
Highly Efficient Actively Secure Two-Party Computation
with One-Bit Advantage Bound

Yi Liu1, Junzuo Lai1, Peng Yang2, Anjia Yang1, Qi Wang3, Siu-Ming Yiu2, and Jian Weng1

1 College of Cyber Security,
Jinan University, Guangzhou 510632, China

liuyi@jnu.edu.cn, laijunzuo@gmail.com, anjiayang@gmail.com, cryptjweng@gmail.com
2 Department of Computer Science,

The University of Hong Kong, Hong Kong SAR, China
stuyangpeng@gmail.com, smyiu@cs.hku.hk

3 Department of Computer Science and Engineering & National Center for Applied Mathematics Shenzhen,
Southern University of Science and Technology, Shenzhen 518055, China

wangqi@sustech.edu.cn

Abstract. Secure two-party computation (2PC) enables two parties to jointly evaluate a func-
tion while maintaining input privacy. Despite recent significant progress, a notable efficiency
gap remains between actively secure and passively secure protocols. In S&P’12, Huang, Katz,
and Evans formalized the notion of active security with one-bit leakage, providing a promising
approach to bridging this gap. Protocols derived from this notion have become foundational in
designing highly efficient actively secure 2PC protocols. However, a critical challenge identified
by Huang, Katz, and Evans remains unexplored: these protocols face significant weaknesses
in ensuring fairness for honest parties when employed in standalone settings rather than as
components within larger protocols. While the authors proposed two potential solutions to mit-
igate this issue, both approaches are prohibitively expensive and lack formalization of security
guarantees.
In this paper, we first formally define an enhanced notion called active security with one-bit-
advantage bound, in which the adversaries’ advantages are strictly bounded to at most one
bit beyond what honest parties obtain. This bound is enforced through a progressive revela-
tion mechanism, where the evaluation result is disclosed incrementally bit by bit. In addition,
we propose a novel approach leveraging label structures within garbled circuits to design a
highly efficient constant-round 2PC protocol that achieves active security with one-bit advan-
tage bound. Our protocol demonstrates runtime performance nearly identical to that of passively
secure garbled-circuit counterparts in duplex networks (e.g., 1.033× for the SHA256 circuit in
LAN), with low overhead for output progressive revelation (only 80 communicated bytes per
bit release).
With its strengthened security guarantees and minimal overhead, our protocol is highly suitable
for practical 2PC applications.

1 Introduction

Secure two-party computation (2PC) [36] allows two mutually distrusting parties to jointly evaluate a
function on their inputs while preserving input privacy. Based on garbled circuits [37,4], 2PC protocols
for arbitrary (efficiently computable) functions can be realized in a constant number of rounds. Over
the past four decades, this kind of 2PC protocols has achieved substantial improvements in both
communication [2,29,24,38,32] and computation [3,15,14], leading to their broad adoption in a range
of applications, either on their own or as fundamental building blocks.

Despite these advancements, a significant efficiency gap remains between actively secure (a.k.a.
malicious) and passively secure (a.k.a. semi-honest) 2PC protocols. From the perspective of communi-
cation, the size of garbled circuits for passive security settings recently has been reduced from 2κ bits
per AND gate (using the half-gates scheme [38]) to 1.5κ+5 bits (using the three-halves scheme [32]).
However, even with recent progress in constant-round actively secure 2PC [34,22,35,10,7], the lat-
est protocol [7] has only reached 2κ + 5 bits per AND gate for one-way communication.4 From a

4 The two-way communication cost of this protocol is 4κ + 10 bits per AND gate. In duplex networks, we
can only consider one-way communication cost. Though approaches like the GMW compiler [12,1] could
potentially close this communication gap, their computational overheads are prohibitively high.

computational standpoint, recent actively secure protocols [10,7] are notably complex and thus no
implementations are currently available. While they theoretically achieve communication overhead
comparable with passively secure 2PC using the earlier half-gates scheme, it remains to be exper-
imentally verified whether the overall runtime benefits from the added complicated components in
the protocol, as many of these introduce significant overhead. Existing implementations [34,18,35]
demonstrate that passively secure 2PC protocols are still at least an order of magnitude faster than
actively secure protocols for small circuits (e.g., SHA-256). This gap is likely to be widened even
further for larger circuits, where components such as oblivious transfer (OT) account for a smaller
fraction of total runtime.

The notion of active security with one-bit leakage [27,19,23,17,26,39] offers a promising approach
to bridging the efficiency gap between passive and active security in constant-round 2PC. Originally
introduced by Mohassel and Franklin [27] and later formalized by Huang, Katz, and Evans [19],
this security model guarantees that the adversary is limited to learning at most one additional bit of
information about the honest party’s input beyond the evaluation result, while output correctness is
preserved. Huang, Katz, and Evans developed a framework for designing actively secure 2PC protocols
with one-bit leakage based on garbled circuits, referred to in this paper as the HKE framework. This
is the most common framework for designing one-bit-leakage protocols. By applying this framework
to the state-of-the-art garbling scheme, we could obtain a highly efficient actively secure 2PC proto-
col with one-bit leakage, with runtime very close to that of its passively secure counterpart. Thus,
although a single bit of extra information may be revealed to the adversary, this trade-off provides
significant efficiency gains. In recent years, due to the high efficiency and security guarantees, proto-
cols derived from the HKE framework have been widely adopted as a component for designing actively
secure 2PC [28,23,30,7,39], 2PC with robust publicly verifiable covert security [26], and private set
intersection (PSI) [31].

While one-bit-leakage protocols derived from the HKE framework are highly efficient and can limit
the adversary to gain at most one extra bit of information, when these protocols are used in standalone
settings instead of being used as a component in other protocols, they are practically limited. This
limitation arises because, when used on their own, these protocols have critical security weaknesses
in fairness for honest parties. An adversary in one-bit-leakage protocols can always choose to learn
the evaluation result, together with an extra bit of information about the honest party’s inputs,
while having the honest party learn nothing. Specifically, in these protocols, parties will obtain an
evaluation result (which may be incorrect if misbehavior occurs) and then perform a verification to
confirm its correctness. As a result, an honest party might initially obtain an incorrect result, only to
later reject it upon verification, ultimately learning nothing (see Section 2.2 for more details). This
advantage for adversaries actually encourage dishonest behaviors, which is practically unacceptable
in many scenarios, thereby severely limiting the direct applicability of one-bit-leakage 2PC.

Huang, Katz, and Evans indeed identified this critical problem in their original work [19] and
proposed two heuristic enhancements to address it. The first approach aims to verify the garbled
outputs, i.e., (potentially incorrect) evaluation results in encrypted form, before revealing them, thus
preventing an adversary from learning the result if they are caught cheating during verification. To
accomplish this, they employ a fully-fledged actively secure garbled circuit protocol that takes the
garbled outputs as inputs for verification. However, this approach is prohibitively expensive. For exam-
ple, when evaluating an AES-128 circuit with a (2× 128)-bit input and a 128-bit output, the garbled
outputs comprise 128 output-wire labels, each 128 bits in length. These 128 × 128 bits would serve
as a portion of inputs for the verification’s garbled circuit. In fact, this approach requires a complex
verification circuit with at least 6×1282 bits of inputs. Such an approach is even more expensive than
evaluating AES-128 directly with fully-fledged active security. The second enhancement is progressive
revelation [5,11,21,8]. It ensures that the adversary’s advantage is limited to only one additional bit
of output beyond what the honest party obtains, by revealing the evaluation result bit by bit. How-
ever, this also relies on a fully-fledged actively secure garbled circuit protocol to process output-wire
labels from the one-bit-leakage protocol, resulting in significant overhead. These approaches, while
theoretically addressing the fairness problem, impose expensive overhead and conflict with the original
goal of developing efficient actively secure protocols. Additionally, no clear method to combine these
approaches has been provided, and what security guarantees they provide lacks formalization.

Therefore, the following question is open so far:

How can we provide an effective solution to the fairness problem in one-bit-leakage protocols?

2

1.1 Our Contributions

In this paper, we integrate both of the aforementioned enhancements within a new formalized se-
curity model and provide a highly efficient protocol that effectively addresses this fairness problem.
Specifically:

New security notion. We propose a new notion for 2PC named active security with one-bit ad-
vantage bound to address the fairness problem inherent in one-bit leakage protocols. Protocols
achieving active security with one-bit advantage bound limit the advantage of an (actively) cor-
rupted party to at most one bit. That is, instead of n + 1 bits in one-bit leakage protocols, the
adversary can gain at most one more bit of information beyond what the honest party obtains.
The security model employs a progressive revelation mechanism in which one bit of the evalua-
tion result is disclosed iteratively. It also supports adjustable advantage, allowing the adversary’s
one-bit advantage to be adjusted to arbitrary k-bit advantage.5

Protocol with low overhead. We design a highly efficient constant-round 2PC protocol that achieves
active security with one-bit advantage bound. Note that our protocol is fully compatible with the
state-of-the-art garbling schemes – the three-halves scheme and the half-gates scheme.6 Besides
the progressive revelation phase, the runtime of our protocol is almost identical to that of the
passively secure counterpart in duplex networks (e.g., 1.033× for the SHA256 circuit in LAN,
see more in Section 6). The progressive revelation phase itself is highly efficient: the number of
rounds can be minimized to almost the same as the bit-length of the evaluation result, while the
one-way communication required to securely release each bit of the result is only 80 bytes, with
no dependency on public-key operations.

