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Abstract

Modern life makes having a digital identity no longer optional, whether one needs to manage a bank
account or subscribe to a newspaper. As the number of online services increases, it is fundamental to
safeguard user privacy and equip service providers (SP) with mechanisms enforcing Sybil resistance,
i.e., preventing a single entity from showing as many.

Current approaches, such as anonymous credentials and self-sovereign identities, typically rely
on identity providers or identity registries trusted not to track users’ activities. However, this assump-
tion of trust is no longer appropriate in a world where user data is considered a valuable asset.

To address this challenge, we introduce a new cryptographic notion, Anonymous Self-Credentials
(ASC) along with two implementations. This approach enables users to maintain their privacy within
an anonymity set while allowing SPs to obtain Sybil resistance. Then, we present a User-issued
Unlinkable Single Sign-On (U2SSO) implemented from ASC that solely relies on an identity registry
to immutably store identities. A U2SSO solution allows users to generate unlinkable child credentials
for each SP using only one set of master credentials. We demonstrate the practicality and efficiency
of our U2SSO solution by providing a complete proof-of-concept.

1 Introduction

Digital identities have become essential in today’s interconnected world. As nearly every aspect of hu-
man life has transitioned to a digital ecosystem, countless service providers (SPs) rely on these identities,
making an online presence unavoidable. However, to ensure a reliable and fair service, SPs must safe-
guard against Sybil attacks [70], i.e., prevent users from creating multiple identities to exploit, abuse, and
manipulate offered services. Ensuring the uniqueness and legitimacy of users has become of paramount
importance, especially for e-commerce and social networks.

In the strictest sense, fulfilling these properties means mapping a user one-to-one to an identity,
producing what we can call a Sybil-resistant identity [70]. Usually, SPs tie an identity to an email address
or a phone number, which, although not providing complete Sybil resistance, are a scarce resource to
obtain. The assumption is that creating multiple email addresses or phone numbers can be cumbersome
and financially or administratively demanding for a single user. These Sybil-resistant identities enable
an SP to allocate their limited resources more effectively, guaranteeing they will serve diverse users and
prevent fraudulent users from monopolizing.

On the other hand, users who use the same email or phone number to sign up for different services
create a clear link between their profiles. User tracking [6, 79] is a well-known issue in modern sys-
tems, as user data has become a high-value asset, often infringing on people’s privacy in unexpected
ways. Thus, a privacy-preserving sign-on mechanism that offers unlinkability across services has many
advantages.
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Sybil resistance and unlinkability appear contradictory: the first one encourages users to maintain a
single identity, while the second advocates multiple unlinkable identities across different services.

Initial work focused more on privacy-enhanced membership rather than Sybil resistance, including
anonymous credentials [28, 24], group signatures [29, 62], one-out-of-many proofs [50, 19], accumula-
tors [78], and ring signatures [71, 93].

For instance, anonymous credentials [28, 24], also known as attribute-based credentials [59], function
as follows: a user registers a master identity with an identity provider (IdP). When the user wants to create
a pseudonym for an SP, the user sends a blinded pseudonym to the IdP, which then proves to the SP that
the user is registered without seeing the pseudonym.

IdP-managed group signatures [29, 62], one-out-of-many proofs [50, 19, 49], accumulators [90, 78],
and ring signatures [71, 93], all follow a similar approach. In these systems, the IdP or the group manager
maintains a master identity list of legitimate users, known as the anonymity set. Users registering a
pseudonym with an SP prove ownership of a master identity in the anonymity set.

However, these solutions are limited to membership assurance and do not provide Sybil resistance,
as they do not prevent users from presenting multiple pseudonyms for an SP.

Despite this limitation, these solutions laid the groundwork for the privacy objectives [59] of cre-
dential systems: (1) issuer unlinkability, which prevents the IdP from linking the master identity to the
pseudonym even if the IdP and SPs collude, and (2) multi-verifier unlinkability, which allows users to
create different pseudonyms using the same master identity without revealing any connection.

A more recent line of work [64, 33, 69] solely focuses on introducing Sybil resistance along with
unlinkability using the IdP with advanced cryptographic techniques. For example, a user with a master
identity can get two proofs from the IdP to anonymously register two pseudonyms for the same SP.
However, the proofs will be linkable, indicating that two pseudonyms were generated from the same
master identity, allowing the SP to reject the second pseudonym and obtain Sybil resistance. Their
major drawback is the reliance on a trusted IdP. This dependency raises two significant issues for online
services.

First, users are required to obtain their identities from designated IdPs, which forces everyone to get
their master identities from a limited number of trusted providers, centering the authority and workload
around these IdPs. For instance, IdPs have the authority to censor users. Moreover, an IdP may fail or
collapse (even in a distributed IdP scenario [33, 86, 69, 73], the underlying threshold assumptions may
fail). In that case, this IdP approach creates a single point of failure for all users and SPs relying on it.

The second issue involves side-channel leaks, especially timing attacks. Each time users register for
a new service, they interact with both the IdP and the SP. The timestamps of these interactions could
allow colluding IdPs and SPs to link users despite the cryptographic anonymity of the system.

In contrast to solutions with IdP, self-sovereign identity solutions [91, 13, 41, 61, 74, 46, 16, 32,
65] offer Sybil resistance by replacing the identity provider with an immutable Identity Registry (IdR),
which can be established using a decentralized distributed ledger like blockchains. In this model, when
users want to register for a service, they publish self-generated pseudonyms on the IdR and share these
pseudonyms with SPs. The IdR ensures Sybil resistance by requiring payment or some form of real-
world identity verification, preventing users from creating unlimited pseudonyms. Additionally, the IdR
promotes unlinkability by allowing users to generate distinct pseudonyms for each SP.

The drawback here is that unlinkability depends on strong trust assumptions about the IdR, i.e., the
IdR must not be able to trace pseudonyms. For instance, if a user uses the same traceable payment
method for all their pseudonyms, the IdR could potentially link these pseudonyms together, despite any
cryptographic measures in place. In practice, many self-sovereign identities [61, 68, 46] are based on
blockchains, where payment tracing is publicly available, compromising privacy.

A potential solution is to publish only a master identity on the IdR instead of the pseudonyms.
However, we need a cryptographic mechanism that allows users to self-prove that a pseudonym used
for a service is generated by an individual who owns a master identity in the IdR without revealing
the specific master identity. Importantly, each master identity should be limited to one pseudonym per
service to fulfill Sybil resistance. At first glance, existing self-proving solutions such as traceable ring
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signatures [43, 42, 20, 83], anonymous messaging [85], and double-blind proof of existence [2] seem to
address some aspects of this self-proving credential system. However, it remains unclear how to achieve
certain critical features like robustness, revocation, and usability with these approaches.

Our research problem focuses on formalizing and implementing a fully functional self-proving cre-
dential system by securely composing existing cryptographic techniques to guarantee multi-verifier un-
linkability and Sybil resistance.

1.1 Our Contribution

In this paper, we introduce the notion of Anonymous Self-Credentials (ASC) as a building block for
a user-centric and privacy-supporting credential system. ASC establishes a framework for a group of
provers to authenticate themselves to colluding verifiers using master identities and targets the following
properties:

• Unforgeability: The authentication can only be created by a prover who knows a secret key to a
master identity.

• Robustness: Malicious provers who create identities resembling correct master identities cannot
impede the authentication of honest provers.

• Sybil resistance: Any two authentications by the same prover to the same verifier will be linkable.

• Anonymity: Authentications conceal the master identity of a prover within the group, provided that
at least two provers created identities honestly.

• Multi-verifier unlinkability: Any two authentications for two verifiers conceal whether they are
from the same prover or two different provers, even if the verifiers collude, assuming that at least
two provers are honest.

Also, we present two Zero-Knowledge Arguments (ZKA) to realize ASC: Common Reference String-
based Anonymous Self-Credentials (CRS-ASC) and Structured Reference String-based Anonymous
Self-Credentials (SRS-ASC).

More importantly, we demonstrate how to utilize ASC constructions for a User-Issued Unlink-
able Single Sign-On (U2SSO) system. This system ensures users’ unlinkability across various service
providers while managing a single master Sybil-resistant identity self-issued by the user. To store master
identities, it uses a public immutable IdR, which effectively replaces the traditional IdP. We provide a
proof-of-concept implementation of U2SSO, including a user program and a sample SP interface, that
uses an Ethereum smart contract as the IdR. Moreover, we conduct a performance evaluation of our
implementation showing the practicality of the solution, compared with closely related work.

Next, we outline the key concepts behind ASC and U2SSO.

Anonymous Self-Credentials Consider an ASC system with a set of provers and verifiers, where each
verifier is assigned a unique identifier known as verifier identifier. A prover wants to show eligibility to
register with the correct credentials for a verifier’s service. During setup, each prover generates a master
credential, i.e. a pair of a public master identity and a master secret key. Thus, the set of master identities
is publicly available for both provers and verifiers, which we call the anonymity set.

When a prover wants to register with a verifier, she first generates a pseudonym. The prover then
sends the pseudonym and a zero-knowledge proof to the verifier. The proof asserts that the prover owns
one of the master identities in the anonymity set, without revealing which one.

Following this protocol, a prover can potentially register multiple pseudonyms from a single master
identity. However, to ensure Sybil resistance, a prover is limited to generating only one pseudonym
per verifier. The ASC protocol uses nullifiers to link each master identity to a unique verifier identifier.
Technically speaking, a master credential can create only one nullifier for any number of proofs with the
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same verifier, even for different pseudonyms. However, a correctly generated master credential produces
different unlinkable nullifiers for different verifiers.

During the registration process, the prover presents the nullifier along with a second zero-knowledge
proof to validate its authenticity while keeping the master identity hidden (In our constructions, both
zero-knowledge proofs are combined into a composite proof).

Each verifier maintains their own local list of nullifiers used to register its pseudonyms. A verifier
accepts a pseudonym only if its corresponding nullifier is not present in that list. Once the pseudonym is
accepted, the verifier adds the new nullifier to its list, preventing the nullifier’s reuse. Since each master
identity allows for only one nullifier per verifier, the prover can register only one pseudonym, thereby
effectively establishing Sybil resistance.

User-issued Unlinkable Single Sign-On A U2SSO credential system offers the following algorithms:
(1) registering a master identity with the IdR, (2) generating unlinkable child credentials derived from
the master identity as a pseudonym, (3) registering the pseudonym with an SP, (4) authenticating to the
SP using the registered pseudonym, and (5) revoking or updating a pseudonym.

At setup, a user registers a master identity with the IdR, which stores batches of master identities,
referred as anonymity sets. Once an anonymity set is established, the user can register a pseudonym with
an SP. The registration process employs the ASC protocol to prove ownership of one of the identities in
the anonymity set, ensuring user privacy and Sybil resistance to the SPs.

