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Abstract. Weyman and Zelevinsky generalised Vandermonde matrices
to higher dimensions, which we call Vandermonde-Weyman-Zelevinsky
tensors [35]. We generalise Lagrange interpolation to higher dimensions
by devising a nearly linear time algorithm that given a Vandermonde-
Weyman-Zelevinsky tensor and a sparse target vector, finds a tuple of
vectors that hit the target under tensor evaluation. Tensor evaluation to
us means evaluating the usual multilinear form associated with the tensor
in all but one chosen dimension. Yet, this interpolation problem phrased
with respect to a random tensor appears to be a hard multilinear sys-
tem. Leveraging this dichotomy, we propose preimage sampleable trap-
door one-way functions in the spirit of Gentry-Peikert-Vaikuntanathan
(GPV) lattice trapdoors [16]. We design and analyse “Hash-and-Sign”
digital signatures from such trapdoor one-way functions, yielding short
signatures whose lengths scale nearly linearly in the security parameter.
We also describe an encryption scheme.

Our trapdoor is a random Vandermonde-Weyman-Zelevinsky tensor over
a finite field and a random basis change. We hide the Vandermonde-
Weyman-Zelevinsky tensor under the basis change and publish the re-
sulting pseudorandom tensor. The one way function is the tensor evalua-
tion derived from the public tensor, restricted so as to only map to sparse
vectors. We then design the domain sampler and preimage sampler de-
manded by the GPV framework. The former samples inputs that map to
uniform images under the one-way function. The latter samples preim-
ages given supplementary knowledge of the trapdoor. Preimage sampling
is a randomised version of interpolation and knowing the basis change al-
lows efficient translation between interpolation corresponding to the pub-
lic and trapdoor tensors. An adversary seeking a preimage must solve a
pseudorandom multilinear system, which seems cryptographically hard.

1 Introduction

1.1 Cryptographic context

Tensor based cryptography. Most linear algebraic problems such as solving
linear systems, computing eigenvalues or rank of a matrix, telling if two matrices
are equivalent/similar/congruent etc. are computationally easy. Jumping from
two to three dimensions or more, their multilinear algebraic analogues concern-
ing tensors become hard [20,19]. Phase transition in hardness from two to three
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dimensions is seen elsewhere, such as going from 2-SAT to 3-SAT, or 2-COLOR
to 3-COLOR. Unlike 3-SAT or 3-COLOR, some three or higher dimensional
multilinear algebraic tensor problems offer average case hardness suited for cryp-
tography. Tensor isomorphism problems are a cryptographically significant such
family, generalising matrix equivalence/similarity/congruence to higher dimen-
sional tensors [19,8,18]. Its canonical representative is the eponymous Tensor
Isomorphism (TI) problem: given two tensors over a finite field, decide if they
are isomorphic. Two tensors are isomorphic if there is a tuple of invertible square
matrices that takes one tensor to the other, by multiplication in the respective
dimensions. The search version of TI asks for an isomorphism, which is a tu-
ple of matrices. There is a close knit family TI-complete of hard problems with
tight (linear or quadratic time) reductions between each other. This family in-
cludes well studied multivariate cryptographic problems (restricting to symmet-
ric tensors) [27] and long standing group theoretic problems like p-group isomor-
phism [33]. With a notion of hard to compute isomorphism at hand, it is hard
not to derive a zero-knowledge identification scheme using the Goldreich-Micali-
Wigderson motif [17], which under the Fiat-Shamir transformation yields digital
signatures [11]. Since only polynomial factor quantum speedups are known for
TI-complete problems, the digital signatures that are based on TI-complete
problems are considered post-quantum secure. Digital signature schemes based
on tensor isomorphism problems such as ALTEQ [7,34] and MEDS [9] were part
of the first round of NIST’s recent on-ramp competition. MEDS is based on TI
in three dimensions and ALTEQ is based on TI restricted to alternating tensors
with the same matrix acting in each dimension. Curiously, neither ALTEQ nor
MEDS made it to NIST’s second round, perhaps due to longer signatures and
keys in comparison to the competition. Many of the on-ramp signature scheme
selected for NIST’s second round are based on the Multi-Party Computation in
the Head (MPCitH) paradigm, with signature lengths scaling quadratically in
the security parameter [4].

Trapdoors. Informally, trapdoor one-functions are a family of pairs of func-
tions and trapdoors. The function is easy to compute, but hard to invert. Un-
less, presented with the corresponding trapdoor as additional information, when
the function becomes easy to invert. Trapdoor one-way function constructions
are rare in general. The best known construction is perhaps the one underlying
RSA. The function is modular exponentiation modulo a composite (say, an RSA
number: a product of two large odd prime numbers) and the corresponding trap-
door is the prime factorisation of the composite. A closely related construction
is due to Rabin [29], where the function is squaring modulo a composite and
the corresponding trapdoor is again the factorisation of the composite. Curi-
ously, it is not known if there are trapdoors for computing discrete logarithms
(neither in multiplicative groups of finite fields nor in elliptic curve groups over
finite fields), a testament to how special trapdoors are. Other important trap-
door constructions come from code based and lattice based cryptography. Code
based trapdoor constructions come in two flavours. The first is a McEliece [23]
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style trapdoor: a description of the structure an error correction code the facili-
tates efficient decoding. This structure is hidden through a basis transformation
to derive a public generator matrix for the same code which hides the struc-
ture. The one-way function then is encoding function of the code, based on the
public generator matrix. The second flavour was pioneered by Alekhnovich [5],
who devised a trapdoor to decode random linear codes. This line of work was
specialised to random quasi-cyclic codes culminated in HQC, the latest addition
to NIST’s suit of post-quantum encryption schemes [1]. Lattice trapdoors were
pioneered by Ajtai [2,3], whose worst case to average case reductions laid the
complexity theoretic foundations of lattice based cryptography. A second revolu-
tion started with the Gentry, Peikert and Vaikuntanathan (GPV) construction
of preimage sampleable lattice trapdoor functions [16]. The carefully curated
randomness in their preimage samples was critical in eluding cryptanalytic at-
tacks [26] (that had completely broken previous attempts at lattice trapdoors)
and in rigorously proving the security of the resulting Hash-and-Sign signature
schemes. The latter, specialised to algebraically structure lattices in certain cy-
clotomic rings resulted in FALCON [28], one of two NIST approved lattice based
post-quantum signatures. Micciancio and Peikert extended, simplified and op-
timised the constructions of GPV, which we refer to for a more comprehensive
history of lattice based trapdoors [24].

Preimage sampleable trapdoors one-way functions. We follow and meet
the GPV definition of preimage sampleable trapdoor functions, but our con-
struction has little to do with theirs. GPV define a preimage sampleable func-
tion family, through three probabilistic polynomial time algorithms: a trapdoor
generator, a domain sampler and a preimage sampler. The trapdoor generator
takes in a desired security parameter and outputs a domain, a range, a function
mapping from that domain to the range, and a trapdoor. The domain sampler
takes the function description as input and samples from the domain such that
the image of the sample under the function is uniform. The sample itself, does
not have to be uniform in the domain. The preimage sampler takes the func-
tion description, the trapdoor and a target image as input and samples from
the domain such that the image of the sample hits the target. Knowing only
function and not the trapdoor, it should be cryptographically hard to compute
preimages. Some applications demand collision resistance.

1.2 Contributions

We construct the first trapdoor one-way functions from tensors over finite fields.
We use them to design Hash-and-Sign signatures with signature lengths scaling
as O(λ log λ) in the security parameter λ. We anticipate that our trapdoors
from tensors bring tensor based cryptography closer to being an alternative for
lattice and code based post-quantum cryptography, both in terms of performance
and the applicability to advanced cryptographic primitives that need trapdoors.
To further bridge the gap, our public key length, which remains cubic in λ,
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needs to be lowered. A first impression of the construction and its cryptographic
application follows.

Boundary and doubly boundary format tensors. We work exclusively
with tensors of forms called boundary formats. Boundary formats are the ones
that generalise the notion of square matrices to higher dimensions, in the strictest
sense according to the theory of hyperdeterminants [14,15]. Let us permute the
dimensions if needed to make the first dimension the longest. Here on, the first
dimension, which is the one where the tensor is the longest will be special. Then,
boundary formats in three dimensions are of the form (k2 + k3 +1)× (k2 +1)×
(k3+1). The projective length (one fewer than the format length) k2+k3 in the
first dimension equals the sum of those in the other two. Likewise, in arbitrary
dimensions boundary formats are those where the projective length in the first
dimension equals the sum of the projective lengths in the other dimensions. We
call a boundary format as doubly boundary if it remains a boundary format
even after removing the first dimension (permuting the remaining dimensions,
if needed). Doubly boundary formats in three dimensions are all of the form
(2k + 1) × (k + 1) × (k + 1), which will be the stage where we will rigorously
analyse our constructions. The four dimensional doubly boundary formats (4k+
1)× (2k+1)× (k+1)× (k+1) will also play an important role, for applications
that require sampling from a large preimage distribution. In summary, we base
our constructions on generalisations of square matrices such as boundary formats
(2k+1)×(k+1)×(k+1) and (4k+1)×(2k+1)×(k+1)×(k+1), as opposed to
the more familiar cubical k×k×k formats. Despite drawing inspiration from the
theory of hyperdeterminants, our constructions are completely elementary and
require no knowledge of the theory. Being in boundary formats will make sure
our constructions have the right degrees of freedom to meet certain constraints,
but not more for an adversary to exploit.In general, a boundary format is one of
the form (k1+1)× (k2+1)× . . .× (kr+1) with k1 = k2+k3+ . . .+kr. A doubly
boundary format satisfies the extra constraint k2 = k3 + k4 + . . .+ kr. We have
implicitly assumed that the two longest dimensions are the first and the second,
without loss of generality. Since the tensor isomorphism problem is best studied
in the three dimensional case, we initially recommend these constructions in
three or a few more dimensions. Further, it is unclear if there is benefit at all
to go to much higher dimensions, since the description length of the tensors will
grow exponentially with dimension r. Throughout, it is good to keep in mind
the doubly boundary three dimensional format (2k + 1) × (k + 1) × (k + 1), as
the recurring example in our descriptions.

1.3 Vandermonde-Weyman-Zelevinsky tensors

A column vector determines a (say, square) Vandermonde matrix. Analogously,
given a desired boundary format, Weyman and Zelevinsky take r − 1 column
vectors to determine a structured tensor in the format which generalises Van-
dermonde matrices [35]. We will call such tensors as Vandermonde-Weyman-
Zelevinsky tensors. The smallest example that takes two 3 × 1 vectors to get



Trapdoor one-way functions from tensors 5

3× 2× 2 tensors is illustrated in figure 1.3 It is convenient to package the two

λ0,2 λ0,3

λ1,2 λ1,3

λ2,2 λ2,3

⇝
1

λ0,2

λ0,3

1

λ1,2

λ1,3

1

λ2,2

λ2,3

λ0,2λ0,3 λ1,2λ1,3 λ2,2λ2,3

Fig. 1. Two 3×1 vectors defining a 3×2×2 Vandermonde-Weyman-Zelevinsky tensor.

defining 3 × 1 vectors as columns of a matrix. Observe that each entry in the
tensor is a product of entries of the defining matrix. More generally, for a de-
sired r-dimensional boundary format with length k1 + 1 in the first dimension,
one takes a (k1 + 1)× (r− 1) matrix Λ and it defines a Vandermonde-Weyman-
Zelevinsky tensor ϕ⟨Λ⟩. The entries of ϕ⟨Λ⟩ are products of powers of elements in
Λ. A renowned fact about square Vandermonde matrices is that if and only if the
defining vector has distinct entries, the Vandermonde matrix it defines is non-
singular. Likewise, Weyman and Zelevinsky showed that ϕ⟨Λ⟩ is non-singular if
and only if each column of Λ has distinct entries. It does not matter how entries
across columns compare.

1.4 Trapdoor generation

The trapdoor generator is given a finite field Fq and an r-dimensional boundary
format (k1 + 1) × (k2 + 1) × . . . × (kr + 1) that are large enough to meet the
security requirements and does the following. It draws a uniform matrix Λ over
the finite field (whose columns have distinct entries) to get a non-singular ϕ⟨Λ⟩ of
the prescribed boundary format. It then draws a r-tuple X = (X1, X2, . . . , Xr)
of invertible square matrices, where the first matrix X1 is constrained to be
diagonal. This r-tuple of matrices act on the tensor ϕ⟨Λ⟩ by multiplication in
the respective dimensions (the matrices are drawn of the appropriate size, to
do so) resulting in a tensor ϕ⟨Λ⟩X that is isomorphic to ϕ⟨Λ⟩. The trapdoor
t = (Λ,X) consists of Λ and the basis change X. The twisted tensor ϕ⟨Λ⟩X is
the public tensor describing the one-way function. The public tensor ϕ⟨Λ⟩X is
output by explicitly writing down its entries (with no reference to Λ or X).
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1.5 The one-way function

The public tensor ϕ⟨Λ⟩X defines a multilinear form mapping an r-tuple of vectors
to a field element. But if we evaluate this multilinear form at only an r−1 tuple
of vectors (in two through r dimensions), the evaluation results in a vector
(in the first dimension). We will call this multilinear map that evaluates in
all but the first dimension as tensor evaluation. The one way function is built
from this tensor evaluation, except the input vectors and the output vector
are projective vectors. This projectivisation is to exclude trivial collisions that
occur due to multilinearity and are also the reason for the “ + 1” terms in our
tensor format descriptions. We will denote the d-dimensional projective space as
Pd := P(Fd+1

q ). The range of the one way function is the set of projective vectors
in first dimension, but restricted to projective coordinates of Hamming weight
exactly (k2 + 1). We denote this as the Hamming sphere Sk2+1(Pk1) of radius
k2 + 1 in the k1-dimensional projective space Pk1 . The domain D is defined to
be the subset of (r− 1)-tuples of projective vectors Pk2 × Pk3 × . . .× Pkr whose
image under tensor evaluation lies on the sphere Sk2+1(Pk1). In summary, the
one way function

hϕ⟨Λ⟩X : D −! Sk2+1(Pk1)
is tensor evaluation restricted to map to the Hamming sphere of radius k2 + 1.

