
State Machine Replication Without Borders

Juan Garay1, Aggelos Kiayias2 and Yu Shen3

1Texas A&M University, garay@cse.tamu.edu
2University of Edinburgh and IOG, aggelos.kiayias@ed.ac.uk

3University of Edinburgh, shenyu.tcv@gmail.com

Abstract

A set of unacquainted parties, some of which may misbehave, communicate with each other
over an unauthenticated and unreliable gossip network. They wish to jointly replicate a state
machine Π so that each one of them has fair access to its operation. Specifically, assuming
parties’ computational power is measured as queries to an oracle machine H(·), parties can
issue symbols to the state machine in proportion to their queries to H(·) at a given fixed rate.
Moreover, if such access to the state machine is provided continuously in expected constant time
installments we qualify it as fast fairness.

A state machine replication (SMR) protocol in this permissionless setting is expected to
offer consistency across parties and reliably process all symbols that honest parties wish to add
to it in a timely manner despite continuously fluctuating participation and in the presence of
an adversary who commands less than half of the total queries to H(·) per unit of time.

A number of protocols strive to offer the above guarantee together with fast settlement —
notably, the Bitcoin blockchain offers a protocol that settles against Byzantine adversaries in
polylogarithmic rounds, while fairness only holds in a fail-stop adversarial model (due to the fact
that Byzantine behavior can bias access to the state machine in the adversary’s favor). In this
work, we put forth the first Byzantine-resilient protocol solving SMR in this setting with both
expected-constant-time settlement and fast fairness. In addition, our protocol is self-sufficient
in the sense of performing its own time keeping while tolerating an adaptively fluctuating set of
parties.
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1 Introduction

In the state machine replication (SMR) problem [Sch90], a state machine Π = (Q,Σ, δ), with
δ(q, σ)→ q′ its transition function, is to be replicated across a number of parties. At any given time,
the machine Π is at a certain state that results from the application of a sequence of symbols σ1 . . . σn
to its transition function. In the most common interpretation of the problem, it is mandated that
each party P maintains a log, denoted by logP , of such symbols such that the following two
fundamental properties are satisfied:

Consistency: At any two times t, t′, for any two parties P, P ′, it holds that logP ̸⪯ logP ′

implies logP ′ ⪯ logP , where ⪯ stands for the prefix relation.

Liveness: If all honest parties attempt to introduce a symbol σ into the log, then after u steps
in nominal time it holds that every honest party’s log will include σ.

We note that the liveness property, as expressed above, refers to a notion of nominal time,
which will not be available to the parties — indeed, to achieve it, the parties themselves may have
to synchronize with each other in order to approximate nominal time using their local clocks which
might be drifting: in particular, the setting of interest here is being equipped with local clocks that
run at different speeds but where there is an upper bound ρ on how fast they can run compared to
nominal time.

To properly reflect this timing requirement into our objectives, we will focus on state machines
that incorporate time into their state. Specifically, such a state machine has the following structure
Π = (Q×N,Σ, δ) and includes a special “clock tick” symbol σct that satisfies δ((q, t), σct) = (q, t+1),
for any q, t. Let r be the resulting SMR clock value and, with foresight, denote by Γ its accuracy
(cf. Section 3.1). The relevant property regarding time keeping is as follows:

Γ -Timekeeping: Let Γ ∈ R+. At nominal time t, the state machine internal clock r satisfies
(1 + Γ )−1 ≤ r/t ≤ (1 + Γ ). We refer to r as the “SMR time.”

Sometimes we will refer to an SMR that keeps its own time under the mere assumption that parties
have drifting local clocks as “self-sufficient.”

Contrary to the “classical” SMR setting where parties have point-to-point channels and/or are
capable of authenticating digital signatures issued by each other, we are interested in a setting
where parties are unacquainted, in the sense that they have no information about each other,
and communicate via an unauthenticated “diffusion channel” that allows the adversary to inject
any arbitrary number of messages. Moreover, parties may come and go without any announcement
to others whatsoever, with their overall number fluctuating over time; hence, the common protocol
design technique of counting the number of incoming messages may not be particularly helpful.
This is what sometimes is referred to as the “permissionless” setting.

The permissionless setting suggests a rather insurmountable target for SMR as it can be easily
seen by the following argument: A set A of n parties is about to engage in the protocol, while
another set A′ of equal number of parties are about to do the same — parties in A are unaware
of the existence of A′ and vice versa. Consider now two symbols σ ̸= σ′ so that parties in A
attempt to insert σ while parties in A′ attempt to insert σ′. The adversary can expedite message
delivery within the sets A,A′ and hence eventually A, (resp., A′) will have to settle σ (resp., σ′),
due to Liveness. It follows that, if we are to solve SMR in this setting, we have to assume that
communication delays are always bounded, say, by a quantity∆. Even with bounded delays though,
an adaptation of the classical FLP impossibility result [FLP85] can be used to show that SMR is
still impossible (cf. [PS17b]). The challenge stems from the ability of the adversary to simulate
protocol messages “in its head” without any cost and the fact that lack of authentication enables
the adversary to serve such messages as if they were part of a legitimate protocol execution. To
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circumvent this impossibility, we will assume the existence of an (random) oracle H(·) and impose
a restriction on how many queries to H(·) the adversary can pose. This small asymmetry between
honest and adversarial parties turns out to be sufficient to circumvent this impossibility.

The Liveness property introduced above is preconditioned on all honest parties attempting to
insert the same symbol in the log. In the permissioned setting, where all parties are acquainted
with each other, it can be straightforward to create circumstances where honest parties attempt
to insert the same symbol (e.g., all parties may propose symbols in a round-robin fashion). In
the permissionless setting, however, this is problematic: Without any form of authentication or
throttling, it is possible for an adversary to flood the incoming tapes with symbols it prefers while
stifling useful inputs. To address this consideration we will require an additional fairness property
for permissionless SMRs: Any honest party gets a chance to introduce a special symbol of their
choice1 with probability in proportion to the number of queries posed by the party to the oracle
H(·). More formally:

Fairness: Let r denote the SMR time when a special symbol σ∗ is introduced to the log of
all honest parties. Then, for the window of nominal time Wr ending in r of length B ∈ N, a
property parameter, we say that party P has weight wP that is equal to the number of queries
posed by P to H(·) during Wr. Fairness requires that special symbol σ′ is issued from an honest
party P with probability q such that q ≥ (1− ϵ)(wP /

∑
P ′ wP ′), for any ϵ ∈ (0, 1).

A parameter of particular interest of the above property is the length of the time window Wr;
i.e., how fast does the protocol sample the distribution of queries to H(·) to allow a new symbol in
the log. In particular, if the length of this window is of constant size, we will refer to the property
as Fast Fairness.

1.1 Summary of Our Results

In this paper we put forth a protocol for SMR in the permissionless setting that, for the first time,
satisfies all the properties enumerated above, while ensuring in addition that Liveness is achieved
in expected-constant time (a condition usually referred to as “fast [transaction] settlement”2). See
Table 1 for a comparison with existing results.

As the table shows, our permissionless SMR protocol is the first to be “self-sufficient” in terms
of being its own time keeper, and in the more realistic model where parties’ clocks may drift. In
contrast, all existing protocols either have assumed the availability of a global clock; or that such
functionality is realized by means of some heuristic, as in the case of Bitcoin [GKL20]; or that
parties’ clocks might be off but proceed at the same speed [GKS22].

We achieve this by means of a new clock synchronization protocol for the permissionless
setting that achieves a constant (i.e., asymptotically optimal) “skew” tolerating an adversary that
controls less than 50% of the computational power (a bound we prove to be optimal in our setting),
and may be of independent interest. Specifically, the skew of the clocks is Θ(ρ∆), where ρ is the
upper bound on clock drift rates and ∆ is the maximum network latency. Importantly, and in
contrast to previous treatments of network delay in the blockchain literature (e.g., [PSs17, BMTZ17,
GKL20]), where the delay is specified in terms of network ‘rounds,’ here it is specified in terms of
nominal time, as in the original distributed-computing formulation [DLS88], as in our setting the
notion of ‘round’ is a local/per-party one, and, further, may not be of uniform duration (in nominal
time). (Refer to Section 3.1 for background on fault-tolerant clock synchronization basics.)

1Think of a ‘coinbase’ transaction in Bitcoin.
2We will use ‘symbols’ and ‘transactions’ interchangeably, as it is common in the blockchain literature.
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Protocol Settlement Dynamic Timekeeping Drifting Clocks

[GKL15] O(polylogκ) ✗ ✗ ✗

[GKL17] O(polylogκ) ✓ ✗ ✗

[BKT+19] Expected O(1)∗ ✗ ✗ ✗

[FGKR20] Expected O(1)∗ ✓ ✗ ✗

[GKS24] Expected O(1) ✗ ✗ ✗

[GKS22] O(polylogκ) ✓ ✓ ✗

This work Expected O(1) ✓ ✓ ✓

Table 1: Comparison of permissionless SMR protocols in terms of their settlement time, ability to
handle dynamic participation and timekeeping against drifting clocks. ∗: Running time here refers
to the optimistic case when no transactions are “double-spent.”

Furthermore, the protocol allows for a fully transient participation pattern—i.e., even if every
protocol participant fully functions in only one round and immediately goes offline, our protocol still
remains secure—and is based on the following key components: (i) A novel blockchain approach
that utilizes parallel blockchains; (ii) a new clock adjustment algorithm that runs approximate
agreement on top of parallel blockchains and enables parties to concentrate a clock shift value so
they can adjust their local clocks maintaining a bounded overall skew and near optimal accuracy
(up to an arbitrary small constant) with respect to nominal time; and (iii) a new bootstrapping
protocol that allows a newly joining party with no knowledge other than the initial setup (i.e.,
the genesis block) to “catch up” with the synchronized parties. I.e., after bootstrapping, a new
party adjusts its local clock to exhibit a deviation from the existing online parties’ clocks that is
well-bounded (in the order of the network latency).

Our parallel blockchain construction allows, in addition, a state update for every interval of
constant duration, thus making it possible to run a PoW-based expected-constant-time consensus
protocol (specifically, the “Chain-King Consensus” protocol in [GKS24]) “on top” of our clock
synchronization protocol, to yield a distributed ledger whose security does not rely on parties
having access to a global clock, and where all incoming symbols (e.g., transactions) can be added to
parties’ logs in expected-constant time. Furthermore, our protocol utilizes a suitable pre-agreement
phase that facilitates Fast Fairness.

1.2 Related Work

SMR protocols. In the traditional, permissioned setting [Sch90], an SMR protocol is executed
by a fixed set of servers that are “acquainted” with each other (e.g., they know each other’s public
key and/or have explicit point-to-point communication channels with each other). Numerous pro-
tocols have been proposed in this setting, with more recent work focusing on efficient constructions
(e.g., [CL99, YMR+19, CPS19, AMN+20, DKSS22]), invariably exploiting the ability of partici-
pants to issue votes in the form of signatures and have those votes counted by the recipients to
ensure that a suitable quorum has been reached and parties can settle the transactions in the log.
It is clear that such techniques are not readily amenable to the permissionless setting.

The only known design technique for achieving SMR in the permissionless setting with dy-
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namic participation is based on the Bitcoin blockchain (cf. [Nak08, GKL17]). In this protocol,
the oracle H(·) is utilized to realize a proof-of-work (PoW) functionality [DN93] with a moderate
difficulty that is periodically adjusted to accommodate fluctuations in participation. From our
perspective, the protocol exhibits a number of deficiencies, namely, Liveness with a parameter pro-
portional to the security parameter, lack of fairness (due to block withholding selfish mining attacks
[ES14, GKL15]) and Timekeeping whose accuracy is based on the participants’ having access to a
shared global clock (so the protocol is not self-sufficient). Follow up work to Bitcoin addressed some
of these issues individually; for example in the static participant setting, Fruitchains focused on the
issue of fairness [PS17a], and Prism on the issue of transaction throughput [BKT+19]. For further
overview as well as impossibility results see [PS17b, GK20]. Nonetheless, to date, no SMR proto-
col in the permissionless setting has been proposed that addresses all the relevant considerations
simultaneously fairness and self-sufficiency.

Clock synchronization. The clock synchronization problem has been studied for over four
decades by the distributed computing community. Synchronizers are distributed fault-tolerant
protocols that solve the synchronization problem — to mention a few, pulse synchronizer [LMS85,
LL84b, HSSD84, ST87, LL22] where parties re-synchronize their clocks periodically and one-shot
synchronizer [LL84a, HMM85] where the goal is to synchronize clocks with initial large skews.
These traditional protocols operate in the permissioned model where the participants are known a
priori (or, parties can join upon approval from all honest parties, cf. [HSSD84]).

Dolev et al. [DHS86] showed that without setup assumptions, clock synchronization cannot
be achieved with more than one-third of the corrupted parties (i.e., it requires t < n/3). With
unforgeable signatures, the corruption bound can be improved to t < n/2 [ST87, LL22], or to the
dishonest majority setting [HSSD84]. When the protocol allows new parties to join, a majority of
the honest parties is necessary.

Bounded skew (i.e., the level of simultaneity) is a fundamental property when measuring the
performance of synchronizers. In the fault-free setting, Lynch and Welch [LL84a] showed that even
if clocks run at exactly the same rate, network uncertainty is impossible to overcome. Precisely, in
a network with ∆ delay (again, measured in nominal time) and n processors, it is impossible to
synchronize clocks more closely than ∆(1−1/n). This result was later extended to any network by
[HMM85]. Since this result holds under strong assumptions, they also apply to the drifting clock
model. When it comes to pulse synchronizers, the interval between two synchronization points
should be at least Θ(∆) rounds apart from each other, during which the clock has already drifted
for more than Θ(ρ∆) time. Hence, Θ(ρ∆) turns out to be the (asymptotically) optimal skew one
could expect.

With pulse synchronization, another fundamental metric is the degree of deviation from real
time, namely accuracy. Dolev et al. showed that synchronization is a non-trivial task only when
the target logical time stays in a linear envelope of real time [DHS86]. Srikanth and Toueg [ST87]
showed that the logical linear envelope cannot be smaller than the physical one; and, that to stay
in the same envelope with physical clocks, a majority of the participants should be honest.

More recently, the clock synchronization problem has been re-considered in the context of
blockchains, however in a weaker model of imperfect local clocks where the adversary can
(only) apply an additive drift Φclock to the honest parties’ clocks throughout the whole execu-
tion [BGK+21, GKS22]. In the “classical” setting, this model is not meaningful in that when
parties are always online, their skew will never deviate further than Φclock. The above works con-
sidered this weaker model in the permissionless environment with dynamic participation where
parties can join and leave as they please. As a result, protocol participants can no longer filter
messages based on the total number of parties, and newly joining parties should be able to boot-
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strap and synchronize their clocks with honest parties by passively listening to the network. Since
the clock model is weaker, those results in [BGK+21, GKS22] are not directly comparable to the
traditional literature with drifting clocks. From our perspective, the key observation is that there
are two challenging dimensions to clock synchronization: drifting clocks, analyzed mostly in the
permissioned literature, and imperfect clocks exhibiting a bounded skew in a setting where par-
ticipants join and leave the protocol at will. Handling both these dimensions at once is a critical
missing piece for achieving SMR in the permissionless setting.

Timing models in cryptography. In distributed computing parlance, following the treatment
from [DLS88], the synchrony hierarchy yields three levels: (i) Synchronous — there are known upper
bounds on clock drift and maximum network delay. (ii) Partially-synchronous3 — upper bounds
on clock drift and delay do exist yet they are unknown to honest parties; note that in [DLS88],
delay is measured by a real time clock outside the system. (iii) Asynchronous — there is no upper
bound on local clock speeds and message transmission though messages between honest parties are
eventually delivered).

Timing shows as a tool in cryptography, nonetheless, there lacks a unifed approach on modeling
time and delays, especially they are ill-defined within the UC setting. Here we provide a short
survey.

Timing models came into consideration for the secure concurrent zero-knowledge protocols
[DNS98, DS98], where Dwork, Naor and Sahai proposed the (α, β)-constraint (for some [known]
α ≤ β) — for any two parties P and P′, if P measures α elapsed time on its local clock and P′,
starting after P, messures β elapsed time on its local clock, then P′ finishes after P— an assumption
that is implicit under the (appropriately-bounded) drifting clock model. In concurrent composition
of secure computation [KLP05], Kalai, Lindell and Prabhakaran work in a model where local clocks
run within known bounded rates and message transmission takes up to a known ∆ time. Yet, they
define delay based on all clocks — i.e., maximum message transmission is subject to the bound on
clock drifts (cf. [KLP05, footnote 10]).

In the UC setting, despite its inherent asynchronous message transmission scheduling, Katz
et al. [KMTZ13] model synchronous computation via the co-design of a synchronized clock and
bounded-delay channel functionalities. In more detail, real time (represented as a global round
counter) is forwarded only when all honest parties claim finishing their computation in that round,
and message is delivered to a party after receiving sufficiently many fetch requests where honest
parties issue one fetch query per local round, and the adversary can accumulatively increment the
fetch counter for up to ∆ rounds. Recently, Canetti et al. [CHMV17] provide a treatment of the
network time protocol by means of a global clock functionality with bounded additive drifts and
unbounded response delays. Aided with such global clock, they also present another functionality
that measures the local clock drifts (i.e., relative time elapsed between two global clock reads).

Parallel blockchains and m×1 PoWs. Parallel blockchain designs have been found applications
in improving the performance of blockchain-based SMR. For example, in “Ledger Combiners”
[FGKR20] a ranking function is proposed on top of a set of parallel chains to accelerate transaction
settlement — for the case of non-conflicting transactions. In [GKS24], parallel blockchains serve
as a platform to port classical consensus protocols and enable building a PoW-based, expected-
constant-time Byzantine agreement protocol, and achieve SMR with expected-constant settlement
time, albeit for the static participation case.

3[DLS88] also considers a second type of partialy synchrony where there is an unknown global stable time (GST)
such that a known maximum network delay holds after GST however no restriction on message transmission is
imposed before GST.
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The fundamental cryptographic primitive that secures parallel blockchains is m×1 Proof of
Work4, which guarantees that the mining procedure of single chains are mutually independent (or,
sub-independent with bounded statistical distance — cf. [FGKR20]); i.e., the adversary cannot gain
advantage on a specific chain by dropping from others. The m×1 PoW is in fact a generalization
of the 2×1 PoW technique introduced in [GKL15] that achieves an equitable distribution of inputs
contributed into a blockchain based on the oracle queries posed by the participants to the oracle
H(·). In [GKL15], the 2×1 PoW primitive was used to improve the corruption resiliency of permis-
sionless Byzantine agreement, and has also been utilized in [PS17a] to design a blockchain protocol
in the static participation setting that offers a notion of fairness (although not fast). Combining
fairness with dynamic participation and clock synchronization (i.e., self-provided timekeeping) has
remained until now an open question.

In [GKS24], the m×1 PoW scheme that yields SMR with expected-constant settlement time
works by running m = Θ(polylogκ) chains in parallel, where κ is the output length of the hash
function, with Ω(polylogκ) bits allocated to each chain. As mentioned above, this protocol is
designed for the static participation setting. Finally, note that in the PoS context, full independence
among m parallel chains can be achieved by separately evaluating m VRFs with different nonces,
which yields a simple but equivalent alternative construction to m×1 PoW.

On transient faults and dynamic participation. To wrap up, our setting is typified by a
fluctuating number of participants who may come and go without announcement. As a result, at
nominal time t the number of participants is nt, with the initial number of parties being n0. Dy-
namic availability has been considered in prior work [PS17c, BGK+18], but not in the completely
unacquainted setting as we do here: These works operated under the assumption that a consis-
tent public-key directory is known to all participants and the adversary may choose an arbitrary
subset of registered parties to run the protocol. In the permissionless setting, dynamic availability
was considered in [GKL17] under the assumption that the sequence n1, n2, . . . is not adaptively
determined — an important restriction that is not present in our modeling.

Organization of the paper. The rest of the paper is organized as follows. In the next section
we provide a technical overview of our results. In Section 3, we introduce our clock, network and
adversary models and provide basic notation and definitions. Then, in Section 4, we solve two
“one-shot problems” — permissionless Weak Agreement and permissionless Approximate Agree-
ment — as basic building blocks. In Section 5 we present the full permissionless SMR protocol,
which is based on the new parallel blockchain construction (Section 5.1) and permissionless clock
synchronization procedure (Section 5.2).

2 Technical Overview

Our protocol, which we term Permissionless-SMR, divides time (in parties’ local views) into consec-
utive, non-overlapping “intervals.” At the end of each interval, based on their local view of their
state parties update their internal ledger state and re-synchronize their clocks.

A new parallel blockchain construction. We propose a novel parallel blockchain construction
that preserves the optimal corruption resilience threshold while accommodating dynamic partici-
pation. We highlight the key sub-components of our new construction.

First, parallel chains are extended independently and continuously — for each chain, parties
always select and work on the “longest” (in fact, “heaviest” in terms of accumulated difficulty)
chain; however, all forks are maintained for future potential use, i.e., our parallel blockchains are in

4Pronounced “m-for-1” PoW.
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fact parallel blocktrees. The mining procedures of the parallel blocktrees are bound together using
m×1 PoW, where one random oracle query may yield multiple valid blocks on different chains yet
all sub-procedures are mutually independent.

Second, we introduce a new timestamping scheme where each timestamp consists of a pair of
interval and round indices. Contrary to previous abstractions of blockchain protocols that ask for
monotonically increasing timestamps on a single chain, our new scheme allows parties to insert
timestamps where monotonicity is only enforced on the interval index, while round indices are
allowed to also decrease. In terms of incoming blocks, parties defer their processing when they
report timestamps that either in rounds or intervals are in the future, based on the local clock.

Third, we introduce a state retrieval mechanism whereby parties joining the protocol execution
can learn all the forks that used to be the longest chain at the end of any previous interval (and
remain in the common view of honest participants that are online at the time the new party joins).
This applies to all past chains that are now orphaned. To accommodate this retrieval mechanism,
our protocol asks parties to include their local views of the previous interval into the blocks they are
mining as input blocks for the next interval. If it happens that on sufficiently many parallel chains,
the majority of the input blocks report the same block hash, then all these blocks are retrieved,
even if they are on orphaned chains that no party is extending any more. It is worth pointing out
that this retrieval mechanism can be done in a “trace-back” manner — i.e., newly joining parties
can first observe the longest m chains in the current interval, and then retrieve the blocktrees of the
previous intervals one by one from the latest interval going all the way back to the first interval. In
this way, the retrieval mechanism provides an oblivious agreement over the common blocktrees at
the end of each interval, and we show that this weak type of agreement is sufficient to synchronize
parties’ internal clocks and states in the bootstrapping procedure for a new client. A detailed
specification of our new parallel chain construction is presented in Section 5.1.

Clock synchronization. In each interval, with some initial skew Φinit, the honest parties’ clocks
will deviate from each other as time elapses; to compensate, parties run an Approximate Agreement
(AA) protocol [DLP+86] in order to maintain their local clocks within the Φinit skew. AA mandates
that if all honest parties’ inputs belong to a certain range, then the outputs of the parties belong to
a more concentrated range (this is a relaxation of the Agreement/Consistency property, since the
honest parties do not have to perfectly agree on the output). As part of our clock synchronization
objective we propose a permissionless AA protocol (see Section 4.2) that can achieve any constant
output concentration as a function of the running time. However, näıvely using an AA protocol is
still not sufficient for the goal of clock synchronization. To see that, consider parties entering as
input to the AA their local time stamp; even if the AA protocol concentrates the output into a
single value, due to the fact that there is no simultaneous termination, the parties adjusting their
clocks to their output from the AA protocol would not result in a meaningful skew reduction.