Future authentications are conducted using the registered pseudonym, which removes the need for
further interactions with the IdR. As a result, the U2SSO system only requires complex cryptographic
proofs and IdR interactions for less frequent events such as child identity registration, revocation, or
modification. This leads to a more efficient and practical SSO mechanism.

Furthermore, each service provider can select their preferred method of pseudonym authentication,
making U2SSO highly adaptable for both Web 2.0 and Web 3.0, such as digital signature-based or
password-based authentication.

We implement the credential system for each of the ASC construction, differentiating between SRS-
U2SSO and CRS-U2SSO. The first one has a master identity of 96 bytes and a proof size of 328 bytes,
for any size N of the anonymity set. The second has master identities of 33 bytes and nullifiers of 32
bytes, but the proof size is logarithmic in N , e.g., 4KB for N = 1024.

The rest of the paper is organized as follows: Section 2 introduces the related work, Section 3 de-
scribes the notation and preliminaries, Section 4 formalizes the novel notion of ASC and defines the
expected security properties, and Section 5 presents ASC constructions. U2SSO is formally described in
Section 6, while implementation and performance details are presented in Section 7. Section 8 discusses
complementary features, provides a comparison to other SSO solutions, and concludes the paper.

2 Related work

The rising adoption of digital identities has made reliable user identification, as well as maintaining
user privacy, increasingly critical. Sybil resistance [35], also known as unclonability [34, 23], aims to
mitigate a single entity from appearing as multiple entities. However, while this might be good for service
providers, typical methods to provide it completely lack privacy. As a result, this issue has received
significant attention in cryptographic research. We present four categories of related work presenting the
different models and solutions applicable to a credential system guaranteeing both Sybil resistance and
unlinkability.

Membership and multi-show unlinkability with IdP. Initial research focuses on achieving member-
ship with multi-show unlinkability [59], where a user with a master identity from a designated IdP can
request attestations or proofs that demonstrate her legitimacy. However, each attestation remains unlink-
able due to cryptographic techniques like blind signatures [27, 26, 60], rerandomizable signatures [81],
or attribute-based signatures [17, 87, 7, 82]. In other words, given any two attestations, no one, not even
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the IdP, can determine whether they belong to the same user or to different users. Examples include
classic anonymous credentials [24, 12, 25, 11, 15].

In addition to obtaining attestations from an IdP, some approaches allow users with an IdP-issued
master credential to self-attest their identity and still maintain multi-show unlinkability. With group sig-
natures [29], for instance, master identities are public keys issued by a group manager. However, these
systems typically incorporate a trapdoor that allows the group manager to trace the user. Another mech-
anism is k-attestations [7, 8], which allows the generation of up to k attestations before they become
traceable. These membership assurances provide a basic level of Sybil resistance, by imposing restric-
tions on who can get a master identity from the IdP (or group manager). However, in this setting, nothing
prevents users from generating multiple attestations from the same master identity and presenting them
to the same verifier.

A similar level of Sybil resistance can be achieved even in the absence of IdP-issued master identities
by allowing the IdP to select which user-generated master identities to include in an anonymity set. Then,
users can self-prove their membership in the anonymity set using one-out-of-many proofs [50, 19, 49],
accumulators [90, 78], or ring signatures [71, 93].

Sybil resistance and multi-verifier unlinkability with IdP. Unclonable group signatures [34, 23],
Sybil-resistant anonymous signatures [33], and Single-Sign-On solutions [69, 92, 95, 64, 10] solve the
issue of Sybil resistance by introducing identifiers for all verifiers (referred to as context [34, 33] or
domain [95]). In these frameworks, a user who possesses a public key issued by an IdP can self-generate
signatures and nullifiers, referred to as context-specific identifiers [33], for different verifiers. However,
for the same verifier, the nullifier is fixed. Therefore, if a user attempts to authenticate multiple times
with the same verifier, the verifier can reject the user’s signatures after one or several attempts, thereby
achieving Sybil resistance. In contrast, any two signature-nullifier pairs created for different verifiers
ensure multi-verifier unlinkability, meaning that colluding IdPs and verifiers cannot determine whether
these pairs belong to the same user or two users.

The self-attesting approach offers significant advantages over IdP attestation because it minimizes in-
teractions with the IdP. Moreover, this method prevents colluding IdPs and verifiers from deanonymizing
users through side-channel information.

However, such self-attestations, e.g., Single-Sign-Ons [69, 92, 95, 64, 10], still depend on a trusted
IdP to issue valid master credentials to users. Although these IdPs can operate in distributed setups
with honest-majority assumptions [33, 86, 69, 73], it remains uncertain whether they can be effectively
maintained in a global setup that involves numerous users and services with high stakes.

Sybil resistance with self-sovereign identities. Attempts to mitigate the trust put on the IdP [36, 77]
started with PGP keys [5, 47], continued with the open identity layer [56, 76, 39], and now are gaining
even more interest with the formalization of self-sovereign identities (SSI) [66]. However, a challenge
emerged concerning Sybil resistance, as users could easily create multiple identities on their own [36].
This issue can be mitigated with blockchains [75, 37], which can require users to pay for registering
their identities, thereby allowing the ledger to function as a passive IdR (controlling just onboarding and
storage of identities). Numerous standards [91, 9] and implementations [13, 41, 61, 74, 46, 16, 32] have
emerged from this effort.

In some of these systems [74, 46, 61], users create a unique pseudonym for each verifier or con-
text and pay to store the pseudonym in the IdR. Before accepting a pseudonym, the verifier checks its
existence in the IdR.

The major drawback of SSI implementations is the IdR traceability. For example, payments on
blockchains (used as IdR) are publicly traceable, i.e., linking pseudonyms published by the same user is
possible. As a result, implementations [61, 68, 46] on blockchains like Ethereum [37] lack multi-verifier
unlinkability despite the cryptographic measures taken. Although untraceable blockchains [3] exist, they
remain impractical due to scalability limitations.
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Traceable ring signatures. Traceable ring signatures [43] and follow-up work [42, 20, 83, 88] are
special signatures that can be linked by a “tag” if the signatures are created by the same prover for
that specific tag. Moreover, they offer an additional property named exculpability [88] where an honest
prover cannot be framed for creating linked signatures that were not generated by himself.

We demonstrate how any protocol satisfying ASC notion, such as traceable ring signatures [43, 42,
20, 83, 88], anonymous messaging [85], and double-blind proof of existence [2], can be turned into a
comprehensive privacy-preserving credential system like U2SSO.

3 Preliminaries

In this section, we first define the notation used throughout the paper. Then, we present the cryptographic
primitives that are used in our constructions.

3.1 Notation

Zq = Z/qZ is a ring of modular integers in [0, q − 1] for modulus q. Pr[A|B] denotes the probability
of A given B. λ indicates the security parameter, and A is a probabilistic polynomial-time (p.p.t.)
adversary. We use A(s) to imply that A is given s. Also, we say ϵ(λ) is a negligible function if for
all c ∈ N there exists x such that ϵ(λ) < 1

λc for all λ ≥ x. Sometimes, we casually use “negligible”
to denote ϵ(λ). W.l.o.g, with p.p.t we always refer to a probabilistic polynomial-time algorithm that
runs in time polynomial in λ. s $←S denotes that s is drawn uniformly at random from a set S. We use
[ai]

L
i=1=[a1, .., aL] to denote a L element array, and [[ai,l]

L
l=1]

N
i=1 for a (N ×L) matrix of L columns and

N rows.

3.1.1 Hash-based Key Derivation

A Hash-based Key Derivation Function (HKDF) [63] takes a random secret input key material r ∈ [0, 1]m

with sufficient entropy, proportional to the security parameter, m ≥ 2λ, along with a salt s ∈ [0, 1]m
′

(which can be public and not random), and outputs a pseudo-random key string t ∈ [0, 1]n as follows:

t← HKDFnm,m′(r, s) where r
$←− [0, 1]m≥2λ.

HKDF is deterministic function, meaning that the same output is produced when the same input key
material and salt are used. Given a good source of input key material, i.e., a high entropy and a good
randomness (Definition 6 of [63]), a HKDF can be utilized as a pseudo-random key generator.

Consequently, the HKDF outputs are indistinguishable from random values, even when the salt is
known, thus, they are also unlinkable. This property is crucial for our U2SSO constructions (Section
7), as it allows us to generate multiple pseudonyms from the same master key without revealing any
information about the input key material. We formally define the unlinkability of HKDF in Definition 1.

Definition 1 (Unlinkability of HKDF). A HKDF of (n,m ≥ 2λ,m′) is unlinkable if

Pr


b = b′ ∧
s0 ̸= s1 ∧

s0 ∈ [0, 1]m
′ ∧

s1 ∈ [0, 1]m
′

∣∣∣∣∣
r0

$←− [0, 1]m; r1
$←− [0, 1]m;

(s0, s1)← A; b
$←− [0, 1]

t0 := HKDFnm,m′(r0, s0)

t1 := HKDFnm,m′(rb, s1)

b′ ← A(t0, t1, s0, s1)


≤ 1

2
+ ϵ(λ).

Note that this definition is a simplified version of Definition 7 from [63], emphasizing unlinkability
for two queries.
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3.1.2 Generalized Commitments

A commitment conceals a value using a randomly selected blinding key. A prover can publish the
commitment and later reveal its contents by providing both the hidden value and the blinding key. This
process is referred to as “opening the commitment”. These commitments carry a binding property,
meaning it is either computational difficult or impossible (perfect binding) for the prover to find an
alternative value and blinding key that would also successfully open the commitment. Hence, the term
“commitment” is used.

In this work, we employ multi-value commitments, which allow a single commitment to hide and
bind up to L values using a single blinding key. We denote such a multi-value commitment scheme as
follows:

• ComSetup(λ) : (crs,Zq, S)▷ outputs the common reference string crs, the set Zq for values, and
the blinding key set S.

• Com
Zq ,S
crs ([vi]

L
i=1, k) : C ▷ outputs the commitment C for a blinding key k ∈ S and a vector of L

values [vi]Li=1 ∈ ZL
q .

• ComOpn
Zq ,S
crs (C, [vi]

L
i=1, k) : 1/0▷ outputs 1 if the opening of C is ([vi]Li=1, k); otherwise, returns

0.

Sometimes, we use a special case of these commitments that do not commit any value but only a blinding
key, similar to public keys of digital signatures, and we denote them as C = ComS

crs(k
$←−S). We formally

define the hiding and binding properties of these multi-value commitments in Definition 2 and Definition
3, respectively.

