

3 Technical Overview

Section 3.1 is for defining EFDGS. Section 3.2 is for an instantiation of EFDGS.

3.1 Defining EFDGS

As introduced, we propose an EFDGS scheme such that whenever an EFDGS signature is generated by some
user in the system, it is guaranteed that (i) the signer is a valid user in the system at the time of signing
and (ii) the output EFDGS is valid forever whenever being verified by any public party. We define EFDGS
as follows.

First, we follow the model of Bootle et al. [18,19] to design an epoch-based system to have two authorities,
namely, system authority SA (with public-secret key pair (pksa, sksa)) for enrolling and revoking users, and
tracing authority TA (with public-secret key pair (pkta, skta)) for tracing users’ identifiers behind signatures.
For each epoch, this system has a corresponding system information. Different epochs, hence, have distinct
system information.

Removing System Information as Input to Verification. To allow the signatures generated from
this system to be valid forever while verification does not require additional input as the most updated
system information, we associate to the system an additional mechanism that requires the signer to request
a pre-signature to be issued by SA, authorizing the system information for the to-be-signed message. In
fact, SA is considered an honest party in most group signature schemes since, otherwise, SA can introduce
new malicious members to the system. Leveraging this fact, we hence additionally put the trust in SA for
authorizing pre-signature with the most updated epoch.

We call the above process the pre-signature issuance mechanism. Specifically, this mechanism enforces
that whenever a user U wants to sign a message M , U first sends M to SA. Without consideration of
privacy/anonymity, since SA is honest, SA takes the most updated system information infocur honestly and
authorizes the concatenated message (M, infocur) to obtain some pre-signature Γ .

Then, when U issues an EFDGS signature Σ for M , U must show that she knows a pre-signature Γ that
is valid with respect to the concatenated message (M, infocur). In other words, Σ contains a proof showing
that there exist infocur and Γ such that Γ is a valid pre-signature with respect to (M, infoτ ). Hence, if the
proof is zero-knowledge, i.e., leaking nothing about infoτ and Γ beyond the validity of their existence, the
verification does not require infoτ as input since the proof underlying Σ guarantees the existence of infoτ

and Γ .
Notice that, since we bind the message with some epoch τ via SA’s issued pre-signature, we allow the

signer to keep the message private for a long time, even after she is revoked from the system, before creating
the EFDGS signature by using the signing key at epoch τ . This is because the message was first available
when requesting a pre-signature. Hence, either publishing immediately or not, it guarantees that the signer
can sign at epoch τ as long as she is a valid user of the system. To explain more convincingly, it is similar to
a context in which the signer creates a signature at some epoch τ , keeps it secret, and publishes the signature
at some point in the future.
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Fig. 1. Graphical illustration of security features of an EFDGS scheme.

Privacy. Nevertheless, the above mechanism does not guarantee the privacy of the signer. As we see that, U
may need to sendM to SA for authorizing (M, infoτ ). Although SA is honest, SA can link the output signature
with the signer’s identifier since SA knows who requested the pre-signature for M . Sending M directly to SA
may allow some eavesdropper to observe the communication between U and SA, compromising the privacy
of U. To avoid this issue, we may require SA to issue the pre-signature for (M, infocur) without allowing SA
to see M . This reminds us of the notion of blind signatures [29,14]. In particular, we model the interaction
between U and SA such that U obtains a pre-signature Γ (in some form of a blind signature) for (M, infoτ )
verifiable by SA’s public key pksa while SA does not know anything about M . For any public party, including
SA, it must guarantee that a pre-signature and the corresponding transcript for requesting this pre-signature
say nothing about the message. Hence, we call this property message hiding. On the other hand, when
the output EFDGS signatures are created by the signer, we also would like to make sure that no party,
except the signer, can link the EFDGS signatures to their respective system information. Hence, we call this
property system information unlinkability. Figure 1 is a graphical illustration of message hiding and system
information unlinkability. Specifically, in the public view, a message and its corresponding EFDGS can be
linked together via verification while their respective pre-signature and system information are unlinkable to
them.

In modeling privacy, we capture two properties, including the well-known property called anonymity
(e.g., see [30,80,12,53]) and the newly introduced properties, i.e., message hiding and system information
unlinkability. Anonymity captures the fact that, for any two potential signers, if there is a signature output
from one of them, any adversary cannot distinguish who is the actual signer behind the EFDGS signature.
Since we incorporate the pre-signature issuance mechanism, in modeling anonymity, we require both signers to
obtain the corresponding pre-signatures first before creating the EFDGS signature to challenge the adversary.

Regarding message hiding and system information unlinkability, as said above, since these notions relate
to blind signatures [29,14], we require the two potential signers to request pre-signatures from two different
epochs for two potential messages and then create the respective EFDGS signatures. However, the order of
requesting pre-signatures is shuffled by a secret bit b, to be discussed in detail in Section 4.2. In the end,
we compute the output EFDGS signatures for the respective two messages with shuffled pieces of system
information (as the order of requesting pre-signatures is random). We ask whether the adversary can link the
pairs of messages and corresponding EFDGS signatures to their respective system information. The inability
to link requested messages (respectively, EFDGS signatures) to the corresponding system information implies
message hiding (respectively, system information unlinkability).

Unforgeability. As U requests the pre-signature Γ from SA to generate EFDGS signature Σ, we must
ensure that U is unable to forge the pre-signature from SA in order to create valid Σ. Hence, we define
system information unforgeability to prevent the forging of any pre-signature in this context. Consequently,
we aim to capture the following five sub-properties in modeling unforgeability. (i) Extractability ensures
that TA can obtain an identifier from any valid signature. The traced identifier, in addition, must match the
identifier of the signer. (ii) Traceability guarantees that an adversary cannot forge a valid EFDGS signature
traced to an identifier not within the group when signing. (iii) Non-frameability guarantees that an adversary
cannot forge a valid EFDGS signature that frames an honest user. (iv) System information unforgeability
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prevents an adversary from creating a signature with respect to a pre-signature not previously issued by SA.
(v) Tracing soundness guarantees that TA cannot “open” a valid signature to two distinct identifiers.

We follow [11,53,68,69] to define the simulated setup of the system, which allows the extraction of the
identity as well as the pairs of message and system information behind the pre-signatures, i.e., putting
the definition into the theme of simulation-sound extractability (sim-ext) [28]. Then, we can easily capture
extractability, traceability, non-frameability, and tracing soundness by simply following [18,19,68]. To capture
system information unforgeability, we extract the pairs of messages and requested pre-signatures and form
a list dubbed EPL. Then, when the adversary forges a pair of message M and EFDGS signature Σ, we
extract the system information from the forged EFDGS signature. If the pair of messages and corresponding
extracted system information does not belong to EPL, we consider that A wins the system information
unforgeability.

3.2 A Lattice-Based Instantiation of EFDGS

We realize our notion of EFDGS by constructing a plausibly post-quantum lattice-based EFDGS scheme as
follows. Our construction is based on standard lattices. Specifically, we organize the system using the LLNW
accumulator [51,52] in which the leaves of the underlying Merkle tree contain the public keys of existing
users.

When enrolling or revoking users, SA updates the Merkle tree following the path corresponding to the
affected users’ identifiers (c.f. [60,61,70,58,71]).

To realize the pre-signature issuance mechanism, we employ the JRS oblivious signing protocol Πobl-sign

from [45] (c.f. Section 5.2 and Appendix A.7). In particular, the system authority SA of our lattice-based
EFDGS plays the role of the signer in Πobl-sign. Then, the signatures on committed messages output by SA
are the pre-signatures for the requesting user.

When signing a message M , U encrypts her identifier, by some PKE, to obtain a ciphertext ct and shows,
in zero knowledge, the existence of system information infoτ and a pre-signature Γ such that (i) U was a
valid user who at epoch τ possessed a signing key corresponding to a public key accumulated into the root of
the epoch τ Merkle tree, (ii) Γ authorizes the concatenated message (M, infoτ ), and (iii) U correctly encrypts
her identifier.

To trace signers in case of abuse, tracing authority TA has a decryption key to decrypt the identifier of
the signer. Here, we follow [18,19] and require TA to provide a proof of correct decryption.

4 Everlasting Fully Dynamic Group Signatures

We define EFDGS via the syntax and security in Sections 4.1 and 4.2, respectively.

4.1 Syntax

The syntax of an EFDGS scheme is defined in the following Definition 1. Notice that we follow the original
model of FDGS from Bootle et al. [18,19] with some modifications. We associate a pre-signature issuance
mechanism for issuing pre-signatures by system authority SA via protocol PreSign and algorithm PreVerify
for issuing and verifying pre-signatures, respectively. As said in Section 3.1, the pre-signatures aim to bind
the “blinded” requested message from the user with the most updated system information. The signing
algorithm Sign hence additionally requires an appropriate pre-signature and some auxiliary inputs (e.g.,
used by the signer to hide the message when requesting pre-signature) to generate the EFDGS signature.
The verification algorithm PreVerify no longer requires system information as input.

Definition 1 (Syntax). An everlasting fully dynamic group signature (EFDGS) scheme is a tuple of in-
teractive protocols and algorithms

EFDGS = (Setup, Join,Update,PreSign,PreVerify,Sign,Verify,Trace, Judge).

Setup(1λ)→ (pp, infoinit, reginit,SA(sksa),TA(skta)): On input 1λ, Setup specifies the public parameter pp
containing identifier set ID, epoch set T , message set M and the group public key gpk. Let pp =
(ID, T ,M, gpk) be implicit in the following algorithms and protocols. This algorithm determines public
system information infoinit and a public empty registry reginit to record information of users in the system
at the initial epoch init ∈ T . It also specifies the secret keys sksa and skta and distributes them to the
system authority SA and the tracing authority TA, respectively.
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Join ⟨U,SA(sksa)⟩ (pp, infocur, regcur, id)→ (infonext, regnext, pkid,U(skid)): This is an interactive protocol be-
tween a user U and the system authority SA, holding secret key sksa, for enrolling U, with a proposed
identifier id ∈ ID, to the system at the epoch cur ∈ T . Eventually, this protocol advances the system
to the next epoch next ∈ T together with updated system information infonext and registry regnext. This
protocol returns a public key pkid while U achieves a secret signing key skid corresponding to pkid.

Update(pp, infocur, regcur, sksa,S)→ (infonext, regnext): This algorithm is run by the system authority SA to
revoke users whose identifiers belong to the to-be-revoked set of identifiers S. On inputs current system
information infocur, current registry regcur, SA’s secret key sksa, and the set S, this algorithm advances
the system to the next epoch next and returns the new system information infonext and registry regnext.

PreSign ⟨U(M),SA(sksa)⟩ (pp, infocur)→ (Γ, trans,U(aux)): This is an interactive protocol between a user U,
on input a message M , and the honest system authority SA, on input private key sksa, for issuing a
pre-signature Γ for U with respect to M and current system information infocur at the current epoch cur
(namely, current epoch). If cur is not the current epoch, then SA aborts. Otherwise, at the end of the
interaction, U receives a pre-signature Γ . PreSign also returns a transcript trans, for this protocol, and
auxiliary secret aux to U, i.e., containing additional secret generated by U.

PreVerify(pp, infoτ ,M, aux, Γ )→ {0, 1}: This deterministic algorithm, on inputs infoτ , a message M ∈ M,
an auxiliary input aux, and a pre-signature Γ , returns b ∈ {0, 1} indicating acceptance (b = 1) or rejection
(b = 0).

Sign(pp, infoτ , skid,M, aux, Γ )→ Σ: This is a PPT algorithm run by a user U, on inputs a system information
infoτ , signing key skid, a message M ∈ M, an auxiliary input aux, and a pre-signature Γ . It returns a
signature Σ.

Verify(pp,M,Σ)→ {0, 1}: This is a deterministic algorithm executable by any public party. On inputs a
message M ∈M, and a signature Σ, it returns a bit b ∈ {0, 1} indicating acceptance (b = 1) or rejection
(b = 0).

Trace(pp, skta,M,Σ)→ (ID ∪ {⊥}, Ξ): This algorithm is run by the tracing authority TA. On input TA’s
private key skta, a message M ∈M, and a signature Σ, this algorithm returns an identifier id′ ∈ ID or
⊥ (indicating unability to trace) and a proof Ξ.

Judge(pp,M,Σ, id, Ξ)→ {0, 1}: This is a deterministic algorithm executable by any public party. On input
a message signature pair (M,Σ), TA’s claimed identifier id and the proof Ξ, outputs verdict acceptance
(b = 1) if id is the correct identifier of signer behind Σ, and rejection (b = 0), otherwise.

Remark 2. Diverting from previous state-of-the-art privacy-preserving signatures [18,60,61,19,58], the algo-
rithms Verify,Trace, and Judge no longer require associated system information to decide whether the EFDGS
signature Σ is valid.

Remark 3. In PreSign, the user U requests a pre-signature for the concatenated message (M, infocur). Here,
M should not be leaked to SA. Therefore, U may need to generate additional private inputs, captured by
aux, when communicating with SA to protect the privacy of M .

4.2 Security

We consider a stronger version of SA, whom an adversary A may corrupt in a less restricted fashion.
For example, in the definition of privacy, A may instruct SA to generate outdated pre-signatures. In the
following, we model an adversary’s ability to influence SA through a set of oracles. Aside from these oracle
calls, we assume that SA performs semi-honestly. This is captured by protocol PreSignaug, where “aug” stands
for “augmented”. In practice, accessing this protocol is restricted since a revoked user can create EFDGS
signatures with the old signing keys. To define the security for EFDGS, we additionally define the following
algorithms for an EFDGS scheme in Definition 4 for convenience.

Definition 4 (Additional Algorithm and Protocol for Security).

IsActive(pp, infoτ , id)→ {0, 1}: Return 1 only if identifier id is in the system at the epoch τ whose system
information is infoτ . Otherwise, it returns 0.

PreSignaug ⟨U(M),SA(sksa)⟩ (pp, infoτ )→ (Γ, trans,U(aux)): This protocol is an augmented version of PreSign
in Definition 1. Its execution is the same as PreSign except that infoτ is not restricted to be the current
system information.

Correctness. The correctness of EFDGS captures the following conditions.
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– The updated system information infonext and registry regnext computed from honest executions of either
Join and Update are always correct.

– Any honest signer, who is active with respect to infoτ for any epoch τ , can always generate valid EFDGS
signatures if the corresponding pre-signatures are requested and run honestly via PreSign.

The correctness of EFDGS is formally defined in the following Definition 5.

Definition 5 (Correctness of EFDGS). Let pp, infoinit, reginit, sksa, and skta be outputs from honestly
running Setup(1λ). The correctness of an EFDGS scheme captures the following sub-properties.