To tackle this problem, we take a relative clock correction approach and we run AA on-chain.
Recall that our mining procedure is performed using m×1 PoWs, and hence all parallel instances
are mutually independent. We first use ledger agreement to continuously agree on a set of “sync-
messages” with a certain bounded probability of failure in each chain individually. We let these
parallel chain invocations terminate in constant time, and hence with constant probability parties
will have a common view of the sync-messages on chain, and the majority of these messages will
convey information from honest participants’ inputs (note that some of the m chains may fail to the
extent that they do not convey any useful information or even contain misleading information that
the adversary injects). Periodically, each party locally computes a clock shift which is the median
difference between a recorded sync-message on-chain and its corresponding local receiving time at
the node. In our m-way parallel blockchain setting, this will result in m clock shifts. Now the nodes
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perform an AA-style calculation that is reminiscent of the protocol in [DLP+86]: First, outliers
are eliminated from the clock-shift sequence, then the sequence is split into segments, and finally a
representative is selected from each segment by returning the average. (The detailed recalculation
expression is presented in Equation (5) in Section 5.2.) This guarantees a concentrated clock-shift
outcome that the party can now use to adjust its local clock in a relative manner (further, note
that the adjustment can be either negative or positive). This gives us:

Lemma 1 (Informal). Assume that parties are equipped with physical clocks with bounded drift
ρ, the diffusion network has bounded delays ∆ and the fluctuation on computational power (resp.,
number of participants) is bounded for every time window of fixed length. Then, when appropriately
parameterized, there exists a permissionless clock synchronization protocol that achieves (i) bounded
skew (equal to Θ(ρ∆)) between honest participants’ clocks, and (ii) Γ -accuracy, for a constant
Γ ≈ ρ, against an adversary that controls a minority of the computational power, except with
probability negligibly small in the security parameter.

Proof (sketch). The proof is based on the following observations. First, in an (unknown yet suffi-
ciently large) subset of the m parallel chains, in constant time, parties will reach agreement over
the sync-messages. Second, each chain individually suggests a particular clock shift that a party
may apply to adjust its clock — we say that a clock shift is “good” if it is on a chain that the
participants agree on. Third, due to the fact that the local arrival times of the sync-messages are
different for every participant, good clock shifts are bounded by the network delay ∆ plus the clock
drift that has taken place during this synchronization window, overall a skew of ρ · R +∆, where
R is the length of the window. Fourth, the approximate-agreement step will concentrate the clock
shifts into output values that for all honest parties exhibit a skew very close to ρ ·R+∆.

That completes the bounded skew argument. Regarding accuracy, the intuition behind the proof
is that fast parties will continuously adjust their clocks backwards and slow parties will similarly
continuously push their clocks forward. The reason this does not achieve perfect drift ρ against
nominal time is due to the network delay ∆, but by adjusting the synchronization window’s length
to be a multiple of ∆ we can approximate ρ from above by up to any constant.

Permissionless and self-sufficient SMR with fast fairness. Next, we show how a permission-
less SMR protocol with the desired properties can be built by extending our parallel-blockchain-
based clock synchronization mechanism. The starting point is the one-shot PoW-based consensus
protocol in [GKS24], which enables a set of unacquainted participants to agree on a batch of
transactions in expected-constant time assuming an honest majority of queries to oracle H(·).

Note that a sequential composition of many instances of the protocol in [GKS24] does not suffice
for our purposes. To understand why, recall that in their construction, the parallel blockchains are
secured via a hard-coded density parameter such that for a chain to be valid in an interval, it has to
point to sufficiently many dense chains in the previous interval; this guarantees freshness as dense
chains contain honest parties’ contributions. While employing a hard-coded density parameter in
the protocol helps in the fixed participation case, where the mining difficulty remains always the
same, it fundamentally depends on having access to a shared notion of time that is not available
in our setting (unless one runs a clock synchronization procedure). But even if one composes our
clock synchronization protocol in parallel with their ledger protocol, the resulting scheme will not
be secure in the honest majority setting.

Indeed, when the adversary has the power to influence the mining difficulty (by building chains
jointly with the honest parties, or completely dropping out from the protocol), the density param-
eter value should be set (i) relatively small so that even if the adversary completely drops out, the
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honest parties alone can build chains that are sufficiently dense, as otherwise the protocol “dies”;
and (ii) relatively large so that the adversary cannot mine a dense private fork alone early on before
the end of an interval. These two conflicting requirements imply that with dynamic participation,
hard-coding a density parameter cannot work with an adversary that controls more than one third
of the computational resources, as otherwise he can break the protocol by maliciously influencing
the mining target.

We now describe at a high level how our new parallel chains approach is built on top of our
clock synchronization protocol. We divide time in synchronization intervals, and our protocol
combines two phases, a pre-agreement phase that produces a candidate batch of transactions and
an agreement phase where parties try to settle the batch of transactions. As mentioned earlier,
our protocol is inspired by the “chain-king” approach proposed in [GKS24] that has parties collect
transactions and submit them in the form of a batch together with their sync messages in the m
parallel blockchains while it sets one of the parallel chains as the “king chain.”

In the pre-agreement phase, parties observe the batch of transactions with the minimum hash
value and if their input batch is different to that, they switch their input. Subsequently they follow
the chain-king protocol in the agreement phase where parties will follow the batch dictated by the
majority of the parallel chains, if that batch has strong support, while if not, the parties will fall back
to the view provided by the king chain. Observe that this enables the ledger to advance in expected-
constant time. Regarding target recalculation, we treat each blockchain independently, adjusting
its mining target following the reverse Bitcoin blockchain’s recalculation formula of [GKS22] at
regular intervals. Finally, by a suitable sequential composition of expected-constant-time consensus
protocol invocations (where we have to deal with the nuisance of non-simultaneous termination),
we obtain our permissionless SMR protocol. The resulting protocol gives a distributed ledger
that confirms all transactions in expected-constant time, and has no dependency on global clocks,
yielding a self-sufficient SMR protocol. In addition, regarding newly joining parties, our state
retrieval and bootstrapping mechanism allows them to learn the online parties’ common view of
the previous consensus invocations, which as we show is sufficient for fresh parties to synchronize
with the SMR protocol state.

Regarding (fast) fairness, the high-level idea is to let parties generate their own public-key/secret-
key pairs, use their public keys as identifiers, and insert them as a special transaction (recall the
“coinbase” transactions in the context of the Bitcoin protocol) when they submit their batch of
transactions in the pre-agreement step. This gives us:

Theorem 1 (Informal). Assume that parties are equipped with physical clocks with bounded drift
ρ, the diffusion network has bounded delay ∆, and the fluctuation on computational power (resp.,
number of participants) is bounded for every time window of a given fixed length. Then, assuming
an appropriate parameterization, there exists a permissionless SMR protocol that achieves Consis-
tency, expected-constant Liveness, Γ -Timekeeping and Fast Fairness, against an adversary that
controls a minority of the computational power, except with probability negligibly small in the secu-
rity parameter.

Proof (sketch). Our analytical framework is based on that in [GKL17, GKL20]; however, we make
the necessary adaptations to our setting.

As a warm-up, we first give a high-level overview of the original framework. In [GKL17, GKL20],
an execution is said to be “typical” if, for any time interval of length at least λ rounds (where λ
is a protocol security parameter), random variables with respect to the honest/adversarial mining
success stay close to their expected value and bad events with respect to the random oracle never
happen. It is then shown that when λ is sufficiently large, with overwhelming probability an
execution is typical. Based on the convergence properties of the relevant random variables, an
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induction-style proof shows that when good events — steady block generation rate and accurate
block timestamps — hold at the beginning of the execution, they will also hold in all rounds
thereafter by induction. Next, all the basic blockchain properties — i.e., chain growth, common
prefix and chain quality — are shown to hold throughout the execution.

Unfortunately, the same type of argument cannot directly apply to our setting, as we aim at
arguing that good properties on parallel blockchains happen for every constant-size interval — in
other words, a sequence of constant number of rounds whose security (i.e., quality of convergence)
has not been a concern in typical executions.

To tackle the problem of analyzing executions for every constant-size interval, we revisit the
definition of typical executions and make the following changes. First, instead of looking for good
convergence on random variables for every λ rounds, we now reason about the convergence proba-
bility on every sequence of length at least ℓ rounds, where ℓ is a constant and is independent of the
protocol security parameter. In other words, our new definition of “typical executions” is stronger
than the previous one as it concerns properties on shorter round sequences. After reducing the
minimum length of sequences that we are interested in, we then prove that for any such sequence,
a set of ideal convergence properties (specified in Definition 10) hold with a constant probability.
Next, we argue that, given the constant probability with which random variables yield good con-
vergence, the ideal events of honest parties sharing a common view and producing a majority of
input blocks also happens with constant probability for an interval of constant number of rounds.

The above arguments are now sufficient to apply amplification across the m parallel blockchains.
Given the independence of the m parallel blockchain instances, we prove that at the end of each
interval, honest parties share a common view and produce more input blocks on an (unknown)
subset of more than (1− δ)m chains, where δ > 0 can be an arbitrarily small constant after tuning
the protocol parameters (this property is termed interval oblivious agreement — see Theorem 10).

Using interval oblivious agreement, we then prove that by executing the synchronization pro-
cedure and state update algorithm, honest parties maintain good skews and correctly update their
internal ledger state.

Regarding Fairness, we observe that in our pre-agreement step parties will be able to mine blocks
with probability proportional to the number of each party’s queries to H(·) and the minimum hash
value will select one of the transaction batches at random. Provided that the king chain is good (a
constant-probability event that can be calibrated close to 1), all honest parties will switch to the
same transaction batch which will satisfy the fairness property with a suitable error. Therefore, we
conclude that Permissionless-SMR solves SMR with all the desired properties.

3 Preliminaries

We adopt Canetti’s formulation of “real world” notion of protocol execution [Can00a, Can00b] to
model the computation for multi-party protocols. The environment Z provides input to parties
that execute the protocol Π. The adversary A is a single entity that controls all corrupted parties;
and A is both “adaptive” (i.e., take control of parties on the fly) and “rushing” (i.e., A can observe
honest parties’ actions and then react). We describe the “resources” that may be available to the
protocol instances (e.g., access to a “diffuse” channel) as ideal functionalities in the terminology
of [Can00b].

3.1 Drifting Clocks and Clock Synchronization

We assume the existence of “nominal time” (cf. [BGK+21, GKS22], also known as “real time” or
“Newtonian time” [DHS86]), which is not directly observable by protocol participants. Following
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the traditional assumption in distributed computing that each party is equipped with a physical
clock, whose output is a real-valued function of nominal time, in this paper we consider the drifting
clock model. Specifically, honest parties possess physical clocks with a bounded rate of drift from
nominal time (Figure 1) — i.e., an honest physical clock stays within a linear envelope of nominal
time.5 We use ρ to denote the bound on the rate of honest physical clocks. Formally, for any
nominal time u > v and an honest physical clock D, it holds that

(1 + ρ)−1(u− v) ≤ D(u)−D(v) ≤ (1 + ρ)(u− v).

tnominal

tlogical
(1 + ρ)−11 + ρ

Figure 1: An illustration of drifting clocks within a (0.5, 2)-linear envelope (i.e., ρ = 1). Without
clock synchronization, two clocks (illustrated in magenta and cyan, respectively) deviate from each
other unboundedly.

Note that time in the drifting clock model are real values, while our protocol execution model
divides time into discrete integer-numbered steps. In order to “insert” real-valued time into this
structure, we model drifting local clocks as GDClock, derived from the global clock functionality
in [KMTZ13]. In GDClock, nominal time is defined by the number of times that the clock function-
ality moves forward the time-step variable τ (which is an internal variable and is unknown to the
parties). Instead of directly receiving the time from GDClock, parties receive “ticks” from GDClock

which indicates that they should advance their local round number. GDClock advances the nomi-
nal time when all (honest) participants claim they have finished their computation in the current
round. Additionally, GDClock allows the adversary to “push” or “stall” honest clocks, as long as
these operations do not violate the ρ-bounded linear envelope assumption. We present GDClock in
Functionality 1.

Remark 1. As opposed to the classical distributed computing setting (cf. [DLS88]) where round-
s/timesteps are defined as intervals of equal length in the view of an external real-time clock, in
our model GDClock does not guarantee that rounds/timesteps are of equal duration. In fact, the
notions of ‘time’ and ‘duration’ are not defined in the UC setting. Yet, our model shows the same
effect in restricting local clock counters staying in a bounded linear envelope with respect to the
nominal clock counter; moreover, the same amount of computation is carried out per local time
counter increment — which means that in the same window of nominal time, a faster CPU will
solve more PoWs than a slower one.

5A function f : R → R is within a (U,L)-linear envelope if and only if it holds that L · x − c ≤ f(x) ≤ U · x + c,
where c is a constant and x ∈ R+.
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Functionality GDClock

This functionality maintains state variables as follows.

State Variable Description

ρ← 0 The bound on clock drifts.

P ← ∅ The set of registered parties P = (pid, sid).

F ← ∅ The set of registered functionalities (together with their session iden-
tifier).

τsid ← 0 The nominal-time variable for session sid.

dP ← 0
The clock-update variable for P = (pid, sid) ∈ P. dP is set to 1 after
P finishes a round.

bP ← 1 The tick-budget variable for P = (pid, sid) ∈ P.

d(F , sid)← 0 The clock-update variable for (F , sid) ∈ F .

Setting the drift:
� Upon receiving (set-drift, sid, r) from the adversary A, if set-drift has never been received

then set ρ = r. Return (set-drift, sid, ok) to A.

Clock capabilities:
� Upon receiving (clock-update, sidC) from some party P ∈ P set dP ← 1 and bP ← bP−1; execute

Time-Update and forward (clock-update, sidC ,P) to A.
� Upon receiving (clock-update, sidC) from some functionality F in a session sid such that

(F , sid) ∈ F set d(F , sid) ← 1, execute Time-Update and return (clock-update, sidC ,F) to
this instance of F .

� Upon receiving (clock-forward, sidC ,P) from A where P ∈ P, if dP = 0 or it is about to
violate the ρ-bounded linear envelope on P, ignore the message. Otherwise, update dP = 0 and
bP ← bP + 1; return (clock-forward-ok, sidC ,P) to A.

� Upon receiving (clock-backward, sidC ,P) from A where P ∈ P, if dP = 0 or it is about to
violate the ρ-bounded linear envelope on P, ignore the message. Otherwise, update bP ← bP − 1;
return (clock-backward-ok, sidC ,P) to A.

� Upon receiving (clock-tick, sidC) from any participant P— including the environment on behalf
of a party — or the adversary on behalf of a corrupted party P (resp. from any ideal—shared
or local—functionality F), execute procedure Time-Update, return (clock-tick, sidC , dP) (resp.
(clock-tick, sidC , d(F,sid))) to the requestor (where sid is the session id of the calling instance).

� Upon receiving (clock-read, sidC) from the adversary or the wapper functionalities, return
(clock-read, sidC , τsid) to the requestor (where sid is the session id of the calling instance).

Procedure Time-Update: For each session sid do: If (i) d(F,sid) = 1 for all F ∈ F , and (ii) dP = 1 and
bP ≤ 0 for all honest parties P = (·, sid) ∈ P, then update τsid ← τsid +1, d(F,sid) ← 0 and bP ← bP +1
for all parties P = (·, sid) ∈ P. Additionally, for all parties P = (·, sid) ∈ P with bP > 0, update
dP ← 0.

Functionality 1: The drifting global clock.

We adapt the traditional definition of the clock synchronization problem (cf.[DHS86, ST87]) to
our permissionless setting. In Definition 1, we consider two properties, bounded skew and accuracy,
that establish upper bounds Φ and Γ on honest clock skew and their deviation from the nominal
time, respectively.
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Definition 1 (Clock Synchronization). There exist constants Φ ∈ N, Γ ∈ R+ such that honest
parties’ logical clocks satisfy the following two properties:
� Bounded skew (with parameter Φ ∈ N+). Let r1, r2 be the reported logical clocks of two

honest parties at any nominal time r. Then |r1 − r2| ≤ Φ.
� Accuracy (with parameter Γ ∈ R+). Each honest party’s logical clock stays in a (U,L)-linear

envelope with respect to the nominal time r, where U = 1 + Γ and L = 1/(1 + Γ ).

3.2 Random Oracle, Network and Adversarial Model

Random oracle. By convention, we model the cryptographic hash function H with output in
{0, 1}κ (which is used to generate proofs of work [PoWs]) as a random oracle FRO [BR93].

Functionality FRO

The functionality is parameterized by a security parameter κ.

State Variable Description

P ← ∅ The set of registered parties.

H ← ∅ A dynamically updatable function table where H[x] = ⊥ denotes the
fact that no pair of the form (x, ·) is in H.

� Eval. Upon receiving (eval, sid, x) from some party P ∈ P (or from A on behalf of a corrupted
P), do the following:
1. If H[x] = ⊥ sample a value y uniformly at random from {0, 1}κ and set H[x]← y.
2. Return (eval, sid, x,H[x]) to the requestor.

Functionality 2: The random oracle.

We express our honest majority condition in terms of computational power, measured in par-
ticular by the number of queries to the RO that the parties are allowed to make per nominal time
step, as opposed to expressing it by the number of parties (i.e., the “flat” model where parties are
assumed to have equal computational power—cf. [GKL15]).

Definition 2 (Honest Majority). Let hr, tr denote the number of alert and non-alert random
oracle queries at nominal time r, respectively. Then, for all r ∈ N, it holds that hr > tr.

This restriction on the number of RO queries is captured by a wrapper functionality on FRO via
counting the number of alert and other queries (see below) per nominal-time step. The adversary
is allowed to dynamically and adaptively determine the number of alert random oracle queries per
nominal-time step, as long as it does not violate the restrictions imposed by the (γ, s)-respecting
environment (see Definition 3 in the sequel).

Functionality W(FRO)

This functionality maintains state variables as follows.
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State Variable Description

P ← ∅ The set of registered parties; the current set of corrupted parties is
denoted by P ′.

τ ← 0 The (real-time) clock tick counter.

hτ
An upper bound which restricts the F-evaluations of all alert parties
at time τ .

qH, qA ← 0 The alert/adversary evaluation counter.

Pre-mining attack handling (executed only if τ = 0):
� Upon receiving (eval, sid, x) from A on behalf of a corrupted party P ∈ P ′, forward the request

to FRO and return to A whatever FRO returns.
� Upon receiving (Retrieved, sid) from FCRS, set τ = 1.

Relaying inputs to the random oracle:
� Upon receiving (eval, sid, x) from A on behalf of a corrupted party P ∈ P ′ or a de-synchronized

party P, first execute Round Reset, then do the following.
1. Set qA ← qA + 1.
2. If qA ≤ hτ then forward the request to FRO and return to A whatever FRO returns.

� Upon receiving (eval, sid, x) from an alert party P, first execute Round Reset, then do the follow-
ing.
1. Set qH ← qH + 1.
2. If qH ≤ hτ then forward the request to FRO and return to P whatever FRO returns.
3. If qH ≥ hτ then send (clock-update, sidC) to GDClock.

Corruption handling:
� Upon receiving (corrupt, sid,P) from the adversary, set P ′ ← P ′ ∪ P.

Procedure Round-Reset: Send (clock-read, sidC) to GDClock and receive (clock-read, sidC , τ
′) from

GDClock. If |τ − τ ′| > 0, then do the following.
1. Set qH, qA ← 0 and τ ← τ ′.
2. Send (next-round) to A and receive as response (next-round, h∗

τ ′). If (h1, h2, . . . , h
∗
τ ′) is (γ, s)-

respecting (Definition 3) then set hτ ′ = h∗
τ ′ ; else set hτ ′ = hτ ′−1.

Functionality 3: The random oracle wrapper.

In addition, pre-mining attack prevention is caputred by restricting the number of adversarial
queries after a fresh CRS is released from FCRS (which we model as FCRS).

Functionality FCRS

The functionality is parameterized by a distribution D.

� Retrieve. Upon receiving (Retrieve, sid) from some party P (or from A on behalf of a corrupted
P), do the following:
1. If activated for the first time, choose a value d ← D, and send (Retrieved, sid) to
W(FRO,FDiffuse).

2. Return (Retrieve, d) to P.
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Functionality 4: The common reference string.

The bounded-delay network. Regarding communication amongst parties, we consider a peer-
to-peer diffusion network, where the message dissemination has an (unknown) ∆-bounded delay.
In more detail, an honest message sent at time t will be received by all other honest parties before
time t + ∆; regarding messages sent by the adversary, if t is the earliest time such that at least
one honest party receives those messages, they are guaranteed to be delivered to all honest parties
before time t+∆ (i.e., honest parties keep “echoing” messages).

We capture this communication network with FDiffuse (Functionality 5). Recall that existing
diffuse functionalities (cf. [BMTZ17]) model delays in the following manner: There is a fetch counter
per message per recipient such that when each time an honest party P is activated and received a
new tick from the clock, P fetches on FDiffuse which reduces counters by 1 for all messages delivering
to P; she then receives a subset of those messages with counters reset to 0. Regarding the adversary,
he can increase the counter for each message and recipient for up to ∆ in accumulation (as well as
swapping the order of messages).

By convention, different types of messages are diffused by different functionalities, and we write
Fbc
Diffuse, F

input
Diffuse, F

tx
Diffuse to denote the network for chains, input blocks and transactions.

Functionality FDiffuse

This functionality maintains state variables as follows.

State Variable Description

∆← 0 The maximum network latency.

P ← ∅ The set of registered parties.

M⃗ ← []
A dynamically updatable list of quadruples (m,mid, Dmid,P) where
Dmid denotes the fetch counter.

Setting the delay:
� Upon receiving (set-delay, sid, d) from the adversary A, if set-delay has never been received

then set ∆ = d. Return (set-delay, sid, ok) to A.

Network capabilities:
� Upon receiving (diffuse, sid,m) from some Ps ∈ P, where P = {P1, . . . ,Pn} denotes the current

party set, do:
1. Choose n new unique message-IDs mid1, . . . ,midn.
2. Initialize 2n new variables Dmid1 := DMAX

mid1
. . . := Dmidn := DMAX

midn
:= 1 and a per message-

delay ∆midi = ∆ for i ∈ [n].

3. Set M⃗ := M⃗ ∥ (m,mid1, Dmid1 ,P1) ∥ . . . ∥ (m,midn, Dmidn ,Pn).
4. Send (diffuse, sid,m,Ps, (P1,mid1), . . . , (Pn,midn)) to the adversary.

� Upon receiving (fetch, sid) from P ∈ P, or from A on behalf of a corrupted party P:

1. For all tuples (m,mid, Dmid,P) ∈ M⃗ , set Dmid := Dmid − 1.

2. Let M⃗P
0 denote the subvector M⃗ including all tuples of the form (m,mid, Dmid,P) with Dmid ≤ 0

(in the same order as they appear in M⃗). Delete all entries in M⃗P
0 from M⃗ and in case some

(m,mid, Dmid,P) is in M⃗P
0 , where P is honest, set ∆mid′ = ∆ for any (m,mid′, Dmid′ , (·, sid)) in
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M⃗ and replace this record by (m,mid′,min{Dmid′ , ∆},P′).

3. Output M⃗P
0 to P (if P is corrupted, send M⃗P

0 to A).

Additional adversarial capabilities:
� Upon receiving (diffuse, sid,m) from some corrupted Ps ∈ P (or from A on behalf of Ps if

corrupted), execute it the same way as an honest-sender diffuse, with the only difference that
∆midi =∞.

� Upon receiving (delays, sid, (Tmidi1
,midi1), . . . , (Tmidiℓ

,midiℓ)) from the adversary do the following

for each pair (Tmidij
,midij ): if D

MAX
midij

+ Tmidij
≤ ∆midij

and midij is a message-ID of receiver P =

(·, sid) registered in the current M⃗ , set Dmidij
:= Dmidij

+Tmidij
and set DMAX

midij
:= DMAX

midij
+Tmidij

;

otherwise, ignore this pair.
� Upon receiving (swap, sid,mid,mid′) from the adversary, if mid and mid′ are message-IDs registered

in the current M⃗ , then swap the triples (m,mid, Dmid, (·, sid)) and (m,mid′, Dmid′ , (·, sid)) in M⃗ .
Return (swap, sid) to the adversary.

� Upon receiving (get-reg, sid) from A, return the response (get-reg, sid,P) to A.

Functionality 5: The diffusion network.

We highlight that such mechanism does not work in our drifting clock model with GDClock (it
only works with a global clock where parties proceed with the same speed). This is because, when
modeling delays via fetches on the diffuse functionality, honest parties that experience relatively
fast local rounds would request more fetch commands than the slow ones in the same window
of nominal time — i.e., if an honestly-sent message is set the same delay for two parties then it
delivers to the fast one earlier; yet our goal is to model delays measured in the perspective of the
nominal time (regardless of parties’ local understanding of time).