Definition 2 (Hiding commitments). Suppose that A(crs, q, S) picks and shares two different value
vectors ([v0,i]

L
i=1, [v1,i]

L
i=1) ∈ Z2×L

q with the challenger after receiving (crs,Zq, S) := ComSetup(λ).

Then, the challenger shares C for a random choice of b $←−[0, 1] where C = Com
Zq ,S
crs ([vb,i]

L
i=1, k

$←−S).
Multi-value commitments are hiding if the probability of A finding b is ≤ 1/2 + ϵ(λ).

Definition 3 (Binding commitments). The commitment scheme of (crs,Zq,S) := ComSetup(λ) is
binding if the probability of A finding two different openings: ([vi]Li=1, k) ∈ (ZL

q ,S) and ([v′i]
L
i=1, k

′) ∈
(ZL

q ,S) such that ComOpn
Zq ,S
crs (C, [vi]

L
i=1, k) = 1 ∧ Opn

Zq ,S
crs (C, [v′i]

L
i=1, k

′) = 1 is negligible.

3.1.3 Zero-Knowledge Argument (ZKA)

We define the zero-knowledge argument (used [21, 67, 50]) for a polynomial time decidable relation R
and three p.p.t. entities: a Common Reference String (CRS) generator Setup, a prover P , and verifier
V . In some cases, the CRS has a special structure, and we refer to it as Structured Reference String
(SRS). An SRS is a CRS generated from a complex distribution, typically using a sampling algorithm
with internal randomness that must remain hidden to prevent the creation of fraudulent proofs.

In the context of ZKA, P demonstrates a statement u regarding a witness w without disclosing any
additional information about w. We denote the relationR for the generated crs as: (crs, u, w) ∈ R. For
instance, suppose that P proves that some commitment Cj ∈ [C1, ..., CN ] commits zero by generating a
proof π without revealing its index j. Such relationRzero,N is denoted as follows:

Rzero,N :
(
crs, u := ([Ci]

N
i=1, π), w := (j, k)

)
⇔(

Cj = Com
Zq ,S
crs (0 ∈ Zq, k ∈ S) ∧ j ∈ [1, N ]

)
.

(1)

Here, the witness consists of the index j and the key k of commitment Cj . The statement u contains the
proof π and the set [Ci]

N
i=1.

We call all statements that have witness(es) for crs a CRS-dependent language Lcrs = {x|∃w :
(crs, x, w) ∈ R}. A proving algorithm may take multiple interactions between P and V . We denote an
interaction’s transcript as tr ← ⟨P(crs, u, w),V(crs, u)⟩. If V accepts tr, then V(tr) = 1.
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Definition 4 (Zero-Knowledge Argument). (Setup,P,V) is a ZKA for relation R if they satisfy the
following properties:

• Completeness: LetB be a p.p.t. adversary who generates witness w and statement u. (Setup,P,V)
is complete if

Pr

[
(crs, u, w)

?
̸∈R ∨

V(⟨P(crs, u, w),V(crs, u)⟩) ?
=1

∣∣ (u,w)←B(crs)

]
= 1.

• Computational Witness-Extended Emulation (WEE): Let there be two p.p.t. adversaries: WEE
adversaryA and B who generates the initial witness s and statement u. Also, P∗ is a deterministic
p.p.t. prover, and EW is a p.p.t. emulator that generates an emulated transcript (tr, w) ← EW(u)
with a witness w such that V(tr) = 1. (Setup,P,V) has WEE if:∣∣∣∣∣∣∣∣∣∣

Pr

[
A(tr) ?

=1
∣∣ crs:=Setup(λ), (u, s)←B(crs)

tr←⟨P∗(crs, u, s),V(crs, u)⟩

]
−

Pr

[
A(tr) ?

=1 ∧
(V(tr) ?⇒(crs, u, w)∈R)

∣∣∣∣ crs:=Setup(λ), (u, s)←B(crs)
(tr, w)←EW(⟨P∗(crs,u,s),V(crs,u)⟩)(crs, u)

]
∣∣∣∣∣∣∣∣∣∣
≤ ϵ(λ)

If A cannot identify emulated transcripts over genuine transcripts, i.e., A accepts emulated tran-
scripts A(tr) = 1, it implies that A learns nothing about w, exceptR.

• Knowledge Soundness: Let P∗ be a rewindable prover andW be a p.p.t. extractor which extracts
witnesses by rewinding P∗ to a certain iteration of witness s and resuming with fresh verifier
randomness, i.e., w ← W(⟨P∗(crs, u, s), V(crs, u)⟩). The previous negligible function of WEE
also captures the knowledge soundness if P∗ cannot generate valid transcripts that do not align
with the relation, i.e., (V(tr) ?

=1 ∧ (crs, u, w)
?
̸∈R).

Multi-Prover ZKA Setting In this paper, we focus on multi-prover protocols in which a subset of
provers may be compromised by an adversary during the WEE (Definition 4). We denote the indices
of the honest provers in the WEE by JWEE := [j1, . . . , jN−N ′ ] where N ′ is the number of corrupted
provers. Thus, the relationRzero,N (Eq. (1)) can be rewritten as follows:

Rzero,N,JWEE
:
(
crs, u := ([Ci]

N
i=1, π), w := (j, k)

)
⇔(

Cj = Com
Zq ,S
crs (0 ∈ Zq, k ∈ S) ∧ j ∈ JWEE ∧ |JWEE | ≥ 2

)
.

The zero-knowledge property of the witness holds only if the commitment j belongs to an honest prover
such that j ∈ JWEE and there exists at least one more honest prover: |JWEE | ≥ 2.

Non-Interactive ZKA Many of our protocols are non-interactive, i.e., the prover directly sends the en-
tire proof to the verifier without any intermediate interactions. We define such non-interactive argument
system in Definition 5, following [21].

Definition 5 (Perfect Special Honest-Verifier Zero-Knowledge). A public coin argument of knowledge
(Setup,P,V) is a perfect special honest verifier zero-knowledge argument (SHVZK) of knowledge for
R if there exists a p.p.t. simulator S such that for all pairs of interactive adversaries A and B:

Pr

[
(crs, u, w) ∈ R
∧ A(tr) = 1

∣∣ crs := Setup(λ); (u,w, ρ)← B(crs)
tr ← ⟨P(crs, u, w),V(crs, u; ρ)⟩

]
=

Pr

[
(crs, u, w) ∈ R
∧ A(tr) = 1

∣∣ crs := Setup(λ)

(u,w, ρ)← B(crs); tr ← S(u, ρ)

]
where ρ is the public randomness used by the verifier.
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3.1.4 Strong Unforgeability for a Generic Prover-Verifier Setup

In this paper, we define strong unforgeability in a generalized manner to apply for any generic prover and
verifier. Such unforgeability is required when the prover wants to send an additional message, referred
to as the “initial message”, along with the proof to the verifier. Although this message is not related to
the ZKA statement being proven, the prover aims to bind the proof’s challenge to this initial message.
Consequently, a proof with a fresh message can only be generated if the witness is known1. In this way,
the verifier can authenticate that the initial message came from a prover who knows a witness to the
statement and that it was not modified during a man-in-the-middle attack. We denote a proof created for
an initial message M as π(M) ∈ u. Adopting this notation, we present the generic strong unforgeability
in Definition 6.

Definition 6. Let there be a ZKA (Setup,P,V) where a proof π(M) ∈ u can be created for any M ∈M,
if (crs, u, w) ∈ R. LetW(crs) be a p.p.t. witness picking algorithm that randomly picks a witness w
such that there exists at least one possible statement u such that (crs, u, w) ∈ R. Also, Com(w) denotes
the hiding commitment of w. Suppose that there exists an oracleOP(crs,w)(M) that generates statements
u(M) for any given query M using P and stores the queries such that Q := Q∪{M}. The ZKA system
provides strong unforgeability for any p.p.t. AOP(crs,w)(·) that has access to this oracle if

Pr

M ′ ̸∈ Q ∧ π(M ′) ∈ u ∧
(crs, u, w) ∈ R

∣∣∣
crs := Setup(λ)

w
$←−W(crs); c := Com(w)

(u,M ′)← AOP(crs,w)(·)(crs, c)

 ≤ ϵ(λ).

The ASC constructions used in U2SSO (Section 7) obtain strong unforgeability via hashing the initial
message during the Fiat-Shamir transformation [40] to generate non-interactive challenges.

4 Anonymous Self-Credentials (ASC)

In this section, we describe ASC and their security properties, including Sybil resistance and multi-
verifier unlinkability.

4.1 System Model

An anonymous self-credential is a protocol encompassing N provers and L verifiers. Each verifier
l ∈ [1, L], is assigned a unique identifier called a verifier identifier, represented as vl ∈ V from some
predefined set V.

Each prover j ∈ [1, N ] possesses a master credential (Φj , skj), which consists of a public master
identity Φj and a master secret key skj . The collection of master identities from all provers forms what
is known as the anonymity set, represented as Λ := [Φi]

N
i=1. During the setup phase, all verifiers and

provers are informed about the list of verifier identifiers and the anonymity set.
To access the services provided by verifiers, provers must first complete a registration process. In-

stead of using their master credentials for registration, provers utilize a pseudonym ϕ (which can be a
username or any public information related to another credential) to protect their privacy. The use of
ASC does not restrict the method of generating pseudonyms; for example, the format of the pseudonym
can be determined by the verifier. To frame this in a cryptographic context, we define a generic interface
for a pseudonyms’ generator G (Section 6).

The primary objective of this scheme is to ensure Sybil resistance, preventing any prover from regis-
tering multiple pseudonyms with the same verifier. To accomplish this, the scheme employs nullifiers. If

1Mon-malleability of ZKA states that a fresh proof cannot be generated without knowing the witness [44]. Hence, strong
unforgeability differs from non-malleability since unforgeability is about creating a proof for a fresh message where the proof
does not have to be fresh. Additionally, it is important to note that non-malleability is already encompassed by the concept of
extractability as defined in Definition 4. For a more detailed explanation, readers can refer to [44].
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Condition Provers’ State Relation
j = j′ ∧ l = l′ for any (ϕ, ϕ′) honest or malicious nul = nul′

j ̸= j′ ∨ l ̸= l′ for any (ϕ, ϕ′) honest nul ̸= nul′

Table 1. Nullifiers for two registrations of (prover j, verifier l, pseudonym ϕ) and (prover j′, verifier l′,
pseudonym ϕ′).

a prover attempts to register more than one pseudonym with the same verifier, the nullifier will be iden-
tical, as illustrated in Table 1. It is important to note that the nullifiers do not depend on the pseudonym.
Due to these decoupled pseudonyms, ASC can be integrated with any pseudonym format preferred by
the verifier, including signature or password-based credentials.

