
SPHINCSLET: An Area-Efficient Accelerator for
the Full SPHINCS+ Digital Signature Algorithm
Sanjay Deshpande1, Yongseok Lee2, Cansu Karakuzu2,3, Jakub Szefer1,4 and

Yunheung Paek2

1 Yale University, New Haven, USA, sanjay.deshpande@yale.edu
2 Seoul National University, Seoul, South Korea, yslee@sor.snu.ac.kr, ypaek@snu.ac.kr

3 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany, cansu.karakuzu@hpi.de
4 Northwestern University, Evanston, USA, jakub.szefer@northwestern.edu

Abstract. This work presents SPHINCSLET, the first fully standard-compliant and
area-efficient hardware implementation of the SLH-DSA algorithm, formerly known
as SPHINCS+, a post-quantum digital signature scheme. SPHINCSLET is designed
to be parameterizable across different security levels and hash functions, offering
a balanced trade-off between area efficiency and performance. Existing hardware
implementations either feature a large area footprint to achieve fast signing and
verification or adopt a coprocessor-based approach that significantly slows down
these operations. SPHINCSLET addresses this gap by delivering a 4.7× reduction in
area compared to high-speed designs while achieving a 2.5× to 5× improvement in
signing time over the most efficient coprocessor-based designs for a SHAKE256-based
SPHINCS+ implementation. The SHAKE256-based SPHINCS+ FPGA implementa-
tion targeting the AMD Artix-7 requires fewer than 10.8K LUTs for any security level
of SLH-DSA. Furthermore, the SHA-2-based SPHINCS+ implementation achieves a
2× to 4× speedup in signature generation across various security levels compared to
existing SLH-DSA hardware, all while maintaining a compact area footprint of 6K
to 15K LUTs. This makes it the fastest SHA-2-based SLH-DSA implementation to
date. With an optimized balance of area and performance, SPHINCSLET can assist
resource-constrained devices in transitioning to post-quantum cryptography.
Keywords: Post-Quantum Cryptography · PQC · Digital Signature Scheme ·
SPHINCS+ · SLH-DSA

1 Introduction
The advent of practical quantum computers can pose a serious threat to the current

public-key cryptographic standards we use [GE21]. As a result, there is an essential need to
find alternative means of securing our sensitive information, and this is where post-quantum
cryptography (PQC) has emerged as a promising alternative [KP20, Rah22, SM19]. In
this context, the National Institute of Standards and Technology (NIST) has started a
standardization effort for PQC algorithms [CSD17] in 2016. The process involved the
evaluation of different Key Encapsulation Mechanism (KEM) schemes and Digital Signature
schemes.

In 2022, after the third round of evaluation, one KEM scheme and three digital
signature schemes were selected for standardization [AAC+22]. And among these three
digital signature schemes, SPHINCS+ is one of the selected candidates. In August 2024,
NIST formally published the final standard (FIPS 205) for the SPHINCS+, the Stateless
Hash-Based Digital Signature Algorithm (called SLH-DSA in the standard) [oST23].

mailto:sanjay.deshpande@yale.edu
mailto:yslee@sor.snu.ac.kr
mailto:ypaek@snu.ac.kr
mailto:cansu.karakuzu@hpi.de
mailto:jakub.szefer@northwestern.edu

2
SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature

Algorithm

Additionally, a new first round started in July 2023 for additional digital signature
candidates.

As the name SLH-DSA suggests, SPHINCS+ is a stateless hash-based signature. The
stateless classification of SPHINCS+ is sub-divided into the following mechanism:

1. The private key used for signing includes several states, and during the signing
operation, any state could be chosen at random. Ergo, choosing a specific state over
the other states is highly unlikely.

2. However, even if the choice of states is repeated, the overall signature scheme is still
secure.

As recommended in the standard, SLH-DSA comes in three different security levels (128,
192, and 256), and each security level is sub-divided into two variants: a small signature
(‘s’) variant for smaller signature size and a fast signature (‘f ’) variant where the signature
generation is relatively faster. The heart of all the variants lies in the underlying hash
function used. Each variant of SLH-DSA could be constructed using either the SHA-2 or
the SHAKE256 hash functions.

Among other criteria, hardware evaluation of the PQC candidates was also an essential
criterion in the NIST’s PQC standardization effort. Therefore, various efforts have been
made to develop efficient implementations of SPHINCS+. These works can be categorized
mainly into two types: hardware-software (HW-SW) codesign and full hardware (HW)
design.

Multiple works in the literature present implementations that are based on a HW-SW
codesign such as RISC-V interfaced with a hardware hash accelerator [WOS22, Saa24,
KSS24]. These implementations showcase the modularity of the designs, where users can
adapt to different hardware hash modules as per their performance requirements. These
works also highlight that the area and memory utilization of different security levels remain
the same. This is because the processor controls the operational flow of the algorithm.

In addition to this, there are other works that are finite state machine (FSM) based full
HW designs dedicated to accelerating SPHINCS+ [ALCZ20, ACZ18, BUG+21] signing.
While these designs offer compile-time parameterizability to switch between different
security levels, the FSM is optimized to work with a specific hash function (e.g., SHAKE256),
making it hard to switch to different hash configurations that SPHINCS+ specification
[BDE+17] proposes.

Our work integrates the most effective design approaches from existing literature
to achieve an optimized SPHINCS+ hardware implementation, which we refer to as
SPHINCSLET. The proposed design is a low-area, FSM-based, fully hardware architecture
that adheres to the FIPS 205 standard1 for the stateless hash-based digital signature
algorithm (SLH-DSA) [oST23] and is compile-time parameterizable across different security
levels and hash functions. A key aspect of this design is the HASH_TILE approach, where the
finite state machine (FSM) interfaces with a modular HASH_TILE block. The HASH_TILE
is a versatile hash module capable of supporting all hash modes required by SLH-DSA.
Moreover, the underlying hash function can be easily swapped, allowing flexibility in
algorithm selection. The presented evaluation includes implementations for SHAKE256
and SHA-2, as recommended by the standard.

While the fully hardware-based designs in [ALCZ20] achieve high performance, they
come at the cost of substantial area overhead. Conversely, the hardware-software co-design
approach in [Saa24] reduces area utilization but results in significantly slower performance.
The proposed design strikes a balance between these two approaches, offering an optimized
trade-off between area and speed. The SHAKE256-based implementation presented in
this work is considerably more area-efficient than existing full hardware designs while

1Our hardware design is compliant with the FIPS 205 version released in Aug 2024.

Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer and Yunheung Paek 3

maintaining high performance. Furthermore, it achieves a 2.5× to 5× speedup in signature
generation and a 2.3× to 3.5× speedup in signature verification across various parameter
sets compared to [Saa24], with only a marginal increase in area. Additionally, this work
presents the fastest SHA-2-based SPHINCS+ hardware implementation to date.

2 Contribution
Following is the list of contributions to this work:

• We present the fully standard-compliant, lightweight, SLH-DSA hardware implemen-
tation that uses SHAKE256 and SHA-2 (SHA256 and SHA512) as the hash functions
for its construction. The design is parameterizable at compile time between different
security levels and small and fast variants.

• We present a novel HASH_TILE module that is constructed using two hash modules
to accomplish different hashing requirements of SLH-DSA. Our HASH_TILE module
is parameterizable in terms of different hash functions (SHA256, SHA512, and
SHAKE256).

• We present a high-speed full-width implementation of SHAKE256 module.

• We present a detailed evaluation of the related work and compare our work with
other outdated SPHINCS+ hardware implementations.

• All the presented results could be regenerated using our code. Our code will
be available with the open-source license at https://github.com/caslab-code/
pqc-hw-sphincslet.

3 Background
SLH-DSA utilizes several signature schemes as building blocks: Winternitz One-Time

Signature Plus (WOTS+), Forest of Random Subsets (FORS), and the eXtended Merkle
Signature Scheme (XMSS). This section provides a brief introduction to these elements
and explains the parameters of SLH-DSA for a better understanding of the SLH-DSA
signature scheme.

