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Abstract

Byzantine Reliable Broadcast is one of the most popular communication
primitives in distributed systems. Byzantine reliable broadcast ensures that
processes agree to deliver a message from an initiator, even if some processes
(possibly including the initiator) are Byzantine. In asynchronous settings,
it is known since the prominent work of Bracha [1] that Byzantine reliable
broadcast can be implemented deterministically if the total number of pro-
cesses, denoted by n, satisfies n ≥ 3t + 1 where t is an upper bound on the
number of Byzantine processes. Here, we study Byzantine Reliable Broad-
cast when processes are equipped with trusted components, special software
or hardware designed to prevent equivocation. Our contribution is threefold.
First, we show that, despite common belief, when each process is equipped
with a trusted component, Bracha’s algorithm still needs n ≥ 3t+1. Second,
we present a novel algorithm that uses a single trusted component (at the
initiator) that implements Byzantine Reliable Asynchronous Broadcast with
n ≥ 2t + 1. Lastly, building on our broadcast algorithm, we present Ten-
derTee, a transformation of the Tendermint consensus algorithm by using
trusted component, giving better Byzantine resilience. Tendertee works with
n ≥ 2t+ 1, where Tendermint needed n = 3t+ 1.
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1. Introduction

Byzantine reliable broadcast and Consensus are two fundamental problem
in fault-tolerant distributed systems. Byzantine reliable broadcast consists of
ensuring that a correct initiator process broadcasts its value to all correct pro-
cesses, even in the presence of malicious Byzantine processes. For decades,
Byzantine Reliable Broadcast has been at the core of various consensus pro-
tocols, and more recently, at the core of certain blockchains. Consensus,
introduced by Lamport, Shostak and Pease [2], is one of the fundamental
problems in the area of fault-tolerant distributed computing. In the consen-
sus problem, n nodes attempt to reach agreement on a value, despite the
malicious behavior of up to t of them. One of the measures of the quality of
a consensus protocol is its resiliency: the fraction of faulty nodes the proto-
col can tolerate. Since the proofs rely on a resilience bound of one third for
the Byzantine consensus [2] in environments with no authentication, proved
later even for models with local authentication [3], research struggled to in-
crease the consensus resilience. The blockchains era revived the interest for
the problem.

Byzantine Reliable Broadcast and Consensus have been addressed in var-
ious settings: with fixed and mobile Byzantine nodes, dynamicity or in con-
junction with transient faults.

Byzantine Reliable Broadcast solutions (e.g. [4, 5, 6, 7, 8]) achieve re-
silience of at least n ≥ 3t + 1 processes, where t is the maximum number
of Byzantine processes. However, these solutions require strong network
assumptions, such as synchrony (processes execute in lock-step) or non-
equivocation (the initiator must send the same message to all processes).

More recently, trusted execution environments and more generally trusted
components have emerged as a promising protection against Byzantine fail-
ures by providing cryptographic primitives that protect participants against
equivocation. Trusted components are especially promising for consensus
protocols such as PBFT, and therefore for many recent blockchain algo-
rithms. For example, [9, 10] recently introduced the TTCB wormhole, which
supports a PBFT protocol that tolerates up to half of the processes to be
Byzantine, well beyond the tolerance of classical systems [11]. Nevertheless,
the trusted part of these systems makes practical implementations difficult.

A2M (Attested Append-only Memory) [12] provides a small and easy-to-
implement abstraction of a trusted append-only log. Each log has a unique
identifier and offers methods to append and read values. A value, once added,
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cannot be rewritten. A2M increases the resilience of PBFT by appending
each message to the log and sending that attestation along with the message,
which increases resiliency to one-half.

We are not the first to suggest that trusted environments similar to A2M
can increase resilience for blockchains: see HotStuff [13], Damysus [14], and
TenderTee [15]. However, none of these works focuses on the Byzantine
reliable broadcast primitive. The authors of [15] conjecture that plugging
A2M hardware into Bracha’s protocol might increase its resilience. In this
paper, we refute their conjecture by showing that A2M-Bracha has the same
resilience as the original in asynchronous settings.

An alternative to A2M is the use of a monotonic counter implemented
in a tamper-proof module. TrInc [16] is a trusted component that deals
with equivocation in large systems by providing a set of monotonic counters,
supported by a trusted hardware unit called a trinket.

More recently, [17] proposed USIG (Unique Sequential Identifier Gener-
ator), a service available to each process (and implemented in a tamper-proof
module) that assigns each message a unique counter value, and signs that
message. The service offers two functions: one that returns a certificate,
and one that validates certificates. These certificates are based on a se-
cure counter: the counter value is never duplicated, and successive counter
values are successive integers. To the best of our knowledge, this kind of
trusted component has never been used to increase the resilience of reliable
broadcast. Here, we prove that using a trusted component can implement
Byzantine Reliable Broadcast in asynchronous environments with optimal
resilience.

Similarly to our work, [18] proposes a reliable broadcast algorithm tol-
erant with n ≥ 2t + 1 processes where t is the number of Byzantine faults.
Contrarily to us, they use failure detectors. [19] proposes an algorithm sim-
ilar to ours but which only tolerates t < n/3 Byzantine processes, whereas
our algorithm tolerates up to t < n/2 Byzantine faults.

Our contribution. This paper presents a study of Byzantine Reliable Broad-
cast and Consensus problems using trusted components. The current paper
merges the contributions presented in [15] and [20]. First, we show that,
despite popular belief, trusted components cannot improve the resilience of
Bracha’s algorithm with no modification. Instead, we propose a novel algo-
rithm that uses a single (optimal number) trusted component to implement
asynchronous Byzantine reliable broadcast with n processes, n ≥ 2t+1 where
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t is an upper bound on the number of Byzantine processes. Interestingly, this
algorithm uses only one simple trusted component that provides a trusted
monotonic counter. We abstract the trusted component via a distributed
object called Trusted Monotonic Counter Object.

Furthermore, continuing the line of research proposed in [13] we enhance
Tendermint [21, 22, 23] with a light version of the trusted abstraction attested
append-only memory introduced in [12]. The use of this abstraction makes
our protocol, TenderTee, immune to equivocation (i.e. behavior of a faulty
node when it sends differents faulty messages to different nodes). TenderTee
enjoys one half Byzantine resilience for both and repeated consensus.

Parallel to the design of TenderTee [15], [14] introduces Damysus, a BFT
protocol that uses trusted environments to improve Hotstuff resilience. In
this paper, the authors introduce two trusted services Checker and Accu-
mulator that respectively increase resilience and reduce latency. It should
be noted that previous BFT protocols that used trusted hardware require
strong assumptions (e.g the use of expander graphs in [13]) or require impor-
tant modification on the original protocol (like in [14]). Our integration of
trusted components involves only minor modifications to the original proto-
col, and the broadcast of previous messages to ensure coherency, which helps
increasing the resilience of the Tendermint protocol.

Differently from the transformer-based approach where the transforma-
tions are obtained with an important communication overhead (exponential
in the case of [24] and polynomial in the case of [25]), our design uses only
a constant overhead1 with the respect of original solutions while improving
both the resilience (from n/3 to n/2).

Paper organisation. The paper is organized as follows. Section 2 defines
the execution model and presents the specification of the Byzantine Reliable
Broadcast problem. Section 3 introduces the key component of our Byzantine
Reliable Broadcast implementation, the Trusted Monotonic Counter Object.
Section 4 discusses the impossibility of improving Bracha’s Byzantine Reli-
able Broadcast resilience even when each process is equipped with a trusted
component. Section 5 presents our algorithm for Byzantine Reliable Broad-
cast using a single Trusted Monotonic Counter Object at the initiator. Sec-
tion 6 presents TenderTee, a transformation of the Tendermint consensus

1For this comparison, we did not take into account the cost of implementing the trusted
monotonic counter abstraction nor any transformer.
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algorithm using the Trusted Monotonic Counter Object. Finally, we con-
clude in Section 7.