With its stronger security guarantees and low overhead, our improved protocol is highly suitable for
practical applications of secure two-party computation.

2 Technical Overview

In this section, we first introduce the notations used throughout the paper, and then present an
overview of the HKE framework for designing actively secure 2PC protocols with one-bit-leakage and
describe why the aforementioned fairness problem arises. Subsequently, we provide intuition behind
our improved 2PC protocol, detailing how the structure of wire labels in garbling schemes can be
exploited to achieve active security with one-bit advantage bound.

2.1 Notation

We denote the security parameter by κ, which may be used as an implicit input to algorithms in
this paper. We denote the size of a set S as |S| and use the notation x←$S to indicate that an
element x is sampled uniformly at random from S. For any positive integer n, let [n] = {1, . . . , n},
and for positive integers a < b, define [a, b] = {a, a+ 1, a+ 2, . . . , b}. For a vector v, we denote the
ith element of v as v[i]. For a string s ∈ {0, 1}∗, the ith bit of s is written as either si or s[i].

We write F2κ
∼= F2[X]/f(X) for monic irreducible polynomial f(X) of degree κ and use X ∈ F2κ

to represent the element corresponding to X ∈ F2[X]/f(X). When it is clear from the context, we
interchangeably use {0, 1}κ, Fκ

2 , and F2κ . Hence, addition in Fκ
2 and F2κ corresponds to XOR in

{0, 1}κ.
A Boolean circuit C consists of a list of gates, where each gate is given in the form of (i, j, k, T).

Here, i and j are the indices of input wires, k is the index of output wire, and T ∈ {⊕,∧} specifies the
gate type. We denote the set of circuit wire indices as W, with n representing the number of input
wires and nO the number of output wires. For the ith output wire, the function out maps i ∈ [nO] to
a wire index w ∈ W. The set of output wires is represented as WO = {w | w = out(i) for i ∈ [nO]},
with nO = |WO|.

In the 2PC setting, let WA and WB represent the sets of indices for PA’s and PB’s input wires,
respectively, where nA = |WA| and nB = |WB|, satisfying n = nA + nB.

5 This can reduce the number of rounds and is useful for scenarios where the length of evaluation result is
long, or the network latency is high, allowing trade-off between security and efficiency.

6 Recent implementations of the three-halves scheme [16,6] demonstrate that the half-gates scheme out-
performs the three-halves scheme in many common scenarios. Accordingly, we consider both schemes to
represent the state-of-the-art.

3

2.2 Overview of Prior Work

The HKE framework employs a technique called dual execution to limit the leakage to one bit. The
core idea of dual execution is that two parties PA and PB execute the classical garbled circuit protocol
twice over the same circuit and inputs, where actively secure OT protocols for input-wire retrieval
are used. In one execution, PA acts as the garbler and PB as the evaluator; in the other, their roles
are reversed, i.e., PB becomes the garbler, and PA becomes the evaluator. Each party also sends the
decoding information for their garbled outputs to the other party. Once both executions are complete,
the parties perform an actively secure equality test on the output materials of the two garbled circuits
to determine the final result. Specifically, for an nO-bit-output circuit, the honest PA’s input to the
equality test includes output-wire labels

{
Y ′
i , Yi,y′

i

}
i∈[nO]

, where Y ′
i (resp. y′i) denotes the ith output-

wire label (resp. the ith bit of output) of the garbled circuit generated by PB and evaluated by PA,
while Yi,y′

i
represents the ith output-wire label generated by PA with real bit value y′i. The inputs

provided by PB to the equality test follow a similar structure. If the test passes, both parties accept
the output as correct; otherwise, the protocol terminates, signaling that one party is corrupted and
has deviated from the protocol. Given that actively secure OTs are cheap, the total cost is only
around twice as much as a passively secure garbled circuit protocol, and it is nearly no overhead in
duplex networks.

This method effectively limits a corrupted party to learning, at most, a single additional bit
of information about the honest party’s input beyond the evaluation result. The reasoning is that
while a corrupted party may deviate from the protocol when garbling the circuit, it cannot cheat in
the circuit evaluation as the evaluator if the OT protocols are actively secure. Therefore, the only
additional information the corrupted party can gain from the incorrectly generated garbled circuit is
the output of the equality test — either a true or false result, providing at most one bit of information
that could potentially depend on the honest party’s input.

Nevertheless, as we have mentioned in Section 1, the security guarantees offered by the one-
bit-leakage protocols derived from HKE framework are still practically limited due to the fairness
problem. In particular, for the equality test, PA must obtain the evaluation result y′ of PB’s garbled
circuit beforehand (from the decoding information). Therefore, a corrupted PB can always learn
the evaluation result by evaluating PA’s garbled circuit while generating a malicious circuit for PA,
thereby gaining an extra bit of information about PA’s inputs through the equality test. As a result, a
corrupted PB could always obtain n+1 bits of information while having the honest PA learn nothing.

2.3 Overview of Our Solution

We introduce the idea behind our 2PC protocol in the following. Section 4.2 formally describes
our protocol in detail, and some improvement techniques and optimizations that could be used in
implementations are introduced in Section 5.

In protocols derived from the HKE framework, the parties may obtain a potentially incorrect
evaluation result from the garbled circuit generated by the other party, which they need to verify
through an equality test later. To solve the aforementioned fairness problem, it is necessary to verify
the correctness of the output once it has been released or even before it is released. In our protocol,
we maintain the dual execution procedure as previously described, with one key modification: neither
party transmits the decoding information for garbled outputs to the other party. This change delays
the point at which both parties learn the evaluation result, and both parties, as the evaluator, only
hold the garbled outputs after the garbled circuit evaluation. From this stage onward, we divide the
protocol into two main phases: verification and progressive revelation.

In the verification phase, we introduce a novel approach that enables both parties to blindly verify,
via one equality test, whether the garbled outputs from their respective circuits encode the same
evaluation result without disclosing it. If this test fails, the protocol terminates, and the corrupted
party learns no more than one bit of information from the test outcome. Conversely, if the test passes,
it confirms that even if the corrupted party may have improperly generated the garbled circuit, both
parties still hold the consistent evaluation result. Intuitively, if the underlying OT protocol is actively
secure, the evaluator cannot deviate undetected within the garbled circuit framework. Thus, the
successful completion of this test assures the honest party that the evaluation result of the other
party’s garbled circuit aligns with the evaluation result of his own garbled circuit, thereby preserving
the correctness of the evaluation result.

4

The protocol then advances to the progressive revelation phase, where the evaluation result is
gradually disclosed, i.e., output in a bit-by-bit manner. During this phase, each bit of the evaluation
result is sequentially opened and verified. If any bit fails to be opened correctly, the protocol aborts,
limiting the adversary’s gain to at most one additional bit of information. Moreover, this gradual
opening procedure, bounded by a one-bit advantage, can be adapted to release k bits of the evaluation
result at a time, thereby reducing the protocol’s round complexity through a security trade-off.

We begin by describing our method for verifying that the garbled outputs from both parties
encode the same evaluation result without disclosing it. This method is compatible with the current
state-of-the-art half-gates and three-halves garbling schemes. To set the stage, we first briefly review
the label structure utilized in these garbling schemes, and then introduce how to exploit this structure
to achieve our goal.

Both the half-gates and three-halves garbling schemes employ the point-and-permute and free-
XOR techniques. For the point-and-permute technique, the actual bit zw on each wire w is masked
by a point-permute bit (a.k.a. random bit) λw generated by the garbler, and the resulting masked
bit ẑw = zw ⊕ λw ∈ {0, 1} allows to be known by the evaluator for garbled circuit evaluation. The
free-XOR technique enables XOR gates to be garbled with no communication. In particular, the
garbler sets Lw,0 ⊕ Lw,1 = ∆ for each wire w, where Lw,b ∈ {0, 1}κ is the label for wire w with
masked bit b ∈ {0, 1}, and ∆ ∈ {0, 1}κ is a global key (a.k.a. fixed offset). The output-wire label of
an XOR gate is computed by simply XORing the two input-wire labels of that gate. The masked bit
is often encoded in the least significant bit of the wire labels, and thereby let lsb(∆) = 1 resulting in
ẑw = lsb(Lw,ẑw).

Suppose that a garbler PA and an evaluator PB leverage a garbling scheme with point-and-permute
and free-XOR technique (e.g., half-gates or three-halves) to execute a passively secure 2PC protocol
for a circuit C, where only PA obtains the final n-bit outputs. PA generates and sends a garbled circuit
to PB. Both parties then execute an OT protocol, such that PB obliviously retrieves the input-wire
labels corresponding to his inputs from PA. PA also sends input-wire labels corresponding to her
inputs to PB. Given all input-wire labels, PB can evaluate the garbled circuit.

Denote the global key by ∆A. During the evaluation of garbled circuit, for a wire w, the evaluator
PB holds the wire label Lw,ẑw = Lw,0 ⊕ ẑw∆A, which also contains the masked bit ẑw = lsb(Lw,ẑw).
Meanwhile, the garbler PA holds the point-permute bit λw. In other words, the actual bit zw = ẑw⊕λw

remains secret and is shared between the two parties.
After the evaluation, the evaluator PB sends Lw,ẑw (implicitly containing ẑw) for each output

wire w ∈ WO to the garbler PA. The garbler PA then computes zw = ẑw ⊕ λw and verifies whether
Lw,ẑw = Lw,0 ⊕ (λw ⊕ zw)∆A. This verification is equivalent to checking whether the following holds.