3.1 SLH-DSA Parameter Sets
Table 1 shows the parameter sets of SLH-DSA in the standard, with each parameter

defined as follows: n is the security parameter, length of the private key, public key, or
signature element in bytes, h is the height of the SLH-DSA hypertree, d is the number of
layers in the SLH-DSA hypertree, logt is the number of leaves per hash tree in FORS, k is
the number of hash trees in FORS, w is the Winternitz parameter and len is the number
of secret values in the WOTS+ private key. Each parameter set can be instantiated using
either SHAKE256 or SHA-2 (SHA256 and SHA512) as the underlying hash function.

3.2 Winternitz One-Time Signature Plus
WOTS+ is a one-time signature scheme used in SLH-DSA. Generating the WOTS+

public key involves creating len secret key values, determined by n and w. As shown
on line 12 of Algorithm 1, the PRF hash function generates each secret value by taking
PK.seed, ADRS, and SK.seed as inputs. The public key is obtained through the iterative
application of the hash function F to the secret keys for w − 1 iterations, known as the
chain function, as shown on line 14 of Algorithm 1 and Algorithm 2. When it sets i = 0,

https://github.com/caslab-code/pqc-hw-sphincslet
https://github.com/caslab-code/pqc-hw-sphincslet

4
SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature

Algorithm

Table 1: SLH-DSA parameter sets.
Parameter Set n h d logt k w len Sec. Level
SLH-DSA-128s 16 63 7 12 14 16 35 1
SLH-DSA-128f 16 66 22 6 33 16 35 1
SLH-DSA-192s 24 63 7 14 17 16 51 3
SLH-DSA-192f 24 66 22 8 33 16 51 3
SLH-DSA-256s 32 64 8 14 22 16 67 5
SLH-DSA-256f 32 68 17 9 35 16 67 5

Algorithm 1 wots_sign, Signature Generation of WOTS+

Input: Input Message M, secret seed SK.seed, public seed PK.seed, address ADRS)
Output: WOTS+ signature sig

1: csum = 0
2: msg = base_2b(M, lgw, len1)
3: for i = 0 to len1 − 1 do
4: csum = csum + w − 1 − msg[i]
5: csum = csum ≪ ((8 − ((len2 · lgw) mod 8)) mod 8)
6: msg = mgs ∥ base_2b

(
toByte

(
csum,

⌈
len2·lgw

8

⌉)
, lgw, len2

)
7: skADRS = ADRS
8: skADRS.setTypeAndClear(WOTS_PRF)
9: skADRS.setKeyPairAddress(ADRS.getKeyPairAddress())

10: for i = 0 to len1 − 1 do
11: skADRS.setChainAddress(i)
12: sk = PRF(PK.seed, SK.seed, skADRS) // Compute PRF hash function
13: ADRS.setChainAddress(i)
14: sig = chain(sk, 0, msg, PK.seed, skADRS) // Compute chain operation of WOTS+

return sig

the iteration number of the hash function F sets to s = w − 1. After computing len public
values, they are compressed into a single n-byte value using a tweakable hash function.
WOTS+ is utilized as wots_sign with the XMSS Merkle tree as shown in Algorithm 3.
The wots_sign function combines the hash function PRF and the chain function at each
chain i in the range of 0 < i < len − 1.

3.3 eXtended Merkle Signature Scheme (XMSS)

The eXtended Merkle Signature Scheme (XMSS) is one of the key building blocks of the
SLH-DSA. Algorithm 3 shows the signature generation of XMSS with use of WOTS+, this
algorithm represents the ht_sign operation, which is used on line 16 of Algorithm 4 (the
top-level SLH-DSA signature generation algorithm). The ht_sign includes the signature
generation of XMSS and the computation of the public key from the signature. XMSS
utilizes a Merkle tree structure that stores the WOTS+ public keys as leaf nodes. This tree
is formed by hashing child nodes to generate parent nodes, ending at the root node. A leaf
node is selected for WOTS+ signature generation. To reduce the chance of choosing the
same leaf node repeatedly, SLH-DSA employs d layers of trees, referred to as the hypertree.
In the bottom layer, the WOTS+ leaf node signs the FORS public key, while in upper
layers, the leaf node signs the lower tree’s root node for the XMSS.

Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer and Yunheung Paek 5

Algorithm 2 chain, Chain operation of WOTS+

Input: Input string X, Index i, no. of steps s, public seed PK.seed, address ADRS)
Output: Value of F iterated s times on X

1: if (i + s) ≥ w then
2: return NULL
3: tmp = X
4: for j = i to i + s − 1 do
5: ADRS.setHashAddress(j)
6: tmp = F(PK.seed, ADRS, tmp) Compute F in chain operation of WOTS+

return tmp

Algorithm 3 ht_sign, Signature Generation of XMSS with WOTS+

Input: n-byte message M, secret seed SK.seed, index idx, public seed PK.seed, address
ADRS)

Output: Signature SIGXMSS

1: for j = 0 to h′ − 1 do
2: k = ⌊idx/2j⌋ ⊕ 1
3: AUTH[j] = xmss_node(SK.seed, k, j, PK.seed, ADRS) // Compute XMSS trees

4: ADRS.setTypeAndClear(WOTS_HASH)
5: ADRS.setKeyPairAddress(idx)
6: sig = wots_sign(M, SK.seed, PK.seed, ADRS) // Compute WOTS+

7: SIGXMSS = sig ∥ AUTH
return SIGXMSS

3.4 Forest of Random Subsets (FORS)
FORS is referenced on line 12 and 14 of Algorithm 4. In line 12 of Algorithm 4, FORS

is utilized at the lowest layer and comprises k Merkle trees, with leaf nodes generated
through the hashing of FORS secret keys. In line 14 of Algorithm 4, the k tree root nodes
are compressed into a single n-byte valued node, forming the FORS public key.

3.5 Complete SLH-DSA
From SLH-DSA, we implement signature generation and signature verification, the

algorithms for which are specified in FIPS 205 [oST23]. These algorithms build on the
prior SPHINCS+ [BDE+17] submission. We expect key generation to be less frequent,
and it can be implemented on standard CPUs, thus we do not provide custom hardware
design for it. Key generation mainly computes random bit generator and XMSS tree to
generate an SLH-DSA key pair (PK, SK). During the signature generation and verification,
SLH-DSA scheme uses six different functions, namely PRFmsg, Hmsg, PRF, T

ℓ
, PRF,

and F from [oST23, Section 4]. Each of these functions utilizes the designated hash
function (SHAKE256 or SHA256 or SHA512) for the SLH-DSA instantiations.

3.5.1 Signature Generation

As shown in Algorithm 4, the complete signature generation procedure combines the
WOTS+, XMSS and FORS schemes (from Section 3.2, Section 3.3, Section 3.4) for quantum
resilience. FORS is used to sign the message digest, creating a hypertree structure for the
FORS public key to produce an SLH-DSA signature. Extracted bits from the message
digest are utilized for signing with the FORS key, selecting an XMSS tree, and choosing a
WOTS+ key alongside its corresponding FORS key within that specific XMSS tree.