To register a pseudonym, a prover generates a proof π along with a nullifier nul. This proof π serves
two purposes: first, it demonstrates that the pseudonym was generated by a prover who possesses a
master secret key within the anonymity set; second, it confirms that the nullifier was correctly generated
from the same master credential for the verifier l. The prover then sends (ϕ, nul, π) to the verifier. Each
verifier l has a local list of nullifiers that have been used to register all previous pseudonyms for verifier l.
Then the verifier l checks the validity of the proof and ensures that the nullifier has not been used before.
If both conditions are satisfied, the verifier accepts the pseudonym for registration.

Additionally, master credentials that are generated honestly produce different nullifiers for each ver-
ifier in order to maintain correctness (see Table 1). This allows an honest prover to register with any
verifier successfully.

4.2 Protocol

We formally define ASC functionalities below:

• ASC.Setup(λ, L)→ (crs) ▷ Generates crs, including the list of verifier identifiers [vl]Ll=1 ∈ crs,
given a security parameter λ and defines the key space K for master secret keys. Here, each verifier
has a unique identifier.

• ASC.Gen(crs, sk ∈ K) → Φ ▷ A prover self-generates a master credential, which includes a
master identity Φ from a master secret key sk ∈ K.

• ASC.Prove(crs,Λ, l, j, skj , ϕ) → (nul, π) ▷ The algorithm outputs a nullifier nul and a proof π
to register a some pseudonym ϕ for verifier l, identified by vl ∈ crs. This algorithm is used by a
prover j with master credential represented by (Φj , skj), where Φj is in the anonymity set Λ, i.e.,
Φj ∈ Λ.

• ASC.Open(crs, l, nul,Φ, skj)→ 1/0▷ A prover can later open and identify whether the nullifier
was generated by herself using the knowledge of master secret key skj (this is not a function for
verifiers).

• ASC.Verify(crs,Λ, l, ϕ, nul, π)→ 1/0▷ Anyone can verify that the pseudonym ϕ was generated
by a prover who owns a master identity in the anonymity set Λ, and that the nullifier nul is correctly
derived from the same master credential without learning which one.

4.2.1 Correctness

ASC enables any honest prover to generate a master credential. This master credential can then be used to
register any pseudonym for verifiers while incorporating nullifiers. For correctness, we utilize an external
generator G, which produces pseudonyms, indicating that ASC is independent of how pseudonyms are
generated.
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Definition 7 (Correctness). Consider an anonymous self-credential protocol ASC with N provers and
L verifiers. We define the correctness game, in which two honest provers (j, j′) attempt to register two
pseudonyms, (ϕ, ϕ′) generated by any external generator G, for two verifiers, (l, l′) as follows:
GameCorrect

ASC,G (λ, L,N, j, j′, l, l′) :

crs := ASC.Setup(λ, L) such that [vi]Li=0 ∈ crs

[Φi := ASC.Gen(crs, ski
$←− K)]Ni=1 and Λ := [Φi]

N
i=1 ▷ anonymity set

(ϕ, ϕ′)
$←− G ▷ get pseudonyms

(nul, π) := ASC.Prove(crs,Λ, l, j, skj , ϕ)
(nul′, π′) := ASC.Prove(crs,Λ, l′, j′, skj′ , ϕ

′)
return ASC.Verify(crs,Λ, l, ϕ, nul, π) ∧ASC.Verify(crs,Λ, l′, ϕ′, nul′, π′)
∧ASC.Open(crs, l, nul,Φj , skj) ∧ASC.Open(crs, l′, nul′,Φj′ , skj′)
∧
(
(j = j′ ∧ l = l′ ∧ nul = nul′) ∨((j ̸= j′ ∨ l ̸= l′) ∧ (nul ̸= nul′))

)
We say that ASC is correct if

∀L ∈ N, N ∈ N, (j, j′) ∈ [1, N ]2, (l, l′) ∈ [1, L]2 :

Pr
[
GameCorrect

ASC,G (λ, L,N, j, j′, l, l′)
∣∣∣ N ≥ 2

]
≥ 1− ϵ(λ).

4.3 Security

An anonymous self-credential system must guarantee the following security properties: robustness, un-
forgeability, Sybil resistance, anonymity, and multi-verifier unlinkability.

4.3.1 Robustness

During the registration process, the anonymity set may contain seemingly valid master identities that
were not properly generated by the function ASC.Gen(). However, these simulated master identities
should not impact the correct registration of an honest prover. The fault tolerance of ASC is essential for
real-world applications, as it ensures that provers who include incorrect master identities, intentionally
or accidentally, cannot hinder the registration of honest provers. We formally define robustness of ASC
in Definition 8.

Definition 8 (Robustness). Consider an anonymous self-credential protocol ASC with N provers and L
verifiers. Among the provers, there is an honest prover j who generates the master credential correctly.
The other provers obtain their master identities from A, which outputs simulated master identities that
resemble genuine master identities but may or may not have been generated correctly using ASC.Gen().
We define the robustness game, in which the honest prover can still generate valid nullifiers and proofs
as follows:
GameRobust

ASC,G,A(λ, L,N) :
crs := ASC.Setup(λ, L)

j
$←− [1, N ] ▷ pick a prover

Φj := ASC.Gen(crs, skj
$←− K) ▷ honest prover’s

(l, [Φi]
N
i=1,i ̸=j)← A(crs) ▷ simulated master credentials and picked the verifier l ∈ [1, L]

Λ := [Φi]
N
i=1 ▷ anonymity set

ϕ
$←− G ▷ get pseudonym

(nul, π) := ASC.Prove(crs,Λ, l, j, skj , ϕ)
return ASC.Verify(crs,Λ, l, ϕ, nul, π)

We say that ASC is robust if ∀(L ∈ N, N ∈ N):

Pr[GameRobust
ASC,G,A(λ, L,N)] ≥ 1− ϵ(λ).
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4.3.2 Strong Unforgeability

ASC should satisfy a soundness property known as unforgeability. This means that an adversary who
does not have access to the master secret key of an honest prover cannot generate a valid nullifier or
proof.

In the context of ASC, it is important to consider a more robust adversarial model, where the adver-
sary may compromise other provers (except for one honest prover) and select master identities for the
anonymity set. However, even with this capability, the adversary should not be able to forge a valid proof
or nullifier to register a pseudonym without the knowledge of the honest prover’s master secret key.

We emphasize that ASC is only viable if strong unforgeability is provided. Thus, even if an adversary
can request proofs for multiple pseudonyms of its choice from the honest prover, the adversary should
not be able to use that information to forge a proof for a fresh pseudonym.

In the context of the protocol, a prover may share multiple ASC proofs for the same pseudonym on
different occasions. This could occur due to interrupted communication by an adversary or for specific
application purposes—for example, U2SSO uses ASC proofs for different functionalities like registra-
tion, revocation, and modification of pseudonyms. In such cases, the proofs may vary due to the inter-
nal randomness employed in the underlying constructions, even when the pseudonym remains the same.
Strong unforgeability ensures that, despite these variations in proofs, the adversary cannot generate proof
for a fresh pseudonym.

We define strong unforgeability in Definition 9.

Definition 9 (Strong Unforgeability). Let there be an anonymous self-credential protocol ASC with N
provers and L verifiers. In the game of unforgeability, the adversary A is allowed to generate all master
credentials on behalf of the provers, with the exception of one honest prover j. The objective of A is to
forge a nullifier and a proof that are valid for any verifier l for any fresh pseudonyms ϕ′, using the master
credential of that honest prover. Here, a fresh pseudonym is a one that was not stored in Q. We define
this game as follows:
GameUnforge

ASC,A (λ, L,N) :

crs := ASC.Setup(λ, L) such that [vl]Ll=0 ∈ crs

Φ := ASC.Gen(crs, sk
$←− K) ▷ honest master credential

(j, [Φi]
N
i=1,i ̸=j)← A(crs,Φ) ▷ adversary creates the rest

Λ := [Φi]
N
i=1 when (Φj , skj) := (Φ, sk) ▷ anonymity set

Q = { }
While (ϕ, l)← A(crs,Φj): ▷ allow multiple queries
(nul, π) := ASC.Prove(crs,Λ, l, j, skj , ϕ)
(nul, π)→ A and Q := Q ∪ {ϕ}

(ϕ′, nul′, π′)← A(crs,Φj)
return ϕ′ ̸∈ Q ∧ ASC.Verify(crs,Λ, l, ϕ′, nul′, π′)
∧ASC.Open(crs, l, nul′,Φ, skj)

ASC is unforgeable if: for all (L ∈ N, N ∈ N):

Pr[GameUnforge
ASC,A (λ, L,N)] ≤ ϵ(λ).

4.3.3 Sybil Resistance

Sybil resistance of an ASC means that a master identity can only produce one nullifier for each verifier
identifier.

Definition 10 (Sybil Resistance). Let ASC be an anonymous self-credential protocol with N provers
and L verifiers. In the game of Sybil resistance, the adversary A can generate all master credentials on
behalf of the provers. The goal of A is to find two tuples of pseudonyms, nullifiers, and proofs that are
valid for the same verifier l and from the same master credential when the nullifiers are different.

We define this game as follows:
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GameSybilASC,A(λ, L,N) : crs := ASC.Setup(λ, L)
(Λ, sk, l, (ϕ, nul, π), (ϕ′, nul′, π′))← A(crs)
return ASC.Verify(crs,Λ, l, ϕ, nul, π)
∧ASC.Verify(crs,Λ, l, ϕ′, nul′, π′) ∧ nul ̸=nul′

∧ASC.Open(crs, l, nul,Φ, sk) ∧ASC.Open(crs, l, nul′,Φ, sk)
ASC offers Sybil resistance if: for all (L ∈ N, N ∈ N):

Pr[GameSybilASC,A(λ, L,N)] ≤ ϵ(λ).

4.3.4 Anonymity

ASC systems should provide two key privacy features, the first of which is anonymity. Anonymity
ensures that honest-but-curious verifiers cannot determine which master identity within the anonymity
set conducted a registration.

Moreover, anonymous credentials maintain anonymity even under a strong adversarial model. In
this context, an adversarial verifier may query a pseudonym’s registration multiple times. For instance,
in real-world scenarios, a malicious verifier might repeatedly claim not to have received the complete
proof due to communication errors, allowing them to collect multiple proofs from the same prover (note
that while the nullifier remains the same, the proofs may differ). Another example involves a malicious
verifier rejecting a pseudonym and claiming that it has already been used. The verifier then requests
different pseudonyms along with valid proof.

