
Tree-based Quantum Carry-Save Adder

Hyunjun Kim1, Sejin Lim1, Kyungbae Jang1,2, Siyi Wang2, Anubhab Baksi3,
Anupam Chattopadhyay2, and Hwajeong Seo1⋆

1 Hansung University, Seoul, Republic of Korea
2 Nanyang Technological University, Singapore

3 Lund University, Lund, Sweden

amdjd0704@gmail.com, dlatpwls834@gmail.com, starj1023@gmail.com,

siyi002@e.ntu.edu.sg, anubhab.baksi@eit.lth.se, anupam@ntu.edu.sg,

hwajeong84@gmail.com

Abstract. Quantum computing is regarded as one of the most signifi-
cant upcoming advancements in computer science. Although fully oper-
ational quantum computers have yet to be realized, they are expected to
solve specific problems that are difficult to solve using classical comput-
ers. Given the limitations of quantum computing resources, it is crucial
to design compact quantum circuits for core operations, such as quantum
arithmetic.

In this paper, we focus on optimizing the circuit depth of quantum
multi-operand addition, which is a fundamental component in quantum
implementations (as an example, SHA-2). Building on the foundational
quantum carry-save approach by Phil Gossett, we introduce a tree-based
quantum carry-save adder. Our design integrates the Wallace and Dadda
trees to optimize carry handling during multi-operand additions. To fur-
ther reduce circuit depth, we utilize additional ancilla qubits for parallel
operations and introduce an efficient technique for reusing these ancilla
qubits.

Our tree-based carry-save adder achieves the lowest circuit depth (T -
depth) and provides an improvement of over 82% (up to 99%) in the
qubit count–circuit depth product for multi-operand addition. Further-
more, we apply our method to multiplication, achieving the lowest circuit
depth and an improvement of up to 87% in the qubit count–circuit depth
product.

Keywords: Quantum Computing · Quantum Carry-Save Adder · Wal-
lace Tree · Dadda Tree

1 Introduction

Quantum computing offers a new computational paradigm that replaces tradi-
tional binary bits with qubits, leveraging quantum phenomena such as super-
position and entanglement. These properties empower quantum computers to

⋆ Corresponding author
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simultaneously represent multiple states, resulting in solving specific complex
problems far faster than classical computers, especially in areas like cryptanal-
ysis, drug development, weather forecasting, and modeling complex systems.
Cryptanalysis has undergone significant transformations with the introduction
of quantum algorithms such as Shor’s algorithm [40] and Grover’s algorithm [14].
These algorithms introduce new challenges by breaking traditional encryption
schemes like RSA [36] and Elliptic Curve Cryptography (ECC) [23] and posing
a threat to symmetric key cryptography, including AES and SHA-2/3. This has
led to active research in post-quantum security, including new security margins
and analysis of quantum circuit implementation. However, the practical applica-
tion of quantum computing poses significant challenges. Presently, the stability
of qubits is lacking, and error correction techniques [9] are not yet fully ma-
tured. Moreover, the actual implementation of quantum computers encounters
numerous technical difficulties, one of the prominent being the optimization of
quantum circuits (for instance, one may look at the recent development in the
context of cryptography [18,17]).

Optimizing quantum circuits is a central aspect of quantum computing as it
plays a crucial role in enhancing computational efficiency and reducing resource
usage. To execute computations efficiently by manipulating qubits in quantum
computers, it is essential to optimize these circuits to use as few qubits and op-
erations as possible. This optimization is beneficial not only from the standpoint
of computational speed but also in minimizing the possibility of errors and en-
hancing the overall stability of the system [35]. When designing quantum circuits
for various fields where the advantages of quantum computing can be harnessed,
quantum adders become virtually indispensable components. For instance, in
Shor’s algorithm, adders are employed to execute modular exponentiation more
resource-efficiently.
The quantum adders developed thus far primarily follow two approaches: Quan-
tum Ripple Carry Adder (QRCA) andQuantum Carry Look-ahead Adder (QCLA).
QRCA operates similarly to a traditional adder, where the carry from each bit
position ripples to the next. Although this method can be implemented relatively
simply, the computation time increases linearly with the number of bits. On the
other hand, QCLA employs parallel processing to perform addition operations
more swiftly. It pre-calculates the carry and distributes it in parallel, thus offer-
ing significantly faster computation speed. However, its implementation is more
complex and demands a greater number of quantum gates. QRCA examples in-
clude the Cuccaro adder [4], Takahashi adder [41], and Gidney adder [11], while
the Draper adder [7], Wang’s Higher Radix base adder [45] and Wang’s Ling
base adder [46] are types of QCLA .
Previous studies have predominantly concentrated on quantum adders designed
for two-operand addition. In this paper, in contrast, we focus on Quantum Carry-
Save Adder (QCSA), which is suitable for multi-operand addition. Prior work by
Phil Gossett [13] demonstrated the implementation of modular arithmetic opera-
tions essential to Shor’s algorithm using the carry-save method. We extend Gos-
sett’s QCSA by presenting depth-optimized quantum circuits for multi-operand
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addition using the Wallace tree [44] and Dadda tree [5], which are built upon
the Carry-Save Adder (CSA). Our QCSA, based on Wallace and Dadda trees,
achieves the lowest circuit depths (i.e., Toffoli, T , and full depths) by utiliz-
ing additional ancilla qubits to handle multi-operand addition. Notably, in this
trade-off between qubit count and circuit depth, we provide the best performance
in terms of their product (i.e., qubit count - circuit depth).

Indeed, multi-operand addition is encountered in various fields, such as fi-
nancial forecasting, where summing sales across different regions aids predictive
modeling, and in cryptographic algorithms. For example, multiplication involves
summing multiple operands in a single step to enhance computational efficiency.
In Shor’s algorithm, modular exponentiation (ax mod N) is a crucial opera-
tion that demands efficient multi-operand addition techniques. Additionally, in
the SHA-2 hash function, the round function performs a 7-operand addition1

(W +K + h+Σ1(e) + Ch(e, f, g) +Σ0(a) +Maj(a, b, c)) in a single step.
In this context, our work may serve as an effective approach for optimizing

quantum algorithms using quantum multi-operand adders.

Our Contribution

The contributions of the paper are summarized as follows:

1. Tree-based Quantum Carry-Save Adder: We develop quantum adder
beyond two-operand addition to multi-operand addition by implementing
QCSA. Further, we present/use an improved version of the full adder (de-
tailed in Section 3.1) in this work. We incorporate classical structures, specif-
ically the Wallace and Dadda trees, into quantum computing to improve
carry information processing and computation. In multi-operand addition,
compared to using a two-operand adder multiple times, our tree-based QCSA
achieves the lowest circuit depth and offers the best performance in terms of
the product of qubit count and circuit depth (see Table 4).