1. If U with identifier id is enrolled to the system via an honest execution of Join, i.e., both U and SA are
honest, to obtain key pair (pkid, skid), then (i) the updated system information infonext and registry regnext

are correctly computed, i.e., non-zero entries in regnext are those of existing users and the newly enrolled
one, and (ii) at any epoch τ , if IsActive(pp, infoτ , id) = 1, then

Pr


PreVerify(pp, infoτ ,M, aux, Γ ) = 1
∧Verify(pp,M,Σ) = 1
∧id′ = id
∧Judge(pp,M,Σ, id′, Ξ) = 1

(Γ, trans,U(aux))← PreSignaug
⟨U(M),SA(sksa)⟩ (pp, infoτ ),

Σ ← Sign(pp, infoτ , skid,M, aux, Γ ),
(id′, Ξ)← Trace(pp, skta,M,Σ)


is overwhelming, i.e., at least 1− negl(λ), if SA is honest.

2. For any execution of Update executed by an honest SA at epoch cur, the next epoch next has the updated
system information infonext and registry regnext correctly computed, i.e., non-zero entries in regnext are
of unrevoked users.

Oracles. Following previous privacy-preserving signatures (e.g., [18,19,68]), before defining the security of
EFDGS, including unforgeability and privacy, we define necessary oracles in the following Definition 6.

Definition 6 (Oracles). We define the following oracles.

OSA: This oracle allows A to obtain SA’s private key sksa. With sksa, A can secretly introduce new users to
the system without the notice of other parties in the system. We define a variable acc-sksa ∈ {0, 1} to
indicate whether A has accessed to this oracle OSA.

OCrptU(id): This oracle allows A to introduce new corrupt user with identifier id at the current system
information infocur, whose signing keys are known to A. Accessing this oracle does not require A to
possess sksa. Every party must be informed of changes in users’ identifiers via this oracle. This is the
difference from OSA, since, by accessing sksa via OSA, A can secretly introduce new users without notice
from any other party. This oracle maintains a list CL (say, the corrupt list) such that any identifier id
introduced via this oracle is then inserted into CL.

OCrptSA(id): This oracle allows A to instruct SA to (i) introduce new honest members to the system at the
current system information infocur, and (ii) authorize pre-signature requests (via protocols PreSign and
PreSignaug in Definitions 1 and 4, respectively) from users. Accessing this oracle does not require A to
possess sksa. Every party must be informed of changes in users’ identifiers via this oracle. This oracle
maintains a list HL (say, honest list) such that any id introduced via this oracle is then inserted into HL.

OSign(id, infoτ ,M, aux, Γ )→ Σ: This oracle allows A to request an EFDGS signature Σ from signing key
skid of an honest user id ∈ HL, corresponding system information info, message M , auxiliary input aux,
and a pre-signature Γ . This oracle aborts and returns ⊥ if id /∈ HL or id is not active in the system at
epoch τ . Otherwise, it runs Sign(pp, infoτ , skid,M, aux, Γ ) to obtain and return EFDGS signature Σ to
A. This oracle also maintains a set SIGS of message-signature pairs such that, for every invocation to
this oracle with respect to input M and output Σ, it inserts (M,Σ) to SIGS.

OTrace(M,Σ)→ ID ∪ {⊥}: This oracle allows A to see the identifier of signer behind EFDGS signa-
ture Σ. It first checks whether Verify(pp,M,Σ) = 1. If so, it returns id from computing (id, Ξ) ←
Trace(skta,M,Σ).

Privacy. In an EFDGS system, privacy captures the following sub-properties.

– Anonymity. The signer’s identifier from an adversary who tries to extract either the partial or entire
identifier of the signer. This property is well-known for previous privacy-preserving signatures as well as
group signatures (e.g., see [30,80,12,53]).

https://orcid.org/0000-0002-1077-6262
https://orcid.org/0000-0002-1978-3557
https://orcid.org/0009-0009-6790-4577
https://orcid.org/0000-0002-7669-8922
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– Message Hiding. This property prevents an adversary who corrupts SA from linking the issued pre-
signature to the requested message, supposed to be hidden from SA, via PreSign and PreSignaug, and any
other party. Although, in the beginning, we assume that SA is honest and always issues pre-signatures
authorizing the requested messages with the suitable system information, SA may be curious about the
(partial) information about the requested message. This property further implies that, except the signer,
no other party can link the output EFDGS signature and its corresponding pre-signature. This is because
the message (e.g., M) and the EFDGS signature (e.g., Σ) are linked together via Verify. Hence, if the
corresponding pre-signature Γ is linked to Σ, it is also linked to M , implying a violation of this property.

– System Information Unlinkability. Any EFDGS message-signature pair does not reveal the corresponding
system information. In other words, SA, via PreSign and PreSignaug, and any other party, except the
signer, cannot link a valid EFDGS message-signature pair to its system information with respect to
the epoch when requesting the corresponding pre-signature. Figure 1 is a graphical illustration of the
message hiding and system information unlinkability.

We now discuss in detail our approach to model privacy.
Anonymity. Originated from Bootle et al. [18], state-of-the-art fully dynamic privacy-preserving signatures
[18,60,61,19,58] model anonymity by challenging the adversary to distinguish the output signature from the
two chosen identifiers at the same epoch. However, in EFDGS, we do not require verifying the EFDGS
signatures with the associated system information. Hence, the privacy experiment in an EFDGS scheme
does not enforce choosing two identifiers at the same epoch for distinguishing. Specifically, as in previous
results [18,19], different epochs would help A to distinguish since, if so, A knows the epoch of the challenged
signature for verifying and hence knows the identifier corresponding to this epoch. However, for EFDGS,
we allow A to choose two identifiers with respect to two potentially different epochs for requesting the
challenged EFDGS signature. On the other hand, as later we will employ NIZK proof systems for realizing the
EFDGS signatures, zero knowledge guarantees that, even though A knows all potential witnesses supporting
constructing the proofs, there is no way for A to decide which witness was employed to create the proof.
In fact, this is the notion of witness indistinguishability [36], which is implied by zero knowledge. Hence, to
formalize anonymity, we allow the adversary A to gain access to any signing key skid of any user id. This
says that even though A knows all signing keys of the users, A cannot distinguish the signer behind the
output EFDGS signature from any two potential chosen users (in potentially different epochs). To capture
anonymity, we follow [60,58] to define oracle OSigChalb (see Definition 7), for b ∈ {0, 1}, that allows A to

choose a message M and two tuples {(id(i), infoτ
(i)

, aux(i), Γ (i))}i∈{0,1}. For i ∈ {0, 1}, aux(i) is the auxiliary

input that was used to request pre-signature Γ (i) with respect to infoτ
(i)

. Then, by Definition 7, OSigChalb
generates the EFDGS signature Σ based on id(b) and infoτ

(b)

.

Message Hiding and System Information Unlinkability. As said in Section 3.1, these notions relate to blind

signatures [29,14]. In Definition 7, with an implicit bit b, we define oracle OPreChalb receiving (id
(0),M (0), id(1),M (1))

and a tuple (infoτ
(0)

, infoτ
(1)

) from A. This oracle first samples the auxiliary inputs and then requests pre-
signatures, via PreSignaug, in a random order of M (0) and M (1). In particular, for a private bit b unknown

to A, we use M (i⊕b) to request pre-signature with respect to infoτ
(i)

for i ∈ {0, 1}. Here, ⊕ denotes the XOR
operation. Then, Γ (i) and aux(i⊕b) are returned. Notice that A cannot know aux(i⊕b). Making such a random
order of messages helps hide the message and hence makes the system information unlinkable to the message.
Hence, even A corrupts SA, A cannot know for which message A issues the pre-signature. Then, OPreChalb

returns {Σ(i)}i∈{0,1} to A, where Σ(i⊕b) is computed from Sign(pp, infoτ
(i)

, skid(i⊕b) ,M (i⊕b), aux(i⊕b), Γ (i)).
Then, A is challenged to guess b. If A cannot guess b, system information unlinkability is guaranteed. Hence,
in summary, A can break both message hiding and system information unlinkability if A has a non-negligible
advantage in guessing b.

Regarding the case in which SA and TA collude, i.e., A can corrupt both SA and TA, for seeking some
advantage from TA’s tracing capability. We allow A to access skta. In fact, skta is only used for tracing
identifiers from EFDGS signatures. Hence, in the pre-signing process, having skta would give no advantage
in compromising the privacy of M . When an EFDGS signature is created, even though having skta can help
trace the identifier, skta does not help link the EFDGS signature, the respective message, and the identifier
to the corresponding system information employed for signing.

See Figure 2 for a graphical illustration of how OPreChalb works.

Ability of A in Modeling Privacy. Regarding the computational power of A, as EFDGS allows TA to trace
the identifiers of the signers behind the EFDGS signatures, in many constructions of group signatures
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[50,60,72,74], this tracing mechanism is usually realized by PKE encryptions which are only secure against
PPT adversaries. Hence, in modeling anonymity, we restrict A to be PPT. However, having skta would not
help A break message hiding and system information unlinkability. We assume A to be computationally
unbounded.

We allow A to access all oracles, except skta and OTrace for the case of anonymity. Specifically, in the case
of anonymity, if A possesses skta, A can easily trace the identifiers behind the signatures, which gives A some
advantage in guessing the identifier from the output of OSigChalb. On the other hand, in our consideration,
since OTrace is related to the decryption of some PKE, it is hence associated with the notions IND-CPA,
IND-CCA, and IND-CCA2. Therefore, for simplicity, we only focus on IND-CPA by not allowing A to
have access to OTrace. This is because IND-CCA and IND-CCA2 require more complicated mechanisms
or primitives in constructing, e.g., [67,38,39]. Hence, we omit the case of IND-CCA and IND-CCA2 in this
result.

id(0),M (0), Σ(0)

id(1),M (1), Σ(1)

infoτ
(0)

, trans(0), Γ (0)

infoτ
(1)

, trans(1), Γ (1)

b = 0

b = 0

b = 1

b =
1

Fig. 2. Graphical illustration for OPreChalb.

Experiments for and Definition of Privacy. The above discussion is summarized in Experiments Eanon-b
A (λ)

and Epre-unlk-b
A (λ) in Figure 3. Here, Eanon-b

A (λ) is for modeling anonymity while Epre-unlk-b
A (λ) is for modeling

both message hiding and system information unlinkability. At the end of each experiment, it requires A to
return a bit b′ ∈ {0, 1}. An EFDGS scheme satisfies privacy if A can correctly guess b′ = b with overwhelming

probability in neither Eanon-b
A (λ) nor Epre-unlk-b

A (λ). The formal definition of privacy is presented in Definition 8.

Definition 7 (Oracles for Privacy). We define the following oracles.

OPreChalb((id
(0),M (0), id(1),M (1)), (infoτ

(0)

, infoτ
(1)

))→ {Σ(i)}i∈{0,1} or ⊥:
This oracle is called only once. If infoτ

(0)

or infoτ
(1)

or both have never existed, or exist i, j ∈ {0, 1}
satisfying IsActive(pp, infoτ

(i)

, id(j)) = 0, it returns ⊥. Otherwise, it works as follows.
1. For i ∈ {0, 1}, obtain (Γ (i), trans(i),U(aux(i⊕b))) by invoking the protocol

PreSignaug

〈
U(M (i⊕b)),SA(sksa)

〉
(pp, infoτ

(i)

).

Notice that, for i ∈ {0, 1}, (Γ (i), trans(i)) is public.

2. Σ(i⊕b) ← Sign(pp, infoτ
(i)

, skid(i⊕b) ,M (i⊕b), aux(i⊕b), Γ (i)) ∀i ∈ {0, 1}.
3. Return {Σ(i)}i∈{0,1}.

OSigChalb(M, (id(0), infoτ
(0)

, aux(0), Γ (0)), (id(1), infoτ
(1)

, aux(1), Γ (1)))→ Σ or⊥: This oracle is called only once.

If both infoτ
(0)

and infoτ
(1)

have existed, IsActive(pp, infoτ
(i)

, id(i)) = 1 for i ∈ {0, 1}, message M ∈ M,

and it holds that PreVerify(pp, infoτ
(i)

,M, aux(i), Γ (i)) = 1 for i ∈ {0, 1}, then return Σ obtained from

running Sign(pp, infoτ
(b)

, skid(b) ,M, aux(b), Γ (b)). Otherwise, return ⊥.

Definition 8 (Privacy). An EFDGS scheme satisfies privacy if∣∣Pr[Eanon-0
A (λ) = 1]− Pr[Eanon-1

A (λ) = 1]
∣∣ ≤ negl(λ) ∀PPT A, and∣∣∣Pr[Epre-unlk-0

A (λ) = 1]− Pr[Epre-unlk-1
A (λ) = 1]

∣∣∣ ≤ negl(λ) ∀(PPT) A.

where Eanon-b
A (λ) and Epre-unlk-b

A (λ), for b ∈ {0, 1}, are in Figure 3.

https://orcid.org/0000-0002-1077-6262
https://orcid.org/0000-0002-1978-3557
https://orcid.org/0009-0009-6790-4577
https://orcid.org/0000-0002-7669-8922
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(pp, infoinit, sksa, skta)← Setup(1λ), SIGS := ∅.
acc-sksa := 0,CL := ∅,HL := ∅,PL := ∅.

b′ ← AOSA,OCrptU,OCrptSA,OSign,OSigChalb ,OPreChalb (pp, infoinit, skta).

Fig. 3. Eanon-b
A (λ) (respectively, Epre-unlk-b

A (λ)) including texts in light gray (respectively, dark gray) background and

excluding texts with dark gray (respectively, light gray) background.

Unforgeability. Recall from FDGS [18,19], this original formalization of FDGS captures traceability and
non-frameability. Traceability prevents a malicious signer from creating a valid FDGS signature, at some
epoch τ , that is traced to an identifier (including ⊥) outside the group of users at this respective epoch
τ . Non-frameability prevents an adversary A from outputting an FDGS signature traced to a user whose
signing key is unknown to A. In EFDGS, we follow the formalization of Multimodal Private Signatures
[68] to define unforgeability, capturing sub-properties including traceability (aka type-1 unforgeability) and
non-frameability (aka type-2 unforgeability).

Moreover, considering SA to be an honest-but-curious party, we also model unforgeability to prohibit the
adversary from generating EFDGS signatures with respect to the past system information (not the current
one). This sub-property is called system information unforgeability.

To this end, we follow previous results [11,53,68,69] to put the security of the system into the simulation-
sound extractability (sim-ext) approach [28] by defining additional algorithms in the following Definition 9.

Definition 9 (Additional Algorithms for Sim-Ext).

SimSetup(1λ)→ (pp, infoinit,SA(sksa),TA(skta), tdext): This algorithm is the simulated setup algorithm that
returns similar outputs as of Setup(1λ). However, it also returns an additional extraction trapdoor tdext.

ExtPreSig(pp, tdext, info
τ , Γ, trans)→ (M̃, ãux): This is the extraction algorithm of the pre-signing process

from PreSign. On inputs extraction trapdoor tdext, the pre-signature Γ , and transcript trans (obtained

from running ExtPreSig), it returns a message M̃ , and an auxiliary input ãux subjected to pre-signature

verification PreVerify(pp, infoτ , M̃ , ãux, Γ ) = 1.