ASC must accommodate a maximum of N ′ malicious provers out of N total provers, provided that
N − N ′ ≥ 2. In this situation, an honest prover can still obscure their master identity among the
remaining N −N ′ honest provers.

Consequently, while the presence of malicious provers may reduce the size of the true anonymity set,
it does not divulge any information about the master identity of the honest prover. This property is crucial
for applications, as it is possible for certain provers to collude with verifiers. We define anonymity in
Definition 11.

Definition 11 (Anonymity). Let ASC be an anonymous self-credential protocol, involving N provers
and L verifiers. Among the N provers, N ′ provers may be malicious, with the condition that N −
N ′ ≥ 2. We define the index set of honest provers as J := {j1, j2, . . . , jN−N ′}. While the honest
provers correctly generate their master credentials, the adversary produces the master identities for the
compromised provers in the index set [i]Ni=1,i ̸∈J .

Thus, the anonymity set Λ comprises the master identities from both honest and compromised
provers.

In the game, we randomly select an honest prover j such that j $←−J . The p.p.t. adversary can
query multiple registrations from this honest prover for a verifier l for any pseudonym ϕ chosen by the
adversary. The adversary’s objective is to identify the index of the honest prover. We define the game of
anonymity as follows:
GameAnonymity

ASC,A (λ, L,N) :

crs := ASC.Setup(λ, L) such that [vl]Ll=0 ∈ crs
(J, l)← A(crs)
[Φi := ASC.Gen(crs, ski

$←− K)]i∈J
[Φi]

N
i=1,i ̸∈J ← A(crs, [Φji ]i∈J) ▷ corrupted credentials

Λ := [Φi]
N
i=1 ▷ anonymity set

j
$←−J ▷ pick a honest prover

While ϕ← A(crs,Λ) queries:
(nul, π) := ASC.Prove(crs,Λ, l, j, skj , ϕ)
(nul, π)→ A ▷ send the outputs to A

j′ ← A ▷ get the guessed index from A
return j = j′ ∧ |J | ≥ 2
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ASC provides the anonymity if for all (L ∈ N, N ∈ N):

Pr[GameAnonymity
ASC,A (λ, L,N)] ≤ 1/(N −N ′) + ϵ(λ).

4.3.5 Multi-Verifier Unlinkability

The second privacy feature of ASC is that registrations for two different verifiers should be unlinkable.
Suppose verifier l receives a registration consisting of (ϕ, nul, π), and verifier l′ receives a registration
with (ϕ′, nul′, π′). Even if the two verifiers collude, they should not be able to determine whether the
registrations came from the same master credentials or from two different ones. As a result, provers can
register with multiple verifiers using the same master credential without allowing the colluding verifiers
to link their registrations.

ASC should guarantee multi-verifier unlinkability when the anonymity set includes N ′ corrupted
provers’ master identities, provided that N − N ′ ≥ 2. In other words, as long as there are at least two
honest provers, the honest provers can maintain unlinkability despite the presence of malicious provers.

Definition 12 (Multi-verifier Unlinkability). Let ASC be an anonymous credential protocol, involving
N provers and L verifiers. Among the N provers, up to N ′ may be malicious, with the condition that
N −N ′ ≥ 2. We define the index set of honest provers as J := {j1, j2, . . . , jN−N ′}. While the honest
provers correctly generate their master credentials, the adversary produces the master identities for the
compromised provers in the index set [i]Ni=1,i/∈J .

Consequently, the anonymity set Λ includes the master identities from both the honest and compro-
mised provers.

First the adversary picks two pseudonyms (ϕ, ϕ′), and then the unlinkability game operates in two
modes: (1) in the first mode two registrations are generated from the same master credential for verifier
l and verifier l′ when l ̸= l′; (2) in the second mode two sets of registration data are produced from two
different master credentials. The game randomly selects one of these modes and sends the corresponding
data to the adversary. The adversary’s goal is to determine which mode was used based on the registration
data provided.

GameUnlink
ASC,A (λ, L,N) : crs := ASC.Setup(λ, L) such that [vl]Ll=0 ∈ crs

[Φi := ASC.Gen(crs, ski
$←− K)]i∈J

(l, l′, [Φi]
N
i=1,i ̸∈J)← A(crs, [Φji ]i∈J) ▷ corrupted credentials

Λ := [Φi]
N
i=1 ▷ anonymity set

(ϕ, ϕ′)← A(crs) s.t. ϕ ̸= ϕ′ ▷ different pseudonyms
b

$←−[0, 1] ▷ pick the mode

if b = 0: j $←− J and j′ := j ▷ the mode of the same prover

if b = 1: j $←− J and j′
$←− J \ [j] ▷ the mode of two different provers

(nul, π) := ASC.Prove(crs,Λ, l, j, skj , ϕ)
(nul′, π′) := ASC.Prove(crs,Λ, l′, j′, skj′ , ϕ

′)
b′ ← A((nul, π), (nul′, π′)); return b = b′ ∧ l ̸= l′

Anonymous self-credentials are multi-verifier unlinkable if for all (L ∈ N, N ∈ N):
Pr[GameUnlink

ASC,A (λ, L,N)] ≤ 1/2 + ϵ(λ)

5 ASC from Zero-Knowledge Arguments

In this section, we show two constructions of ASC using two different zero-knowledge arguments: one
is limited to a (trusted) Structured Reference String (SRS) setup, while the second can be from any
Common Reference String (CRS) setup. We refer to these two ASC constructions as SRS-ASC and CRS-
ASC, respectively. An SRS setup creates a reference string with a special structure (see section 3.1.3)
which enables efficient ZKAs for special computations such as algebraic hash functions.

14



5.1 SRS-ASC

Our first construction leverages the special structure of the SRS to efficiently verify the knowledge of
inputs to algebraic hash digests while ensuring that some or all inputs remain confidential. For this
construction, we rely on an algebraic hash function:

Hashnsrs : (K, [0, 1]∗)→ [0, 1]n, (2)

which requires a structured reference string (srs). This function takes a random secret key from the set
K and any input, referred to as tag ∈ [0, 1]∗, to produce a hash digest when n ≥ 2λ. Different algebraic
circuits can be used to prove that the digest was created correctly without revealing the secret key. For
instance, some zero-knowledge proof protocols like anonymous messaging [85] allow to confirm that
such a hash was generated using a blinding key committed in one of the commitments, without revealing
which commitment has the key. To prove the security of our construction, we rely on collision-resistance
of the hash function Hashnsrs.

We introduce our first anonymous self-credential system ASCSRS using such a hash function. Let
there be a zero-knowledge relation RASCSRS,N,JWEE

enforced by (SetupASCSRS
,PASCSRS

,VASCSRS
) for

the following relation:

RASCSRS,N,JWEE
: (srs, u := (Λ, tag, nul, π(ϕ)), w := (j, kj))

⇔

(
Cj = ComK

srs(kj ∈ K) ∈ Λ ∧
nul = Hashnsrs(kj , tag) ∧ j ∈ JWEE ∧ |JWEE | ≥ 2

)
.

(3)

In this protocol, each prover j generates the master credential from a commitment and its blinding
key, and the anonymity set Λ is formed from the commitments [Cj ]

N
j=1 of all provers. The prover who

wants to register a pseudonym ϕ generates a hash nul = Hashnsrs(kj , vl), where kj is the blinding key
associated with her commitment, and vl is the verifier name. The proof guarantees that nul was created
correctly using the blinding key from one of the commitments without revealing any information about
the commitment index j or the blinding key itself. We can denote this zero-knowledge relation in the
multi-prover setting, where the adversary may corrupt provers other than the honest provers in JWEE

during the WEE of Definition 4. In such case, an honest prover’s index j can be kept within J as long as
|JWEE | ≥ 2. Also, note that we define it to be strongly unforgeable for an initial challenge ϕ as stated
in Definition 6.

We build ASC from the above-mentioned zero-knowledge argument relation as follows:

▷ Here, the verifiers can select their identifiers [vl]Ll=0 or can be assigned identifiers as long as they
are unique.
ASCSRS.Setup(λ, L) :

return crs := (srs = SetupASCSRS
(λ), [vl]

L
l=0)

ASCSRS.Gen(crs, sk ∈ K) :
return Φ := ComK

crs(sk)
ASCSRS.Prove(crs,Λ, l, j, skj , ϕ) : ▷ recall that vl ∈ crs

nul := Hashnsrs(skj , vl)
π := PASCSRS

(u(ϕ) = (Λ, vl, nul), w = (j, skj))
return (nul, π)

ASCSRS.Open(crs, l, nul,Φ, skj) :
return nul = Hashnsrs(skj , vl)

ASCSRS.Verify(crs,Λ, l, ϕ, nul, π) : ▷ recall that vl ∈ crs
return VASCSRS

(u(ϕ) = (Λ, vl, nul, π))

We show that ASCSRS is a secure a anonymous self-credential protocol with Theorem 1 as follows:

15



Theorem 1. ASCSRS provides correctness, robustness, Sybil resistance, unforgeability, anonymity, and
multi-verifier unlinkability when the relation RASCSRS,N,JWEE

is obtained by (SetupASCSRS
,PASCSRS

,
VASCSRS

) with unforgeability (Definition 6) for a commitment scheme Com that is hiding and binding
(see proofs in Section 5.1.1).

5.1.1 Security Proofs of SRS-ASC

Correctness In the ASCSRS protocol, the nullifiers are derived from the master secret key skj and the
verifier identifier vl ∈ crs. Specifically, the nullifier is calculated as nul = Hashnsrs(skj , vl). As a
result, the nullifier remains consistent for any number of proofs submitted for the same verifier when the
same master credential is used. Conversely, due to collision resistance of the underlying hash function, if
any component differs, the nullifier will change, allowing honest provers to register with other verifiers.
Therefore, given the ZKA is complete, we conclude that ASCSRS is correct as outlined in Definition 7.

Robustness Robustness, as described in Definition 8, indicates that honest provers should be able to
generate proofs, even if the anonymity set includes master identities that resemble honest identities but
are not correctly generated. We demonstrate the robustness of ASCSRS by leveraging the completeness
of the zero-knowledge relation RASCSRS,N,JWEE

(as shown in Eq. (4)). According to the completeness
of ZKA outlined in Definition 4, as long as the statement is valid, a legitimate proof can be produced.
Therefore, since the statement of RASCSRS,N,JWEE

only considers the correctness of the honest provers’
commitment creation and is not affected by other commitments in the anonymity set, robustness is up-
held.

Unforgeability Unforgeability of ASC implies that an adversary who does not possess the master
secret key cannot produce a valid proof for a new pseudonym. Assuming that we obtain strong un-
forgeability for RASCSRS,N,JWEE

and the commitments are binding (see Definition 3), ASCSRS achieves
unforgeability, as defined in Definition 6 since we replaced the initial message of RASCSRS,N,JWEE

with
the pseudonym.