We resolve this issue by introducing a new wrapper on FDiffuse (Functionality 6) that restricts
the adversary’s capability to delay messages for up to ∆ nominal time. After registering on GDClock

to learn the nominal time ticks, the wrapper functionality dynamically relays parties’ fetch request
to FDiffuse so that in every nominal-time step, exactly one fetch operation is relayed to FDiffuse for
each honest party (even if that honest party receives multiple ticks from GDClock). Meanwhile, for
each party P that proceeds slowly and may not activate in a given nominal time, the wrapper
queries FDiffuse on behalf of P, buffers the response messages and delivers them to P upon the next
time P interacts with the wrapper.

Functionality W(FDiffuse)

This functionality maintains state variables as follows.

State Variable Description

P ← ∅ The set of registered parties; the current set of corrupted parties is
denoted by P ′.

τ ← 0 The (real-time) clock tick counter.

fetch(P, τ)← 0 The fetch variable for party P at nominal time τ .

bufferP ← [] The fetch buffer for party P.
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Relaying inputs to the diffuse network:

� Upon receiving (diffuse, sid,m) from A on behalf of some corrupted P ∈ P ′, parse m as blocks
B1, . . . ,Bn. For each Bi, if Bi has not been queried to FRO, send (eval, sid,Bi) from a corrupted
party.

� Upon receiving (fetch, sid) from an honest party P, if fetch(P, τ) = 1 ignore this request. Other-
wise, execute the following:

1. Forward (fetch, sid) to FDiffuse and recevie as response M⃗ , return bufferP ∥ M⃗ .
2. Set bufferP ← [] and fetch(P, τ)← 1.

Corruption handling:
� Upon receiving (corrupt, sid,P) from the adversary, set P ′ ← P ′ ∪ P.

Procedure Round-Reset: Send (clock-read, sidC) to GDClock and receive (clock-read, sidC , τ
′) from

GDClock. If |τ − τ ′| > 0, then do the following.
1. Set τ ← τ ′.
2. For each honest party P such that fetch(P, τ) = 0, send (fetch, sid) to FDiffuse from P and recevie

as response M⃗ , set bufferP ← bufferP ∥ M⃗ . For each honest party P such that fetch(P, τ) = 1, set
fetch(P, τ)← 0.

3. Send (clock-update, sidC) to GDClock.

Functionality 6: The wrapper of diffuse network.

Dynamic availability and respecting environment. In order to apply a more fine-grained
classification on protocol participants, we follow the treatment in [BGK+18] and classify parties
into different types based on their accessible resources and synchronization states. Specifically, a
party is (i) operational if she is registered with the random oracle FRO, and stalled otherwise; (ii)
online if she is registered with the network FDiffuse, and offline otherwise; (iii) time-aware if she
is registered with the drifting clock GDClock, and time-unaware otherwise; and (iv) synchronized if
she has been participated in the protocol for sufficiently long time and held “synchronized state”
and “synchronized time” with other synchronized parties, and desynchronized otherwise.

We define alert parties based on the classification above. Specifically, alert parties are those
who have access to all the resources and are synchronized. They are the core set of parties to carry
out the protocol.

Next, we define a “respecting environment” in terms of the computational power (cf. [GKS22])
(as opposed to number of parties (cf. [GKL17, GKL20])) Our honest-majority assumption is that
during the whole protocol execution, the alert computational power is higher than the adversarial
one. We restrict the environment so that the number of such queries will be bounded in a certain
fashion.

Definition 3. For γ ∈ R+ we call the sequence (hr)r∈[0,B), where B ∈ N, (γ, s)-respecting if for
any set S ⊆ [0, B) of at most s consecutive integers, maxr∈Shr ≤ γ ·minr∈Shr.

3.3 Blockchain Notation

A block with target T ∈ N is a quadruple of the form B = ⟨ctr, r, h, x⟩ where ctr, r ∈ N, h ∈ {0, 1}κ
and x ∈ {0, 1}∗. A blockchain C is a (possibly empty) sequence of blocks; the rightmost block
is denoted by head(C) (note head(ε) = ε). These blocks are chained in the sense that if Bi+1 =
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⟨ctr, r, h, x⟩, then h = H(Bi). We use TS(B) to denote the timestamp of B. We denote by Ct⌉ the
chain resulting from “pruning” the least number of rightmost blocks so that all block timestamps
are less than t. Let C = ⟨C1, C2, . . . , Cm⟩ denote m parallel chains and Cj the j-th chain Cj in C.

Next, we introduce some basic string notation, which will be useful when describing our multi-
chain-oriented PoW mechanism. For a κ-bit string s, where κ is the security parameter, we will use
si (i ∈ [m]) to denote the i-th bit of s, [s]i∼m to denote the i-th segment after s is equally divided
into m segments—i.e., [s]i∼m = s[(i−1)∗κ/m]+1, . . . , si∗κ/m. Further, we will write [s]R as the reverse

of string s (i.e., the string obtained by reversing the order of its bits), and use [s]Ri∼m to denote the
reverse of the i-th segment.

Finally, we introduce some array operations, following the notation in [DLP+86], that will be
useful when describing the protocol. Let V = (v1, . . . , vn) be a real array of n elements and denote
Ṽ = (ṽ1, . . . , ṽn) the array after ordering V non-decreasingly. We define the operations reduce
and select. Intuitively, reduce with parameter V and η first orders V non-decreasingly and then
“trims” the η largest and η smallest elements in Ṽ; select with parameter V and η first orders V
non-decreasingly and then selects every first element of η consecutive elements and forms them as
a new array. Formally,

reduce(V, η) = (ṽη+1, . . . , ṽn−η) and select(V, η) = (ṽ1, ṽη+1, ṽ2η+1, η). (1)

Additionally, for an array V, let avg(V) denote the average of its elements, and med(V) denote
the median.

3.4 Weak/Approximate Agreement

Weak agreement. A variant of Byzantine agreement — Weak Agreement – relaxes the agreement
property to allow some parties to output a special failing symbol ⊥ while requiring all non-⊥ outputs
being consistent [Dol82]. This simple primitive has been widely used in building stronger notion of
agreement (e.g., graded agreement). We here provide the definition of Weak Agreement.

Definition 4 (Weak Agreement). A protocol Π implements Weak Agreement provided it satisfies
the following two properties:
� Weak Agreement: There exists y ∈ {0, 1} such that all honest parties output yi ∈ {y,⊥}.
� Validity: If all honest parties have the same input b ∈ {0, 1}, they all output yi = b.

Approximate agreement. Approximate Agreement (AA), formulated in [DLP+86], is a variant
of the Byzantine agreement problem [PSL80, LSP82] in which processes start with arbitrary real
values rather than Boolean values or values from some bounded range, and in which approximate,
rather than exact, agreement is the desired goal. In the classical distributed computing literature,
AA has served as a fundamental building block to achieve clock synchronization (see, e.g., [LL84b,
MS85, LL22]).

Next, we present a definition of AA which captures adaptive security. Conventionally, the goal
is to let honest parties agree on outputs where the difference between any two of them is upper-
bounded by a constant. In this paper, we provide an alternate yet equivalent definition which asks
for a “concentration” on the outputs compared with the inputs. We denote ϵ as the “quality” of
the agreement—i.e., the ratio between honest-input distance and output distance.

Definition 5 (Approximate Agreement). A protocol Π is an ϵ-secure protocol for Approximate
Agreement provided it satisfies the following two properties:
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� ϵ-Agreement: There is a round after which (i) any two honest parties hold inputs with difference
at most ℓ, and (ii) any two honest parties return outputs with difference at most ϵ · ℓ (where
0 < ϵ < 1) if queried by the environment.

� Validity: The output returned by an honest party P falls in the convex hull of the inputs of all
parties at round 1 that are honest at the round P’s output is produced.

4 Permissionless Weak/Approximate Agreement

In this section we consider weaker forms of agreement — namely, weak agreement and approximate
agreement as introduced in Section 3.4 — in the permissionless setting, and show that, when
appropriately parameterized, they can be achieved in constant time against a minority of corrupted
computational power. We present two protocols: first, a protocol that is simple and easy to
understand, but which tolerates only one-third of corrupted computational power. We then improve
this protocol to tolerate a dishonest minority and, in the context of AA, achieve better output
quality (recall Definition 5). 6

For simplicity, we consider a single protocol invocation and present our protocols in the static
setting where parties are always online and their number is fixed yet unknown to the protocol
participants, and we assume a global clock and a diffusion network with ∆-bounded delay. Later,
in Section 5, we use the weak/approximate agreement protocols as sub-routines in a dynamic
environment with drifting clocks.

4.1 Weak/Approximate Agreement against a (1/3)-Bounded Adversary

We first provide a simple protocol that solves Weak/Approximate Agreement against an adversary
that controls up to one-third of the computational power. At a high level, in this protocol parties
first use m×1 PoW to mine and exchange messages containing their input value (concatenated
with a random string for uniqueness) for a pre-determined number of rounds ℓ; then each party P
decides its output locally based on the messages that it has received.

The protocol is parameterized by ℓ (the termination time), m (the number of parallel mining
procedures) and T (a pre-determined PoW target value). A party P starting with input v queries
the RO and gets u = H(r∥v) where r is a κ-bit random string. For every “chunk” [u]i∼m of κ/m
bits, P checks if [u]i∼m < T . If P solves a PoW in any of the chunks, it diffuses (r, v) to the
network. Note that (r, v) will be counted independently for different succeeding chunks; e.g., if a
valid PoW is found in m/2 segments, (r, v) will be counted for m/2 times. Parties keep listening
to the network and book-keep all valid PoW messages, extracting their corresponding values in an
array V.

Parties decide their output based on their local array V at the end of round ℓ. For Weak
Agreement, they output 0 (1 resp.) iff. more than two-thirds of the elements in V are 0s (1s resp.);
and ⊥ otherwise. Regarding Approximate Agreement, the output decision procedure then follows
the approach in [DLP+86]: For an ordered array V of size n, the smallest and largest n/3 values
are dropped and the party outputs the midpoint of the remaining values (i.e., the average of the
maximum and minimum element).

The full description of the protocol is presented in Protocol 1.

6Translating protocols presented in this section to the PoS setting (with dynamic availability) is straightforward,
as the core mechanism that we use—m×1 PoW—can be emulated by independently evaluating multiple different
VRF outputs.
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Protocol 1
3
−ApproxAgr(ℓ,m, T )

▷ The following code is executed in each round r (val is the party input)
1: if r ≤ ℓ then ◁ Step 1: mine and exchange messages.
2: Fetch information and denote incoming PoW messages by ((r1, v1), . . . , (rn, vn))
3: for each (ri, vi) do
4: Set c = |{j | j ∈ [m] ∧ [H(ri, vi)]j∼m < T}|
5: Append vi to V for c times
6: end for
7: Set u← H(ctr, val)
8: if ∃j ∈ [m] s.t. [u]j∼m < T then Diffuse (ctr, val)
9: ctr ← ctr + 1

10: else ◁ Step 2: decide output.
11: Order V non-decreasingly and denote n← |V|
12: if deciding output for weak agreement then
13: if Vn/3 = V2n/3 then
14: Output Vn/3

15: else
16: Output ⊥
17: end if
18: else if deciding output for approximate agreement then
19: Output the mid point of reduce(V, n/3)
20: end if
21: end if

Protocol 1: Weak/Approxmate Agreeement tolerating a (1/3)-bounded adversary.

Note that different parties may work on different sets of messages when the adversary chooses
to hold and deliver its own PoW message at the last round (so that honest parties have no time
to diffuse this message to others). Nonetheless, for sufficiently large κ and suitable value of ℓ,
the messages generated by different parties are roughly proportional to their computational power.
Thus, for all arrays held by honest parties, they will share a large (yet unknown) common subset.

Lemma 2. Let ∆ denote the upper bound on network delay, h and t denote the number of honest
and adversarial queries per round (h > 2t), and m be the number of independent PoW mining.
Let V denote the honest input set (V = {0, 1} for Weak Agreement and V ⊆ R for Approximate
Agreement) and V denote the ordered array of PoW messages received by party P after round ℓ
(line 11 in Protocol 1), and assume that ℓ > 4∆ and m = Θ(log2 κ). Then, for any two honest
parties P,P′ (possibly P = P′) and V,V′ with size n, n′, respectively, it holds that

minV ≤ Vn/3 ≤ V′
2n′/3 ≤ maxV,

except with probability negligible in κ.

Proof. Let Vh ⊆ V denote the subset of of messages generated by the honest parties before round
ℓ−∆. Let H denote the set of honest parties at the end of round ℓ, and suppose it holds that

∀Pj ∈ H,
∣∣∣ ⋂
Pi∈H

Vh
i

∣∣∣ ≥ 2|Vj |/3, (2)

then for V held by any honest party, it would hold that minV ≤ Vn/3 ≤ med(
⋂

Pi∈HVh
i ) ≤ V2n/3 ≤

maxV , which would conclude the proof.
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Now we only need to verify Equation (2). Let X denote the number of PoW messages honest
parties generated in the first (ℓ − ∆) rounds, and Y denote the number of successful PoWs the
adversary generated in the first ℓ rounds, plus all the honest PoWs in the last ∆ rounds. Since
ℓ > 4∆, we have E[X] > E[2Y ]. Note that E[X] = Θ(E[2Y ]) = Θ(log2 κ). Now, by letting
ϵ ∈ (0, (E[X]/E[2Y ]− 1)/2) be a constant and applying the Chernoff bound (Theorem 5), we get

Pr[X > 2Y ] ≥ Pr[X > (1− ϵ)E[X]] ∧Pr[2Y < (1 + ϵ)E[2Y ]] ≥ 1− exp(−Ω(log2 κ)),

which happens with overwhelming probability in κ, the security parameter.

Given the good properties satisfied by V as described in Lemma 2, we conclude that (i) by
comparing Vn/3 and V2n/3, honest parties reach Weak Agreement; and (ii) by applying the mid-
point on reduce, honest parties reach Approximate Agreement with concentration quality 1/2. We
prove this for Approximate Agreement in Theorem 2 (and Weak Agreement can be argued alike).

Theorem 2. Under the same assumption as in Lemma 2, Protocol 1 is a (1/2)-secure Approximate
Agreement protocol against an adversary that controls less than one-third of the computational
power, except with negligible probability in the security parameter.

Proof. Validity follows directly, since for any honest party Pi, all values in reduce(Vi, |Vi|/3) are
within the convex hull of the honest inputs, and so is the midpoint.

Regarding (1/2)-Agreement, note that there exist a value u such that for any honest party P
and V, Vn/3 ≤ u ≤ V2n/3 (cf. Lemma 2). For any two honest parties P and P′ and their respective
outputs v, v′, let v1, v2 (v′1, v

′
2, resp.) denote the smallest and largest values in reduce(Vi, |Vi|/3)

(reduce(V′
i, |V′

i|/3), resp.). We have

|v − v′| = (|v1 − v′1|+ |v2 − v′2|)/2 ≤ (maxV − u+ u−minV |)/2 = (maxV −minV )/2,

which concludes the proof.

Remark 2. We note that the output quality of a single invocation of AA as Protocol 1 can be
improved when the adversary controls less computational power. This is in line with the classical
AA algorithm by Dolev et al. [DLP+86].

The output quality ϵ can be improved by calling the same Approximate Agreement protocol
sequentially, with each invocation using the output of the previous one as input, resulting in n
sequential calls improving the output quality to ϵ′ = ϵn. In the classical setting(s) (point-to-point
channels, or PKI), since deterministic termination is guaranteed, the sequential composition of
AA protocols is trivial. In a permissionless environment, however, where only a public setup is
available, the sequential composition becomes more challenging in that a common reference string
is needed for every invocation in order to avoid pre-mining. This problem has been addressed
in [GKS24] for the case of synchronous protocols (i.e., no [unknown] bounded delay) with static
number of participants. In Section 5, we show how this mechanism can be adapted to the drifting
clock model with fluctuating number of parties.

4.2 Weak/Approximate Agreement with Optimal Corruption Threshold

Protocol 1 works only when the adversarial computational power is bounded by one-third, and in
terms of AA the protocol offers concentration quality ϵ = 1/2. In this section we present a new
protocol that improves the corruption threshold to honest majority for both Weak and Approximate
Agreement. Moreover, for Approximate Agreement, it achieves ϵ-Agreement for an arbitrarily small
ϵ > 0 after a single invocation.
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We first provide some intuition on why Protocol 1 fails in an honest majority setting, taking
Approximate Agreement as an example. Notice that with stronger adversarial computational power,
the intersection of PoW message arrays held by an honest party at the decision phase becomes too
small to account for two-thirds of its PoW message array. Thus, since the common subset is
not large enough, the reduce and mid-point computations can no longer guarantee ϵ-Agreement
for ϵ = 1/2 and Validity at the same time. In more detail, when the adversarial messages (and
inconsistent honest messages due to network delay) can account for more than one-third of the
messages, parties need to trim more values from both sides of the ordered array; otherwise, Validity
would not hold because the mid-point computation may take some adversarially proposed values as
input. However, trimming more than one-third of the elements from both sides hurts ϵ-Agreement,
as the inequalities in Lemma 2 no longer stand.

To circumvent the above situation, our solution is to categorize the different PoW messages
based on their indices (in the m parallel procedures) where they succeed, and select one message in
each procedure to form a message array V of fixed size of m values, thus providing a more refined
approach to decide on an output value.

Protocol description. Here we show how to extend Protocol 1 to the honest majority setting.
The protocol takes two additional parameters k and η, which are explained below, and runs m
PoW-based Byzantine agreement (BA) procedures in parallel (cf. [GKL15])7. In each procedure, it
builds a PoW-based blockchain (which at a high level follows the Nakamoto protocol) and binds the
mining procedure of the chain with “input-blocks” using 2×1 PoWs (thus, each party maintains
m parallel blockchains which we denote by C). Specifically, for a RO query output u and each
chain index i ∈ [m], alongside with checking if a block that is used to extend the chain is produced
by evaluating [u]i∼m < T , the 2×1 mining further evaluates the reverse of this chunk [u]Ri∼m. If
[u]Ri∼m < T , an input-block IB containing the miner’s input is mined and IB can only be included
in the corresponding i-th blockchain. Yet, a single RO query can produce different valid blocks to
extend different blockchains, as well as an input block that can be valid on multiple chains. Refer to
Protocol 2 Line 6 to 17 to see how the m×1 and 2×1 mining procedures are bound together in order
to get m independent parallel instances of the PoW-based BA protocol. Also note that, parties
extend each blockchain C independent following the longest chain selection rule (as specified in the
Bitcoin backbone protocol [GKL15] which we omit the details on chain validation and selection
here), and keeps including valid and unique input-blocks with respect to C.

After ℓ rounds, for each parallel chain Ci, parties extract all input-blocks in its prefix by pruning
blocks based on their timestamp, subject to the “common prefix” parameter k.8 Then, these input-
blocks are ordered based on their value contained and the median one is picked as the output of
chain Ci. This forms an array V of size m. For Approximate Agreement, each party then decides
its output based on its local V and a parameter η < m/2, by first ordering V and removing the
smallest and largest η values, selecting the first element of every η elements, and computing the
average of the selected ones. I.e., they output avg(select(reduce(V, η), η)) and terminate. In terms
of Weak Agreement, parties output a value that accounts for a super-majority of the chains if it
exists, and ⊥ otherwise.

7We note that, while running a single invocation of such BA procedure [GKL15] for Θ(log2 κ) rounds yields a full
agreement, terminating after constantly many rounds does not give any form of weak agreement with overwhelming
probability.

8In ordinary blockchains, after pruning k blocks, parties hold a chain that is a prefix of any other party’s with
overwhelming probability, hence the term “common prefix.”However, since our protocol terminates in constant time,
this pruning operation will lead to a common prefix only with constant probability.
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Protocol 1
2
−ApproxAgr(ℓ,m, T, k, η)

▷ The following code is executed in each round r (val is the party input)
1: if r ≤ ℓ then
2: Fetch incoming chains (C1, . . . , CN )
3: Clocal ← UpdateLocalChain(Clocal, C1, . . . , CN ) ◁ Select longest valid chains for each index
4: Fetch incoming input-blocks (IB1, . . . , IBk)
5: Add valid IB1, . . . , IBk′ to buffer

▷ m×1 PoW mining
6: h← ε, st← ε
7: for i = 1 to m do
8: h← h ∥ [H(head(Ci))]i∼m

9: Let bufferi denote all IB that are valid yet not included w.r.t. Ci

10: st← st ∥ Blockify(bufferi)a
11: end for
12: u← H(ctr, r, h, st, val)
13: for i = 1 to m do ◁ Check if PoW succeeds on any type of block.
14: if [u]i∼m < T then set Ci ← Ci ∥ ⟨ctr, r, h, st, val⟩ and diffuse Ci ◁ Extend chain
15: if [u]Ri∼m < T then diffuse IB = ⟨ctr, r, h, st, val⟩
16: end for
17: ctr ← ctr + 1
18: else
19: Initialize V to an empty array
20: for i from 1 to m do ◁ Extract output from parallel chains
21: Initialize M to an empty array

22: for IB ∈ B ∈ Cℓ−k⌉
i do

23: Parse IB as ⟨·, ·, ·, ·, val⟩ and add val to M
24: end for
25: Sort M and add med(M) to V
26: end for

▷ Decide final output
27: if deciding output for weak agreement then
28: Order V non-decreasingly and denote n← |V|
29: if Vη = Vn−η then
30: Output Vη

31: else
32: Output ⊥
33: end if
34: else if deciding output for approximate agreement then
35: Output avg(select(reduce(V, η), η))
36: end if
37: end if

aBlockify translates a sequence of transactions to the ledger state (cf. [BMTZ17]).

Protocol 2: Honest-majority Weak/Approxmate Agreeement.

Next, in the following lemma we show that running the m parallel chains and terminating in a
constant number of rounds in a bounded delay network yields good properties on a fraction of the
chains. The two properties in Lemma 3 have been proven for a synchronous network in [GKS24].
Here we extend this result to the bounded-delay network setting.
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Lemma 3. There exist parameterizations of Protocol 2 such that the following holds. Let C and C′

denote the parallel chains held by two honest parties P and P′ at the end of round ℓ, respectively.
There exists a subset S ⊆ {1, 2, . . . ,m}, |S| > m−η, such that for all i ∈ S, the following properties
hold on chains C = Ci and C′ = C′

i:
� Agreement: Cℓ−k⌉ = C′ℓ−k⌉.
� Honest input-block majority: More than half of the PoW transactions included in Cℓ−k⌉ and
C′ℓ−k⌉ are produced by honest parties.

Proof (sketch). Consider the i-th single chain C = Ci of a party P. There exist parametrizations
such that at the end of round ℓ, with constant probability p > (m− η)/m, Cℓ−k⌉ yields a common
view with any other honest party and includes a majority of honest input blocks. Proving the above
claim is mainly a reminiscence of the proof of [GKS24, Theorem 2], with additionally extending it
to the bounded-delay network (see, e.g., [GKL14, Section 7], for more details).

Since any two single chains are mutually independent from each other, the probability that
these two properties hold on more than p ·m > m − η chains can be computed by the Chernoff
bound (Theorem 5), with error probability negligibly small in the security parameter κ (recall that
m = polylogκ).

Given that the ‘good’ properties hold on a certain fraction of the values in the output decision
array, we conclude that Protocol 2 solves the Approximate Agreement problem with an arbitrary
small ϵ.

Theorem 3. There exist protocol parameterizations such that Protocol 2 is an ϵ-secure Approximate
Agreement protocol, for an arbitrarily small ϵ > 0, against an adversary that controls less than half
of the computational power, and all honest parties terminate at the end of round λ, except with
probability negligible in κ.

Proof. Let η = [ϵ/(1+ 2ϵ)]m and consider the arrays of size m held by honest parties at the end of
the execution. Due to Lemma 3, there exist protocol parametrizations such that all honest parties
share a common subset of at least size m− η, and since the output is picked as the median among
a set with a majority of honest messages, all values in this subset stay in the convex hull of the
input. By following a similar argument as that in Lemma 2, it holds that for any (possibly the
same) P1, . . . ,Pk ∈ H,

minV ≤ VP1 [η + 1] ≤ VP2 [2η + 1] ≤ . . . ≤ VPk [m− η] ≤ maxV.

Validity follows directly, and since all parties pick 1/ϵ values after the select operation (Equa-
tion (1)), the output quality is ϵ.