6
SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature

Algorithm

Algorithm 4 slh_sign, Signature Generation of SLH-DSA
Input: Message M, private key SK=(SK.seed, SK.prf, PK.seed, PK.root)
Output: Signature SIG

1: ADRS = toByte(0, 32) // Initialize state
2: opt = PK.seed
3: R = PRFmsg(SK.prf, opt, M)
4: SIG = SIG ∥ R
5: digest = Hmsg(R, PK.seed, PK.root, M) // Compute message digest and index
6: tmp_md = first floor ((ka + 7)/8) bytes of digest
7: tmp_idxtree = next floor ((h − h/d + 7)/8) bytes of digest
8: tmp_idxleaf = next floor ((h/d + 7)/8) bytes of digest
9: md = first ka bits of tmp_md

10: idxtree = first h − h/d bits of tmp_idxtree

11: idxleaf = first h/d bits of tmp_idxleaf

12: SIGF ORS = FORS_sign(md, SK.seed, PK.seed, ADRS) // Compute FORS Merkle trees
13: SIG = SIG ∥ SIG_FORS
14: PKF ORS = fors_pkFromSig(sig_fors, md, PK.seed, ADRS) //Compute Hash from

FORS Merkle tree roots
15: ADRS.setType(TREE)
16: SIGHT = ht_sign(PKF ORS , SK.seed, PK.seed, idxtree, idxleaf) // WOTS+, XMSS

trees
17: SIG = SIG||SIGHT

return SIG

3.5.2 Signature Verification

Signature verification involves computing the message digest and reconstructing trees
up to the hypertree root. It uses the same hash functions and similar operations for
signature generation. For example, in WOTS+, the signature verification uses the same
chain operation of Algorithm 2 with s = w − 1 − msg. Hence, we do not discuss details of
signature verification in this chapter, and it can be obtained in [oST23].

4 Related Work
Amiet et al. [ACZ18] introduced an FPGA-based accelerator for SPHINCS-256 [BHH+15],

which represents the earlier version of SPHINCS+ with different internal operations and
hash functions. Their SPHINCS-256 architecture comprises a control unit, a BLAKE-256
hash module, a highly pipelined ChaCha12 hash module. While they presented the design
with fast signing and verification, it resulted in significant resource utilization, e.g., 19K
LUTs, 38K FFs, and 36 BRAMs.

Following the proposal of SPHINCS+ [BDE+17] for the NIST PQC standardization
project, Amiet et al. [ALCZ20] presented an updated SPHINCS+ hardware implementation.
They utilized a fully unrolled KECCAK pipeline, the core element of the SHAKE256 module,
and targeted fast signing. Nonetheless, their implementation of SPHINCS+ utilized even
greater resources, peaking at 51K LUTs, 74K FFs, and 22.5 BRAMs. They introduced a
fault attack by inducing supply-voltage glitches in the SPHINCS+ FPGA implementation.
To mitigate this vulnerability, they recommended duplicating the hardware. However,
adopting this countermeasure would result in a doubling of the resource usage.

In order to achieve a more area-efficient SPHINCS+ core, Berthet et al. [BUG+21]
proposed a SPHINCS+ implementation that utilizes the SHA256 hash function, which
occupies small resources with 6K LUTs, 5K FFs, and 0.5 BRAM. Their design prioritized

Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer and Yunheung Paek 7

low-area usage but resulted in slower signing and verification compared to the previous
hardware implementation of [ALCZ20], lagging behind by approximately a factor of 100.
As mentioned earlier in this chapter in Section 3.5, FIPS 205 mandated changes with respect
to the SPHINCS+ specification, replacing SHA256 with SHA512 hash function for Hmsg,
PRFmsg, H, and T

ℓ
functions. This would mean incorporating an additional SHA512 core

alongside the existing SHA256 core, leading to an increase in the overall area. Therefore, the
SPHINCS+-SHA256-256f-simple and SPHINCS+-SHA256-256s-simple implementations of
SPHINCS+ in [BUG+21] are no longer compliant with the FIPS 205 specification.

Another area-efficient SPHINCS+ implementation was given by Wagner et. al in
[WOS22]. The implementation is targeted at a RISC-V-based secure boot system. They
focused on SHA-2-based SPHINCS+ with a 32-bit RISC-V processor, which shows signature
verification faster than software. [KSS24] presented signature generation and verification
of SHAKE256-based SPHINCS+ with a 32-bit RISC-V processor. They occupy 24K
LUTs, 12K FFs in AMD Ultrascale+, which shows lower clock cycles than software.
[Saa24] implemented SHAKE256-based and SHA-2-based SLH-DSA with a 32-bit RISC-V
processor with the hardware hash modules. They accelerated design by implementing the
hardware hash modules and focused on firmware control to optimize the padding format
for additional improvement. The RISC-V processor communicates with the hardware hash
modules occupying 14K LUTs, 9K FFs, 32 BRAMs (for an integrated design combining
both SHA-2 and SHAKE256 modules), and showing lower clock cycles than previous
works.

In this chapter, we introduce a standard-compliant, area-efficient SLH-DSA implemen-
tation using SHAKE256, SHA256, and SHA512. Given the highly parallelizable nature
of SPHINCS+ operations, we chose to employ two low-area hash modules to construct
a HASH_TILE that handles all the hashing requirements of the SLH-DSA described in
Section 5.1, significantly boosting the speed of our implementation. Notably, our work
also incorporates all the parameter sets and variants of SLH-DSA and implements the
modifications outlined in the FIPS 205 standard.

5 SPHINCSLET - Hardware Design
Figure 1 illustrates the design overview of our SPHINCSLET implementation. Our

HASH_TILE module is utilized to support the hash operations in SLH-DSA, accompanied
by Finite State Machine (FSM), which is also referred as the Control Logic in Fig. 1.
The FSM includes the WOTS+, Merkle tree, and pre/post processing sub-modules and
manages the HASH_TILE to perform the SLH-DSA operations. Input and output data
for the HASH_TILE is effectively managed by storing odd and even indexed nodes in two
internal memories, optimizing the signature generation and verification. Based on the
security level and the underlying hash function used in the SLH-DSA design, we use two
different types of hardware design architectures for our SPHINCSLET design shown in
Fig. 1. For all SHAKE-256 based SPHINCSLET and {128s, 128f} variants of SHA-2 based
SPHINCSLET we use Fig. 1a and for {192s, 192f, 256s, 256f} variants of SHA-2 based
SPHINCSLET we use Fig. 1b.

5.1 HASH_TILE

In this section, we present the details of our HASH_TILE hardware module. The hardware
block design of the HASH_TILE is shown in Fig. 3. The HASH_TILE performs the hash
function and pseudorandom function operations described in the [oST23, Section 4] in
an efficient processor-based form. The HASH_TILE is parameterized to work with either
SHAKE256, or SHA256, or SHA512 hash functions to cater the needs of SHAKE256-based
SPHINCS+ and SHA-2-based SPHINCS+ designs respectively. We build our HASH_TILE

8
SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature

Algorithm

L_HASH R_HASH

HASH_TILE

Memory

FORS FSM

XMSS FSM

Merkle Tree FSMs

L_BRAM R_BRAM

BRAM
Block

BRAM
BlockBRAM

BlockBRAM
Block

SPHINCSLET module with one HASH_TILE

Control Logic

WOTS+ FSM

Pre/Post
Processing

(a) SPHINCSLET module with
two HASH_TILEs

L_HASH R_HASH

HASH_TILE

Memory

FORS FSM

XMSS FSM

Merkle Tree FSMs

L_BRAM R_BRAM

BRAM
Block

BRAM
BlockBRAM

BlockBRAM
Block

SPHINCSLET module with two HASH_TILE

Control Logic

WOTS+ FSM

Pre/Post
Processing

L_HASH R_HASH

HASH_TILE

L_BRAM R_BRAM

Interco
nnect

(b) SPHINCSLET module with one
HASH_TILE

Figure 1: Overview diagram of our hardware architecture.
Th

et
a

(θ
)

rh
o

(ρ
)

pi
 (π

)

ch
i (

χ)

Io
ta

 (ι
)

SR
EG

SR
EG

keccak-f round

control logic

SHAKE256

Figure 2: Hardware block design of SHAKE256 module.

using two hash (SHAKE256 or SHA256 or SHA512) modules, L_HASH and R_HASH as
shown in the Fig. 3.

5.1.1 SHAKE256-based HASH_TILE

To construct the SHAKE256-based HASH_TILE, we design our own SHAKE256 hardware
module.