Sybil-Resistance We demonstrate that ASCSRS is Sybil-resistant, as defined in Definition 10. This is
due to the knowledge soundness ofRASCSRS,N,JWEE

and the binding property of the commitment scheme
(see Definition 3). Specifically, a proof can only be generated if the nullifier satisfies the condition
nul = Hashnsrs(skj , vl), where skj is the master secret key and vl is the verifier identifier. As a result, the
adversary cannot generate two different nullifiers from the same master secret key and verifier identifier.
Additionally, the adversary is unable to find two different blinding keys (master secret keys) for the
same commitment, which represents the master identity. Therefore, we conclude that ASCSRS provides
Sybil-resistantace.

Anonymity Anonymity in ASC ensures that, given a nullifier and a proof, no polynomial-time adver-
sary can determine the master identity that generated them—even if the adversary selected the pseudonym.
ASCSRS inherits this anonymity from the Perfect Special Honest-Verifier Zero-Knowledge (SHVZK)
property of the ZKA for the relation RASCSRS,N,JWEE

. This property ensures that both the prover’s in-
dex and the master secret key remain hidden within the witness. Consequently, the adversary gains no
information about which master credential was used to generate the proof, preserving anonymity.

Multi-Verifier Unlinkability Multi-verifier unlinkability entails that, when presented with two (proof,
nullifier) pairs, an adversary cannot determine whether they originated from the same credential or from
different credentials.

The relation RASCSRS,N,JWEE
possesses the WEE property, which ensures that the proofs generated

by ASCSRS do not disclose the index of the master identity. Furthermore, the hash function Hashnsrs
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is designed to be one-way and is based on a master secret key that has high entropy and uniform ran-
domness. As a result, the nullifiers produced are pseudorandom strings. Therefore, we conclude that
no p.p.t. adversary can ascertain whether the two pairs of proofs and nullifiers were generated from the
same master credential or from two distinct master credentials. This establishes that ASCSRS provides
multi-verifier unlinkability assuming that the ZKA ofRASCSRS,N,JWEE

holds.

5.2 CRS-ASC

In the previous construction, a special setup for the hash function was required to maintain the secret key.
This special setup necessitated a certain level of trust [85], which may not be ideal for global identity
management. As an alternative, we present a different construction that can be built using classic CRSs.

In this new construction, we utilize multi-value commitments as master identities. Each master
identity is embedded with randomly selected nullifiers for each verifier during the generation process.
During registration, the prover reveals the corresponding nullifier for the verifier, proving it is committed
within the overall commitment without disclosing any other nullifier. We rely on the binding property to
ensure the consistency of the nullifier, meaning the prover cannot open a different nullifier and register
multiple times for the same verifier using the same master identity.

Let there be a tuple of (SetupASCCRS
,PASCCRS

,VASCCRS
) that ensure the following zero-knowledge

relation:
RASCCRS,N,JWEE

:
(
crs, u :=

(
Λ, l, nul, π(ϕ)

)
, w :=

(
j, kj , [nuli]

L
i=1

))
⇔

(
Cj = Com

Zq ,S
crs ([nuli]

L
i=1, kj ∈ S) ∧ (1 ≤ l ≤ L)

∧(null = nul) ∧ (j ∈ JWEE) ∧ |JWEE | ≥ 2

)
.

(4)

We build an ASC scheme from the above-mentioned zero-knowledge argument relation as follows:

▷ Each verifier is assigned an index l where l ∈ [1, L]. The index l can be assigned based on the
sorted verifier identifiers.
ASCCRS.Setup(λ, L) :

return crs := (crs = SetupASCCRS
(λ)) ▷ This crs defines the master secret key space to be

K = ZL
q × S.

ASCCRS.Gen(crs, sk = ([nuli]
L
i=1 ∈ ZL

q , kj ∈ S)) :
return Φ := Com

Zq ,S
crs ([nuli]

L
i=1, kj)

ASCCRS.Prove(crs,Λ, l, j, skj = (kj , [nuli]
L
i=1), ϕ) :

π := PASCCRS
(u(ϕ) = (Λ, l, nul), w = (j, kj , [null]

L
l=1))

return (nul, π)
ASCCRS.Open(crs, l, nul,Φ, skj = (kj , [nuli]

L
i=1)) :

return Φ = Com
Zq ,S
crs ([nuli]

L
i=1, kj)

ASCCRS.Verify(crs,Λ, l, ϕ, nul, π) :
return VASCCRS

(u(ϕ) = (Λ, l, nul, π))

We show that ASCCRS is a secure anonymous self-credential protocol as stated in the following
theorem:

Theorem 2. ASCCRS provides correctness, robustness, Sybil resistance, unforgeability, anonymity, and
multi-verifier unlinkability when the system of (SetupASCCRS

,PASCCRS
,VASCCRS

) satisfies the ZKA rela-
tion RASCCRS,N,JWEE

with unforgeability (Definition 6) and Com is hiding and binding (see proofs in
Section 5.2.1).

5.2.1 Security Proofs of CRS-ASC

Correctness In ASCCRS, each nullifier null for verifier l are committed to the master public key Φ.
Hence, the prover has to reveal the same nullifier to a corresponding verifier for any number of proofs.

17



Additionally, for two different verifiers: verifier l and verifier l′(l ̸= l′) , the prover will open differ-
ent nullifiers if the prover committed two different nullifiers null ̸= null′ during the generation of Φ.
Assuming that all variables in the master secret key sk = ([nuli]

l
i=0, k) are chosen at random from

K = ZL
q × S, (1) the provers can register with different verifiers and (2) multiple provers can register

with the same verifier. Therefore, we conclude that ASCCRS is correct.

Robustness Robustness of ASC means that an honest prover can generate a proof even when the
anonymity set includes master identities that resemble correct ones but that were not correctly generated
from ASCCRS.Prove(). We claim that ASCCRS is robust because the completeness of RASCCRS,N,JWEE

guarantees that the honest prover can create a proof as long as the statement is valid, regardless of the
presence of other looks-like master identities within the anonymity set.

Strong Unforgeability Strong unforgeability means that a proof for a fresh pseudonym cannot be
created even if the adversary has access to previous proofs and pseudonyms. ASCCRS obtains strong
unforgeability due to the strong unforgeability of RASCCRS,N,JWEE

since the proofs are bound to the
pseudonym as explained in Definition 6.

Sybil Resistance When utilizing commitments as master identities, the prover must reveal what was
initially committed due to the binding property of the commitments (see Definition 3). Consequently,
the prover is required to open the same nullifier l to the verifier, regardless of the pseudonym used. This
process ensures the Sybil resistance expected in Definition 10 as long as commitments are binding.

Anonymity The anonymity property of the ASCCRS construction follows from the WEE property of
RASCCRS,N,JWEE

since the proofs do not reveal anything about an honest prover’s index of the master
identity as long as there exists one more honest prover such that |JWEE | ≥ 2.

Multi-Verifier Unlinkability The WEE of RASCCRS,N,JWEE
ensures that the proofs and the revealed

nullifier do not disclose any information about the other committed nullifiers embedded with the master
identity. As a result, given two pairs of proofs and nullifiers, a p.p.t. adversary cannot determine whether
they were generated from the same master credential or from two different credentials. Therefore, we
conclude that ASCCRS provides multi-verifier unlinkability when the commitments are hiding, as outlined
in Definition 2, andRASCCRS,N,JWEE

satisfies the WEE as in Definition 4.

6 The U2SSO System

U2SSO poses as an alternative to traditional federated identity management solutions, which allow users
to access multiple service providers (SPs) using and managing just one set of credentials provided by an
IdP, leveraging SSO. The proposed system, starting from the concept of self-sovereign identities (SSI),
aims to deconstruct the well-established SSO user authentication flow, introducing a new composition
that substitutes the centralized trusted entity with an immutable identity registry, as already happens in
SSI, but provides additionally:

• a mechanism to self-derive valid service-specific identities linked to a single publicly available
SSI,

• a primitive to prove the ownership of such SSI hidden in an anonymity set, and

• a novel workflow where interactions with the IdR only occur for SSI registration, eliminating
timing attacks.
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6.1 Model

The U2SSO system encompasses three entities.

• User (U) – A user is interested in creating a digital identity to access online services. Ideally, she
has complete control over the identity; she can manage just one set of master credentials while
maintaining privacy across multiple services.

• Service Provider (SP) – A service provider is an entity advertising a service. Typically, it wants
to univocally identify users both to maintain long-lived accounts for operational purposes and
to protect the service against Sybil attacks for security purposes. Therefore, a user must prove
ownership of a master identity on the IdR to register a pseudonym as her username for a long-lived
account, and she should be limited to generating just one pseudonym from the same master identity
for a specific service. Each SP may prefer a specific format for the pseudonym (i.e., email address)
thus we assume it uses a preferred credential generator Gauth that conforms to a generic interface
(see Section 6.2). Additionally, it is crucial for a service provider to be uniquely identifiable by
users to prevent man-in-the-middle attacks. Each service provider is assigned a unique identifier
known as a service name and an origin. This helps users verify whether the connection is secure
and the service is legitimate. Further details on SP registration are out of the scope of this work.

• Identity Registry (IdR) – The identity registry acts as a semi-trusted intermediary entity that pub-
licly stores the users’ identities, maintaining one or more anonymity sets, and the service names
and origin of legitimate SPs. This entity is not entrusted with credential issuing or keeping secrets,
and it may actively collude with SPs to deanonymize users. However, it must guarantee that every
correctly registered identity can be retrieved and read consistently. Ideally, the IdR has a Sybil-
resistant onboarding process that allows users to register a master identity. This process can vary
in complexity; it may involve a monetary fee for general-purpose services or require more rigorous
methods, subject to real-world identification (e.g., driving licenses) for sensitive services.

6.2 Cryptographic tools

The U2SSO system employs three main cryptographic tools. First, it employs an ASC protocol (Sec-
tion 4) to prove ownership of a single master identity hidden within a publicly available anonymity set
while generating a nullifier for one-time identification with an SP. Second, it uses a hash-based key
derivation function HKDFnm,m′ (Section 3.1.1) to deterministically derive child credentials from a single
master credential. Finally, it incorporates a credential generator Gauth, which abstracts the details of
most common authentication mechanisms and provides the following generic interface:

1: Gauth.Setup(λ) : crs ▷ public parameters’ generation
2: Gauth.Gen(sk ∈ [0, 1]n) : ϕ ▷ pseudonym generation
3: Gauth.Prove(sk,W ) : σ ▷ proof against a random challenge W
4: Gauth.Verify(ϕ,W, σ) : 1/0 ▷ proof verification

6.3 Workflow

The U2SSO system can be specified through a setup phase, and its four protocols: master identity reg-
istration, pseudonym derivation and registration, and authentication to a service, pseudonym update or
revocation. We detail each and discuss their system goals.