5 Permissionless and Self-Sufficient State Machine Replication
with Fast Fairness

In this section, we present our permissionless state machine replication protocol Permissionless-SMR.
We first present a novel parallel blockchain construction serving as a basic platform to run the
“high-level” tasks (e.g., agreement and clock synchronization) in Section 5.1. In Section 5.2, in
order for parties to synchronize their clocks periodically, we propose a new time adjustment algo-
rithm (cf. Equation (5)) based on the honest-majority Approximate Agreement protocol in Sec-
tion 4.2. We then, in Section 5.3, show how Byzantine agreement and state machine replication
with fast fairness can be built “on top” of the parallel blockchains. A full description of protocol
Permissionless-SMR is presented in Section 5.4.
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5.1 A New Parallel Blockchain Construction

We describe how parallel blockchains can be run continuously for any (polynomially bounded)
number of intervals, thus allowing Weak/Approximate Agreement protocols (and later clock syn-
chronization and Byzantine agreement) to be sequentially invoked.

The PoW-based Approximate Agreement protocol presented in Section 4.2 terminates in con-
stant time, and the security of an invocation relies on a high-entropy CRS to invalidate all RO
queries made by corrupted parties before the activation of honest parties (a.k.a. pre-mining at-
tack). Nonetheless, since CRS is available only at the beginning of the first invocation, sequentially
running multiple invocations of Protocol 2 does not provide any security guarantee for the second
and later invocations. More precisely, the näıve sequential composition of AA protocols, by keep
extending m separate chains and let online parties periodically update their internal state based
on the blocks on the tip of the chains in their local view, incurs the following problem: Since any
interval might be “reverted” in the future as the adversary manages to create a longer fork and
surpass the current one, parties that join after the beginning of an execution cannot synchronize
with the online parties, as a large fraction of chains that online parties used to synchronize their
clocks will get orphaned in the future.

To tackle this problem, we introduce a novel parallel blockchain construction, which we later
show supports the following features: (i) it enables interval-based state update, thus parties update
their internal state at the end of each interval; (ii) it has no dependency on a global clock and can
self-synchronize all parties’ local clocks as long as they proceed at some bounded rates; and (iii)
it allows difficulty adjustment thus supports dynamic participation while preserving the optimal
corruption resiliency.

The main difference between our parallel blockchain construction and that employed by Chain-
King Consensus in [GKS24] is that, in [GKS24] it requires a chain to be “dense” such that it
possesses sufficiently many blocks in any time window of fixed length in an interval, and each chain
should point to sufficiently many dense chains in the previous interval (i.e., cross chain reference).
Contrary, in our construction we completely eliminate the hardcoded density parameter and the
cross chain references, hence switching from the “fragmented” chain structure to the “continuous”
one.

Parallel blocktrees. We elaborate our construction now. We extend the parallel chain structure
to parallel blocktrees consisting of m independent blocktrees. Recall that, on a single chain, all
blocks on the same height competes with each other and only the one on the longest chain survives;
thus blocks in the current view might get discarded from the longest chain in the future. To help
parties retrieve previously-longest yet now-orphaned forks, all blocks needs to be bookkeeped. In
this sense, a single chain is extended to a blocktree. The root of this tree is the genesis block and
each path corresponds to one fork. We note that this adaption is for future retrieval only, and
parties still follow the heaviest (i.e., with most accumulated difficulty; longest in case of static
participation) chain rule to select and process incoming chains. In other words, parties adopt the
heaviest fork in a blocktree and try to extend that fork using PoW, but they also bookkeep all
forks.

A parallel blocktree is simply a parallel repetition of m blocktrees whose mining procedure on
the heaviest fork is bounded using m×1 PoW. See Figure 2 for an illustration. We also extend the
blockchain notations to capture this modification. Specifically, we write T denoting a blocktree.
I.e., a genesis block with no incoming edges and all other blocks are connected by an incoming edge
from exactly one other block. We write C ∈ T if C matches one path in T . Regarding parallel
chains, let T denote m parallel chains and we write C ∈ T if ∀C ∈ C, it holds that C ∈ T where T
is the corresponding blocktree in T.
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interval 1 interval 2

FRO

m×1 PoW

Figure 2: An illustration of the parallel blocktrees and the mining procedure. Genesis blocks on each
chain are represented as circles. Teal blocks and forks depicts the view of a party at the end of the
first interval. There is no fork on the first chain; and on the second chain, forks are bookkeeped
yet fail to revert the longest one. The last two blocks in the view of a party on the third chain are
discarded from the longest chain by another longer fork. On the forth chain, all blocks in the first
interval are reverted.

Intervals and stages. We divide protocol time into consecutive, non-overlapping “intervals” in
order to periodically let protocol participants adjust their local clocks and update internal states.
An interval consists of R rounds. Parties decide which interval they are in based on their local time
(thus different parties may stay in different intervals). An interval is further divided into three con-
secutive, non-overlapping stages — view convergence (VC), output generation (OG) and reference
convergence (RC). We denote their duration by RVC, ROG and RRC respectively. In the view con-
vergence (VC) stage, parties extend their local parallel chains and wait for the second stage. Then,
in the output generation (OG) stage, parties generate input-blocks which contain their suggested
output value (cf. Section 5.3), local time (see Section 3.1) and also interval retrieval information
(see this section below). They emit these input-blocks and record them on the blockchain. Regard-
ing the last stage RC, parties wait for a (possibly) common view of the OG stage and they adjust
their clocks and update their internal state at the end of this stage (which is also the end of an
interval).

A new timestamping scheme. Next, we introduce our new timestamping scheme for protocols
to work with drifting clocks. We extend the block timestamp from the conventional single round
index r ∈ N+ to a pair of both interval index and round index, i.e., ⟨itvl, r⟩ ∈ N+ × N+. We say a
block B on a chain C is in interval itvl, if it reports a timestamp ⟨itvl, ·⟩. A block B owns a valid
timestamp iff. it satisfies the predicate validTS(r, itvl) ≜ r ≤ itvl · R. Note that this allows for a
chain in interval itvl to start with blocks reporting timestamps smaller than (itvl − 1) · R. Such
adaption is necessary, since the clock adjustment algorithm might set clocks backwards; however,
in the PoW setting parties must try to produce blocks in the next interval hence they should be
able to mine with “retorted” timestamps.

Regarding blocks on the same chain (same fork on the blocktree), our protocol employs a new
validation rule which asks for the monotonicity in the magnitude of stages. To be precise, let
stage : N+ × N+ → N+ × {VC,OG,RC} be a function that takes a (valid) timestamp as input and
outputs its corresponding stage. We define a canonical order on (itvl, stage) ∈ N+ × {VC,OG,RC}
as (1,VC), (1,OG), (1,RC), (2,VC), (2,OG), (2,RC), . . . so that operations like “<,=,≤” are defined
canonically. A chain C owns valid timestamps iff. for any two blocks B,B′ on C with timestamps
⟨itvl, r⟩, ⟨itvl′, r′⟩ respectively, B is an ancestor of B′ implies stage(itvl, r) ≤ stage(itvl′, r′).
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In summary, our timestamp validation predicate, taking two consecutive blocks as input, is
defined as follows9.

validOrder(⟨itvl, r⟩, ⟨itvl′, r′⟩) ≜

{
validTS(itvl, r) ∧ validTS(itvl′, r′)

∧ stage(itvl, r) ≤ stage(itvl′, r′)

}
. (3)

Note that, our blockchain notation Ct⌉ provides a chain with all block timestamps less than t, which
can be ill-defined with non-monotonically increasing timestamps. We stress that in our protocol
we will only use this operation with a stage-boundary time (e.g., CRVC+ROG⌉) to get chain segments
up to the end of a stage, hence resulting in an unambiguous chain.

In addition, in our protocol parties defer the processing of a chain with future timestamps until
their local clocks reach that stage. For instance, when the local clock of a party stays in the output
generation stage of the second interval, it processes chains with blocks no later than that stage,
but record all chains with blocks in the future stages for future processing.

We provide a high-level intuition behind this new timestamping scheme. Suppose we stick to
the conventional monotonically-increasing timestamp scheme, in our protocol analysis, an isolated
success which asserts the progress of a chain should be considered with a time period of (∆ + Φ)
rounds where Φ = Θ(R) is the maximum skew during an interval. Nonetheless, as the duration of
an interval is set as a linear function of the isolated success period, this implies the clock drift ρ
can only be set inversely proportional to many other protocol parameters (details see our analysis).
With our new timestamp scheme which does not ask for the monotonicity in stages, we eliminate
the correlation between clock drift ρ and other protocol parameters.

Retrieving views from previous intervals. Recall that an interval lasts for a constant number
of rounds; however the adversary can, with non-negligible probability, successfully prepare a private
fork longer than the honest one that diverges up to polylogarithmically many rounds (in κ), when
the honest parties share a common view of, e.g., the first chain C as C1 at the end of the i-th
interval, a block B on C might get discarded in the future and no longer stay on the longest chain in
C1. (Note that B is still bookkeeped in the blocktree, i.e., B ∈ C and C ∈ T1.) Thus, conventionally,
if a party P joins after the i-th interval (or, internal state of P gets flushed after the i-th interval),
she has no way to realize that B is indeed in the common view on C1 at the end of the i-th interval.
This observation, at first glance, seems prohibitive for newly joint parties to catch up the internal
state of existing parties, as to bootstrap they should realize the common views of honest parties at
the end of each interval.

To tackle this problem, we introduce a retrieval mechanism based on Weak Agreement that
allows parties to obliviously agree on all forks that were in the common view of all honest parties
at the end of each interval10. We write snapshotP[i] to denote the set of longest chains at the end
of interval i in party P’s local view. Note that since bad events on random oracles (e.g., two blocks
share the same hash) happens with only negligible probability, snapshotP[i] can be initialized as a
vector of m block hashes. P bookkeeps snapshotP[i] when their local clock stays in interval i+ 1.

During the (i + 1)-th interval, parties include their local view of all longest chains at the end
of interval i (i.e., snapshotP[i]) in the input-block and emit and collect these input blocks in the
output generation stage. To rule out pre-mining attacks, we require each input-block IB pointing to
the last block in the view convergence stage (VC) on its corresponding chain, thus providing fresh

9A similar timestamping scheme with dual indices is proposed in [GKS22]. Yet their scheme still requires mono-
tonically increasing timestamps within an interval while ours removes this restriction.

10Our retrieval mechanism provides no security guarantee for forks that honest parties do not share a unanimous
view. Nevertheless, as we shall observe later, our protocol relies only on the oblivious agreement of honest common
views.
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randomness asserting that IB is not generated too early. Note that this procedure relies on parties
being online at the end of the previous interval and preserve their internal state since then. Recall
that we assume the total computational power of corrupted parties and honest parties that suffer
from transient faults (e.g., temporarily lose access to network or the RO) account for less than the
majority, this guarantees that on sufficiently many parallel chains, at least half of the input blocks
report local views of alert parties in the previous interval (see Section 3.2 for more details on party
classification).

We now explain how a fresh party Pnew (either newly joining the protocol, or suffering from
transient internal faults) can learn the common view of intervals in the past. Our approach is
simple and works in a “trace-back” manner: For Pnew to bootstrap the blockchain and retrieve all
previous views of interval 1, 2, . . . , itvl where itvl is the current protocol interval, Pnew first listens
to the protocol passively and build parallel blocktrees. Pnew then needs to decide which interval
the protocol stays in (as she has no knowledge on the protocol time at this stage). Given our goal
to bootstrap in constant time, this is a delicate task since the adversary can gain a sudden mining
success spark on all parallel chains, thus producing heaviest forks with future block timestamps
in the suffix to fool the joining parties. In order to eliminate such attack, after bootstrapping the
blockchain, Pnew decides the interval by first pruning kbootstr blocks on all chains and then adopt
the median block timestamp on the tip of all chains11.

Once Pnew is about to finish the i-th interval in her local view, Pnew performs the following
operations recursively to retrieve the views from interval i − 1 to 1. Precisely, in order to set the
view of a previous interval, e.g., snapshotP[i−1], Pnew tries to find block hashes in her local parallel
blocktrees that has been referred to by sufficiently many input-blocks in the next interval. For the
j-th chain, if in the i-th interval, there exists more than 3m/4 chains such that the majority of
the input-blocks report the same block reference chunk [h′]j∼m (where h′ is a κ-bit string in input
blocks to report the miner’s local view of the previous interval) and a block with hash [h′]j∼m do
exist in Tlocal, then the j-th chunk of snapshotP[i− 1] is set to [h′]j∼m; otherwise (either no block
hash is refereed by sufficiently many chains, or if no such block exists), it is set to ⊥.

Note that Weak Agreement on parallel chains is not sufficient to tighten newly joint party’s local
clock. The decision on which interval Pnew is in only gives a coarse notion of time. We introduce
the full bootstrapping protocol for new parties to synchronize with online ones in Section 5.2, using
the retrieval mechanism in this section as a sub-routine. We also elaborate in Section 5.3 on how
to bootstrap the ledger state when obliviously agreeing on a large fraction of parallel chains in all
intervals.

Remark 3. Our usage of Weak Agreement to retrieve previous intervals is also adopted in the
bootstrapping procedure of the distributed ledger protocol in [GKS24]. Nonetheless, we stress that
we adapt this technique to our new parallel blockchain construction, which serves bootstrapping
with no knowledge of time and optimal corruption resiliency with dynamic participation, which
cannot be achieved by the bootstrapping algorithm in [GKS24].

The difficulty adjustment algorithm. We adjust the mining difficulty on each chain indepen-
dently, using a “reversed” version of Bitcoin’s target recalculation function (cf. [GKS22]) which
adjusts the mining target every M rounds12.

In more detail, we divide time into consecutive, non-overlapping epochs and set the duration
M of an epoch as a multiple of intervals so that the end of an epoch coincides with the end of an

11Our analysis will show that, after pruning kbootstr blocks, the adversary can only push forward or stall the block
timestamps on a bounded fraction of chains. Hence, after adopting block timestamp that is median among all chains,
Pnew learns a time that deviates from alert parties for a bounded amount of time.

12In Bitcoin, the mining difficulty is adjusted for every epoch of 2016 blocks.
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interval. Note that since our timestamping scheme asks for the explicit interval indices, the epoch
that a block belongs to can be directly decided based on its timestamp; and on a single chain, the
epoch indices of blocks increase monotonically. Epochs also apply to the blocktrees as every block
on the tree must belong to a unique chain. Further, parties also maintain an internal variable ep

indicating the epoch index that they stay in.
Let Λepoch denote denote the ideal number of blocks in an epoch. We have Λepoch = M · f ,

where f is the ideal block generation rate. For the first epoch (ep = 1), parties adopt the same
target as the genesis block (T0). I.e., T1 = T0. Regarding the second and later epochs (ep > 1),
parties figure out how many blocks are produced in the previous epoch, and set the next target
based on the previous one. This variation is proportional to the ratio of expected number of blocks
Λepoch and their actual number. I.e., for epoch ep+ 1,

Tep+1 ≜ min
{
max

{Λepoch

Λ
· Tep,

1

τ

}
, τ
}
, (4)

where Λ is the number of blocks in epoch ep.
In our analysis, we show that while the difficulty adjustment is performed on each chain in-

dependently, it can be set appropriately and stays close to the ideal block generation rate, thus
accommodating the varying computational power.

5.2 The Clock Synchronization Procedure

Synchronization beacons. In the context of clock synchronization, we also call input-blocks as
“synchronization beacons” (cf. [BGK+21, GKS22]). When parties are in the output generation (OG)
stage of an interval itvl (in their local view), they mine beacons with their local time ⟨itvl, r⟩ and
include all beacons (which are valid with respect to interval itvl) into their corresponding chains.
Note that beacons should still convey inputs for building the state machine (refer to Section 5.3)
as well as local views of the previous interval to help retrieve the views and secure the parallel
blockchain (Section 5.1); for brevity we omit those details in this section.

Our shift calculation algorithm is based on comparing the timestamp recorded in beacons and
their earliest local arrival time. In order to perform such computation, parties need to bookkeep the
time that they receive fresh beacons (in case parties receive duplicate beacons, they consider the
one that arrives earliest in their local view). Once a party P receives a beacon IB (either directly
or by observing it on a chain) at local time ⟨itvl, r⟩, P bookkeeps its arrival time in a local beacon
registry arrivalTime(·) as an entry (IB, ⟨itvl, r⟩,flag) where flag ∈ {temp, final}. When the beacon
IB is valid with respect to a fork in the parallel blocktrees in the current or previous interval, P
assigns final to the flag of IB; otherwise, it assigns temp. Note that for a beacon IB labeled with
temp, it will be removed from the registry when P enters the corresponding interval and P’s local
blockchain invalidates IB (the invalid beacons are those does not provide good fresh randomness
with respect to any fork in party’s local blocktrees). Since timestamp is part of the block header,
a beacon IB can be a valid one on multiple chains; yet, it suffices to bookkeep only one entry in
arrivalTime(·) and it can be reused for the same beacon in multiple chains.

A beacon IB is said to be valid with respect to an interval itvl and a chain C, if (i) IB reports a
timestamp in the OG stage of interval itvl; (ii) IB points to the last block in the VC stage of interval
itvl; and (iii) IB is a valid PoW message w.r.t. itvl. Refer to Algorithm 2 for a full description.

Shift calculation algorithm. We define arrivalTime() as a function, taking a beacon IB as input,
outputs its local arrival time ⟨itvl, r⟩; recall that TS() is a function that outputs the timestamp
recorded in a block B, we slightly abuse this notation and let it take also a beacon as input. We
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write IB ∈ C(i) if a beacon IB is recorded in the beacon generation stage of i-th interval on a chain
C and IB is valid with respect to C. When the interval index is clear in the context, we drop the
superscript and simply write IB ∈ C.

Parties compute a value shift at the end of an interval (i.e., when their local clock enters a round
such that r = (itvl− 1) ·R), using beacons recorded in the current interval, and adds shift to its
local time. Specifically, for a party P with local parallel chains Clocal at the end of interval itvl, its
local shift shiftP is computed as

shiftP ≜ avg
(
select

(
reduce

({
med

{
TS(IB)− arrivalTime(IB)

∣∣∣ IB ∈ C} ∣∣∣ C ∈ Clocal

}
, η
)
, η
))

. (5)

where η < m/2 is a protocol parameter, and select and reduce are as defined in Equation (1).
Roughly speaking, this algorithm can be viewed as first adjusting a party P’s local clock sep-

arately on each single chains by computing the median shift (i.e., the difference between beacon
time and its local receiving time) thus yielding m different clock times; then, the same decision
procedure as that in Protocol 2 is applied on these clocks, by filtering the largest and smallest η
ones, picking the first clock time every η remaining values, and then compute their average.

With a positive shift at the end of interval itvl, party P skips shift rounds and forward her
local clock to ⟨itvl + 1, itvl · R + shift⟩. Otherwise, her clock is set backward |shift| rounds and
in the next round she tries to mine a block with timestamp ⟨itvl + 1, itvl · R − |shift|⟩ for the
(itvl+1)-th interval. Recall our timestamping scheme in Section 5.1, such “retorted” timestamp is
allowed in the view convergence stage. Additionally, parties will update their beacon registry, by
applying shift on the local receiving time of all future beacons.

We note that, with overwhelming probability, every shift value that honest parties compute at
the end of each interval is well-bounded, so that their logical time stays in a good linear envelope
of the nominal time, which guarantees accuracy.

Next, we prove that, when parties start an interval with bounded skew Φinit = Θ(ρ∆) and
certain good properties on the parallel blockchains in this interval hold, after all honest parties
enter the next interval, their local clocks are at most Φ = Θ(ρ∆) apart from each other, which
solves the synchronization problem. Looking ahead, our full analysis (Section 6) will show that
these good properties hold throughout the entire execution and thus all intervals serve as good
synchronizers.

The bootstrapping procedure. We now show how a fresh party, with total lack of knowledge
other than the genesis block (CRS), can join the Permissionless-SMR protocol by passively observing
the protocol execution for a constant number of rounds. We highlight that even without dynamic
participation, this joining procedure is still of interest as parties that passively listening to the
protocol can learn a precise time in the protocol and use it as a timestamping service. This
procedure also allows for an existing protocol participant, whose internal state suddenly gets flushed,
to catch-up with other honest parties.

Consider a newly joining party Pnew. Given the interval retrieval mechanism introduced in
Section 5.1, Pnew can bootstrap her local parallel blocktrees Tlocal, by listening to the protocols
for a constant amount of time and updating the heaviest chain such that for each interval, Pnew

obliviously learns a subset of forks that are in the common view of alert parties. Nonetheless, recall
our timestamping scheme in Section 5.1, blockchains only provide a coarse notion of time such that
the local clock of Pnew can deviate from alert ones for RVC rounds. Our goal is to further tighten
this skew to Φ = Θ(ρ∆) — a small constant.

We now explain how the fresh party Pnew can synchronize with alert parties with well-bounded
skews. Upon executing the bootstrapping procedure, Pnew resets her local clock to ⟨1, 1⟩. During
the bootstrapping phase, Pnew also listens to the beacon diffusion network F input

Diffuse and bookkeep
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the arrival time of all beacons. This phase lasts for more than two interval durations so that
Pnew observes at least one complete output generation stage in an interval. Since Pnew is not
synchronized, she cannot filter any invalid beacons so she temporarily mark all beacons as temp.
Nonetheless, after she finishes bootstrapping her parallel blockchain, Pnew roughly understands
which interval she stays in hence Pnew starts to remove invalid beacons based on her local heaviest
chain. Note that our protocol guarantees that a large fraction of chains yield good properties at
the end of an interval (e.g., common view of the chain in the output generation stage), Pnew thus
shares the same beacon set (marked as final) with alert parties on sufficiently many chains. At
the end of the bootstrapping procedure, by iterating all complete intervals that Pnew has observed
and applying sequentially the shift calculation algorithm in Equation (5), Pnew synchronizes her
clock with all alert parties. Note that when Pnew has observed two or more complete intervals, the
local arrival time of all beacons in the second and later intervals needs to be updated each time
after clock adjustment, by adding shift computed from the last interval to these beacons. The full
description of the bootstrapping procedure is presented in Protocol 15.

An improved honest-majority lower bound for clock synchronization. We discuss under
what circumstances honest majority is necessary for clock synchronization. Regarding corruption
resiliency of synchronization problems, in the information-theoretic setting, Dolev et al. [DHS86]
show that clock synchronization is impossible when more than one-third of the parties are corrupted.
In the authenticated setting (assuming unforgeable signatures and a PKI), on one side, Srikanth
and Toueg [ST87] show that honest majority is necessary when the resulting linear envelope on
logical time is as good as that on nominal time. On the other side, Halpern et al. [HSSD84] presents
a dishonest majority protocol however its logical time can deviate drastically from the real time as
the number of corrupted parties grows.

We extend the argument for honest majority in [ST87] to a more general accuracy condition.
In a nutshell, when physical clocks drifts in a (1 + ρ)-linear envelope, we show that to stay in the
time that is strcitly tighter than a (1 + ρ)2-linear envelope of nominal time, a majority of honest
parties (resources) is necessary. We state this result in Theorem 4, and a depiction on the logical
linear envelope where honest majority is necessary can be found in Figure 3.

tnominal

tlogical (1 + ρ)−1
1 + ρ

(1 + ρ)−2

(1 + ρ)2

Figure 3: An illustration of the logical time linear envelope (in gray) such that honest majority is
necessary.

Theorem 4. Any clock synchronization protocol running by parties with ρ-linear-envelope physical
clocks that achieves Φ-bounded skews and Γ -accuracy such that Φ ∈ N and ρ ≤ Γ < 2ρ + ρ2 must
have a majority of honest parties.

Proof. Let Di(r) denote the clock of party Pi at nominal time r and Ci(r) denote the (exported)
logical time of party Pi at nominal time r.
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Assume 0 < ϵ≪ ρ and there exists a protocol that achieves ((1+ρ)−1(1+ρ−ϵ)−1, (1+ρ)(1+ρ−
ϵ))-accuracy with dishonest majority. We show that it is impossible by first considering a system
with two parties P,P′ and the following three executions.

� Execution E1. Both the parties follow the protocol, and party P has the maximum clock speed
(i.e., D1(r) = (1 + ρ)r); party P′ has the minimum speed (D′

1(r) = (1 + ρ)−1r). Moreover, all
messages have delay exactly ∆/(1 + ρ)2.