Writing down the one way function in three dimensions. Let us pause to
digest the construction so far, by explicitly writing down the one way function,
focusing on (2k + 1) × (k + 1) × (k + 1) formats. The trapdoor is a (2k + 1) ×
2 matrix Λ and a triple of invertible matrices (X1, X2, X3) ∈ GL2k+1(Fq) ×
GLk+1(Fq) × GLk+1(Fq) with X1 being diagonal. The public tensor ϕ⟨Λ⟩ is of
(2k + 1) × (k + 1) × (k + 1) format. The range of the one way function is the
Hamming sphere Sk+1(P2k), consisting of projective vectors of weight just over
half the length. Therefore, the size of the range

(
2k+1
k+1

)
(q − 1)k+1 (surface area

of the sphere) is exponential in k. The domain D consists of pairs of projective
vectors in Pk×Pk that map to Sk+1(P2k). Writing the entries of the public tensor
as (

ϕ⟨Λ⟩Xi1,i2,i3
)
0≤i1≤2k,0≤i2≤k,0≤i3≤k

and a pair of projective vectors in the second and third dimension as (ŵ(2), ŵ(3)) ∈
Pk × Pk, the one way function reads explicitly as

hϕ⟨Λ⟩X : D −! Sk+1(P2k) (1.1)

(ŵ(2), ŵ(3)) 7−!

 ∑
i1,i2,i3

ϕ⟨Λ⟩Xi1,i2,i3ŵ
(2)
i2
ŵ

(3)
i3


0≤i1≤2k

. (1.2)

1.6 Lagrange interpolation in higher dimensions

We extend Lagrange interpolation to higher dimensions in lemma 1, by de-
vising an interpolation algorithm that given a matrix Λ defining a non-singular
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Vandermonde-Weyman-Zelevinsky tensor ϕ⟨Λ⟩ and a sparse enough target, finds
an r − 1 tuple of vectors that hit the target under tensor evaluation. By sparse
enough, we mean that the Hamming weight is at most the length of the second
longest dimension. In particular, it works for targets in the Hamming sphere
Sk2+1(Pk1) which is the range of our one way function. It also works for the
Hamming ball Bk2+1(Pk1) which includes the interior of the sphere. The crucial
property we exploit in our interpolation is that tensor evaluation with respect
to a Vandermonde-Weyman-Zelevinsky tensor decouples into a product of poly-
nomials, if we think of the coordinates of the input vectors as coefficients of
polynomials. This idea is highlighted at the end of subsection 2.2. This allows
us to zero out many of the output coordinates of tensor evaluation, by choosing
input vectors whose associated polynomials vanish at the corresponding entries
of the matrix Λ. After zeroing out enough of the coordinates, the remaining
constraints imposed by the target is satisfied by the usual one dimensional La-
grange interpolation. The need for sparsity in our generalisation of Lagrange
interpolation to higher dimensions is curious and warrants further investigation.

1.7 Preimage samplers

We describe a preimage sampler SamplePre(t, ŵ(1)) which takes as input the
trapdoor t = (Λ,X) and a target ŵ(1) and computes a preimage of the target
under the one way function. The preimage sampler inverts the base change X
in the trapdoor, to translate the problem from being phrased in terms of the
public tensor ϕ⟨Λ⟩X back to ϕ⟨Λ⟩. In doing so, it is crucial that X1 is diago-
nal, for it preserves the Hamming weight of the target in the translation. Once
phrased in terms of ϕ⟨Λ⟩, the preimage sampler does a randomised version of
the aforementioned interpolation. The randomisation is essentially in the choice
of which set of zero coordinates are satisfied by which input vectors. There is
also a deterministic version, which is useful for instance in encryption, where
these choices are made deterministically to always return the same preimage for
a given target. Curiously, for three dimensional (2k+1)×(k+1)×(k+1) formats,
even the randomised preimage sampler turns out to be deterministic. The size of
the support preimages are drawn from blows up exponentially for four or more
dimensions. Even in three dimensions, a bit of randomness can be injected by
permuting the second and third dimensions for (2k+1)×(k+1)×(k+1) formats.
We present such a variant preimage sampler SamplePre3DB(t, ŵ(1)), which flips
a coin to randomly permute the second and third dimensions, before applying
SamplePre(t, ŵ(1)). Consequently, for each target, SamplePre3DB(t, ŵ(1)) draws
uniformly from two distinct preimages.

1.8 Domain samplers

Recall that the domain sampler is given a tensor ϕ⟨Λ⟩X and has to find an r− 1
tuple of projective vectors that map under tensor evaluation with respect to
ϕ⟨Λ⟩X to a sparse vector lying on the Hamming sphere Sk2+1(Pk1). Since tuples
of projective vectors that map to such sparse vectors are exponentially rare,
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naive rejection sampling fails and we have to resort to some algebra. Further, the
domain sampler does not have access to the trapdoor and thus has to treat the
input tensor ϕ⟨Λ⟩X as though it were a random tensor. These difficulties make
our domain samplers highly non-trivial. We present three domain samplers:

– SampleDomDB(ϕ⟨Λ⟩X) for doubly boundary formats in arbitrary dimension,
– SampleDom3D(ϕ⟨Λ⟩X) for three dimensional boundary formats,
– SampleDom3DB(ϕ⟨Λ⟩X) for three dimensional doubly boundary formats.

Unlike preimage samplers, we do not know how to construct domain samplers in
arbitrary boundary formats of four or more dimensions. The common strategy of
all three samplers is to pick the support of the image at random and try to zero
out the image outside the support. The difference lies in later step. The first algo-
rithm SampleDomDB(ϕ⟨Λ⟩X) draws the domain vectors from (3-to-r)-dimensions
at random and solves a linear system to determine the second domain vector.
There is subtle rejection sampling to make sure that the algorithm terminates
and induces a uniform image. Curiously, the aforementioned decoupling of the
Vandermonde-Weyman-Zelevinsky tensors is critical to the proof that the im-
ages induced are uniform, although the Vandermonde-Weyman-Zelevinsky ten-
sor structure is not visible to the domain sampling algorithms themselves. The
second algorithm SampleDom3D(ϕ⟨Λ⟩X) does something similar, except it draws
the second domain vector at random and solves for the third. This is only possi-
ble in three dimensions, for in higher dimensions a similar strategy would need
to solve multilinear systems. The third algorithm SampleDom3DB(ϕ⟨Λ⟩X) flips a
coin and chooses one of the first two to apply. It only applies for three dimensional
doubly boundary formats (2k+1)×(k+1)×(k+1). Remarkably, conditioned on a
target ŵ(1), the domain sample distribution induced by SampleDom3DB(ϕ⟨Λ⟩X)
is exactly the same as the preimage distribution induced by the preimage sam-
pler SamplePre3DB(t, ŵ(1)). Looking ahead, this equality will help prove that our
signatures are unforgeable under the hardness assumptions.

Distinction between preimage and domain samplers. There is another
difference between our preimage/domain samplers to appreciate, besides the
knowledge/ignorance of the trapdoor. The interpolation algorithm inside the
preimage sampler can hit any target on (or in) the Hamming sphere Sk2+1(Pk1).
In contrast, the algorithmic mechanism inside our domain samplers can zero out
the coordinates outside the support of any desired target, but in doing so exhaust
all the available degrees of freedom, resulting in the non zero coordinates of the
image being uniformly random. In Hash-and-Sign signatures, only the preimage
sampler is used as part of the algorithms. The domain sampler only appears in
the security proof, helping to simulate signatures in the existential unforgeability
analysis. In encryption schemes, both the the preimage and the domain sampler
play an algorithmic role.
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1.9 Hardness assumptions

We make two hardness assumptions which together imply collision resistance of
the one-way functions. The first is a pseudorandomness assumption: that a ran-
dom tensor in the isomorphism class of a random non-degenerate Vandermonde-
Weyman-Zelevinsky tensors is computationally indistinguishable from a truly
random tensor. This is closely related to the well-studied analogous crypto-
graphic assumptions in tensor isomorphism based cryptosystems [7]. Ours seems
like a safer assumption, since we only publish one of the tensors. Whereas ten-
sor isomorphism publishes two tensors and says you still can not tell if it is a
random pair of isomorphic tensors or a random pair of tensors. But then, our
tensors have more algebraic structure, so the two assumptions are incomparable.
The second assumption is that a random multilinear system of equations with
a random sparse vector as target is cryptographically hard. We benchmark this
hardness by looking to the best known Gröbner basis and high-dimensional re-
sultant based algorithms tailored to solving such multilinear systems [10,31,32].
Applying these becnhmarks to (2k+1)×(k+1)×(k+1) formats over a finite field
with at least 4k elements, setting k ≥ λ suffices to meet a security parameter λ.

1.10 Hash-and-Sign signatures and encryption

Hash-and-Signatures are one of the most direct and well understood design
strategies for digital signatures [6]. We design a simple Hash-and-Sign signa-
ture scheme based on the preimage sampleable trapdoor one way functions from
tensors. For its instantiation with three dimensional (2k+1)× (k+1)× (k+1)
formats, we rigorously prove existential unforgeability under chosen-message at-
tacks (EUF-CMA) in the random oracle model (ROM) under our two hardness
assumptions. The proof also goes through in the quantum-accessible random
oracle model (QROM), accounting for quantum adversaries. Remarkably, the
signature size scales as O(λ log(λ)) with respect to the security parameter λ.
This nearly linearly scaling is close to that of the best lattice and code based
signature schemes, such as Dilithium, Falcon and HQC, all of which have been
adopted as part of NIST’s post-quantum signature standards. The reason signa-
tures are so short is that the preimages are just vectors, and not tensors. Tensor
isomorphism based signature schemes built on the Goldreich-Micali-Wigderson
protocol, such as ALTEQ and MEDS have to write down a tensor as part of
the signature, meaning their signature lengths are cubic in the security param-
eter. Our public verification key however is a tensor, which takes cubic length
in the security parameter λ to write down. The size of the secret signing key is
dominated by size of the tuple X of base change matrices, which is quadratic
in the security parameter. We could reduce it to linear in the security parame-
ter by replacing the invertible matrices in the basis change with pseudorandom
invertible matrix with a linear length description. We finally present a simple
CPA-secure encryption scheme, which under the Fujisaki-Okomoto transforma-
tion should give a IND− CCA2 secure scheme in the random oracle model. We
defer the formal analysis of the encryption scheme to a later version of the paper.
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1.11 Organisation

In section 2, we establish notation, recall the notion of Vandermonde-Weyman-
Zelevinsky tensors and describe our higher dimensional generalisation of Largrange
interpolation. This section can be read independent of the other sections, since
we anticipate the interpolation algorithm to be of use beyond cryptographic ap-
plications. In section 3, we describe the trapdoor generation, preimage sampler
and domain sampler algorithms constituting our preimage sampleable trapdoor
one way function construction. We conclude the section with the hardness as-
sumptions. In section 4, we present and rigorously analyse our Hash-and-Sign
signature scheme and end with a sketch of the encryption scheme.

2 Vandermonde-Weyman-Zelevinsky tensor interpolation

2.1 Tensor notation

Let Fq denote the finite field with q elements. For a positive integer k, let
(
Fkq
)∨

denote the dual vector space of Fkq , consisting of Fq-linear maps from Fkq to Fq.
To us, an r- dimensional tensor over Fq of format (k1+1)×(k2+1)×. . .×(kr+1)
(for positive integers k1, k2, . . . , kr) is an element

ϕ ∈
(
Fk1+1
q

)∨ ⊗
(
Fk2+1
q

)∨ ⊗ . . .⊗
(
Fkr+1
q

)∨
.

We will use j exclusively to index dimensions in {1, 2, . . . , r}. Without loss of
generality, assume k1 ≥ k2 ≥ . . . ≥ kr. Fix an ordered basis for the dual vector
spaces, or equivalently, fix a coordinate system w(j) =

(
w

(j)
0 , w

(j)
1 , . . . , w

(j)
kj

)
for

the j-th vector space Fkj+1
q . With bases fixed, the tensor ϕ is described by an

r-dimensional matrix of Fq elements

(ϕi1,i2,...,ir )0≤i1≤k1,0≤i2≤k2,...,0≤ir≤kr ,

which will be the presentation of tensors as inputs or outputs to our algorithms.
Think of the tensor ϕ as a multilinear map in two different ways. First, as the
multilinear form

fϕ : Fk1+1
q × Fk2+1

q × . . .× Fkr+1
q −! Fq(

w(1), w(2), . . . , w(r)
)
7−!

∑
0≤i1≤k1

...
0≤ir≤kr

ai1,i2,...,irw
(1)
i1
w

(2)
i2
. . . w

(r)
ir
.

associated with evaluating the dual vectors. Second, as the multilinear map

f1ϕ : Fk2+1
q × Fk3+1

q × . . .× Fkr+1
q −! Fk1+1

q

(
w(2), w(3), . . . , w(r)

)
7−!

 ∑
0≤i2≤k2

...
0≤ir≤kr

ϕi1,i2,...,irw
(2)
i2
w

(3)
i3
. . . w

(r)
ir


0≤i1≤k1
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that evaluates in all but the first dimension. Denote the i1-th coordinate of the
image as

f1ϕ

(
w(2), w(3), . . . , w(r)

)
i1

:=
∑

0≤i2≤k2
...

0≤ir≤kr

ϕi1,i2,...,irw
(2)
i2
w

(3)
i3
. . . w

(r)
ir
.

It is this second multilinear map that we will soon call tensor evaluation, but
applied to projective vectors.

Definition 1 (Tensor evaluation). Let Pkj := P(Fkj+1
q ) denote the projectivi-

sation of Fkj+1
q and fix the projective coordinate system

ŵ(j) :=
(
w

(j)
0 : w

(j)
1 : . . . : w

(j)
kj

)
∈ Pkj

corresponding to non zero coordinate vectors w(j). Since the multilinear map f1ϕ
is given by homogeneous polynomials in the coordinates, the evaluation map

f̂1ϕ : Pk2 × Pk3 × . . .× Pkr −! Pk1 ∪ {0}(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
7−!

(
f1ϕ

(
w(2), w(3), . . . , w(r)

)
0
: f1ϕ

(
w(2), w(3), . . . , w(r)

)
1

: . . . : f1ϕ

(
w(2), w(3), . . . , w(r)

)
k1

)
.

from projective coordinates to projective coordinates is a well defined map. Ex-
cept, it can map to the all zero vector, which is not allowed in projective coordi-
nates. We add the zero vector 0 to the co-domain to account for this possibility.

While f1ϕ and f̂1ϕ are in spirit the same map, f̂1ϕ has a hat in the superscript to
emphasise that it is a map on projective coordinates. We will build our trap-
door one way functions with projective coordinates as inputs and outputs, since
that resolves the issue of trivial collisions that arise due to multilinearity. Mildly
abusing notation, we occasionally also call f1ϕ as tensor evaluation, when it is
clear we are dealing with affine coordinate vectors.

Definition 2 (Boundary format, Doubly boundary format). A tensor
format (k1 + 1) × (k2 + 1) × . . . × (kr + 1) is called as boundary, if and only if
k1 = k2+k3+ . . .+kr. A doubly boundary format is a boundary format satisfying
the further constraint that k2 = k3 + k4 + . . .+ kr.