Lw,ẑw ⊕ (Lw,0 ⊕ λw∆A) = zw∆A .

By the authenticity property of garbling schemes, a corrupted evaluator PB cannot send a tampered
label L̂w ̸= Lw,ẑw to pass this check, except with negligible probability. Notably, before PB sends
Lw,ẑw , PB holds Lw,ẑw ∈ {0, 1}κ, while PA can locally compute Lw,0 ⊕ λw∆A ∈ {0, 1}κ. Therefore, PA

and PB hold secret shares of both zw ∈ {0, 1} and zw∆A ∈ {0, 1}κ.
Similarly, if the roles of the parties are reversed, with PB as the garbler and PA as the evaluator

for the same circuit C, then for an output wire w, PA holds the masked bit ẑ′w and the wire label
L′w,ẑ′

w
. Meanwhile, PB holds λ′

w and can compute L′w,0⊕λ′
w∆B. Thus, in this case, PA and PB secretly

share z′w and z′w∆B.
The table below summarizes the values held by PA and PB for wire w during the dual executions,

where the garbled circuit GC is generated by PA while GC′ is generated by PB.

Values held by PA Values held by PB

GC ∆A, Lw,0, λw ẑw, Lw,ẑw= Lw,0 ⊕ ẑw∆A

GC′ ẑ′
w, L′

w,ẑ′w
= L′

w,0 ⊕ ẑ′
w∆B ∆B, L

′
w,0, λ

′
w

For i ∈ [nO] and w := out(i), define Bi,1 := Lw,ẑw (held by PB), Ai,1 := Lw,0 ⊕ λw∆A (held by PA),
and ωi = zw. We have

Ai,1 ⊕Bi,1 = (λw ⊕ ẑw)∆A = zw∆A = ωi∆A .

Similarly, let Ai,2 := L′w,ẑ′
w
(held by PA), Bi,2 := L′w,0 ⊕ λ′

w∆B (held by PB), and ω′
i = z′w. We have

Ai,2 ⊕Bi,2 = (λ′
w ⊕ ẑ′w)∆B = z′w∆B = ω′

i∆B .

5

Now PA can compute Ai := Ai,1⊕Ai,2, while PB can compute Bi := Bi,1⊕Bi,2. Let ∆ = ∆A⊕∆B.
If both parties are honest, we expect ωi = zw = ẑw ⊕ λw = ẑ′w ⊕ λ′

w = z′w = ω′
i, and thus

Ai ⊕Bi = Ai,1 ⊕Ai,2 ⊕Bi,1 ⊕Bi,2 = ωi∆A ⊕ ω′
i∆B

= ωi∆ = ω′
i∆ .

In this scenario, PA and PB effectively share the values ωi and ωi∆. Although derived from different
methods, this resembles the SPDZ authentication, where both parties secretly share the global key
∆, the value ωi = ω′

i, and the corresponding message authentication code (MAC) ωi∆.
If one party is corrupted, the outputs of the two garbled circuits from dual executions may not be

consistent. Our key insight for verifying the consistency of garbled outputs stems from the technique
of opening SPDZ-style authenticated secret sharing.

Without loss of generality, assume that PA is honest and PB is corrupted. In the case of garbled
circuits, if the OT protocol is actively secure, a corrupted party cannot cheat (without being detected)
when playing the role of the evaluator due to the authenticity property of garbling schemes. In the
execution where the corrupted PB is the garbler, the honest PA having input xA is indeed evaluating
a function F ∗

B that could be fully defined by PB:{
(ẑ′w, L

′
w,ẑ′

w
)
}
w∈WO

:= F ∗
B(xA) .

As previously mentioned, for an output wire w, the two parties hold a SPDZ-like authenticated
secret sharing of the actual value. They can open this bit as ω′′

i := ẑ′w ⊕ λ′
w,

7 where i = out−1(w),
and then proceed with an SPDZ-style opening verification for ω′′

i . In this SPDZ-style verification, PA

and PB must commit to and subsequently open the values Ai ⊕ ω′′
i ∆A and Bi ⊕ ω′′

i ∆B, respectively.
The verification checks whether these two committed values are equal. Specifically, PA will commit
to and open the value:

Ai ⊕ ω′′
i ∆A = Ai,1 ⊕Ai,2 ⊕ ω′′

i ∆A

= Lw,0 ⊕ λw∆A ⊕Ai,2 ⊕ ω′′
i ∆A ,

where Ai,2 = L′w,ẑ′
w
is derived from F ∗

B . To pass this verification, PB must also commit to and open a

value that equals Ai⊕ω′′
i ∆A (i.e., the XOR of the two committed values must be zero). It is important

to note that the value held by the corrupted PB corresponding to Lw,0 is Bi,1 = Lw,ẑw = Lw,0⊕ ẑw∆A.
Thus, to cancel out Lw,0, PB’s committed value must include Bi,1 (in the form of XOR), except with
negligible probability of simple guessing. Given that Bi,1 ⊕ Ai ⊕ ω′′

i ∆A = zw∆A ⊕ Ai,2 ⊕ ω′′
i ∆A =

Ai,2 ⊕ (zw ⊕ ω′′
i)∆A, we observe that if zw ⊕ ω′′

i ̸= 0, i.e., the opened bit ω′′
i is inconsistent with the

output of the garbled circuit generated by the honest party PA, then PB can only make his committed
value match PA’s by correctly guessing the value of ∆A, which occurs with negligible probability,
even though PB has full control over the value Ai,2. A similar conclusion holds if PA is corrupted and
PB is honest. Therefore, except with negligible probability, this procedure allows the two parties to
determine whether the opened bit is correct.

Can this procedure be directly applied to open and verify the output of garbled circuits? The
answer is no. For example, a corrupted PB could manipulate F ∗

B so that the honest PA obtains
Ai,2 = 0. Since Bi,1 ⊕ Ai ⊕ ω′′

i ∆A = Ai,2 ⊕ (zw ⊕ ω′′
i)∆A = (zw ⊕ ω′′

i)∆A, when zw ⊕ ω′′
i = 1, after

observing PA’s committed value Ai ⊕ ω′′
i ∆A, PB can can deduce the value of ∆A. Even though the

protocol would terminate due to an invalid opening, PB could still exploit ∆A to open the previously
received garbled circuit generated by PA and learn PA’s inputs. This problem can be resolved by
having both parties execute a secure equality test protocol instead, which only reveals whether the
two committed values are identical.

This verification can be done in batches. We can treat bits and κ-bit strings as elements in Fκ
2

and F2κ . To batch-verify the opened bits, both parties can first use coin-tossing protocols to select
random values ri←$Fκ

2 for i ∈ [nO] and compute ω′′ =
∑

i∈[nO]
riω

′′
i ∈ Fκ

2 . Then PA and PB compute

A :=
∑

i∈[nO]
riAi and B :=

∑
i∈[nO]

riBi, respectively, such that A ⊕ B = ω′′∆. To verify ω′′, PA

7 Reconstructing this bit as ω′′
i := ẑw⊕λw using shares from a garbled circuit generated by the honest party

PA is also an option. However, here we only aim to introduce the intuition behind our protocol and do not
concern ourselves with how ω′′ is reconstructed.

6

computes A⊕ ω′′∆A, where

A⊕ ω′′∆A =

 ∑
i∈[nO]

riAi

⊕
 ∑

i∈[nO]

riω
′′
i

∆A

=
∑

i∈[nO]

ri(Ai ⊕ ω′′
i ∆A)

=
∑

i∈[nO]

ri(Lw,0 ⊕ λw∆A ⊕Ai,2 ⊕ ω′′
i ∆A) ,

and uses this in the equality test. To make these openings valid, corrupted PB must provide a value
equal to A⊕ω′′∆A. Since ri’s are randomly chosen and |Fκ

2 | is large enough, if the equality test passes,
then Ai⊕ω′′

i ∆A is equal to Bi⊕ω′′
i ∆B except with negligible probability. Similar to verifying a single

opening, in the equality test, PB’s value must account for all riBi,1 terms (in XOR form) to cancel
out Lw,0, leaving only a negligible probability of successful guessing. Then, if zw ̸= ω′′

i , the only way
for PB to align their values with those of PA is by correctly guessing ∆A.

Since both parties hold authenticated secret shares of each ω′′
i for i ∈ [nO], they can locally compute

the authenticated secret sharing of ω′′ as a whole, opening only ω′′ rather than revealing each indi-
vidual ω′′

i . This process is equivalent to verifying that, for each pair of MAC shares (Ai, Bi), the two
parties correctly possess correct shares of the corresponding bit. In the dual execution setting, these
shared bits appear as ωi = ẑw⊕λw or/and ω′

i = ẑ′w⊕λ′
w. Therefore, both ωi’s and ω′

i’s can be verified
simultaneously in batch. To accomplish this, the parties jointly sample random values ri, r

′
i←$Fκ

2

and locally compute the share of ω :=
(∑

i∈[nO]
riωi

)
⊕

(∑
i∈[nO]

r′iω
′
i

)
, which is then opened. They

subsequently compute the associated MACs, defined as A :=
(∑

i∈[nO]
riAi

)
⊕

(∑
i∈[nO]

r′iAi

)
and

B :=
(∑

i∈[nO]
riBi

)
⊕
(∑

i∈[nO]
r′iBi

)
, using these to validate ω.