� Execution E2. Party P is honest and has rate R2(r) = (1+ρ)−1r; party P′ is corrupted and runs
at R′

2(r) = (1 + ρ)−3r but is otherwise correct. Moreover, all messages have delay exactly ∆.
� Execution E3. Party P′ is honest and has rate R′

3(r) = (1 + ρ)r; party P1 is corrupted and
runs at R3(r) = (1 + ρ)3r but is otherwise correct. Moreover, all messages have delay exactly
∆/(1 + ρ)4.

All these three executions follow the clock and network assumptions and are hence admissible. In
addition, executions E1 and E2 are indistinguishable for party P; and executions E1 and E3 are
indistinguishable for party P′. Since accuray is achieved, P in execution E1 will report a time
C1(r) ≤ (1+ρ)(1+ρ− ϵ)r+ b1. Since D1(r) = (1+ρ)r, we find that C1(r) ≤ (1+ρ− ϵ)D1(r)+ b1.
Similarly, by considering execution E2 we have (1 + ρ− ϵ)−1C2(r) + a2 ≤ C2(r). Since executions
E1 and E2 are indistinguishable for party P, the relation between its exported time and reading
time must be the same in both executions. Therefore, we have for k = 1, 2,

(1 + ρ− ϵ)−1Dk(r) + a2 ≤ Ck(r) ≤ (1 + ρ− ϵ)Dk(r) + b1.

I.e., in execution E1 we can find a time τ1 such that for all r > τ1,

(1 + ρ− ϵ)−1(1 + ρ)r + a2 ≤ C1(r) ≤ (1 + ρ− ϵ)(1 + ρ)r + b1.

Similarly, by considering party P′ in executions E1 and E3, we see that there exist a time τ2 in
execution E1 such that for all r > τ2,

(1 + ρ− ϵ)−1(1 + ρ)−1r + a1 ≤ C ′
1(r) ≤ (1 + ρ− ϵ)(1 + ρ)−1r + b3.

Hence, we find that there exist a time τ ≥ max{τ1, τ2} in execution E1 such that for all r > τ ,
the deviation between the exported time of two correct parties is greater than a constant Φ, which
violates the bounded skew condition.

5.3 The New State Machine Replication Protocol

The parallel blockchain framework that we have introduced, complemented with the clock synchro-
nization mechanism, allows a varying number of parties to reach weak agreement sequentially at
the end of each interval. Based on this, we build permissionless Byzantine Agreement and state
machine replication protocols.

Our approach in this section is based on the constructions in [GKS24], which provide a generic
way of building BA that terminates in expected-constant time, and SMR that settles all incom-
ing transactions in expected-constant time on top of parallel chains. Their underlying parallel
blockchains, however, are not truly-permissionless, operate in a synchronous network and rely on
a global clock, shortcomings that we overcome in this paper.

Permissionless BA in expected-constant time. We run “Chain-King Consensus” as intro-
duced in [GKS24] on top of our parallel blockchain. At a high level, this protocol emulates the
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classical “Phase-King Consensus” [BG89, BGP89] with randomized king election [FG03, KK06] in
the following way.

We map the i-th parallel chain to the i-th party in a classical randomized Phase-King protocol13.
For each interval, parties might share possibly different views on the output of a single chain, which
emulates that parties share possibly different views on the message sent by a party in the classical
protocol. If a chain is good (i.e., honest parties share common views and the majority of the input
blocks are honestly generated) then it emulates an honest party since its output is unanimous and
validity holds. Otherwise, a chain emulates a corrupted party as its output might differ among
parties or validity might not hold. The protocol runs in iterations by checking if parties start with
the same input. If this is not the case and parties are “confused” about the output, then they
adopt the output of the king chain (set deterministically as the first chain) as their new input (this
mimics the oblivious king election in classical protocols). Since the duration of intervals are of
constant rounds, and the king chain yields a good chain with constant probability, the protocol
terminates in expected-constant time.

In more detail, consider a BA invocation where a party P starts with an input v. Party P
maintains three internal variables: (i) the suggestion of output val which is initialized as v and
can be modified at the end of each interval; (ii) a bit variable lock that indicates whether parties
should take the output of king chain; (iii) a bit variable decide that indicates whether a party
P should decide on the current val as input14. The protocol proceeds in iterations where each
iterations consists of three intervals. In the first interval, parties will set both their decide and
lock to true if they have seen more than η ≥ 3/4 fraction of the chains output the same value; and
in the second interval, they set only lock to true if they have seen more than η fraction of the chains
output the same value. In both the first and second intervals, if the majority of chains output the
same value, then parties will switch their val to that output. In the third interval, parties update
their internal state based on decide and lock. A party will replace val with the output of the
first (king) chain if both decide and lock remains false; and it will terminate if decide is true;
when decide remains false however lock is set to true, it resets lock back to false.

A detailed description of the core state update algorithm in Chain-King Consensus is presented
in Protocol 11.

Permissionless and self-sufficient SMR with fast fairness. Given that an invocation of per-
missionless BA can be run on top of our parallel chain framework, the translation to permissionless
SMR works so long as (i) there are means to coordinate the second and later BA invocations that
parties may start at different intervals; and (ii) an honest input is selected as output with constant
probability which guarantees liveness in expected-constant time.

At a high level, our approach here is reminiscent of that in [GKS24]. In order to coordinate
parties that may start at different times, we employ (i) the Bracha-style termination [Bra84] to let
parties terminate in neighboring intervals at the end of a BA invocation; and (ii) super-interval
expansion (which mimics the classical super-round expansion in round-preserving sequential com-
position of BA [CCGZ19]) to allow parties expand normal interval to super-interval that consists
of multiple intervals so that even if parties start non-simultaneous they still reach weak agreement
on the output of this super interval.

13A subtle difference compared with classical protocols is that in Chain-King Consensus, the set of chains that
emulates an honest party keeps changing; while in classical protocols the set of honest parties remains the same (yet
unknown). The protocol still works in that all state-update operations are based on counting the number of messages
and has nothing to do with party identifiers.

14Note that due to non-simultaneous termination, in [GKS24], for one-shot consensus, there is a fourth “exit”
parameter indicating whether parties should drop from extending the blockchains. For simplicity, we avoid this part
in our description and refer to [GKS24] for more details.
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Note that since parties in SMR use a sequence of transactions as their BA input, they are
almost unlikely to start unanimously with the same set of transactions (as we will show soon, if
parties also want to add the coinbase transaction, then they will never invoke BA with the same
input). In order to prevent the adversary from dominating the output all the time (due to the weak
validity property), we proceed as follows. Recall that Chain-King Consensus runs in iterations and
each iteration consists of three intervals, when parties are in the first and second interval of an
iteration, they decide the output of each chain as follows: A party P outputs v for the i-th chain if
the majority of input-blocks reports v; otherwise P outputs ⊥ (in this way, the adversary cannot
let parties decide on a batch of transactions that is not an honest input in the first two stages).
When P is in the third interval and about to switch her input, she replaces her BA input with the
input-block of smallest hash value in the king chain.

We now show how parties can build an ever-growing log with fast fairness. Once a block (a
sequence of transactions from the BA output) is appended to the log in SMR, it sets up a public
key pk such that the probability that pk belongs to an honest party is roughly proportional to the
fraction of her computational among all protocol participants. Upon joining the protocol, a party
P generates her own public-key pair (pk, sk) as her identifier (pseudonym). Recall that our SMR is
built on the sequential composition of BA invocations, and in each invocation parties prepare their
own input using all unsettled transactions in their buffer. We additionally introduce the following
mechanism.

At the onset of a BA invocation, P prepares a special transaction txbase-tx that contains her
public key pk. P then appends all valid, unsettled transactions in the buffer after txbase-tx(pk) as
her BA input. Moreover, we add an additional interval at the beginning of BA such that at the end
of this interval, parties listen to the king chain and switch their val to the block with minimum
hash. As a result, the output of each BA in our SMR protocol is a sequence of transactions, with
the first transaction being coinbase of public key pk.

Next, we provide some intuition on how the above mechanism helps to achieve fast fairness (refer
to Section 6 for more details). We focus on the first interval which serves as a “lottery” letting
parties replace their input with the block with minimum hash. Suppose parties share a common
view on the king chain until the end of that interval, if an honest party manages to produce an
input-block with the minimum hash among all parties, this implies that she makes a RO query
such that the RO response yields minimum among all hash queries made that can contribute to
the king chain (that is, the output generation stage of that interval). Also note that an input-
block with minimum hash will be a valid block on the king chain (since it is definitely smaller
than the mining target T ). Hence, the probability that a party wins the lottery is the same as
winning the minimum block hash on king chain, and is (roughly) proportional to her computational
power among all participants. Even though the adversary can gain some bounded advantage by
slightly cheating on the block timestamp, yet, since the honest parties share a common view of the
king chain, the adversary can only keep including more input-blocks with bogus timestamps for
a bounded amount of time. In case the king chain is a bad chain, all bets are off. Nonetheless,
our analysis shows that the protocol can be parameterized so that the probability that the king
chain is a bad chain is an arbitrarily small constant. Combining these two bounded, constant errors
together, we can conclude that whenever a new batch of transactions is to be appended to the SMR
log, the probability a party gets selected is proportional to her relative computational power.

5.4 Full Protocol Description

Main protocol instance. We introduce the main Permissionless-SMR protocol instance that
dispatches to the relevant subprocesses following the UC notions.
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Protocol Permissionless-SMR(P, sid;GDClock,FRO,FDiffuse,FCRS)

Global Variables:
� Read-only: R, M , toff , tgather
� Read-write: localTime, ep, Clocal, Tlocal, T

ep, isInit, twork, buffer, IBBuffer, futureChains,
isSync, fetchCompleted, arrivalTime(·), state, snapshot

Registration / Deregistration:
� Upon receiving input (register,R), where R ∈ {Gledger,GDClock} execute protocol Registration(P,

sid, reg,R).
� Upon receiving input (de-register,R), where R ∈ {Gledger,GDClock} execute protocol

Deregistration(P, sid, reg,R).
� Upon receiving input (is-registered, sid) return (register, sid, 1) if the local registry Reg in-

dicates that this party has successfully completed a registration with R = Gledger (and did not
de-register since then). Otherwise, return (register, sid, 0).

Interacting with the Ledger: Upon receiving a ledger-specific input I ∈ {(submit, . . .),
(read, . . .), (maintain-ledger, . . .)} verify first that all resources are available. If not all resources
are available, then ignore the input; else (i.e., the party is operational and time-aware) execute one
of the following steps depending on the input I:
� If I = (submit, sid, tx) then set buffer← buffer ∥ tx, and send (diffuse, sid, tx) to F tx

Diffuse.
� If I = (maintain-ledger, sid,minerID) then invoke protocol LedgerMaintenance(P, sid); if

LedgerMaintenance halts then halt the protocol execution (all future input is ignored).
� If I = (read, sid) then invoke protocol ReadState(P, sid).
� If I = (export-time, sid) then do the following: if isSync or isInit is false,

then return (export-time, sid,⊥); otherwise call UpdateLocalTime(P, sid) and return
(export-time, sid, localTime) to the caller.

Handling calls to the shared setup:
� Upon receiving (clock-tick, sidC), forward it to GDClock and output GDClock’s response.
� Upon receiving (clock-update, sidC), record that a clock-update was received in the current

round. If the party is registered to all its setups, then do nothing further. Otherwise, do the
following operations before concluding this round:
1 If this instance is currently time-aware but otherwise stalled or offline, then call

UpdateLocalTime(P, sid) to update localTime. If the party has passed a synchronization slot,
then set isSync← false.

2 If this instance is only stalled but isSync = true, then additionally execute
FetchInformation(P, sid), extract all new input blocks (synchronization beacons) IB from the
fetched chains and record their arrival times and set fetchCompleted← true. Also, any unfin-
ished interruptible execution of this round is marked as completed.

3 Forward (clock-update, sidC) to GDClock to finally conclude the round.

Protocol 3: The main protocol instance of Permissionless-SMR.

Registration / de-registration. In order to perform basic operations, a party P needs to register
to all resources. Note that the protocol will initialize local time P.localTime to ⟨1, 1⟩, and P is
aware whether he is not synchronized not and will set the bit variable isSync correspondingly.
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Protocol Registration(P, sid, Reg,G)

1: if G = GDClock then send (register, sid) to G, set registration status to registered with G, and
output the valued received by G.

2: if G = Gledger then
3: if P is not registered with GDClock or already registered with all setups then
4: ignore this input
5: else
6: Send (clock-tick, sidC) to GDClock and receive (clock-tick, sidC , tick)
7: Send (register, sid) to FDiffuse

8: localTime← ⟨1, 1⟩ and isSync← false
9: If this is the first registration invocation for this ITI, then set isInit← false.

10: Output (register, sid,P) once completing the registration with all the above resources F
11: end if
12: end if

Protocol 4: Parties register on necessary resources (functionalites) to run the protocol.

The deregistration process is an analogous action that sets variables to the initial values.

Protocol Deregistration(P, sid, Reg,G)

1: if G = GDClock then
2: Set isSync← false
3: Send (de-register, sid) to G and set registration status as de-registered with G
4: Output the valued received by G
5: end if
6: if G = Gledger then
7: Set isSync← false
8: Send (de-register, sid) to FDiffuse, set its registration status as de-registered with FDiffuse and

output (de-register, sid,P).
9: end if

Protocol 5: Parties de-register from corresponding resources.

Ledger maintenance. The protocol LedgerMaintenance groups all the steps regarding the main
ledger operation. Note that, depending on a party is alert or not, she might execute different
sub protocols. For parties that are not synchronized, after querying FCRS, they first enter the
bootstrapping mode by calling JoiningProcedure. By executing this sub protocol, they set their
internal state isSync to true and then start to execute the normal ledger maintenance operations.

Protocol LedgerMaintenance(P, sid)

▷ The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible manner:
1: if isInit = false then Send (Retrieve, sid) to FCRS and receive (Retrieved, d).

▷ Bootstrap if not synchronized.
2: if not isSync then Call JoiningProcedure(P, sid) ◁ Protocol 15

▷ Normal operations when alert.
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3: Invoke FetchInformation(P, sid) and denote the output by (C1, . . . , CN ), (tx1, . . . , txk)
4: buffer← buffer ∥ (tx1, . . . , txk) and futureChains← futureChains ∪ {C1, . . . , CN}
5: Call UpdateLocalTime(P, sid) ◁ Protocol 8

▷ Ensures the processing of new input-blocks arrived in chains only.
6: Extract input-blocks IB ← {IB1, . . . , IBn} contained in C1, . . . , CN and not yet contained in

IBBuffer.
7: Call ProcessInputBlocks(P, sid, IB) ◁ Protocol 9
8: Let N0 be a set of (single) chains s.t. C ∈ N0 :⇔ C ∈ C ∈ futureChains ∧ ∀B ∈ C : TS(B) ≤

localTime

9: Remove each C ∈ N0 from futureChains

10: fetchCompleted← true
11: Call UpdateLocalChain(Clocal,Tlocal,N0) to update Clocal and Tlocal

12: if twork < localTime then
13: Call MiningProcedure(P, ep, r,Clocal) ◁ Protocol 10
14: Set twork ← localTime

15: if r = itvl ·R then
16: Call StateUpdate(P, sid) ◁ Protocol 12
17: Call SyncProcedure(P, sid) ◁ Protocol 13
18: end if
19: end if
20: Call FinishRound(P) ◁ Mark normal round actions as finished

Protocol 6: The main operations for parties to maintain the ledger.

Fetch information. Parties fetch block information from Fbc
Diffuse to learn new parallel chains

(precisely, blocktrees) with possibly future timestamps. Note that in order to simplify the chain
validation and selection procedure, we let FetchInformation return all single chains C1, . . . , CN ex-
tracted from all received blocktrees15. Parties also fetch transactions from F tx

Diffuse to learn new
transactions.

Protocol FetchInformation(P, sid)

1: if fetchCompleted then return ◁ Fetch once per round and never catch up missed round.
▷ Fetch blocks on Fbc

Diffuse

2: Send (fetch, sid) to Fbc
Diffuse; denote the response by (fetch, sid, bc).

3: Extract blocktrees T1, . . . Tn from bc
4: Extract chains C1, . . . CN from T1, . . . Tn

▷ Fetch transactions on F tx
Diffuse

5: Send (fetch, sid) to F tx
Diffuse; denote the response by (fetch, sid, tx).

6: Extract transactions (tx1, . . . txk) from tx
7: if not isSync or P is stalled then
8: buffer← buffer ∥ (tx1, . . . txk)
9: futureChains← futureChains ∪ {C1, . . .CN}

10: end if

15Parties associate all blocktrees/chains with their index i ∈ [m] in parallel chains(trees), and thus apply chain
validation and validation for chains with the same index. For brevity, we ignore these details in our protocol description
and assume all chains are processed correspondingly.
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Output: The protocol outputs (C1, . . . , CN ) and (tx1, . . . , txk) to its caller (but not to Z).

Protocol 7: Fetching new blocks and transactions from the diffusion functionality.

Chain and input block validation. We present the chain and input block validation procedure
in Permissionless-SMR respectively. Note that, different from the single chain protocols where the
validity of each chain can be attested independently, chains in Permissionless-SMR need to be verified
per interval (see the chain selection procedure in Algorithm 4). Hence the algorithm IsValidChain
takes as input a chain C, an integer i the index of C in parallel chains, a parallel blocktree T that
C is associate with and an integer itvl the target interval on C to be verified.

B = ⟨ctr, ⟨itvl, r⟩, h, st, η, h′, val⟩

The following functions help us simplify the validation process:

� We use ValidBlock to verify if a block is a successful PoW on the i-th chain (that is, the nonce
ctr is valid and the block hash — i-th segment of the RO output is less than target T ).

ValidBlock(⟨ctr, r, h, st, h′, val⟩, i, T ) = [H(⟨ctr, r, h, st, h′, val⟩)]i∼m < T ∧ ctr < 232

� Analogously, we use use ValidInputBlock to verify if a synchronization beacon is a successful PoW
on its associated chain by checking the reverse of the string segment. I.e.,

ValidInputBlockT (⟨ctr, r, h, st, h′, val⟩, i, T ) = [H(⟨ctr, r, h, st, h′, val⟩)]Ri∼m < T ∧ ctr < 232

� We use GetEpochIndex to transform an interval index itvl to an epoch index ep (which starts
from 1 in our protocol) Specifically,

GetEpochIndex(itvl) ≜ ⌈itvl/(M/R)⌉.

� We adopt IsInStageOG Precisely,

IsInStageOG(itvl, r) ≜ r ∈ [(itvl − 1) ·R+RVC, itvl ·R−RVC].

Given the above, Algorithm 1 presents a full sepcification of the chain validation procedure.

Algorithm IsValidChain(C, i,T, itvl)

▷ This algorithm has five internal Boolean variables goodHash, goodNonce, goodTime, goodCRS
and goodInputBlock, all initialized as true.

1: if C starts with a block with hash reference other than CRS then
2: goodCRS← false
3: end if
4: if isSync and ∃B ∈ C s.t. validOrder(TS(B), localTime) = false then
5: goodTime← false
6: end if

▷ Derive fresh randomness for itvl as indicated by C
7: Extract ηitvl from head(C(itvl−1)·R+RVC⌉)
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8: for each block B in C from interval itvl do
9: Parse B as ⟨ctr, ⟨itvl, r⟩, h, st, ·, ·, ·⟩

10: Set TB ← ExtractMiningTarget(C,GetEpochIndex(B)). ◁ Extract mining difficulty set for B
▷ Check hash

11: Let B−1 be the last block in C before B
12: Set goodHash← ([h]i∼m = [H(B−1)]i∼m)

▷ Check nonce
13: Set goodNonce← ValidBlock(B, i, TB)

▷ Check input blocks
14: if IsInStageOG(itvl, r) and ∃IB ∈ B then
15: Set goodInputBlock← false ◁ Block should include IB only in OG
16: else
17: for each input block IB ∈ B do
18: Parse IB as ⟨ctr′, ⟨itvl′, r′⟩, ·, ·, ηIB, ·, ·⟩
19: if IsInStageOG(itvl, r) = false or TS(IB) > TS(B) then
20: Set goodInputBlock← false
21: end if
22: if C contains duplicate IB or [ηIB]i∼m ̸= [ηitvl]i∼m then
23: Set goodInputBlock← false
24: end if
25: Set TIB ← ExtractMiningTarget(C,GetEpochIndex(IB)).
26: Set goodInputBlock← ValidInputBlock(IB, i, TIB)
27: end for
28: end if
29: end for
30: if goodHash ∧ goodNonce ∧ goodInputBlock ∧ goodTime ∧ goodCRS then
31: return true
32: else
33: return false
34: end if

Algorithm 1: The chain validation procedure.

Regarding input blocks that have not yet been included in chains, the validity of an IB with
respect to a chain index i is checked only when the party’s local time has forwarded to at least the
same interval as IB (if not, this procedure returns “undecided” which defers the validity check).

Algorithm IsValidInputBlock(IB, C, i,T)

▷ Precondition: Chain C is valid. Returns true if the beacon is a valid beacon w.r.t. C, undecided
if no judgement is possible, and false if the beacon is invalid w.r.t. C.

1: Parse IB as ⟨ctr, ⟨itvl, r⟩, ·, ·, ηIB, ·, ·⟩
2: if C contains no block in interval itvl then
3: return undecided ◁ no judgement possible for this beacon
4: end if

▷ Check nonce value and freshness
5: Extract ηitvl from head(C(itvl−1)·R+RVC⌉)
6: Set TIB ← ExtractMiningTarget(C,GetEpochIndex(IB)).
7: if ValidInputBlock(IB, i, TIB) = true and [ηIB]i∼m ̸= [ηitvl]i∼m then
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8: return true
9: end if

10: return false

Algorithm 2: The input-block validation procedure.

Extract mining target. We adopt algorithm ExtractMiningTarget to calculate the mining diffi-
culty set for an epoch index ep on a single chain C. Starting from the initial target T0, this algorithm
iteratively calculates targets from the first epoch to the targeted one, based on the number of blocks
in each epoch and Equation (4).

Algorithm ExtractMiningTarget(C, ep)

1: if ep = 1 then return T0 ◁ Return initial target
2: for i from 2 to ep do
3: Λi = |{B | B ∈ C⌈∧TS(B)/(M/R)⌉ = i}|
4: Ti = min{max{Λepoch/Λi · Ti−1, 1/τ}, τ} ◁ Equation (4)
5: end for
6: return Tep

Algorithm 3: Extracting the mining target for a given epoch.

Update local time. Parties will send clock-tick to GDClock to check if it receives a tick = 0,
which indicates the beginning of a new (local) round.

Protocol UpdateLocalTime(P, sid)

▷ Precondition: Only executed if time-aware.
1: Send (clock-tick, sid) to GDClock and receive (clock-tick, sid, tick)
2: if tick = 0 then
3: localTime← localTime+ 1
4: fetchCompleted← false
5: end if
6: ep← ⌈itvl/(M/R)⌉
Output: The protocol outputs localTime, ep to its caller (but not to Z)

Protocol 8: Parties update their local clock due to GDClock.

Process input blocks and arrival times. The following procedure processes imcoming input
blocks, bookkeeps their arrival times and filters out duplicate ones. The predicate to verify input-
block validity is presented in Algorithm 2. Regarding the duplicate beacons, only one with the
earliest arrival time will be preserved.
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Protocol ProcessInputBlocks(P, sid, IB)

1: if fetchCompleted = true then return
2: Send (fetch, sid) to F input

Diffuse and denote the response by (fetch, sid, b)
3: Extract all received input blocks (IB1, . . . , IBk) contained in b ∪ IB.
4: for each IBi with arrivalTime(IB) = ⊥ do
5: IBBuffer← IBBuffer ∪ {IB}
6: Parse TS(IB) as ⟨itvl′, r′⟩
7: if isSync ∧ (itvl ≥ itvl′) then
8: Set arrivalTime(IBi)← (localTime, final) ◁ The measurement is final.
9: else ◁ Will be adjusted upon next time shift.