Boundary formats are those that generalise square matrices to higher dimensions
in the strictest sense, according to the theory of hyperdeterminants developed
by Gelfand, Kapranov and Zelevinsky [14,15]. Boundary formats are the setting
for all our constructions. A doubly boundary format is a name we made up, and
refers to boundary formats that remain boundary formats even after removing
the first dimension.
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2.2 Vandermonde-Weyman-Zelevinsky tensors

A Vandermonde matrix is a square two dimensional matrix described by one
vector. Analogously, Weyman and Zelevinsky defined r-dimensional boundary
format tensors that are described by r−1 vectors. These tensors generalise Van-
dermonde matrices and satisfy similar properties in higher dimensions too. For
instance, the tensor is non singular if and only if the describing r− 1 vectors are
each made of distinct coordinates. We will call these as Vandermonde-Weyman-
Zelevinsky tensors, and state their definition below. It is convenient to package
the r − 1 vectors into a matrix in the definition.

Definition 3. (Vandermonde-Weyman-Zelevinsky tensor.) Let (k1+1)×
(k2 + 1) × . . . × (kr + 1) be an r-dimensional boundary format with k1 = k2 +
k3 + . . . + kr and r ≥ 2. The Vandermonde-Weyman-Zelevinsky tensor ϕ⟨Λ⟩
associated with a (k1 + 1)× (r − 1) matrix

Λ = (λi1,j)0≤i1≤k1,2≤j≤r,

over a finite field Fq is defined as the one with entries(
ϕ⟨Λ⟩i1,i2,...,ir := λi2i1,2λ

i3
i1,3

. . . λiri1,r
)
0≤i1≤k1,0≤i2≤k2,...,0≤ir≤kr

.

The definition also holds in any field, despite only being stated over finite fields.
Observe that ϕ⟨Λ⟩i1,i2,...,ir is a product of powers of r − 1 entries of the matrix
Λ, and not r entries, since the dimension index j in Λ only ranges from 2 to
r. In fact, the entries that appear are precisely from the i1-indexed row of Λ.
Therefore, ϕ⟨Λ⟩i1,i2,...,ir is a product of powers of the i1-indexed row entries
of Λ, with the powers determined by the indices i2, i3, . . . , ir. This structure
will soon become familiar, when we illustrate the first examples. Specialising
to r = 2 yields the familiar Vandermonde square matrices. The simplest three
dimensional examples, 3×2×2 format Vandermonde-Weyman-Zelevinsky tensors
are pictured in figure 1.3. The simplest four dimensional boundary format is
4 × 2 × 2 × 2. But, let us look to the bigger 5 × 3 × 2 × 2 boundary format in
figure 2.2, since the latter is doubly boundary. Since it is difficult to illustrate
four dimensional tensors on paper, we draw its five slices in the first dimension.
Each slice is a boundary format tensor, since by design the tensor they are sliced
from is doubly boundary format. But the slices are not necessarily Vandermonde-
Weyman-Zelevinsky tensors.

Decoupling of Vandermonde-Weyman-Zelevinsky tensor evaluations
The principal observation that we will exploit repeatedly in our construction is
that the tensor evaluation

(
w(2), w(3), . . . , w(r)

)
7−!

 ∑
0≤i2≤k2

...
0≤ir≤kr

λi2i1,2λ
i3
i1,3

. . . λiri1,rw
(2)
i2
w

(3)
i3
. . . w

(r)
ir


0≤i1≤k1

,
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
λ0,2 λ0,3 λ0,4

λ1,2 λ1,3 λ1,4

λ2,1 λ2,2 λ2,4

λ3,1 λ3,2 λ3,4

λ4,1 λ4,2 λ4,4

⇝
1

λi1,3

λi1,4

λi1,3λi1,4

λi1,2

λi1,2λi1,3

λi1,2λi1,4

λi1,2λi1,3λi1,4

λ2
i1,2

λ2
i1,2λi1,3

λ2
i1,2λi1,4

λ2
i1,2λi1,3λi1,4

Fig. 2. A 5 × 3 matrix and the i1-th slice (in the first dimension) of the 5 × 3 ×
2 × 2 Vandermonde-Weyman-Zelevinsky tensor it defines. There are five such slices,
enumerated by 0 ≤ i1 ≤ 4.

with respect to a Vandermonde-Weyman-Zelevinsky tensor ϕ⟨Λ⟩ splits into a
product of polynomials(
w(2), w(3), . . . , w(r)

)
7−! (2.1)((

k2∑
i2=0

w
(2)
i2
λi2i1,2

)(
k3∑
i3=0

w
(3)
i3
λi3i1,3

)
. . .

(
kr∑
ir=0

w
(r)
ir
λiri1,r

))
0≤i1≤k1

,

when we think of the coordinates of the input vectors as polynomials. To clarify,
if we think of the j-th dimension input vector w(j) as the polynomial

Pj(Λj) :=

kj∑
ij=0

w
(2)
i2
Λ
ij
j ∈ Fq[Λj ]

in some indeterminate Λj , then the tensor evaluation map is the map(
w(2), w(3), . . . , w(r)

)
7−! (P2(λi1,2)P3(λi1,3) . . . Pr(λi1,r))0≤i1≤k1 (2.2)

evaluating the decoupled multivariate polynomial P2(Λ2)P3(Λ3) . . . Pr(Λr) at
the first row of Λ. This observation was critical in Weyman and Zelevinsky’s
characterisation of the non-degeneracy of tensors that now bear their name [35,
Prop. 7.3], which we are happy to adopt in designing cryptographic primitives.

Degeneracy/Singularity of boundary format tensors. The notion of sin-
gularity or degeneracy of matrices have been extended to higher dimensional
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tensors [15,14]. While we do not require these notions to describe our algorithms,
they help understand the origin of some of the ideas and rule out degeneracy
attacks [30,22]. Singularity is defined analytically while degeneracy is defined
algebraically. But they are equivalent and we will use the terms interchangeably.
Informally, a tensor is defined to be degenerate if there is a tuple of non zero
coordinate vectors such that evaluating the tensor at all but one of the vectors
gives the all zero dual vector. For boundary formats, due to the Cayley trick, this
definition simplifies to only needing to leave out the longest dimension [15,14].

Definition 4 (Singularity/Degeneracy). A (k1+1)×(k2+1)× . . .×(kr+1)
boundary format tensor is called degenerate or singular if and only if the all zero
vector 0 is in the image f̂1ϕ

(
Pk2 × Pk3 × . . .× Pkr

)
of the tensor evaluation map.

Vandermonde matrices are non-singular if and only if the vector definig the ma-
trix is made up of distinct entries. Weyman and Zelevinsky proved the following
theorem, with a similar characterisation of singularity in higher dimensions, ex-
ploiting the aforementioned decoupling.

Theorem 1 (Singularity of Vandermonde-Weyman-Zelevinsky tensors).
Let (k1 + 1) × (k2 + 1) × . . . × (kr + 1) be an r-dimensional boundary for-
mat with k1 = k2 + k3 + . . . + kr and r ≥ 2. The Vandermonde-Weyman-
Zelevinsky tensor ϕ⟨Λ⟩ of such a format associated with a (k1 + 1) × (r − 1)
matrix Λ = (λi1,j)0≤i1≤k1,2≤j≤r, is singular/degenerate if and only if there ex-
ists a dimension j ∈ {2, 3, . . . , r} and two distinct indices i1, i′1 ∈ {0, 1, . . . , k1}
such that λi1,j = λi′1,j.

Proof. See Weyman and Zelevinsky [35, Prop. 7.3]. The proof in [35] is stated
over the field of complex numbers, but their argument also works over finite
fields. The only special property of fields they use is that a non zero polynomial
in one variable has at most as many zeros as the degree.

2.3 Sparse vector interpolation

Let (k1 + 1) × (k2 + 1) × . . . × (kr + 1) be an r-dimensional boundary format
with k1 = k2 + k3 + . . .+ kr and r ≥ 3. For a positive integer d, let

Bd
(
Fk1+1
q

)
:=
{
w(1) ∈ Fk1+1

q | dH(w(1)) ≤ d
}

and
Sd
(
Fk1+1
q

)
:=
{
w(1) ∈ Fk1+1

q | dH(w(1)) = d
}

denote the Hamming ball and sphere of radius d in Fk1+1
q , where dH() is the

Hamming weight measuring the number of non zero coordinates. Likewise, let

Bd
(
Pk1
)
:=
{
ŵ(1) ∈ Pk1 | dH(ŵ(1)) ≤ d

}
and

Sd
(
Pk1
)
:=
{
ŵ(1) ∈ Pk1 | dH(ŵ(1)) = d

}
denote the Hamming ball and sphere of radius d in Pk1 .
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Lemma 1. Consider r-dimensional boundary formats (k1+1)× (k2+1)× . . .×
(kr + 1) with r ≥ 3. Assume without loss of generality that the first dimension
is the longest. That is, k1 = k2 + k3 + . . . + kr. There exists a polynomial time
algorithm that given

– a (k1 + 1) × (r − 1) matrix Λ = (λi1,j)0≤i1≤k1,2≤j≤r over a finite field Fq
with each of its columns having distinct coordinates (that is, for all j, i1 ̸= i′1
implies λi1,j ̸= λi′1,j),

– a target non zero coordinate vector w(1) ∈ Fk1+1
q with at most k2 + 1 non

zero coordinates,

finds an (r − 1)-tuple of non zero coordinate vectors(
w(2), w(3), . . . , w(r)

)
∈ Fk2+1

q × Fk3+1
q × . . .× Fkr+1

q

which hits the target under the multilinear map f1ϕ⟨Λ⟩ to the first dimension
associated with the Vandermonde-Weyman-Zelevinsky tensor ϕ⟨Λ⟩. That is,

f1ϕ⟨Λ⟩

(
w(2), w(3), . . . , w(r)

)
= w(1).

Proof. Write the constraint to meet in the statement of the lemma in terms of
the (r− 1)-tuple of non zero coordinate vectors

(
w(2), w(3), . . . , w(r)

)
∈ Fk2+1

q ×
Fk3+1
q × . . .× Fkr+1

q explicitly as∑
0≤i2≤k2

...
0≤ir≤kr

ϕ⟨Λ⟩i1,i2,...,irw
(2)
i2
w

(3)
i3
. . . w

(r)
ir

= w
(1)
i1
, ∀ 0 ≤ i1 ≤ k1.

Substitute ϕ⟨Λ⟩i1,i2,...,ir = λi2i1,1λ
i3
i1,2

. . . λiri1,r for the entries of the Vandermonde-
Weyman-Zelevinsky tensor, to get∑

0≤i2≤k2
...

0≤ir≤kr

λi2i1,1λ
i3
i1,2

. . . λiri1,rw
(2)
i2
w

(3)
i3
. . . w

(r)
ir

= w
(1)
i1
, ∀ 0 ≤ i1 ≤ k1,

which decouples into products as(
k2∑
i2=0

w
(2)
i2
λi2i1,2

)(
k3∑
i3=0

w
(3)
i3
λi3i1,3

)
. . .

(
kr∑
ir=0

w
(r)
ir
λiri1,r

)
= w

(1)
i1
, ∀ 0 ≤ i1 ≤ k1.

(2.3)
For 2 ≤ j ≤ r, consider the following polynomials

Pj(Λj) :=

kj∑
ij=0

w
(j)
ij
Λ
ij
j ∈ Fq[Λj ]
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in indeterminates Λj with the coordinates of w(j) as the coefficients. The con-
straints in equation 2.3 are equivalent to the system of polynomial equations

P2(λi1,2)P3(λi1,3) . . . Pr(λi1,r) = w
(1)
i1
, ∀0 ≤ i1 ≤ k1. (2.4)

Partition the set of indices in the first dimension

I2 ∪ I3 ∪ . . . ∪ Ir = {0, 1, . . . , k1}

into disjoint non empty subsets I2, I3, . . . , Ir such that

|I2| = k2 + 1, |I3| = k3, |I4| = k4, . . . , |Ir| = kr and w
(1)
i1

= 0,∀i1 ∈
r⋃
j=3

Ij .

Such a partition is always possible by sweeping all the non zero coordinates of
w(1) under I2, since k1 + 1 = k2 + 1+ k3 + . . .+ kr and w(1) has at most k2 + 1
non zero coordinates. Set

Pj(Λj) 
∏
i1∈Ij

(Λj − λi1,j) ,∀j ∈ {3, 4, . . . , r},

thereby satisfying

P2(λi1,2)P3(λi1,3) . . . Pr(λi1,r) = w
(1)
i1

(= 0), ∀i1 ∈ I3 ∪ I4 ∪ . . . ∪ Ir.

irrespective of P2(Λ2). The coordinates
(
w(3), w(4), . . . , w(r)

)
thus determined

can be written down by polynomial multiplication. Further, each of the coordi-
nate vectors in the tuple

(
w(3), w(4), . . . , w(r)

)
has at least one non zero coordi-

nate, since the subsets I3, I4, . . . , Ir are all non empty. To satisfy equation 2.4,
all that is left to do is find P2(Λ2) such that,

P2(λi1,2)P3(λi1,3) . . . Pr(λi1,r) = w
(1)
i1
, ∀i1 ∈ I2. (2.5)

Since I2 and I3 ∪ I4 ∪ . . . ∪ Ir are disjoint, and each column of Λ has distinct
coordinates,

P3(λi1,3)P4(λi1,4) . . . Pr(λi1,r) ̸= 0, ∀i1 ∈ I2.

Further, (P3(λi1,3)P4(λi1,4) . . . Pr(λi1,r), ∀i1 ∈ I2) can be computed by polyno-
mial evaluation and then taking products. Therefore, we may phrase the con-
straint 2.5 as

P2(λi1,2) =
w

(1)
i1

P3(λi1,3)P4(λi1,4) . . . Pr(λi1,r)
, ∀i1 ∈ I2, (2.6)

which is a polynomial interpolation problem in one variable with degree k2 and
k2 + 1 distinct interpolation points. The interpolation problem has a solution,
for instance through Lagrange interpolation,

P2(Λ2) 
∑
i1∈I2

w
(1)
i1

P3(λi1,3)P4(λi1,4) . . . Pr(λi1,r)

∏
i′1∈I2,i′1 ̸=i1

Λ2 − λi′1,2

λi1,2 − λi′1,2

and can be found in nearly linear time using fast Lagrange interpolation [13].
Since the target is a non zero vector, at least one of interpolated values is non
zero, implying the interpolated polynomial P2(Λ2) is non zero. ⊓⊔
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3 Preimage sampleable trapdoor one-way functions

We begin by informally recounting the abstraction of the preimage sampleable
trapdoor one-way functions proposed in [16], through its three algorithms.

1. Trapdoor generator TrapGen. TrapGen is a randomised polynomial time
algorithm that takes some parameters (sufficient to meet a desired security
parameter 1λ) as input and generates a one-way function-trapdoor pair

(h : D ! R, t) ,

where both the function h and trapdoor t have short descriptions (so as to
be treated as inputs/outputs of algorithms). Further, the function is easy
to compute. The domain D and range R are recognisable finite sets, where
recognisable means there are polynomial time algorithms that test member-
ship. Concretely, the elements of these sets are encoded as bit strings and
there are polynomial time algorithms to decide membership of a given bit
string.