2. System model and Problems Definition

We consider a set of n asynchronous sequential processes. Up to t pro-
cesses can be Byzantine, meaning they can deviate from the given protocol.
The rest are correct processes.

Processes communicate by exchanging messages through an asynchronous
network. We make the usual assumption that there is a public key infrastruc-
ture (PKI) where public keys are distributed, each process has a (universally
known) public key and a matching private key, moreover, each message is
signed by its creator. Messages are not lost or spuriously generated. Each
process can send messages directly to any other process, and each process
can identify the sender of every message it receives.

We assume processes have access to a broadcast primitive, broadcast(m),
which ensures that the message m is received by every correct process in a
finite (but unknown) time. When a process initiates a broadcast instance,
we call that process the initiator.

Nodes communicate by exchanging messages through a partially syn-
chronous network (as defined in [26]). Partially Synchronous means that
there is a bound δ that is finite but unknown by the participants on the
message transfer delay. We do not consider asynchronous communication
systems since it is impossible to solve consensus in asynchronous systems
when there is at least one failure [11].

In this paper we address the Byzantine Reliable Broadcast problem and
the one-shot Consensus formally defined as follows.

Definition 1 (Byzantine Reliable Broadcast problem [1]). We say that an
algorithm implements Byzantine reliable broadcast if:

• brb-CorrectInit: If the initiator is correct, all correct processes deliver
the initiator’s value.

• brb-ByzantineInit: If the initiator is Byzantine, then either no correct
process delivers any value, or all correct processes deliver the same
value.

Definition 2 (Consensus). We say that an algorithm implements Consensus
if and only if it satisfies the following properties:
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• Termination. Every correct process eventually decides some value.

• Integrity. No correct process decides twice.

• Agreement. If there is a correct process that decides a value B, then
eventually all the correct processes decide B.

• Validity[27]. A decided value is valid, it satisfies the predefined pred-
icate denoted isValid().

3. Trusted Monotonic Counter Object

TEEs in general (e.g. A2M [12], TrInc [16], USIG [17]) are reputed to
be powerful tools for avoiding equivocation. Although the trusted compo-
nent abstraction makes protocols immune to equivocation (where the ini-
tiator sends different messages to different processes), [24] shows that non-
equivocation is not enough to provide n ≥ 2t + 1 resilience nor to support
the equivalent of digital signatures.

We now define the Trusted Monotonic Counter Oracle abstraction TMC-
Object the core of our novel Byzantine Reliable Broadcast protocol that
supports t Byzantine failures among n processes, where n ≥ 2t + 1, an
improvement on the classical n ≥ 3t+ 1 algorithms.

In short, TMC-Object provides a non-falsifiable, verifiable, unique, mono-
tonic, and sequential counter. In particular, TMC-Object provides each pro-
cess with a read-only local variable, called trustedCounter. Whenever the
TMC-Object is invoked, it returns a value for trustedCounter that is strictly
greater than any previous value it returned. The difference between two
successive counter values is exactly 1, so when a process p receives two mes-
sages stamped with counter values, it can detect whether there have been
intermediate messages.

The TMC-Object supports the operation get certificate(). A process p
invokes get certificate(m) with a message m. The object returns a certifi-
cate and a unique identifier. The certificate certifies that the returned iden-
tifier was created by the tamper-proof TMC-Object object for the message
m. The unique identifier is essentially a reading of the monotonic counter
trustedCounter, incremented whenever get certificate(m) is called.

The TMC-Object object guarantees the following properties:

• Uniqueness: TMC-Object will never assign the same identifier to two
different messages.
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• Sequentiality: TMC-Object will always assign an identifier that is
the successor of the previous one.

To send a message u certified by TMC-Object, a process p first invokes
the get certificate() operation of TMC-Object, which creates a certificate
C(p,u) corresponding to the value of the trustedCounter cp,

2 then the process
sends the tuple (u, C(p,u), cp), which can be verified by any other process re-
ceiving the message. The verification is done using the check certificate()
operation of the TMC-Object, which confirms whether the given certificate
was produced for the given message and has given the value of the counter.
Each invocation of the get certificate() operation of TMC-Object incre-
ments the value of the trustedCounter cp of process p. We call that sequence
of operations TMC-Object-Send u.

When receiving a message (u, C(p,u), cp), a process must check if the cer-
tificate C(p,u) for message u corresponds to the value of the counter cp. If
not, the message is considered invalid and is ignored. If they correspond, the
message is said to be valid according to the TMC-Object.

4. Bracha’s Byzantine Reliable Broadcast with Trusted Compo-
nents

In this section, we prove that modifying Bracha’s reliable broadcast algo-
rithm [1] by (only) equipping each process with a trusted component (here,
TMC-Object) does not change the tolerance threshold of Byzantine processes,
which remains 1/3, we do so by using the modular formalism introduced by
[28].

To send a message u certified with TMC-Object, a process p first invokes
TMC-Object, which creates a certificate Cp corresponding to the value of the
trustedCounter cp, then the process sends the tuple (u, Cp, cp), which can be
verified by any other process receiving the message. Each invocation to TMC-
Object increments the value of the trustedCounter cp of process p, and the
initial value of the counter is 0. In the following, that sequence of operation
is simply called TMC-Object-Send u.

In the following, we describe Algorithm 1 which is Bracha’s reliable broad-
cast where each process uses the TMC-Object-Send operation instead of a

2When the value of a counter can be verified against a given certificate, we say that
the certificate corresponds to that value of the counter, similarly to digital signatures.
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Send operation. In more detail, the protocol works in sequential steps. In
the broadcast primitive described in Algorithm 1, there are three types of
messages used in the protocol: initial, echo, and ready. All these messages
are sent using the TMC-Object-Send operation. In the initial step (Step 0)
of the protocol, when a process p wants to broadcast a value u, it TMC-
Object-Sends an initial message for u (< initial, u >) to all other processes,
therefore incrementing its trusted counter. Recall that the process initiating
the broadcast is called the initiator.

In Step 1, upon receiving a valid3 initial message with value v from the
initiator, a process A2M-Sends an echo message for v (< echo, v >). An echo
message is also sent if instead of receiving the initial message, the process
receives enough (here, α) echo messages for the same value from different
processes, implying that many processes saw the initiator message. After,
and only after the A2M-Send operation, the process moves to Step 2.

In Step 2, each process waits to receive echo messages for the same value,
say v, from at least α different processes sent from Step 1. When that is
the case, the process TMC-Object-Sends a ready message for the value v
(< ready, v >). After the send operation, the process moves to Step 3.

Step 3 is similar to Step 2. The process waits for β ready messages, when
the β ready messages are received for the same value, say v, the process
delivers value v and finishes the instance of broadcast.

The broadcast is successful if all correct processes rb-Deliver the same
value. Thus, rb-Broadcast and rb-Deliver provide us with a pair of commu-
nication primitives.

Lemma 3. Consider Algorithm 1 with parameter n ≥ α > t and α ≥ n/2+1
where t is the number of Byzantine processes. If two correct processes TMC-
Object-Send < echo, v > and < echo, u > messages, respectively, then u = v.

Proof. The proof will be conducted by contradiction. Assume there exist
two correct processes that TMC-Object-Send < echo, v > and < echo, u >
messages, respectively, with u ̸= v. Let q be the first correct process that
TMC-Object-Sends an < echo, v > message, and let r be the first correct
process that TMC-Object-Sends an < echo, u > message.