2. Effective Reuse of Ancilla Qubits: Our design includes an uncomputa-
tion method (in Section 3.4 that enables the reuse of ancilla qubits in our
QCSA. These ancilla qubits, once reinitialized after uncomputation, can be
effectively reused for subsequent operations, especially when the QCSA is
not used as a stand-alone component. Indeed, addition in quantum comput-
ing extends beyond standalone use; i.e., it is applied at the functional or
algorithmic level (see Sections 4.3 and 5, for example).

3. Application to Quantum Multiplication: We use our QCSA to imple-
ment quantum multiplication (see Section 5), providing an efficient option
for depth optimization. As a naive approach (noting that there are various
approaches), we focus on the schoolbook method and prepare operands for
multi-operand addition in the multiplication using AND operations (Toffoli

1 Indeed in [19], Jang et al. adopted our QCSA for the round function of the SHA-
2 quantum circuit and achieved a performance improvement (see Section 4.3 for
details).
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gates in quantum computing). The QCSA is applied to this multi-operand
addition and demonstrates its performance.

2 Background

2.1 Quantum Gates

A quantum circuit consists of a specific sequence of quantum operations, or gates,
applied to qubits for executing computational tasks. Unlike classical circuits that
process bits (0 and 1) through logic gates (such as AND, OR, and NOT), quan-
tum circuits operate on qubits, which can exist in a superposition of states
(both 0 and 1 simultaneously). Quantum gates, such as the Pauli-X, Hadamard,
CNOT, and Toffoli gates, manipulate qubits to perform computations. These
gates are unitary operations, meaning they are reversible, a key distinction from
classical gates. With the distinctive attributes of quantum mechanics, such as su-
perposition and entanglement, quantum circuits hold the potential for executing
extensive parallel processing and affording exponential acceleration to targeted
computational challenges. Figure 1 illustrates some of the essential quantum
gates:

(a) X (b) Z (c) H (d) CNOT(e) Toffoli (f) T (g) T †

Fig. 1: Quantum gates.

– Pauli-X (X) gate : The X gate is similar to the classical NOT gate. It flips
the state of a qubit from |0⟩ to |1⟩ and vice versa.

– Pauli-Z (Z) gate : The Z gate applies a phase shift to a qubit. It leaves the
|0⟩ state unchanged but multiplies the |0⟩ state by a phase factor of -1.

– Hadamard (H) gate : The H gate creates a superposition by transforming
a qubit from the basis states |0⟩ and |1⟩ to an equal superposition of both
states.

– CNOT (Controlled NOT) gate : The CNOT gate is a two-qubit gate that
applies the X gate to the target qubit if the control qubit is in the |1⟩ state.
This gate is essential for creating quantum entanglement between qubits.

– Toffoli gate : Also known as the Controlled-Controlled NOT (CCNOT) gate,
the Toffoli gate is a three-qubit gate. It applies the X gate to the target qubit
if both control qubits are in the |1⟩ state. It is a universal gate for reversible
classical computation.
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– T gate : The T gate is a single-qubit gate that applies a π
4 phase shift to the

|1⟩ state of the qubit. It is also called the π
8 gate.

– T † (T -dagger) gate : The T † gate is the inverse of the T gate, meaning it
applies a −π

4 phase shift to the |1⟩ state of the qubit.

2.2 Toffoli Gate Decomposition

In quantum circuits, the T -count and T -depth are crucial for evaluating the
performance and implementation complexity of quantum algorithms, especially
when quantum error correction is necessary due to the potential for errors. The
T -count, representing the total number of T gates in a quantum circuit, is a
common metric for measuring its complexity. Amy [1] proposed a novel cost
function for T -depth that measures the maximum number of non-overlapping T
gate layers within a circuit. This metric serves as a crucial evaluation tool for
assessing the circuit’s speed and error probability.
Toffoli gate can be decomposed into simpler Clifford+T gates. Through the de-
composition of the Toffoli gate, it is possible to reduce the number of T gates
and optimize the quantum circuit’s configuration. Various Toffoli decomposition
techniques have been proposed, such as those by Amy [1], Selinger [38], and Gid-
ney [11]. In this paper, we adopt two decomposition methods: Selinger’s Toffoli
decomposition and Gidney’s logical AND gate (hereafter TD1 and TD2, respec-
tively). The specific circuits for each method are depicted in Figure 2 (Figure
(a), (b) and (c). TD1 achieves the minimum T -depth with the least number
of qubits, while TD2 achieves the minimum T -depth with minimal additional
qubit usage. In this paper, the chosen Toffoli decompositions were based on their
efficient implementation for the overall circuit. TD1 involves 7 T gates with a
T -depth of 3. It does not utilize ancilla qubits, which are supplementary qubits
introduced to aid in quantum computations. Meanwhile, TD2 replaces pairs of
Toffoli gates with Computation and Uncomputation gates. The computation
gate requires 4 T gates and has a T -depth of 2 while using one ancilla qubit.
The uncomputation, in contrast, is characterized by not using any T gates and
involves the measurement of the ancilla qubit. TD1 does not use ancilla qubits
but has a larger number of T gates and depth than TD2. On the other hand,
TD2 requires one ancilla qubit per application, but it significantly reduces the
number of T gates, almost by half, and offers a shallower T -depth. Moreover, the
advantage of TD2 is maximized when the Toffoli gate pair structure is utilized.
From the perspective of T -depth, TD1 stands out among the Toffoli decom-
position techniques by achieving the lowest T -depth without using any ancilla
qubits. On the other hand, TD2, despite using only one ancilla qubit, manages
to reduce the T -depth to 2, making it advantageous with minimal ancilla usage.

2.3 Quantum Arithmetic and Quantum Adder

In this section, we briefly review quantum arithmetic and its relationship to
quantum adders. Bhaskar et al. [3] proposed quantum algorithms to efficiently
compute functions, such as roots, logarithms, and fractional powers, using a
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(a) TD1 : Selinger’s Toffoli Decomposi-
tion [38]

(b) TD2 : Gidney’s logical AND gate (Com-
putation) [11]

(c) TD2 : Uncomputation

Fig. 2: Toffoli gate decomposition (top : TD1, bottom : TD2).

modular combination of several elementary quantum circuits. Similarly, Haner et
al. [15] presented efficient quantum circuits for evaluating various mathematical
functions, including square roots, Gaussians, hyperbolic tangents, exponentials,
sines/cosines, and arcsines. Such quantum circuits for computing mathematical
functions are being proposed, with a focus on performance differences between
traditional algorithms and methods for their implementation.