10: arrivalTime(IBi)← (localTime, temp)
11: end if
12: end for

▷ Buffer cleaning.
13: if isSync then
14: for each IB ∈ IBBuffer do
15: if TS(IB)IB has timestamp later than itvl then skip IB

16: goodInputBlock← false
17: for i from 1 to m do
18: if ∃C ∈ Tlocal s.t. IsValidInputBlock(IB, C, i,Tlocal) ̸= false then
19: goodInputBlock← true
20: end if
21: end for
22: if goodInputBlock = false then Remove IB from IBBuffer

23: end for
24: end if

Output: The protocol outputs ok to its caller (but not to Z).

Protocol 9: Parties filter invalid input blocks.

Chain selection. Our chain selection rule (which should only be used by time-aware parties)
works in two steps. First, it filters all invalid chains, by verifying them in an interval-by-interval
fashion. I.e., chains are split into intervals and the (i + 1)-th interval is checked after the i-th
interval of all chains has been checked. An invalid chain C∗ is removed out of the chain buffer once
any interval of C∗ fails the IsValidChain verification. And all valid chains are added to T as a fork
(we do this interval-by-interval as well). After filtering all invalid chains, the next step runs the
chain selection procedure for every chain index in the current interval, and replaces each chain in
C with the longest fork in the corresponding tree in T.

Algorithm UpdateLocalChain(C,T,N0 = {C1, . . . , CN})

▷ This algorithm should only be called by fully-synchronized parties.
1: for itvl from 1 to itvl do
2: for each C ∈ N0 do
3: Let i be the chain index of C
4: if IsValidChain(C, i,T, itvl) = true then
5: Add Citvl·R⌉ to the i-th tree in T
6: else ◁ invalid chain from itvl
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7: Remove C from N0

8: end if
9: end for

10: end for
11: for i from 1 to m do
12: Set Cmax ← Ci

13: for each C ∈ Ti do
14: if diff(C) > diff(Cmax) then Cmax ← C
15: end for
16: Replace the i-th chain in C by Cmax

17: end for
18: return C,T

Algorithm 4: Parties filter invalid chains and select the heaviest one.

Mining procedure. Once a party P has prepared all information and updated its state, it can
run the core mining procedure in Protocol 10. When localTime reports in the output generation
phase, P will include the fresh input blocks and check if he succeeds in the input-block mining
procedure. At the onset of a BA invocation (when internal variable val is set to ⊥), P starts to
build her own input, starting from a coinbase transaction txbase-txP that contains her public key pk
and she also signs this transaction.

Note that, for simplicity, we adopt two functions Blockify and ValidTx (cf. [BMTZ17]) that
translates a sequence of transactions to the ledger state and verifies an incoming transaction w.r.t.
a ledger state respecitvely, which we omit the details.

Protocol MiningProcedure(P, sid)

▷ The following steps are executed in an (maintain-ledger, sid, minerID)-interruptible manner:
1: h← ε ◁ Prepare chain head
2: for i from 1 to m do
3: Parse the last block of i-th chain in Clocal as B ◁ Possibly genesis block (CRS)
4: h← h ∥ [H(B)]i∼m

5: end for
6: if IsInStageOG (localTime) then
7: Set η ← ε and st← ε

▷ Prepare fresh randomness
8: for i from 1 to m do
9: Parse the last block in the VC stage of i-th chain in Clocal as B

10: η ← η ∥ [H(B)]i∼m

11: end for
▷ Prepare block content

12: N← ε
13: for i from 1 to m do
14: Parse the i-th chain in Clocal as C
15: Set IB ← {IB′ ∈ IBBuffer | IsValidInputBlock(IB′, C, i,Tlocal) = true}
16: Set IB′ ← {IB′ ∈ IB | TS(IB′) ̸∈ [(itvl− 1) ·R+RVC, localTime] ∨ IB′ ∈ B′ ∈ C}
17: N← N ∥ (IB\IB′)
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18: end for
19: st← blockify(N)
20: else
21: Set η ← 0κ and st← 0κ

22: end if
▷ Prepare chain reference h′

23: Set h′ ← snapshot[itvl− 1]
▷ Prepare input val

24: if val = ⊥ then
25: Set buffer′ ← buffer, N⃗ ← txbase-txP (pk), and val← Blockify(N⃗)
26: repeat
27: Parse buffer′ as sequence (tx1, . . . , txn)
28: for i from 1 to n do
29: if ValidTx(txi, state ∥ val) = 1 then

30: Set N⃗ ← N⃗ ∥ txi
31: Remove txi from buffer′

32: Set val← Blockify(N⃗)
33: end if
34: end for
35: until N⃗ does not increase any more
36: end if

▷ m×1 PoW mining
37: u← H(ctr, localTime, h, st, η, h′, val)
38: Set newChain, newIB as false
39: for i = 1 to m do
40: Set Ti ← ExtractMiningTarget(C, ep) where C is the i-th chain in Clocal

41: if [u]i∼m < Ti then ◁ Extend i-th chain
42: Set B ← ⟨ctr, localTime, h, st, η, h′, val⟩ and newChain← true
43: Append B to the i-th chain of Clocal and Tlocal

44: end if
45: if IsInStageOG(localTime) and [u]Ri∼m < Ti then
46: Set IB← ⟨ctr, localTime, h, st, η, h′, val⟩ and newIB← true
47: end if
48: end for
49: if newChain = true then ◁ Diffuse the extended chain and wait
50: Send (diffuse, sid,Tlocal) to Fbc

Diffuse and set anchor here.a

51: end if
52: if newIB = true then
53: Send (diffuse, sid, IB) to F input

Diffuse and set anchor at end of procedure.
54: else
55: Give up activation and set anchor at end of procedure.
56: end if
57: ctr ← ctr + 1

aUpon next activation of this procedure, it resumes from the anchor set last time.

Protocol 10: The mining procedure of m parallel blocks/input-blocks.

Interval output algorithm. The following algorithm, on input parallel chains C and a target
interval itvl, outputs a triple ({vali}i∈[m], {refi}i∈[m], king). The i-th element in the first vector
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vali is the output of the i-th chain in interval itvl (i.e., the median value of all input-blocks); and
the i-th element in the second vector refi is the reference to i-th chain in the previous interval
(possibly being ⊥); and king is a single value extracted from the input block with minimum hash
from the first chain.

Note that, each refi is extracted by observing an invocation of weak agreement over the parallel
chains in this interval. I.e., we run m weak agreement protocol instances in parallel, where each
one follows Protocol 2 in Section 4.2.

Algorithm ExtractIntervalOutput(C, itvl)

1: Initialize {vali}i∈[m], {refi}i∈[m] and king
2: Initialize m empty vectors {Ri}i∈[m]

3: for i from 1 to m do
4: Initialize an empty vector V and m empty vectors {R′

i}i∈[m]

5: for each IB ∈ {B | B ∈ Ci ∧ IsInStageOG(B)} do
6: Parse IB as ⟨·, ·, ·, ·, ·, h′, val⟩
7: Append val to V
8: For i from 1 to m do Append [h′]i∼m to R′

i

9: end for
10: if v′ accounts for majority in V then vali ← v′

11: For i from 1 to m do Sort R′
i non-decreasingly then append med(R′

i) to Ri

12: end for
13: for i from 1 to m do
14: if ∃v that account for more than 3m/4 elements in Ri then
15: Set refi ← v
16: else
17: Set refi ← ⊥
18: end if
19: end for
20: Choose IB∗ s.t. H(IB∗) = min{H(IB) | IB ∈ B ∈ C1 ∧ IsInStageOG(B)}
21: Set king ← IB∗.val
22: return ({vali}i∈[m], {refi}i∈[m], king)

Algorithm 5: Parties extract the output of a given interval.

State update procedure. We first present the basic state update algorithm in Chain-King
Consensus.

Protocol ChainKingUpdateState(P, sid)

▷ This algorithm is called once in each interval.
1: Set ({vali}i∈[m], ·, king)← ExtractIntervalOutput(Clocal, itvl)
2: Let v denote the most frequent element in {vali}i∈[m] and c its frequency
3: if itvl mod 3 = 1 then
4: if c > m/2 then set val← v
5: if c > 3m/4 then set decide← true, lock← true
6: else if itvl mod 3 = 2 then
7: if c > m/2 then set val← v
8: if c > 3m/4 then set lock← true
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9: else
10: if lock = false then set val← king
11: if decide = true then set state← state ∥ val and val← ⊥
12: if decide = false and lock = true then set lock← false
13: end if

Protocol 11: The state update procedure for Chain-King Consensus.

Note that in our SMR protocol, when a party P is about to finish local interval itvl, she
first stores her local view of the chains in this interval into snapshot and then run Chain-King
Consensus with super-interval expansion and an additional lottery stage at the beginning which we
detail below (cf. Section 5.3). We omit the details on super-phase expansion and use itvl to denote
the super-interval index in a BA invocation.

Protocol UpdateState(P, sid)

▷ This algorithm is called once in each interval.
▷ Bookkeep local view of current interval

1: Set snapshot[itvl]← ε
2: for i from 1 to m do
3: Parse the i-th chain in Clocal as C
4: Parse hash of last block on Citvl·R−RRC⌉ as h
5: snapshot[itvl]← snapshot[itvl] ∥ [h]i∼m

6: end for
▷ Update internal ledger states

7: Let V = (v1, . . . , vn) denote the output of m chains respectively in super-interval itvl and king
the minimum hash from the first chain

8: Let v denote the most frequent element in V and c its frequency
9: if itvl mod 3 = 1 then ◁ Lottery first.

10: if lock = false then set val← king
11: if decide = true then set ← state ∥ val and val← ⊥
12: if decide = false and lock = true then set lock← false
13: else if itvl mod 3 = 2 then
14: if c > m/2 then set val← v
15: if c > 3m/4 then set decide← true, lock← true
16: else
17: if c > m/2 then set val← v
18: if c > 3m/4 then set lock← true
19: end if

Protocol 12: The state update procedure for Permissionless-SMR with fast fairness.

Synchronization procedure. Parties call SyncProcedure when their local clock enters the last
round in an interval and adjusts their clock by computing shift based on their local parallel chains.
Note that the “retorted” timestamps are marked explicitly with the next interval index. Thus, for
each interval, this procedure is called only once.
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Protocol SyncProcedure(P, sid)

▷ Only called when: P is alert, localTime = ⟨itvl, itvl ·R⟩ and itvl > 0
1: Initialize {clockShifti}i∈[m] as an empty vector
2: for i = 1 to m do
3: Set C as i-th chain in Clocal

4: B ← {B | (B ∈ C) ∧ IsInStageOG(TS(B)) = true}
5: IB ← {IB | (IB ∈ B ∈ B) ∧ (TS(IB) = ⟨itvl, ·⟩)}

▷ Find representative beacon and compute recommendation.
6: for each IB ∈ IB do
7: Find unique IB′ ∈ IBBuffer s.t. IB′ = IB. If inexistent, set IB′ ← ⊥.
8: if IB′ ̸= ⊥ then
9: Set arrivalTime(IB)← arrivalTime(IB′)

10: recom(IB, i)← TS(IB)− arrivalTime(IB)
11: else
12: IB ← IB \ {IB}
13: end if
14: end for
15: clockShifti ← med{recom(IB, i) | IB ∈ IB}
16: end for

▷ Compute interval shift using Equation (5)
17: shiftitvl ← avg(select(reduce(clockShift)))

▷ Update beacon registry
18: for each IB with arrivalTime(IB) = (a, temp) do
19: arrivalTime(IB)← (a+ shiftitvl, final)
20: end for

▷ Update local time
21: Set localTime← (itvl+ 1, r+ shiftitvl)
22: Let N0 be the subsequence of futureChains s.t. C ∈ N0 :⇔ ∀B ∈ C : TS(B) < localTime

23: Remove each C ∈ N0 from futureChains

24: Call updateLocalChain(Clocal,Tlocal,N0) to update Clocal and Tlocal

25: Send (diffuse, sid,Tlocal) to Fbc
Diffuse and proceed from here upon next activation of this procedure

Output: The protocol outputs ok to its caller (but not to Z).

Protocol 13: Parties update their local clocks.

Finishing a round. Once a party P has done its actions in a round, P claims finishing current
round by calling FinishRound and sending clock-update to GDClock.

Protocol FinishRound(P, sid)

1: while A (clock-update,Z) has not been received during the current round do
2: Give up activation (set the anchor here)
3: end while
4: Send (clock-update, sidC) to GDClock.

Protocol 14: Finishing a round.

The joining procedure. Honest yet unsynchronized parties run the JoiningProcedure to synchro-

48



nize their internal state (i.e., their local clock and blockchain state). Parties run this procedure for
constantly many rounds, by passively listen to the protocol execution, bootstrap the blockchain,
keep track of the input-block local arrival time, and then adjust their local clock based on these
information.

Protocol JoiningProcedure(P, sid)

▷ Phase A: state-reset
1: Call UpdateLocalTime(P, sid) ◁ Align with newest round
2: if localTime > ⟨1, 1⟩ then
3: localTime← ⟨1, 1⟩
4: fetchCompleted← false, futureChains← ∅, IBBuffer← ∅, buffer← ∅
5: Set input-block arrival timetable as empty array
6: end if

▷ Phase B: chain-convergence
7: while localTime < ⟨1, 1⟩+ toff do
8: if fetchCompleted = false then
9: Call FetchInformation(P, sid) and denote the fetched chains by N = (C1, . . . , CN )

10: Call UpdateLocalChain(Clocal,Tlocal,N ) to update Clocal and Tlocal

11: fetchCompleted← true
12: Call FinishRound(P, sid)
13: end if
14: Call UpdateLocalTime(P, sid) to update localTime
15: end while

▷ Phase C: input-block gathering
16: while localTime < ⟨1, 1⟩+ toff + tgather do
17: if fetchCompleted = false then
18: Call FetchInformation(P, sid) and denote output by (C1, . . . , CN ), (tx1, . . . , txk)
19: Set buffer← buffer ∥ (tx1, . . . , txk)
20: Set futureChains← futureChains ∥ (C1, . . . , CN )
21: Call ProcessInputBlocks(P, sid, ∅) and mark all arrival time with temp
22: Call UpdateLocalChain(Clocal,Tlocal, futureChains) to update Clocal and Tlocal

23: Let C denotel the paralle chains after pruning kbootstr blocks on all chains in Clocal

24: Set ⟨itvl∗, ·⟩ ← med{TS(B) | B is the tip block of C ∧ C ∈ C}
25: if snapshot[itvl∗] = ⊥ then
26: Set snapshot[itvl∗] using Protocol 12 Line 1 to 6
27: end if
28: fetchCompleted← true
29: Call FinishRound(P, sid)
30: end if
31: Call UpdateLocalTime(P, sid) to update localTime
32: end while

▷ Phase D: synchronization and state-update
33: Initialize i← 0
34: Set i as the second minimum positive integer s.t. snapshot[i] ̸= ⊥
35: if i ≥ 1 then
36: while snapshot[i] ̸= ⊥ do
37: Initialize {clockShiftj}j∈[m] as an empty vector
38: for j from 1 to m do
39: Set C as j-th chain in Clocal

40: B ← {B | (B ∈ C) ∧ IsInStageOG(TS(B)) = true}

49



41: IB ← {IB | (IB ∈ B ∈ B) ∧ (TS(IB) = ⟨i, ·⟩)}
▷ Find representative beacon and compute recommendation.

42: for each IB ∈ IB do
43: Find unique IB′ ∈ IBBuffer s.t. IB′ = IB. If inexistent, set IB′ ← ⊥.
44: if IB′ ̸= ⊥ then
45: Set arrivalTime(IB)← arrivalTime(IB′)
46: recom(IB, j)← TS(IB)− arrivalTime(IB)
47: else
48: IB ← IB \ {IB}
49: end if
50: end for
51: clockShifti ← med{recom(IB, j) | IB ∈ IB}
52: end for

▷ Compute interval shift using Equation (5)
53: shifti ← avg(select(reduce(clockShift)))
54: for each IB with arrivalTime(IB) = (a, temp) do
55: Set arrivalTime(IB)← (a+ shifti, temp)
56: end for
57: Set localTime← localTime+ shifti
58: Set i← i+ 1
59: end while
60: Set isSync← true and twork ← localTime− 1
61: Run UpdateLocalChain to filter chains with future timestamps
62: for each beacon IB ∈ IBBuffer with TS(IBBuffer) ≤ (i+ 1) ·R do
63: Parse arrivalTime(IB) as (a, temp) and define arrivalTime(IB) = (a, final)
64: end for
65: end if

Output: The protocol outputs ok to its caller (but not to Z)

Protocol 15: The joining procedure for a fresh new party.

6 Full Protocol Analysis

Concentration bounds. In our analysis we apply a variety of large deviation bounds, assuming
finite probability spaces and random variables with finite means.

Theorem 5 (Chernoff bounds). Suppose {Xi : i ∈ [n]} are mutually independent Boolean
random variables, with Pr[Xi = 1] = p, for all i ∈ [n]. Let X =

∑n
i=1Xi and µ = pn. Then, for

any δ ∈ (0, 1], it holds that

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3.

Also, for all t > 0,
Pr[X ≥ µ+ t] ≤ e−2t2n.

Definition 6. [DP09, Definition 5.3] A sequence of random variables (X0, X1, . . .) is a martingale
with respect to the sequence (Y0, Y1, . . .), if, for all n ≥ 0, Xn is determined by Y0, . . . , Yn and
E[Xn+1 | Y0, . . . , Yn] = Xn.
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Theorem 6. [McD98, Theorem 3.15] Let (X0, X1, . . .) be a martingale with respect to the sequence
(Y0, Y1, . . .). Suppose an event G implies

Xk −Xk−1 ≤ b (for all k) and V =
∑
k

Var[Xk −Xk−1 | Y1, . . . , Yk−1] ≤ v.

Then, for non-negative n and t,

Pr[Xn ≥ X0 + t ∧G] ≤ exp
{
− t2

2v + 2bt/3

}
.

Other useful inequalities. Our analysis also employs the following inequalities.

Fact 1. When |r| ≤ 1, lim∞
k=0 ar

k = a/(1− r).

Fact 2. [BGK+21] Let (ai)
n
i=1 and (bi)

n
i=1 be two sequences of n integers each, with the property

that ∀i ∈ [n], |ai − bi| ≤ Φ. Then we have |med((ai)
n
i=1)−med((ai)

n
i=1)| ≤ Φ.

6.1 Preliminary Notations, Definitions and Parameters

Our probability space is over all executions of length at most some polynomial in κ; we use Pr
to denote the probability measure of this space. Furthermore, let E be a random variable taking
values on this space and with a distribution induced by the random coins of all entities (adversary,
environment, parties) and the random oracle.

For the sake of convenience, we define a nominal time that coincides with the internal variable
τsid in GDClock, indicating how many times the functionality “ticks” to all registered honest parties.

Definition 7 (Nominal time). Given an execution of Permissionless-SMR, any prefix of the ex-
ecution can be mapped deterministically to an integer r, which we call nominal time, as follows:
r is the value of variable in the clock functionality at the final step of the execution prefix which
is obtained by parsing the prefix from the genesis block and keeping track of the honest party set
registered with the clock functionality (bootstrapped with the set of inaugural alert parties). In case
no honest party exists in the execution, r is undefined.

Recall that our parallel chain construction binds m independent mining procedures using m×1
PoW, we revisit the analytical frameworks in [GKL17, GKL20] and re-define all preliminary nota-
tions in the new context.

On the i-th single chain among m parallel chains, if at a nominal time r exactly h (alert) parties
query the oracle with target T i , the probability of at least one of them will succeed is f(T i, h) =
1− (1− pT i)h ≤ pT ih, where p = 1/2κ/m. At nominal time r, alert parties might be querying the
random oracle for various targets. We denote by T i,min

r and T i,max
r the minimum and maximum of

those targets. Moreover, the initial target T0 (which is the same for all chains) implies in our model
an initial estimate of the number of honest RO queries h0; specifically, h0 = 2κ/mΛepoch/(T0M),
i.e., the number of parties it takes to produce Λepoch blocks of difficulty 1/T0 in time M . For
convenience, we denote f0 = f(T0, h0) and simply refer to it as f . Also note that the ideal number
of blocks Λepoch = M · f , so in the analysis we will use M · f to represent Λepoch.

Recall that our protocol runs in a (γ, s)-respecting requirement, for the ease of presentation, we
introduce another parameter λ such that λ+ 2∆ = ϵM/[2(1 + δ)γ2].

“Good” properties. we present some definitions which will allow us to introduce a few (“good”)
properties, serving as an intermediate step towards proving the desired clock properties. Note
that after switching to the new target recalculation function where blocks are counted to different
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epochs based on their timestamps, and parties forward epochs based on their local view, the orig-
inal analytical framework [GKL17, GKL20] is infeasible to apply. Hence, following the treatment
in [GKS22], we make necessary adaptions to consider the target recalculation zone — a sequence
of consecutive nominal-time steps where alert parties may enter the next epoch in their local view.

Definition 8. � Nominal time r is good w.r.t. the i-th chain if f/2γ2 ≤ phrT
i,min
r and phrT

i,max
r ≤

(1 + δ)γ2f .
� Nominal time r is good if for any i w.r.t. the i-th chain if f/2γ2 ≤ phrT

i,min
r and phrT

i,max
r ≤

(1 + δ)γ2f .
� A logical round ⟨itvl, r⟩ is a target recalculation point w.r.t. epoch ep if (r = itvl · R) ∧ [itvl

mod (M/R) = 0].
� A sequence of consecutive nominal timesteps Zep = {r} is a target recalculation zone w.r.t.

target recalculation epoch ep if during Zep some subset of synchronized parties are in the logical
round that is a target recalculation point w.r.t. ep− 1.

� A target-recalculation zone Zep is good if for all hr, r ∈ Zep the target Tep satisfies f/2γ ≤
phrTep ≤ (1 + δ)γf .

� A chain is good if all its target recalculation zones are good.
� A chain is ℓ-stale if for some nominal time u it does not contain an honest block computed after

nominal time u− ℓ− 2∆.
� The blocklength of an epoch ep on i-th chain C is the number of blocks in C with timestamp
⟨itvl, ·⟩ such that ⌈itvl/(M/R)⌉ = ep.

Our goal is to prove that, at a certain nominal time r of the protocol execution, alert parties
enjoy good properties on all parallel chains in their local view and reported timestamps. Thus, for
each chain index i we extract all chains that either belong to alert parties at r or have accumulated
sufficient difficulty and thus might be adopted in the future. We denote the chain set on i-th chain
by Sir:

Sir ≜

C ∈ Er

∣∣∣∣∣∣∣∣∣
“C belongs to an alert party” or

“∃C′ ∈ Er that belongs to an alert party and diff(C) > diff(C′) or
“∃C′ ∈ Er that belongs to an alert party and diff(C) = diff(C′)

and head(C) was computed no later than head(C′)

 .

Next, we define a series of useful predicates with respect to the potential chain set Sr and
parties’ local clocks at nominal time r.

Definition 9. For a nominal timestep r, let:
� GoodChains(r) ≜ “For all u ≤ r and i ∈ [m], every chain in Siu is good.”
� GoodTimestep(r) ≜ “All timesteps u ≤ r are good.”
� NoStaleChains(λ, r) ≜ “For all u ≤ r and i ∈ [m], there is no λ-stale chains in Siu.”
� NoStaleChains∗(ℓ, i, r) ≜ “There is no ℓ-stale chains in Sir.”
� BlockLength(r) ≜ “For all u ≤ r and i ∈ [m], for all chain C ∈ Siu the blocklength Λ of any

epoch ep in C satisfies 1
2(1+δ)γ2 ·Mf ≤ Λ ≤ 2(1 + δ)γ2 ·Mf .”

� GoodSkew(r) ≜ “For all alert parties in nominal time r, their local time differs by at most Φ
if they are in the same interval.”

Random variables and ∆-isolated success. For the purpose of estimating the difficulty ac-
quired by alert parties during a time window on each chain, we define the following random variables
w.r.t. nominal time r and chain index i.
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� Di
r: the sum of the difficulties of all blocks computed by alert parties at nominal time r on the

i-th chain.
� Y i

r : the maximum difficulty of all blocks computed by alert parties at nominal time r on the
i-th chain.

� Qi
r: equal to Y i

r when Di
u = 0 for all r < u < r +∆ and 0 otherwise.

We call a nominal time r such that Di
r > 0 successful w.r.t. the i-th chain and one wherein

Qr > 0 isolated successful w.r.t. the i-th chain. An isolated successful time step guarantees the
irreversible progress of the honest parties on the corresponding chain. We also note that isolated
success is defined by not having any honest success in the future ∆ nonimal timesteps, which is
justified by our new timestamp scheme presented in Section 5.1.