2. Domain sampler SampleDom. The domain sampler SampleDom(h) is a ran-
domised polynomial time algorithm parametrised by the function h : D ! R,
that draws a sample x  SampleDom(h) from D such that the image h(x)
is uniform in R. The induced sample distribution does not necessarily have
to be uniform in D. In [16], they settle for the weaker guarantee of being
statistically close to uniform for the lattice based constructions, and the
weaker notion suffices for some applications. But we will construct domain
samplers whose outputs are exactly uniform, meeting the stronger guarantee.

3. Trapdoor preimage sampler SamplePre. The trapdoor preimage sampler
SamplePre(t, y) is a randomised polynomial time algorithm parametrised by
the function-trapdoor pair. Given a target image y ∈ R as input, it outputs
a preimage x  SamplePre(t, y) ∈ D. That is, h(x) = y. We want the
preimages to be drawn with enough randomness so as to reveal as little about
the trapdoor as permitted, when repeatedly called in certain applications
such as signing many messages using the same key. We assume that the
function description h can easily be computed from the trapdoor t. This is
indeed true in our case. Otherwise, the function description can be added as
an input to SamplePre.

Preimage and collision resistance. It must be hard to compute a preimage
under the function h, given only the function h and the target image, without
knowledge of the trapdoor. Additionally, we may seek collision resistance, re-
quiring it must be hard given the function h to compute two distinct x, x′ ∈ D
such that h(x) = h(x′).

We next present the construction in great generality accommodating formats
that are either doubly boundary formats (in arbitrary dimensions) or three di-
mensional boundary formats.
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3.1 Trapdoor generation

Tuples of invertible matrices (of the right formats) take tensors to other tensors
of the same format as follows.

Definition 5. (Basis change) Tuples X = (X1, X2, . . . , Xr) ∈
∏r
j=1GLkj+1(Fq)

of invertible matrices act on (k1 + 1)× (k2 + 1)× . . .× (kr + 1) format tensors
ϕ as

((X1, X2, . . . , Xr), ϕ) 7−! ϕ(X1,X2,...,Xr),

where ϕ(X1,X2,...,Xr) is defined as the tensor associated with the multilinear form

fϕ(X1,X2,...,Xr) : Fk1+1
q × Fk2+1

q × . . .× Fkr+1
q −! Fq(

w(1), w(2), . . . , w(r)
)
7−! fϕ

(
X1w

(1), X2w
(2), . . . , Xrw

(r)
)
.

We will at times denote ϕ(X1,X2,...,Xr) as ϕX , for brevity.

In essence, the tuple of matrices twist the associated multilinear form by first
multiplying the input vector in each dimension by the corresponding matrix.
Since

ψ = ϕ(X1,X2,...,Xr) ⇔ ϕ = ψ(X−1
1 ,X−1

2 ,...,X−1
r ),

ψ is in the
∏r
j=1GLkj+1(Fq) orbit of ϕ if an only if ψ is in the

∏r
j=1GLkj+1(Fq)

orbit of ϕ. Therefore the following is well defined.

Definition 6. (Tensor isomorphism) Two tensors of the same format (k1 +
1)× (k2 + 1)× . . .× (kr + 1) are called isomorphic if and only if they are in the
same

∏r
j=1GLkj+1(Fq) orbit.

From the symmetry of the definition and the transitivity of orbit membership,
it is apparent that tensor isomorphism is an equivalence relation.

Let Dk1+1(F∗
q) ⊂ GLk1+1(Fq) denote the subgroup of diagonal matrices with

no zeroes on the diagonal. This subgroup preserves the Hamming weight of the
vectors under multiplication. We can choose a bigger subgroup that preserves
Hamming weight, by taking products of diagonal and permutation matrices, but
that would be vacuous in our construction.

Definition 7. (Restricted tensor isomorphism) Two tensors of the same
format (k1 +1)× (k2 +1)× . . .× (kr +1) are called restricted isomorphic if and
only if they are in the same Dk1+1(F∗

q)×
∏r
j=2GLkj+1(Fq) orbit.

We will use restricted isomorphisms for base change, to preserve Hamming weight
in the first dimension.
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Algorithm 1: TrapGen
(
q, 1k1 , 1k2 , . . . , 1kr

)
Trapdoor generator
Input: A finite field Fq and an r-dimensional boundary format

(k1 + 1)× (k2 + 1)× . . .× (kr + 1) with k1 = k2 + k3 + . . .+ kr
and r ≥ 3; chosen to meet a security parameter 1λ requirement.

Output: A function-trapdoor pair (hψ : D −! R, t).
1 Draw a uniform (k1 + 1)× (r − 1) matrix Λ = (λi1,j)0≤i1≤k1,2≤j≤r over

Fq such that for each column j, i1 ̸= i′1 implies λi1,j ̸= λi′1,j .
2 Draw a uniform r-tuple of invertible matrices

X = (X1, X2, . . . , Xr) ∈ Dk1+1(F∗
q)×

r∏
j=2

GLkj+1(Fq).

3 Set the trapdoor t (Λ,X).
4 Set the range to the Hamming sphere R Sk2+1

(
Pk1
)

of radius k2 + 1.
5 Twist the Vandermonde-Weyman-Zelevinsky tensor ϕ⟨Λ⟩ by the basis

change X = (X1, X2, . . . , Xr) to get

ψ  ϕ⟨Λ⟩X ,

explicitly described by its coordinates(
ψi1,i2,...,ir = ϕ⟨Λ⟩Xi1,i2,...,ir

)
0≤i1≤k1,0≤i2≤k2,...,0≤ir≤kr

.

6 Set the domain to be

D  
{(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
∈ Pk2 × Pk3 × . . .× Pkr

| f̂1ϕ(Λ)X
(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
∈ Sk2+1

(
Pk1
)}

the fibre of preimages of the Hamming sphere Sk2+1

(
Pk1
)

under
f̂1ϕ(Λ)X . Set the one-way function to be the restriction

hψ : D −! R(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
7−! f̂1ϕ(Λ)X

(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
of the tensor evaluation associated with ϕ⟨Λ⟩X to D. As an explicit
expression to aid implementation, given the entries of the tensor
ϕ⟨Λ⟩X , the one-way function maps

(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
7−!

 ∑
0≤i2≤k2

...
0≤ir≤kr

ϕ⟨Λ⟩Xi1,i2,...,ir ŵ
(2)
i2
ŵ

(3)
i3
. . . ŵ

(r)
ir


0≤i1≤k1

7 Output (ψ, t), where ψ is to be thought of as describing hψ : D −! R.
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Looking ahead, we may also include the tuple (X−1
1 , X−1

2 , . . . , X−1
r ) of in-

verses to the trapdoor, to speed up the trapdoor preimage sampler, particularly
when preimages for many targets are sought. Whether to perform these inver-
sions during trapdoor generation or trapdoor preimage sampling depends on the
application. In most cases, it is more time efficient to perform the inversions
during the trapdoor generation. Or better still, perform the inversion as a pre-
processing step to trapdoor preimage sampling. This way, the trapdoor size is
not increased.

3.2 Trapdoor preimage sampling with randomised interpolation

Definition 8. (Preimage, Preimage sampling) Given an r-dimensional bound-
ary format (k1+1)×(k2+1)× . . .×(kr+1) tensor ψ with k1 = k2+k3+ . . .+kr
and a target ŵ(1) ∈ Bk2+1

(
Pk1
)
, sample from the preimages

Preψ
(
ŵ(1)

)
:=
{(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
∈ Pk2 × Pk3 × . . .× Pkr

| f̂1ψ
(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
= ŵ(1)

}
of the target under tensor evaluation f̂1ψ.

Theorem 2. (Trapdoor preimage sampling) Consider r-dimensional bound-
ary formats (k1+1)× (k2+1)× . . .× (kr+1) with r ≥ 3. Assume without loss of
generality that the first dimension is the longest. That is, k1 = k2+k3+ . . .+kr.
There exists an Õ(kω1 log q) time 1 algorithm that given

– a (k1 + 1) × (r − 1) matrix Λ = (λi1,j)0≤i1≤k1,2≤j≤r over a finite field Fq
with each of its columns having distinct coordinates (that is, for all j, i1 ̸= i′1
implies λi1,j ̸= λi′1,j),

– an r-tuple X = (X1, X2, . . . , Xr) ∈ Dk1+1(F∗
q)×

∏r
j=2GLkj+1(Fq) of invert-

ible matrices.
– a target ŵ(1) ∈ Bk2+1

(
Pk1
)

of weight dH(ŵ(1)) ≤ k2 + 1,

samples uniformly from a size
(k1+1−dH(ŵ(1))
k3+k4+...+kr

)(
k3+k4+...+kr
k3,k4,...,kr

)
subset of the preim-

ages Preϕ⟨Λ⟩X
(
ŵ(1)

)
with respect to the public tensor ϕ⟨Λ⟩X .

Proof. Lift the target ŵ(1) to w(1) ∈ Fk1+1
q . Tuples of coordinate vectors(

w(2), w(3), . . . , w(r)
)
∈ Fk2+1

q × Fk3+1
q × . . .× Fkr+1

q

1 Here, Õ suppresses logarithmic factors and ω is the matrix multiplication exponent
that arises due to the need to invert X2, X3, . . . , Xr. If these inversions are pre-
computed to included both X2, X3, . . . , Xr and X−1

2 , X−1
3 , . . . , X−1

r as the trapdoor
basis change, then the runtime is lowered to Õ(k21 log q). Further, the runtime is in
bit complexity and the log q term disappears in the Fq arithmetic circuit model.
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such that
f1ϕ⟨Λ⟩

(
w(2), w(3), . . . , w(r)

)
= X−1

1 w(1).

are in one to one correspondence with tuples of coordinate vectors(
X−1

2 w(2), X−1
3 w(3), . . . , X−1

r w(r)
)

such that
f1ϕ⟨Λ⟩X

(
X−1

2 w(2), X−1
3 w(3), . . . , X−1

r w(r)
)
= w(1).

Since we know the trapdoor basis change X = (X1, X2, . . . , Xr), it is easy to
translate between these two sides of the correspondence. Therefore, it suffices to
solve for

(
w(2), w(3), . . . , w(r)

)
such that f1ϕ⟨Λ⟩

(
w(2), w(3), . . . , w(r)

)
= X−1

1 w(1),
from which we output

(
X−1

2 w(2), X−1
3 w(3), . . . , X−1

r w(r)
)

(with each of its vec-
tors projectivised) as a valid output that lies in the preimage Preϕ⟨Λ⟩X

(
ŵ(1)

)
.

Since we know the trapdoor tensor description Λ and the target X−1w(1),
we may invoke Lemma 1 to solve for

(
w(2), w(3), . . . , w(r)

)
. But we want more

than a preimage, we want to sample uniformly from a large enough subset of the
preimages. To this end, we will next present Algorithm 2, a randomised version
of the algorithm in Lemma 1.

The proof that the output of Algorithm 2 is indeed in Preϕ⟨Λ⟩X
(
ŵ(1)

)
follows

from an appropriate base change and the proof of Lemma 1, mutatis mutandis.
But we quickly sketch the main ideas for completeness. Through steps 3 and 4,
we determine a tuple

(
w(2), w(3), . . . , w(r)

)
of coordinate vectors encoded as a

tuple of polynomials(
k2∑
i2=0

w
(2)
i2
Λi22 ,

k3∑
i3=0

w
(3)
i3
Λi33 , . . . ,

kr∑
ir=0

w
(r)
ir
Λirr

)

in the indeterminates Λ2, Λ3, . . . , Λr. As highlighted in equation 2.3, the con-
straint

f1ϕ⟨Λ⟩

(
w(2), w(3), . . . , w(r)

)
=
(
X−1

1 w(1)
)
i1
, ∀i1 ∈ {1, 2, . . . , k1} (3.1)

we need to meet decouples into(
k2∑
i2=0

w
(2)
i2
λi2i1,2

)(
k3∑
i3=0

w
(3)
i3
λi3i1,3

)
. . .

(
kr∑
ir=0

w
(r)
ir
λiri1,r

)
=
(
X−1

1 w(1)
)
i1
, (3.2)

∀i1 ∈ {1, 2, . . . , k1}.

Since X1 is a diagonal matrix with non zero entries on the diagonal, so is X−1
1 .

Therefore, the support of w(1) and X−1
1 w(1) are exactly the same. The choice of
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Algorithm 2: SamplePre
(
t, ŵ(1)

)
Trapdoor preimage sampler for boundary formats

Input: Trapdoor tensor description Λ = (λi1,j)0≤i1≤k1,2≤j≤r, trapdoor basis
change X = (X1, X2, . . . , Xr) ∈ Dk1+1(F∗

q)×
∏r
j=2GLkj+1(Fq), and a

target ŵ(1) ∈ Bk2+1

(
Pk1

)
.

Output: A sample from Preϕ⟨Λ⟩X

(
ŵ(1)

)
.

Preprocess: Compute the tuple of inverses
(
X−1

2 , X−1
3 , . . . , X−1

r

)
.

1 Lift the target ŵ(1) to w(1) ∈ Fk1+1
q and let Z := {i1 | w(1)

i1
= 0} denote the

indices corresponding to the zero coordinates of the target.
2 Draw a uniform sequence (I3, I4, . . . , Ir) of disjoint subsets I3, I4 . . . , Ir ⊆ Z

such that I3 = k3, I4 = k4, . . . , Ir = kr.
3 For every j ∈ {3, 4, . . . , r}, multiply out the polynomial∏

i1∈Ij (Λj − λi1,j) ∈ Fq[Λj ] in the indeterminate Λj as

kj∑
ij=0

w
(j)
ij
Λ
ij
j  

∏
i1∈Ij

(Λj − λi1,j)

and read out the polynomial coefficients as the coordinate vector w(j).
4 Set I2  {1, 2, . . . , k1} \

⋃r
j=3 Ij . Read off the coordinate vector w(2) as the

coefficients of the polynomial

k2∑
i2=0

w
(2)
i2
Λi22  

∑
i1∈I2

(
X−1

1 w(1)
)
i1∏r

j=3

∏
ij∈Ij

(
λi1,j − λij ,j

) ∏
i′1∈I2,i

′
1 ̸=i1

Λ2 − λi′1,2

λi1,2 − λi′1,2
,

where
(
X−1

1 w(1)
)
i1

is the i1-th coordinate of X−1
1 w(1).

5 Output the tuple (after projectivising each of its vectors)(
X−1

2 w(2), X−1
3 w(3), . . . , X−1

r w(r)
)
.

(
w(3), w(4), . . . , w(r)

)
made in Step 3 ensures that,(

k2∑
i2=0

w
(2)
i2
λi2i1,2

)(
k3∑
i3=0

w
(3)
i3
λi3i1,3

)
. . .