• Case 1: Process q receives an initial message < initial, v > and process

3Here, valid TMC-Object-message. If the value of the counter is strictly greater than 2,
the initiator may have equivocated (having already A2M-sent another message).
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Algorithm 1 Reliable Broadcast with a Trusted Environment

1: Step 0
2: if p is the initiator then
3: TMC-Object-Send < initial, u > to all
4: Step 1
5: Wait until receipt of
6: 1 valid TMC-Object-message < initial, v > message, or
7: α < echo, v > messages
8: for some v
9: TMC-Object-Send < echo, v > to all
10: Step 2
11: Wait until receipt of
12: α < echo, v > messages
13: (including messages received in Step 1)
14: for some v
15: TMC-Object-Send < ready, v > to all
16: Step 3
17: Wait until receipt of
18: β < ready, v > messages
19: (including messages received in Steps 1 and 2)
20: for some v
21: rb-Deliver v

r receives an initial message < initial, u >. If the initiator is correct,
then this situation is impossible since a correct initiator sends only one
initial value. If the initiator is Byzantine, then either q or r rejects
the initial value since the TMC-Object nominal sequence is invalid (the
counter associated with one of these values is strictly greater than 1,
hence the message is not valid).

• Case 2: Process q must have received α < echo, v > messages, and
process r must have received α < echo, u > messages. Notice that a
correct process can send only one echo. Since α > t, where t is the
number of Byzantine processes in the system, among the α messages
some come from correct processes. Since α ≥ n/2 + 1 then there is
at least one correct process that TMC-Object-Sent < echo, v > and
< echo, u > messages which is impossible since the process is correct.

Lemma 4. Consider Algorithm 1 with parameter n ≥ α > t and α ≥ n/2+1
where t is the number of Byzantine processes. If two correct processes TMC-
Object-Send < ready, v > and < ready, u > messages, respectively, then u =
v.

Proof. Proof by contradiction. Assume there exist two correct processes
which TMC-Object-Send < ready, v > and < ready, u >messages, with u ̸= v.
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Let q be the first process that TMC-Object-Sends a < ready, v > message,
and let r be the first process that TMC-Object-Sends a < ready, u > message.
Process q must have received more than α < echo, v > messages and process
r must have received more than α < echo, u > messages. Since α > t and
α ≥ n/2+1 it follows that at least one correct process must have TMC-Object-
Sent < echo, v > and at least one correct process must have TMC-Object-Sent
< echo, u > messages. Following Lemma 3, we then have u = v.

Lemma 5. Consider Algorithm 1 with parameter n ≥ α > t and α ≥ n/2+1
where t is the number of Byzantine processes. If two correct processes, q and
r, deliver the values v and u, respectively, then u = v.

Proof. If q delivers the value v then it must have received α < ready, v >
messages, and therefore a < ready, v > message is from at least 1 correct
process. Similarly, r must have received a < ready, u > message from at
least 1 correct process. By Lemma 4, u = v.

We now show that Algorithm 1 satisfies the property brb-CorrectInit of
the Byzantine reliable broadcast.

Theorem 6. Consider Algorithm 1 with parameters α and β. If the initiator
is a correct process Algorithm 1 satisfies the brb-CorrectInit property if α = β
and n/2 + 1 ≤ α ≤ n and n ≥ 2t + 1 where t is the number of Byzantine
processes and n is the total number of processes.

Proof. The proof follows directly from Lemmas 3, 4 and 5. Let p be the
initiator. Since the initiator is correct, the value broadcast by p, u, will
eventually be received by all other correct processes (at least n − t = t + 1
correct processes). These processes will echo that value u (TMC-Object-Send
an echo message for u). Since all correct processes echo the same value
(Lemma 3), and their number is sufficient to make the protocol advance
(there are at least n/2+1 correct processes), each correct process will receive
enough echoes to send a ready message, and the same one (Lemma 4). By
the same argument and applying Lemma 5, all correct processes will receive
enough ready messages for the initiator value u, and then will rb-Deliver the
initiator message.

Unfortunately, the following result shows that in the presence of a Byzan-
tine initiator, Algorithm 1 could produce undesirable behaviour, and hence
does not implement the Byzantine reliable broadcast.

10



Lemma 7. Let n be the number of processes, and t be an upper bound on the
Byzantine processes with n ≥ 2t+ 1. Consider Algorithm 1 with parameters
α and β with α = t+ 1 and t+ 1 ≤ β < 2t+ 1 Algorithm 1 does not satisfy
the brb-ByzantineInit property when the initiator is Byzantine.

Proof. If the initiator is a Byzantine process, Byzantine processes could force
a subset of correct processes to deliver a value, and another subset of correct
processes to never deliver any value. Note that even though all processes use
a TMC-Object abstraction such that Byzantine processes cannot equivocate,
Byzantine processes still can send a message to some processes but not to
others.

Let p be the Byzantine initiator. p TMC-Object-sends a value u to 1 ≤ x ≤
t correct processes q1, q2 . . . qx but not to the other n−t−x processes. Denote
by Q this set of x correct processes receiving the initiator’s initial message.
Since processes in Q receive the message from the Byzantine initiator, they
TMC-Object-Send an echo message for u. Assume now that all the Byzantine
processes TMC-Object-Send an echo message for value u only to processes in
Q but not to the others. It follows that all correct processes but those in Q
have no message from the initiator and only the < echo, u > from processes
in Q. Those processes cannot advance past Line 5 of Algorithm 1 since they
need at least α = t+ 1 > x echo messages.

All correct processes but those in Q have only x echo messages that come
from the processes in Q. Processes in Q on the other hand would have the
echo messages from all Byzantine processes in addition to their own echo
messages, which sums to t + x echo messages for the value u. Therefore,
processes in Q will advance and TMC-Object-Send a ready message for u.

In the same spirit, Byzantine processes can TMC-Object-Send a ready
message for value u to processes in Q only. The other correct processes are
still blocked at 5 of Algorithm 1. In addition to the ready messages from the
Byzantine processes, processes in Q also get their own ready messages for
value u, so each process q ∈ Q has a total of t+ x ready messages and hence
delivers the value u (rb-Delivery). The other correct processes only receive
the values TMC-Object-Sent by processes in Q, meaning x echo message and
x ready message, both for u, hence, they can never reach an acceptance
decision in Algorithm 1. It follows that Algorithm 1 does not satisfy the
brb-ByzantineInit property when the initiator is Byzantine.

When α = β = t+ 1, Lemma 7 violates the brb-ByzantineInit property of
the Byzantine reliable broadcast (Definition 1), and, hence, does not satisfy
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the Byzantine reliable broadcast (Definition 1) as stated by the following
Corollary.

Corollary 8. Let n be the number of processes, and t an upper bound of
the Byzantine processes. If n ≥ 2t + 1, Algorithm 1 does not implement the
Byzantine reliable broadcast.

However, for Algorithm 1 to implement the Byzantine reliable broadcast,
we show in Theorem 9 that we must have β = 2t+ 1.

Theorem 9. Necessary conditions for 1 with parameters α and β to imple-
ment the Byzantine reliable broadcast are α = t+1, β = 2t+1, and n−t ≥ β,
where t is the upper bound of the number of Byzantine processes and n is the
total number of processes.

Proof. If the initiator is correct, all correct processes decide to deliver the
initiator message, by Theorem 6.

It remains to show that when the initiator is Byzantine, either no correct
process delivers any value or all correct processes deliver the same value.

• By Lemma 5, if two correct processes deliver a value, they must deliver
the same one.

• Now, let us turn to the case where only one correct process reaches a
decision.

Assume that process q reaches a decision and delivers a value u. It
means that q received at least β ready messages, from which at least
β − t are from correct processes.