All of these mathematical functions are based on addition or multiplica-
tion. There are QRCA [4,41,11] and QCLA [7,45,46] as methods of addition.
These methods use a combination of CNOT gates, Toffoli gates, and other
fundamental quantum gates to achieve binary addition. In the multiplication
domain, quantum multipliers can be made through a series of controlled addi-
tions [2,26,20,30,31,42,34,10]. Yet, this method is not always the most efficient,
necessitating ongoing research for improved quantum multipliers. In classic cir-
cuits, the depth and size efficient methods like Karatsuba and Toom-Cook mul-
tiplication for large numbers prove efficient in quantum circuits as well. Parent
et al. [33] showcased a quantum circuit for integer multiplication using Karat-
suba’s recursive method, while Dutta et al. [8] exhibited a quantum circuit using
the Toom-Cook algorithm. Beyond simply replacing classical circuit operations
with quantum ones, one approach involves using the Quantum Fourier Trans-
form (QFT). While the QFT is notably employed in Shor’s algorithm, its ap-
plications extend to aiding arithmetic operations [6,29,37]. Through the QFT,
quantum states transition into the Fourier domain, which eases operations like
addition. These states can subsequently be reverted using the inverse QFT. In
multiplication, the process can be executed using controlled phase rotations,
analogous to addition.

2.4 Carry Save Adder

The CSA is a fundamental arithmetic component in computer architecture and
digital system design, primarily responsible for addition operations. Unlike tra-
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ditional adders that propagate carry values to the next stage, the CSA retains
them within a parallel structure throughout a sequence of additions. This ap-
proach optimizes complex addition operations by leveraging parallel processing,
thereby reducing overall computation time. Such optimization is crucial in large-
scale matrix operations, high-speed Fourier transforms, and high-performance
Graphics Processing Units (GPUs).

Comprising Half Adders (HAs) and Full Adders (FAs), the CSA enables
parallel processing across different operation stages. An HA adds two binary
digits, producing a sum and a carry, while an FA adds three binary digits, making
it essential for handling the carry bit from previous additions. Intermediate carry
values are accumulated and processed in the final stage. This design not only
minimizes bottlenecks but also maximizes parallelism, significantly improving
overall performance.

Tree-Based Approach Tree-based CSA significantly improves upon conven-
tional CSAs by reducing the number of operands and decreasing computation
time. It is particularly beneficial in scenarios involving large-scale additions.
A tree-based CSA consists of two primary stages: reduction and final carry-
propagate addition. In the reduction phase, a CSA at each level of the tree reduces
the number of operands. Once only two operands remain, a carry-propagate
adder, such as an RCA or a CLA, produces the final result.

There are two major structures for tree-based CSA: the Wallace tree [44]
and the Dadda tree [5]. Although the Wallace and Dadda trees have different
structures, they share the common goal of optimizing addition operations. The
adder operates at each level using a CSA, continually reducing the tree until
no further reduction is possible. Simply put, the Wallace tree applies adders as
soon as three operands become available, whereas the Dadda tree delays applying
adders until more than twice the required operands are present at the next level.

3 Tree-Based Quantum Carry Save Adder

Gossett [13] proposed a method for performing modular arithmetic in quan-
tum computing. It highlights the advantages of using carry-save arithmetic for
quantum modular exponentiation but does not address the construction of mul-
tiple CSAs. By arranging the CSAs in a straightforward 2D array structure, the
addition of n bits occurs at each stage, making the total number of addition
operations proportional to n. This results in a time complexity of O(n).

We introduce two types of tree-based QCSA: Wallace and Dadda. While we
employ principles similar to the classical tree-based CSA, our tree-based QCSA
is systematically restructured to optimize quantum circuits. The Wallace and
Dadda trees that we propose utilize a more efficient approach with a time com-
plexity of O(log n). These methods adopt a structure that operates a significantly
greater number of CSAs in parallel compared to 2D array approach. In our imple-
mentation, we prioritize optimizing circuit depth by allocating additional ancilla
qubits. However, although circuit depth optimization is our primary focus, we do
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not excessively use qubits. Further, we present reuse techniques for initializing
previously allocated ancilla qubits (in Section 3.4).

3.1 Quantum Circuits for Half and Full Adders

Recall that the CSA comprises HAs and FAs as its fundamental building blocks.
The Quantum Half Adder (QHA) [13], analogous to the classical 3-to-2 CSA, is
designed with a 3-input, 3-output structure by introducing an ancillary input.
The QHA adds two qubits and produces a quantum sum and carry. In [13],
Vedral’s Quantum Full Adder (QFA) [43] is extended into a 4-input, 4-output
structure with an additional ancillary input. The QFA adds three qubits while
managing the quantum carry bit generated from previous additions. The cir-
cuit diagrams of these QHAs and QFAs are shown in Figures 3(a) and 3(b),
respectively.

Our tree-based QCSA adopts Gossett’s QHA (Figure 3(a)). Meanwhile, we
present an optimized design of the QFA, as illustrated in Figure 3(c). Our QFA
is optimized using one Toffoli gate and five CNOT gates. In the proposed tree-
based QCSA, we employ this QFA to reduce the number of Toffoli gates and the
Toffoli depth, which is particularly beneficial given the high cost of T gates in
quantum computation. Additionally, the performance differences based on the
QFA within the Wallace tree are illustrated in Figure 9 in Appendix A.

a • • a

b • S

c K

(a) QHA (used in
[13])

a • • a

b • • b

c • • S

d K

(b) QFA1 (used in [13])

a • • • • a

b • • b

c • S

d K

(c) QFA2 (ours)

Fig. 3: Quantum circuits for QHA and QFA.

3.2 Quantum Circuit for Wallace Tree Reduction

Let the operands of the multiplication be represented by a matrix wij , where each
row i corresponds to an operand, and each column j corresponds to a bit position,
with the rightmost one being the least significant bit. Figure 4(a) provides an
example of adding five 2-bit numbers using the Wallace tree reduction. Each dot
represents a bit, and horizontal lines divide the levels. Two dots inside a dashed
box are inputs to an HA, and three dots inside a dashed box are inputs to an
FA. The adder outputs are connected diagonally for the sum and carry outputs.