ExtSig(pp, tdext,M,Σ)→ (ĩd, ĩnfo
τ
): This is for extracting from EFDGS signature Σ. On inputs extraction

trapdoor tdext, message M and EFDGS signature Σ, it returns an identifier ĩd and a system information

ĩnfo
τ
.

Correctness and Setup Indistinguishability for Sim-Ext. With algorithms above, we can put the system into
a real or a simulated setup by running Setup or SimSetup, respectively. As from [68], we require that

– The correctness in Definition 5 also holds with respect to the simulated setup.
– The real and simulated setups are indistinguishable by any PPT A.

Formalizing Unforgeability. With the above algorithms and properties for the simulated setup, we can turn
back to defining the unforgeability of the system. In particular, by putting the system into simulated setup,

we can have the power to extract the message M ′ and system information infoτ
′
from the transcript of

the pre-signing process via ExtPreSig, and the identifier id′ and system information infoτ
′
from the EFDGS

signature Σ via ExtSig thanks to the extraction trapdoor tdext. Then, we define unforgeability to capture the
sub-properties as follows.

– Extractability. Since we introduced the simulated setup, as from [68], we must guarantee that the ex-
tracted identifier (from ExtSig) must match the traced one (from Trace) for an EFDGS signature. This
sub-property is called extractability. Here, we allow A to access TA’s private key skta and all oracles in
Definition 6. A is considered to break this property if A can provide a valid EFDGS signature whose
extracted and traced identifiers are distinct.

– System Information Unforgeability. This property prohibits A from creating an EFDGS signature Σ
whose the corresponding message M has never been invoked via PreSign to receive an authorized system

information info (by SA) equal to the extracted system information infoτ
′
from Σ (via ExtSig). To this

end, we allow A to access TA’s private key skta and all oracles, except OSA, in Definition 6. We will
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explain why accessing OSA is prohibited below after introducing the lists PL and EPL. To capture system
information unforgeability, we use an additional list, dubbed PL, to record all pre-signatures and the
corresponding transcripts (via either PreSign or PreSignaug) issued by SA. For each invocation to either
PreSign or PreSignaug, the triple (infoτ , Γ, trans), including the request system information infoτ (infocur

if invoked via PreSign) and outputs Γ and trans, is then inserted into PL. In the end, we convert the
list PL into another list EPL via ExtPreSig, containing the extracted messages and system information
as follows.

EPL =

{
(M ′, infoτ )

∣∣∣∣ (infoτ , Γ, trans) ∈ PL

∧(M̃, ãux)← ExtPreSig(pp, tdext, info
τ , Γ, trans)

}
.

A is considered breaking the system information unforgeability if A can output a message M and a

corresponding valid EFDGS signature Σ such that, via invoking ExtSig(pp, tdext,M,Σ) → (ĩd, ĩnfo
τ
),

the pair (M, ĩnfo
τ
) does not belong to EPL, i.e., A is able to create EFDGS signatures without prior

authorization from SA.
We now explain why accessing OSA is prohibited. Notice that, having sksa, A can secretly authorize
pre-signatures without notice from any party. Hence, the list EPL cannot capture the related pairs of
message and system information that A secretly authorized by issuing pre-signatures.

– Traceability. As from [18,19,60,61], this property prevents A from creating a pair (M,Σ) of message and
a valid EFDGS signature Σ that can be traced (via Trace) to an id′ that is not in the system with respect
to the extracted system formation, is unable to generate a proof of tracing, or is not a valid identifier.
Here, we allow A to have access to TA’s private key skta and all oracles in Definition 6 except OSA (for
accessing SA’s private key sksa). Accessing sksa allows A to secretly introduce new corrupt users without
being recorded in CL.

– Non-Frameability. As from [18,19,60,61], this property prevents A to create a pair (M,Σ) of message
and a valid EFDGS signature Σ that can be traced (via Trace) to id′ in the honest list HL. We allow A to
have access to SA’s private key sksa, TA’s private key skta and all oracles in Definition 6. Here, accessing
sksa is allowed because, even if A can introduce new secret users to the system without any record, they
are impossible to be the ones in HL who are certainly recorded. Then, A is considered breaking the
traceability if A can return a pair (M,Σ) such that Σ is a valid EFDGS signature with respect to M
and the traced id′ ∈ HL is active with respect to the extracted system information.

– Tracing Soundness. As from [18,19,60,61], this says that A is unable to produce an EFDGS signature
that is traced to two distinct identifiers even A has accesses to all oracles and secret keys of SA and TA.

To make the above four properties captured by a unified experiment, we observe that A has access to all
possible oracles in Definition 6 except that, for system information unforgeability and traceability, A is
prohibited from accessing sksa (via OSA). To encounter this circumstance, recall that, in Definition 6, we
introduced the variable acc-sksa ∈ {0, 1} indicating whether A queried oracle OSA. Hence, A is considered to
win system information unforgeability or traceability if A has never queried OSA, i.e., by checking whether
acc-sksa = 0.

For unforgeability, we use Eunf-wo-tracesnd
A (λ) and Etracesnd

A (λ) in Figure 4 to capture all mentioned sub-
properties for tracing soundness. Here, Eunf-wo-tracesnd

A (λ) captures extractability, system information unforge-
ability, traceability, and non-frameability while Etracesnd

A (λ) captures tracing soundness by challenging A to
return 1 in either Eunf-wo-tracesnd

A (λ) or Etracesnd
A (λ). We have Definition 10 for capturing the unforgeability of

EFDGS.

Definition 10 (Unforgeability). EFDGS is unforgeable if, for any (PPT) A, Pr[Eunf-wo-tracesnd
A (λ) = 1] ≤

negl(λ) and Pr[Etracesnd
A (λ) = 1] ≤ negl(λ) where Eunf-wo-tracesnd

A (λ) and Etracesnd
A (λ) are in Figure 4.

5 Preliminaries for Our Lattice-Based Instantiation

5.1 LLNW Accumulator (Brief)

We briefly recall LLNW accumulator [51,52]. Its detailed description and security are deferred to Ap-
pendix A.3. The LLNW accumulator allows to accumulate a sequence of N = 2L vectors D = (di)i∈[0,N−1] ∈
({0, 1}nk)N , for some n, k,K ∈ N, by employing a hash function hT : {0, 1}nk × {0, 1}nk → {0, 1}nk. Specif-
ically, this accumulator maps (di)i∈[0,N−1] into a single vector uϵ ∈ {0, 1}nk.

https://orcid.org/0000-0002-1077-6262
https://orcid.org/0000-0002-1978-3557
https://orcid.org/0009-0009-6790-4577
https://orcid.org/0000-0002-7669-8922
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Eunf-wo-tracesnd
A (λ)

(pp, infoinit, sksa, skta, tdext)← SimSetup(1λ).
acc-sksa := 0,CL := ∅,HL := ∅,PL := ∅, SIGS := ∅.
(M,Σ)← AOSA,OCrptU,OCrptSA,OSign,OTrace(pp, skta, info

init).
Return 0 if (M,Σ) ∈ SIGS or Verify(pp,M,Σ) = 0.

EPL :=

{
(M̃, infoτ )

∣∣∣∣ (infoτ , Γ, trans) ∈ PL

∧(M̃, ãux)← ExtPreSig(pp, tdext, info
τ , Γ, trans)

}
.

(id′, Ξ)← Trace(skta,M,Σ), (ĩd, ĩnfo
τ
)← ExtSig(pp, tdext,M,Σ).

Return 1 if one of the following conditions holds.
1. Judge(pp,M,Σ, id′, Ξ) = 1 ∧ id′ ∈ ID ∧ ĩd ̸= id′. // extractability

2. (M, ĩnfo
τ
) /∈ EPL ∧ acc-sksa = 0. // system information unforgeability

3. (IsActive(pp, ĩnfo
τ
, id′) = 0 ∨ Judge(pp,M,Σ, id′, Ξ) = 0 ∨ id′ =⊥)

∧id′ /∈ CL ∧ acc-sksa = 0. // traceability

4. IsActive(pp, ĩnfo
τ
, id′)=1 ∧ Judge(pp,M,Σ, id′, Ξ)=1 ∧ id′∈HL. // non-frameability

Otherwise, return 0.

Etracesnd
A (λ)

(pp, infoinit, sksa, skta, tdext)← SimSetup(1λ).
acc-sksa := 0,CL := ∅,HL := ∅,PL := ∅, SIGS := ∅.
(M,Σ, id(0), Ξ(0), id(1), Ξ(1))← AOSA,OCrptU,OCrptSA,OSign,OTrace(pp, skta, info

init).
If Verify(pp,M,Σ) = 0, return 0.
Return 1 if id(0) ̸= id(1) ∧ id(0) ̸=⊥ ∧id(1) ̸=⊥ ∧Judge(pp,M,Σ, id(b), Ξ(b))=1 ∀b ∈ {0, 1}. Otherwise, return 0.

Fig. 4. Experiments Eunf-wo-tracesnd
A (λ) and Etracesnd

A (λ).

We can verify whether a vector d ∈ {0, 1}nk belongs to D if there exist w = ((j1, . . . , jL), (w1, . . . ,wL)) ∈
{0, 1}L × ({0, 1}nk)L and v0, . . . ,vL such that vL = d, v0 = uϵ, and, for all i ∈ [0, L − 1], it holds that
vi = hT(vi+1,wi+1) if ji+1 = 0, and vi = hT(wi+1,vi+1), otherwise.

This accumulator also supports an algorithm (say, A.ModLeaf) that can change the accumulated value u
to u′ corresponding to an updated sequence D′ obtained by changing di to d′

i for some i ∈ N.

5.2 JRS Oblivious Signing Interactive Protocol (Brief)

In this section, we briefly recall the JRS oblivious signing interactive protocol from Jeudy, Roux-Langlois, and
Sanders [45]. This protocol is employed to realize the pre-signature issuance mechanism that we introduced
previously in Section 3. However, as introduced, the system authority SA generates a pre-signature, in the
form of a signature on a committed message (or “blind” signature with a similar sense), for a concatenated
message (M, infoτ ) where M is only known to the requester while infoτ is public. Therefore, we slightly
modify the JRS oblivious signing interactive protocol.

Assume that a user has a private message m and would like to obtain a signature on a commitment to
the message (m∥m′) where m′ is a public message. The signer in this protocol receives as a commitment
c (see Appendix A.2 for the definition of commitment schemes) to the binary message m computed as
c := A · r′ +D1 ·m mod q where A and D1 are public matrices while r′ is the randomness protecting the
privacy of m.

When receiving c, the signer can transform into a commitment of (m∥m′) by computing c + D2 ·m′

mod q = A · r′ + [D1|D2] · (m∥m′) mod q which is a commitment to (m∥m′). Here D2 is another public
matrix. Then, the signer creates a signature (say, Γ ) on the commitment c +D2 ·m′ and sends it back to
the user.

The user can eventually transform Γ into a signature authorized by the signer by removing from Γ the
randomness r′ that she previously used to create c.

The full description of the protocol is recalled in Appendix A.7.
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6 Our Lattice-Based Instantiation of EFDGS (Brief)

We briefly describe our construction, based on [60,61,70,58,71] for managing the system by Setup, Join, and
Update, following the syntax specified in Definition 1. Recall that the entities involved are (i) users (U), (ii)
system authority SA, and (iii) tracing authority TA.

According to the technical overview in Section 3.2, our lattice-based instantiation needs the following
components: (i) LLNW accumulator ACC llnw (built upon a hash function hT) [51,52], (ii) JRS oblivious sign-
ing protocol Πobl-sign [45], (iii) Lindner-Peikert IND-CPA-secure PKE PKE lp [57] (recalled in Appendix A.5),
and (iv) NIZK proof systems for circuit satisfiability over Zq. Notice that we choose Lindner-Peikert PKE
because it can be instantiated with smaller keys, ciphertexts, and encryption randomness without degrading
concrete security on the LWE problem. Following Section 3.2, we briefly describe the instantiation below.
The full description and analysis of the instantiation are discussed in Appendix B.

The algorithm Setup initializes the empty registry containing N vectors 0nk and accumulate them using
ACC llnw. The accumulated value is the initial system information infoinit corresponding to the initial epoch
init. It also runs setup/key generation algorithms Πobl.Setup and PKE.Gen of Πobl-sign and PKE lp. The secret
keys output by Πobl-sign and PKE lp are respectively sksa and skta, while all public keys are included in gpk,
hence included in pp.

A user id has a secret key skid and a corresponding public key pkid. If SA accepts this user to the system,
SA employs algorithm A.ModLeaf (discussed in Section 5.1) to recompute the accumulated value and view
it as the next system information infonext and advance the system to the next epoch.

To revoke users by algorithm Update, SA simply removes the public keys of to-be-revoked users by setting
the entries corresponding to them as 0nk in the registry. Then, run A.ModLeaf to recompute the accumulated
value, view it as the next system information infonext, and advance the system to the next epoch.

Regarding algorithm PreSign for a message m, a user needs to obtain a signature Γ on a commitment to
(m∥infocur) where infocur is the current system information, via interacting with SA to run Πobl-sign. Γ is then
considered the pre-signature. Issuing Γ also requires SA to issue a ZK proof for generating Γ to certify that
SA actually authorizes (m∥infocur). Hence, the algorithm PreVerify simply verifies Γ output by SA according
to the specification of Πobl-sign.

When issuing an EFDGS signature for m (via algorithm Sign), a signer must show that, via a NIZK
proof NIZKsig, she possesses a valid pre-signature for m, is active at the epoch in which she requested the
pre-signature, and correctly encrypts (by TA’s public key pkta) her identity (namely, pkid), via PKE lp, into a
ciphertext ct, for tracing purpose. Hence, the output EFDGS signature Σ includes ct and NIZKsig. Verifying
Σ (via Verify) is simply verifying the NIZK proof NIZKsig.

When tracing an EFDGS signature Σ = (ct,NIZKsig) via algorithm Trace, TA decrypts ct, by skta, to
obtain the signer’s public key and additionally produces a NIZK proof NIZKtrace for the decryption. The
algorithm Judge simply verifies NIZKtrace.