(
kr∑
ir=0

w
(r)
ir
λiri1,r

)
=

(
k2∑
i2=0

w
(2)
i2
λi2i1,2

)
r∏
j=3

∏
ij∈Ij

(
λi1,j − λij ,j

)
, ∀i1 ∈ {0, 1, . . . , k1},

which vanishes for i1 ∈
⋃r
j=3 Ir. Thereby, the constraint 3.1 is satisfied for all

i1 ∈
⋃r
j=3 Ir, leaving the constraint yet to be enforced only for the indices i1 ∈ I2.

With
(
w(3), w(4), . . . , w(r)

)
already determined, Step 4 is Lagrange interpolation

to determine the unique w(2) encoded as
∑k2
i2=0 w

(2)
i2
Λi22 that satisfies the con-
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straint 3.1 for i1 ∈ I2. Concretely,
∑k2
i2=0 w

(2)
i2
Λi22 is the unique degree at most

k2 polynomial

k2∑
i2=0

w
(2)
i2
Λi22 =

∑
i1∈I2

(
X−1

1 w(1)
)
i1∏r

j=3

∏
ij∈Ij

(
λi1,j − λij ,j

) ∏
i′1∈I2,i′1 ̸=i1

Λ2 − λi′1,2

λi1,2 − λi′1,2

that interpolates the k2 + 1 points(
λi1,2,

(
X−1

1 w(1)
)
i1∏r

j=3

∏
ij∈Ij

(
λi1,j − λij ,j

))
i1∈I2

.

The constraint on each column of Λ having distinct coordinates ensures that
none of the denominators in the Largrange interpolation formula vanish.

All that remains is to justify the sample size and run time claims. Step 2 is
the only one inducing randomness into the algorithm. There are(

k1 + 1− dH
(
ŵ(1)

)
k3 + k4 + . . .+ kr

)(
k3 + k4 + . . .+ kr
k3, k4, . . . , kr

)
choices in picking the sequence of subsets (I3, I4, . . . , Ir), where the term on the
right is the multinomial coefficient. Since a polynomial of degree kj has at most
kj roots and I3, I4, . . . , Ir are all disjoint, no two choices (I3, I4, . . . , Ir) gives
rise to the same

(
w(3), w(4), . . . , w(r)

)
. Therefore, the map (I3, I4, . . . , Ir) 7−!(

w(3), w(4), . . . , w(r)
)

is injective. Further, for each j ∈ {3, 4, . . . , r}, by setting∑kj
ij=0 w

(j)
ij
Λ
ij
j as a monic polynomial

∏
i1∈Ij (Λj − λi1,j), we chose a unique

representative w(j) for the projectivisation ŵ(j). Therefore, (I3, I4, . . . , Ir) 7−!(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
is injective and we indeed sample uniformly from a preim-

age sample space of the claimed size.

Finally, we argue for the claimed run time. In step 3, we have r−2 polynomial
multiplications of the form

∏
i1∈Ij (Λj − λi1,j). Each of these can be computed

in Õ(kj log q) time using Fast Fourier multiplication. In total, these polynomial
multiplications take Õ(k1 log q) time. The bottleneck in step 4 is to compute the
denominators in the evaluations( (

X−1
1 w(1)

)
i1∏r

j=3

∏
ij∈Ij

(
λi1,j − λij ,j

))
i1∈I2

,

which takesO
(∑r

j=3

((
k2kj + k2j + rk2

)
log q

))
= O

(
k21 log q

)
time. Given these

evaluations, the fast Lagrange interpolation algorithm finds x(2) in Õ(k2 log q)
time [13]. Computing

(
X−1

2 w(2), X−1
3 w(3), . . . , X−1

r w(r)
)

from
(
w(2), w(3), . . . , w(r)

)
involves matrix inversion or solving linear systems, leading to the bottleneck run-
time O

(∑r
j=2 k

ω
j log q

)
= O (kω1 log q). ⊓⊔
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The following corollary to theorem 2 says that the preimage sampling prob-
lem with respect to a tensor ψ restricted isomorphic to some non singular
Vandermonde-Weyman-Zelevinsky tensor always has a solution. Of course, given
only the tensor ψ without a trapdoor, the preimages are hard to find.

Corollary 1. For a tensor ψ that is restricted isomorphic to some non singular
Vandermonde-Weyman-Zelevinsky tensor, Bk2+1

(
Pk1
)
⊆ f̂1ϕ

(
Pk2 × Pk3 × . . .× Pkr

)
.

Proof. Say ψ = ϕ⟨Λ⟩X for some non-singular Vandermonde-Weyman-Zelevinsky
tensor ϕ⟨Λ⟩ with trapdoor Λ,X. Applying theorem 2 with the trapdoor Λ,X and
some target in Bk2+1

(
Pk1
)

as input, it is clear there exists a solution for every
target, due to the success of the algorithm. ⊓⊔

In three dimensions, restricted to targets on the Hamming sphere Sk2+1

(
Pk1
)
,

SamplePre is deterministic, drawing from a unique preimage for each target in-
put. Since we need to draw from a bigger sample for our signature schemes, we
present the following twisted preimage sampler SamplePre3DB, whose outputs
have at least one bit of entropy.

Algorithm 3: SamplePre3DB (t, ŵ(1)
)

Trapdoor preimage sampler for (2k + 1)× (k + 1)× (k + 1) formats
Input: Trapdoor tensor description Λ = (λi1,j)0≤i1≤2k,2≤j≤3, trapdoor

basis change
X = (X1, X2, , X3) ∈ D2k+1(F∗

q)×GLk+1(Fq)×GLk+1(Fq), and
a target ŵ(1) ∈ Sk+1

(
P2k
)
.

Output: A sample from Preϕ⟨Λ⟩X
(
ŵ(1)

)
.

Preprocess: Compute the pair of inverses
(
X−1

2 , X−1
3

)
.

1 Lift the target ŵ(1) to w(1) ∈ Fk1+1
q and let Z := {i1 | w(1)

i1
= 0} denote

the indices corresponding to the zero coordinates of the target.
2 Draw j ∈ {2, 3} uniformly and set j′ := {2, 3} \ j.
3 Multiply out the polynomial

∏
i1∈Z (Λj′ − λi1,j′) ∈ Fq[Λj′ ] in the

indeterminate Λj′ as

k∑
ij′=0

w
(j′)
ij′

Λ
ij′

j′  
∏
i1∈Ij′

(Λj′ − λi1,j′)

and read out the polynomial coefficients as the coordinate vector w(j′).
4 Set Z̄  {1, 2, . . . , k1} \ Z. Read off the coordinate vector w(j) as the

coefficients of the polynomial

k∑
ij=0

w
(j)
ij
Λ
ij
j  

∑
i1∈Z̄

(
X−1

1 w(1)
)
i1∏

ij′∈Z

(
λi1,j′ − λij′ ,j′

) ∏
i′1∈Z̄,i′1 ̸=i1

Λj − λi′1,j

λi1,j − λi′1,j
,

where
(
X−1

1 w(1)
)
i1

is the i1-th coordinate of X−1
1 w(1).

5 Output the tuple (after projectivising its vectors)
(
X−1

2 w(2), X−1
3 w(3)

)
.
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Remark 1 (Preimage entropy in four or more dimensions). There may be ap-
plications demanding a large preimage sampling support for every target. To
this end, in three dimensions, one can consider targets inside the Hamming ball
Bk2+1(Pk1) or permute dimensions, as is done later in SamplePre3DB. In four di-
mensions or more, even for targets in the sphere S(Pk1), SamplePre draws from
a support of size

(
k3+k4+...+kr
k3,k4,...,kr

)
, which is exponentially big in k3, k4, . . . , kr.

3.3 Domain samplers

We present two domain sampling algorithms SampleDomDB, SampleDom3D and
a third that is a mixture of the two. The first applies to doubly boundary formats
in any dimension. The second applies to boundary formats in three dimensions.

Algorithm 4: SampleDomDB(ψ)
Domain sampler for doubly boundary formats
Input: An r-dimensional tensor ψ of doubly boundary format

(k1 + 1)× (k2 + 1)× . . .× (kr + 1), where k1 = k2 + k3 + . . .+ kr
and k2 = k3 + k4 + . . .+ kr.

Output: A sample
(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
from Pk2 × Pk3 × . . .× Pk3 such

that f̂1ψ
(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
∈ Sk2+1(Pk1).

1 Draw
(
w(3), w(4), . . . , w(r)

)
uniformly from Fk3+1

q × Fk4+1
q × . . .× Fkr+1

q .
2 Draw a uniform subset I2 ⊂ {1, 2, . . . , k1} of indices in the first

dimension of size |I2| = k2 = k3 + k4 + . . .+ kr. Solve for w(2) ∈ Fk2+1
q

such that ∑
0≤i2≤k2

...
0≤ir≤kr

ψi1,i2,...,irw
(2)
i2
w

(3)
i3
. . . w

(r)
ir

= 0,∀i1 ∈ I2. (3.3)

With
(
w(3), w(4), . . . , w(r)

)
already fixed, this is a homogeneous

Fq-linear system with one more variable than there are constraints.
Therefore, it has a solution space of dimension at least one. If the
solution space is of dimension exactly one, draw a non zero w(2) from
this solution space. Else, start again from step 1.

3 If wH
(
f̂1ψ
(
ŵ(2), ŵ(3), . . . , ŵ(r)

))
< k2 + 1, start again from step 1.

4 Output
(
w(2), w(3), . . . , w(r)

)
as a representative of(

ŵ(2), ŵ(3), . . . , ŵ(r)
)
.

Lemma 2. Restrict Algorithm 4 to inputs ψ that are restricted isomorphic to
some non degenerate Vandermonde-Weyman-Zelevinsky tensor. Then

– the rejection sampling in steps 2 and 3 of Algorithm 4 pass with probability
close to 1, meaning the algorithm terminates in expected polynomial time.

– the output
(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
of Algorithm 4 induces a uniform image

hψ
(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
in Sk2+1(Pk1).
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Proof. Let ψ = ϕ⟨Λ⟩X be restricted isomorphic to some Vandermonde-Weyman-
Zelevinsky tensor ϕ⟨Λ⟩ where Λ is a (k1+1)×(r−1) matrix Λ = (λi1,j)0≤i1≤k1,2≤j≤r
over Fq such that for each column j, i1 ̸= i′1 implies λi1,j ̸= λi′1,j . Keep the no-
tation from Algorithm 4 with input ϕ⟨Λ⟩X . In particular,

(
w(2), w(3), . . . , w(r)

)
is the representative of

(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
that is output. Our insistence on

w(2) satisfying the linear system 3.3 ensures

f1ψ

(
w(2), w(3), . . . , w(r)

)
i1

= 0, ∀i1 ∈ I2.

Since |I2| ≥ k3 + k4 + . . .+ kr,

f̂1ψ

(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
∈ Bk2+1(Pk1).

Our further insistence on wH
(
f̂1ψ
(
ŵ(2), ŵ(3), . . . , ŵ(r)

))
= k2 + 1 ensures

f̂1ψ

(
ŵ(2), ŵ(3), . . . , ŵ(r)

)
∈ Sk2+1(Pk1).

All that remains is to prove uniformity in Sk2+1(Pk1). The possible support
Ī2 := {0, 1, . . . , k1} \ I2 of the image f1ψ

(
w(2), w(3), . . . , w(r)

)
is uniform among

subsets of size k2 + 1. Therefore, it suffices to prove that

(
f1ψ

(
w(2), w(3), . . . , w(r)

))
i1∈Ī2

=

 ∑
0≤i2≤k2

...
0≤ir≤kr

ψi1,i2,...,irw
(2)
i2
w

(3)
i3
. . . w

(r)
ir


i1∈Ī2
(3.4)

is uniform in
(
F∗
q

)k2+1 conditioned on I2, after implicitly fixing some ordering
of Ī2. Inverting the trapdoor bases,

(
w(2), w(3), . . . , w(r)

)
maps to(

u(2), u(3), . . . , u(r)
)
:=
(
X

−1
2 w(2), X

−1
3 w(3), . . . , X

−1
r w(r)

)
.

Similar to the proof of lemma 1, for 2 ≤ j ≤ r, consider the polynomials

Pj(Λj) :=

kj∑
ij=0

u
(j)
ij
Λ
ij
j ∈ Fq[Λj ]

in indeterminates Λj with the coordinates of u(j) as the coefficients. The linear
system 3.3 transforms in to the diagonal one

P2(λi1,2)P3(λi1,3) . . . Pr(λi1,r) = 0, i1 ∈ I2,

solving for the coefficients of P2(Λ2), for the chosen P3(Λ3), P4(Λ4), . . . , Pr(Λr).
Let us pause to understand the constraints imposed by the rejection sampling
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conditions in steps 2 and 3. The acceptance condition in step 2 that the linear
system 3.3 has a solution space of dimension exactly one therefore translates to
none of the polynomials P3(Λ3), P4(Λ4), . . . , Pr(Λr) having a zero in I2. To pass
the rejection sampling condition in step 3, the Hamming weight must be exactly
k2+1, which is equivalent to none of the polynomials P3(Λ3), P4(Λ4), . . . , Pr(Λr)
having a zero in Ī2. In summary, the total rejection sampling of the algorithm is
passed on the condition

Pj(λi1,j) ̸= 0,∀j ∈ {3, 4, . . . , r},∀i1 ∈ {0, 1, . . . , k1}, (3.5)

that the j-th polynomial does not have a zero on the j-th column of Λ. Getting
back from our detour, the expression 3.4 that we would like to prove is uniform
now takes the form

(P2(λi1,2)P3(λi1,3) . . . Pr(λi1,r))i1∈Ī2 , (3.6)

up to a non zero multiple that comes from the i1-th diagonal entry of X1.
Therefore, it suffices to prove that the expression 3.6 is uniform. One choice for
u(2) that satisfies the linear system 3.3 for an already chosen

(
w(3), w(4), . . . , w(r)

)
(and therefore

(
u(3), u(4), . . . , u(r)

)
) is

P2(Λ2) =
∏
i′1∈I2

(
Λj − λi′1,2

)
.