SHAKE256 SHAKE256 is an extendable-output function (XOF) based on the Keccak
sponge construction [BDPVA13]. SHAKE256 allows generating output of any desired
length unlike fixed-length hash functions (e.g., SHA3-256, SHA3-512). It uses the Keccak-f
permutation function in its construction. Keccak-f is a sponge function that operates on a
state of 1600 bits. The core operation of Keccak is the Keccak-f[b] permutation, which
consists of multiple rounds of transformation. The number of rounds is determined by
12+2× log2(w) (where w is the lane size). In the SHAKE256 setting of the keccak, w = 64.
Therefore, the number of rounds is 24. Each round consists of five steps: θ - diffusion, ρ -
bit rotation, π - lane permutation, χ - non-linerarity, and ι - Xoring a round constant.

Fig. 2 shows the hardware design of our SHAKE256 module. In our hardware implemen-
tation of keccak-f round function, { θ, ρ, π, χ, and ι } are implemented using combinatorial
logic. Our keccak-f round function implementation is a full-width round-based iterative
architecture. Hence, after each round, the output is registered and fed back into the round
function. Although our keccak-f round function implementation is full width, we restrict
the SHAKE256 to a 64-bit input and output interface. This is because all the data fed
into the SHAKE256 module is loaded from a BRAM. Hence, having a wider data width
would require larger block RAM utilization.

Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer and Yunheung Paek 9

L_SHAKE
{SHAKE256,

SHA512, SHA256}

R_SHAKE
{SHAKE256,

SHA512, SHA256}

Control Logic

L
BRAM

R
BRAM

L
FIFO

R
FIFO

opcode
3

32 32

32

msg_in_size
32

h_iterations
32

32

l_data_out

l_data_in

l_fifo_full r_fifo_full

r_data_out

r_data_in

Figure 3: Hardware block design of HASH_TILE module.

5.1.2 SHA-2-based HASH_TILE

As specified in Section 3.5, the SHA-2-based HASH_TILE is constructed either with
SHA256 hash function or SHA512 hash functions depending on the security level of
SLH-DSA. Both SHA256 and SHA512 belong to SHA-2 family [CKSV06].

• SHA256 generates a 256-bit (32-byte) hash value by processing 512-bit input blocks.
It uses Merkle-Damgård structure with Davies-Meyer compression in its construction.
It utilizes 64 rounds of bitwise operations, modular additions, and logical functions.

• The construction of SHA512 is also similar, but it operates on 1024-bit input blocks
and produces a 512-bit (64-byte) hash. It uses 80 rounds and a larger word size
(64-bit vs. 32-bit in SHA-256).

In security level 1, as shown in Fig. 1a, we use a single SHA256-based HASH_TILE,
which is constructed using two SHA256 hash functions. In security level 3 or 5, as shown
in Fig. 1b, we require two HASH_TILEs: one based on SHA256 and one based on SHA512.
Each HASH_TILE is constructed using its respective two hash functions. It is noted as
SHA256+SHA512-based HASH_TILE in Table 3. We utilize the SHA256 module referenced
in [Str23] and the SHA512 module referenced in [Str21]. These implementations are
employed in constructing our HASH_TILE due to their area efficiency, making them suitable
for our low area designs. Their construction is a full-width, round-based implementation
that requires external control logic to inform the modules about incoming block size, the
last block, and padding. We engineer a wrapper around the SHA256 and SHA512 modules
with a 64-bit interface that can manage all necessary control logic. Furthermore, it has
the ability to load inputs sequentially by retrieving them from L_BRAM and R_BRAM, as
illustrated in Fig. 3.

Table 2 illustrates the time and area performance of various hash modules utilized in
our design. First, when we assess our SHAKE256 implementation against other efficient
open-source implementations in the literature, it is evident that our design outperforms
them both in terms of area and time efficiency. Second, when we compare SHA256 versus
SHA512, the area is doubled due to the state size and operating word size being increased
from SHA256 to SHA512.

Both SHAKE256-based HASH_TILE and SHA-2-based HASH_TILE perform a set of
predefined hashing and pseudorandom function operations described in the [oST23, Section
4] in a processor-based form. Since the HASH_TILE follows a processor-like architecture, we
enable all required operations through a set of opcodes. In the following list, we provide
the opcodes used in both SHAKE256-based and SHA-2-based HASH_TILE design.

1. T_L: It represents the Tℓ(PK.seed, ADRS, Mℓ) from [oST23, Section 4] in our
hardware design. It is a hash operation that maps an n + 32 + n × k-byte input or
an n + 32 + n × len-byte input to an n-byte output. The specific input size depends

10
SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature

Algorithm

Table 2: Comparison of time and area of the hash modules targeting the AMD Artix 7 xc7a200t-3
FPGA. ∗ Frequency is constrained to 100 MHz, maximum clock frequency is not reported.

Hash Variant Area Cycles Frequency
LUT DSP FF BRAM (MHz)

SHAKE256 [our] 4,383 0 2,708 0 24 250
SHAKE256 [Saa24] 5,443 0 2,445 0 24 100∗

SHAKE256 [DXN+23] 4,797 0 1,845 0 74 166
SHA256 [Str23] 1,758 0 1,052 0 66 113
SHA512 [Str21] 3,175 0 2,101 0 82 110

on the chosen operation, which includes WOTS+ public key compression and FORS
root compression.

2. PRF: It represents the PRF(PK.seed, SK.seed, ADRS) from [oST23, Section 4]
in our hardware design. It is a pseudorandom function that generates the secret
values in WOTS+ and FORS private keys. It take 2n + 32-byte input and generates
n-bytes of pseudorandomness.

3. H: It represents the H(PK.seed, ADRS, M2) from [oST23, Section 4] in our
hardware design. It is a special case of Tℓ, which takes a 3n + 32-byte input and
generates hash of n-bytes. This function is used in Merkle tree generation in both
FORS and XMSS.

4. H_MSG: It represents the Hmsg(R, PK.seed, PK.root, M) from [oST23, Section
4] in our hardware design. It is used for computing the message digest of the
message to be signed. It takes (3n + Message Size) bytes as input and generates
⌊(k × log(t) + 7)/8⌋ + ⌊(h − h/d + 7)/8⌋ + ⌊(h/d + 7)/8⌋-byte output.

5. F: It represents the F(PK.seed, ADRS, M1) from [oST23, Section 4] in our hardware
design. It is a hash function that takes an 2n + 32-byte input and produces an n-byte
output. It is used in iterating over WOTS+ chains and generating the FORS leaves.

6. PRF_MSG: It represents the PRFmsg(SK.prf , OptRand, M) from [oST23, Sec-
tion 4] in our hardware design. A pseudorandom function that generates the ran-
domizer for the randomized hashing of the message to be signed. It takes (n + 32+
Message Size)-byte input and generates n-bytes of randomness.

7. F_WOTS_PLUS_h: This is a special case which we design in our HASH_TILE
using the F case. While computing the WOTS+ public key and WOTS+ signature,
the F operation needs to be iterated. To minimize the input write and output read
cycles, required iteration number is taken as input and the final result is computed
by iterating F for the necessary number of times. For each iteration, the ADRS
value from the F operation needs to be updated, and this is handled internally by
the control logic shown in Fig. 3.

8. H_TREE: This is a special extension of H which we design in our HASH_TILE,
which computes one level of a Merkle tree. It computes the hash of two child nodes
using the L_HASH and R_HASH in parallel, followed by hash for the parent node using
the L_HASH and returns the hash for the parent node as a result. We compute the
tree for two reasons: 1. to minimize the cycles. 2. to reduce the complexity of the
main control logic of our design.

Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer and Yunheung Paek11

We note from the aforementioned list of opcodes, all operations except H_TREE
can be performed in sets of two because we have L_HASH and R_HASH. We also note
that depending on the selected opcode, the HASH_TILE operates in two modes, namely,
streaming mode and regular mode. The regular mode is used for the opcode {T_L,
PRF, H, F, F_WOTS_PLUS_h, H_TREE} where the input and output sizes are
fixed. In the regular mode, the data inputs and outputs move through the BRAMs. The
opcode {H_MSG, PRF_MSG} uses the streaming mode because one of the inputs
required in these modes is the message input. The message is not of fixed length; hence,
the HASH_TILE allows a variable-length message to be streamed through the FIFO. The
output still moves through the BRAMs. The variable length messages add complexity of
maintaining the order of all required inputs in opcode {H_MSG, PRF_MSG}, and this
is managed by the Pre/Post processing block, which is part of the Control logic (shown in
Fig. 1).

The reason we choose to store and retrieve the data through the BRAMs is that in most
of the modes presented in Table 3, the output hash is fed as input in the next iteration
of the hash computation. Consequently, to save the data load out and load in cycles, we
write the hash to the appropriate memory location. For a given parameter set (shown
in Table 1), and specific HASH_TILE opcode the number of blocks read from or written
to the memory and the address locations remain constant. Therefore the design remains
constant-time, avoiding any chance of leakages due to non-constant time behavior. The
HASH_TILE also has optional output ports that are coming out of the L_HASH and R_HASH
directly without passing through BRAMs. These ports are not shown in the Fig. 3 because
we do not use them in our SPHINCSLET design described in Section 5.

Our HASH_TILE module has modular structure, which allows us to easily swap between
SHAKE256, SHA256, and SHA512 hash functions. We highlight that this parameterizabil-
ity facilitates us to have a single same top-level control logic (described in Section 5.2) for
different parameter sets and different underlying hash functions. As discussed in Section 5,
the HASH_TILE is integral to building a purely hardware-based SPHINCSLET module. Its
BRAM-based interface enables the HASH_TILE to function effectively as a co-processor as
well.

5.2 FSM (Control Logic) Design
Algorithm 4 shows the algorithm for SLH-DSA signature generation, its operational

flow could be visualized with Fig. 4, and our hardware block design in shown in Fig. 1.
The SLH-DSA signing construction mainly consists of three main schemes: FORS, XMSS,
and WOTS+ (described in Section 3). In our hardware design, the flow of the operations
is handled by the control logic to effectively handle our HASH_TILE design. Firstly, the
Pre/Post Processing FSM loads the inputs message (M), public key seed (PF.seed) and
PRF key (SK.prf) in to the HASH_TILE and initiates the PRF mode from the HASH_TILE
to generate the pseudorandom bits (R). A copy of the R remains in the internal memory
inside the HASH_TILE. Along with that, the Pre/Post Processing FSM loads PF.seed, and
top root node (PF.root) in the HASH_TILE and H_MSG mode is set to generate the
message digest.

Following that, the FORS FSM is initiated. The FORS FSM takes the inputs message
digest, secret seed (SK.seed), PF.seed and context information in the form of an address
(ADRS) and generates a FORS public key using multiple FORS trees as described in
Section 3.4. The root node of the FORS tree (which is the FORS public key) is then
loaded into the WOTS+ scheme. The WOTS+ scheme uses a SK.seed, PK.seed, and
ADRS to generate a secret key (sk0, sk1, ..., sklen−1). Then, the WOTS+ secret key
undergoes ‘(w − 1) iterations’ of F mode of hashing to generate a WOTS+ public key
(as shown in Fig. 5). In WOTS+ computation, we generate the leaf nodes of XMSS, as
shown in Fig. 5, we employ a chain-parallel approach using HASH_TILE. The FSM design

12
SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature

Algorithm

Figure 4: Dataflow diagram of SLH-DSA.

in [ALCZ20] focused on chain operation in WOTS+ uses one-by-one approach to achieve
the high throughput with one big pipelined hash module, while our FSM design uses the
HASH_TILE, which contains two small hash modules, and utilizes the parallelism of the
WOTS+ chain. Once all operations for each chain are complete, we obtain a public key
consisting of len blocks, each of n bytes (given in Table 1), which is compressed to form
a single leaf node using opcode T_L. In our hardware design, all the WOTS+ related
operations are handled by the WOTS+ FSM (shown in Fig. 1). The WOTS+ public key is
then loaded into the XMSS scheme. Similar to the FORS, the XMSS scheme also uses
Merkle trees to generate the signature. However, the parameter sizes for the Merkle trees
in FORS and XMSS differ. The WOTS+ and XMSS schemes are repeated iteratively for d
layers (given in Table 1) for signature generation or signature verification computations.

The computational flow of signature generation and verification of SLH-DSA is very
similar as specified in [oST23]. Hence, we design our SPHINCSLET hardware design control
logic (shown in Fig. 1) in a way that it can handle both operations. The key differences
between the signature generation and signature verification are as follows: 1) In signature
generation, for the XMSS and FORS computation, we need to compute all the nodes of
the Merkle tree to generate the root node. Whereas in signature verification, we only
need to compute one hash per layer in a Merkle tree, based on the provided neighboring
node information. 2) In the signature generation process, we perform the WOTS+ signing
operation with m or w iterations of hash computations at each chain operation using
F_WOTS_PLUS_h (described in Section 5.1). Whereas in signature verification,
WOTS+ signature is verified by iterating over the chain operation for only (w − m − 1)
times, which is also handled by the F_WOTS _PLUS_h.

Merkle Trees As described in Section 3.2 and Section 3.4, FORS and XMSS schemes
include computing Merkle trees, which have similar dataflow. Notable differences between
that schemes include the method of leaf node generation and the size of the Merkle trees.
Nonetheless, the underlying operation remains the same (i.e., hash computation on each
node) Therefore, in our control logic, we designed a parameterizable Merkle tree FSM that
takes the tree height and the number of leaf nodes as inputs, making our Merkle tree FSM
adaptable for both FORS and XMSS operations. Additionally, this also contributes to
the reduction in the area utilization. To support the leaf node generation for XMSS and

Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer and Yunheung Paek13

T_L

𝑊𝑂𝑇𝑆+ PK
(Leaf node of XMSS)

𝑤 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑠𝑘2

𝑠𝑘3

𝑠𝑘0

𝑠𝑘1

𝑠𝑘𝑙𝑒𝑛−1

𝑊
𝑂
𝑇𝑆

+
 C

ha
in

PRF

PRF

PRF

PRF

PRF

F

F

F

F

F

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓
𝑝𝑘0~𝑝𝑘𝑙𝑒𝑛−1

𝑝𝑘2

𝑝𝑘3

𝑝𝑘0

𝑝𝑘1

𝑝𝑘𝑙𝑒𝑛−1

(𝑤 − 1) 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Figure 5: Dataflow diagram of WOTS+ PK generation. (sk0, sk1..., sklen−1) and
(pk0, pk1..., pklen−1) refers to WOTS+ secret and public keys respectively.

Figure 6: Dataflow diagram of Merkle tree, circled numbers represent order of the data being
processed.

FORS, our WOTS+ processor uses different hash types described in the Section 5.1 (PRF,
F_WOTS_PLUS_h, and T_L for XMSS and PRF and F for FORS computation).
As mentioned at the beginning of this Section 5.2, the Merkle tree is parameterized to
work for both XMSS and FORS operations since they share the same structure. Fig. 6
shows an example dataflow of the Merkle tree generation for XMSS. The dataflow for
FORS (shown in Fig. 4) is the same except the inputs of the leaf nodes are part of FORS
secret keys, instead of WOTS+ public key.

In the Merkle tree operations, two child nodes are taken as an input for one hash
operation. As HASH_TILE can operate two hashes in parallel, a total of four child nodes
are received as input. The child nodes are stacked to the internal BRAM by checking the
index of the parent node’s ADRS. The result is stored back in the internal BRAM to
prepare for the subsequent operations i.e., the hash computation of the next node in the
Merkle tree. This minimizes input loading and output retrieval cycles.