Regarding the NIZK proofs, we can employ any post-quantum NIZK proof systems for circuits, e.g.,
[40,85,63,10].
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59. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem,
and Applications. In: Kurosawa, K., Hanaoka, G. (eds.) Public-Key Cryptography – PKC 2013. Lecture Notes
in Computer Science, vol. 7778, pp. 107–124. Springer Berlin Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36362-7_8

60. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease.
In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) Applied Cryptography and Network Security – ACNS 2017.
Lecture Notes in Computer Science, vol. 10355, pp. 293–312. Springer International Publishing (2017). https:
//doi.org/10.1007/978-3-319-61204-1_15

61. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: Achieving full dynamicity (and denia-
bility) with ease. Theor. Comput. Sci. 783, 71–94 (2019). https://doi.org/10.1016/J.TCS.2019.03.023

62. Lyubashevsky, V.: Lattice-Based Identification Schemes Secure Under Active Attacks. In: Cramer, R. (ed.) Public
Key Cryptography – PKC 2008. Lecture Notes in Computer Science, vol. 4939, pp. 162–179. Springer Berlin
Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1_10
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A Preliminaries (Extended)

Notations and Conventions. In complement to notations and conventions in Section 2.1, we additionally

have those for lattices. Let ρs,c(x) = exp
(
−π ∥x−c∥2

s2

)
be the standard Gaussian function of width s shifted

by c. For any full rank n-dimensional lattice Λ ⊆ Rn×n and any x ∈ Λ, we define the discrete Gaussian

distribution to be DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ) . When c = 0, we simply write DΛ,s. For a relation of the form

R =
{
(s;w)

∣∣ conditions capturing (s, w)
}
, we denote by L(R) the language capturing R such that, when

writing s ∈ L(R), we understand that there exists w satisfying (s;w) ∈ R.

A.1 A Lemma for Parsing into Binary

Let Zq = {0, . . . , q − 1} for some q ∈ N. We recall a method, from [59], for parsing numbers in the range
[0, v) = [0, v − 1], for some v ∈ Zq, into binary. This method is used for constructing zero-knowledge proofs
that x belongs to [0, v) for x ∈ Zq. This method is summarized in Lemma 11.

Lemma 11. Let q ∈ N and Zq = {0, . . . , q−1}. Let v ∈ Zq, kv = ⌊log2(v−1)⌋+1, Bi = 2i−1 for i ∈ [kv−1],
and Bkv

= q − (2kv−1 − 1). For any x ∈ Zq, x ∈ [0, v) if and only if there exist b1, . . . , bkv
∈ {0, 1} such that

x =
∑

i∈[kv ]
bi ·Bi.

According to Lemma 11, to show that a private number x ∈ [0, v) for some public v ∈ Zq, we can find a
sequence b1, . . . , bkv

such that we can prove x ∈ [0, v) by equivalently proving that b1, . . . , bkv
∈ {0, 1} and

x =
∑

i∈[kv ]
bi ·Bi.

A.2 Commitment Schemes

We recall the definition of commitment schemes (e.g., see [44]) in the following Definition 12.

Definition 12. A commitment scheme is a tuple of algorithms

COM = (C.Gen,C.Commit,C.Open)

satisfying

C.Gen(1λ)→ ck: On input the security parameter 1λ, this randomized algorithm returns a commitment key
ck.

C.Commit(ck,m; r)→ cmt: On inputs the commitment key ck and a message m, this randomized algorithm,
using randomness r (sampled secretly by the committer), produces a commitment cmt.

C.Open(ck,m, r, cmt)→ {0, 1}: On inputs the commitment key ck, a message m, a commitment randomness
r, and a commitment cmt, this deterministic algorithm outputs a bit b = {0, 1} indicating rejection or
acceptance.

Definition 13. We say the commitment scheme is (perfectly) correct if for all m in the appropriate message
space, all r random coins used in C.Commit:

Pr [C.Open(ck,m, r, cmt) = 1|cmt← C.Commit(ck,m; r)] = 1

Definition 14. We say that the commitment scheme is statistically hiding if, for all m0,m1, cmt0 ←
C.Commit(ck,m0) and cmt1 ← C.Commit(ck,m1), generated with i.i.d. randomness, are statistically indis-
tinguishable.

The commitment scheme is computationally hiding if no PPT adversary A, except with negligible prob-
ability, can distinguish Experiment 0 from Experiment 1 where, for b ∈ {0, 1}, Experiment b is defined as
follows.

https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1016/J.CSI.2023.103807
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1. Wait for the adversary to produce 2 equal length messages m0 and m1. Return cmtb ← C.Commit(ck,mb; r)
to the adversary.

2. The adversary then outputs a bit.

Definition 15. The commitment scheme is computationally binding if no PPT adversary A, except with
negligible probability, can produce a tuple (cmt, (m0, r0), (m1, r1)) satisfying

m0 ̸= m1 ∧ C.Open(ck,m0, r0, cmt) = 1 ∧ C.Open(ck,m1, r1, cmt) = 1

A.3 LLNW Accumulator (Detailed)

We recall LLNWMerkle-tree-based accumulator [51,52], dubbed LLNW accumulator and denoted byACC llnw.
This is presented in detail with respect to Section 5.1.

Following the strategy from [60,61,58], we will use this accumulator to accumulate public keys of users
into a single accumulated value representing the public system information of the system in Section 6 whose
detailed description is in Appendix B. This scheme works as follows. For a security parameter λ, let n = O(λ),
q = Õ(n1.5), k = ⌊log2 q⌋+1, and m = 2nk. Define Gacc = In⊗(1, 2, . . . , 2k−1)⊤. According to Appendix A.1,
for every v ∈ Zn

q , we can always find its binary representation bink(v) ∈ {0, 1}nk satisfying v = Gacc ·bink(v).
The accumulator employs the following SIS-based collision-resistant hash function. For a matrix T

$← Zn×m
q ,

the hash function hT : {0, 1}nk × {0, 1}nk → {0, 1}nk maps (x0,x1) to

hT(x0,x1) = bink(T · (x0∥x1)) ∈ {0, 1}nk. (1)

This hash function satisfies collision resistance.
The Merkle tree underlying LLNW accumulator ACC llnw has exactly N = 2L leaves for L ∈ N. ACC llnw

is a tuple
ACC llnw = (A.Setup,A.Acc,A.GetRoot,A.ModLeaf,A.Witness,A.Verify)

described as follows.

A.Setup(1λ)→ T: This algorithm works as follows.
1. Determine n, q, k, and m as specified above.

2. Sample T
$← Zn×m

q and return T.
A.AccT(R = (di)i∈[0,N−1] ∈ ({0, 1}nk)N ): Let ubinL(j) = uj1,...,jL := dj .

1. For each i from L− 1 down to 1, for all j ∈ [0, 2i − 1] and bini(j) = (j1, . . . , ji), compute uj1,...,ji :=
hT(uj1,...,ji,0,uj1,...,ji,1).

2. Compute the root uϵ := hT(u0,u1).
A.GetRootT()→ uϵ ∈ {0, 1}nk: Return the root node uϵ.

A.ModLeafT
((

j(1), . . . , j(S)
)
∈ [0, N)

S
,
(
dj(1) , . . . ,dj(S)

)
({0, 1}nk)S

)
:

1. For each i from 1 to S, set ubinℓ(j(i)) := dj(i) .
2. Recompute the intermediate nodes as in A.Acc. We only need to update the parent node if any

children have been modified.
3. Recompute the root uϵ.

A.WitnessT(R,uϵ,d)→ w ∈ {0, 1}L × ({0, 1}nk)L or ⊥: If d ̸∈ R, return ⊥. Otherwise, determine j ∈
[0, N) where ubinL(j) = d. Let (j1, . . . , jL) = binL(j). Output

w = ((j1, . . . , jL), (uj1
, . . . ,uj1,...,jL−1,jL

)) ∈ {0, 1}L × ({0, 1}nk)L.

A.VerifyT(uϵ,d, w)→ b ∈ {0, 1}: Parse w = ((j1, . . . , jL), (w1, . . . ,wL)) ∈ {0, 1}L×({0, 1}nk)L. Let vL := d.
For i from L− 1 down to 0, compute

vi :=

{
hT(vi+1,wi+1) if ji+1 = 0,

hT(wi+1,vi+1) if ji+1 = 1.

Return b = 1 if v0 = uϵ. Otherwise, return b = 0.

Definition 16 ([1]). The SIS problem SIS∞n,m,q,β is defined as following: Given a uniformly random matrix

A
$← Zn×m

q , find a short integer vector x ̸= 0 ∈ Zm such that ∥x∥∞ ≤ β, A · x ≡ 0 (mod q).

As pointed out by [51], when β = 1, q = Õ(n),m = 2n⌊log2 q⌋, SIS
∞
n,m,q,1 is at least as hard as the worst

case problem SIVPÕ(n)

Lemma 17 (Security of ACC llnw [51,52]). ACC llnw is correct and secure assuming the hardness of problem
SIS∞n,m,q,1.
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A.4 Definition of Public-Key Encryptions

We recall the definition of public-key encryption schemes, which can be found in various textbooks (e.g., see
[46]), in the following Definition 18.

Definition 18. A public-key encryption scheme (short for PKE) is a triple of randomized algorithms

PKE = (PKE.Gen,PKE.Enc,PKE.Dec).

described as follows.

PKE.Gen(1λ)→ (ek, dk): On input the security parameter 1λ, the algorithm outputs encryption and decryp-
tion key (ek, dk). Optionally, the algorithm may also take a length parameter l to designate the message
bit length. If l is not provided, the message bit length is a polynomial function l = poly(λ).

PKE.Enc(ek,m; r)→ ct: On input the encryption key ek and message m of length l, the algorithm outputs
a ciphertext ct. We let r denote the randomness used in the encryption algorithm. Sometimes, we will
omit r.

PKE.Dec(dk, ct)→m or ⊥: On input the decryption key dk and a ciphertext ct, the algorithm, if successful,
will output a message m. Otherwise, decryption fails, and the output is ⊥.

Definition 19. The PKE scheme PKE is correct if for any message m in the appropriate message space.

Pr

[
PKE.Dec(dk, ct) = m

(ek, dk)← PKE.Gen(1λ)
ct← PKE.Enc(ek,m)

]
≥ 1− negl(λ)

The scheme is perfectly correct if correctness holds with probability 1.

Definition 20. We say that a PKE scheme satisfies semantic security, or indistinguishability under chosen
plaintext attacks (IND-CPA), if any PPT adversary A cannot, except with negligible probability, distinguish
the following experiments parameterized by a bit b ∈ {0, 1}. Experiment b is defined as follows.

1. Generate (ek, dk) ← PKE.Gen(1λ). Gives A the encryption key ek, and wait for A to produce 2 equal
length message (m0,m1).

2. Upon receiving (m0,m1), creates ciphertext ctb = PKE.Enc(ek,mb) and gives ctb to A.
3. Finally, A outputs accept or reject.

That is,
|Pr [A accepts in Experiment 0]− Pr [A accepts in Experiment 1]| ≤ negl(λ).

Definition 21. We say that a PKE scheme satisfies indistinguishability under chosen ciphertext attacks
(IND-CCA1) if any PPT adversary A cannot, except with negligible probability, distinguish the following
experiments parameterized by a bit b ∈ {0, 1}. Here Experiment b proceeds in 2 phases:

Phase 1: Generate (ek, dk)← PKE.Gen(1λ)and gives A the encryption key ek. In addition, it also provides
A with a decryption oracle ODec(dk,·), one that runs the decryption algorithm (with the decryption key dk) on
anything A provides. Wait for A to produce 2 equal length message (m0,m1).

Phase 2: Upon receiving (m0,m1), creates ciphertext ctb = PKE.Enc(ek,mb) and gives ctb to A. During
phase 2, A cannot access the decryption oracle ODec. Finally, A outputs accept or reject.

The PKE is IND-CCA1 secure if:

|Pr [A accepts in Experiment 0]− Pr [A accepts in Experiment 1]| ≤ negl(λ).

Definition 22. We say that a PKE scheme satisfies indistinguishability under adaptive chosen ciphertext
attacks (IND-CCA2) if any PPT adversary A cannot, except with negligible probability, distinguish the fol-
lowing experiments parameterized by a bit b ∈ {0, 1}.

Experiment b is almost the same as that defined in Definition 21, except that in Phase 2, we also provide
the adversary A with the decryption oracle ODec(dk,·). The oracle ODec(dk,·) in phase 2 would not produce
the decryption of the challenge ciphertext ctb. Otherwise, its functionality is the same as the decryption
algorithm.

The PKE is IND-CCA2 secure if

|Pr [A accepts in Experiment 0]− Pr [A accepts in Experiment 1]| ≤ negl(λ).
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A.5 Lindner-Peiker PKE

We recall Lindner-Peikert PKE [57]. This scheme is a modification of Regev’s well-known encryption [78,79]
based on the LWE assumption. Its main advantage is that it can be instantiated with smaller keys, ci-
phertexts, and encryption randomness without degrading concrete security on the LWE problem. Instead of
relying on Leftover Hash Lemma [43] to mask the message bit, Lindner-Peikert PKE uses the LWE assump-
tion twice, thus asymptotically reducing the overall sizes by a factor of log2 q (Recall in Regev’s encryption
scheme, the LWE matrix needs at least m ≈ n log2 q columns to ensure safety).

In our construction, a user needs to generate NIZK proofs that the encryptions have been done “correctly”
(in a sense to be specified later). We believe the small ciphertext sizes offered by Lindner-Peikert PKE will
benefit the proof size. We now recall Lindner-Peikert PKE, denoted by

PKE lp = (PKE.Gen,PKE.Enc,PKE.Dec).

See Appendix A.4 for the definition of syntax and security of PKE.
First, similar to [57], we use a simple error-tolerant encoder/decoder. Specifically, let encode : {0, 1} →

Zq, decode : Zq → {0, 1}, t =
⌊
q
4

⌋
be bq = encode(b) = b ·

⌊
q
2

⌋
, decode(bq) = 0 if and only if bq ∈

[
−
⌊
q
4

⌋
,
⌊
q
4

⌋)
and 1 otherwise. This encoding tolerates an error at most t =

⌊
q
4

⌋
, namely,

∀b ∈ {0, 1},∀e s.t. |e| < t : decode ((encode(b) + e) mod q) = b.

We naturally extend the encode/decode to work with binary vectors. The descriptions of the algorithm of
PKE lp are as follows.

PKE.Gen(1λ, ℓ ∈ N)→ (ek, dk): Here, ℓ is the length of messages to be encrypted. This algorithm works as
follows.
1. Choose integer modulus q > 0, discrete Gaussian widths σk, σe, LWE rank n1, n2 > 0, error bound

t← ⌊ q4⌋.
2. Sample a public matrix Ā

$← Zn2×n1
q .

3. Sample R1 ← Dℓ×n1

Z,σk
and R2 ← Dℓ×n2

Z,σk
.

4. Compute P := (R1 −R2Ā) mod q ∈ Zℓ×n1
q

5. Output encryption key ek = (n1, n2, σk, σe, ℓ, Ā, t,P), and decryption key dk = R2.
PKE.Enc(ek = (n1, n2, σk, σe, ℓ, Ā ∈ Zn2×n1

q , t,P ∈ Zℓ×n1
q ),m ∈ {0, 1}ℓ)→ ct: It works as follows.

1. Compute the encoding mq := encode(m) ∈ Zℓ
q.

2. Sample (e1, e2, e3)← Dn1

Z,σe
×Dn2

Z,σe
×Dl

Z,σe
.

3. Output ct = (c1∥c2) :=
[
Ā In2

P Iℓ

]
· (e1∥e2∥e3 +mq) mod q.