6.3.1 Setup

The setup requires every entity to initialize its state with the necessary data to bootstrap the system. The
IdR allows L service providers to register to the U2SSO system. For each SPl, for l ∈ [1, L], the IdR
records the service name vl, the origin, and the preferred credential generator Glauth. The IdR ensures
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U (crs, sk ∈ K) IdR (crs, [Λ1,Λ2, ...,Λd])

vl ∈ crs
if SRS-ASC:
ŝk := sk

if CRS-ASC:
[null ← Glauth.Gen(HKDF

n
m,m′(sk, vl))]

L
l=1

ŝk := ([null]
L
l=1, sk)

Φ := ASC.Gen(crs, ŝk)

r
$←− [0, 1]m for HKDFnm,m′

(Safely stores (r, sk)).
Send Φ

if |Λd| < N : Λd := Λd ∪ [Φ]; d̂ := d
else: Λd+1 := [Φ] and IdR := IdR ∪ Λd+1;

d̂ := d+ 1

Once Λd̂ is full: Send (d̂,Λd̂)

Figure 1. U2SSO master credential creation and master identity registration with the IdR

that all service names are unique, and rejects any duplicates. Service names are used in ASC as verifier
identifiers, which we recall are part of the ASC public parameters.

6.3.2 Master identity registration

The protocol takes place between a user U and the IdR, as shown in Figure 1. After setup, U starts
generating U2SSO credentials. Depending on which construction it is used, the generation process will

be different. For SRS-ASC, U randomly picks sk from the key space (sk $←− K), and from it generates
the master identity Φ. However, for CRS-ASC, she first picks a key sk from the set S and generates
nullifiers as follows:

[null ← Glauth.Gen(HKDFnm,m′(sk, vl))]
L
l=1.

where Glauth is SPl’s chosen credential generator. Each nullifier can be deterministically recomputed and
serves as a public key, whose associated secret is derived using a key derivation function with key sk and
verifier name vl as the salt. The master secret key for CRS-ASC is the pair ([null]Ll=1, sk), from which
the master identity Φ is generated.

Finally, she picks a random input key material r for HKDFnm,m′ , required for future pseudonym
registration. We refer to the tuple (Φ, sk, r) as U2SSO master credential, where Φ is the master iden-
tity (public), and (sk, r) is the secret key.

In U2SSO, we configure the IdR to store master identities using multiple anonymity sets, denoted by
Λ1,Λ2, . . . ,Λd. The number of anonymity sets d expands as new identities are added. Each anonymity
set has cardinality N , with N ≫ 2.

Once the master credential is generated, U sends the master identity Φ to the IdR. The IdR fills
the anonymity sets on a first-come, first-served basis, i.e., the IdR places Φ in the most recent unfilled
anonymity set Λd or creates a new anonymity set Λd+1 to store the master identity. Once an anonymity
set Λd̂ is full (N identities are stored), its master identities are considered ready to use. Only then does the
IdR send that anonymity set Λd̂ along with the index d̂ back to U , successfully completing registration.
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U(crs,Φj , sk, r, d̂,Λd̂, sk) SPl (crs,accountsl) IdR (crs, [Λ1,Λ2, · · · ,Λd])

vl ∈ crs
if SRS-ASC:
ŝk := sk

if CRS-ASC:
[null ← Glauth.Gen(HKDF

n
m,m′(sk, vl))]

L
l=1

ŝk := ([null]
L
l=1, sk)

cskl := HKDFnm,m′(r, vl)

ϕ := Glauth.Gen(cskl)
(π, nul) := ASC.Prove(crs,Λd̂, l, j, ŝk, ϕ)

(ϕ, π, nul, d̂)

Send d̂

Send Λd̂

b :=
ASC.Verify(crs,Λd̂, l, ϕ, nul, π)
b′ := b ∧ (ϕ, ∗) ̸∈ accountsl
∧(∗, nul) ̸∈ accountsl

“Registered” if b′=1

accountsl :=
accountsl ∪ [ϕ∥nul]

Figure 2. Registration of a service-specific pseudonym ϕ with service provider SPl.

6.3.3 Pseudonym generation and registration

The protocol involves a user U , the IdR, and a specific service provider SPl, as shown in Figure 2. To
provide an authentication flow adjacent to classic SSO, we want U to manage only the U2SSO master
credentials and be able to derive deterministically service-specific identities as child credentials to reg-
ister with different SPs. Let’s recall that U stores (Φj , sk, r), where here Φj indicates U owns the jth
master identity in a certain anonymity set.

Therefore, to register with a service provider SPl, U generates a child secret key cskl from HKDFnm,m′

with r as the input key material and service name vl as salt:

cskl := HKDFnm,m′(r, vl) ∈ [0, 1]n (5)

U feeds cskl key to SPl’s chosen credential generator Glauth and generates the pseudonym as follows:
ϕ := Glauth.Gen(cskl).

Then, U computes the proof that she owns a master identity in the anonymity set Λd̂ and a nullifier,
and sends them to SPl. Additionally, U sends d̂, index of the anonymity set, and ϕ.

SPl then retrieves Λd̂ from the IdR to verify the proof and the nullifier. This method of fixed-sized
and precisely-indexed anonymity sets reduces interactions with the IdR, allowing both U and SPl to
cache them for future use. Also, this prevents side-channel attacks on unlinkability through the timing of
IdR interactions. SPl maintains an array, accountsl, tracking registered users. Thus, upon receiving U’s
request, it additionally checks that both ϕ and nul were not previously received to successfully conclude
registration.
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User (crs,Φj , sk, r, d̂,Λd̂) SPl (crs,accountsl)

Authenticate ϕ?

if ϕ ∈ accountsl:
W

$←− Zq; else: reject

Send W

cskl := HKDFnm,m′(r, vl)
where vl ∈ crs

ϕ := Glauth.Gen(cskl)
σ := Glauth.Prove(cskl,W )

Send σ

b := Glauth.Verify(ϕ,W, σ)

“Authenticated” if b=1

Figure 3. A proof-of-concept authentication with a registered service-specific pseudonym ϕ when ϕ ∈
accountsi.

6.3.4 Authentication to a service

The protocol runs only between the user U and a specific service provider SPl. We use a generic au-
thentication protocol based on the credential generator interface introduced in Section 6.2. Once the
pseudonym ϕ is registered to SPl, U can log in by authenticating herself, as shown in Figure 3. First, the
user requests to authenticate herself with ϕ. Then, SPl picks a random challenge W and sends it to the
user if ϕ ∈ accountsl. The user then proves the knowledge of the secret cskl against the challenge W
by creating a proof σ. If the proof is valid, the verifier allows U to access the account under ϕ.

6.3.5 Pseudonym update or revocation

A user U should be able to update a pseudonym used for authentication with an SPl in the event of
credential updates or revocations, even if the secret key cskl may have been compromised. U2SSO
outlines two protocols designed for this situation based on the underlying ASC construction.
U wants to revoke a registered pseudonym ϕ with the verifier l. First, U notifies the verifier that she

intends to authenticate herself for the registered ϕ using the knowledge of (sk, r), rather than with the

potentially compromised key csk. In response, the verifier sends a random challenge W
$←− Zq. Upon

receiving W , U proves her identity to the verifier.
For SRS-U2SSO, she creates an ASC proof on W∥ϕ,

(π, nul′) := ASC.Prove(crs,Λd̂, l, j, ŝk = sk,W∥ϕ)

The verifier checks if the nullifier nul used to register ϕ is equal to nul′, and then revokes the access to
ϕ. Here, U effectively proves the ownership of ϕ via the knowledge of sk, without using leaked cskl.
Moreover, due to the randomness of W , the verifier ensures that adversaries can not replay old ASC
proofs. Similarly, U can update ϕ to a non-empty ϕ′ by generating the proof on W∥ϕ∥ϕ′.

In CRS-U2SSO, U shows just the knowledge of the nullifier’s secret key by creating σ as follows:

σ := Glauth.Prove(null,W∥ϕ) where null := HKDFnm,m′(sk, vl).

As before, U can update ϕ to a new ϕ′ by generating σ for W∥ϕ∥ϕ′.
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Figure 4. Proof sizes, proof generation times, and proof verification times for service registrations. Here,
we compare our U2SSO constructions along with DID:RING proofs [61]. Note: N is the cardinality of
Λ.

7 Implementation and Evaluation

We implement a proof-of-concept U2SSO system providing (1) open-source cryptographic libraries for
CRS-U2SSO and SRS-U2SSO, implementing respectively the ASC-CRS and ASC-SRS constructions;
(2) an Ethereum smart contract as the IdR that holds the anonymity sets, and (3) a user-side command line
interface (CLI) and (4) a website prototype, both enabling registration and authentication with U2SSO
(https://github.com/BoquilaID/U2SSO).

We then benchmark the relevant U2SSO cryptographic primitives and test the smart contract on
Truffle [89] to estimate Gas costs for functionalities in a controlled environment.

7.1 Implementation details

CRS-U2SSO implements the zero-knowledge relationRASCCRS,N,JWEE
utilizing SHA256 and the Double-

Blind Proof of Existence (DBPoE) [2] designed for multi-generator Pedersen commitments. In our im-
plementation, we replaced the DBPoE membership proofs with a more efficient one as described in
Bootle et al. [19], building it from scratch, using SECP256K1 elliptic curve [14]. In this context, a
multi-value commitment consists of 33 bytes, while a field element Zq consists of 32 bytes.

SRS-U2SSO, instead, instantiates RASCSRS,N,JWEE
via Semaphore/Circom (JavaScript/Rust) [31,

85] on the BN254 curve (a commitment is 96 bytes and Zq elements are 32 bytes), and uses Poseidon3
hash function [48] for Hashnsrs.

As a credential generator and authentication mechanism for services, SRS-U2SSO uses BLS signa-
tures [18], while CRS-U2SSO employs Schnorr signatures [84].

The Solidity smart contract on the Ethereum blockchain suitably implements the U2SSO identity
registry. The contract requires a transaction fee for U2SSO master credential registration, discouraging
users from creating multiple identities due to the financial cost and Ethereum’s inherent limitations on
maintaining unlinkable accounts. Notably, a smart contract aligns well with the semi-trusted adversarial
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model of the IdR: since every transaction is publicly traceable, anyone could potentially abuse transmitted
information.