Now, with both parties holding MAC shares {(Ai, Bi)}i∈[nO], they can efficiently verify whether
their shares satisfy the condition ωi = ẑw ⊕λw = ẑ′w ⊕λ′

w = ω′
w for w = out(i) and i ∈ [nO], ensuring

both correctness and authentication by revealing only ω and performing a single equality test. This
approach eliminates the need to individually open ωi and ω′

i. However, a direct revelation of ω would
expose a linear combination of ωi and ω′

i. To conceal this linear combination result, the two parties
can generate an authenticated secret sharing of a random value ω0←$Fκ

2 and incorporate it into
the linear combination. Let A0 and B0 represent the MACs held by PA and PB, respectively, where

A0⊕B0 = ω0 ·∆. The two parties can then open ω := ω0⊕
(∑

i∈[nO]
riωi

)
⊕
(∑

i∈[nO]
r′iω

′
i

)
and verify

its correctness as previously outlined. By introducing the random value ω0, this approach effectively
conceals the linear combination of the shares.

At this stage, both parties have blindly verified the consistency of the outputs from the garbled
circuits generated by PA and PB through a single equality test. If the outputs are consistent, they
proceed to the progressive revelation phase. With both parties holding ωi = ω′

i for all i ∈ [nO], they
can gradually open each bit of the evaluation result and verify its correctness. Specifically, PA sends
ai,1 = λw to PB while PB sends bi,2 = λ′

w to PA for w = out(i). Then PA and PB can reconstruct
ω′
i = ai,2 ⊕ bi,2 and ωi = ai,1 ⊕ bi,1, respectively. An equality test is subsequently used to verify the

opening of each bit with respect to Ai and Bi: PA inputs Ai⊕ω′
i∆A and PB inputs Bi⊕ωi∆B. If any

verification fails, the protocol terminates; otherwise, both parties securely obtain the final evaluation
result. Throughout these two phases, a corrupted party gains at most a one-bit advantage over the
honest party, yielding an actively secure 2PC protocol with a one-bit advantage bound.

Additionally, by batching the opening and verification process of the progressive revelation phase
through random linear combinations, k bits of the evaluation result can be opened and verified
simultaneously. This approach yields an actively secure 2PC protocol with a k-bit advantage bound,
thereby reducing round complexity. We note that k could even be different in each iteration to adapt
to different scenarios flexibly.

7

3 One-Bit Advantage Bound

Based on the discussion in Section 2, we define the ideal functionality FOneBitAdv for 2PC with a one-
bit advantage bound as follows. A two-party protocol ΠOneBitAdv for the circuit C is said to securely
compute C with one-bit advantage bound if it securely realizes the functionality FOneBitAdv.

Functionality FOneBitAdv

Public inputs: Both parties agree on a circuit C with n = nA + nB input wires and nO output wires.
Private inputs: PA has input xA ∈ {0, 1}nA , whereas PB has input xB ∈ {0, 1}nB .

Upon receiving xA from PA and xB from PB, store these values and compute y := C(xA, xB).

Verification

Upon receiving a set of functions {gi, g′i}i∈[nO], where gi, g
′
i : {0, 1}n → Fκ

2 , from the adversary, compute

αi := gi(xA, xB) and α′
i := g′i(xA, xB) for each i ∈ [nO]. Then, send random ri, r

′
i ←$Fκ

2 for i ∈ [nO] to
the adversary and receive β ∈ Fκ

2 in return.

Verify whether β =
(∑

i∈[nO] riαi

)
⊕

(∑
i∈[nO] r

′
iα

′
i

)
. Send the verification result to the adversary. If

the verification fails, send cheating to the honest party and terminate. Otherwise, send {(αi, α
′
i)}i∈[nO]

to the adversary and proceed.

Progressive revelation

For each i ∈ [nO]:

– Send yi to the adversary.
– If continue from the adversary is received, send yi to the honest party and continue. If abort from

the adversary is received, send ⊥ to the honest party and terminate.

We note that the ideal functionality FOneBitAdv borrows the idea for the definition of one-bit
leakage [19]. In the definition of one-bit leakage, the adversary in the ideal world can send a Boolean
function g to the ideal functionality and receive the one-bit outcome of g applied to both parties’
inputs, thus defining the one-bit leakage. To better align with our security proof, we adapt this
approach. Instead, during the verification phase, the adversary is allowed to submit a set of functions
{gi, g′i} to FOneBitAdv. The functionality responds by generating random values ri and r′i for each
i ∈ [nO], while computing αi := gi(xA, xB) and α′

i := g′i(xA, xB).
8 The adversary then submits a value

β, which is checked against the equation β =
(∑

i∈[nO]
riαi

)
⊕
(∑

i∈[nO]
r′iα

′
i

)
. This way, the adversary

learns only a single bit of information (i.e., the truth value of the equation) during verification.

Since ri and r′i are uniformly random, if β =
(∑

i∈[nO]
riαi

)
⊕

(∑
i∈[nO]

r′iα
′
i

)
holds and the

adversary knows this fact, this adversary must have known each αi and α′
i, except with negligible

probability. Therefore, sending {(αi, α
′
i)}i∈[nO]

to the adversary after successful verification does not
provide any additional information beyond what the adversary has already inferred.

Remark 1. The progressive revelation phase of FOneBitAdv can be straightforwardly modified to reveal
k bits instead of a single bit in each iteration. Consequently, the resulting ideal functionality would
limit the adversary’s advantage to k bits. Protocols securely realizing this ideal functionality are
actively secure with k-bit advantage bound. We also note that the variable k could even differ in each
iteration.

4 Our One-Bit Advantage Bound Protocol

In this section, we first introduce the building blocks of our protocol. Then, we describe our protocol
in detail.

8 Note that notation gi (resp. αi) is essentially equivalent to g′i (resp. α′
i); the use of prime symbols here

serves solely to simplify description in our security proof.

8

4.1 Building Blocks

We first introduce the syntax of projective garbling schemes [4] as follows.

Definition 1. A projective garbling scheme consists of five algorithms:

– (GC, e, dk)← Gb(1κ, C). The garbling algorithm Gb takes as input the security parameter 1κ and
a circuit C with n = nA + nB input wires and nO output wires. It outputs a garbled circuit GC, a
mapping of input-wire labels e := {(Xi,0, Xi,1)}i∈[n], and a decoding key dk.

– (d,D) := Dc(dk). The decoding information derivation algorithm Dc takes as input a decoding key
dk and outputs the simple decoding information d and authenticated decoding information D.

– X := En(e, x). The encoding algorithm En takes as input the input-wire label mapping e =
{(Xi,0, Xi,1)}i∈[n] and input x ∈ {0, 1}n, and outputs input-wire labels X := {Xi,xi

}i∈[n].

– Y := Ev(GC, X). The evaluation algorithm Ev takes as input the garbled circuit GC and the
input-wire labels X = {Xi}i∈[n], and outputs the output-wire labels Y := {Yi}i∈[nO]

.

– y := De(d, Y). The simple decoding algorithm De takes as input the simple decoding information
d and output-wire labels Y = {Yi}i∈[nO]

, and outputs the decoded result y.

– y := AuDe(D,Y). The authenticated decoding algorithm AuDe takes as input the authenticated
decoding information D and output-wire labels Y = {Yi}i∈[nO]

, and outputs the decoded result y.
If decoding fails, y may take the value ⊥.

The scheme is correct if for any (polynomial-size) circuit C and input x, after computing (GC, e, dk)←
Gb(1κ, C) and (d,D) := Dc(dk), we have

C(x) = De(d,Ev(GC,En(e, x)))

and
C(x) = AuDe(D,Ev(GC,En(e, x)))

except with negligible probability.9

Different from the garbling scheme definition in [4], we separate the decoding into simple decoding
and authenticated decoding algorithms. This distinction aligns naturally with most existing garbling
schemes. When context permits, we may combine the Gb and Dc algorithms into a single function:
(GC, e, dk, d,D)← Gb(1κ, C).

For our protocol, we require that the garbling scheme adheres to the point-permute-freeXOR-
compatible property, defined as follows:

Definition 2. A projective garbling scheme along with an algorithm EvalAND for the security pa-
rameter κ is point-permute-freeXOR-compatible if:

Point-and-Permute Compatibility. Each wire w in the garbled circuitis associated with a point-
permute bit λw. During garbled circuit evaluation, the wire label Lw,ẑw ∈ {0, 1}κ is derived, and
the true bit for wire w is zw = λw ⊕ ẑw, where ẑw = lsb(Lw,ẑw) represents the (public) masked bit
on Lw,ẑw .

FreeXOR Compatibility. There is a global offset ∆ ∈ {0, 1}κ−1||1, such that the XOR of each wire
label pair are ∆ and the masked bit of Lw,ẑw is ẑw = lsb(Lw,ẑw). For any gate G = (α, β, γ, T),
where the evaluator holds Lα,ẑα and Lβ,ẑβ (alongside ẑα and ẑβ), evaluation proceeds as follows:
– If T = ⊕, compute Lγ,ẑγ := Lα,ẑα ⊕ Lβ,ẑβ (with ẑγ := ẑα ⊕ ẑβ implicitly). The point-permute

bit for wire γ is then λγ = λα ⊕ λβ.
– If T = ∧, compute (Lγ,ẑγ) := EvalAND(Lα,ẑα , Lβ,ẑβ), where EvalAND is the multiplication gate

evaluation algorithm that inputs the labels of the input wires for an AND gate, evaluates the
garbled gate, and outputs the corresponding output-wire label.