PKE.Dec(dk = R2 ∈ Zℓ×n2 , ct = (c1∥c2))→m: It works as follows.
1. Let mq := (R2c1 + c2) mod q ∈ Zℓ

q.
2. Output m← decode(mq). Note that

R2 · c1 + c2 ≡ R1 · e1 +R2 · e2 + e3 +mq ≡ [R1|R2|Iℓ] · (e1∥e2∥e3) +mq (mod q).

Correctness and Security. PKE PKE lp is correct with negligible decryption error and IND-CPA assuming
the hardness of the decisional LWE problem.

Definition 23 ([78]). The decisional LWE problem (with subgaussian secret)
DLWEn,m,q,σ asks to distinguish between LWE samples Aσ,χ ∈ Zm×n

q × Zm
q and those uniformly sampled

from Zm×n
q × Zm

q , where Aσ,χ := (A,As+ e mod q),A
$← Zm×n

q , s← DZn,σ, e← DZm,σ.

Recall from [78] that for sufficiently smooth modulus q, Decision-LWE is at least as hard as its search variant.
Also, whenever σ ≥ 2

√
n, Search-LWE is at least as hard as the worst case SIVPÕ(nq

σ ).

Lemma 24 (Correctness of PKE lp [57, Lemma 3.1]). The probability of decryption error for each
message bit is bounded above by δ, as long as

σe · σk ≤
√
2π

c
· t√

(n1 + n2) ln(
2
δ )

where c above depends only on n1 + n2 and is between (1, 2) for reasonable choices of n1, n2.

Lemma 25 (Security of PKE lp [57, Lemma 3.2]). The encryption scheme PKE lp above is IND-CPA-
secure assuming the hardness of both DLWEn2,n1,q,σk

and DLWEn1,(n2+ℓ),q,σe
.
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A.6 Signature Schemes

We recall the definition of (ordinary) signatures, which can be found in various textbooks (e.g., see [46]), in
the following Definition 26.

Definition 26. A signature scheme is a triple of randomized algorithms

SIG = (S.Gen,S.Sign,S.Verify)

where

S.Gen(1λ)→ (sk, vk): On input security parameter 1λ, outputs signing key and verification key sk, vk.
S.Sign(sk,m)→ sig: On input signing key sk and message m, outputs a signature sig.
S.Verify(vk,m, sig)→ {0, 1}: On input the verification key sk, message signature pair (m, sig), outputs 1 if

the algorithm accepts and 0 if it rejects.

Definition 27. The signature scheme SIG is correct if, for all message m in the appropriate message space,
it holds that

Pr

[
S.Verify(vk,m, sig) = 1

(sk, vk)← S.Gen(1λ)
sig← S.Sign(sk,m)

]
≥ 1− negl(λ).

The scheme is perfectly correct if correctness holds with probability 1.

Definition 28. We say a signature scheme satisfies universally existential unforgeability under chosen mes-
sage attacks (EUF-CMA) if any PPT adversary A cannot win the following game except with negligible
probability.

1. Generates (sk, vk)← S.Gen(1λ) and gives the verification key vk to A.
2. In addition, provides A with a signing oracle OSign. OSign does as follows.

(a) Before any queries, it initializes an empty list QUERY = ∅.
(b) Each time A submits a signing query on message m, the oracle runs sig← S.Sign(sk,m). It appends

(m, sig) to QUERY and returns sig to A.
3. In the end, A outputs a pair (m∗, sig∗).

We say that A wins the EUF-CMA game if with non-negligible probability,

(m∗, sig∗) ̸∈ QUERY ∧ S.Verify(vk,m∗, sig∗) = 1.

A.7 JRS Oblivious Signing Protocol (Detailed)

We recall the oblivious signing interactive protocol Πobl-sign from [45] in the following Figure 5. It is a more
detailed description than in Section 5.2.

Recall that in Section 5.2, the signer (played by SA) receives a commitment to a private message m
(known by the user) and transforms it into the commitment to a longer message (m∥m′) where m′ is known
by both the user and the signer.

Remark 29. In Figure 5, Γ = (tag,v′) can be transformed into a signature to (m∥m′) by computing v :=
v′−(r′∥0m2) = (v′

1∥v′
2)−(r′∥0m2) = (v′

1−r′∥v′
2). The signature is hence (tag,v) and is verified by applying

step 3 of Πobl-sign.

Remark 30. The signature scheme requires a pre-image Gaussian sampling algorithm SampleD, such as the
one given by Micciancio and Peikert [64] (recalled in [45, Lemma 2.6]). Using notations from Figure 5,
we require that when given a matrix [A|tag · Gobl − AR], a target u ∈ Zn′

and a sufficiently large pre-
image Gaussian width σ, SampleD outputs a vector v statistically closed to DZm1+m2 ,σ, conditioned on
[A|tag ·Gobl −AR] · v ≡ u mod q.

Setup Algorithm for JRS Oblivious Signing. In Figure 6, we present the setup algorithm Πobl.Setup
for JRS oblivious signing protocol [45].

Security of JRS Oblivious Signing Protocol Πobl-sign. The discussion is according to the below definition
and lemmas.
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JRS Oblivious Signing Protocol Π
U(m),S(R,F,ctr)
obl-sign (ppobl,m

′).

Public Input: The public input is the following tuple.

ppobl = (n′, k, q, q′, Q,m1,m2,m3,m
′
3, σ, σ1, . . . , σ4,A,B,D1,D2,Gobl,u),

where B = AR ∈ Zn′×m2
q , Gobl = In′ ⊗ (1, 2, . . . , 2k)⊤, where k = ⌊log2 q⌋, is the gadget matrix, and a public

message m′ ∈ {0, 1}m
′
3 .

User U’s Input: Message m ∈ {0, 1}m3 .
Signer S’s Inputs: Trapdoor R, tag sampling function F : [Q]→Z×

q′ , and counter ctr.
Execution:

1. Let D = [D1|D2]. This phase is done by user U as follows.
(a) Sample r′ ← DZm1 ,σ3 , c := A · r′ +D1 ·m mod q.
(b) User U computes NIZK proof NIZKobl-sign showing that U knows r′ and m such that

Robl-sign =

 (A,D1,m1,m3, σ3, c; m, r′)

∣∣∣∣∣∣
m ∈ {0, 1}m3

∧∥r′∥∞ ≤ σ3 log2 m1

∧c = A · r′ +D1 ·m mod q

 . (2)

The transcript of this step is trans = (c,NIZKobl-sign). Then, U sends trans to S.
2. Upon receiving trans = (c,NIZKobl-sign), the signer S works as follows.

(a) Verify NIZKobl-sign to check whether (A,D1,m1,m3, σ3, c) ∈ L(Robl-sign). Abort and output 0 if verification
fails.

(b) r′′ ← DZm1 ,σ4 , c
′ := c+A · r′′ +D2 ·m′ mod q.

(c) tag← F (ctr), v′ := SampleD(R,A, tag,Gobl,u+ c′, σ)− (r′′∥0m2) ∈ Zm1+m2 .
(d) Send Γ := (tag,v′) to U and set ctr := ctr + 1.

3. This phase is done by the user U to verify correctness of the pair Γ = (tag,v′) as follows.
(a) Parse v′ = (v′

1∥v′
2), where v′

1 ∈ Zm1 ,v′
2 ∈ Zm2

(b) Let Atag = [A|tag ·Gobl −B], where Gobl = In′ ⊗ (1, 2, . . . , 2k)⊤. Return 1 if{
Atag · (v′ − (r′∥0m2)) = u+D · (m∥m′) mod q,

tag ∈ Z×
q′ , ∥v

′
1 − r′∥∞ ≤ σ1 log2 m1, ∥v′

2∥∞ ≤ σ log2 m2.

(c) Otherwise, return 0.

Fig. 5. Protocol Π
U(m),S(R,F,ctr)
obl-sign (ppobl,m

′) [45].

Definition 31 (SIS Assumption [45]). For β2 ≥ β∞ ≥ 1, SIS∞,2
n,m,q,β∞,β2

is defined as following: Given a

uniformly random matrix A
$← Zn×m

q , find a short integer vector x ̸= 0 ∈ Zm, ∥x∥∞ ≤ β∞, ∥x∥ ≤ β2 such
that A · x ≡ 0 (mod q)

Lemma 32 (Unforgeability of Πobl-sign, [45, Lemmas 3.2 and 3.3]). When making at most Q signing

queries, assume the adversary can forge a signature with probability δ. Let α∗ = 1+
√

π log2 e·
√
log2

1
δ , t be the

one controlling spectral norm gap, and adv1 = δ
|Z×

q |−Q
, adv2 = δ

α∗
α∗−1 e−α∗π/Q. Then there is an efficient solver

that solves SIS∞,2
n′,m1+1,q,β∞,β2

with probability Ω(adv1), or solves SIS∞,2
n′,m1,q,β′

∞,β′
2
with probability Ω(adv2),

where
β∞ = σ1 log2 m1 +m2σ log2 m2 +m3 +m′

3,

β′
∞ = 2σ1 log2 m1 + 2m2σ log2 m2 +m3 +m′

3,

β2 =
√
1 + (

√
m1 +

√
m2 + t)2 ·

√
m1(σ1 log2 m1)2 +m2(σ log2 m2)2

+min{2
√
m1,
√
m1 +

√
m3 +m′

3 + t}
√
m3 +m′

3 + 1,

β′
2 =

√
1 + (

√
m1 +

√
m2 + t)2 ·

√
σ2
1m1(1 + log22 m1) + σ2m2(1 + log22 m2)

+ min{2
√
m1,
√
m1 +

√
m3 +m′

3 + t}
√
m3 +m′

3.

(3)
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Lemma 33 (Obliviousness of Πobl-sign, [45, Remark 5.1]). The obliviousness of Πobl-sign is guaranteed
if the user’s commitment c (c.f. Figure 5) is hiding.

Setup Algorithm Πobl.Setup(1
λ) for Πobl-sign in Figure 5.

Public Input: Security parameter 1λ.
Execution:

1. Choose an integer n′ > 0 for SIS-rank, Q = poly(λ) an upper bound on the number of signing queries, q > Q
a prime modulus. // In our scheme, we use the same prime modulus q as the lattice accumulator ACCllnw

2. Let the tag space be Z×
q′ where q′ is selected such that Q ≤ q′ ≤ q (see Remark F.1 in the full version of

[45] for a discussion about the choice of q′). Initialize private counter ctr := 0. Choose an injective function
F : [Q]→ Z×

q′ .

3. Let k := ⌊log2 q⌋+ 1. Define the gadget matrix Gobl = In′ ⊗ (1, 2, . . . , 2k−1)⊤.
4. Define the following Length parameters.

(a) Letm1 ←
⌈

(n′·log2 q+ω(log2 λ))

log2 3

⌉
be the commitment randomness width, where ω(·) here is the asymtptotic

notation.
(b) Let m2 := n′ · k be the gadget length.
(c) Choose m3 > 0 as the maximum bit-length of the message.
(d) Let m′

3 := n · k be the bit-length public message, which is also the bit-length of the Merkle Tree root (
see Appendix A.3)

5. Define the following discrete Gaussian width parameters.
(a) Choose the spectral norm gap and smoothing parameter t > 0 and ηϵ(Z) for some ϵ ∈ (0, 1

2
).

(b) Let σ ← ηϵ(Z) ·
√
7 ·

√
1 + (

√
m1 +

√
m2 + t)2.

(c) Choose σ3 ≥
√
2 · ηϵ(Zm1) and

σ4 ≥ max

{√(
(
√
m1 +

√
m3 +m′

3 + t)
√

m3 +m′
3 + σ3

√
m1

)2

− σ2,
√
2 · ηϵ(Zm1)

}
.

(d) Let σ2 :=
√

σ2
3 + σ2

4 and σ1 :=
√

σ2
2 + σ2.

6. Sample D1
$← Zn′×m3

q , D2
$← Zn′×m′

3
q . Let D = [D1|D2] ∈ Zn′×(m3+m′

3)
q .

7. Sample A
$← Zn′×m1

q , R
$← {−1, 0, 1}m1×m2 , u

$← Zn′
q .

8. Let B← AR mod q ∈ Zn′×m2
q

Output:

1. Return public tuple ppobl where

ppobl =
(
n′, k, q, q′, Q,m1,m2,m3,m

′
3, σ, σ1, . . . , σ4,A,B,D1,D2,Gobl,u

)
.

2. Give (R, F, ctr) to the signer.

Fig. 6. Algorithm Πobl.Setup(1
λ) [45].

A.8 Non-Interactive Zero-Knowledge Argument of Knowledge

In this section, we recall the definition of non-interactive zero-knowledge arguments of knowledge [15,35].

Definition 34 (Syntax). Let R =
{
(s;w)

∣∣ conditions capturing (s, w)
}
be an NP relation, L(R) the cor-

responding language. A Non-Interactive Zero-Knowledge Argument of Knowledge (short for NIZKAoK) of
R is a tuple of algorithms

NIZKAoK = (NIZK.Setup,NIZK.Prove,NIZK.Verify)

described as follows.
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NIZK.Setup(1λ)→ crs: On input the security parameter 1λ, the algorithm returns a common reference string
crs.

NIZK.Prove(crs, x, w)→ π: On input crs from NIZK.Setup, x ∈ L(R) with witness w, the algorithm returns
a proof π.

NIZK.Verify(crs, x, π)→ {0, 1}: On input crs from NIZK.Setup, statement x and a NIZKAoK proof π, the
algorithm returns a bit b ∈ {0, 1}.

Definition 35 (Completeness). An NIZKAoK system is perfectly complete if ∀(x,w) ∈ R:

Pr

[
NIZK.Verify(crs, x, π) = 1

crs← NIZK.Setup(1λ)
π ← NIZK.Prove(crs, x, w)

]
= 1.

Occasionally we allow the NIZKAoK to have negligible completeness error ϵc < negl(λ). In such cases we
require that NIZK.Verify outputs 1 with probability > 1− ϵc.

Definition 36 (Extractable Soundness). An NIZKAoK system has extractable soundness if for all
PPT adversary A, there exists a PPT Extractor algorithm NIZK.Extract(crs, x, π) such that

Pr

NIZK.Verify(crs, x, π) = 1
(x,w′) /∈ R

crs← NIZK.Setup(1λ)
(x, π)← A(crs)
w′ ← NIZK.Extract(crs, x, π)

 < negl(λ). (4)

Definition 37 (Zero Knowledge). The NIZKAoK has a simulator NIZK.Sim which takes as inputs the
common reference string crs, a statement x ∈ L(R), an auxiliary input aux and produces a simulated proof
π′. For all (x,w) ∈ R, (x, π) is statistically indistinguishable from (x, π′), where

(x, π) = (x,NIZK.Prove(crs, x, w)) where crs← NIZK.Setup(λ) and

(x, π′) = (x,NIZK.Sim(crs, x, aux)) where crs← NIZK.Setup(λ).