At least β−t correct processes sent a ready message. However, to TMC-
Object-Send a ready message, a correct process must have reached Step
2, and must have completed Step 1 of Algorithm 1. In fact, if a correct
process does not TMC-Object-Send an echo message, it cannot enter
Step 2. Therefore, we know that at least β − t correct processes have
TMC-Object-Sent an echo message. By Lemma 3, all correct processes
that TMC-Object-Sent an echo message have TMC-Object-Sent it for
the same value, hence it means that they all TMC-Object-Sent an echo
message for the value u.

We would like to have that, with at least β − t correct processes TMC-
Object-Sending an echo message for the same value, say a value u, all
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correct processes must have received at least α echo messages for value
u. Hence, we have that β − t ≥ α =⇒ β ≥ α + t ≥ 2t + 1. For
lower bounds, now assume that α = t+ 1 and β = 2t+ 1. The rest of
the proof shows that it is sufficient for Algorithm 1 to implement the
Byzantine reliable broadcast.

Hence they will all TMC-Object-Send an echo message for u. In that
case, all correct processes (at least 2t + 1 processes) TMC-Object-Sent
an echo for u, all correct processes (at least 2t + 1) will then TMC-
Object-Send a ready message for u, which leads to all correct processes
eventually delivering value u. Hence, if one correct process delivers a
value u, all other correct processes eventually deliver the same value u.

5. Byzantine Reliable Broadcast with optimal TMC-Object

Algorithm 2 Byzantine Reliable Broadcast with a unique Trusted Environment
for the initiator — brb-Broadcast(u)

1: Step 0
2: if p is the initiator then
3: TMC-Object-Send < initial, u, id initiator > to all
4: Step 1
5: Wait until receipt of
6: 1 valid TMC-Objectmessage < initial, v, id initiator > message
7: for some v
8: Send < echo in, v, (< initial, v, id initiator >, Cinitiator, cinitiator) > to all //the process broadcasts

back the initiator’s message with the associated certificate and trusted counter.
9: Step 2
10: Wait until receipt of
11: t+ 1 < echo in, v > messages //Projection of the echoes received keeping only the value of the

message.
12: (including messages received in Step 1)
13: for some v
14: Send < ready, v > to all
15: Step 3
16: Wait until receipt of
17: t+ 1 < ready, v > messages
18: (including messages received in Steps 1 and 2)
19: for some v
20: brb-Deliver v

In this section, we present Algorithm 2, which contains a small modi-
fication of Bracha’s algorithm [1]. Algorithm 2 solves the reliable broad-
cast problem tolerating t < n/2 Byzantine processes. Algorithm 2 uses the

13



trusted component setups to increase the security threshold of Byzantine
reliable broadcast from 1/3 of Byzantine processes to 1/2.

Moreover, to reduce the use of the trusted component, which can be
resource-intensive, only the initiator is required to send certified messages.
The other processes simply check the validity of the message and its certifi-
cation but do not require the equipment to send certified messages. In this
section, we consider the use of TMC-Object defined in Section 3.

In Algorithm 2, only the initiator sends a message using the light TMC-
Object abstraction for its send operation. We say that the initiator TMC-
Object-Sends a message. The other processes send their message classically.
The other difference with Algorithm 1 is that during Step 1, when a process
receives the initiator’s message, say for value u, it sends an echo message for u
coupled with the initiator message (meaning the message, and the certificate
and counter sent by the initiator). In such a way, it ensures that all other
processes will eventually receive the initiator’s certified message. The rest of
the algorithm proceeds as in Algorithm 1 where the TMC-Object-Sends are
replaced by classical Send operations).

The broadcast is successful if all the correct processes brb-Deliver the
same value, say u. Thus, brb-Broadcast and brb-Deliver provide a pair of
communication primitives resilient to t < n/2 Byzantine processes.

We can now prove the correctness of Algorithm 2 against the Byzantine
reliable broadcast abstraction.

Recall that we say that a process accepts a message if it receives and adds
the “valid” messages in terms of the validity of the TMC-Object, meaning
that there was no message before in that same category, hence the value
of the trusted counter is the lowest. Notice that if the message received
is not expected to be a TMC-Object message, and is indeed not part of a
TMC-Object operation (e.g., a send which is not TMC-Object-Send), such a
message is valid by default and, therefore, is accepted.

Finally, for any value v, the message< echo in, v, (< initial, v, id initiator >
, Cinitiator, cinitiator) > should be understood as two messages bundled together,
i.e., the echo message < echo, v > sent after the reception of the initiator
message and sending back the initiator’s message < initial, v, id initiator >,
along with the certificates and trusted counter, i.e., Cinitiator, cinitiator. The
message is exactly the initiator’s message, the TMC-Object message will be
correctly validated.

Lemma 10. In any execution of Algorithm 2, with n ≥ 2t+1 where t is the
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number of Byzantine processes, a correct process sends each type of message
(initial, echo in, ready) at most once.

Proof. In Steps 1 and 2 of Algorithm 2, the protocol requires sending exactly
1 message, and then moving to the subsequent phase. A correct process
cannot send more messages.

In Step 0, a correct process TMC-Object-Sends a message if and only
if it is the initiator, and after that moves to Step 1. If the process is not
the initiator, it does not (TMC-Object-)Send anything, but moves directly to
Step 1. Hence, in Step 0, at most 1 message is sent.

Lemma 11. Consider Algorithm 2 with n ≥ 2t + 1 where t is the number
of Byzantine processes. If two correct processes p and q receive and accept
respectively < initial, u, id initiator > and < initial, v, id initiator >, then
u = v.

Proof. This holds thanks to the properties of the TMC-Object. Since equiv-
ocation is not possible at the initiator level, thanks to the use of the counter
in TMC-Object if two correct processes p and q accept an initiator message,
it means they received the same message, and they then echo the accepted
initial message (Line 8 of Algorithm 2). Therefore, they receive and accept
the same message.

By Lemma 11, we know that if two correct processes accept an initiator
message, then they accept the same message. The only thing that could hap-
pen is for one correct process to receive the initiator message, while another
process does not receive such a message.

Lemma 12. Consider Algorithm 2 with n ≥ 2t+1 where t is the number of
Byzantine processes. If one correct process sends < echo in, v > for some v,
then all correct processes will eventually send < echo in, v >.

Proof. Let p and q be processes. Without loss of generality, assume that p is
the first correct process to do an echo. If a correct process echoes a message,
it means it accepts the initiator message, and will send the echo along with
the TMC-Object-Send of the initiator (Line 8 of Algorithm 2). Two cases
can arise. Either the initiator sent the initial message to both p and q or
the initiator did not send a message to q. Notice that it is not possible for
the initiator not to have TMC-Object-Sent a message to p, since p echoed the
initiator message.
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First, consider the case where p received the initiator message, but not q.
The process p sent an echo message containing the initiator’s initial message
respecting the TMC-Object format. By assumption, a message sent by a
correct process will eventually be received by all the other correct processes.
Therefore, eventually, q will receive p’s echo message, containing the initial
message. q will be able to assess the validity of the initial message (according
to the initiator signatures), will accept it, and will send an echo for the
message too. Because before receiving p’s echo message, q is still waiting in
Step 1.

Finally, if the initiator sends a message to both p and q, therefore, either
it sends the same message to p and q, and so q will echo that same message
(by Lemmas 10 and 11, it is not possible for q to echo something else), or the
message sent to q is invalid and not accepted. That last case is equivalent to
the above situation, since an invalid message is not registered nor considered,
and is equivalent to not having received a message.

Thanks to Lemmas 10 and 12, we know that whenever a correct process
sends an echo in message, all other correct processes will also echo a message
(and more accurately, the same message).

Lemma 13. If two correct processes p and q send respectively < ready, v >
and < ready, u >, then u = v.