We denote Gb(1κ, C; ∆) to specify the global offset ∆ explicitly.
For a point-permute-freeXOR-compatible garbling scheme, such as the half-gates scheme [38] and

three-halves scheme [32], the global offset ∆ and a wire label Lw,λw (where λw = lsb(Lw,λw)) suffice to
determine output-wire labels as Yi,b := Lw,λw

⊕b∆ for b ∈ {0, 1}, where Yi,b represents the label for the
real bit b on the ith output wire. Consequently, we set the decoding key as dk = (∆, {Lw,λw

}w∈WO
).

In our protocol, we define the simple decoding information as d =
{
λout(i)

}
i∈[nO]

. Given output-wire

labels {Yi}i∈[nO]
, the output of De(d, Y) is yi := lsb(Yi)⊕ λw, for w = out(i) and i ∈ [nO].

We give the security definition for such garbling schemes as follows.

9 We allow a negligible failure probability as the definition in [32].

9

Definition 3. A projective point-permute-freeXOR-compatible garbling scheme achieves oblivious-
ness if there is a probabilistic polynomial-time (PPT) simulator SGb, such that for any circuit C and
input x, the outputs of the following two games are indistinguishable.

(GC, e, dk, d,D)← Gb(1κ, C)
X := En(e, x)
return (GC, X)

(GC, X)← SGb(1κ, C)
return (GC, X)

We adapt the privacy property introduced in [4] and define the equivocable privacy property as
follows.

Definition 4. A projective point-permute-freeXOR-compatible garbling scheme achieves equivocable
privacy if there is a tuple of PPT simulators (SGb,S ′Gb), such that for any circuit C and input x, the
output of the following games are indistinguishable.

(GC, e, dk, d,D)← Gb(1κ, C)
X := En(e, x)
return (GC, X, d)

(GC, X, z)← SGb(1κ, C)
d← S ′

Gb(C(x), z)
return (GC, X, d)

Now, the simulator is split into two components SGb and S ′Gb. The first component SGb does not
require the evaluation result C(x) as input and generates (GC, X) independently. Additionally, SGb
produces auxiliary data z, which could be Y := Ev(GC, X) for most existing garbling schemes and
is then used as input to S ′Gb. The second component SGb takes C(x) and z as inputs to produce the
simulated simple decoding information d. In other words, the simulated garbled circuit GC and garbled
input X are generated initially, while the simulated simple decoding information d can be generated
subsequently once the evaluation result C(x) is known, ensuring consistency with (GC, X). Notably,
both the half-gates and three-halves garbling schemes satisfy equivocable privacy, as the simulator
in their security proofs of privacy generates d with respect to C(x) after GC and X are generated. In
our protocol, parties only receive d, and thus, we do not need to consider the authenticated decoding
information D.

We introduce a relaxed form of authenticity property [4] for our protocol, termed authenticity
against one-bit leakage.

Definition 5. A projective point-permute-freeXOR-compatible garbling scheme for the security pa-
rameter κ achieves authenticity against one-bit leakage if for any circuit C and input x, no tuple of
PPT adversaries (A1, A2, A3) can make the following game output true with non-negligible probability:

(GC, e, dk, d,D)← Gb(1κ, C)
X := En(e, x)
(ℓ, {gi(·)}i∈[ℓ] , z1)← A1(GC, X, d)
αi := gi(dk), ri ←$Fκ

2 for i ∈ [ℓ]
(β, z2)← A2({ri}i∈[ℓ], z)
If β ̸=

∑
i∈[ℓ] riαi, return false

Else Y ← A3({αi}i∈[ℓ] , z2)
return AuDe(D,Y) /∈ {⊥, C(x)}

Unlike traditional authenticity, this relaxed definition allows an adversary to learn at most a single
bit of information about dk. Using the idea of FOneBitAdv, we allow the adversary to define a set of
functions gi applied to dk, specify a value β, and then learn if a random linear combination of the
evaluations result of gi, denoted by αi, equals β. As a result, the adversary may learn at most one bit
of information about dk. Since the linear combination is random, if the adversary confirms that the
equation holds, it should know each αi except with negligible probability. Therefore, we can safely
provide the adversary A3 with αi, and no additional information is leaked.

This relaxed definition is reasonable as it offers security guarantees similar to traditional au-
thenticity. If an adversary could breach the authenticity against one-bit leakage with non-negligible
probability, it can also randomly guess the leaked bit by itself, and thus with probability 50% the
adversary might correctly guess this bit, enabling it to produce Y such that AuDe(D,Y) /∈ {⊥, C(x)}
with non-negligible probability. We can easily verify that both the half-gates and three-halves garbling
schemes satisfy authenticity against one-bit leakage.

10

Definition 6. A projective point-permute-freeXOR-compatible garbling scheme is secure if it achieves
obliviousness, equivocable privacy, and authenticity against one-bit leakage.

Our protocol is built upon the components FCom for commitment, FOT for oblivious transfer, FOLE

for oblivious linear evaluation, FEq for equality testing, and FRand for generating random values.
We use standard FCom and FOT within our protocol. For FOLE, a sender inputs ∆ ∈ Fκ

2 and
v ∈ Fκ

2 , while a receiver inputs u ∈ Fκ
2 and learns w := v⊕u∆. For FEq, two parties input x ∈ {0, 1}κ

and y ∈ {0, 1}κ respectively and learn whether x = y. For FRand with parameter ℓ, the functionality
outputs random ri←$Fκ

2 for i ∈ [ℓ] to both parties.

4.2 Our Scheme

We give a high-level description of our protocol ΠOneBitAdv below, and the formal description of our
protocol is given in Figure 1.

The protocolΠOneBitAdv employs a secure projective garbling scheme that is point-permute-freeXOR-
compatible. It consists of three main phases: evaluation, verification, and output progressive revela-
tion.

– Evaluation: Each party begins by independently generating a garbled circuit for the agreed-
upon circuit C using their respective global keys ∆A and ∆B. They then execute two instances
of garbled circuits, swapping their roles between the two instances. After evaluating the garbled
circuit generated by the other party, each party derives the garbled output. They then compute
the respective SPDZ-like MACs Ai and Bi based on both the derived garbled outputs and the
output-wire labels of their own garbled circuits, as outlined in Section 2.3.

– Verification: Both parties use FOLE to jointly generate an authenticated secret sharing of a ran-
dom value, which serves to mask the linear combination, as detailed in Section 2.3. Additionally,
they obtain a set of random values over Fκ

2 from FRand. Using this set of values as coefficients, they
then perform a random linear combination on their shares and MACs of the random value and
the output bits of both circuits, where the same MAC applied to corresponding output bits from
both circuits. The result of this linear combination is then revealed, and FEq is applied to confirm
the validity of this opening. If the equality test fails, the protocol halts immediately, signaling
potential cheating.

– Output Progressive Revelation: In this final phase, both parties jointly reveal the evaluation
result bit by bit. For each output bit, the parties exchange the point-permute bit associated with
that wire and reconstruct the output bit by combining the received point-permute bit with the
masked bit derived from evaluating the other party’s garbled circuit. An equality test is then
conducted to validate this opening. The protocol aborts if any opening is invalid. This procedure
thus ensures that the adversary’s advantage is strictly limited to a single bit.

Theorem 1. The protocol ΠOneBitAdv along with a secure projective garbling scheme that is point-
permute-freeXOR-compatible securely realizes functionality FOneBitAdv against PPT malicious (rush-
ing) adversaries in the (FCom, FOT, FOLE, FRand, FEq)-hybrid world.

We give the sketch proof of this theorem as follows.

Proof. Without loss of generality, we assume that PB is honest, while PA is corrupted by the adversary
A. The roles of PA and PB in protocol ΠOneBitAdv are symmetric, so a similar proof applies when PB

is corrupted.
For an adversary A corrupting PA in the (FCom, FOT, FOLE, FRand, FEq)-hybrid world, we construct

a simulator S, which plays the role of PB and runs A as a subroutine with auxiliary input z, interacting
with FOneBitAdv in the ideal world. The simulation is given Figure 2. We now need to prove that
the joint distribution of the view of A and the output of PB in the ideal world is computationally
indistinguishable from the joint distribution of the view of A and the output of PB in the real protocol
execution. We give the details in Appendix A.

Remark 2. To achieve a k-bit advantage bound, both parties can reveal k bits of the evaluation result
in each iteration and verify their correctness. This verification can be conducted in batches using
random linear combinations, as discussed in Section 2.3.

11

Protocol ΠOneBitAdv

Public inputs: Both parties agree on the security parameter κ and a circuit C, which has n = nA +nB

input wires and nO output wires.
Private inputs: PA has input xA ∈ {0, 1}nA . PB has input xB ∈ {0, 1}nB .

Evaluation

1 PA picks ∆A ←$Fκ
2 , such that lsb(∆A) = 1. PB also samples ∆B ←$Fκ

2 in the form that lsb(∆B) = 1.
2 PA generates the garbled circuit GC via (GC, e, dk, d,D)← Gb(1κ, C;∆A), where e = {(Xi,0, Xi,1)}i∈[n].