B Our Lattice-Based Instantiation of EFDGS (Detailed)

We discuss the overview of our construction of our lattice-based EFDGS in Appendix B.1. In Appendix B.2,
we describe the construction. This construction requires some underlying NIZK proofs. Hence, in Ap-
pendix B.3, we discuss how to construct them. In Appendix B.4, we discuss the analysis of our construction.

B.1 Overview

We briefly discuss the construction of our lattice-based instantiation of EFDGS. Initially, we follow the
strategy from [60,61,58] to organize the group as follows.

The membership of users in the group. Each user id has a pair of public and private keys (pkid, skid).
Let n ∈ N, k = ⌊log2 q⌋, and q is a sufficiently large prime. The relationship of this key pair is guaranteed

through the hardness of the problem SIS∞n,2nk,q,1. In particular, skid
$← {0, 1}2nk and pkid = bink(T · skid) ∈

{0, 1}nk where T ∈ Zn×2nk
q is a random matrix used for accumulating public keys, to be described soon.

We hence use regτ = (regτ0 , . . . , reg
τ
N−1) ∈ ({0, 1}nk)N as the registry at epoch τ . Then, we use the LLNW

accumulator ACC llnw (see Appendix A.3), parameterized by T, to accumulate regτ into a single accumulated
value uτ

ϵ ∈ {0, 1}nk. Recall that ACC llnw has an underlying structure in the form of a Merkle tree. Here, at
epoch cur, we consider the root ucur

ϵ of this Merkle tree as the public system information infocur of the entire
system.

System authority SA and tracing authority TA. As described in Section 4, SA plays a role in enrolling
and revoking users in the system. In our lattice-based EFDGS, SA has no specific key. On the other hand,
TA has a pair of keys (pkta, skta) for encrypting (by pkta) and decrypting (by skta) the signer’s identifier.

As the scheme requires, for a message M to be signed by a user of identifier id, this user must obtain a
pre-signature for M from SA. However, to protect the privacy of M before being signed, SA is not allowed to
know M , and the output pre-signature Γ does not leak any information about M . Therefore, we realize the
pre-signature issuance mechanism for obtaining pre-signature by using the JRS oblivious signing protocol
Πobl-sign (c.f. Section 5.2 and Appendix A.7) as it allows to construct NIZK proofs on signature-massage
pairs, whose the signatures are obtained from those on committed messages, without proving correct output
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from random oracle heuristically realized as a hash function H, which is not a standard way for proving.
We omit the details of this issue and refer to the discussion in [45]. Regarding its use in the construction,
we employ steps 1 and 2 (c.f. Figure 5) for issuing pre-signatures (signatures on committed messages) while
step 3 is for verifying pre-signatures and generating EFDGS signatures.

Our lattice-based EFDGS employs the following building blocks:

– LLNW accumulator ACC llnw (c.f. Section 5.1 and Appendix A.3),
– JRS oblivious signing protocol (c.f. Section 5.2 and Appendix A.7),
– Lindner-Peikert IND-CPA-secure PKE PKE lp (c.f. Appendix A.5), and
– NIZK proof systems for circuit satisfiability over Zq.

B.2 Description

We now describe our lattice-based EFDGS, following the syntax in Definition 1.

Setup(1λ)→ (pp, infoinit, reginit, sksa, skta): This algorithm works as follows:
1. Use LLNW accumulator ACC llnw (c.f. Section 5.1 and Appendix A.3) to setup initial system infor-

mation as follows.
(a) T = [T0|T1]← A.Setup(1λ) and obtain parameters n, k, q,N = 2L for some positive integer L.
(b) Set init := 0 and cur := init.
(c) Initialize reginit := (0nk, . . . ,0nk︸ ︷︷ ︸

N entries

) ∈ ({0, 1}nk)N .

(d) Initialize the initial system information by running A.AccT(reg
init) and infoinit ← A.GetRootT().

2. For obtaining SA’s public and private keys, do as follows.
(a) Run Πobl.Setup(1

λ) (c.f. Figure 6). Obtain a public tuple

ppobl = (n′, k, q, q′, Q,m1,m2,m3,m
′
3, σ, σ1, . . . , σ4,A,B,D1,D2,Gobl,u)

where A ∈ Zn′×m1
q , B ∈ Zn′×m2

q , D1 ∈ Zn′×m3
q , D2 ∈ Zn′×m′

3
q , and u ∈ Zn′

q , while private tuple
(R, F, ctr) is sent to SA, who plays the role of signer in Πobl-sign (c.f. Figure 5).

(b) Denote (pksa, sksa) = (ppobl, (R, F, ctr)).
3. Set up encryption scheme PKE lp.

(a) (pkta, skta) = (ek, dk)← PKE.Gen(1λ, nk).
4. Return as follows.

(a) Let gpk = (T, ppobl, pksa, pkta). Return public pp = (ID, T ,M, gpk) where
– ID = {0, 1}L,
– T is the set of non-negative integers, and
– M = {0, 1}m3 . (m3 is in ppobl.)

(b) Return sksa and skta to SA and TA, respectively.
Join ⟨U,SA(sksa)⟩ (pp, infocur, regcur, id)→ (infonext, regnext, pkid,U(skid)):

1. U samples skid
$← {0, 1}2nk and computes pkid := hT(skid) where hT is defined in (1). Then, U

computes and sends to SA the tuple (id, pkid,NIZKenroll) where NIZKenroll is a NIZK proof for

Renroll =
{
(pkid; skid)

∣∣pkid = hT(skid)
}
. (5)

2. Upon receiving (id, pkid,NIZKenroll) from U, if SA agrees for U to be a valid user in the system, then
SA works as follows.
(a) If regcurid ̸= 0nk or NIZKenroll is invalid, then return ⊥ and abort.
(b) Set next := cur + 1, regnext := regcur, and infonext := infocur.
(c) Update the registry by assigning regnextid := pkid.
(d) Update the system information by computing A.ModLeafT (id, pkid) and setting the system in-

formation infonext := A.GetRootT().
(e) Move to the next epoch by setting cur := next.

Update(pp, infocur, regcur, sksa,S)→ (infonext, regnext): SA runs as follows.
1. Parse S = {id1, . . . , idS} ⊆ [0, N).
2. Set next := cur + 1, regnext := regcur, and infonext := infocur.
3. Update the registry by setting regnextidi

:= 0nk for i ∈ [S].

4. Run A.ModLeafT((id1, . . . idS), (0
nk)S) and set infonext := A.GetRootT().
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5. Move to the next epoch by setting cur := next.
PreSign ⟨U(m),SA(sksa)⟩ (pp, infocur)→ (Γ, trans,U(aux)): This works as follows.

1. Both parties run steps 1 and 2 of protocol Π
U(m),SA(R,F,ctr)
obl-sign (ppobl, info

cur) (c.f. Figure 5) to obtain
Γ = (tag,v′) where U and SA respectively play the roles of U and S in Figure 5.

2. User U obtains aux := r′ where r′ is the randomness generated in step 1 ofΠ
U(m),S(R,F,ctr)
obl-sign (ppobl, info

cur).
3. The full transcript of the interaction is set to be trans = (c,NIZKobl-sign) obtained in step 1 of Πobl-sign

(c.f. Figure 5). Then, return public (Γ, trans).
4. If U with identifier id is active with respect to infocur, U may need to remember w, computed from

w ← A.WitnessT(reg
cur, infocur, id) (see Appendix A.3), by storing w in some private storage of U, for

later running Sign requiring U to provide w for U’s membership at the respective system information.
PreVerify(pp, infoτ ,m, aux, Γ )→ {0, 1}: User U parses aux = r′ and does:

1. Run step 3 of protocolΠ
U(m),SA(R,F,ctr)
obl-sign (ppobl, info

τ ) (c.f. Figure 5) with respect to inputs Γ = (tag,v′)
and r′.

2. If the check in step 3 of Π
U(m),SA(R,F,ctr)
obl-sign (ppobl, info

τ ) is invalid, return 0. Otherwise, return 1.
Sign(pp, infoτ , skid,m, aux, Γ )→ Σ: This algorithm runs by user U as follows.

1. Parse pp = (ID, T ,M, gpk), gpk = (T, ppobl, pksa, pkta), and

ppobl = (n′, k, q, q′, Q,m1,m2,m3,m
′
3, σ, σ1, . . . , σ4,A,B,D1,D2,Gobl,u).

2. Parse aux = r′, Γ = (tag,v′), and v′ = (v′
1∥v′

2) where v′
1 ∈ Zm1

q and v′
2 ∈ Zm2

q . Let Atag :=
[A|tag ·Gobl −B] as in Πobl-sign (c.f. Figure 5).

3. U additionally provides w = (id, (w1, . . . ,wL)) ∈ {0, 1}L×({0, 1}nk)L as a witness for U’s membership
with respect to infoτ , i.e., A.VerifyT(info

τ , pkid, w) = 1. As noted in PreSign above, U needs to store
w in advance. Otherwise, if witness for U’s membership at infoτ is lost, U loses the ability to run this
algorithm, namely, Sign with respect to system information infoτ .

4. Encrypt the identifier by running ct← PKE.Enc(pkta, id; r). Here r ∈ {0, 1}η denotes a binary string
representing the encryption randomness.

5. Compute a NIZK proof NIZKsig for the relation Rsig in (6). Recall that hT(x) = bink(T ·x) ∈ {0, 1}nk
is the hash function introduced in (1).

Rsig =
{
(pp,m, ct; Γ, pkid, skid, w, info

τ , r′, r, tag,Atag)
∣∣ (7), (8), and (9) are satisfied

}
, (6)

Atag = [A|tag ·Gobl −B],

Atag · v′ −A · r′ ≡ u+D1 ·m+D2 · infoτ (mod q),

tag ∈ Z×
q′ , ∥r′∥∞ ≤ σ3 log2 m1,

∥v′
1 − r′∥∞ ≤ σ1 log2 m1, ∥v′

2∥∞ ≤ σ log2 m2,

(7)


pkid ∈ {0, 1}nk, skid ∈ {0, 1}2nk, pkid = hT(skid),

w = (id, (w1, . . . ,wL)) ∈ {0, 1}L × ({0, 1}nk)L,
A.Verify (infoτ , pkid, w) = 1,

(8)

r ∈ {0, 1}η, ct = PKE.Enc(pkta, id; r) where id is in w. (9)

We briefly explain the constraints in (6) as follows. (7) is the pre-verification check, via PreVerify, to
ascertain the correct use of infoτ authenticated for m in ExtPreSig. (8) is for ensuring membership
in the system. (9) is for the correct encryption of the identifier.

6. Output the final signature Σ := (ct,NIZKsig).
Verify(pp,m, Σ)→ {0, 1}: This is run by any public verifier. It works as follows.

1. Parse Σ = (ct,NIZKsig).
2. Verify NIZKsig to check whether (pp,m, ct) ∈ L(Rsig). Return 1 if the verification passes. Otherwise,

return 0.
Trace(pp, skta,m, Σ)→ (ID ∪ {⊥}, Ξ): This algorithm is run by the tracing authority TA as follows.

1. First, run Verify(pp,m, Σ). If verification fails, abort and output ⊥.
2. Parse Σ = (ct,NIZKsig) and compute id← PKE.Dec(skta, ct).
3. Compute a NIZK proof NIZKtrace for the relation

Rtrace =
{
(ct, id; skta)

∣∣ id = PKE.Dec(skta, ct)
}
. (10)
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4. Return (id, Ξ) where Ξ = NIZKtrace.
Judge(pp,m, Σ, id, Ξ)→ {0, 1,⊥}: This is run by any public verifier as follows.

1. First run Verify(pp,m, Σ). If verification fails, abort and output ⊥.
2. Parse Ξ = NIZKtrace and verify NIZKtrace to check whether (ct, id) ∈ L(Rtrace). Return 1 if the

verification passes. Otherwise, return 0.

B.3 Underlying NIZK Proofs

In this appendix, we discuss the instantiations of NIZK proofs appearing in the description of our lattice-
based construction of EFDGS in Appendix B.2. The construction requires the following four NIZK proofs. (i)
In Join, we need NIZKenroll for relation Renroll in (5). (ii) In PreSign, we need NIZKobl-sign for relation Robl-sign in
(2). (iii) In Sign, we need NIZKsig for relation Rsig in (6). (iv) In Judge, we need NIZKtrace for relation Rtrace in
(10). These NIZK proofs can be instantiated by any NIZK proof system for circuit satisfiability. Specifically,
the constraints specified inRenroll,Robl-sign,Rsig, andRtrace can be captured by different arithmetic circuits by
appropriately transforming those constraints into the ones suitable for arithmetic circuits with the following
cases.

1. Linear Constraints. These constraints include multiplications between (public or private) matrices and
vectors. Their constraints are well-known to be transformed into arithmetic circuits straightforwardly.

2. Binary Constraints. To show that x ∈ {0, 1}, we simply apply [41,34] to equivalently show that x·(1−x) =
0.

3. Inequality Constraints. In the relations mentioned above, we need to prove inequalities of the form
0 ≤ x < v for some public v ∈ N and private x ∈ N. To this end, we apply Lemma 11 (c.f. Appendix A.1),
which determines kv ∈ N and B1, . . . , Bkv

∈ N from v as follows. We can find b1, . . . , bkv
such that we

can prove x ∈ [0, v) by equivalently showing that (b1, . . . , bkv
) ∈ {0, 1}kv and x =

∑
i∈[kv]

bi ·Bi. Proving

(b1, . . . , bkv
) ∈ {0, 1}kv can be done by proving each bi is binary, which is discussed in the case of binary

constraints.
4. Infinity Norm Bound Constraints. Let x = (x1, . . . , xℓ) ∈ Zℓ

q for some ℓ ∈ N. Assume that we would like
to prove ∥x∥∞ ≤ v for some v ∈ N. Specifically, we would like to prove that xi ∈ [−v, v] for i ∈ [ℓ]. This
is done by equivalently proving that xi + v ∈ [0, 2v + 1) by applying the case of inequality constraints.

5. Valid Accumulation in LLNW Accumulator. Recall the algorithm A.Verify in Appendix A.3 that we need
to run as follows to verify a correct accumulation. For i from L− 1 down to 0, compute

vi :=

{
hT(vi+1,wi+1) = bink(T · (vi+1∥wi+1)) if ji+1 = 0,

hT(wi+1,vi+1) = bink(T · (wi+1∥vi+1)) if ji+1 = 1.

Then, return b = 1 if v0 = uϵ. Otherwise, return b = 0. As suggested from [51,52], the above computation
can be transformed into

Gacc · vi = T · ((1− ji+1) · (vi+1∥wi+1) + ji+1 · (wi+1∥vi+1)) .

Hence, we can prove correct accumulation by proving correct computation of each vi according to the
above form and ji ∈ {0, 1} for i ∈ [L].