Proof. By contradiction. Assume u ̸= v. Without loss of generality, let p be
the process that sends a < ready, v > message, and let q be a process that
sends a < ready, u > message. To send a ready message for value x, a correct
process must have received from at least t+1 different processes the message
< echo in, x > (Line 14 of Algorithm 2). Therefore, p must have received the
message < echo in, v > from at least t+ 1 different processes, and process q
must have received the message < echo in, u > from at least t + 1 different
processes. Since there are at most t Byzantine processes, at least one correct
process must have sent an echo message for both u and v, which is impossible
by Lemma 10. Therefore, it is impossible to have u ̸= v.

Lemma 14. Consider Algorithm 2 with n ≥ 2t+1 where t is the number of
Byzantine processes. If two correct processes, p and q, brb-deliver the values
v and u, respectively, then u = v.

Proof. This proof is similar to the proof for 13. We proceed by contradic-
tion. Assume two messages containing respectively values u and value v
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such that u ̸= v. Without loss of generality, let p be the process that brb-
delivers the message containing v, and let q be a process that brb-delivers
u. To brb-deliver a value x, a correct process must have received from at
least t + 1 different processes the message < ready, x > (Line 17 of Algo-
rithm 2). Therefore, p must have received the message < ready, v > from
at least t+ 1 different processes, and process q must have received the mes-
sage < ready, u > from at least t + 1 different processes. Since there are at
most t Byzantine processes, it means that at least one correct process sent
ready messages for both values u and v, which is impossible by Lemma 10.
Therefore, it is impossible to have u ̸= v.

Lemma 15. Consider Algorithm 2 with n ≥ 2t + 1 where t is the number
of Byzantine processes. If a correct process p delivers the value v then every
other correct process will eventually deliver v.

Proof. If p brb-Deliver v then p received the message < ready, v > from at
least t+1 different processes. Since there are at most t Byzantine processes,
it means that at least one correct process sent a message < ready, v >. Since
one correct process sent a ready message for v, it means that it received an
< echo, v > message from at least t+1 different processes; hence, (since there
are at most t Byzantine processes) it means that at least one correct process
sent a message < echo, v >. Therefore, by Lemma 12, all other correct
processes will (eventually) send an echo message for value v. Those will be
received by all the correct processes. This will lead to having at least t + 1
different processes sending it. All correct processes will, therefore, eventually
send a ready message for value v (by Lemma 13, since we already know that
one correct sent a ready for v). Hence, at least t+ 1 ready messages will be
received by all correct processes, which will lead them to brb-Deliver v.

Lemma 16. Consider Algorithm 2 with n ≥ 2t + 1 where t is the number
of Byzantine processes. If a correct process p broadcasts v then all correct
processes brb-deliver v.

Proof. The proof of the lemma is straightforward. If a correct process broad-
casts an initial message, it does so to all processes. All processes in Step 1
will echo in the initiator message containing value v, thanks to Lemma 12.
Since correct processes are the majority, and the network is eventually syn-
chronous, they will all eventually receive at least t + 1 echo in message for
value v and send each a ready message for value v. Thanks to Lemma 13,
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since one correct process sends a ready for v, v is the only value correct pro-
cess will send a ready for. That value will, therefore, be present in at least
t + 1 ready messages, hence in Step 3, a correct process will brb-deliver v.
By Lemma 15, all correct processes will eventually brb-deliver v.

We can now prove that the algorithm implements the Byzantine reliable
broadcast.

Theorem 17. Let n be the number of processes, and t an upper bound of
the Byzantine processes. If n ≥ 2t + 1, Algorithm 2 implements Byzantine
reliable broadcast.

Proof. By Lemma 16, when a correct initiator broadcasts a value, all correct
processes brb-deliver that value.

By Lemma 12, if a correct process brb-delivers an initiator message (even
if the initiator is Byzantine), all correct processes will eventually brb-deliver
the same initiator message. In that case, the rest of the proof follows thanks
to Lemma 16.

Otherwise, no correct process brb-delivers any value. In more detail, if a
Byzantine initiator does not send an initial message to any correct process,
no correct process will deliver anything. That is because no correct process
will send an echo message (then none will send ready messages). Since all
advances require t+1 messages from different processes, and Byzantine pro-
cesses are at most t, the correct processes will be stuck in Step 1 and will
make no decision.

Theorem 18. Let n be the number of processes, and t be an upper bound of
the Byzantine processes. If n ≥ 2t+ 1, in Algorithm 2, the number of TMC-
Object used is optimal, in the sense that if we remove the only TMC-Object
(initiator), Algorithm 2 does not implement the Byzantine reliable broadcast.

Proof. In Algorithm 2, only 1 TMC-Object is used, the one at the initiator. If
the TMC-Object is removed (instead of doing a TMC-Object-Send, the initia-
tor does only a Send operation), then the algorithm resembles the Bracha’s
Byzantine reliable broadcast protocol [1] where instead of a 2t + 1 bound
to advance, we have only a t + 1 bound. Since Bracha’s Byzantine reliable
broadcast protocol is optimal in the number of faults [1, 28], Algorithm 2
with no TMC-Object cannot implement Byzantine reliable broadcast.
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6. TenderTee consensus algorithm

In this section we present an updated version of TenderTee (initially intro-
duced in [15]), a variant of the Tendermint consensus [23, 29] in an eventually
synchronous model in presence of Byzantine faulty nodes. We integrate our
TMC-Object to the Tendermint consensus algorithm to increase its resilience.
Tendermint has been created in the context of the newly emerged blockchain
technology. A blockchain is a distributed ledger that mimics the function-
ing of a classical traditional ledger (i.e. transparency and falsification-proof
of documentation) in an untrusted environment where the computation is
distributed. In blockchain systems, nodes (a.k.a miners) maintain a replica
of a continuously-growing list of ordered blocks that include one or more
transactions that have been verified by the members of the system. Blocks
are linked using cryptography and the order and the content of newly-added
blocks is the outcome of a distributed agreement algorithm among the nodes.

First examples of blockchains (Bitcoin [30] and Ethereum [31]) use the
Proof-of-Work paradigm. That is, nodes have to solve a cryptographical
puzzle in order to be allowed to produce a new block. The difficulty of
this puzzle is high enough such as, with high probability, only one block is
generated at a specific time. Once produced, the new block is diffused in the
network and each correct node adds the newly produced block to its local
ledger. Proof-of-Work blockchains have two main drawbacks. Firstly, they
present a huge electrical consumption. Secondly, they potentially allow the
creation of forks which can be a major issue for using blockchain in industrial
applications requiring strong consistency.

These problems motivated the emergence of new blockchains (e.g. Solidus
[32], Byzcoin [33], PeerCensus [34], Hyperledger [35], RedBelly [27], Tender-
mint [29, 22, 23], Hotstuff [36], Tenderbake [37], etc) using the consensus
paradigm, a necessary building block in order to ensure blocks linearizabil-
ity. The repeated production of blocks in committee-based blockchains can
be viewed as a repeated consensus problem. At each height of the blockchain
exactly one block is decided and added via a one-shot consensus specified
below. The traditional specification has been modified using the validity
borrowed from [27] in order to meet the requirements for blockchain systems.
That is, a new block is added to the blockchain only if it does not contain
transactions that conflict with existing transactions in the blockchain. In
the following we propose and prove correct one-shot TenderTee protocol that
improve the resilience of Tendermint protocol proposed in [22] by using the
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TMC-Object abstraction.

6.1. Detailed description

Algorithms 3 and 4 proceed in 3 rounds for a given epoch e at height
h. Each protocol message (pre-propose, propose or vote) is sending through
TMC-Broadcast (Algorithm 5) which broadcasts the message value to the
other processes in a certified manner and increases the corresponding counter.
We use the notation TMC-Broadcast(TY PE, content) to mean that the cer-
tified broadcast is done on the counter for the messages of type TY PE.

The epoch ei is initially set to 0.
Counters : Each process has three certified counters, one for each round

type. Counters are initially set to 0.