Similarly, PB generates the garbled circuit GC′ via (GC′, e′, dk′, d′, D′) ← Gb(1κ, C;∆B), where e′ ={
(X ′

i,0, X
′
i,1)

}
i∈[n]

. Here dk and dk′ can be used to derive point-permute bits (resp. output-wire labels)

λw and λ′
w (resp. Lw,0 and L′

w,0) for each wire w ∈ WO, respectively.
Both PA and PB then commit to their garbled circuits via FCom.

3 PB, as the sender, sends
{
(X ′

i,0, X
′
i,1)

}
i∈[nA]

to FOT, while PA, acting as the receiver, sends xA

and receives
{
X ′

i := X ′
i,xA[i]

}
i∈[nA]

. Meanwhile, two parties switch their roles, with PA sending

{(Xi,0, Xi,1)}i∈[nA+1,n] for PB’s input-wire labels, and PB, as the OT receiver, sending xB and re-

ceiving
{
Xi := Xi,xB[i−nA]

}
i∈[nA+1,n]

.

4 Each party sends the label they generated corresponding to their own input to the other party, i.e.,
PA sends

{
Xi := Xi,xA[i]

}
i∈[nA]

to PB, and PB sends
{
X ′

i := X ′
i,xB[i−nA]

}
i∈[nA+1,n]

to PA.

5 Both parties open their garbled circuits GC and GC′ to each other via FCom. PA evaluates GC′ by
computing Y ′ := Ev(GC′, X ′), where X ′ = {X ′

i}i∈[n] consists of all input-wire labels PA has retrieved

from FOT and received from PB. For each w = out(i), where i ∈ [nO], PA sets ai,2 := ẑ′w := lsb(Y ′
i) and

Ai,2 := Y ′
i . Simultaneously, PB defines bi,2 := λ′

w and Bi,2 := L′
w,0 ⊕ λ′

w∆B.
Meanwhile, PB evaluates GC by computing Y := Ev(GC, X), where X contains the input-wire labels
PB has retrieved and received. For each i ∈ [nO], PB sets bi,1 := ẑw := lsb(Yi) and Bi,1 := Yi, while PA

defines ai,1 := λw and Ai,1 := Lw,0 ⊕ λw∆A.
PA and PB compute Ai := Ai,1 ⊕Ai,2 and Bi := Bi,1 ⊕Bi,2 for i ∈ [nO], respectively.

Verification

6 PA randomly selects L0 ←$Fκ
2 , and, as the sender, sends L0 and ∆A to FOLE. Meanwhile, PB sends a

random b0 ←$Fκ
2 to FOLE and receives B0,1 = L0 ⊕ b0∆A. The parties switch roles, with PB sending

L′
0 ←$Fκ

2 and ∆B to FOLE, while PA sends a0 ←$Fκ
2 and receives A0,2 = L′

0 ⊕ a0∆B as the receiver.
PB computes B0 := B0,1 ⊕ L′

0 ⊕ b0∆B, while PA computes A0 := A0,2 ⊕ L0 ⊕ a0∆A.
7 Both parties call FRand to obtain random values ri ←$Fκ

2 and r′i ←$Fκ
2 for i ∈ [nO].

PA then computes A := A0 ⊕
(∑

i∈[nO] riAi

)
⊕

(∑
i∈[nO] r

′
iAi

)
and a := a0 ⊕

(∑
i∈[nO] riai,1

)
⊕(∑

i∈[nO] r
′
iai,2

)
, and sends a to PB. PB also computes B := B0 ⊕

(∑
i∈[nO] riBi

)
⊕

(∑
i∈[nO] r

′
iBi

)
and b := b0 ⊕

(∑
i∈[nO] ribi,1

)
⊕

(∑
i∈[nO] r

′
ibi,2

)
, and sends b to PA.

8 PA and PB input A⊕ (a⊕ b)∆A and B ⊕ (a⊕ b)∆B to FEq, respectively, to verify if the values match.
If FEq returns false, parties output cheating and the protocol aborts with termination.

Output Progressive Revelation

9 For i ∈ [nO], PA and PB follow the procedure below to derive each bit yi of the evaluation result y.
(a) PA sends ai,1 = λw to PB, while PB sends bi,2 = λ′

w to PA for w = out(i). PA computes y′
i :=

ai,2 ⊕ bi,2 and PB computes yi := ai,1 ⊕ bi,1.
(b) PA inputs Ai ⊕ y′

i∆A to FEq, and PB inputs Bi ⊕ yi∆B to FEq. If FEq returns false, parties output
⊥ with abortion. Otherwise, the ith bit of the evaluation result is output by both PA and PB as
y′
i and yi, respectively.

Fig. 1: Our constant-round 2PC protocol achieving active security with one-bit advantage bound in
the (FCom, FOT, FOLE, FRand, FEq)-hybrid world.

12

1 S samples ∆B ←$Fκ
2 , such that lsb(∆B) = 1, as in the protocol.

2 S computes (GC′, X ′, z) ← SGb(1κ, C), where X ′ = {X ′
i}i∈[nO]. Let Y ′ = {Y ′

i }i∈[nO] = Ev(GC′, X ′).

For each output wire w = out(i), S defines ẑ′w = lsb(Y ′
i).

Acting as FCom, S informs the adversary A that the honest party PB has committed his garbled circuit
to FCom. Subsequently, S obtains the garbled circuit GC from A.

3 If PA is the receiver in FOT, S receives xA from A, sends {X ′
i}i∈[nA]

to A. Then S sends xA to FOneBitAdv.
If PA acts as the sender in FOT, S receives {(Xi,0, Xi,1)}i∈[nA+1,n] from A.

4 S sends {X ′
i}i∈[nA+1,n] to A and receives {Xi}i∈[nA]

from A.
5 Acting as FCom, S opens GC′ to A.
6 In the role of receiver in FOLE, S receives L0 and ∆̂A from A. As the sender, S receives a0 from A and

returns A0,2 ←$Fκ
2 to A. Set L′

0 := A0,2 ⊕ a0∆B.
7 For each i ∈ [nO], S defines the Boolean function gi (resp. g′i) with fixed input xA and variable

xB ∈ {0, 1}nB as follows. Note that corresponding values are hard-coded in gi and g′i.
(a) Let Xi := Xi,xB[i−nA] for i ∈ [nA + 1, n].
(b) Compute Y := Ev(GC, X), where X = {Xi}i∈[n].
(c) Define Bi,1 := Yi and bi,1 := ẑw = lsb(Yi) for w = out(i).
(d) Compute y := C(xA, xB), where y = (y1, · · · , ynO) ∈ {0, 1}

nO .
(e) Let λ′

w := yi ⊕ ẑ′w (i.e., this is what is done by S ′
Gb with respect to equivocable privacy), and

define bi,2 := λ′
w for w = out(i).

(f) Set Bi,2 := Y ′
i ⊕ yi∆B and Bi := Bi,1 ⊕Bi,2.

(g) Output αi := Bi ⊕ bi,1∆̂A ⊕ bi,1∆B (resp. α′
i := Bi ⊕ bi,2∆̂A ⊕ bi,2∆B).

S sends {gi, g′i}i∈[nO] to FOneBitAdv, receives random values {ri, r′i}i∈[nO], and forwards these values to
A with respect to FRand.
S randomly selects b←$Fκ

2 and sends it to A, while receiving a ∈ Fκ
2 from A.

8 S receives β̂ ∈ Fκ
2 from A with respect to FEq, computes β := β̂ ⊕ b∆̂A ⊕ L0 ⊕ L′

0 ⊕ a∆B, sends it to
FOneBitAdv, and receives the output. If the output is false, S simulates rejection by honest PB. Otherwise,
receive {(αi, α

′
i)}i∈[nO] from FOneBitAdv.

9 For each i ∈ [nO], S follows the procedure below.
(a) S receives yi from FOneBitAdv, computes bi,2 = λ′

w := yi ⊕ ẑ′w for w = out(i), sends it to A, and
receives ai,1 from A.

(b) S receives α̃i with respect to FEq. Then S computes b̂i,1 := yi ⊕ ai,1 and checks if αi ⊕ b̂i,1∆B ⊕
b̂i,1∆̂A = α′

i ⊕ bi,2∆B ⊕ bi,2∆̂A. If the equation does not hold, S simulates rejection by PB and
sends abort to FOneBitAdv.
Then S checks if α̃i = αi ⊕ ai,1∆B ⊕ ai,1∆̂A ⊕ yi∆̂A. If the equation does not hold, S simulates
rejection by PB and sends abort to FOneBitAdv. Otherwise, S sends continue to FOneBitAdv, outputs
whatever A outputs and continues.

Fig. 2: The simulator S with respect to FOneBitAdv in the ideal world.

13

5 Improvements and Optimizations

Our protocol is actively secure and already highly efficient, but we briefly discuss some additional
improvements and optimizations that can be further applied. As with other 2PC protocols utiliz-
ing garbled circuits, we can leverage cost-effective correlated oblivious transfer and oblivious linear
evaluation to improve efficiency. We can also apply circuit pipelining, allowing parties to transmit gar-
bled gates while simultaneously evaluating the garbled circuit. Additionally, we introduce approaches
specifically applicable to our protocol as follows.

Leveraging FRand for free. Since we use standard garbling schemes, garbled circuits GC and GC′

in the protocol have high entropy. Therefore, two parties can generate pseudorandom values non-
interactively by employing a pseudorandom function, where GC and GC′ are collectively used to
derive the key, to generate necessary random values in CTR mode.