To efficiently utilize the HASH_TILE design along with internal BRAM, Merkle tree
computations are performed in units of four nodes. The process begins with the computation
of leaf nodes using WOTS+ public key generation (illustrated in Fig. 5), starting from
the leftmost node. Once four leaf nodes are computed, an H hash operation (denoted
as operation 1 in Fig. 6) is performed to generate two parent nodes at the upper level
of the Merkle tree. Repeating this process once more results in four nodes at the upper
level, which are then processed using another H hash operation (operation 3 in Fig. 6). If
additional leaf nodes remain, the computation returns to the lower level to process the
next set of four nodes. In cases where no leaf nodes remain (as seen in Fig. 6), a final
H hash operation (operation 4) is performed at the upper level. This approach enables
efficient BRAM utilization by limiting storage to only four nodes per level. The sequence
of computations is outlined in Fig. 6, demonstrating an optimized traversal strategy.
Additionally, this method ensures that both the L_SHAKE and R_SHAKE components of
the HASH_TILE (illustrated in Fig. 3) are consistently utilized in parallel, maximizing

14
SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature

Algorithm

Table 3: Area utilization of the SHAKE-based and SHA-2-based HASH_TILEs and time taken
for performing each opcode operation by the HASH_TILE targeting the AMD Artix 7 xc7a200t-3
FPGA. Please note that except for opcode H_TREE, for all other opcodes the time shown is
to perform a set of two operations.

Area Freq. Time (µs)

HASH_TILE LUT FF BRAM (MHz)

T
_

L

PR
F

H

H
_

M
SG

F

PR
F_

M
SG

F_
W

O
T

S_
PLU

S_
h

H
_

T
R

EE

Parameter Set = SLH-DSA 128s
SHAKE256 9,962 6,038 4.0 150 1.0 0.3 0.3 0.3 0.3 0.3 3.2 0.6
SHA256 4,264 4,123 4.0 110 6.2 0.8 0.8 0.8 0.8 0.8 5.5 1.6

Parameter Set = SLH-DSA 192s
SHA256, SHA512 12,466 11,881 8.0 110 8.5 0.8 1.1 1.1 1.4 1.1 10.4 2.2

computational efficiency.

6 Evaluation
In this section, we evaluate different hardware modules described in Section 5 and

provide a detailed comparison with the existing work. For the evaluation and comparison
with the related work, we use the following metrics: for the area, we use look-up-tables
(LUTs), Flipflops (FF), and Block RAM (BRAM), and for timing, we use clock cycles,
maximum clock frequency (Fmax), and time. For our work, the area results are extracted
from post-implementation area reports of the AMD Vivado synthesis tool, and for timing,
the clock cycles are computed using the simulations, and Fmax is computed from post-
implementation timing reports. We verify the functional correctness of our implementation
with the reference implementation [BDE+].

6.1 Evaluation of the HASH_TILE

Table 3 shows the performance results of our HASH_TILE module considering the
parameter sizes for SLH-DSA-128s parameter set (values given in Table 1). The area
results shown for SHA256+SHA512 based HASH_TILE sum of two individual SHA256 and
SHA512 based HASH_TILE. Since this configuration is only used in {192s, 192f, 256s, 256f},
we present an example considering the SHA-2 based SLH-DSA 192s configuration.

6.2 Evaluation of FSM Design
We note that, as shown in Table 4, FSM hardware design remains similar for both

SHAKE256-based design and SHA-2-based design in various parameter sets of SLH-DSA.
The only change lies in the input format of the ADRS. In SHAKE256-based design, the
ADRS size is 32 bytes, which includes layer address, type, padding, and index. As shown
in Table 4, the utilization of internal BRAMs remains consistent across all parameter sets

Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer and Yunheung Paek15

Table 4: Area utilization of the FSMs and internal memory in the SHAKE-based and SHA-2-
based designs targeting the AMD Artix 7 xc7a200t-3 FPGA.

Parameter Set Area Freq.
LUT FF BRAM (MHz)

FSMs and Internal Memory in SHAKE256-based design
128f 1,602 1,421 4 150
128s 1,638 1,470 4 150
192f 1,702 1,642 4 150
192s 2,038 1,695 4 150
256f 1,754 1,732 4 150
256s 2,096 1,758 4 150

FSMs and Internal Memory in SHA256-based design
128f 1,743 1,930 4 110
128s 1,859 1,908 4 110

FSMs and Internal Memory in SHA256+SHA512-based design
192f 1,896 3,156 4 100
192s 2,011 3,195 4 100
256f 1,866 3,267 4 100
256s 1,923 3,290 4 100

of SLH-DSA. This is because the maximum BRAM usage is dictated by the height of the
Merkle tree in FORS, which is the tallest Merkle tree in SLH-DSA, and is given by log t
(refer to Table 1). Consequently, even for the parameter set with the highest Merkle tree,
the total BRAM utilization does not exceed 4 BRAM units. Additionally, the s variant
of the parameter sets features a taller Merkle tree compared to the f variant, leading to
differences in structural depth while maintaining the same BRAM constraints.

6.3 Evaluation of SPHINCSLET

Our SHAKE256-based and SHA-2-based SPHINCSLET hardware design results are shown
in Table 5 and Table 6 respectively. These results are post-implementation results targeted
to AMD Artix 7 (xc7a200t-3) FPGA and are generated using AMD Vivado 2024.2.
Additionally, for SHA-2-based SPHINCSLET design, we also tabulate results targeting
AMD Ultrascale+ (xczu3eg-2) FPGA in Table 6 for fair comparison with the related
work [BUG+21].

6.3.1 Performance Comparison with Full Hardware Design

In Table 5, we present the results for all possible variants of our SHAKE256-based
SPHINCSLET designs, comparing them to the most recent and relevant full hardware
implementation of the SPHINCS+ signature scheme at various security levels [ALCZ20],
which also utilizes SHAKE256 as the hash function in its construction. While the design
in [ALCZ20] takes less time to compute both signature generation (tsign) and signature
verification (tverify) than our hardware design, we note that all of our designs take
significantly less area. We acknowledge that the SHAKE256 design presented in [ALCZ20]
is a full-width implementation that is heavily pipelined, providing an inherent advantage
with several independent hash computations in SPHINCS+. However, this advantage
costs 47K-51K LUTs and 72K-74K flip-flops, making the design unsuitable for lightweight
applications. Hence, to achieve a lower area design in our approach, we avoid pipelining in

16
SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature

Algorithm

Table 5: Comparison of our SHAKE256-based SPHINCSLET hardware implementation with
other SPHINCS+ hardware implementations that use SHAKE256 as the underlying hash function.

Par. Area CCsign tsign CCverify tverify

LUT FF BRAM DSP (cycles.) (ms) (cycles.) (ms)
SLH-DSA Our Work, Artix 7 (xc7a200t-3), Freq.=150 MHz

128f 10,197 7,357 8 0 2,895,583 19.30 286,064 1.91
128s 10,255 7,410 8 0 54,450,583 363.00 95,744 0.64
192f 10,333 7,590 8 0 4,665,879 31.11 414,368 2.76
192s 10,644 7,643 8 0 94,740,920 631.61 137,816 0.92
256f 10,416 7,672 8 0 9,265,012 61.77 421,856 2.81
256s 10,802 7,698 8 0 83,552,886 557.02 204,104 1.36
Full HW SPHINCS+ [ALCZ20], Artix 7 (xc7a100t-3), Freq.=250 & 500 MHz
128f 47,991 72,505 11.5 1 - 1.01 - 0.16
128s 48,231 72,514 11.5 0 - 12.40 - 0.07
192f 48,398 73,476 17 1 - 1.17 - 0.19
192s 48,725 72,514 17 0 - 21.40 - 0.10
256f 51,009 74,539 22.5 1 - 2.52 - 0.21
256s 51,130 74,576 22.5 1 - 19.30 - 0.14