In the first step, qubits are grouped in threes for all columns j. An ancilla
qubit is added to the group, and the group is connected to the QFA input. In the
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(a) Wallce tree (b) Dadda tree

Fig. 4: Dot notation representation of Wallace and Dadda trees.

second step, each adder’s sum output Sj is connected to wj , which corresponds
to the same weight-bit position. Additionally, each adder’s carry output Kj is
connected to wj+1, representing one bit higher weight-bit position. The third
step involves repeating steps 1 and 2 until only three wi remain. In the fourth
step, for all columns j, if there are three remaining qubits, an ancilla qubit
is added and connected to the QFA input. If there are two remaining qubits,
an ancilla qubit is added and connected to the QHA input. The remaining w0

is denoted as A′ and w1 as B′. Finally, A′ and B′ are passed to a Quantum
Carry-Propagate Adder.

Figure 5(a) shows a quantum circuit for the Wallace tree adder reduction,
adding the same five 2-bit numbers (see Figure 4(a)). The reduction steps consist
of three levels, with two QFAs in the least significant bit column, three QFAs in
the next qubit column, and one HA in the following qubit column. In this circuit,
the reduction step result qubits are A0, A1, A2, B2, and B3. Among these, A0

and A1 become the qubits of the final result of the multi-operand addition. The
rest are passed to the two inputs (A,B) of the final carry-propagate addition
step. An ancilla qubit is added above A2 to form A, and B is composed of B2 and
B3 in the order of least significant qubits. The green qubits (c′0, c

′
1, e

′
1, k0,0, k1,0)

are garbage qubits that are no longer needed for the calculation. It is important
to note that the uncomputation method resets these values to their initial states,
and its details are provided in Section 3.4.

In the quantum circuit, several features can be observed. The reduction steps
are composed of three levels, with two QFAs in the least significant bit column,
three QFAs in the next bit column, and one QHA in the following bit column (see
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(a) Wallce tree (b) Dadda tree

Fig. 5: Quantum circuit of the reduction process for the Wallace and Dadda trees.

Figure 5(a)). Additionally, more qubits are needed for use as ancilla bits. One
of these qubits is added for each QFA and QHA. For efficient implementation,
we ensure that these additional qubits are passed to inputs A and B in the final
carry-propagate addition step. If the input qubits were to be passed to the next
step, additional qubits would be needed to store the results in order to reset
these values to their initial states. In this case, not only would additional qubits
be needed, but the uncomputation step would also be delayed and complicated.

Quantum Circuit for Dadda Tree Reduction Similarly to Wallace tree,
Dadda tree also represents the operands by a matrix wij ; each row i corresponds
to an operand, and each column j corresponds to a bit position, with the right-
most one being the least significant bit. Figure 4(b) shows the dot notation
representation of the Dadda tree reduction steps for adding five 2-bit numbers.
The first step involves calculating the maximum height sequence, d′ = ⌈1.5 ∗ d⌉.
In the second step, starting from the column with the lowest weight, apply the
following: if height(wj) > d′, add an ancilla qubit to store the carry and apply a
QFA. If height(wj) = d′ +1, add an ancilla qubit to store the carry and apply a
QHA. In the third step, we update d to equal d′. In the fourth step, repeat steps
1-3 for each level until only two rows remain in the weight group. The remaining
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w0 is denoted as A′ and w1 as B′. Finally, A′ and B′ are passed to a Quantum
Carry-Propagate Adder.

Figure 5(b) represents Figure 4(b) as a quantum circuit. The reduction steps
consist of three levels, with two QHAs and one QFA in the least significant bit
column, three QFAs in the next bit column, and one QHA in the following bit
column. For efficient implementation, we use ancilla qubits in QFA and QHA,
just as in the Wallace tree, and pass them to the final carry-propagate addition
step. To prevent the circuit depth from increasing, we arrange the operation
order. The sums and carries resulting from QFA and QHA are implemented as
lower-priority inputs in the next operation.

Figure 6 shows an example of an inefficient operation order that results in a
deeper circuit depth. Figure 5(a) and Figure 5(b) produce the same result, but
the depth of the circuit is different. The operation order has been optimized to
reduce the circuit depth by arranging the QHA in parallel, as in Figure 5(b). In
the example, the quantum Dadda tree circuit uses one fewer QFA and two more
QHAs than the quantum Wallace tree circuit. As a result, it uses one more qubit
and more T gates, depending on the type of QFA. Additionally, the input qubits
A and B in the final carry-propagate addition step are 3 bits, 1 bit larger.

Classical Dadda trees are generally cheaper in terms of the number of adders
and levels compared to Wallace trees. However, the actual cost difference depends
on the specific implementation and optimizations performed during the design
process. A comparison and measurement of the actual costs of quantum Wallace
and Dadda trees are needed, which is explained in Section 4.
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(a) Improper imple-
mentation
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(b) Our implementaion

Fig. 6: Improper implementation for least significant bit causing depth increase
in Dadda tree reduction and our implementation

3.3 Quantum Circuit for Final Carry-Propagate Addition

The final sum at this stage is generated using either a QRCA or a QLCA. De-
pending on their types, these adders incur different costs across various metrics.
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Research conducted by Wang in 2023 [45] emphasize the importance of adder
selection. Wang applys Toffoli decomposition to several adders and compared
their T -depth, T -count, and qubit count. Adders are available in two versions:
in-place and out-of-place. The out-of-place version stores the output to sepa-
rate qubits, which does not create any issues related to changing input qubit
values. However, for the in-place version, care must be taken as it alters the
value of the input qubits. This concern is mitigated during the tree reduction
phase, as additional qubits, rather than input qubits, are forwarded to the final
carry-propagate addition step.

When comparing in-place adders, according to [45], the CLA exhibits a lower
qubit count and T -count compared to the RCA, yet the RCA possesses a signifi-
cantly lower T -depth. For RCA types, the approach of Cuccaro and Takahashi is
identical to that of Gidney, suggesting Gidney’s approach is more cost-effective
than VBE [43]. Among the RCAs, Takahashi is more efficient than both VBE and
Cuccaro in terms of T -depth, T -count, and Qubits. Gidney’s approach is identical
to Cuccaro’s when logical-and is applied, and when Takahashi applies logical-
and appropriately, it becomes identical to Gidney. For these reasons, Takahashi
and Gidney’s adders are adopted in this work.