Randomize order of output revelation. We can further limit adversaries’ advantage by random-
izing the order of output bit revelation. Both parties can collaboratively generate a random per-
mutation P over [nO], defining the sequence for output bit disclosure. We can also use a similar
method to determine which party reveals the output bits first for each iteration. The required
randomness can be generated non-interactively, as described above.

Optimizations in the random-oracle model. Since our protocol uses standard garbling schemes,
all values involved in the equality test maintain high entropy when unknown to the adversary.
Therefore, to perform an equality test with inputs a and b, both parties can simply commit
to and open H(a) and H(b), respectively, where H is modeled as a random oracle, then verify if
H(a) = H(b). We can also use the random oracle for commitment by defining Com(m; r) = H(m, r),
where r←$ {0, 1}κ.
With this setup, we can further reduce rounds in the progressive output revelation phase. For
the ith output, PA can first commit to both H(Ai) and H(Ai ⊕∆A) using the same randomness
ri, while PB commits to H(Bi) and H(Bi ⊕∆B) using randomness r′i. Note that it is essential to
ensure that commitments from the two parties are distinct to prevent an adversary from copying
the honest party’s commitments and decommitments. They decommit by exchanging ri and r′i,
allowing each party to derive the output bit: for instance, if H(Ai) matches PB’s first commitment,
PA concludes yi = 0; if H(Ai⊕∆A) is PB’s second committed value, then yi = 1. If neither matches,
the output is rejected. Furthermore, commitments for the ith output bit can be sent alongside
decommitments for the (i− 1)-th output, thus requiring only nO + 1 rounds to reveal and verify
all output bits. In protocols with k-bit advantage bound, enumerating all possible k-bit outputs
may be relatively expensive. Therefore, both parties can simply perform k parallel iterations of
1-bit revelation.

6 Performance

6.1 Comparison

In the following, we argue that each phase of our protocol incurs low additional overhead compared
to the passively secure counterparts.

Evaluation. Steps 1 to 4 are nearly identical to those in passively secure protocols, aside from the
use of actively secure OT protocols. It is well-known that actively secure OTs are highly efficient
and perform comparably to passively secure OTs in both local area network (LAN) and wide
area network (WAN). If the input lengths of the two parties are asymmetric, e.g., if PA has a
longer input while PB’s input is shorter, then passively secure protocols may require fewer OTs.
But we note that OTs are employed solely for retrieving input-wire labels, so for large circuits,
they contribute only a small fraction of the overall protocol cost. Sending and evaluating garbled
circuits in Step 5 remain the same as in passively secure protocols. The primary difference of
Step 5 lies in computing (Ai,1, Ai) and (Bi,2, Bi); however, only XOR operations over {0, 1}κ are
required, amounting to 2nO XORs per party. This added overhead is minimal. It is easy to see
that this phase requires only a small constant number of rounds.

Verification. The execution cost of two oblivious linear evaluations in Step 6 is constant. As dis-
cussed in Section 5, randomness in Step 7 can be generated efficiently and non-interactively. Given
that ai,1, ai,2, bi,1, and bi,2 are bits, the computations of a and b in Step 7 involve only XOR

14

operations over {0, 1}κ, with 2nO XORs per party. For the computations of A and B, each party
performs 2nO multiplications and additions (i.e., XORs) over Fκ

2 . Therefore, the computational
overhead of these operations is minimal. The communication cost of Step 7 involves only the
exchange of two elements in Fκ

2 . For the equality test in Step 8, employing the optimizations
described in Section 5, one hash value (serving as a commitment) and a single κ-bit opening are
required; there is no need to send the committed hash value for the equality test since, if the test
passes, the other party must possess this value. This phase also requires only a small constant
number of rounds.

Output Progressive Revelation. Utilizing the optimizations via random oracles in Section 5, the
output progressive revelation phase can be implemented in nO+1 rounds, which is nearly optimal
for realizing output progressive revelation in 2PC. In each round, both parties compute two hash
values, exchanging these along with one κ-bit opening. Both the communication and computation
costs are minimal. The same efficiency also applies when releasing k bits of output per round.

Moreover, we note that upon successful completion of the verification phase, both parties are
secretly sharing a consistent and correct evaluation result. We assert the correctness of the evaluation
result here because garbled circuits generated by honest parties must yield correct output. As a result,
even if all nO bits of the evaluation result are revealed in a single iteration (i.e., under nO-bit advantage
bound) during output progressive revelation and the adversary forces an abort, the adversary gains
only the additional knowledge that its garbled circuit output aligns with that of the honest party. This
differs from one-bit-leakage protocols, where adversary could learn the correct evaluation result even
if the equality test fails. The security guarantees of our protocol approach those of traditional active
security with abort. In addition, achieving verifiable output progressive revelation is a non-trivial task
for actively secure protocols, and it often involves additional overhead.

Therefore, our protocol achieves both high efficiency and high security guarantees.

6.2 Implementation and Evaluation

We provide a proof-of-concept implementation to demonstrate the performance of our protocol. All
experiments are conducted on an ecs.hfr7.4xlarge instance of Alibaba Cloud, equipped with 128
GiB of memory. Each party is run on a 3.69 GHz vCPU core in single-threaded mode. The protocol
is evaluated under both LAN and WAN settings: in the LAN configuration, the network bandwidth
is 2 Gbps with 0.1 ms latency; in the WAN configuration, the bandwidth is 200 Mbps with 60 ms
latency. Our implementation builds upon the EMP-Toolkit [33].

This implementation includes methods for non-interactive randomness generation and optimiza-
tions in the random-oracle model, as described in Section 5. Specifically, we utilize AES-NI in CTR
mode as a pseudorandom generator (PRG) and SHA-256 to instantiate the random oracle. Given
recent results [16,6] that the half-gates scheme [38] outperforms the three-halves scheme [32] in many
practical scenarios and has more mature implementations, we use the half-gates scheme [38] in our
proof-of-concept implementation to benchmark against passively secure protocols that also employ
this scheme. We note that comparable results should hold for the three-halves scheme [32].

Table 1: Evaluated Boolean circuits. The parameters nA, nB, and nO denote the bit lengths of PA’s
input, PB’s input, and the circuit output, respectively. The total number of gates and AND gates are
also listed.

Circuit nA nB nO #Total gates #AND gates

AES-128 128 128 128 33,616 6,800
SHA-128 256 256 160 106,601 37,300
SHA-256 256 256 256 236,112 90,825

Hamming Dist. 1,048,576 1,048,576 22 8,388,524 2,097,130
Integer Mult. 2,048 2,048 2,048 12,568,585 4,192,257

Sorting 131,072 131,072 131,072 56,903,681 10,223,616

We compare the running time and communication overhead of our protocol with state-of-the-art
passively and actively secure 2PC implementations based on garbled circuits (GC). The running time

15

includes both computational costs and network I/O, while the communication overhead is defined
as the cumulative size of all messages exchanged between the parties. To ensure a fair compari-
son with protocols lacking progressive revelation, we release all outputs simultaneously during the
progressive revelation phase of our protocol. Our comparison covers circuits are commonly used in
previous work (e.g., [9,20,13]) and representative of the primary categories encountered in practical
applications. Table 1 details these circuits, either sourced from SCALE-MAMBA [25] or generated using
EMP-Toolkit [33]. Specifically, the Boolean circuit AES-128 computes the encrypted value of a 128-
bit input using a 128-bit key, while SHA-128 and SHA-256 compute the hash values of 128-bit and
256-bit inputs, respectively. The Hamming distance circuit calculates the Hamming distance between
two 220-bit large integers. The integer multiplication circuit involves multiplying two 2048-bit large
integers. The sorting circuit sorts an array containing 4096 32-bit integers using the bitonic sorting
algorithm. The number of AND gates for AES-128, SHA-128, and SHA-256 ranges from 103 to 105,
which corresponds to small circuits, while the number of AND gates for Hamming distance, integer
multiplication, and sorting ranges from 106 to 107, which corresponds to large circuits. Note that the
input sizes for Hamming distance, integer multiplication, and sorting are custom-defined and widely
used as benchmarks in MPC literature.

Table 2: Comparison of running time between the passively and actively secure GC-based 2PC pro-
tocol and our protocol in LAN.

Circuits
Runtime for LAN (ms)

Ours Passive 2PC [38] Slowdown Active 2PC [34] Speedup

AES-128 5.186 3.917 1.324× 35.765 6.896×
SHA-128 21.420 20.109 1.065× 170.425 7.956×
SHA-256 50.800 49.177 1.033× 408.673 8.045×

Hamming Dist. 1,130.237 1,125.191 1.004× 10,386.330 9.190×
Integer Mult. 2,134.655 2,119.995 1.092× 18,481.636 8.658×

Sorting 5,687.642 5,676.164 1.002× 46,234.423 8.129×

Table 3: Comparison of running time between the passively and actively secure GC-based 2PC pro-
tocol and our protocol in WAN.