But this is the only choice (up to a non zero multiple), due to the rejection
sampling in step 2 to only consider samples that give a one dimensional solution
space to the linear system 3.3. Therefore, expression 3.6 takes the form ∏

i′1∈I2

(
λi1,2 − λi′1,2

)
P3(λi1,3)P4(λi1,4) . . . Pr(λi1,r)


i1∈Ī2

. (3.7)

For each i1 ∈ Ī2,
∏
i′1∈I2

(
λi1,2 − λi′1,2

)
is a non zero constant, since the first

column of Λ has distinct entries. Therefore, it suffices to prove that

(P3(λi1,3)P4(λi1,4) . . . Pr(λi1,r))i1∈Ī2 (3.8)

is uniform in
(
F∗
q

)k2+1. Partition Ī2 into disjoint subsets I2 =
⋃r
j=3 Ir such that

I3 = k3 + 1 and |Ij | = kj for all j > 3. Such a partition is always possible, since
we are in a doubly boundary format and |Ī2| = k2 + 1 = k3 + 1 + k4 + . . .+ kr.
Before the rejection sampling step,

(
u(3), u(4), . . . , u(r)

)
is chosen uniformly from

tuples of non zero vectors. Therefore, before rejection sampling

((P3(λi1,3))i1∈I3 , (P4(λi1,3))i1∈I4 , . . . , (Pr(λi1,r))i1∈I4) (3.9)

is uniform in
(
Fk3+1
q \ 0

)
×
(
Fk4q \ 0

)
×. . .×

(
Fkrq \ 0

)
. Here, we used the fact that

the polynomial evaluation map is uniform, as long as the number of evaluation
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points (which are distinct) is at most one greater than the degree. Post rejection
sampling, the expression 3.9 is uniform in tuples of vectors

(
F∗
q

)k3+1 ×
(
F∗
q

)k4 ×
. . .×

(
F∗
q

)kr with no zero coordinates, by condition 3.5. Therefore, for each index
i1 ∈ Ī2 in expression 3.8, there is one evaluation, namely the Pj(λi1,j) such that
i1 ∈ Ij , which is uniform in F∗

q and independent of every other evaluation in 3.9.
Therefore, the expression 3.8 is indeed uniform in

(
F∗
q

)k2+1, as claimed. ⊓⊔

We next present the domain sampler SampleDom3D that only works in three
dimensions, but works for every boundary format in three dimensions. It is com-
plementary to SampleDomBD in three dimensions. While SampleDomBD solves
for the vector in the second dimension to zero out the required zero coordinates
in the image, SampleDom3D solves for the vector in the third dimension. Conse-
quently, for three dimensional boundary formats (2n+1)×(n+1)×(n+1), where
they both apply, they have different domain sample distributions (conditioned
on an image).

Algorithm 5: SampleDom3D(ψ)
Domain sampler for three dimensional boundary formats
Input: A three dimensional tensor ψ of boundary format

(k1 + 1)× (k2 + 1)× (k3 + 1), where k1 = k2 + k3.
Output: A sample (ŵ(2), ŵ(3)) from Pk2 × Pk3 such that

h1ψ
(
ŵ(2), ŵ(3)

)
∈ Sk2+1(Pk1).

1 Draw w(2) uniformly at random from Fk2+1
q .

2 Draw a uniform subset I3 ⊂ {1, 2, . . . , k1} of indices in the first
dimension of size |I3| = k3. Solve for w(3) ∈ Fk3+1

q such that∑
0≤i2≤k2

∑
0≤i3≤k3

ψi1,i2,i3w
(2)
i2
w

(3)
i3

= 0,∀i1 ∈ I3. (3.10)

With w(2) already fixed, this is a homogeneous Fq-linear system with
one more variable than there are constraints. Therefore, it has a
solution space of dimension at least one. If the solution space is of
dimension exactly one, draw a non zero w(3) from this solution space.
Else, start again from step 1.

3 If wH
(
f̂1ψ
(
ŵ(2), ŵ(3)

))
< k2 + 1, start again from step 1.

4 Output
(
w(2), w(3)

)
as a representative of

(
ŵ(2), ŵ(3)

)
.

Lemma 3. Restrict Algorithm 5 to inputs ψ that are restricted isomorphic to
some non degenerate Vandermonde-Weyman-Zelevinsky tensor. Then

– the rejection sampling in steps 2 and 3 of Algorithm 5 pass with probability
close to 1, meaning the algorithm terminates in expected polynomial time.

– the output
(
ŵ(2), ŵ(3)

)
of Algorithm 5 induces a uniform image hψ

(
ŵ(2), ŵ(3)

)
in Sk2+1(Pk1).
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Proof. Let ψ = ϕ⟨Λ⟩X be restricted isomorphic to some Vandermonde-Weyman-
Zelevinsky tensor ϕ⟨Λ⟩ where Λ is a (k1+1)×(2) matrix Λ = (λi1,j)0≤i1≤k1,2≤j≤3

over Fq such that for each column j, i1 ̸= i′1 implies λi1,j ̸= λi′1,j . Keep the nota-
tion from Algorithm 5 with input ϕ⟨Λ⟩X . Let

(
w(2), w(3)

)
be the representative

of
(
ŵ(2), ŵ(3)

)
that is output. Our insistence on w(3) satisfying the linear system

3.10 ensures f1ψ
(
w(2), w(3)

)
i1

= 0, ∀i1 ∈ I3. Since k1 − |I3| = k1 − k3 = k2 + 1,

f̂1ψ
(
ŵ(2), ŵ(3)

)
∈ Bk2+1(Pk1). Our further insistence on wH

(
f̂1ψ
(
ŵ(2), ŵ(3)

))
=

k2 + 1 ensures
f̂1ψ

(
ŵ(2)

)
∈ Sk2+1(Pk1).

All that remains is to prove uniformity in Sk2+1(Pk1). The possible support
Ī3 := {0, 1, . . . , k1} \ I3 of the image f1ψ

(
w(2), w(3)

)
is uniform among subsets of

size k2 + 1. Therefore, it suffices to prove that

(
f1ψ

(
w(2), w(3)

))
i1∈Ī3

=

 ∑
0≤i2≤k2

∑
0≤i3≤k3

ψi1,i2,i3w
(2)
i2
w

(3)
i3


i1∈Ī3

(3.11)

is uniform conditioned on I3, after implicitly fixing some ordering of Ī3. Inverting
the trapdoor bases,

(
w(2), w(3)

)
maps to

(
u(2), u(3)

)
:=
(
X

−1
2 w(2), X

−1
3 w(3)

)
.

Similar to the proof of lemma 1, for 2 ≤ j ≤ 3, consider the polynomials

Pj(Λj) :=

kj∑
ij=0

u
(j)
ij
Λ
ij
j ∈ Fq[Λj ]

in indeterminates Λj with the coordinates of u(j) as the coefficients. The linear
system 3.3 transforms in to the diagonal one

P2(λi1,2)P3(λi1,3) = 0, i1 ∈ I3,

solving for the coefficients of P2(Λ2), for the chosen P3(Λ3). The acceptance
condition in step 2 that the linear system 3.10 has a solution space of dimension
exactly one means P2(Λ2) has no zeroes in I3. To pass the rejection sampling
condition in step 3, the Hamming weight must be exactly k2 + 1, which means
P2(Λ2) has no zeroes in Ī3. In summary, the total rejection sampling of the
algorithm is passed on the condition that P2(Λ2) has no zeroes on the column
(λi1,2)0≤i2≤k1 of Λ. The expression 3.11 that we would like to prove is uniform
now takes the form

(P2(λi1,2)P3(λi1,3))i1∈Ī3 , (3.12)

up to a non zero multiple that comes from the i1-th diagonal entry of X1.
Therefore, it suffices to prove that the expression 3.12 is uniform. The one and
only choice for u(3) (up to a non zero multiple) that satisfies the linear system
3.10 for an already chosen w(2) (and therefore u(2)) is

P3(Λ3) =
∏
i′1∈I3

(
Λj − λi′1,3

)
.
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Therefore, expression 3.12 takes the formP2(λi1,2)
∏
i′1∈I3

(
λi1,3 − λi′1,3

)
i1∈Ī3

. (3.13)

For each i1 ∈ Ī3,
∏
i′1∈I3

(
λi1,3 − λi′1,3

)
is non zero constant, since every column

of Λ has distinct entries. Therefore, it suffices to prove that (P2(λi1,2))i1∈Ī3
is uniform in

(
F∗
q

)k2+1. Before any rejection sampling, u(2) is chosen uniformly,
therefore

(
(P2(λi1,2))i1∈Ī3

)
is uniform in Fk3+1

q \0. Here, we used the fact that the
polynomial evaluation map is uniform, as the number k2+1 of evaluation points
(which are distinct) is at most one greater than the degree k2. Post rejection
sampling, (P2(λi1,2))i1∈Ī3 is uniform in

(
F∗
q

)k2+1 with no zero coordinates, which
proves the claim. ⊓⊔

Lemma 4 (Preimage-Domain sampler agreement for encryption). Let
t = (Λ,X) be a trapdoor in three dimensional doubly boundary format (2k +
1) × (k + 1) × (k + 1) with the associated public tensor ψ = ϕ⟨Λ⟩X . For every
target ŵ(1) ∈ Sk+1

(
P2k
)

on the Hamming sphere, SamplePre draws a unique
preimage (û(2), û(3))  SamplePre(t, X−1

1 ŵ(1)). Likewise, SampleDom3D draws
a unique domain sample (ŵ(2), ŵ(3))  SampleDom3D(ψ) conditioned on its
image hψ(ŵ

(2), ŵ(3)) being the target ŵ(1). Further, these samples are identical,
meaning (ŵ(2), ŵ(3)) = (û(2), û(3)).

Proof. Recall the notation from the description of SamplePre with trapdoor
t = (Λ,X). The only source of randomness in SamplePre is in the allocation
of index sets I3, I4 . . . , Ir ⊆ Z to account for all the zeroes to hit in the first
dimension. When the target ŵ(1) lies on the Hamming sphere Sk+1(P2k) and we
are in three dimensions, there is only once choice, to take I3 to be the set of all
indices to zero out. Therefore, restricted to three dimensions and targets on the
sphere Sk+1(P2k), SamplePre is deterministic. Further, this unique preimage is
determined by the polynomial

k3∑
i3=0

u
(3)
i3
Λi33 =

∏
i1∈I3

(Λ3 − λi1,3)

encoding as coefficients the coordinate vector u(3) designed to zero out the I3
indices. Given X−1w(1) and u(3), û(2) is determined by linear constraints.

Switch to notation from the domain sampler SampleDom3D(ψ) with input
ψ = ϕ⟨Λ⟩X . In three dimensions, the sample

(ŵ(2), ŵ(3)) SampleDom3D(ψ) | hψ
(
ŵ(2), ŵ(3)

)
= w(1)

drawn by SampleDom3D conditioned on the image of the sample being ŵ(1), is
unique. That is, SampleDom3D is deterministic conditioned on the image of the
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sample it draws. This is because conditioned on the image being ŵ(1), the only
randomness in SampleDom3D comes from the choice of I3, which is unique in
three dimensions. Here again, the polynomial corresponding to the sample ŵ(3)

drawn by SampleDom3D in dimension 3 is
∏
i1∈I3 (Λ3 − λi1,3), up to a non zero

constant multiple, thereby proving the lemma. ⊓⊔

For three dimensional doubly boundary formats (2k + 1) × (k + 1) × (k + 1),
both domain samplers SampleDomDB and SampleDom3D apply. We define a third
sampler SampleDom3DB for such formats that flips a fair coin and calls one of
SampleDomDB and SampleDom3D randomly.

Algorithm 6: SampleDom3DB(ψ)
Domain sampler for three dimensional doubly boundary formats
Input: A three dimensional tensor ψ of doubly boundary format

(2k + 1)× (k + 1)× (k + 1).
Output: A sample (ŵ(2), ŵ(3)) from Pk × Pk with

f̂1ψ
(
ŵ(2), ŵ(3)

)
∈ Sk+1(Pk).

1 Flip a fair coin. If heads, call SampleDomDB(ψ). Else, call
SampleDom3D(ψ).

Lemma 5 (Preimage-Domain sampler indistinguishability for signa-
ture simulation). Let t = (Λ,X) be a trapdoor in three dimensional doubly
boundary format (2k + 1) × (k + 1) × (k + 1) with the associated public tensor
ψ = ϕ⟨Λ⟩X . The distribution of SampleDom3DB(ψ) conditioned on a target ŵ(1)

and the corresponding preimage sample SamplePre3DB(t, X−1
1 ŵ(1)) are the same.

Further, the common underlying distribution is the uniform distribution on two
preimage choices.

Proof. Rethink of SamplePre3DB as follows. The coin toss in step 2 chooses
whether or no to permute dimensions 2 and 3. Then SamplePre is run. On the
other side, SampleDom3DB can also be reinterpreted as follows. The coin toss in
step 1 chooses whether or no to permute dimensions 2 and 3. Then SampleDom3D

is run. Therefore the distribution of SampleDom3DB(ψ) conditioned on a target
ŵ(1) and the preimage sampler SamplePre3DB(t, ŵ(1)) are the same.

All that remains is to determine the common distribution. To this end, let
us look at SamplePre3DB again. We claim that each choice j ∈ {2, 3} of the
coin toss results in a different preimage. This can be verified by inspecting in
which dimension the polynomial interpolated in step 3 is placed. If the two
choices j ∈ {2, 3} result in the same preimage, then the image ŵ(1) will have
2k zero coordinates, placing it far in the interior of the sphere Sk+1

(
p2k
)
, a

contradiction. Therefore, for every ŵ(1), the preimages SamplePre3DB (t, ŵ(1)
)

are drawn uniformly from two distinct choices. ⊓⊔

We conclude the section with a quick cross reference to the various preimage
and domain samplers, foreshadowing their later use.
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SamplePre SamplePre3DB

SampleDom
Indistinguishable

conditioned on a target.
Used in ΣDB signatures.

SampleDom3D Exact agreement
conditioned on a target.

Used in Π3DB encryption.
SampleDom3DB:

a mixture of SampleDom

and SampleDom3D

Identical distributions
conditioned on a target.
Used in Σ3DB signatures.

Table 1. A menagerie of preimage and domain samplers.

3.4 Hardness assumptions

We make two cryptographic hardness assumptions in the security proofs of the
cryptographic primitives based on the trapdoor one-way function construction.
The first concerns the pseudorandomenss of Vandermonde-Weyman-Zelevinsky
tensor orbits, and is closely related to standard tensor isomorphism hardness as-
sumptions. In spirit, the assumption is that the public tensors generated by our
trapdoor generator is computationally indistinguishable from random tensors of
the same format. The second assumption is the hardness of solving random mul-
tilinear equations over finite fields; which we formulate as a collision resistance
assumption. This translates to collision finding of the one way function hψ cor-
responding to a truly random tensor ψ being hard. We justify the assumptions
by benchmarking using the best known algorithms for these or closely related
problems. A thorough algorithmic analysis the hardness focused on our assump-
tions is warranted, which we leave to future work.