Recall that the total number of hash queries alert parties (resp., the adversary) can make at
nominal time r is denoted by hr (resp., tr). For a sequence of timesteps S we write h(S) =

∑
r∈S hr

and similarly t(S), Di(S), Qi(S) where the superscript indicates the corresponding chain index.
Regarding the adversary A, while A may query the random oracle for an arbitrarily low target

and obtain blocks with arbitrarily high difficulty, we wish to upper-bound the difficulty it can accrue
during a set of J queries. Consider, with respect to the i-th chain, a set of consecutive adversarial
queries J and associate it with the target of the first query and denote it by T i(J). We define
Ai(J) and Bi(J) to be equal to the sum of the difficulties of all blocks computed by the adversary
on chain i during queries in J for target at least T i(J)/τ and T i(J), respectively. That is, queries
in J for targets less than T (J)/τ (resp. T (J)) do not contribute to A(J) (resp. B(J)). While
considering consecutive epochs of a particular chain, the target can either increase by at most τ
(and B(J) will be appropriate), or decrease by at most τ (and A(J) will be useful).

Let Er−1 fix the execution just before time r. In particular, a value Er−1 of Er−1 determines
the adversarial strategy and so determines the targets against which every party will query the
oracle at time r and the number of parties hr and tr , but it does not determine Dr or Qr. For an
adversarial query j we will write Ej−1 for the execution just before this query.

Fact 3 ([GKL20]). Let U be a set of at most s consecutive timesteps in a (γ, s)-respecting environ-
ment and S ⊆ U .
(a) For any h ∈ {hr : r ∈ U}, h

γ ≤
h(S)
|S| ≤ γh.

(b) h(U) ≤
(
1 + γ|U\S|

|S|
)
h(S).

Protocol parameters and their conditions. We summary all Permissionless-SMR parameters
in Table 2 in Appendix A. Especially, in our analysis we consider a consecutive set of ℓ timesteps
where ℓ is set as a constant and holds the following relation with other protocol parameters (which
are also constants in our analysis).

ℓ = Θ

(
4(1 + 5ϵ)

ϵ2f [1− (1 + δ)γ2f ]∆+1
· γ3 ·max{∆, τ}

)
(6)

Next, we consider intervals and epochs with durations that are set relatively large with respect to ℓ.
Regarding the duration of an interval and three stages VC, OG and RC inside, they are all constant
parameters independent of the security parameter and we require that

RVC = RRC ≥ 2(ℓ+ 2∆) and ROG = (
γ

ϵ
− 4) · (ℓ+ 2∆) and R ≥ γ

ϵ
· (ℓ+ 2∆). (7)

We also require that an epoch consists of poly-logarithmically many intervals M = Θ(R log2 κ).
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We assume the following conditions on protocol parameters to be satisfied: First, the advantage
of the honest parties δ is large enough to absorb error from the convergence quality ϵ. Specifically,

ϵ ≤ δ/24 ≤ 1/24. (C1)

Next, network delay ∆, party fluctuation ratio γ are well set with respect to ϵ.

[1− (1 + δ)γ2f ]∆ ≥ 1− ϵ. (C2)

We also require that the bound on clock drift rate ρ is set relatively small.

ρ <
f

8γ4
· ϵ2(1− ϵ)2. (C3)

Note that, the clock drift Φ and interval duration R also gives us the maximum skew that parties
may deviate in an interval with initial skew Φinit, and we set 2ρR+ (2+ 1

1+ρ) ·∆ = Φinit/2 = Φ/3.

6.2 Properties of Protocol Executions

Honest convergence probability. We first show that the probability that good concentrations on
random variables (specifically, lower bound on Q(S) and upper/lower bound on D(S)) will happen
except with error that decreases exponentially with respect to the length of timestep sequences
that we concern.

Definition 10 (Ideal-convergence events). We define the following ideal-convergence events
with respect to a chain index i ∈ [m].

� For a set S of consecutive timesteps, let goodConviH(S) denote the event that Qi(S) and Di(S)
stays close to their expected value.

goodConviH(S) ≜ (1− ϵ)[1− (1 + δ)γ2f ]∆ph(S) < Qi(S)∧ (1− ϵ)ph(S) < Di(S) < (1 + ϵ)ph(S).

� For a set J of consecutive adversarial queries and

α(J, k) =
ϵf [1− (1 + δ)γ2f ]∆

2(1 + 4ϵ)γ3τ
· k

T (J)
, (8)

let goodConvA(J, k) denote the event that Ai(J) and Bi(J) are well upper bounded.

goodConviA(J) ≜ Ai(J) < p|J |+max{ϵp|J |, τα(J)} ∧Bi(J) < p|J |+max{ϵp|J |, α(J)}.

� For nominal time r and S = {1, . . . r}, let goodConvi(r, k) denote the event where, for any time
u ≤ r − k, goodConviH holds for S[u : r] and goodConvA holds for J [u : r] and k = r − u.
Precisely,

goodConvi(r, k) ≜
∧

u∈[r−k]

(
goodConviH(S[u : r]) ∧ goodConviA(J [u : r], r − u)

)
,

where S = {u, . . . , r} and J the set of adversarial queries in S.

Recall the basic bounds on the expectation and variance of random variablesDr, Yr from [GKL20]
and apply them per chain index.
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Proposition 1. For any timestep r and any chain index i ∈ [m], it holds that
(a) [1− f(T i,max

r , hr)]phr ≤ E[Y i
r |Er−1 = Er−1] ≤ E[Di

r|Er−1 = Er−1] = phr.
(b) E[(Y i

r )
2|Er−1 = Er−1] ≤ phr/T

i,min
r .

(c) Var[Di
r|Er−1 = Er−1] ≤ phr/T

i,min
r .

Proof. Let us drop the superscript i on targets and random variables, and subscript r on number
of parties for convenience.

(a) Suppose that the h honest parties at time r query for targets T1, . . . , Tn. Observe that all
these variables are determined by Er−1. We have

E[Yr|Er−1 = Er−1] =
∑
i∈[h]

1

Ti
· Ti

2κ/m

∏
i<j

[1− f(Tj , 1)] ≥
∑
i∈[h]

p
∏
j∈[h]

[1− f(Tj , 1)]

(∗)
≥

∑
i∈[h]

p
∏
j∈[h]

[
1− f(Tmax, 1)

]
=

∑
i∈[h]

p
[
1− f(Tmax, h)

]
= ph

[
1− f(Tmax, h)

]
where inequality (∗) holds because f(T, n) is increasing in T .

For (b) and (c), it holds that

Var[Dr|Er−1 = Er−1] ≤
∑
i∈[h]

1

T 2
i

· Ti

2κ/m
=

∑
i∈[h]

p

Ti
≤ pn

Tmin
,

and E[Y 2
r |Er−1 = Er−1] is upper-bounded alike.

The following theorem gives an upper bound, as a function of k, on the event that goodConvH(S)
does not hold for a consecutive S timesteps with |S| = k.

Theorem 7. In a (γ, σ)-respecting environment, for any chain i and any set S of at least k ≥ ℓ
consecutive good timesteps, goodConviH(S) holds except with probability no more than ϵH(k) where

ϵH(k) ≜ exp

{
ln(∆+ 2)− ϵ2f [1− (1 + δ)γ2f ]∆+1

4γ3∆(1 + ϵ/3)
·min{k, s}

}
.

Proof. Fix a chain index and drop all related superscripts on random variables. Fix an execution
E0 just before the beginning of S.

We first consider the lower bound on Q(S). For each nominal time i ∈ S, define a Boolean
random variable Fi equal to 1 exactly when all hi queries of the honest parties yield evaluations
above min{T : f(T, hi) ≥ (1+ δ)γ2f}; define Zi = Yi ·Fi+1 · · ·Fi+∆−1. Let G denote the event that
the timesteps in S are good. Given G, for any i ∈ S, (Fi = 1) =⇒ (Di = 0) and so Qi ≥ Zi. For
any d, it holds that

Pr
[
G ∧

∑
i∈[k]

Qi ≤ d
]
≤ Pr

[
G ∧

∑
i∈[k]

Zi ≤ d
]

thus we now work on Zi.
Identify S with {1, . . . , |S|} and partition it with sets of the form Sj = {j, j +∆, j + 2∆, . . .}

for j ∈ {0, 1, . . . ,∆− 1}. Fix a set Sj = {s1, s2, . . . , sν}, with ν ≥ ⌈|S|/∆⌉, and define the event Gt

as the conjunction of the events G and t = ϵ(1− 2γ2f)∆ph(Sj). We consider the follwing event:

Gt ∧
∑
i∈Sj

Zi ≤ [1− (1 + δ)γ2f ]∆p
∑
i∈Sj

hi − t.
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To that end, consider the sequence of random variables

X0 = 0;Xu =
∑
i∈[u]

Zsi −
∑
i∈[u]

E[Zsi |Esi−1], u ∈ [ν].

This is a martingale with respect to the sequence Es1−1(E0 = E0), . . . , Esν−1, E because, follow-
ing the linearity of conditional expectation and the fact that Xu−1 is a deterministic function of
Esu−1+∆−1 = Esu−1, it holds that

E[Xu|Esu−1] = E
[
Zsu − E[Zsu |Esu−1]

∣∣Esu−1

]
+ E[Xu−1|Esu−1] = Xu−1.

In addition, given an execution E satisfying Gt,

ϵ
∑
i∈Sj

E[Zi|Esu−1 = Esu−1] ≥ ϵ
∑
i∈Sj

[1− (1 + δ)γ2f ]∆phi = t.

Now, consider the details relevant to Theorem 6. For an execution E satisfying Gt, let B denote
the event Esu−1 = Esu−1. Note that Z2

su = Y 2
su · Fsu+1 · · ·Fsu+∆−1 and all these random variables

are independent given B. Since Xu −Xu−1 = Zsu − E[Zsu |Esu−1], let S
(u)
j denote a sub sequence

of Sj of length min{ν, s/∆} such that su ∈ S
(u)
j . It holds that

Zsu − E[Zsu |B] ≤ 1

Tmin
su

≤ phsu
phsuT

min
su

≤
γph(S

(u)
j )

phsuT
min
su |S

(u)
j |
≤ 2γ3t

ϵ(1− 2γ2f)∆f ·min{ν, s/∆}
def
= b. (9)

The third inequality holds due to Fact 3(a); and the next one is because su is a good timestep. We
see that the event G implies Xu −Xu−1 ≤ b.

With respect to V =
∑

uVar[Xu − Xu−1|Esu−1] ≤
∑

u E[Z2
su |Esu−1], first recall Fact 3(a), we

have ∑
u∈[ν]

(
phsu

)2 ≤ ∑
u∈[ν]

phsu
pγh(S

(u)
j )

|S(u)
j |

≤ γ

min{ν, s/∆}
(
ph(Sj)

)2
.

Then, using the independence of the random variables it holds that∑
u∈[ν]

E[Z2
su−1|B] ≤ [1− (1 + δ)γ2f ]∆−1

∑
u∈[ν]

(
phsu

)2
phsuT

min
su

≤ 2γ3[1− (1 + δ)γ2f ]∆−1

f ·min{ν, s/∆}
·
(
ph(Sj)

)2
≤ 2γ3t2

ϵ2f(1− 2γ2f)∆+1 ·min{ν, s/∆}
def
= v. (10)

The first inequality holds due to Proposition 1(b); the second one is because the inequality above
and that all timesteps in Sj are good; and the last one is acquired by substituting t.

After applying Theorem 6, we have

Pr[−Xν ≥ t ∧Gt] ≤ exp
{
− t2

2v(1 + ϵ/3)

}
≤ exp

{
− ϵ2f [1− (1 + δ)γ2f ]∆+1

4γ3∆(1 + ϵ/3)
·min{k, s}

}
.

Note that the first inequality follows bt < ϵv; and the next one holds by substituting b, v as in
Equation (9) and (10) and ν ≤ k/∆. Finally, we apply the union probability to all j ∈ {0, 1, . . . , ∆−
1} thus

Pr
[
G∧

∑
i∈[k]

Qi ≤ (1−ϵ)(1+δγ2f)∆ph(S)
]
≤ exp

{
ln∆−ϵ2f [1− (1 + δ)γ2f ]∆+1

4γ3∆(1 + ϵ/3)
·min{k, s}

}
def
= ϵQ(k).
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Regarding the bounds on D(S), we consider per honest query. Let J denote the queries in S
(ν = |J |), and Zi the difficulty of any block obtained from query i ∈ J . For the lower bound, define
the martingale sequence

X0 = 0;Xu =
∑
i∈[u]

Zi −
∑
i∈[u]

E[Zi|Ei−1], u ∈ [ν]

and let t = ϵpν. Analogously, by considering a sub sequence of S of length min{ν, s}, we have

Xu −Xu−1 ≤
2γ3t

ϵf ·min{ν, s}
def
= b and V ≤ 2γ3t2

ϵ2f ·min{ν, s}
def
= v. (11)

After applying Theorem 6, it holds that

Pr
[
G∧

∑
i∈[k]

Di ≤ (1−ϵ)ph(S)
]
≤ exp

{
− t2

2v(1 + ϵ/3)

}
≤ exp

{
− ϵ2f

4γ3(1 + ϵ/3)
·min{k, s}

}
def
= ϵD(k).

The error probability on violating the upper bound on D(S) can be computed in the same way, and
yields the same as ϵD(k). To compute ϵH, we consider the union bound that Q(S) and D(S) yields
good concentration. Specifically, let GQ,D(S) denote the event (1 − ϵ)[1 − (1 + δ)γ2f ]∆ph(S) <
Qi(S) ∧ (1− ϵ)ph(S) < Di(S) < (1 + ϵ)ph(S), it holds that

Pr[¬GQ,D(S)] = 1− [1− ϵQ(k)][1− ϵD(k)]
2 ≤ ϵQ(k) + 2ϵD(k)

≤ exp

{
ln(∆+ 2)− ϵ2f [1− (1 + δ)γ2f ]∆+1

4γ3∆(1 + ϵ/3)
·min{k, s}

}
,

which defines ϵH(k).

Next, consider a sequence of adversarial queires J . We show that the probability of the event
regarding the violation of goodConvA(J, k) is also upper-bounded as a function of k.

Theorem 8. For any chain i and any set J of consecutive adversarial queries and α(J, k) as
defined in Equation (8), it holds that

Ai(J) < p|J |+max{ϵp|J |, τα(J)} and Bi(J) < p|J |+max{ϵp|J |, α(J)}

except with probability no more than ϵA(k) where

ϵA(k) ≜ exp

{
− ϵ2f [1− (1 + δ)γ2f ]∆

4γ3τ(1 + 5ϵ)
· k

}
.

Proof. For each j ∈ J , let Aj be equal to the difficulty of the block obtained with the j-th query
as long as the target was at least T (J)/τ ; thus, A(J) =

∑
j∈J Aj . If |J | = ν, identify J with [ν]

and define the martingale

X0 = 0; Xu =
∑
j∈[u]

Aj −
∑
j∈[u]

E[Ai|Ej−1], u ∈ [ν].

For all u ∈ [ν] we have Xu−Xu−1 ≤ τ/T (J), Var[Xu−Xu−1|Eu−1] ≤ pτ/T (J), and E[Aj |Ej−1] ≤ p.
We now apply Theorem 6 with b = τ/T (J), v = bpν ≤ bt/ϵ; and since ϵ < 1/2 due to

Condition (C1), we have (1 + 4ϵ)(1 + ϵ
3) < (1 + 5ϵ) hence set

t = max

{
ϵpν, 2(

1

ϵ
+

1

3
)b · ϵ

2f [1− (1 + δ)γ2f ]∆

4γ3τ(1 + 5ϵ)
· k

}
.
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We have

Pr
[∑
j∈J

Aj ≥ pν + t
]
≤ exp

{
− t

2b(13 + 1
ϵ )

}
≤ exp

{
− ϵ2f [1− (1 + δ)γ2f ]∆

4γ3τ(1 + 5ϵ)
· k

}
,

which defines ϵA(k).

Given the convergence error ϵH(k) and ϵA(k), we now consider the event goodConv(r, k). Note
that, since s = Θ(log2 κ) thus ϵH(s) and ϵA(s) are both negligible, we may consider goodConv(r, k)
for k < s.

Lemma 4. Let E be a typical execution in a (γ, s)-respecting environment. If the execution Er−1

is good with respect to chain i, then goodConvi(r, k) holds except with probability no more than
ϵconv(k) where

ϵconv(k) ≜
1

1− c
·exp

{
ln(∆+3)− ϵ2f [1− (1 + δ)γ2f ]∆+1

4γ3(1 + 5ϵ) ·max{∆, τ}
·k
}

and c = exp

{
− ϵ2f [1− (1 + δ)γ2f ]∆+1

4γ3(1 + 5ϵ) ·max{∆, τ}

}
.

Proof. Fix a timestep u ≤ r − k and S = {u, . . . , r} and J the adversarial queries in S. It holds
that Pr[¬(goodConvH(S) ∧ goodConvA(J))] ≤ 1− (1− ϵA(k))(1− ϵH(k)) ≤ ϵA(k) + ϵH(k).

Consider a new function ϵ∗(k) such that

ϵA(k) + ϵH(k) ≤ exp

{
ln(∆+ 3)− ϵ2f [1− (1 + δ)γ2f ]∆+1

4γ3(1 + 5ϵ) ·max{∆, τ}
·min{k, s}

}
def
= ϵ∗(k).

Since ϵ∗(k) is an exponential function when k ≤ s, it holds that for any k ≤ s, there exist a constant
c ∈ (0, 1) such that

ϵ∗(k + 1)

ϵ∗(k)
= exp

{
− ϵ2f [1− (1 + δ)γ2f ]∆+1

4γ3(1 + 5ϵ) ·max{∆, τ}

}
= c

Therefore, consider the union probability for all timesteps in {max{1, r − s}, . . . , r − k} and
using Fact 1, it holds that

Pr[¬goodConv(r, ℓ)] = 1−
r−ℓ∏
1

(1−Pr[¬(goodConvH(S) ∧ goodConvA(J))])

≤
r−ℓ∑
1

Pr[¬(goodConvH(S) ∧ goodConvA(J))]

≤ ϵ∗(k) · (1 + c+ c2 + . . .) ≤ ϵ∗(k)

1− c
,

which defines ϵconv(k).

Corollary 1. For any c ∈ (0, 1), there exists ℓ ∈ N+ such that for any sequence S of consecutive
timesteps with |S| = poly(ℓ), goodConvi(r, ℓ) holds for all timesteps in S except with probability no
more than c.

Proof. We apply the union probability to all timesteps r ∈ S which yields

1−
∏
r∈S

(
1− ϵconv(ℓ)

)
≤ poly(ℓ) · ϵconv(ℓ).

Notice that this is an exponential function w.r.t. ℓ.
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Corollary 2. Let E be a typical execution in a (γ, s)-respecting environment. If the execution Er−1

is good with respect to chain i, then there exist a subset I ⊆ [m] of size at least (1−ϵ)(1−ϵconv(k))m
such that for all i ∈ I, goodConvi(r, k) holds.

Proof. Given that the executions on each chain are mutually independent and the number of chains
m = Θ(log2 κ), we prove this corollary using Chernoff bound (Theorem 5). In more details, let
Xi denote the random variable such that if goodConvi(r, k) holds then Xi = 1; and otherwise
Xi = 0. Also let X =

∑
i∈[m]Xi. Due to Lemma 4, Pr[Xi = 1] ≥ 1 − ϵconv(k) We have E[X] ≥

(1− ϵconv(k))m. Hence, it holds that

Pr
[
X ≤ (1− ϵ)(1− ϵconv(k))m

]
≤ Pr

[
X ≤ (1− ϵ)E[X]

]
≤ exp

{
− ϵ2(1− ϵconv(k))m/2

}
.

Note that m = Θ(log2 κ), the event such that good convergence does not hold on sufficiently many
chains happens with probability negligible in terms of the security parameter.

Bad events with respect to the random oracle. Following [GKL14], we consider three bad
events — namely, block insertions, copies and predictions — with respect to the random oracle.
An insertion happens when a block B∗, created after two consecutive blocks B and B′ on chain C,
yields B,B∗,B′ three consecutive blocks of a valid chain; a copy occurs if the same block exists in
two different positions; a prediction occurs when a block extends one with later creation time.

Note that, with parallel chains and m×1 PoW, these bad events ought to be reasoned per chain
index (while in previous works the entire RO output is assigned to the only single chain). For
example, an insertion with respect to chain index i ∈ [m] happens if the i-th segment of hash of
block B∗ is identical to the i-th segment of hash of block B, implying a “partial” collision on two
different RO queries. We show in the following theorem that for all parallel chains, bad events
happen with only negligible probability.

Theorem 9. Consider an exectuion E of L = poly(κ) timesteps. No insertions, no copies, and no
predictions occurred in E, except with probability negligibly small in κ.

Proof. Let Q denote the total number of random oracle queries all parties made in L = polyκ
timesteps. We consider the partial collision which happens when there exist two RO outputs h, h′

and an integer i ∈ [m] such that [h]i∼m = [h′]i∼m. Fix i, a partial collision with respect to i happens
with probability Q2/2κ/m = exp(2 logQ− ω(log κ)) which is negligible in κ. Since m = Θ(log2 κ),
the probability that no partial collision happens for any i ∈ [m] yields 1 − (1 − exp(2 logQ −
ω(log κ)))m ≤ m · exp(2 logQ− ω(log κ)) = exp(2 logQ− ω(log κ)).

6.3 Averaged Chain Growth Lemma

We consider in this section the Chain Growth lemma, which provides a lower bound on the pro-
gression of accumulated difficulty of the honest parties that holds irrespective of the adversary.
Note that this lemma has been proved in various settings: In [GKL14] with fixed number of par-
ties and synchronous network; in [GKL17] with dynamic participation and synchronous networks;
in [GKL20] with dynamic participation and bounded-delay networks; and in [GKS22] with addi-
tionally the imperfect local clocks.

Recall that we are in a dynamic, bounded-delay setting with drifting clocks and our timestamp
scheme in Section 5.1 does not ask for monotonically increasing timestamps for blocks in the same
stages. This implies that during any period of time, as long as all honest local clocks are in the
same stage, an isolated success guarantees the progression on honest chains regardless of the honest
block difficulty and adversarial behavior. Hence, Chain-Growth lemma still applies unconditionally
in the same stage which we state as Same-stage Chain Growth lemma as follows.
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Lemma 5 (Same-stage Chain Growth). Let u, v be two nominal time steps of an execution E
such that all honest local clocks stay in the same stage during time [u, v]. If at time u an honest
party broadcasts a chain of difficulty d with chain index i, then by time v every honest party has
received a chain of difficulty at least d+Qi(S) where S = {r : u+∆ ≤ r ≤ v −∆}.

In our analysis, we will concern sequence of timesteps that span among different stages. Yet,
we highlight that the unconditional Chain-Growth lemma does not apply when honest local clocks
split in different stages. This is because timestamp monotonicity is required for blocks in different
stages, which implies that when honest parties stay in different stages, an isolated success does
not necessarily contribute to the progress of honest chains. For example, suppose that party P at
nominal time r produces a block B extending a chain C, with timestamp of the second stage of
the first interval, followed by ∆ timesteps that no honest block being produced. Then, another
party P′ at time r′ = r+∆′ (∆′ > ∆) produces another block B′, extending the same chain C with
timestamp of the first stage of the same interval, also followed by ∆ timesteps that no honest block
being produced. Such event happens in that P′ defers the processing of block B due to clock drifts.
As a result, while each time r and r′ qualifies for an isolated success, honest chains progresses by
only max{Q(r), Q(r′)}.

To address this issue and simplify our analysis, we now prove a conditional variant of the
Chain-Growth lemma. Specifically, we show the lower bound on honest progression after dropping
all isolated successes during nominal timesteps that honest parties split in different stages. Such
approach works so long as (i) the number of nominal time steps that parties stay in different stages
(and therefore the number of isolated success) is bounded with respect to clock drift rate ρ and the
length of an interval; and (ii) the difference of honest block difficulty is bounded in neighbouring
stages. Note that the above two aspects implicitly requires certain pre-conditions. First, the length
of timestep sequences that we concern should be relatively large compared with the upper bound on
timesteps that parties split, otherwise the impact of trimming those timesteps might be unbounded.
Next, in a sequence of fixed number of timesteps honest parties should always query blocks with
targets close to each other.