Conversely, when decomposition of the logical AND gate is utilized in CLA,
Wang’s Higher Radix adder proves the most efficient in terms of T -depth and T -
count, while Draper adder uses fewer qubits than Wang adder. Among the CLAs,
Wang’s Higher Radix base adder is excluded because the carry value becomes a
garbage qubit thus we adopt Wang’s Ling base adder with modifications. The
choice of adder can be adjusted according to the metrics considered most crucial
for the task at hand. The specific differences among various adders, including
their impact on cost, are further discussed in Section 4.

3.4 Uncomputation

A notable issue that arises when implementing Wallace and Dadda tree adders
in quantum circuits is the presence of auxiliary qubits. These auxiliary qubits
are not part of the desired output state, but required during quantum computa-
tion to facilitate information processing. Management and elimination of these
ancilla qubits are critical to ensuring efficiency and accuracy in quantum compu-
tations. Therefore, we include an uncomputation step to reverse the intermediate
operations that generated the auxiliary qubits. This effectively separates these
qubits from the output ones and returns them to their initial state.

The uncomputation returns all qubits except for the final sum output to
their initial state. This is achieved by applying the QFA and QHA circuits used
in the reduction stage in reverse order. The uncompute stage is influenced by
whether it is in-place or out of place. In the case of outplace, the input and
output are separated, so it does not affect the input. However, in the case of in-
place, one of the two inputs becomes the output. Since the value of the output
must be preserved, the uncompute stage restores the qubits to their original
state, excluding the output. In-place is performed in fewer steps than out-of-
place. Figure 7 shows an uncomputed circuit connected to the Wallace tree



Tree-based Quantum Carry-Save Adder 13

method (Figure 5(a)), which uses an in-place adder. Here, all qubits except for
the output bits B2 and B3 are returned to their initial state. As a result, the
QHA connected to the output bits is simply replaced with a single CNOT gate,
and the QFA is replaced with two CNOT gates. The remaining qubits return
to their initial state with the same cost as in the reduction stage. In the case
of a circuit using an out-of-place adder, the QFA and QHA circuits from the
reduction stage are simply applied in reverse order.
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Fig. 7: Quantum circuit implementation for the Uncomputation stage of the Wal-
lace tree.

4 Evaluation

In this section, we esitimate and analysis for the required quantum resources
for the tree-based QCSA. Notably, the choice of tree method and adder type
significantly influences the resource differences. Building upon that, this section
explores the efficiency of adders, including QRCA and QCLA. We execute quan-
tum versions of both trees in the Cirq framework. Due to Cirq’s lack of direct
circuit metric functions, we turn to Qiskit, particularly for depth evaluation. This
facilitate precise comparisons in qubit metrics, Toffoli gate counts, and depths.
Additionally, by decomposing the Toffoli gates, we discern key metrics: T -depth
and T -count, vital for gauging quantum circuit performance and resources. The
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implementation and experimentation code are available on GitHub2 for further
reference.

4.1 Performance Comparison of Wallace and Dadda Trees

Before comparing the performance of the Wallace and Dadda trees, we briefly
discuss the differences between their classical versions. In the Wallace tree, the
reduction strategy aims to minimize the number of remaining bits at each level
by using all available FAs to reduce the bit count as much as possible. This
results in an uneven reduction, with some columns having more remaining bits
than others. Additional adders may be needed in subsequent levels to balance
the reduction, which could increase the total number of adders.

In contrast, the Dadda tree uses a more conservative reduction strategy.
The core idea is to reduce the number of bits at each level to a specific target
determined by the Dadda ratio. The Dadda ratio follows the sequence L =
1, 2, 3, 4, 6, 9, 13, 19, 28, ..., with each subsequent element being approximately
1.5 times the previous one. For a given number of input bits n, the Dadda tree
calculates the target bit count for each level using the Dadda ratio. It employs
the minimum number of FA and HA required to achieve the target reduction
at each level. This conservative approach results in a more balanced reduction
across levels and generally requires fewer adders than the Wallace tree.

Considering these characteristics in a classical environment, it is generally
expected that fewer adders are used in the Dadda tree, which would result in
fewer Toffoli gates and qubits generated when implemented in a quantum cir-
cuit. Additionally, in terms of tree height, Dadda trees are typically taller than
Wallace trees. The Wallace tree follows an aggressive approach, reducing the
number of bits at each stage as much as possible. As a result, the tree height is
lower, but a wider tree structure with more adders used at each level is formed.
These characteristics influence the Toffoli depth in quantum circuits, with the
Wallace tree expected to have a smaller Toffoli depth.

4.2 Estimation of Quantum Resources

We assume a 9-operand3 addition and estimate the quantum resource require-
ments for the two trees as they scale with increasing bit sizes (8, 16, 32, . . . , 1024).
In our observation, although the Wallace tree requires more resources, it has a
lower Toffoli depth compared to the Dadda tree. This outcome may be due to the
Wallace tree’s aggressive bit reduction strategy. Note that while the Wallace tree
exhibits a slightly lower Toffoli depth, the Dadda tree achieves a lower Toffoli
count and qubit count, as shown in Table 1 (without Toffoli gate decomposi-
tion). Furthermore, our observations of T -depth and T -count in Tables 2 and 3
(using Toffoli gate decompositions TD1 (see Figure 2(a)) and TD2 (see Figures
2(b) and (c)), respectively) are consistent with these results. This consistency

2 The code will be made publicly available after this article is accepted.
3 Note that performance varies depending on the number of operands.
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suggests that the properties of the classical Dadda and Wallace trees directly
influence their quantum counterparts.

Table 1: Quantum resources required for 9-operand addition using our QCSA
(without Toffoli decomposition).

Bit Size
Carry-propagate Dadda-based Wallace-based

adder Toffoli depth Toffoli count Qubits Toffoli depth Toffoli count Qubits

8 34 128 133 23 128 137
16 50 248 261 39 264 273
32 82 488 517 71 536 545

64 Takahashi [41]✲ 146 968 1029 135 1080 1089
128 (in-place) 274 1928 2053 263 2168 2177
256 530 3848 4101 519 4344 4353
512 1042 7688 8197 1031 8696 8705
1024 2066 15368 16389 2055 17400 17409

8 32 182 148 24 153 145
16 38 379 291 32 355 295
32 46 798 578 39 793 597

64 Draper [7]✲ 52 1679 1153 46 1723 1203
128 (out-of-place) 58 3518 2304 52 3673 2417
256 64 7339 4607 58 7731 4847
512 70 15254 9214 64 16137 9709
1024 76 31615 18429 70 33499 19435

8 22 152 148 17 143 146
16 24 301 291 19 305 296
32 26 602 578 21 635 598

64 Draper [7]✲ 28 1207 1153 23 1301 1204
128 (out-of-place) 30 2420 2304 25 2639 2418
256 32 4849 4607 27 5321 4848
512 34 9710 9214 29 10691 9710
1024 36 19435 18429 31 21437 19436

8 35 253 206 27 201 179
16 39 497 404 35 455 382
32 47 997 806 43 981 797

64 Wang [46]✲ 55 2009 1616 51 2051 1636
128 (out-of-place) 63 4045 3242 59 4209 3323
256 71 8129 6500 67 8543 6706
512 79 16309 13022 75 17229 13481
1024 87 32681 26072 83 34619 27040

✲: Used for the last remaining 2-operand addition.