RISC-V-based SLH-DSA [Saa24], Artix 7 (xc7a100t-3), Freq.=100 MHz
128f 8,605 3,745 32 0 4,903,978 49.04 440,636 4.41
128s 8,605 3,745 32 0 102,346,701 1,023.47 179,603 1.80
192f 8,605 3,745 32 0 10,596,236 105.96 711,431 7.11
192s 8,605 3,745 32 0 263,100,826 2,631.01 289,825 2.90
256f 8,605 3,745 32 0 23,660,226 236.60 857,059 8.57
256s 8,605 3,745 32 0 296,265,468 2,962.65 469,973 4.70
RISC-V-based SPHINCS+ [KSS24], Ultrascale+ (xczu9eg-2), Freq.=150 MHz
128f 22,488 10,601 N/A N/A 42,598,000 283.99 2,458,000 16.39
128s 22,488 10,601 N/A N/A 837,742,000 5,584.95 852,000 5.68
192f 22,488 10,601 N/A N/A 72,134,000 480.89 3,725,000 24.83
192s 22,488 10,601 N/A N/A 1,538,599,000 10,257.33 1,301,000 8.67
256f 22,488 10,601 N/A N/A 179,501,000 1,196.67 4,804,000 32.03
256s 22,488 10,601 N/A N/A 1,666,663,000 11,111.09 2,369,000 15.79

Par. = Parameter Set, HW = Hardware, CC = Clock Cycles, t = Time

our SHAKE256 (rather we opt for round-based iterative architecture). Our SPHINCSLET
hardware design utilizes under 10.8K LUTs, 7.7K flip-flops, and 8 BRAMs, which on
average results in 4.7× lower LUT consumption, 9.7× lower flip-flops, and lesser BRAMs
utilized when compared to [ALCZ20].

Additionally, in Table 6, we tabulate the results for all potential variants of our SHA-2-
based SPHINCSLET designs compared to the most recent non-standard compliant SHA-2-
based SPHINCS+ across various security levels [BUG+21]. As described in Section 3.5,
the impact of standard compliance is more pronounced in SHA-2-based SPHINCS designs
because the standard suggests utilizing both SHA256 and SHA512 in parameter sets {192f,
192s, 256f, and 256s}, while for parameter sets {128f and 128s}, only SHA256 is employed.
As noted in Section 5.1, we implement the design from Fig. 1a for single HASH_TILE
configurations such as parameter sets {128f and 128s}. We also implement the design from
Fig. 1b for dual HASH_TILEs, applicable to parameter sets {192f, 192s, 256f, and 256s}. In
addition to presenting synthesized results for AMD Artix 7 (xc7a200t), we include results

Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer and Yunheung Paek17

Table 6: Performance comparison of SLH-DSA and SPHINCS+ hardware implementations that
use hash functions other than SHAKE256. (Note that all designs have 0 DSP.)

Par. Hash Area Freq. CCsign tsign CCverify tverify

(SHA-2) LUT FF BRAM (MHz) (Cycles.) (ms) (Cycles.) (ms)
SLH-DSA Our Work, Artix 7 (xc7a200t-3)

128f H1 6,787 6,083 8 110 5,030,577 45.7 536,769 4.8
128s H1 6,767 6,054 8 110 93,893,056 853.5 179,919 1.6
192f H1+H2 15,436 15,144 12 100 9,005,754 90.1 1,357,674 13.6
192s H1+H2 15,615 15,183 12 100 174,503,502 1,745.1 447,901 4.5
256f H1+H2 15,513 15,206 12 100 17,341,452 173.4 1,399,533 14.0
256s H1+H2 15,618 15,225 12 100 159,138,446 1,591.4 673,948 6.7

SLH-DSA Our Work, Ultrascale+ (xczu3eg-2)
128f H1 7,345 6,062 8 250 5,030,577 20.1 536,769 2.1
128s H1 7,476 6,120 8 250 93,893,056 375.5 179,919 0.7
192f H1+H2 16,900 15,140 12 230 9,005,754 39.2 1,357,674 5.9
192s H1+H2 17,061 15,178 12 230 174,503,502 758.7 447,901 1.9
256f H1+H2 16,762 15,190 12 210 17,341,452 82.6 1,399,533 6.6
256s H1+H2 16,879 15,217 12 210 159,138,446 757.8 673,948 3.2

Full Hardware Design SPHINCS+ [BUG+21], Ultrascale+ (xczu3eg)
128f H1 6,127 4,933 0.5 156 - 64.3 - 2.5
128s H1 6,072 4,733 0.5 154 - 985.2 - 1.1
256f H1 8,591 6,339 0.5 152 - 199.2 - 4.5
256s H1 8,612 6,366 0.5 149 - 1,734.9 - 2.5

RISC-V-based SLH-DSA [Saa24], Artix 7 (xc7a200t-2)
128f H1 5,486 3,675 32 100 9,127,150 91.3 691,186 6.9
128s H1 5,486 3,675 32 100 190,085,952 1,900.9 268,445 2.7
192f H1+H2 8,965 6,823 32 100 23,726,217 237.3 1,290,921 12.9
192s H1+H2 8,965 6,823 32 100 626,858,593 6,268.6 641,048 6.4
256f H1+H2 8,965 6,823 32 100 50,240,516 502.4 1,419,466 14.2
256s H1+H2 8,965 6,823 32 100 696,201,400 6,962.0 894,078 8.9

RISC-V-based SPHINCS+ [WOS22], Ultrascale+ (xczu3eg)
256s H1 4,870 3,350 N/A 100 - - 4,950,000 49.5
256s H1 5,850 4,050 N/A 100 - - 3,260,000 32.6

Par. = Parameter Set, H1 = SHA256, H2 = SHA512, HW = Hardware,
CC = Clock Cycles, t = Time

for our design targeting AMD Ultrascale+ (xczu3eg) FPGA to ensure a fair comparison
with the design introduced in [BUG+21]. From Table 6, we observe that our SHA-2-based
SPHINCSLET design is 2×-3× faster compared to the existing non-standard compliant
SPHINCS+ design in [BUG+21], with a smaller area for parameter sets {128f and 128s}.
In terms of memory resources, the design in [BUG+21] exhibits a compact size of the
BRAM, which transfers results to the host after each operation. This transfer back to the
host incurs significant time overhead. Conversely, our design utilizes more BRAM than
[BUG+21], storing all data on the FPGA and eliminating the time overhead associated
with data transfers. For parameter sets {192f, 192s, 256f, and 256s}, the area increase is
inherent due to the inclusion of both SHA256 and SHA512 HASH_TILE shown in Fig. 1b.

6.3.2 Performance Comparison with HW-SW Codesign

In Table 5, we compare our design with two RISC-V-based designs that use SHAKE
as a hash function targeting the AMD Artix 7 and Ultrascale+. Out of these two RISC-
V-based works, our hardware design significantly outperforms [KSS24] in both area and

18
SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature

Algorithm

timing aspects. [Saa24] is a more recent and optimized design that is fully standard
compliant, similar to ours; therefore, we evaluate our work against [Saa24]. The Keccak
round implementation from [Saa24] also presents a full-width implementation (taking one
round per clock cycle), which is similar to our SHAKE256 module described in Section 5.1.
We note that our overall SLH-DSA hardware implementation has a slightly larger area
footprint than the implementation presented in [Saa24], this is due to usage of two
SHAKE256 modules inside the HASH_TILE. However, our BRAM utilization is significantly
smaller. The design proposed in [Saa24] relies on BRAM to store all intermediate data
and program files due to its use of a RISC-V processor. In contrast, our design requires
significantly less BRAM storage by minimizing the amount of intermediate data retained
during computations. For instance, in Merkle tree operations, only the data for four nodes
per level is necessary for computation. As a result, we store only these four leaf nodes,
reducing overall intermediate data storage and, consequently, lowering BRAM utilization.
In terms of timing comparison, our design is 2.5× to 5.3× faster for signature generation
and 2.3× to 3.4× faster for signature verification across various parameter sets compared
to [Saa24]. One reason for this speed-up is that our design utilizes two SHAKE256 modules
in parallel, maximizing all possible parallel hash computations. Additionally, as stated
in [Saa24], the RISC-V module connects to the Keccak round accelerator via a 32-bit
interconnect. It also incurs some penalty cycles from the RISC-V core for instruction fetch,
both of which contribute to the overall timing.