The CLI application enables users to create and store U2SSO master identities on the Ethereum-based
IdR, generate proofs for service registration, and compute signatures.

Finally, the website prototype accepts pseudonym registration requests based on master identities on
the IdR smart contract. It can verify proof of ownership of a master credential in a specific anonymity
set and signatures for authentication. Additional details on the prototype are provided in App. A.

7.2 Experimental results

We conduct our experiments on a personal laptop with Ubuntu 22.04.4 LTS and a 12th Generation Intel
Core i7-1260P with 16 cores and 32GiB of RAM, and focus on the result of the following experiments:
(E1) Generation and size cost of master identities (Φ) and child identities (ϕ), (E2) Prove/verification
cost of the ASC proof π based on the anonymity set cardinality N , (E3) Dependency of CRS-U2SSO on
the parameter L, registered SPs, and (E4) Gas cost for the interactions with the Ethereum contract.

E1. We provide in Table 2 the sizes of Φ, and ϕ, together with the computational cost of generation.
The size of Φ is relevant both for the user, who needs to store it, and the IdR that stores N of them. The
user should also securely store the secret material (sk, r) (64 bytes). It is worth noting that the generation
of the master identity in CRS-U2SSO is the only operation parametrized by L, the number of registered
SPs, while Φ size is unaffected and stays constant. Considering that registering Φ is a one-time operation,
the overhead introduced by the second construction has minimal impact on the overall system.

U2SSO
Φ

(Bytes)
Φ

Creation (ms)
ϕ

(Bytes)
ϕ

Creation (ms)
SRS-U2SSO O(1): 96 O(1): 18.9 O(1): 96 O(1): 114
CRS-U2SSO O(1): 33 O(L)∗: 97 O(1): 33 O(1): 98

Table 2. Sizes and computational cost of Φ and ϕ. (∗) CRS-U2SSO assumes L = 100

E2. During registration for an SP, a user needs to prove ownership of a master identity. We show how
the proving and verification times, as well as the proof sizes, grows with the size of the anonymity set
N , ranging between 16 and 1024. Additionally, we compare our solution with the approach presented
in DID:RING [61], benchmarking the Borromean ring signature [71] on Libsecp256k1 [14], which
also provides a solution to prove membership of an identity hidden in anonymity set. As shown in
Figure 4, SRS-U2SSO’s proof size is constant, 328 bytes, while CRS-U2SSO’s proof size increases
logarithmically in N from 3591 to 3981 bytes. Also, we observe CRS-U2SSO exhibit a linear increase in
both proof generation and verification times. In contrast, SRS-U2SSO only shows a logarithmic increase
in generation and verification times as N increases. Although, comparing our U2SSO constructions with
Borromean ring signatures [71] used in DID:RING, we observe that DID:RING offers faster prover time,
but suffer from larger proof sizes for N > 128 and slower proof verification times for N > 512. For SSO
specifically, we believe that verification time efficiency is more critical as SPs need to execute multiple
verifications, even concurrently for every new user, while proof generation is an operation that the user
rarely executes only during registration, modification, or revocation of a pseudonym with the SP.

E3. We show in Figure 5 how varying the size of the anonymity set impacts the prove/verification time
for different values of L in CRS-U2SSO. The linear dependency from N remains clear, while changes
due to the L parameter seem to only introduce a small offset. For this reason, we fix N = 1024 and
observe in Figure 6 how Φ generation, proof size, and proving/verifying π are impacted by L. The
verification time appears to be the least affected factor, which is also important for the SPs.
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Figure 6. CRS-U2SSO with varying L and N = 1024

E4. We compare estimated minimal Gas costs for CRS-U2SSO solutions, DID:RING, and Hades in
Table 3. The cost for storing master identities depends on the size of Φ and the gas cost, plus a registration
fee that can be purposely defined in the smart contract. DID:RING register a whole set of identities to be
able later to use ring signature for anonymous authentication, Hades produces a couple of ZKP, to prove
knowledge of a Sybil-resistant identity, while our solution does not need to store pseudonyms or proofs
on the IdR. It is worth noting that our solutions offer the best cost optimization for any pair of (N,L)
due to the fixed size of Φ and the one-time write operation on the smart contract (only during registration
of Φ).

Protocol
ID

Storage
Registration
for a service

Interaction
with IdR

DID:RING ≈136 >136 + 136N always
Hades 339 248 always

CRS-U2SSO 136 0 one-time registration

Table 3. Cost of Ethereum-based IdR Solutions in Gwei

8 Discussion and Conclusion

We discuss U2SSO’s complementary aspects, a comparison with privacy-preserving SSO solutions, and
finally conclude the paper.

Verifiable Credentials (VC). A verifiable credential is an attribute about the user backed up by authen-
ticated proof from a reputable party. U2SSO can easily add support for VC as follows: the master identity
should additionally contain commitments to signed statements from an authority while anonymity sets
on the IdR should be organized by grouping users possessing the same attributes, signed by the same
authority, e.g., all users are over 18. An active line of research focuses specifically on how to implement
VCs in a decentralized setting [58, 86, 55, 72]. However, many general-purpose services do not need
VCs, and can benefit solely from the Sybil resistance and privacy of U2SSO.
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Accountability. Complete unlinkability is not always desirable, as SPs must be able to blacklist
misbehaving users [66]. Currently, U2SSO lacks a mechanism for revoking a master identity to en-
sure auditability. A common solution, used in other work [95, 92, 1], involves an external mechanism
where a trusted committee can jointly decrypt a user’s secret to revoke or track malicious accounts based
on specific policies. However, by design, U2SSO already guarantees accountability and revocation of
pseudonyms within a specific SP, which is sufficient for many Web 2.0 services.

Other privacy-preserving SSO. We group privacy-enhancing SSO solutions into two categories.
The first one assumes the model with a trusted IdP and aims at mitigating observability of the IdP
to prevent it from tracking users’ activities. Some solutions [38, 4, 94] address the problem from a
system design perspective introducing intermediary trusted components, others [95, 57, 52, 80, 22] from
a cryptographic one. Other works [64, 45, 54, 53, 51] focus specifically on increasing the privacy of
industry standards, such as OpenID Connect (OIDC) [39], by proposing solutions ready to be integrated
into deployed systems. Some works have a committee acting as an IdP [69, 86] and issuing credentials.
Nevertheless, specific security properties still depend on the overall trust in the committee. In all these
solutions, the IdP remains a single point of failure either for service availability and timing attacks or
because they require users to store multiple pseudonyms. The second category introduces SSI relying
on a distributed immutable IdR as a trust anchor [30, 41, 92, 73, 16, 46]. These proposals focus mainly
on obtaining unlinkable credentials for Web 3.0 services (distributed applications running on chain). We
claim this is only possible if blockchain transactions are untraceable. In a different context, zkLogin
[10] proposes a construction to prove ownership of credentials issued by an OAuth Provider (IdP) to
authenticate blockchain transactions, converging again to the first model of the trust IdP.

Conclusion Our U2SSO solution, backed up by a novel notion, Anonymous Self-Credentials (ASC),
leverages the model introduced with self-sovereign identity and utilizes a public identity registry as an
immutable ledger. This approach introduces a user-centric credential system that eliminates the need for
a trusted identity provider while ensuring both Sybil resistance for service providers and multi-verifier
unlinkability for users. It successfully introduces a transition of Web 2.0 credentials to Web 3.0, promot-
ing user-centric approaches in the future digital world.
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A U2SSO System with A Decentralized IdR

We explain the interactions of the U2SSO in this section. We state the Solidity contract code of a
decentralized IdR for CRS-U2SSO in Listing 1. As shown in the code, this IdR only take Gas to store
master identities (Φ) (addID). Hence, the users and the service providers can read the stored Φs from
the IdR, i.e., running (getIDs), at no fee.

1 pragma solidity ˆ0.8.13;
2
3 contract U2SSO {
4 struct ID {
5 uint256 id;
6 uint id33;
7 bool active;
8 address owner;
9 }

10
11 address private _owner;
12 constructor() {
13 _owner = msg.sender;
14 }
15
16 ID[] public idList;
17
18 uint nextIndex;
19
20 function addID (uint256 _id, uint _id33) public returns (uint) {
21 idList.push(ID(_id, _id33, true, _owner));
22 nextIndex = nextIndex + 1;
23 return nextIndex - 1;
24 }
25
26 function getIDs (uint _index) public view returns (uint256, uint) {
27 ID storage id = idList[_index];
28 return (id.id, id.id33);
29 }
30
31 function getState (uint _index) public view returns (bool) {
32 ID storage id = idList[_index];
33 return id.active;
34 }
35
36 function getIDSize () public view returns (uint) {
37 return nextIndex;
38 }
39
40 function getIDIndex (uint256 _id, uint _id33) public view returns (int) {
41 for (uint i = 0; i < nextIndex; i++) {
42 bool exists = (idList[i].id == _id) && (idList[i].id33 == _id33);
43 if(exists == true) {
44 return int(i);
45 }
46 }
47 return -1;
48 }
49 }

Listing 1. Decentralized IdR contract

Master identity creation The user begins by utilizing the U2SSO Command Line Interface (CLI) to
create a master identity and stores it in a smart contract. This process requires the smart contract address,
the output key location, and an Ethereum private key as inputs. As shown in Figure 7, the CLI outputs
various details, including the current ID size or anonymity set size, which represents the total number of
Φs stored in the smart contract.
Registration for Services When a user wants to sign up for a website that accepts U2SSO credentials, the
website first presents the user with a challenge on the sign-up page, as shown in Figure 8a. The user then
takes pseudonym ϕ for the service. With this pseudonym and the challenge, the user generates proofs
membership proof π using the U2SSO CLI, as shown in Figure 8b. Here, CLI uses the concatenation of
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Figure 7. SSO-Id Creation

the challenge and the pseudonym as the initial message for the ASC. Subsequently, the user inserts the
outputs of the CLI output into the sign-up form. The website then downloads the master identities from
IdR and validates the proofs. If the proofs are valid, the website registers the user’s service public key
with a signup successful message.
Authentication for Services When a user wants to login to the website, the website sends the user a
challenge, as shown in Figure 9a on the login page. The user then takes this challenge and generates a
signature using the U2SSO CLI, as shown in Figure 9b. After that, the user inputs the signature into the
login form. The website allows the user to login if the signature is valid, and a log in successful message
is displayed, as shown in Figure 9c.
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(a) SSO-Id Register Webpage

(b) SSO-Id Register CLI

Figure 8. SSO-Id Registration Process
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(a) SSO-Id Authentication Webpage

(b) SSO-Id Authentication CLI

(c) SSO-Id Authentication Successful

Figure 9. SSO-Id Authentication Process
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