• Round PRE-PROPOSE: Firstly, nodes verify if a decision has been
taken in a previous round, if it is the case they only broadcast the
Votes that helped them reach a decision. If the validator pi is the
proposer of the epoch, it pre-proposes its proposal value, otherwise,
it waits for the proposal from the proposer. If a validator pj delivers
the pre-proposal from the proposer of the epoch, pj checks the valid-
ity of the pre-proposal and that certified attestation is valid and if
both conditions are verified, it accepts it with respect to the values
in validV aluei, lockedV aluei, validEpochj and lockedEpochi. If the
pre-proposal is accepted and valid, pj sets its proposal proposalj to the
pre-proposal, otherwise it sets it to nil.

• Round PROPOSE: During the PROPOSE round, each validator broad-
casts (through TMC-Broadcast primitive) its proposal, and collects the
proposals sent by other validators (only the one that have a valid attes-
tation). After the Delivery phase, validator pi has a set of proposals,
and checks if v, pre-proposed by the proposer, was proposed by at
least t + 1 different validators. If it is the case, and the value is valid,
then pi sets votei, validV aluei and lockedV aluei to v and updates
lockedEpochi to the current epoch ei, otherwise it sets votei to nil.

• Round VOTE: In the round VOTE, a correct validator pi votes votei
and broadcasts (using TMC-Broadcast primitive) all the proposals it
delivered during the current epoch. Then pi collects all the messages
that were broadcast. First pi checks if it has delivered at least t + 1
proposals for a value v′ pre-proposed by the proposer of the epoch, in
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that case, it sets validV aluei to that value then it checks if a value v′

pre-proposed by the proposer of the current epoch is valid and has at
least t+1 votes, if it is the case, then pi decides v

′ and goes to the next
height; otherwise it increases the epoch number and updates the value
of proposali, with respect to validV aluei.

Algorithm 3 : Partial Synchronous TenderTee for height h executed by i:
Round Pre-Propose

1: /* There are 3 counters for process i, one for each round: Prepropose, Propose, and Vote */
2: Initialisation:
3: ei := 0 /* Current epoch number */
4: decisioni := nil /* Store the decision of the process i */
5: lockedValuei := nil; validValuei := nil
6: lockedEpochi := −1; validEpochi := −1
7: proposali := getValue() /* Store the value the process will (pre-)propose */
8: vi := nil /* Local variable stocking the pre-proposal if delivered */
9: validEpochj := nil /* Local variable stocking the proposer’s validEpoch */
10: votei := nil /* Store the value the process will vote for */
11: timeoutPrePropose := ∆Pre-propose; timeoutPropose := ∆Propose; timeoutVote := ∆Vote

12: Round PRE-PROPOSE :
13: Send phase:
14: if decisioni ̸= nil then
15: ∀v, j : (⟨VOTE, ei, v⟩, j) ∈ messagesDeliveredi, Broadcast(⟨VOTE, ei, v, Cj , cj⟩, j) /* Send back

all the VOTE messages (as well as the corresponding certification (attestation) Cj and
counter cj) the process received that made it decides. */

16: return
17: if proposer(ei) = i then
18: TMC-Broadcast(PRE − PROPOSE, ei, proposali, validEpochi, voteMessagesDeliveredi(ei))

/* This broadcast gives an certified attestation, and increment the counter of the pre-propose,
such that other processes can know if there were other pre-proposal. */

19: Delivery phase:
20: set timerPrePropose to timeoutPrePropose

21: while (timerPrePropose not expired) ∧ ¬(∃vj , ej : sentByProposer(ei, vj , ej)) do
22: if ∃vj , ej : sentByProposer(ei, vj , ej)) then
23: vi ← vj /* vj is the value sent by the proposer */
24: validEpochj ← ej /* ej is the validEpoch sent by the proposer */
25: if ¬(∃v, epochProp : sentByProposer(ei, v, epochProp)) then
26: timeoutPrePropose← timeoutPrePropose+ 1
27: Compute phase:
28: if

t+1(⟨PROPOSE, validEpochj , vi⟩)∧ validEpochj ≥ lockedEpochi ∧ validEpochj < ei ∧ isValid(vi)
then

29: proposali ← vi
30: else
31: if ¬isValid(vi) ∨ (lockedEpochi > validEpochj ∧ lockedValuei ̸= vi) then
32: proposali ← nil /* Note that isValid(nil) is set to false */
33: if isValid(vi) ∧ (lockedEpochi = −1 ∨ lockedValuei = vi) then
34: proposali ← vi
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Algorithm 4 : Partial Synchronous TenderTee for height h executed by i:
Rounds Propose and Vote

1: Round PROPOSE :
2: Send phase:
3: if proposali ̸= nil then
4: TMC-

Broadcast(PROPOSE, ei, logProposei, proposali, validEpochi, preproposeMessagesDeliveredi(ei))

5: else
6: TMC-

Broadcast(PROPOSE, ei, logProposei, HeartBeat, validEpochi, preproposeMessagesDeliveredi(ei))
7: Delivery phase:
8: set timerPropose to timeoutPropose

9: while (timerPropose not expires) ∧ ¬t+1(⟨(HeartBeat,PROPOSE)|PROPOSE, ei⟩) do{} /* Note
that the HeartBeat messages should be from different processes */

10: if ¬t+1(⟨(HeartBeat,PROPOSE)|PROPOSE, ei⟩) then
11: timeoutPropose← timeoutPropose+ 1
12: Compute phase:
13: if ∃v′ : t+1(⟨PROPOSE, ei, v′⟩) ∧ isValid(v′) ∧ sentByProposer(ei, v′) then
14: lockedValuei ← v′

15: lockedEpochi ← ei
16: validValuei ← v′

17: validEpochi ← ei
18: votei ← v′

19: else
20: votei ← nil

21: Round VOTE :
22: Send phase:
23: if votei ̸= nil then
24: TMC-Broadcast(V OTE, ei, logV otei, votei, validEpochi, proposeMessagesDeliveredi(ei))
25: else
26: TMC-

Broadcast(V OTE, ei, logV otei, HeartBeat, validEpochi, proposeMessagesDeliveredi(ei))
27: Delivery phase:
28: set timerVote to timeoutVote

29: while (timerVote not expires) ∧ ¬t+1(⟨(HeartBeat,VOTE)|VOTE, ei⟩) do{}
30: if ¬t+1(⟨(HeartBeat,VOTE)|VOTE, ei⟩) then
31: timeoutVote← timeoutVote+ 1
32: Compute phase:
33: if ∃v′′ : t+1(⟨PROPOSE, ei, v′′⟩) ∧ isValid(v′′) ∧ sentByProposer(ei, v′′) then
34: validValuei ← v′′

35: validEpochi ← ei
36: if ∃vd, ed : t+1(⟨VOTE, ed, vd⟩) ∧ isValid(vd) ∧ decisioni = nil then
37: decisioni ← vd
38: else
39: ei ← ei + 1
40: vi ← nil
41: if validValuei ̸= nil then
42: proposali ← validValuei
43: else
44: proposali ← getValue()
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Broadcast : When a process TMC-Broadcasts a value, it broadcasts in the
same message all the messages received at the previous step as well as its
vote message from the previous epochs (and nil when in epoch 0), proving
that his message is causally related to the previous messages, notice that
theses messages are also accompanied by the corresponding certificates and
counters. Therefore, when a process delivers a TMC-Broadcast message, in
addition to checking the certificates and counters, the process also checks that
the message is causally possible according to the accompanying messages.
When a message does not satisfy the causality property, it is kept, but not
yet used until it delivers messages allowing to satisfy such property.

We now prove the correctness of TenderTee (Algorithms 3 & 4) in a par-
tially synchronous system. We suppose that n = 2t + 1 and that each pro-
tocol’s message m sent by a node i is sent with an attestation < attm,i,m >
produced by TMC-Object.