In the final carry-propagation step, either a QRCA or a QCLA can be used.
To compare the selected adders, we examine Takahashi’s RCA, Draper’s CLA,
and Wang’s Ling-based CLA. Table 1 shows the results for the required Toffoli
depth, Toffoli count, and qubit count.

The Toffoli depth is the smallest in Draper’s out-of-place CLA, followed by
Draper’s in-place CLA, Wang’s Ling-based CLA, and finally Takahashi’s RCA.
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Table 2: Quantum resources required for 9-operand addition using our QCSA
(with TD1 decomposition).

Bit Size
Carry-propagate Dadda-based Wallace-based

adder T -depth T -count Qubits T -depth T -count Qubits

8 102 896 133 69 896 137

16 150 1736 261 117 1848 273

32 246 3416 517 213 3752 545

64 Takahashi [41]✲ 438 6776 1029 405 7560 1089

128 (in-place) 822 13496 2053 789 15176 2177

256 1590 26936 4101 1557 30408 4353

512 3126 53816 8197 3093 60872 8705

1024 6198 107576 16389 6165 121800 17409

8 96 1274 148 72 1071 145

16 114 2653 291 96 2485 295

32 138 5586 578 117 5551 597

64 Draper [7]✲ 156 11753 1153 138 12061 1203

128 (in-place) 174 24626 2304 156 25711 2417

256 192 51373 4607 174 54117 4847

512 210 106778 9214 192 112959 9709

1024 228 221305 18429 210 234493 19435

8 66 1064 148 51 1001 146

16 72 2107 291 57 2135 296

32 78 4214 578 63 4445 598

64 Draper [6]✲ 84 8449 1153 69 9107 1204

128 (out-of-place) 90 16940 2304 75 18473 2418

256 96 33943 4607 81 37247 4848

512 102 67970 9214 87 74837 9710

1024 108 136045 18429 93 150059 19436

8 78 1407 206 60 1211 179

16 84 2737 404 72 2632 382

32 96 5439 806 84 5537 797

64 Wang [46]✲ 108 10885 1616 96 11410 1636

128 (out-of-place) 120 21819 3242 108 23219 3323

256 132 43729 6500 120 46900 6706

512 144 87591 13022 132 94325 13481

1024 156 175357 26072 144 189238 27040

✲: Used for the last remaining 2-operand addition.
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Table 3: Quantum resources required for 9-operand addition using our QCSA
(with TD2 decomposition).

Bit Size
Carry-propagate Dadda-based Wallace-based

adder T -depth T -count Qubits T -depth T -count Qubits

8 18 276 143 13 276 143

16 26 532 279 21 564 287

32 42 1044 551 37 1140 575

64 Gidney [11]✲ 74 2068 1095 69 2292 1151

128 (in-place) 138 4116 2183 133 4596 2303

256 266 8212 4359 261 9204 4607

512 522 16404 8711 517 18420 9215

1024 1034 32788 17415 1029 36852 18431

8 18 432 182 14 352 162

16 21 864 362 17 800 346

32 24 1744 726 20 1728 722

64 Draper [7]✲ 27 3520 1458 23 3616 1482

128 (in-place) 30 7088 2926 26 7424 3010

256 33 14240 5866 29 15072 6074

512 36 28560 11750 32 37486 12210

1024 39 57216 23522 35 61088 24490

8 14 356 163 11 316 154

16 16 700 321 13 684 318

32 18 1396 639 15 1436 650

64 Draper [7]✲ 20 2796 1277 17 2956 1318

128 (out-of-place) 22 5604 2555 19 6012 2658

256 24 11228 5113 21 12140 5342

512 26 22484 10231 23 24412 10714

1024 28 45004 20469 25 48972 21462

✲: Used for the last remaining 2-operand addition.

Takahashi’s RCA requires fewer qubits than Wang’s CLA and both versions of
Draper’s CLA. As a result, while the RCA demonstrates superior performance
in terms of Toffoli count and qubit count, the CLA offers better performance in
terms of Toffoli depth. Notably, as the bit size increases, the growth in Toffoli
depth is relatively slower for the CLA.

Draper’s in-place version outperforms the out-of-place version in terms of
Toffoli depth, whereas the out-of-place version achieves better Toffoli count than
the in-place version. Additionally, Draper’s in-place version requires one fewer
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qubit in the Wallace tree and the same number of qubits in the Dadda tree com-
pared to the out-of-place version. These characteristics align with the expected
features of each adder.

The differences in T -depth, T -count, and qubit count for Toffoli decompo-
sition exhibit some variance. In our experiments, the in-place approach in the
TD1 decomposition uses fewer qubits than the out-of-place approach, whereas in
the TD2 decomposition, the out-of-place approach requires fewer qubits. How-
ever, in an ideal scenario, the Toffoli and T metrics should be similar. These
discrepancies suggest that our experimental implementation may not be fully
optimized, possibly due to the complexity of Draper’s adder. Additionally, the
out-of-place implementation of Wang’s Ling-based CLA has potential for further
optimization.

In Appendix A, a summary of the performances depicted in the graphs is pro-
vided by Figure 10, which illustrates the required quantum resources in terms
of T -depth, T -count, and qubit count. These graphs compare the impact of dif-
ferent Toffoli decomposition methods (i.e., TD1 and TD2), Wallace and Dadda
trees, and the implemented carry-propagate adder.

4.3 Performance Trade-off

In this section, we evaluate the performance of our QCSA for multi-operand
addition compared to using a single-operand adder. As shown in Tables 1, 2 and
3; our QCSA achieves the lowest circuit depth but requires additional qubits.
To assess this trade-off between circuit depth and qubit count, we use the T -
depth–qubit count product, a commonly employed metric for evaluating quan-
tum circuit performance (see [18,16,22,27,28,39]).