6. Correct Decryption of PKE lp. This is required by algorithm Trace to run NIZKtrace (c.f. (10)) which
requires proving correct decryption of PKE PKE lp (c.f. Appendix A.5). Notice that, in Appendix A.5,
to decrypt, we need to run the decoding decode which maps an element bq in

[
−
⌊
q
4

⌋
,
⌊
q
4

⌋)
to b = 0 and

remaining elements in Zq to b = 1. Hence, we see that if and only if

b = 0 ⇐⇒ bq +
⌊q
4

⌋
∈
[
0, 2 ·

⌊q
4

⌋)
, and (11)

b = 1 ⇐⇒ bq −
⌊q
4

⌋
∈
[
0, q − 1− 2 ·

⌊q
4

⌋)
. (12)

For case (11), by applying the discussion for inequality constraints above, we can construct a circuit
C0(bq, w0), where w0 is some supporting witness, e.g., for parsing into binary, certifying whether b is
decoded correctly from bq. If the output of C0 is 1, it implies that b = 0 is decoded from bq. Similarly,
we can construct C1(bq, w1) with a similar meaning for case (12). Then, we unify both cases by proving
(1− b) · C0(bq, w0) + b · C1(bq, w1) = 1.
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B.4 Analysis

Theorem 38 (Correctness and Security of Lattice-Based EFDGS). Our lattice-based EFDGS is
correct, unforgeable, and private according to Definitions 5, 10, and 8, respectively, assuming that the un-
derlying building blocks, namely, NIZK proofs, PKE PKE lp, the JRS oblivious signing interactive protocol
Πobl-sign are complete and unforgeable, and the Ajtai commitment (in step 1 of Πobl-sign) is hiding and binding.

Proof. The proof follows Lemmas 39, 40, and 43.
In brief, the correctness is straightforward. For privacy, we employ the obliviousness of Πobl-sign to guar-

antee system information unlinkability. Anonymity is not compromised due to the IND-CPA of PKE lp and
zero knowledge of NIZK proofs. For unforgeability, we first need to extract the witnesses behind the NIZK
proofs (by using extractors or the extraction trapdoor in the simulated setup). Then, we can argue the
unforgeability based on the security of the employed building blocks. ⊓⊔

Correctness. The correctness of our lattice-based EFDGS (c.f. Appendix B.2) follows the following Lemma 39.

Lemma 39. Assume SA is honest. Then, our lattice-based EFDGS is correct according to Definition 5
assuming the completeness of the underlying NIZK proofs, the correctness of PKE PKE lp (c.f. Lemma 24),
and the completeness of the JRS oblivious signing interactive protocol Πobl-sign.

Proof. The proof is straightforward for both properties in Definition 5. In particular, protocol PreSign runs
Πobl-sign and steps 1 and 2 of NIZKobl-sign, algorithm Sign runs PKE.Enc and NIZKsig, and algorithm Trace
runs PKE.Dec and NIZKtrace as sub-routines. Hence, when running PreVerify, Verify, and Judge, we require
running verifications of the corresponding NIZK proofs, verification in step 3 of Πobl-sign, and the decryption
of PKE PKE lp. Therefore, when honestly following the computations as instructed, the algorithms PreVerify,
Verify, and Judge always return 1 while id′ = id is due to the correctness of the PKE lp. ⊓⊔

Privacy. The privacy of our lattice-based EFDGS (c.f. Appendix B.2) follows the following Lemma 40.

Lemma 40 (Privacy of Lattice-Based EFDGS). Our lattice-based EFDGS (c.f. Appendix B.2) is pri-
vate (c.f. Definition 8) assuming that the Ajtai commitments (in step 1 of Πobl-sign) are hiding, the underlying
NIZK proofs are zero-knowledge, and PKE PKE lp is IND-CPA (c.f. Lemma 25).

Proof. The proof follows Lemmas 41 and 42. ⊓⊔
Lemma 41 (Message Hiding and System Information Unlinkability). Our lattice-based EFDGS
(c.f. Appendix B.2) is message-hiding and system-information-unlinkable with respect to oracle OPreChalb
(c.f. Definition 7), assuming that the Ajtai commitments (in step 1 of Πobl-sign) are (statistically) hiding, the
underlying NIZK proofs, i.e NIZKobl-sign and NIZKsig, are (statistically) zero-knowledge.

Proof. Throughout we assume the adversary A only provides valid inputs (so that OPreChalb would not
return ⊥). By following the specification of oracle OPreChalb in Definition 7, for convenience purpose, we
parse the following components as

(Γ (0), trans(0)) = (Γ (0), (c(0),NIZK
(0)
obl-sign)), Σ(0) = (ct(0),NIZK

(0)
sig ),

(Γ (1), trans(1)) = (Γ (1), (c(1),NIZK
(1)
obl-sign)), Σ(1) = (ct(1),NIZK

(1)
sig ).

Define the following sequence of games and denote by Wi the output of A in game Gi.

Game G0: This is the original experiment Epre-unlk-0
A (λ) from Figure 3 for b = 0. Hence,

Pr[W0 = 1] = Pr[Epre-unlk-0
A (λ) = 1].

Notice that, in this game, the NIZK proofs are as follows.

NIZK
(0)
obl-sign is a real proof for (A,D1,m1,m3, σ3, c

(0);m(0), r′(0)) ∈ Robl-sign,

NIZK
(1)
obl-sign is a real proof for (A,D1,m1,m3, σ3, c

(1);m(1), r′(1)) ∈ Robl-sign,

NIZK
(0)
sig is a real proof for

(pp,m(0), ct(0);Γ (0), pkid(0) , skid(0) , w
(0), infoτ

(0)

, r′(0), r(0), tag(0),Atag(0)) ∈ Rsig,

NIZK
(1)
sig is a real proof for

(pp,m(1), ct(1);Γ (1), pkid(1) , skid(1) , w
(1), infoτ

(1)

, r′(1), r(1), tag(1),Atag(1)) ∈ Rsig.
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Game G1: This is the same as game G0, except that the NIZK proof NIZK
(0)
obl-sign is replaced by the simulated

proof ÑIZK
(0)

obl-sign by running the respective simulator. Zero knowledge of NIZK proofs ensures that, except
with negligible probability, A cannot distinguish G1 from G0, namely,

|Pr[W1 = 1]− Pr[W0 = 1]| ≤ negl(λ).

Notice that, in this game, the NIZK proofs are as follows.

ÑIZK
(0)

obl-sign is a simulated proof for (A,D1,m1,m3, σ3, c
(0)) ∈ L(Robl-sign),

NIZK
(1)
obl-sign is a real proof for (A,D1,m1,m3, σ3, c

(1);m(1), r′(1)) ∈ Robl-sign,

NIZK
(0)
sig is a real proof for

(pp,m(0), ct(0);Γ (0), pkid(0) , skid(0) , w
(0), infoτ

(0)

, r′(0), r(0), tag(0),Atag(0)) ∈ Rsig,

NIZK
(1)
sig is a real proof for

(pp,m(1), ct(1);Γ (1), pkid(1) , skid(1) , w
(1), infoτ

(1)

, r′(1), r(1), tag(1),Atag(1)) ∈ Rsig.

Game G2: This is the same as game G1, except that the NIZK proof NIZK
(1)
obl-sign is replaced by the simulated

proof ÑIZK
(1)

obl-sign by running the respective simulator. Zero knowledge of NIZK proofs ensures that, except
with negligible probability, A cannot distinguish G2 from G1, namely,

|Pr[W2 = 1]− Pr[W1 = 1]| ≤ negl(λ).

Notice that, in this game, the NIZK proofs are as follows.

ÑIZK
(0)

obl-sign is a simulated proof for (A,D1,m1,m3, σ3, c
(0)) ∈ L(Robl-sign),

ÑIZK
(1)

obl-sign is a simulated proof for (A,D1,m1,m3, σ3, c
(1)) ∈ L(Robl-sign),

NIZK
(0)
sig is a real proof for

(pp,m(0), ct(0);Γ (0), pkid(0) , skid(0) , w
(0), infoτ

(0)

, r′(0), r(0), tag(0),Atag(0)) ∈ Rsig,

NIZK
(1)
sig is a real proof for

(pp,m(1), ct(1);Γ (1), pkid(1) , skid(1) , w
(1), infoτ

(1)

, r′(1), r(1), tag(1),Atag(1)) ∈ Rsig.

Game G3: This is the same as game G2, except that the NIZK proof NIZK
(0)
sig is replaced by the simulated

proof ÑIZK
(0)

sig by running the respective simulator. Zero knowledge of NIZK proofs ensures that, except
with negligible probability, A cannot distinguish G3 from G2, namely,

|Pr[W3 = 1]− Pr[W2 = 1]| ≤ negl(λ).

Notice that, in this game, the NIZK proofs are as follows.

ÑIZK
(0)

obl-sign is a simulated proof for (A,D1,m1,m3, σ3, c
(0)) ∈ L(Robl-sign),

ÑIZK
(1)

obl-sign is a simulated proof for (A,D1,m1,m3, σ3, c
(1)) ∈ L(Robl-sign),

ÑIZK
(0)

sig is a simulated proof for (pp,m(0), ct(0)) ∈ L(Rsig),

NIZK
(1)
sig is a real proof for

(pp,m(1), ct(1);Γ (1), pkid(1) , skid(1) , w
(1), infoτ

(1)

, r′(1), r(1), tag(1),Atag(1)) ∈ Rsig.

Game G4: This is the same as game G3, except that the NIZK proof NIZK
(1)
sig is replaced by the simulated

proof ÑIZK
(1)

sig by running the respective simulator. Zero knowledge of NIZK proofs ensures that, except
with negligible probability, A cannot distinguish G4 from G3, namely,

|Pr[W4 = 1]− Pr[W3 = 1]| ≤ negl(λ).
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Notice that, in this game, the NIZK proofs are as follows.

ÑIZK
(0)

obl-sign is a simulated proof for (A,D1,m1,m3, σ3, c
(0)) ∈ L(Robl-sign),

ÑIZK
(1)

obl-sign is a simulated proof for (A,D1,m1,m3, σ3, c
(1)) ∈ L(Robl-sign),

ÑIZK
(0)

sig is a simulated proof for (pp,m(0), ct(0)) ∈ L(Rsig),

ÑIZK
(1)

sig is a simulated proof for (pp,m(1), ct(1)) ∈ L(Rsig).

Game G5: This is the same as game G4, except that the commitment c(0) is a commitment to m(1), in place

of m(0), and the simulated proof ÑIZK
(0)

obl-sign is computed accordingly. We assume that this commitment

employs a fresh randomness r′(1). Hiding of commitments ensures that, except with negligible probability,
A cannot distinguish G5 from G4, namely,

|Pr[W5 = 1]− Pr[W4 = 1]| ≤ negl(λ).

Game G6: This is the same as game G5, except that the commitment c(1) is a commitment to m(0), in place

of m(1), and the simulated proof ÑIZK
(1)

obl-sign is computed accordingly. We assume that this commitment

employs a fresh randomness r′(0). Hiding of commitments ensures that, except with negligible probability,
A cannot distinguish G6 from G5, namely,

|Pr[W6 = 1]− Pr[W5 = 1]| ≤ negl(λ).

Game G7: This is the same as game G6, except that the simulated proof ÑIZK
(0)

obl-sign is replaced by a real

NIZK proof NIZK
(0)
obl-sign for

(A,D1,m1,m3, σ3, c
(0);m(1), r′(1)) ∈ Robl-sign

(c.f. (2)). Zero knowledge of NIZK proofs ensures that, except with negligible probability, A cannot
distinguish G7 from G6, namely,

|Pr[W7 = 1]− Pr[W6 = 1]| ≤ negl(λ).

Notice that, in this game, the NIZK proofs are as follows.

NIZK
(0)
obl-sign is a real proof for (A,D1,m1,m3, σ3, c

(0);m(1), r′(1)) ∈ Robl-sign,

ÑIZK
(1)

obl-sign is a simulated proof for (A,D1,m1,m3, σ3, c
(1)) ∈ L(Robl-sign),

ÑIZK
(0)

sig is a simulated proof for (pp,m(0), ct(0)) ∈ L(Rsig),

ÑIZK
(1)

sig is a simulated proof for (pp,m(1), ct(1)) ∈ L(Rsig).

Game G8: This is the same as game G7, except that the simulated proof ÑIZK
(1)

obl-sign is replaced by a real

NIZK proof NIZK
(1)
obl-sign for

(A,D1,m1,m3, σ3, c
(1);m(0), r′(0)) ∈ Robl-sign

(c.f. (2)). Zero knowledge of NIZK proofs ensures that, except with negligible probability, A cannot
distinguish G8 from G7, namely,

|Pr[W8 = 1]− Pr[W7 = 1]| ≤ negl(λ).

Notice that, in this game, the NIZK proofs are as follows.

NIZK
(0)
obl-sign is a real proof for (A,D1,m1,m3, σ3, c

(0);m(1), r′(1)) ∈ Robl-sign,

NIZK
(1)
obl-sign is a real proof for (A,D1,m1,m3, σ3, c

(1);m(0), r′(0)) ∈ Robl-sign,

ÑIZK
(0)

sig is a simulated proof for (pp,m(0), ct(0)) ∈ L(Rsig),

ÑIZK
(1)

sig is a simulated proof for (pp,m(1), ct(1)) ∈ L(Rsig).
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Game G9: This is the same as game G8, except that the simulated proof ÑIZK
(0)

sig is replaced by a real NIZK

proof NIZK
(0)
sig for

(pp,m(0), ct(0);Γ (1), pkid(0) , skid(0) , w
(0), infoτ

(1)

, r′(0), r(0), tag(1),Atag(1)) ∈ Rsig

(c.f. (6)). Zero knowledge of NIZK proofs ensures that, except with negligible probability, A cannot
distinguish G9 from G8, namely,

|Pr[W9 = 1]− Pr[W8 = 1]| ≤ negl(λ).

Notice that, in this game, the NIZK proofs are as follows.

NIZK
(0)
obl-sign is a real proof for (A,D1,m1,m3, σ3, c

(0);m(1), r′(1)) ∈ Robl-sign,

NIZK
(1)
obl-sign is a real proof for (A,D1,m1,m3, σ3, c

(1);m(0), r′(0)) ∈ Robl-sign,

NIZK
(0)
sig is a real proof for

(pp,m(0), ct(0);Γ (1), pkid(0) , skid(0) , w
(0), infoτ

(1)

, r′(0), r(0), tag(1),Atag(1)) ∈ Rsig,

ÑIZK
(1)

sig is a simulated proof for (pp,m(1), ct(1)) ∈ L(Rsig).

Game G10: This is the same as game G9, except that the simulated proof ÑIZK
(1)

sig is replaced by a real

NIZK proof NIZK
(1)
sig for

(pp,m(1), ct(1);Γ (0), pkid(1) , skid(1) , w
(1), infoτ

(0)

, r′(1), r(1), tag(0),Atag(0)) ∈ Rsig

(c.f. (6)). Zero knowledge of NIZK proofs ensures that, except with negligible probability, A cannot
distinguish G10 from G9 namely,

|Pr[W10 = 1]− Pr[W9 = 1]| ≤ negl(λ).

Notice that, in this game, the NIZK proofs are as follows.