To this end, we revise the Chain Growth lemma and apply these two pre-conditions. Intuitively,
this can be viewed as counting all isolated success for steps that parties do not split and then
“averaging” them to all timesteps. We now state this “averaged” variant of Chain Growth as
follows.

Lemma 6 (Averaged Chain Growth). In a (γ, s)-respecting environment, let u, v be two nom-
inal time steps of an execution E such that all timesteps in [u, v] are good. If at time u an honest
party broadcasts a chain of difficulty d with chain index i, then by time v every honest party has
received a chain of difficulty at least

d+Qi(S)− ϵ(1− ϵ)(1− (1 + δ)γ2f)∆ph(S),

where S = {r : u + ∆ ≤ r ≤ v − ∆}. If additionally v − u ≥ ℓ and Qi(S) > (1 − ϵ)[1 − (1 +
δ)γ2f ]∆ph(S), then by time v every honest party has received a chain of difficulty at least

d+Qi,avg(S),

where Qi,avg(S) ≜ (1− ϵ)Qi(S).

Proof. Let us drop the chain-index superscript i for convenience. If two blocks are obtained at
timesteps which are at distance at least ∆ and all parties are in the same stage in between, then
we are certain that the later block increased the accumulated difficulty. Consider S′ ⊆ S such that
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for all i, j ∈ S′, |i − j| ≥ ∆ and Yi > 0 and S′′ ⊆ S′ such that for all i ∈ S′′ all parties stay in
the same stage. We argue that, by time v, every honest party has a chain of difficulty at least
d+Y (S′′) ≤ d+Q(S′′) = d+Q(S)−Y (S′\S′′). This is because every honest party will receive the
chain of difficulty d by time u+∆ and so the first block obtained in S′′ extends a chain of weight
at least d. Next, note that if a block obtained in S′′ is the head of a chain of weight at least d′,
then the next block in S′′ extends a chain of weight at least d′.

Regarding Y (S′\S′′), we may consider S′ of size between ℓ/2 and R/2 with at most one sub-
sequence of consecutive timesteps that parties split in different stages. Such partition always works
in that the duration of each stage is larger than ℓ but small than R.

Fix a partition S′ and denote S′\S′′ = {s1, . . . , sn} (n < Φ). It holds that

Q(S′\S′′) ≤
∑
i∈[n]

1

Tmin
si

≤ Φ · 2γ
3ph(S)

f |S|
≤ 4γ3Φ

fℓ
ph(S) ≤ ϵ(1− ϵ)(1− (1 + δ)γ2f)∆ph(S).

The last inequality follows Condition (C3).

Lemma 7. Let S = {r : u ≤ r ≤ v} be a set of consecutive at least ℓ timesteps and J the set of
adversarial queries in U = {r : u−∆ ≤ r ≤ v +∆}.
(a) goodConviH(U) =⇒ (1 + ϵ)p|J | ≤ Qi,avg(S) ≤ Qi(S) ≤ Di(U).
(b) If goodConviA(J, k) holds, then either A(J) < (1 + ϵ)p|J | or

T (J)A(J) < (1− ϵ)2 · [1− (1 + δ)γ2f ]∆f

2γ3
· k.

Proof. (a) The middle inequality follows directly with the definitions. For the other two, let us first
verify the following inequalities:

h(U) = h(S) + h(U\S) ≤
(
1 +

2γ∆

ℓ

)
h(S) < (1 +

ϵ2

2
)h(S).

The first inequality comes from Fact 3(b); and the next one
(b) Either ϵp|J | ≥ τα(J) and Definition 10 applies directly, or p|J | < τα(J)/ϵ thus we get the

inequalities by substituting α(J, k) as defined in Equation (8).

T (J)A(J) < (1 +
1

ϵ
) · ϵ[1− (1 + δ)γ2f ]∆fk

2(1 + 4ϵ)γ3
< (1− ϵ)2 · [1− (1 + δ)γ2f ]∆f

2γ3
· k.

The second inequality follows (1 + 4ϵ)(1− ϵ)2 > 1 + ϵ and Condition (C1).

6.4 Steady Block Generation Rate and Bounded Skews

All statements in this section assume a (γ, s)-respecting environment, and the Conditions are
assumed to hold for the initialization parameters n0 and T0.

We first prove that long forks appears on only a bounded number of parallel chains.

Lemma 8. Assuming GoodTimestep(r− 1), for any i ∈ [m], NoStaleChains∗(ℓ, i, r− 1) holds
except with probability no more than ϵconv(ℓ).

Proof. Recall Lemma 4 where goodConvi(r) holds with probability no more than ϵconv(ℓ), it suffices
to show that when goodConvi(r) holds, Sir contains no stale chains with probability 1.
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Suppose goodConvi(r) holds and, towards a contradiction, C ∈ Sir and has not been extended by
an honest party for at least ℓ+ 2∆ timesteps and r is the least (nominal) time with this property.
Let B be the last honestly-generated block of C (possibly the genesis) and let w be the (nominal)
time it was computed. We consider S = {u : w + ∆ ≤ u ≤ r − ∆} and U = {u : w ≤ u ≤ r}
(|S| ≥ ℓ by assumption). Suppose that the blocks of C after B (we denote these blocks by B) span
k epochs. For i ∈ [k] let mi be the number of blocks in epoch i. We denote the target in the
i-th epoch with Ti and set M = m1 + . . . + mk and d =

∑
i∈[k] Ti. Our plan is to contradict the

assumption that C ∈ Sir by showing that all chains in Sir have more difficulty than C. By Averaged
Chain-Growth Lemma 6, all the honest parties have advanced (in difficulty) during the timesteps
in U by Qavg(S). Therefore, to reach a contradiction it suffices to show that d < Qavg(S).

Consider the following partition on B: we partition B into u sections Bv, v ∈ [u] and associate
each section Bv with the target of its first block Tv. Section Bv starts with either the block after
B (if v = 1) or the ⌈mi/2⌉-th block in an epoch (if v > 1); it ends at either the last block of the
chain (if v = u) or the (⌈mi/2⌉+ 1)-th block such that in epoch i+ 1 the target is less than Tv/τ .
Under such partition, the next block after partition Bv is exactly the first block of partition Bv+1.

For u ≥ 2, we claim that for partition Bv, it has the following properties: (1) for all blocks in
Bv, their target is at least Tv/τ ; and (2) the number of blocks in Bv is at least Mf/2. Property
(1) holds because of the strategy of our partition that will stop before it exceeds the lower bound
for the targets and thanks to Equation (4) we need to pass at least two boundaries of epochs so
the circumstance that no blocks exist in such partition will never happen. To reason why property
(2) stands, consider those epochs that are split into two different sections. For an epoch ep whose
blocks are split into two sections Bv, Bv+1, since in epoch ep + 1 the target is larger than that in
ep (if not, it does not satisfy the criteria of the partition), there are at least Mf blocks in epoch
ep. Otherwise, Equation (4) will raise the target. By the rule of partition, at least Mf/2 blocks
are in each sections. Hence for every partition, either its head or tail has at least Mf/2 blocks in
the same epoch, and this implies the lower bound of the total number of blocks.

For each v ∈ [u], let jv ∈ J denote the index of the query during which the first block of the
v-th section was computed and set Jv = {j : jv ≤ j < ji+1} (Theorem 9) assures ji < ji+1. We
have

d =
∑
i∈[k]

Ti <
∑
v∈[u]

(1 + ϵ)|Jv| ≤ (1 + ϵ)|J | ≤ Qavg(S).

The first inequality holds because by setting k = λ and due to Lemma 7(b) we get either A(J) <
(1+ϵ)p|J | or T (J)A(J) ≤ Rf/[2(1+δ)γ3] with overwhelming probability (and note that Rf/[2(1+
δ)γ3] ≤ Rf/2). The last inequality is due to Lemma 7(a).

If u = 1, let J denote the queries in U starting from the first adversarial query attempting to
extend B. Then, T1 = T (J) and T2 ≥ T (J)/τ thus d < A(J). If A(J) < (1 + ϵ)p|J |, then A(J) <
Qavg(S) is obtained by Lemma 7(a). Otherwise, first observe that pn(S) ≥ pTwhw|S|/(γTw) ≥
f |S|/(2γ3Tw); by considering the first min{k, λ} timesteps, it holds that

Qavg(S) ≥ (1− ϵ)2(1− (1 + δ)γ2f)∆ · f |S|
2γ3Tw

> A(J).

The last inequality holds because we apply Lemma 7(b) by setting k = |S|.

Note that, when Lemma 8 holds for a chain i throughout an interval, it implies that by pruning
kbootstr blocks from each honest party’s local chain i we achieve common prefix [GKL15]. Due to
the similar argument in [GKL20] we set kbootstr = λℓf .
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Additionally, if we replace ℓ in Lemma 8 with any integer larger than λ = Θ(log2 κ), we get the
following corollary. Note that now ϵconv(λ) is negligibly small in the security parameter hence no
λ-stale chains holds throughout the execution.

Corollary 3. GoodTimestep(r − 1) =⇒ NoStaleChains(λ, r).

The two lemmas below shows that by adopting the target recalculation function in Equation (4)
independently on each chain, they all maintain good block length in each epoch and good block
generation rate in each target recalculation zone. Note that these the proof of these two lemmas
(on each chain) can be viewed as a reminiscent of the proofs in [GKS22] where they use the same
function to adjust mining difficulty on a single chain, hence we omit them and refer to [GKS22] for
more details.

Lemma 9. GoodTimestep(r−1)∧GoodChains(r−1)∧GoodSkew(r−1) =⇒ BlockLength(r).

Lemma 10. GoodTimestep(r − 1) =⇒ GoodChains(r).

Given that parties maintain good block generation rates in each target recalculation zone and
the fact that s ≥ (1 + ρ)R, we show that good block generation rate is maintained throughout the
execution.

Corollary 4. GoodTimestep(r − 1) =⇒ GoodTimestep(r).

Proof. Consider any i ∈ [m] thus any chain C ∈ Sir. Let Zep be its last target recalculation zone
before r. If r ∈ Zep, it follows directly by Lemma 10 that it is good. Otherwise, consider a time
w ∈ Zep (recall that f/2γ ≤ phwTep ≤ (1+δ)γf). Since the duration of an epoch implies r−w < s,
we have hr/γ ≤ hw ≤ γhr. Combining these two bounds we obtain the desired inequality.

Given that long forks could only happen in a bounded fraction of parallel chains, we then show
that for any honest party, their view of current interval contains sufficiently many chains with two
good properties at the end of an interval — first, parties share a common view on that chain, and
second the majority of input blocks included in that chain are generated by honest parties. Also
note that we can parameterize our protocol to make η an arbitrarily small constant.

Theorem 10. Let C and C′ denote the parallel chains held by two honest parties P and P′ at the
end of an interval itvl, respectively. There exists a subset S ⊆ {1, 2, . . . ,m}, |S| > m−η, such that
for all i ∈ S, the following properties hold on chains C = Ci and C′ = C′

i:
� Agreement: C⌈R·itvl−RRC = C′⌈R·itvl−RRC.
� Honest input-block majority: More than half of the PoW transactions included in C⌈R·itvl−RRC

and C′⌈k are produced by honest parties.

Proof. Recall Corollary 1 and Lemma 8, agreement holds due to the fact thatNoStaleChains∗(ℓ, i, r)
holds for any i ∈ S and time r that parties stay in interval itvl.

We now prove that honestly generated input blocks that are included on chain account for the
majority. Let u denote the first (nominal) time such that all alert parties are mining input blocks
w.r.t. interval itvl. Consider a set of consecutive nominal time steps S = {i : u ≤ i ≤ v} where
where all the honest queries in S are doing 2-for-1 PoW w.r.t. interval itvl and hence contribute
to the honest beacon set. Let B be the last block produced by honest parties before time v and
denote its production time by w (in terms of the nominal time index). Since C will become stale if
there is no honest block since w for ℓ+ 2∆ timesteps, we get that w < v − (ℓ+ 2∆).

Let S1 = {i : u ≤ i ≤ w − ∆} and S2 = {i : u − (2ℓ + 4∆) ≤ i ≤ w + (ℓ + 2∆)}. S1 is the
time interval that honest success can contribute to the beacon set w.r.t. interval itvl; and S2 is
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for the adversary. The earliest timestep of S1 is derived from the definition of u and the largest
time is because it will take up to ∆ timesteps for all beacons to be diffused to and accepted by
all alert parties. The earliest timestep of S2 is acquired due to the unpredictability of an honest
block (cf. Lemma 8). Regarding the largest timestep of S2, it is achieved by considering the first
honest block B′ after v, which is produced no later than w′ = w + ℓ + 2∆ (otherwise it violates
“no stale chains”). The adversary can no longer include beacons to the output generation stage
after w′ as it can no longer revert B′ before the end of the interval, so all the subsecquent beacons
produced after w′ are invalid w.r.t. the current chain. Note that |S1| ≥ [R − (5ℓ + 11∆)]/(1 + ρ)
and |S2\S1| ≤ (1 + ρ)(3ℓ+ 7∆).

Let J denote the adversarial queries associated with S2. In order to prove that alert parties
can produce at least half of synchronization beacons, it suffices to show that

D(S1) > d/2.

We first show that the number of RO queries alert parties can make during S2 is at most 10ϵ
more than those in S1. We have

h(S2) ≤
(
1 +

γ|S2\S1|
S1

)
h(S1) ≤

(
1 +

γ(1 + ρ)2(3ℓ+ 7∆)

R− (5ℓ+ 11∆)

)
≤

(
1 +

4(1 + ϵ)ϵ

1− 6ϵ/γ

)
< (1 + 10ϵ)h(S1).

The first inequality follows from Fact 3(b); the third one holds due to Equation (7) and Condi-
tion (C1); and the last one is by Condition (C1) (ϵ < 1/12). Next,

D(S1) ≥ (1− ϵ)ph(S1) > (1− 11ϵ)ph(S2) >
1− 11ϵ

2− δ
p[h(S2) + |J |]

>
1− 12ϵ

2− δ
[D(S2) +A(J)] >

1

2
[D(S1) +A(J)] =

d

2
.

The first inequality follows Theorem 7; the second one is achieved by substituting h(S1) with h(S2);
the next inequality follows from the honest majority assumption; the last inequality holds due to
Condition (C1) (δ ≥ 24ϵ).

Bounded skews. We now show that the synchronization procedure run at the end of each interval
helps parties tighten their clock skews and stay in a good linear envelope with respect to real time.

Lemma 11. GoodSkew(r − 1) ∧GoodChains(r − 1) =⇒ GoodSkew(r).

Proof. For nominal timesteps that all alert parties stay in the first interval, their local clock can
differ with each other for up to (1 + ρ)R − (1 + ρ)−1R + Φinit ≤ 2ρR + Φinit ≤ Φ timesteps in that
no clock synchronization happened.

Next, suppose that honest local clocks deviate from each other for at most Φ in interval itvl.
We consider the nominal time r such that at least one alert party enters the next interval itvl+ 1.
We show that for those parties that have finished adjusting their clock, the logical time that they
report can deviate from each other for up to Φ.

Let shifti denote the the shift computed by a party P on its i-th chain at the end of interval
itvl. We first show that if good properties holds on chain j, then all honest parties will adjust their
clock back to Φinit after they enter interval itvl + 1. Consider the first nominal timestep such that
at least one honest party enters interval itvl+1. Let µ denote the timestamp of P after adding the
adjusted shift computed from Equation (5) to its local time in interval itvl; and let (µ1, . . . , µm)
denote the set of timestamps held by a party P acquired by adding (shift1, . . . , shiftm) to its local
time respectively. Consider the following claim.
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Claim 1. For any two honest parties P and P′, there exist a set S ⊆ [m] with |S| ≥ m − η such
that for any k ∈ S, we have |µk − µ′

k| ≤ Φinit − ρ∆.

Proof. Fix i ∈ S such that on the i-th chain, Citvl,P
i = Citvl,P′

i and the majority of the input-blocks

in Citvl,P
i are produced by honest parties. I.e., honest parties share a unanimous view of the input-

block set IB. For each IB ∈ IB, let µi(IB) denote the time after using beacon IB to update local
time; we have µi(IB) = ri + TS(IB) − P.arrivalTime(IB). We are going to show that for any two
honest parties P and P′, |µi(IB)− µ′

i(IB)| ≤ Φ− ρ∆.
Notice that the arrival time of IB in the view of party P can be represented as

P.arrivalTime(IB) = ri − ρP(r − rIB) +∆P,IB,

where rIB is the nominal time that IB is emitted to the network if IB is honest, and is the first
nominal timestep such that at least one honest party receives IB if IB is adversarial. And ρP is
the clock speed of party P during nomianl time r and rIB. The quantity ∆P,IB ∈ [∆] is the time
elapsed (counted by nominal timesteps) for IB to be delivered to P. By substituting we get

µi(IB) = TS(IB) + ρP(r − rIB)−∆P,IB.

Note that for different parties, |µi(IB)− µ′
i(IB)| ≤ 2ρR+∆/ρ.

Now consider the tuples (µi(IB))IB∈IB and (µ′
i(IB))IB∈IB. By applying Fact 2 and Condi-

tion (C3), we get∣∣∣∣med
(
(µi(IB))IB∈IB

)
−med

(
(µ′

i(IB))IB∈IB

)∣∣∣∣ ≤ 2ρR+∆/ρ ≤ Φinit/2.

The similar argument works for any i ∈ S which concludes the proof.

Now for each party P we constrcut a new array (µ̂1, . . . µ̂m) such that if i ∈ S, µ̂i = maxP∈Hµ
P
i

is the maximum of µi among all honest parties; and µ̂i = µi otherwise. µ̂i shares a subset of size
at least m− η. Hence, the follwing inequality holds for any (possibly the same) P1, . . . ,Pk ∈ H.

minµ̂ ≤ µ̂P1
η+1 ≤ µ̂P2

2η+1 ≤ . . . ≤ µ̂Pk
m−η ≤ maxµ̂.

Notice that the shift calculation algorithm can be re-written by first compute the time after
adding the shifts on each chain, and then apply the array operations, we have

µ ≜ avg(select(reduce({µi}i∈[m], η), η)) and µ̂ ≜ avg(select(reduce({µ̂i}i∈[m], η), η)).

When m ≥ η, it holds that for any two parties P and P′, |µ̂− µ̂′| < (1/3)(maxµ̂m−η −minµ̂′
η+1) =

Φinit/2. Also notice that for a party P, µ ≥ µ̂ ≥ µ − Φinit/2. Combining them together we get for
any two parties P and P′, |µ− µ′| < Φinit.

Lemma 12. GoodSkew(r) =⇒ for any alert party P and its local time r, it holds that 1
1+Γ · r ≤

r ≤ (1 + Γ ) · r for Γ = ρ+ ϵ.

Proof. Consider two “virtual” parties Pvirt
fast and Pvirt

slow. They are parties that passively listen to the
protocol execution and update their logical clock, yet they do not perform any mining operations
(thus an execution with virtual parties is indistinguishable from another one without them).

Fix an interval i and let Pvirt
fast start the interval at the same time as the first alert party enters

this interval, and her clock always runs at rate 1 + ρ (i.e., the fastest speed); and Pvirt
slow starts the
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i-th interval with the last alert party that enters this interval, and her clock always runs at rate
(1 + ρ)−1 (the slowest speed).

Let {Cj}j∈S(S ⊆ [m]) denote the chains where parties share the common view and acuiqres
majority of input blocks at the end of interval i. For any chain Cj and any honestly generated
beacon IB ∈ Cj , the following holds due to the honest majority of input blocks and the fact that
Pvirt
fast (P

virt
slow resp.) maintains the largest (smallest resp.) local time throughout the interval.

−∆ ≤ med{TS(IB)− arrivalTimePvirt
slow

(IB)} and med{TS(IB)− arrivalTimePvirt
fast
(IB)} ≤ 0

Recall Equation (5), we have −∆ ≤ shiftPvirt
slow

and shiftPvirt
fast
≤ 0. Thus, for any party P ∈ H at the

end of interval i, their local clock stays in the Γ -linear envelope where Γ = ρ+(∆/R) ≤ ρ+ ϵ.

6.5 State Machine Replication

Regarding the fast fairness property, we show that any party that controls α fraction of the com-
putational power has probability (1 − ϵ′)α to get selected as the output for any constant ϵ′ > 0.
Note that ϵ is the protocol parameter on ideal convergence quality, and ϵ′ = 12ϵ can be tuned to
be an arbitrarily small constant.

Lemma 13. Consider a BA invocation that outputs (tx1, . . . , txn) at time r and let W denote the
time window of the first interval where parties replace their input with a block with minimum hash.
Assume a party P makes h random oracle queries during W and let n denote the number of total
random oracle queries made by all parties in W . The probability that tx1 contains P’s public key
is (1− ϵ′)(h/n) for ϵ′ = 12ϵ.

sketch. First note that due to Theorem 9 that collision on RO queries happen with only negligible
probability. Suppose the king chain in the first interval is a good chain - i.e., honest parties share
common view on the chain. Following a similar argument in Theorem 10, we learn that honest
parties can contribute to the probability that one of h queries yield the minimum hash among n
queries is (1− ϵ)(h/n)/(1 + 10ϵ) ≥ (1− 11ϵ)(h/n). Now, under the protocol parametrization that
king chain yields a bad chain with ϵ probability, it holds that tx1 contains P’s public key is at least
(1− 12ϵ)(h/n).

In Theorem 1 we conclude that when the clock drift, network latency and all other protocol
parameters satisfy certain conditions, our protocol Permissionless-SMR solves the clock synchroniza-
tion problem achieves all desired properties.

Theorem 1. In a (γ, s)-respecting environment, assume that honest majority holds throughout
the execution, all parties are equipped with physical clocks with Φ-bounded rate and the diffusion
network is ∆-bounded. If all protocol parameters are well-set under Condition (C1), (C2) and (C3),
then Permissionless-SMR (Protocol 3) solves the state machine replication problem and achieves
consistency, expected-constant liveness, Φ-bounded skews and (ρ + ϵ)-accuracy; and fast fairness,
except with probability negligibly small with respect to the security parameter.

Proof. Regarding consistency and expected-constant liveness, our proof is a reminiscent of the
Chain-King Consensus in [GKS24]. For the clock skew and accuracy part, it follows directly with
Lemma 11 and 12. The fast fairness property follows Lemma 13.
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A Glossary

Permissionless-SMR parameters. In Table 2, we list all the protocol parameters and their expla-
nation.

Variable Description

κ Security parameter; length of the random oracle output.

m The number of parallel chains (m = Θ(log2 κ)).

R
The length of a synchronization interval in number of rounds; each interval consists of
three stages: (i) view convergence of length RVC rounds; (ii) input-block generation
of length ROG rounds; and (iii) reference convergence of length RRC rounds.

M The length of a target recalculation epoch in number of rounds.

T The target to successfully solve a PoW.

hr Number of RO queries made by honest parties at (nominal) time r.

tr Number of RO queries made by corrupted parties at (nominal) time r.

δ Advantage of honest parties (t ≤ (1− δ)h).

f Initial (and ideal) block generation rate.

ϵ Ideal quality of concentration of random variables.

Φinit
The initial skew (i.e., difference in nominal time) that parties may start at the
beginning of each interval.

Table 2: Main parameters of Permissionless-SMR.

Main state variables of Permissionless-SMR participants. We summarize the internal state
variables of a protocol participant as follows.
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Variable Description

localTime
Party P’s local time in the form of interval index and round index
localTime = ⟨itvl, r⟩.

ep Party P’s local epoch index.

Clocal Party P’s local working parallel chains (which P tries to extend).

Tlocal Party P’s local parallel tree (all valid chains that P has seen so far).

futureChains The buffer that stores all incoming new parallel-chains.

buffer The buffer that stores all incoming transactions.

IBBuffer The buffer that stores all incoming input blocks.

isSync A bit variable to store the synchronization status

fetchCompleted A variable to store whether the round messages have been fetched.

arrivalTime(·) A mapping from input-blocks to their corresponding local arrival time.

state The ledger state.

snapshot
A mapping from interval index to party’s local view (represented by m block
hashes) at the end of that interval.

Table 3: Main state variables in Permissionless-SMR.
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