We consider a 9-operand addition scenario (as in Tables 1, 2, and 3) and
compare our QCSA with Gidney’s adder [11], both of which employ logical
AND gates. Note that multi-operand addition using Gidney’s adder is performed
sequentially, without considering external parallelization. For example, in the
addition of a+b+c+d (i.e., 4-operand addition), the sequence follows b = a+b,
then c = b+ c, and finally d = c+ d4.

Table 4 presents a comparison of the required quantum resources for 9-
operand additions using Gidney’s adder and our QCSA (with TD2). Although
our QCSA requires more qubits compared to sequential additions performed with
generic adders (such as those in [11,4,41,7,45]), it achieves significantly lower cir-
cuit depth. In terms of the trade-off performance metric (i.e., T -depth × qubits
in Table 4), our QCSA achieves significant improvements ranging from approx-
imately 82% to 99%. Overall, our QCSA combined with the in-place version of
Draper’s adder provides the best performance.

Application to SHA-2 Quantum Circuit As mentioned in Section 1, 7-
operand 32-bit addition is used in the SHA-2 hash function. In [19], Jang et

4 If parallelization is assumed, the circuit depth decreases, but the qubit count in-
creases.
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al. optimized quantum circuits for SHA-2 and adopted our QCSA5. Table 5
reproduces the cost comparison from [19, Table 5] for the 7-operand addition,
along with the results from Kim et al. [22] and Lee et al. [25]. In [19], our
QCSA is used in their 7-operand quantum circuit, while in [22,25], Draper’s
in-place adder is used in their implementations. The implementation in [19]
with our QCSA achieves the lowest Toffoli depth but requires additional ancilla
qubits. However, in this trade-off, the best performance in terms of the Toffoli
depth–qubit count product is achieved in [19] (see Table 5).

Table 4: Performance comparison of 9-operand addition using Gidney’s adder
[11] and our QCSA (with TD2 decomposition).

Ours (Wallace-based)

Bit
size

Gidney [11] (in-place)❍ Gidney[11]✲

(in-place)
Draper[7]✲

(in-place)
Draper[7]✲

(out-of-place)

T -depth T -count Qubits T -depth×Qubits T -depth×Qubits

8 152 304 86 13072
1859

(85.8%)
2268

(82.6%)
1694

(87.0%)

16 280 560 166 46480
6027

(87.0%)
5882

(87.3%)
4134

(91.1%)

32 536 1072 326 174736
21275
(87.8%)

14440
(91.7%)

9750
(94.4%)

64 1048 2096 646 677008
79419
(88.3%)

34086
(95.0%)

22406
(96.7%)

128 2072 4144 1286 2664592
306299
(88.5%)

78260
(97.1%)

50502
(98.1%)

256 4120 8240 2566 10571920
1202427
(88.6%)

176146
(98.3%)

112182
(98.9%)

512 8216 16432 5126 42115216
4764155
(88.7%)

390720
(99.1%)

246422
(99.4%)

1024 16408 32816 10246 168116368
18965499
(88.7%)

857150
(99.5%)

536550
(99.7%)

❍: Used for 2-operand additions (performed 8 times for a 9-operand addition).

✲: Used for the last remaining 2-operand addition.

5 Application to Multiplication

In this section, we discuss the characteristics and possible enhancements of ap-
plying our tree-based QCSA to multiplication. Our approach follows a two-step
process: first, generating all partial products using quantum AND circuits, and
then summing these partial products using the QCSA. Multiplication can be

5 The authors of [19] adopted Draper’s out-of-place adder for the final 2-operand
addition, along with the Toffoli decomposition consisting of 8 Clifford gates, 7 T
gates, and a T -depth of 4 (one of the methods proposed in [1]).
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Table 5: Quantum resources required for 7-operand 32-bit addition in SHA-2
quantum circuits.

Source Toffoli depth T -count Qubits Toffoli depth × Qubits

Kim et al. [22]✢ 224 19124 501 112224

Lee et al. [25]✢ 66 - 546 36036

Jang et al. [19]❂ 19 6546 819 15561

✢: Draper [6] (in-place) is used.

❂: Our QCSA is used.

simply addressed as an addition problem, as depicted in Figure 8. Given the
binary nature of the system, each bit of the multiplicand can only be 0 or 1.
If a particular bit is 1, the shifted value of the multiplier (equivalent to mul-
tiplying by a power of 2) is added to the cumulative sum. Note that in our
implementation, addition is performed even when the bit is 0 (due to quantum
superposition).

We employ the Toffoli gate to convert multiplication into its additive form
(nine Toffoli gates are used in Figure 8). In Figure 8, qubits for b0a, b1a, and b2a
represent shifted results, and by summing them using our QCSA, we can obtain
the result of the multiplication. It is important to note that the partial products
generated in the first step are uncomputed (Section 3.4) to remove the garbage
qubits.

The difference between Dadda and Wallace trees in QCSA-based multiplica-
tion is similar to the results in the multi-operand addition. Dadda tree requires
fewer T gates and qubits, whereas Wallace tree achieves a lower T -depth. A no-
table distinction is observed between TD1 and TD2. While TD2 uses slightly
more qubits than TD1, it significantly reduces both T -depth and T -count. This
is because the initial step of computing partial products in QCSA-based multi-
plication, as well as the uncomputation process, does not utilize T gates. The
required quantum resources for the QCSA-based multiplication are shown in
Table 6.

×

a

b

b0 a 2 0   

b1a 2 1  

b2a 2 2  

Fig. 8: The stage of the multiplication that generates all the partial products
and then sums them using our QCSA
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Table 6: Quantum resources required for our QCSA-based multiplication.

Bit size
Carry-propagate Dadda-based Wallace-based

adder T -depth T -count Qubits T -depth T -count Qubits

8 168 1589 123 171 1932 154

16 Takahashi [41]✲ 360 6720 499 369 7917 591

32 (in-place and TD1) 744 27776 2019 759 31136 2267

64 1512 112896 8131 1533 121443 8751

8 114 1834 145 123 2135 170

16 Draper [6]✲ 216 7392 551 207 8533 636

32 (out-of-place and TD1) 414 29302 2133 351 32592 2372

64 804 116172 8371 615 124656 8981

8 23 596 166 26 664 185

16 Draper [7]✲ 41 2276 602 46 2580 680

32 (out-of-place and TD2) 75 8724 2246 80 9636 2476

64 141 33924 8610 146 36316 9210

8 23 480 136 24 584 164

16 Gidney [11]✲ 47 1984 528 43 2328 616

32 (in-place and TD2) 95 8064 2080 78 9028 2323

64 191 32512 8256 145 34960 8870

✲: Used for the last remaining 2-operand addition.