Lemma 19 (Validity). In a partially synchronous system, TenderTee satis-
fies the following property: A decided value satisfies the predefined predicate
denoted as isValid().

Proof. The proof directly follows by construction. When a correct process
decides (Line 37 of Algorithm 4), it checks before if that value is valid (Line
36 of Algorithm 4). Therefore, a correct process only decides valid values.

Lemma 20 (Integrity). In a partially synchronous system, TenderTee sat-
isfies the following property: No correct process decides twice.

Proof. The proof follows by construction. Before deciding (Lines 36 - 37), a
correct process i checks if there is not already a value decided (decisioni =
nil) for the current height (i .e. line 36). If there is already a value decided
(decisioni ̸= nil), there is no decision (Lines 38 - 44). Moreover, a correct
process exits the algorithm after it has decided (Line 16 of Algorithm 3). No
correct process decides twice.

Lemma 21. In a partially synchronous system, TenderTee satisfies the fol-
lowing property: A correct process proposes and votes only once per epoch.

Proof. We prove this lemma by construction. In Algorithm 4, a correct
process proposes (Line 4) and votes only once during the corresponding round
(Line 24 or Line 26). At the end of the VOTE round, a process changes epoch
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(Line 39). Therefore, it cannot propose nor vote for that epoch any more.

Lemma 22. If a correct process accepts a propose (or vote) message from
another process, only that message can be accepted by the other correct pro-
cesses. Somehow, it means that processes can validly4 propose and vote at
most once.

Proof. By Lemma 21, we have that correct processes propose and vote at
most once per epoch. Now, we can focus on the Byzantine processes. As-
sume that a Byzantine process proposes (resp. votes) for two different value.
Broadcast should be done with the TMC-Broadcast. If the process does not
use the TMC-Object for the broadcast, there will be no certificate, hence the
corresponding message will not be considered by correct processes, since it
is not valid. If the process uses the TMC-Broadcast for both propose mes-
sages (resp. vote messages) v and v′, the two messages cannot have the same
counter number, however, only one could be valid and accepted by correct
processes, all other values cannot be accepted thanks to the TMC-Object
guarantees. The Byzantine process can, however, also not propose (resp.
vote) any message.

Lemma 23. In a partially synchronous system, TenderTee satisfies the fol-
lowing property: At most one value can be proposed by at least t+1 processes
per epoch, and at most one value can be voted at least t+ 1 times per epoch.

Proof. We prove this lemma by contradiction. Let v, v′ such that v ̸= v′.
Since there are 2t + 1 processes in the system, if v or v′ gets at least t + 1
proposals (resp. votes), it means that at least 1 process proposes (resp.
votes) for both v and v′ which contradicts Lemma 22.

Lemma 24. Let v be a value, and let e an epoch. In a partially synchronous
system, TenderTee satisfies the following property: If at least t + 1 different
processes (validly) vote for v during epoch e, then no correct process i will
have lockedValuei ̸= v ∧ lockedEpochi ≥ e, at the end of each epoch e′ > e;
moreover, all correct processes who voted v during epoch e can only proposes
v or nil for each epoch e′ > e.

4Validly here means that the vote message can be accepted by correct processes, mean-
ing it satisfies the TMC-Object guarantees.
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Proof. Let v be a value, and let e be an epoch, and Lv,e = {i : i valid votes
for v during epoch e}, we assume that |Lv,e| ≥ t+ 1. We prove the theorem
by induction on epoch number.

• Initialisation: At the end of epoch e, by assumption |Lv,e| ≥ t + 1.
There is a correct process in that set, say i (i ∈ Lv,e). It means that
i updates lockedValuei to v during epoch e, therefore i delivered t + 1
proposals for the value v (Lines 13 - 15 of Algorithm 4). By Lemma
23, at most one value can have at least t+1 proposals during epoch e,
and since v has at least t+1 proposals, no correct process j can update
lockedValuej to a value v′ ̸= v during epoch e. At the end of e, for any
correct process j, lockedValuej = v ∨ lockedEpochj < e.

• Induction: Let a ≥ 1, we assume that ∀i ∈ Lv,e, lockedValuei = v at the
end of each epoch between e and e+ a, we also assume that if a value
was proposed at least t + 1 times during these epochs it was either v
or nil. We prove that at the end of epoch e+ a+ 1, no correct process
j will have lockedValuej = v′ ∧ lockedEpochj = e+ a+ 1 with v′ ̸= v.

Let i ∈ Lv,e such that i delivers a pre-proposal for v, then i will set
proposali to v; it will propose v since lockedValuei = v (Lines 28 -
34 of Algorithm 3 & Line 4 of Algorithm 4), in any other case, if i
does not deliver a pre-proposal or deliver a pre-proposal for a value
v′ ̸= v, it will set proposali to nil and will propose nil (Lines 28 - 34
of Algorithm 3 & Line 4 of Algorithm 4), since isValid(nil) = false

and by assumption, there is no e′ ∈ {e, . . . , e + a} where there were
at least t + 1 proposals for a value v′ ̸= v, and lockedEpochi ≥ e. All
processes in Lv,e will then propose v, nil or not propose at all during
epoch e + a + 1. By Lemma 21, correct processes only propose once
per epoch, at least t + 1 processes propose v or nil; since messages
cannot be forged, the only values that can get at least t+ 1 proposals
for the epoch e+ a+ 1 are v and nil. If a correct process j delivers at
least t + 1 proposals for v, it sets lockedValuej to v and lockedEpochj
to e + a + 1 (Lines 13 - 15 of Algorithm 4); otherwise, it does not
change lockedValuej nor lockedEpochj (Line 20 of Algorithm 4). At
the end of epoch e + a + 1, there is no correct process j such that
lockedValuej ̸= v ∧ lockedEpochj = e + a + 1. Moreover, processes in
Lv,e, only propose v or nil during epoch e+ a+ 1.

We proved that if |Lv,e| ≥ t+1, no correct process i will have lockedValuei ̸=
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v ∧ lockedEpochi ≥ e; moreover a process in Lv,e only validly proposes v or
nil for each epoch e′ > e.

Lemma 25 (Agreement). In a partially synchronous system, TenderTee sat-
isfies the following property: If there is a correct process that decides a value
v, then eventually all the correct processes decide v.

Proof. Let i be a correct process. Without loss of generality, assume that i
is the first correct process that decides and assume that it decides value v
during epoch e. At time t where i decided, no other node has decided, even
those having a bigger epoch number. To decide, i delivered at least t + 1
votes for v for epoch e. Since there are less than t Byzantine processes, and
since by Lemma 21 correct processes can only vote once per epoch, so at
least 1 correct process voted for v during epoch e, so we have Lv,e = {i : i
validly votes for v during epoch e}, we assume that |Lv,e| ≥ t+1. By Lemma
24 a process in Lv,e only proposes v or nil during each epoch after e, and no
correct process j will have lockedValuei ̸= v ∧ lockedEpochi ≥ e. Thanks to
the broadcast guarantees (Definition 1), all correct processes will eventually
deliver the t + 1 votes for v from epoch e that made i decides; especially so
because when a correct process decides, it sends back all votes it delivered
that make it decide (Line 14 of Algorithm 3).

If a correct process j does not decide before delivering these votes, when
eventually it delivers them, it will decide v (Lines 36 - 37 of Algorithm 4).
Otherwise, it means that j decides before delivering the votes from epoch e.

By contradiction, we assume that j decides a value v′ ̸= v during an epoch
e′ > e, so j delivered at least t + 1 votes for v′ during epoch e′ (Lines 36 -
37 of Algorithm 4). Since a correct process only votes once by Lemma 21,
there are less than t Byzantine processes and the messages are unforgeable,
at least 1 correct process voted for v′ during epoch e′.