The discussion on hardness will focus on three and four dimensions. Since
the hash function description sizes grow exponentially with dimension, the utility
of going to higher dimensions is unclear, unless the lengths in all but the first
dimension are small. But there is evidence that in high dimensions and small
lengths, the preimage sampling problem may be solved without the trapdoor
in subexponential time using hyperdeterminants [22]. In both three and four
dimensions, we will focus on doubly boundary formats. In three dimensions,
these are (2k + 1) × (k + 1) × (k + 1) formats. In four dimensions, these are of
the form (2(k3 + k4) + 1) × (k3 + k4 + 1) × (k3 + 1) × (k4 + 1). There might
be applications, where breaking the symmetry of the format by asking each
dimension has a different length may be useful. For instance, we may want to
elude some tensor isomorphism cryptanalytic algorithms [25] that exploit the
symmetry among dimensions. But for simplicity, we will take the one parameter
family of four dimensional formats (4k + 1) × (2k + 1) × (k + 1) × (k + 1) as a
proxy for formats where the last two dimensions have roughly the same length.
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Pseudorandomness of Vandermonde-Weyman-Zelevinsky orbits. Keep-
ing the notation from the trapdoor generator TrapGen, the union of all restricted
isomorphism orbits of non-singular Vandermonde-Weyman-Zelevinsky tensors is⋃
Λ,X{ϕ⟨Λ⟩X}, with some format implicitly in mind. In particular, the union is

over the trapdoors t = (Λ,X) that TrapGen draws from.

Pseudorandomness of Vandermonde-Weyman-Zelevinsky orbits as-
sumption: Consider either the tensor format family (2k+1)× (k+1)× (k+1)
or (4k + 1) × (2k + 1) × (k + 1) × (k + 1) over a family of finite fields Fq. To
randomized polynomial (in k and log q) time algorithms, a random tensor in the
union

⋃
Λ,X{ϕ⟨Λ⟩X} of orbits of non-singular Vandermonde-Weyman-Zelevinsky

tensors is indistinguishable from a truly random tensor of the same format.

The assumption is closely related to those made in tensor isomorphism based
cryptography, such as the pseudorandomness assumptions [34][Conjecture 1],
[7][Section 6.1] and [21][Section 4]. They assume that a pair of random isomor-
phic tensors is computationally indistinguishable from a pair of random tensors.
The notion of isomorphism may vary with context, but the most relevant to us is
the general linear action of matrices acting in each dimension by multiplication.
While these assumptions and ours are closely related, they are incomparable
with the following distinctions. Our seems like the safer assumption in the sense
that we only present one tensor to the indistinguishability game, not a pair of
tensors. In particular, algorithms for finding tensor isomorphisms do not directly
apply to our case, since they would not know which one of exponentially many
Vandermonde-Weyman-Zelevinsky tensors to compare to. In other senses, our
assumption seems a little more delicate. For one, the matrix acting in the first
dimension in our case is a diagonal matrix and not a uniform invertible ma-
trix. This issue is only in three dimensions. In four dimensions, the triple of
uniform invertible matrices acting in dimensions two through four should make
our assumption safer. In particular, our four dimensional assumption can be ex-
pressed as a set of three dimensional assumptions, by taking slices in the first
dimension. The other, greater cause for concern is that the isomorphism classes
we are hiding have algebraic structure. One may formulate our pseudorandom
assumption as testing if a multivariate polynomial system with the entries of
the matrices Λ,X1, X2, . . . , Xr as the variables has a solution. This should take
time exponential in k2, judging from just the number of variables, the number of
constraints and the degree of the system. We leave an empirical the theoretical
analysis of such a system using Gröbner bases to future work.

Hardness of solving random multilinear equations over finite fields.
Our second assumption is that for a random boundary format tensor ψ, it is
hard to invert the one-way function hψ. Note that the assumption concerns ran-
dom tensors, and is not restricted to tensors isomorphic to some Vandermonde-
Weyman-Zelevinsky tensor. Therefore, there is no structure to the tensors in the
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assumption for one to exploit. We next write it down explicitly for three and
four dimensions.

Definition 9 (Bilinear system solving). The bilinear system solving problem
is given a tensor ψ of format (2k+1)× (k+1)× (k+1) over a finite field Fq and
a target ŵ(1) ∈ P2k, to find a pair of projective vectors

(
ŵ(2), ŵ(3)

)
∈ Pk × Pk

such that f̂1ψ
(
ŵ(2), ŵ(3)

)
= ŵ(1).

Bilinear system solving hardness assumption: The bilinear system solv-
ing problem for random tensors ψ restricted to targets in the Hamming sphere
Sk+1

(
P2k
)

takes at least 2k(log q)O(1) time.

Definition 10 (Trilinear system solving). The trilinear system solving prob-
lem is given a tensor ψ of format (4k + 1) × (2k + 1) × (k + 1) × (k + 1) over
a finite field Fq and a target ŵ(1) ∈ P4k, to find a triple of projective vectors(
ŵ(2), ŵ(3), ŵ(4)

)
∈ Pk × Pk × Pk such that f̂1ψ

(
ŵ(2), ŵ(3), ŵ(4)

)
= ŵ(1).

Trilinear system solving hardness assumption: The trilinear system solv-
ing problem for random tensors ψ restricted to targets in the Hamming sphere
S2k+1

(
P4k
)

takes at least 4k(log q)O(1) time.

We next discuss the plausibility of the bilinear system solving hardness as-
sumption, taking for granted that the trilinear version is even more plausible.
Emiris, Mantzaflaris, and Tsigaridas [10] study the computational complexity of
the bilinear system solving problem in almost exactly the same formulation as
above, with the following differences:

– Their underlying field is the real numbers, instead of our finite fields. But
their findings should translate to the finite field setting since the methods
are algebraic (using Sylvester determinants, Weyman resultant complexes,
etc.) without involving analysis.

– Their formulation is in terms of a set of matrices (for instance [10][equation
1]) instead of a tensor, but this is easy to translate by seeing their matrices
as slices of our tensor in the first dimension.

– Their target is from the Hamming sphere S1(Pk2) of radius one, in contrast
to our much larger sphere. Still their setting is representative of the difficulty
of our problem, since there are a lot of zeros in both the targets.

– Their system needs to be zero dimensional and their complexity bounds are
in terms of the number of solutions of the zero dimensional system. Since
zero dimensionality is the generic case, it holds for random tensors with high
probability. Being in a boundary format makes these generic systems zero
dimensional.

With these differences in mind, the dominant term in their algorithm’s run time
(ignoring precision issues) is O

(
k4
(
2k
k

)4)
. Here, the binomial

(
2k
k

)
term appears

due to the bivariate Bezout bound, accounting for the number of solutions. For
the random ψ in non-singular orbits that appear as inputs in our constructions, a
similar bound is indeed met, since we can choose from exponentially many ways
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to distribute the zeroes between the two dimensions. In light of the binomial(
2k
k

)
growing at least as 2k, our Assumption 2 (Bilinear) seems conservative

and plausible. See also Spaenlehauer’s works [31,32] for similar evidence using
Gröbner basis and other techniques. Finally, guided by this evidence we make
the following seemingly stronger collision resistance assumption.

Definition 11 (Bilinear collision finding). The bilinear collision finding prob-
lem is given a tensor ψ of format (2k+1)×(k+1)×(k+1) over a finite field Fq,
to find two distinct pairs of projective vectors

(
ŵ(2), ŵ(3)

)
,
(
û(2), û(3)

)
∈ Pk ×Pk

such that f̂1ψ
(
ŵ(2), ŵ(3)

)
= f̂1ψ

(
û(2), û(3)

)
and f̂1ψ

(
ŵ(2), ŵ(3)

)
∈ Sk+1

(
P2k
)
.

Bilinear collision finding hardness assumption: The bilinear collision find-
ing problem for random tensors ψ takes at least 2k(log q)O(1) time.

Parameter selection. Let ParamSel(1λ, r) denote a parameter selection algo-
rithm that given a desired security parameter 1λ and dimension, outputs the
sequence of positive numbers (q, k1, k2, . . . , kr) to signify that our scheme is over
the finite field Fq and built with tensors of format (k1+1)×(k2+1)×. . .×(kr+1).
The field size and tensor format are chosen such that the underlying hard prob-
lems take at least 2λ time to break. Guided by the hardness assumptions,
for three and four dimensions, we may instantiate ParamSel as follows. Set
ParamSel(1λ, 3) to output (q, 2λ, λ, λ) where q is the smallest prime number
greater than 4λ. Thereby, there are at least

(
4λ

2λ+1

)
(which is, exponentially)

many choices for each column of the matrix Λ defining our trapdoors. Likewise,
for four dimensions, set ParamSel(1λ, 4) to output (q, 4λ, 2λ, λ, λ) where q is the
smallest prime number greater than 8λ.

4 Hash-and-Sign signatures from tensors

We next present a simple Hash-and-Sign signature scheme from tensors, closely
following the GPV recipe in both design and proof. With the format implicitly
in mind, fix a cryptographic hash function

H : {0, 1}∗ −! Sk2+1

(
Pk1
)
.

The Hash-and-Sign signature scheme ΣDB in r-dimensional doubly boundary
formats consists of the following key generator, signing and verification algo-
rithms.
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ΣDB.KeyGen(1λ)

(q, k1, k2, . . . , kr) ParamSel(1λ, r)

(ψ, t) TrapGen
(
q, 1k1 , 1k2 , . . . , 1kr

)
return vk = ψ, sk = t

ΣDB.Sign(sk, µ)

s $ {0, 1}λ(
w(2), w(3), . . . , w(r)

)
 SamplePre(t,H(µ, s))

σ  
((
w(2), w(3), . . . , w(r)

)
, s
)

return σ

ΣDB.Verify(vk, σ, µ)

return H(µ, s)
?
= hψ

(
w(2), w(3), . . . , w(r)

)

Fig. 3. ΣDB: Hash-and-Sign signatures from doubly boundary format tensors

The key generation algorithm KeyGen invokes the trapdoor generator TrapGen
and outputs the tensor-trapdoor pain ψ, t (corresponding to the one-way function-
trapdoor pair (hψ, t)) received, as the verification-signing key pair (vk, sk).

The signing algorithm Sign takes a message µ and the secret key sk as in-
puts. It draws a uniform λ long bit string as salt s and computes of the hash
H(µ, s) of the salted message. The salt is this long to allow roughly 2λ/2 signature
queries without worrying about message-salt collisions. If one only cares about
polynomial time adversaries, the salt length can be reduced to being just super
logarithmic ω(log λ) in the security parameter. This hash value H(µ, s) is a Ham-
ming weight k2 + 1 projective vector lying in Sk2+1

(
Pk1
)
, by design. From the

secret key sk, the signing algorithm knows the trapdoor t = (Λ,X) made up of
the secret matrix generating the Vandermonde-Weyman-Zelevinsky tensor Λ and
the secret basis change X. With this information at hand, it calls the preimage
sampling algorithm SamplePre to compute a preimage

(
w(2), w(3), . . . , w(r)

)
and

outputs the preimage-salt pair as the signature σ =
((
w(2), w(3), . . . , w(r)

)
, s
)
.

For a signature generated by an honest signer,

H(µ, s) = hψ

(
w(2), w(3), . . . , w(r)

)
,

which the verification algorithm Verify duly verifies, for the preimage-salt pair
in the claimed signature. Therefore, the completeness of the protocol is clear, in
that honestly generated signatures always pass verification.

Remark 2. In certain cases where two dimensions of the format are of the same
length, a valid signature corresponding to a public verification key ψ may be
copied and claimed as a valid signature corresponding to another public veri-
fication key ψ obtained by permuting those equal length dimensions. If an ap-
plication demands such attacks be prevented, we can append the public key to
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the argument of the hash function. In particular, modify the second line of the
signing algorithm to

(
w(2), w(3), . . . , w(r)

)
 SamplePre(t,H(ψ, µ, s)) and the

only line of the verification algorithm to H(ψ, µ, s)
?
= hψ

(
w(2), w(3), . . . , w(r)

)
.

Doing so commits the public key to the signatures and prevents such attacks.
This however comes at the cost of slowing down the signature algorithm, which
otherwise does not explicitly have to write down tensors.

We next present the Hash-and-Sign signature scheme Σ3D for three dimensional
doubly boundary formats (2k+1)× (k+1)× (k+1). The scheme is not merely
a specialisation of ΣDB to three dimensions. Instead, it carefully deploys the
preimage sampler SamplePre3DB, whose statistics can be matched (conditioned
on a target) by that of the domain sampler SampleDom3DB in the signature
simulation phase of the security proof.

Σ3DB.KeyGen(1λ)

(q, 2k, k, k) ParamSel(1λ, 3)

(ψ, t) TrapGen
(
q, 12k, 1k, 1k

)
return vk = ψ, sk = t

Σ3DB.Sign(sk, µ)

s $ {0, 1}λ(
w(2), w(3), . . . , w(r)

)
 SamplePre3DB(t,H(µ, s))

σ  
((
w(2), w(3), . . . , w(r)

)
, s
)

return σ

Σ3DB.Verify(vk, σ, µ)

return H(µ, s)
?
= hψ

(
w(2), w(3), . . . , w(r)

)

Fig. 4. Σ3DB: Hash-and-Sign signatures from 3D doubly boundary format tensors

4.1 Unforgeability analysis in the ROM

We next present the Q-query EUF-CMAQ security analysis for Σ3DB in the
random oracle model and show that an adversary forging signatures can break
one of our hardness assumptions. Consider an adversary A playing the Q-query
EUF-CMAQ game pictured below in figure 5. Define the advantage of the ad-
versary playing the Q-query EUF-CMAQ game as

AdvEUF-CMA
A,Σ3DB,Q (λ) := Pr

[
EUF-CMAA

Σ3DB,Q(λ) = 1
]
.
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EUF-CMAA
Σ3DB,Q(λ)

Q,H, c ∅, ∅, 0
vk, sk Σ3DB.KeyGen(1λ)

(µ⋆, σ⋆) ASIGN,RO(vk)

return (µ⋆, ·) /∈ Q ∧ Σ3D.Verify(vk, σ⋆, µ⋆)

SIGN(µ)

if c ≥ Q then abort

σ  Σ3DB.Sign(sk, µ)

c c+ 1

Q Q∪ {(µ, σ)}
return σ

RO(µ, s)

if (µ, s) /∈ H then

H[µ, s] $ Sk+1

(
P2k

)
return H[µ, s]

Fig. 5. Q query EUF-CMAQ in the ROM for Σ3DB.

Theorem 3 (Unforgeability). Assume the pseudorandomness of Vandermone-
Weyman-Zelevinsky tensor orbits assumption, as described in section 3.4. The
advantage AdvEUF-CMA

A,Σ3DB,Q (λ) of any Q-query bounded probabilistic polynomial time
adversary A playing the EUF-CMAQ security game in the ROM game pictured
in figure 5 is bounded as

Adveuf-cma
A,Σ,Q (λ) ≤ 2 Advbilinear−collision

2k+1,k+1,k+1 (λ) +Q negl(λ)

where,

– Advbilinear−collision
2k+1,k+1,k+1 (λ) is the advantage of any randomized polynomial time

adversary in solving the bilinear collision finding defined in section 3.4
– negl(λ) is an exponentially small function in λ.