5.1 Performance Comparison

Quantum multiplication circuits that rely solely on classical reversible gates
(i.e., CNOT and Toffoli gates) generally operate through repeated shifts and
additions [26,20,30]. Additionally, multiplications in [31,42,34,10] employ a tree-
based approach similar to ours. However, these methods are restricted to small
bit sizes, do not provide T -depth, are difficult to measure, and generate unnec-
essary garbage qubits. Our observations indicate that the method proposed in
[30] is the most efficient among those utilizing repeated shifts and additions.
Although they do not provide explicit T -depth, due to the serial nature of their
structure, we can extrapolate the T -depth. Table 7 presents a comparison6 of the
quantum resources required for multiplication in [30] and our tree-based QCSA
multiplication.

6 Most works on quantum integer multiplication [21,33,8,24] do not report concrete
costs and instead rely on asymptotic formulas. However, the authors of [30] provide
detailed quantum resource estimates for their quantum circuit implementation; thus,
we adopt their work for comparison.
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Table 7: Performance comparison of multiplication in [30] and our QCSA-based
multiplication.

Ours (Wallace-based)

Bit
size

Muñoz-Coreas
and Thapliyal [30]

Takahashi[41]✲
Draper[7]✲

(out-of-place)
Gidney [11]✲

(in-place,TD1) (TD1) (TD2) (in-place, TD2)

T -depth T -count Qubits
T -depth
×Qubits

T -depth×Qubits

8 507 1330 33 16731
26334

(−57.4%)
20910

(−25.0%)
4810

(71.3%)
3936

(76.5%)

16 2163 5362 65 140595
218079

(−55.1%)
131652
(6.4%)

31280
(77.6%)

26488
(81.2%)

32 8931 21490 129 1152099
1720653
(−49.3%)

832572
(27.7%)

198080
(82.8%)

181194
(84.3%)

64 36291 86002 257 9326787
13415283
(−43.8%)

5523315
(40.8%)

1344660
(85.6%)

1286150
(86.2%)

✲: Used for the last remaining 2-operand addition.

Our QCSA-based multiplication significantly reduces T -depth by optimizing
intermediate operations. However, due to the qubits allocated for storing par-
tial products and the additional auxiliary qubits introduced in the first step and
CSA, the qubit count is significantly lower in [30]. Our method provides substan-
tial advantages in terms of T -depth and T -count in QCSA-based multiplication.
In terms of the trade-off metric (i.e., T -depth × Qubits in Table 7), we achieve
improvements for bit sizes 16, 32, and 64 with TD1, and the ratio increases
as the bit size increases. For TD2, due to the efficiency of AND gates and our
QCSA-based method, significant improvements are achieved.

5.2 Further Discussion

The QFT-based multiplication [6,37] can be approximately implemented with-
out rotation gates below a certain threshold, enabling the construction of an
approximate QFT (AQFT). This optimization reduces the number of gates from
O(n2) to O(n log n). According to [37], multiplication requires O(n3) gates; how-
ever, further investigation is necessary for AQFT. The QFT-based adder circuit
also incorporates controlled rotation gates (controlled-R gates). In fault-tolerant
quantum computing, complex controlled-R gates must be decomposed into basic
gates (Clifford gates and T gates). In [32], the authors demonstrate that AQFT
can be implemented with O(n log n) T gates. However, additional research is
required to assess the impact of these transformations on multiplication. Due to
these factors, a direct comparison with our proposed method has certain limita-
tions.

Further improvements can be explored through expansions using the Karat-
suba and Toom-Cook algorithms. Previous research employing these algorithms
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[33,8,12] has shown asymptotic performance improvements for large-size mul-
tiplications. It is worth noting that our QCSA can be adopted in the inner
multi-operand additions. In particular, Toom-Cook 3-way and 4-way require 3-
operand and 4-operand additions for divided inputs, respectively, and our QCSA
can be applied to enhance performance. Future research focusing on maximizing
these characteristics or identifying an optimal trade-off between T -depth and
qubit usage for operational efficiency could lead to even greater computational
performance.

6 Conclusion

This paper focuses on optimizing quantum addition, particularly the Carry-
Save Adder (CSA) for multi-operand addition. We propose the tree-based Quan-
tum Carry Save Adder (QCSA), which combines quantum computing principles
with classical Wallace and Dadda trees. Thanks to our QCSA, the circuit depth
for multi-operand addition is significantly reduced. The key components of the
QCSA are optimized: the QFA, the reduction process of Wallace and Dadda
trees, and the final carry-propagate addition. We evaluate the resource efficiency
of multi-operand addition using the QCSA, considering various adders for the
final addition and different Toffoli gate decompositions. Our QCSA achieves the
lowest circuit depths in terms of Toffoli depth, T -depth, and full depth (although
full depth is not directly compared in this paper, it is evident since it closely
follows the Toffoli depth). While our QCSA requires additional qubits, it pro-
vides improved performance in terms of the qubit count–depth product trade-off
metric. Indeed, the improvement is demonstrated by the use case of the SHA-2
quantum circuit [19]. We also apply the QCSA to quantum multiplication. Our
QCSA-based multiplication offers notable improvements in T -depth and in the
qubit count–depth product trade-off.

Further research is anticipated to find the optimal balance between T -depth
and qubit count, with the Karatsuba and Toom-Cook algorithms being promi-
nent candidates. Additionally, given the significance of modular addition in ap-
plications such as Shor’s algorithm, we aim to incorporate it for a more compre-
hensive analysis.
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A Performance Graph

Figure 9 compares the required Toffoli depth and Toffoli count when using QFA1
from [13] and our proposed QFA2 (see Section 3.1). The quantum resource re-
quirements for the QCSA, in terms of T -depth, T -count, and qubit count, when
using TD1 and TD2 decomposition, are illustrated in Figures 10(a) and (b),
respectively.

Fig. 9: Comparison of QFA1 (2 Toffoli gates and 2 CNOT gates) and QFA2 (1
Toffoli gate and 5 CNOT gates) in the Wallace tree.
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(a) Using TD1 decomposition

(b) Using TD2 decomposition

Fig. 10: Comparison of the QCSA based on the Wallace and Dadda trees.
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