NIZK
(0)
obl-sign is a real proof for (A,D1,m1,m3, σ3, c

(0);m(1), r′(1)) ∈ Robl-sign,

NIZK
(1)
obl-sign is a real proof for (A,D1,m1,m3, σ3, c

(1);m(0), r′(0)) ∈ Robl-sign,

NIZK
(0)
sig is a real proof for

(pp,m(0), ct(0);Γ (1), pkid(0) , skid(0) , w
(0), infoτ

(1)

, r′(0), r(0), tag(1),Atag(1)) ∈ Rsig,

NIZK
(1)
sig is a real proof for

(pp,m(1), ct(1);Γ (0), pkid(1) , skid(1) , w
(1), infoτ

(0)

, r′(1), r(1), tag(0),Atag(0)) ∈ Rsig.

Notice that game G10 is the exactly the original experiment Epre-unlk-1
A (λ) in Figure 3 for b = 1. Hence,

Pr[W10 = 1] = Pr[Epre-unlk-1
A (λ) = 1].

Thus, ∣∣∣Pr[Epre-unlk-0
A (λ) = 1]− Pr[Epre-unlk-1

A (λ) = 1]
∣∣∣ ≤ negl(λ).

We remark that if the Ajtai commitments are statistically hiding and the NIZK proofs are statistically zero-
knowledge, then our lattice-based EFDGS is secure against any computationally unbounded adversary A in
the case of message hiding and system information unlinkability.

⊓⊔

Lemma 42 (Anonymity). Our lattice-based EFDGS (c.f. Appendix B.2) is anonymous with respect to
oracle OSigChalb (c.f. Definition 7), assuming that the underlying NIZK proofs are zero-knowledge, and
PKE lp is IND-CPA (c.f. Lemma 25).
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Proof. We assume the adversary only provides valid inputs (so that OSigChalb would not return ⊥). By
following the specification of oracle OSigChalb in Definition 7, for convenience purpose, we parse

Σ = (ct,NIZKsig).

Define the following sequence of games and denote by Wi the output of A in game Gi.

Game G0: This is the original experiment Eanon-0
A (λ) from Figure 3 for b = 0. Hence,

Pr[W0 = 1] = Pr[Eanon-0
A (λ) = 1].

Notice that, in this game, the NIZK proofs are as follows.

NIZKsig is a real proof for

(pp,m, ct;Γ (0), pkid(0) , skid(0) , w
(0), infoτ

(0)

, r′(0), r(0), tag(0),Atag(0)) ∈ Rsig.

Game G1: This is the same as game G0, except that the NIZK proof NIZKsig is replaced by the simulated

proof ÑIZKsig by running the respective simulator. Zero knowledge of NIZK proofs ensures that, except
with negligible probability, A cannot distinguish G1 from G0, namely,

|Pr[W1 = 1]− Pr[W0 = 1]| ≤ negl(λ).

Notice that, in this game, the NIZK proofs are as follows.

ÑIZKsig is a simulated proof for (pp,m, ct) ∈ L(Rsig).

Game G2: This is the same as game G1, except that the ciphertext ct encrypts id(1), in place of id(0), and

the simulated proof ÑIZKsig is computed accordingly. We assume that this ciphertext employs a fresh
randomness r. IND-CPA of PKE ensures that, except with negligible probability, A cannot distinguish
G2 from G1, namely,

|Pr[W2 = 1]− Pr[W1 = 1]| ≤ negl(λ).

Game G3: This is the same as game G2, except that the simulated proof ÑIZKsig is replaced by a real NIZK
proof NIZKsig for

(pp,m, ct;Γ (1), pkid(1) , skid(1) , w
(1), infoτ

(1)

, r′(1), r(1), tag(1),Atag(1)) ∈ Rsig

(c.f. (6)). Zero knowledge of NIZK proofs ensures that, except with negligible probability, A cannot
distinguish G3 from G2, namely,

|Pr[W3 = 1]− Pr[W2 = 1]| ≤ negl(λ).

Notice that game G3 is the exactly the original experiment Eanon-1
A (λ) in Figure 3 for b = 1. Hence,

Pr[W3 = 1] = Pr[Eanon-1
A (λ) = 1].

Thus, ∣∣Pr[Eanon-0
A (λ) = 1]− Pr[Eanon-1

A (λ) = 1]
∣∣ ≤ negl(λ)

which concludes the proof. ⊓⊔

Unforgeability. The unforgeability of our lattice-based EFDGS (c.f. Appendix B.2) follows the following
Lemma 43.

Lemma 43 (Unforgeability of Lattice-Based EFDGS). Our lattice EFDGS (c.f. Appendix B.2) is
unforgeable (c.f. Definition 10) assuming the underlying NIZK proofs, i.e., NIZKobl-sign and NIZKsig, are sound
and mode-indistinguishable (if these NIZK proofs are dual-mode), hash function hT is collision resistance,
Πobl-sign is unforgeable (c.f. Lemma 32), and PKE lp is correct (c.f. Lemma 24).

Proof. We split the proof of this lemma into two parts, namely,

https://orcid.org/0000-0002-1077-6262
https://orcid.org/0000-0002-1978-3557
https://orcid.org/0009-0009-6790-4577
https://orcid.org/0000-0002-7669-8922


Everlasting Fully Dynamic Group Signatures 35

– Extractions. In this part, we describe how to construct the additional algorithms, in the spirit of Defini-
tion 9 for sim-ext, as well as showing how the simulated setup satisfies the extra sub-properties, including
correctness (for sim-ext) and setup indistinguishability.

– Arguing Unforgeability. With the additional algorithms in sim-ext, we argue the unforgeability according
to Definition 10.

We now proceed with the two mentioned parts.

Extractions. Recall that unforgeability of EFDGS (c.f. Section 4.2) requires the ability to construct the algo-
rithms SimSetup, ExtPreSig, and ExtSig as required in Definition 9. Constructing these algorithms crucially
relies on the extractors of NIZK proofs NIZKobl-sign and NIZKsig for relations Robl-sign and Rsig, respectively,
in algorithms PreSign and Sign, respectively. Moreover, when setting up the system by using SimSetup, ac-
cording to the security definition of EFDGS in Section 4.2, we need to guarantee that the system satisfies
two additional properties.

– Correctness with respect to the simulated setup, and
– Setup indistinguishability.

Hence, following [68], in this result, we consider the two following types of zero-knowledge proofs with
extraction strategies discussed as follows.

– Dual-Mode NIZK Proofs [42]. In this type of proof, there are two setups allowing perfect ZK in the hiding
mode and witness extractability in the binding mode (whose setup provides an additional trapdoor for
extracting the witness). Hence, in the real setup Setup of our lattice-based EFDGS, we use the hiding
mode while, in the simulated setup SimSetup, we use the binding mode of the respective dual-mode
NIZK proof. As noted from [68], [42] only provides extraction of group elements (in pairings) and does
not provide extraction of Zq-elements. Since our NIZK proofs, namely, NIZKobl-sign and NIZKsig, only
prove constraints over Zq, we hence follow [68] to commit the Zq-elements by committing to their binary
representation instead. By mapping the bits into the group elements, i.e., 0 and 1 are respectively mapped
to the identity and the generator of the respective group (in pairings), we can extract the bits by simply
extracting the group elements. Hence, the extracted Zq-element is 0 (respectively, 1) if the extracted
group element is the identity (respectively, the generator). We can recover the Zq-elements from the
extracted bits as desired.

– NIZKAoKs from (Multi-Round) Interactive Protocols. These proofs are usually constructed by transform-
ing a multi-round interactive protocol (3-round ones are notoriously called Σ-protocols) into a respective
non-interactive version by using the Fiat-Shamir transform [37]. These non-interactive protocols are non-
interactive zero-knowledge arguments of knowledge (NIZKAoK, c.f. Appendix A.8 for a preliminary of
NIZKAoKs) if the respective interactive protocols are ZKAoKs. However, there are various results for
this type of NIZK proofs for arithmetic circuits, including [40,85,6,63,10] just to name a few. Extracting
witnesses from these NIZK proofs usually relies on the forking lemma [77], and the extraction strategies
depend on the designs of the proofs. Here, we omit the details of how to extract from the proofs. Besides,
we refer to the following theoretical results [7,8] regarding extracting non-interactive NIZK proofs from
the Fiat-Shamir transform. Hence, when using this type of NIZK proof, the simulated setup is designed
to allow the extractor in the corresponding system to run and extract the witnesses.

We now describe the additional algorithms, with respect to the above discussion, as follows.

SimSetup(1λ): If the employed NIZK proofs are dual-mode NIZK proofs, return the trapdoor in the binding
mode, allowing to extract witnesses. Otherwise, if they are from (multi-round) interactive proofs, we use
the setting allowing an extractor to extract the witnesses described above. Here, the extraction trapdoor
can be assumed to be empty.

ExtPreSig(pp, tdext, info
τ , Γ, trans)→ (m̃, ãux): Recall that PreSign ⟨U(m),SA(sksa)⟩ (pp, infoτ ) (c.f. Appendix B.2)

was invoked at epoch τ by running steps 1 and 2 of protocol Π
U(m),SA(R,F,ctr)
obl-sign (ppobl, info

τ ) to obtain the
transcript trans = (c,NIZKobl-sign) and Γ = (tag,v′) where NIZKobl-sign is a NIZK proof for relation
Robl-sign (c.f. (2)). By using extraction trapdoor tdext, we can extract (m̃, r̃′) from NIZKobl-sign satisfying
Robl-sign. Hence, as from Appendix A.7, we can obtain a valid signature for (m̃∥infoτ ), hence guaranteeing
that PreVerify(pp, infoτ , m̃, ãux, Γ ) = 1. This algorithm then returns (m̃, ãux) = (m̃, r̃′).

ExtSig(pp, tdext,m, Σ)→ (ĩd, ĩnfo
τ
): Parse Σ = (ct,NIZKsig). Since we use a NIZK proof NIZKsig for Rsig, we

can extract
(Γ̃ , p̃kid, s̃kid, w̃, ĩnfo

τ
, r̃′, r̃, t̃ag, Ãt̃ag)
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such that (pp,m, ct; Γ̃ , p̃kid, s̃kid, w̃, ĩnfo
τ
, r̃′, r̃, t̃ag, Ãt̃ag) ∈ Rsig. Parse w̃ = (ĩd, (w̃1, . . . , w̃L)). Then, re-

turn (ĩd, ĩnfo
τ
).

We now consider the additional properties, namely, correctness and setup indistinguishability, when
instantiated with respect to the above types of proofs. Regarding setup indistinguishability, both setups are
indistinguishable. Specifically, for dual-mode NIZK proofs, the binding and hiding modes are computationally
indistinguishable, which implies the indistinguishability of both setups. For NIZKAoKs from (multi-round)
interactive protocols, the setup indistinguishability trivially holds. Regarding correctness in the simulated
setup, the proof is straightforward.

Arguing Unforgeability. We now prove the required sub-properties of unforgeability (see discussion in Sec-

tion 4.2). Regarding unforgeability with respect to experiment Eunf-wo-tracesnd
A , assume that PPT adversary A

is able to produce (m, Σ) such that (m, Σ) /∈ SIGS and Verify(pp,m, Σ) = 1, as required to win the unforge-
ability experiment Eunf-wo-tracesnd

A (c.f. Figure 4). We prove extractability, system information unforgeability,
traceability, and non-frameability as follows.

– Extractability. In this sub-property, A is considered to win Eunf-wo-tracesnd
A (λ) if Judge(pp,m, Σ, id′, Ξ) = 1,

the traced identifier id′ belongs to ID and the extracted identifier ĩd is not equal to id′. As ExtSig ex-
tracts ĩd and r̃ from NIZKsig for relation Rsig (c.f. (6)), we should note that, by soundness of NIZKsig, ct =

PKE.Enc(pkta, ĩd; r̃), i.e., ct is the correct encryption of ĩd. On the other hand, since Judge(pp,m, Σ, id′, Ξ) =
1, we understand that id′ is the correct decryption of ct, i.e., id′ ← PKE.Dec(skta, ct) due to the soundness

of NIZKtrace, for relation Rtrace (c.f. (10)). Since id′ ̸= ĩd, this implies a decryption error that violates
the correctness of the respective PKE PKE lp. Hence, the extractability of our lattice-based EFDGS is
guaranteed by the soundness of NIZKsig and correctness of PKE lp.

– System Information Unforgeability. In this sub-property, A is considered to win Eunf-wo-tracesnd
A (λ) if the

extracted pair (m, ĩnfo
τ
) /∈ EPL, where ĩnfo

τ
is extracted via ExtSig, and A has never accessed to sksa.

Notice that the extraction of ĩnfo
τ
is proceeded by extracting from NIZKsig for relation Rsig (c.f. (6)). In

Rsig, the set of constraints (i) implies a valid original signature, namely, (tag,v′ − (r′∥0m2)), which is

verifiable by pksa and message (m∥ĩnfo
τ
) (see Remark 29). Since A has no access to sksa and can create a

valid signature for a new message (m∥ĩnfo
τ
), which has not been requested previously via either PreSign

or PreSignaug, i.e., (m, ĩnfo
τ
) /∈ EPL, this implies that A can forge a pre-signature verifiable by pksa. By

Lemma 32, this only happens with negligible probability.
– Traceability. In this sub-property, A is considered to win Eunf-wo-tracesnd

A (λ) if the traced identifier id′ is
not in the corrupt list CL and A has never accessed to sksa. Since Verify(pp,m, Σ) = 1, we know that the
underlying NIZK proof NIZKsig, for relation Rsig (c.f. (6)), is verified successfully. However, by the set of
constraints (ii) in relation Rsig and by extractability proved above, it implies that id′ is a valid identity

at the respective extracted system information ĩnfo
τ
(via ExtSig). Hence, there are three possibilities for

A as follows.
(i) Identifier id′ is in the system at the system information ĩnfo

τ
and A has a valid secret mapping to

pkid′ , implying that A is able to invert hT to some valid pre-image. In this case, with probability at
least 1/2 [62, Lemma 8], the valid pre-image that A founds is different from the actual skid′ , hence
breaking the collision resistance of the hash function hT.

(ii) A does not have a valid path of accumulating following the Merkle tree structure underlying ACC llnw.
In this case, A is considered to successfully break the collision resistance of hT.

(iii) A is able to break the soundness of NIZKsig.
Hence, breaking traceability only happens with negligible probability due to the collision resistance of
hT and the soundness of NIZKsig.

– Non-Frameability. With a similar argument as for the case traceability, framing EFDGS signatures to
an honest user whose traced identifier id′ in the set HL is impossible because A does not possess skid′ .
Hence, breaking this property implies breaking either the collision resistance of hT or the soundness of
NIZKsig, which only happens with negligible probability.

Regarding the case of tracing soundness with respect to Figure 4, by the correctness of PKE lp and the
soundness of NIZKsig which captures correct encryption of identifier, A has negligibly advantage to provide
the distinct identifiers with associated proofs of tracing.

We thus conclude the proof. ⊓⊔
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