A correct process votes a non-nil value if that value was proposed at
least t + 1 times during the current epoch (Lines 13 - 26 of Algorithm 4).
By Lemma 22 processes validly proposes at most once, there are less than t
Byzantine processes and the messages are unforgeable, so at least 1 correct
process proposed v′ during e′. Since e′ > e and |Lv,e| ≥ t + 1, by Lemma
24 there are at least 1 correct process that proposed v or nil during epoch
e′. Even if all the t processes remaining proposes v′, there cannot be t + 1
proposals for v′, which is a contradiction. So, j cannot decide v′ ̸= v after
epoch e since by assumption, e is the first epoch where a correct process
decides.
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Lemma 26. In a partially synchronous system, if there is an epoch after
which, when a correct process broadcasts a message during a round, it is
delivered by all correct processes during the same round, TenderTee satisfies
the following property: If a correct process i updates lockedValuei to a value
v during epoch e, then at the end of the epoch e, all correct processes have
validValue = v and validEpoch = e.

Proof. We prove this lemma by construction.
Let e be the epoch after which when a correct process broadcasts a mes-

sage during a round r, it is delivered by all correct processes during the same
round r. Let i be a correct process, we assume that at the end of epoch
e′ ≥ e, i has lockedValuei = v and lockedEpochi = e′, it means that i deliv-
ered at least t+1 proposals for v during epoch e′ (Lines 13 - 15 of Algorithm
4). Thanks to the reliable broadcast guarantees, and since all messages are
propagated, all correct processes will deliver these proposals for v in the
worst-case in the VOTE round. Let j be a correct process since j will deliver
at least t + 1 proposals for v and epoch e′ during the VOTE round, it will
set validValuej = v and validEpochj = e′ (Lines 33 - 35 of Algorithm 4).

Lemma 27 (Termination). In a partially synchronous system, TenderTee
satisfies the following property: Every correct process eventually decides a
value.

Proof. By construction, if a correct process does not deliver more than t +
1 messages (or 1 from the proposer in the PRE-PROPOSE round) from
different processes during the corresponding round, it increases the duration
of its round. So eventually, during the synchronous period of the system,
all the correct processes will deliver the pre-proposals, proposals and votes
from correct processes respectively during the PRE-PROPOSE, PROPOSE
and the VOTE round; and messages delivered by a correct process will be
delivered by the others at most in the following round. Let e be the first
epoch after that time.

If a correct process decides before e, by Lemma 25 all correct processes
will eventually decide, which ends the proof.

Otherwise, at the beginning of epoch e, no correct process decides yet.
Let i be the proposer of epoch e. First, we assume that i is correct and
pre-proposes v; v is valid since getValue() always gives a valid value (Line 7
of Algorithm 3 & Line 44 of Algorithm 4), and validValuei is always valid
(Lines 13 & 33 of Algorithm 4). We have two cases:
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• Case 1: At the beginning of epoch e, |{j : j correct ∧ (lockedEpochj ≤
validEpochi ∨ lockedValuej = v)}| ≥ t+ 1.

Let j be a correct process where the condition lockedEpochj ≤
validEpochi∨ lockedValuej = v holds. After the delivery of the pre-
proposal v from i, j will update proposalj to v (Lines 28 - 34 of Al-
gorithm 3). During the PROPOSE round, j proposes v (Line 4 of
Algorithm 4), since there are at least t+1 similar correct processes (in-
cluded j), they will all propose v, and all correct processes will deliver
at least t+ 1 proposals for v (Line 8 of Algorithm 4).

Correct processes will set their variable vote to v (Lines 13 - 4 of Algo-
rithm 4), then will vote v, and they will deliver all the votes (at least
t + 1) from this epoch (Lines 24, 26 & 27 of Algorithm 4). Since no
correct process has decided yet, and since each of them delivers at least
t+ 1 votes for v, they will decide v (Lines 36 - 37 of Algorithm 4).

• Case 2: At the beginning of epoch e, |{j : j correct ∧ (lockedEpochj ≤
validEpochi ∨ lockedValuej = v)}| < t+ 1.

Let j be a correct process where the condition lockedEpochj >
validEpochi∧ lockedValuej ̸= v holds. When i will make the pre-
proposal, j will set proposalj to nil (Line 32 of Algorithm 3) and will
propose nil (Line 4 of Algorithm 4).

By counting only the proposed values of the correct processes, no value
will have at least t+ 1 proposals for v. There are two cases:

– No correct process delivers at least t + 1 proposals for v during
the PROPOSE round, so they will all set their variable vote to nil,
then they will vote nil and go to the next epoch without changing
their state (Lines 20 & 24 - 27 & 38 - 44 of Algorithm 4).

– If some correct processes deliver at least t + 1 proposals for v
during the PROPOSE round, i.e., some Byzantine processes send
proposals for v to those processes.

As in the previous case, they will vote for v, and since there are t+1
of them, all correct processes will decide v. Otherwise, there are
less than t+1 correct processes that deliver at least t+1 proposals
for v. Only them will vote for v (Line 24 or 26 of Algorithm 4).
Without Byzantine processes, there will be less than t+1 votes for
v, no correct process will decide (Lines 36 - 37 of Algorithm 4) and
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they will go to the next epoch; if Byzantine processes send votes
for v to a correct process such that it delivers at least t+1 votes for
v during VOTE round, then the correct process will decide (Lines
36 - 37 of Algorithm 4), and by Lemma 25 all correct processes
will eventually decide.

Let k be one of the correct processes that delivers at least t + 1
proposals for v during the PROPOSE round, it means that
lockedValuek = v and lockedEpochk = e. It follows by Lemma
26 that at the end of epoch e, all correct processes will have
validValue = v and validEpoch = e.

If there is no decision, either no correct process changes its state, or all
correct processes change their state and have the same validValue and
validEpoch; therefore, eventually, a proposer of an epoch will satisfy
Case 1, and that ends the proof.

If i, the proposer of epoch e, is a Byzantine process and more than t+ 1
correct processes delivered the same message during PRE-PROPOSE round,
and that pre-proposal is valid, the situation is the same as if i was correct.
Otherwise, there are not enough correct processes that delivered the pre-
proposal, or if the pre-proposal is not valid, then there will be less than t+1
correct processes that will propose that value, which is similar to case 2.

Since proposers are selected in a round-robin fashion, a correct process
will eventually be the proposer, and correct processes will decide.

Theorem 28. In a partially synchronous system, TenderTee implements the
consensus specification.

Proof. The proof follows directly from Lemmas 19, 20, 25 and 27. By Lemma
19, we show that TenderTee satisfies Validity; by Lemma 20, we show that
TenderTee satisfies Integrity; by Lemma 25, we show that TenderTee satisfies
Agreement; and by Lemma 27, we show that TenderTee satisfies Termination.

7. Conclusion

We focus on Byzantine Reliable Broadcast in trusted components. First,
we show that adding a TMC-Object to all processes to prevent equivocation
does not improve the security threshold or security guarantees of Bracha’s
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Byzantine Reliable Broadcast, thanks to the formalism introduced in [28].
Second, we propose an optimal trusted component-based algorithm that im-
plements Byzantine Reliable Broadcast in asynchronous settings with re-
silience n ≥ 2t+1. Our algorithm employs a very simple trusted component
that provides a trusted monotonic counter.

Furthermore, we present TenderTee, an enhanced version of the Tender-
mint blockchain. TenderTee uses a lightweight TMC-Object trusted abstrac-
tion in order to increase the Byzantine resilience of the original and repeated
consensus Tendermint protocols from one-third to one half. By reducing the
number of needed nodes this protocol is appealing for industrialisation since
the number of nodes to be maintained in order to guarantee agreement is
drastically reduced.
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