In Table 6, we compare our design against the SHA2-based SPHINCS+ designs. Even
in this case, our design uses more area footprint than that reported in [Saa24, WOS22].
This is due to the use of two hash modules within the HASH_TILE module. In case of
high security level parameter sets i.e., {192s, 192f, 256s, 256f}, we use two HASH_TILE one
consisting two SHA256 modules and the other consisting of two SHA512 modules. Our
BRAM utilization is lower compared to [Saa24], and [WOS22] did not report the number
of BRAM used, as they employ the register interface to communicate between RISC-V and
the hash hardware module. Our SHA-2 based SPHINCSLET design significantly outperforms
all other existing modules in terms of both signature generation and signature verification
times, making it the fastest SHA-2 based SPHINCS+ design.

7 Conclusion

In this work, we introduced SPHINCSLET, a fully standard-compliant and area-
efficient hardware implementation of the SLH-DSA (formerly SPHINCS+) post-quantum
digital signature scheme. Our design strikes an optimal balance between hardware area and
performance, addressing the limitations of existing implementations that either sacrifice area
efficiency for speed or rely on coprocessor-based architectures with significant performance
overhead. Through our SHAKE256-based implementation, we achieved a 4.7× reduction
in area compared to high-speed designs while maintaining a 2.5× to 5× faster signing
time than the most efficient coprocessor-based alternatives. Additionally, our SHA-2-
based implementation demonstrated a 2× to 4× speedup in signature generation while
maintaining a compact area footprint of 6K to 15K LUTs, making it the fastest SHA-2-
based SLH-DSA hardware implementation to date. By requiring fewer than 10.8K LUTs
on an AMD Artix-7 FPGA for a SHAKE256-based SPHINCS+, our SPHINCSLET design
proves to be a highly practical solution for resource-constrained devices, ensuring an
efficient transition to post-quantum cryptography.

Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer and Yunheung Paek19

Acknowledgements
This work was partially supported by the BK21 FOUR program of the Education

and Research Program for Future ICT Pioneers, Seoul National University in 2025, the
Inter-University Semiconductor Research Center (ISRC), the Institute of Information &
communications Technology Planning & Evaluation (IITP) under the artificial intelligence
semiconductor support program to nurture the best talents (IITP-2023-RS-2023-00256081)
grant funded by the Korea government(MSIT), the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIT) (RS-2023-00277326), the
Institute of Information & Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.RS-2023-00277060, Development of
open edge AI SoC hardware and software platform, 0.01) and Korea Evaluation Institute
of Industrial Technology(KEIT) grant funded by the Korea government(MOTIE) (No.RS-
2023-00277060, Development of open edge AI SoC hardware and software platform, 0.01).
The EDA tool was supported by the IC Design Education Center(IDEC), Korea. This
work was also supported through a grant from TII and grant 2332406 from US National
Science Foundation.

References
[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John

Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the third round of the nist post-quantum cryptography
standardization process. US Department of Commerce, NIST, 2022.

[ACZ18] Dorian Amiet, Andreas Curiger, and Paul Zbinden. Fpga-based accelera-
tor for post-quantum signature scheme sphincs-256. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 18–39, 2018.

[ALCZ20] Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul Zbinden. Fpga-
based sphincs+ implementations: Mind the glitch. In 2020 23rd Euromicro
Conference on Digital System Design (DSD), pages 229–237. IEEE, 2020.

[BDE+] Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer,
Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl,
Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen,
Christian Rechberger, Joost Rijneveld, and Peter Schwabe. Sphincs+-software.

[BDE+17] Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer,
Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl,
Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen,
Christian Rechberger, Joost Rijneveld, and Peter Schwabe. Sphincs+ - sub-
mission to the nist post-quantum cryptography project, 2017.

[BDPVA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Kec-
cak. In Annual international conference on the theory and applications of
cryptographic techniques, pages 313–314. Springer, 2013.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,
and Zookor Wilcox-O’Hearn. Sphincs: Practical stateless hash-based sig-
natures. In Advances in Cryptology – EUROCRYPT 2015, pages 368–397,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

20
SPHINCSLET: An Area-Efficient Accelerator for the Full SPHINCS+ Digital Signature

Algorithm

[BUG+21] Quentin Berthet, Andres Upegui, Laurent Gantel, Alexandre Duc, and Giulia
Traverso. An area-efficient sphincs+ post-quantum signature coprocessor.
In 2021 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 180–187. IEEE, 2021.

[CKSV06] Ricardo Chaves, Georgi Kuzmanov, Leonel Sousa, and Stamatis Vassiliadis.
Improving sha-2 hardware implementations. In Cryptographic Hardware and
Embedded Systems-CHES 2006: 8th International Workshop, Yokohama,
Japan, October 10-13, 2006. Proceedings 8, pages 298–310. Springer, 2006.

[CSD17] Information Technology Laboratory Computer Security Division. Post-
quantum cryptography standardization - post-quantum cryptography: Csrc,
Jan 2017.

[DXN+23] Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz, and Jakub
Szefer. Fast and efficient hardware implementation of hqc. In Proceedings of
the Selected Areas in Cryptography, SAC, August 2023.

[GE21] Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. Quantum, 5:433, April 2021.

[KP20] Manoj Kumar and Pratap Pattnaik. Post quantum cryptography (pqc)-an
overview. In 2020 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–9. IEEE, 2020.

[KSS24] Patrick Karl, Jonas Schupp, and Georg Sigl. The impact of hash primitives and
communication overhead for hardware-accelerated sphincs+. In International
Workshop on Constructive Side-Channel Analysis and Secure Design, pages
221–239. Springer, 2024.

[oST23] National Institute of Standards and Technology. Stateless hash-based digital
signature standard. Technical Report Federal Information Processing Stan-
dards Publication (FIPS) NIST FIPS 205 ipd., U.S. Department of Commerce,
Washington, D.C., 2023.

[Rah22] Fazal Raheman. The future of cybersecurity in the age of quantum computers.
Future Internet, 14(11):335, 2022.

[Saa24] Markku-Juhani O. Saarinen. Accelerating slh-dsa by two orders of mag-
nitude with a single hash unit. In Leonid Reyzin and Douglas Stebila,
editors, Advances in Cryptology – CRYPTO 2024, pages 276–304, Cham,
2024. Springer Nature Switzerland.

[SM19] Naoyuki Shinohara and Shiho Moriai. Trends in post-quantum cryptography:
Cryptosystems for the quantum computing era. the magazine of New Breeze,
PP, pages 9–11, 2019.

[Str21] Joachim Strömbergson. Sha512. https://github.com/secworks/sha512,
2021.

[Str23] Joachim Strömbergson. Sha256. https://github.com/secworks/sha256,
2023.

[WOS22] Alexander Wagner, Felix Oberhansl, and Marc Schink. To be, or not to
be stateful: post-quantum secure boot using hash-based signatures. In
Proceedings of the 2022 Workshop on Attacks and Solutions in Hardware
Security, pages 85–94, 2022.

https://github.com/secworks/sha512
https://github.com/secworks/sha256

	Introduction
	Contribution
	Background
	SLH-DSA Parameter Sets
	Winternitz One-Time Signature Plus
	eXtended Merkle Signature Scheme (XMSS)
	Forest of Random Subsets (FORS)
	Complete SLH-DSA

	Related Work
	SPHINCSLET - Hardware Design
	HASH_TILE
	FSM (Control Logic) Design

	Evaluation
	Evaluation of the HASH_TILE
	Evaluation of FSM Design
	Evaluation of SPHINCSLET

	Conclusion