Proof. We prove the theorem through a game hop analysis. Let Pr
[
ASIGN,RO

Gamei
(ψ) = 1

]
the success probability of the adversary playing the i-th game Gamei. We start

Game0

Q,H, c ∅, ∅, 0
(q, 2k, k, k) ParamSel(1λ, r)

(ψ, t) TrapGen
(
q, 12k, 1k, 1k

)
(µ⋆, ŵ⋆(2), ŵ⋆(3), s∗) ASIGN,RO(ψ)

b0 := (µ⋆, ·) /∈ Q

b1 := H[µ⋆, r⋆]
?
= hψ

(
ŵ⋆(2), ŵ⋆(3)

)
return b0 ∧ b1

SIGN(µ)

if c ≥ Q then abort

s $ {0, 1}λ

σ  (SamplePre3DB(t,RO(µ, s)), s)

c c+ 1

Q Q∪ {(µ, σ)}
return σ

RO(µ, s)

if (µ, s) /∈ H then

H[µ, s] $ Sk+1

(
P2k

)
return H[µ, s]

Fig. 6. Game 0.

with Game0 above, merely rephrasing the Q query EUF-CMAQ in the ROM,
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Game1

Q,H,P, c ∅, ∅, 0
(q, 2k, k, k) ParamSel(1λ, 3)

(ψ, t) TrapGen
(
q, 12k, 1k, 1k

)
(µ⋆, ŵ⋆(2), ŵ⋆(3), s∗) ASIGN,RO(ψ)

b0 := (µ⋆, ·) /∈ Q

b1 := H[µ⋆, s⋆]
?
= hψ

(
ŵ⋆(2), ŵ⋆(3)

)
return b0 ∧ b1

SIGN(µ)

if c ≥ Q then abort

s $ {0, 1}λ

σ  (SamplePret,3DB(RO(µ, s)), s)

c c+ 1

Q Q∪ {(µ, σ)}
return σ

RO(µ, s)

if (µ, s) /∈ H then

P[µ, s] SampleDom3DB(ψ)

H[µ, s] hψ(P[µ, s])

return H[µ, s]

Fig. 7. Game 1. RO Programming

specialised to Σ3DB. In the first hop, we program the random oracle RO to an-
swer hash. If the message-salt pair has already been queried before, we look up
the list of such queries and answer consistently, by returning the same output
that is stored in the list of images. If the message-salt pair has never been queried
before, we call the domain sampler SampleDom3DB(ψ) on the public tensor ψ to
draw a preimage-image pair. The preimage is stored in the list of preimages and
the image is stored in the list of images. Both lists are indexed by message-salt
pairs. By lemma 2 and lemma 3, irrespective of the outcome of the coin flip in
SampleDom3DB(ψ), the image hψ(SampleDom3DB(ψ)) is uniform in Sk+1

(
P2k
)
.

Therefore, Game0 and Game1 induce identical distributions from the view of the
adversary, meaning

Pr
[
ASIGN,RO

Game0
(ψ) = 1

]
= Pr

[
ASIGN,RO

Game1
(ψ) = 1

]
.

In the second game hop, we detect within the signing subroutine if the random
oracle is queried with an already queried message-salt. If so, we label it as a bad
event and abort. By the fundamental lemma of game playing, the probability of
such a repeated message-salt query is at most Q/2λ/2. Therefore,∣∣∣Pr[ASIGN,RO

Game1
(ψ) = 1

]
− Pr

[
ASIGN,RO

Game2
(ψ) = 1

]∣∣∣ ≤ Q

2λ/2
= Q negl(λ).

In the hop to Game3, the signing algorithm is modified to simulate signatures
as follows. For the message-salt (µ, s) pair under consideration, instead of set-
ting to signature to (SamplePre3DB

t (RO(µ, s)), s), call the random oracle to get
RO(µ, s), and look up the preimage P[µ, s] stored under the index (µ, s). Then,
set (P[µ, s], s) as the signature. By lemma 5, the output of SampleDom3DB(ψ)

conditioned on its image hψ

(
SampleDom3DB(ψ)

)
being some target ŵ(1) ∈

Sk+1

(
Pk
)

is exactly the same as the distribution of SamplePre3DB(t, ŵ(1)). There-
fore, the adversary views for Game2 and Game3 are identical and

Pr
[
ASIGN,RO

Game2
(ψ) = 1

]
= Pr

[
ASIGN,RO

Game3
(ψ) = 1

]
.
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Game2

Q,H,P, c ∅, ∅, ∅, 0
repeat false

(q, 2k, k, k) ParamSel(1λ, 3)

(ψ, t) TrapGen
(
q, 12k, 1k, 1k

)
(µ⋆, ŵ⋆(2), ŵ⋆(3), s∗) ASIGN,RO(ψ)

b0 := (µ⋆, ·) /∈ Q

b1 := H[µ⋆, s⋆]
?
= hψ

(
ŵ⋆(2), ŵ⋆(3)

)
return b0 ∧ b1

SIGN(µ)

if c ≥ Q then abort

s $ {0, 1}λ

if (µ, s) ∈ H
repeat true

abort

σ  (SamplePre3DB(t,RO(µ, s)), s)

c c+ 1

Q Q∪ {(µ, σ)}
return σ

RO(µ, s)

if (µ, s) /∈ H then

P[µ, s] SampleDom3DB(ψ)

H[µ, s] hψ(P[µ, s])

return H[µ, s]

Fig. 8. Game 2. Collision avoidance

Game3

Q,H,P, c ∅, ∅, ∅, 0
repeat false

(q, 2k, k, k) ParamSel(1λ, 3)

(ψ, t) TrapGen
(
q, 12k, 1k, 1k

)
(µ⋆, ŵ⋆(2), ŵ⋆(3), s∗) ASIGN,RO(ψ)

b0 := (µ⋆, ·) /∈ Q

b1 := H[µ⋆, s⋆]
?
= hψ

(
ŵ⋆(2), ŵ⋆(3)

)
return b0 ∧ b1

SIGN(µ)

if c ≥ Q then abort

s $ {0, 1}λ

if (µ, s) ∈ H
repeat true

abort

RO(µ, s)

σ  (P[µ, s], s)

c c+ 1

Q Q∪ {(µ, σ)}
return σ

RO(µ, s)

if (µ, s) /∈ H then

P[µ, s] SampleDom3DB(ψ)

H[µ, s] hψ(P[µ, s])

return H[µ, s]

Fig. 9. Game 3. Signature simulation
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The final game hop forgets the trapdoor generation and in its place draws

Game4

Q,H,P, c ∅, ∅, ∅, 0
repeat false

(q, 2k, k, k) ParamSel(1λ, 3)

ψ  $
(
F2k+1
q

)∨ ⊗
(
Fk+1
q

)∨ ⊗
(
Fk+1
q

)∨
(µ⋆, ŵ⋆(2), ŵ⋆(3), s∗) ASIGN,RO(ψ)

b0 := (µ⋆, ·) /∈ Q

b1 := H[µ⋆, s⋆]
?
= hψ

(
ŵ⋆(2), ŵ⋆(3)

)
return b0 ∧ b1

SIGN(µ)

if c ≥ Q then abort

s $ {0, 1}λ

if (µ, s) ∈ H
repeat true

abort

RO(µ, s)

σ  (P[µ, s], s)

c c+ 1

Q Q∪ {(µ, σ)}
return σ

RO(µ, s)

if (µ, s) /∈ H then

P[µ, s] SampleDom3DB(ψ)

H[µ, s] hψ(P[µ, s])

return H[µ, s]

Fig. 10. Game 4. Trapdoor abandonment

the public tensor ψ uniformly from tensors of the same (2k + 1) × (k + 1) ×
(k+1) format. By the pseudorandomness of non-singular Vandermone-Weyman-
Zelevinsky tensor orbits, the distributions of Game3 and Game4 are computation-
ally indistinguishable. In summary,∣∣∣Pr[ASIGN,RO

Game0
(ψ) = 1

]
− Pr

[
ASIGN,RO

Game4
(ψ) = 1

]∣∣∣ ≤ Q negl(λ).

Now consider an adversary who wins Game4 by returning a (µ⋆, ŵ⋆(2), ŵ⋆(3), s∗)
such that µ⋆ was not queried for a signature and H[µ⋆, s⋆] = hψ

(
ŵ⋆(2), ŵ⋆(3)

)
.

To do so, the adversary must know H[µ⋆, s⋆], which is generated by the random
oracle. Disregarding the possibility of the adversary luckily guessing this value,
since it only happens with probability

1

|Sk+1(P2k)|
≈ q(

2k+1
k+1

)
(q − 1)k+1

<<
1

2λ
,

we can conclude that adversary queried RO with the input (µ⋆, s⋆) to receive
P[µ, s], which in turn was drawn by SampleDom3DB(ψ). But SampleDom3DB(ψ)
draws P[µ, s] uniformly from two preimages conditioned on the image hψ(P[µ, s]).
Therefore, with probability at least a half, P[µ, s] ̸=

(
ŵ⋆(2), ŵ⋆(3)

)
. Therefore,

an adversary who wins Game4 finds a collision for the one way function hψ with
probability at least a half. ⊓⊔

This Q query EUF-CMAQ in the ROM proof can also be lifted to the signature
scheme ΣDB in arbitrary dimensions. However, in the security analysis for ΣDB,
the domain sampler distribution conditioned on a target is not the same as that
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of the preimage sampler. Therefore, the argument has to be modified with only
the weaker guarantee that they are computationally indistinguishable.

4.2 Signature and key lengths

To meet the security parameter λ using the (2k+ 1)× (k+ 1)× (k+ 1) format,
it suffices to take k = λ and q ≈ 4λ. The signature length is dominated by the
≈ 2λ log q bits to describe the projective vector pair (ŵ(2), ŵ(3)) drawn by the
preimage sampler. The other part of the signature is the salt, which takes λ bits
to write down. As before, if we only consider polynomial time adversaries, which
are bound to a polynomial number of queries in λ, we can get away with salts
that are just super logarithmic ω(log(λ)) in length. Further, if an application
bounds the number of signature queries corresponding to the same signing key,
then the salt length can be lowered accordingly.

The public verification key length is nearly cubic in the security parameter
λ since we have to explicitly write down the three dimensional tensor ψ. It gets
longer exponentially in r, if we look to schemes in higher dimensions r. The four
dimensional case might be an interesting compromise to study further, offering
quartic length verification keys with an exponential support preimage to drawn
from, for every target.

The secret signing key length is nearly quadratic in the security parameter λ,
dominated by the need to write down the tuple of matrices describing the secret
base change. This can be reduced to nearly linear in λ by considering pseudoran-
dom invertible matrices described by seeds of length linear in λ. The trapdoor
tensor matrix Λ only takes ≈ rλ log q bits to describe, even in r dimensions.

But this signature size reduction strategy comes at the cost of increasing the
computational complexity of the signing algorithm, which then has to expand
the seeds to get the matrices and then invert them, paying the cost of the matrix
multiplication exponent (or worse in practice) for the inversion. In particular,
storing the inverses as part of the signing key to expedite the signing is ruled out
in this strategy. A possible solution to having nearly linear length signing keys
and nearly linear (or at least sub quadratic) time signing is to solve the following
problem. Is there a way to generate a (pseudorandom matrix, its inverse) pair
with both the matrix and its inverse having nearly linear length descriptions?
Further, we want matrix-vector products with respect to both the matrix and its
inverse to be efficient, say sub-quadratic. There are certainly structured matrices
with these properties, such as Toeplitz or Cauchy or related family of matrices
(or more generally matrices with displacement structure). The problem is to
construct pseudorandom families with no visible structure. If one is prepared
to make stronger hardness assumptions, one may even allow such structure, to
make the private signing key and signature algorithm run time nearly linear in
the security parameter.
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4.3 Encryption

We next sketch an encryption scheme Π3DB based on three dimensional doubly
boundary (2k + 1) × (k + 1) × (k + 1) formats. Let the message space be b-bit
strings. Fix a cryptographic hash function H : {0, 1}∗ −! {0, 1}b.

Π3DB.KeyGen(1λ)

(q, 2k, k, k) ParamSel(1λ, 3)

(ψ, t) TrapGen
(
q, 12k, 1k, 1k

)
return pk = ψ, sk = t

Π3DB.Encrypt(µ, pk)

(ŵ(2), ŵ(3)) SampleDom3D(ψ)

c1  hψ
(
ŵ(2), ŵ(3)

)
c2  H

(
ŵ(2), ŵ(3)

)
⊕ µ

return (c1, c2)

Π3DB.Decrypt(sk, c1, c2)

(û(2), û(3)) SamplePre(t, c1)

µ′  H
(
û(2), û(3)

)
⊕ c2

return µ′

Fig. 11. Encryption Π3DB from 3D doubly boundary format tensors

The design is typical of encryption schemes built from trapdoor one way
functions, but the choice of domain and preimage samplers we make is important.
They have to be consistent, to avoid decryption failures. Our choice leads to
perfect completeness, as we next argue. By lemma 4, for every target ŵ(1) ∈
Sk+1

(
P2k
)

on the Hamming sphere, SamplePre(t, ŵ(1)) draws a unique preimage
that is the same under base change as the domain sample SampleDom3D(ψ)
conditioned on its image being ŵ(1). Therefore, in an honest execution of Π3DB,(
û(2), û(3)

)
=
(
ŵ(2), ŵ(3)

)
and

µ′ = H
(
û(2), û(3)

)
⊕ c2 = H

(
ŵ(2), ŵ(3)

)
⊕ H

(
ŵ(2), ŵ(3)

)
⊕ µ = µ,

proving completeness of the protocol. The scheme as presented is IND− CPA se-
cure if we model the hash function as a random oracle, since the view of the adver-
sary in the CPA game is identical, irrespective of which of the two possible chal-
lenge messages is chosen for encryption. In particular, say (c1,H

(
ŵ(2), ŵ(3)

)
⊕µx)

is the encryption of the challenge message µx, x  $ {0, 1}. By lemma 3, the
distribution of c1 is uniform in the Hamming sphere Sk+1

(
P2k
)

and by design
independent of the challenge message. The corresponding (image,preimage hash)
pair (c1,H

(
ŵ(2), ŵ(3)

)
) is indistinguishable from uniform in , unless the adver-

sary can derive the preimage
(
ŵ(2), ŵ(3)

)
from c1 and query the random oracle for
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H
(
ŵ(2), ŵ(3)

)
. Since finding preimages is hard, (c1,H

(
ŵ(2), ŵ(3)

)
⊕ µb) is indis-

tinguishable from uniform in Sk+1

(
P2k
)
×{0, 1}b and the scheme is CPA secure.

Under the Fujisaki-Okomoto transformation [12], Π3DB should give IND− CCA2

secure encryption. We defer the formal security analysis of the encryption to a
longer version of the paper.
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