Circuits
Runtime for WAN (ms)

Ours Passive 2PC [38] Slowdown Active 2PC [34] Speedup

AES-128 355.447 21.664 16.407× 636.300 1.790×
SHA-128 555.088 164.875 3.366× 1,291.858 2.328×
SHA-256 782.826 266.713 2.935× 2,648.022 3.383×

Hamming Dist. 5,742.006 3,645.433 1.575× 60,855.122 10.598×
Integer Mult. 11,460.162 7,353.140 1.559× 108,088.760 9.431×

Sorting 26,767.659 17,687.417 1.513× 237,419.610 8.870×

Running Time in the LAN and WAN Setting. Tables 2 and 3 compares the running time of the
proposed 2PC protocol with passively and actively secure GC-based 2PC protocols in both LAN and
WAN. Compared to the passively secure GC-based 2PC protocol [38], the results indicate that over
a LAN, our protocol incurs an overhead of up to 32.4%, consistent with our prior analysis. In a WAN
environment, however, the overhead more than doubles for small circuits (i.e., AES-128, SHA-128, and
SHA-256) and remains around 50% for larger circuits (i.e., Hamming Distance, Integer Multiplication,
and Sorting). This elevated overhead for smaller circuits is because network I/O dominates the total
running time for small-size circuits. As shown in Figure 1, our protocol consists of three phases: 1)
evaluation, 2) verification, and 3) output progressive revelation. For small circuits such as AES-128,
the evaluation phase takes 37.21 ms, while the verification and output progressive revelation phases
together require 318.237 ms, accounting for 89.53% of the total running time.The overhead of the

16

latter two phases is mainly due to the 5 rounds of communication introduced, with each round
incurring a 60 ms delay in the WAN setting. On the other hand, for larger circuits, the evaluation
phase of the protocol constitutes over 95% of the total running time. The other two phases have
minimal running time, but due to the 200 Mbps bandwidth limit and cost of synchronization in the
WAN setting, the evaluation phase of our protocol, which requires parallel instance computation, is
more significantly impacted by the network limitation.

Compared to the state-of-the-art actively secure GC-based 2PC protocol implementation [34], our
protocol achieves significantly better running time in both LAN and WAN settings, as expected, with
an improvement factor of 6.9−10.6×, except for small circuits (i.e., AES-128, SHA-128, and SHA-256)
in the WAN setting, where the improvement is only 1.8−3.4×. The reason for this is similar to the
above. For small circuits in the WAN setting, the verification and output progressive revelation phases
introduced by our protocol add approximately 300 ms of network I/O time, which is on the same
order of magnitude as the running time of the evaluation phase. This results in some communication
advantage of our protocol being offset by the overhead introduced by these phases. However, in the
LAN setting or for large circuit evaluations in the WAN setting, network I/O time accounts for less
than 5%, which allows our protocol to achieve significant performance improvements due to the low-
overhead circuit computation phase. This indicates that our protocol is highly efficient compared to
existing actively secure GC-based 2PC protocols.

Table 4: Comparison of communication costs (MiB) between passively and actively secure GC-based
2PC protocols and our protocol, where PA is the garbler and PB is the evaluator in the passively and
actively secure GC-based 2PC protocols.

Circuits
Passive 2PC [38] Our Protocol Active 2PC [34]

PA’s PB’s Total PA’s PB’s Total PA’s PB’s Total

AES-128 0.207 0.003 0.210 0.214 0.214 0.428 1.908 1.358 3.266
SHA-128 1.138 0.003 1.141 1.146 1.146 2.292 10.429 7.430 17.859
SHA-256 2.772 0.002 2.774 2.784 2.784 5.568 25.367 18.080 43.446

Hamming Dist. 63.999 0.163 64.162 64.163 64.163 128.326 655.255 455.257 1,110.497
Integer Multi. 127.938 0.002 127.940 128.034 128.034 256.068 1170.087 834.178 2,004.265

Sorting 312.000 0.002 312.002 312.240 312.240 624.480 2862.491 2038.866 4,901.358

Communication Cost. Table 4 presents a comparison of per-party and total communication over-
head between our protocol and both passively and actively secure 2PC protocols. In passively and
actively secure GC-based 2PC protocols, PA is the garbler while PB is the evaluator. In passively
secure GC-based 2PC protocols, PA needs to generate and send a large number of garbled circuits to
PB, with communication costs proportional to the number of AND gates. In contrast, most of PB’s
tasks involve performing the GC evaluation locally without requiring extensive communication. As
a result, the communication cost for PA is significantly higher than that for PB. In actively secure
GC-based 2PC protocols, although PA acts as the garbler, the garbled circuits are generated jointly
with PB. Consequently, the communication cost for PA is higher than that for PB, though both costs
remain within the same order of magnitude. In our protocol, PA and PB perform GC evaluations sym-
metrically and exchange data of nearly identical size during the verification and output progressive
revelation phases, resulting in equal communication costs for both parties.

In terms of total communication, our protocol’s communication cost is double that of the passively
secure 2PC protocol, as it requires two symmetric GC evaluations to compute a circuit. However,
compared to the actively secure 2PC protocol, our protocol achieves a 7.6−8.6× reduction in com-
munication cost by eliminating complex verification overhead, highlighting its high communication
efficiency.
Cost Breakdown of Our Low-Overhead Protocol Execution. We analyze our protocol by
breaking down the execution cost of each component for AES-128, SHA-128, SHA-256, Hamming
distance, integer multiplication, and sorting circuits. As previously outlined, our protocol is divided
into three phases: evaluation, verification, and output progressive revelation. We measured the average
wall-clock time for each phase of a single protocol execution in both LAN and WAN settings. As shown
in Figure 3, circuit evaluation in the first phase accounts for 93.88% to 99.80% of the total runtime

17

0 1000 2000 3000 4000 5000 6000

Sorting

Hamming Dist.

Integer Mult.

SHA-256

SHA-128

AES-128 Evaluation
Verification
Output Progressive Revelation

(a) Running time for LAN (ms)

0 5000 10000 15000 20000 25000 30000

Sorting

Hamming Dist.

Integer Mult.

SHA-256

SHA-128

AES-128 Evaluation
Verification
Output Progressive Revelation

(b) Running time for WAN (ms)

Fig. 3: Cost breakdown of our low-overhead protocol execution in the LAN and WAN settings.

for most circuits. The verification and output progressive revelation phases we introduced contribute
only a very small portion to the total runtime. This is because the evaluation phase incurs overhead
proportional to the number of AND gates, while the verification and output progressive revelation
phases scale linearly with the output length nO. Since the output length nO is generally much smaller
than the number of AND gates in most circuits, our protocol achieves high efficiency.
Different Progressive Revelation Factors. Our protocol supports adjustable output progressive
revelation, allowing the adversary’s one-bit advantage to be extended to an arbitrary-bit advantage.
This flexibility can reduce the number of communication rounds, making it valuable in scenarios
where the size of evaluation result is large or network latency is high, thus achieving a trade-off
between security and efficiency. To assess this, we conducted experiments to evaluate the impact of
the progressive revelation factor on performance. Table 5 presents the average running time required
to release each output bit, calculated by dividing the total running time of the output progressive
revelation phase by the output size, with the revelation factor set to k. The reported data was
obtained using the AES-128 circuit. However, since the output progressive revelation phase of our
protocol depends only on the output size and is independent of the specific circuit used, the results
in Table 5 are generalizable and not tied to a particular circuit. As shown in the table, as k increases,
the running time initially decreases rapidly and then plateaus in both LAN and WAN settings. The
running time with k = 1 is 68.3× longer than with k = 128 in the LAN setting and 114.6× longer
in the WAN setting. The impact on running time primarily stems from the reduction in the number
of communication rounds in the protocol’s output progressive revelation phase, which is calculated
as ⌈nO/k⌉ + 1, where nO is the output length of the circuits. Hence, as k increases, the number of
communication rounds decreases significantly, resulting in a proportional reduction in network I/O
time. This effect is particularly beneficial for communication-sensitive applications.

Table 5: The impact of different progressive revelation factors k on the protocol’s running time,
assuming the circuit’s output length exceeds k.

Revelation factor Running time for LAN Running time for WAN

k = 1 119.594 ×10−3 ms 60.50 ms
k = 8 18.352 ×10−3 ms 7.503 ms
k = 32 4.563 ×10−3 ms 1.876 ms
k = 64 1.898 ×10−3 ms 0.938 ms
k = 128 1.750 ×10−3 ms 0.528 ms

7 Acknowledgements

We would like to express our sincere appreciation to the anonymous reviewers for their valuable
comments. This work was supported in part by National Key Research and Development Pro-
gram of China under Grant No. 2021ZD0112802, in part by National Natural Science Foundation

18

of China under Grant Nos. 62302194, 62472198, 62072215, 62250710682, 62332007, and U22B2028, in
part by Guangzhou Basic and Applied Basic Research Foundation under Grant Nos. 2025A04J2146,
2024A03J0405, and 2024A04J3458, in part by Guangdong Basic and Applied Basic Research Foun-
dation under Grant Nos. 2023B1515040020 and 2019B030302008, in part by Science and Technology
Major Project of Tibetan Autonomous Region of China (No. XZ202201ZD0006G), in part by Open
Research Fund of Machine Learning and Cyber Security Interdiscipline Research Engineering Center
of Jiangsu Province (No. SDGC2131), in part by HKU-SCF FinTech Academy and Shenzhen-Hong
Kong-Macao Science and Technology Plan Project (Category C Project: SGDX20210823103537030)
and Theme-based Research Scheme T35-710/20-R, and in part by National Joint Engineering Re-
search Center of Network Security Detection and Protection Technology, Guangdong Key Laboratory
of Data Security and Privacy Preserving, Guangdong Hong Kong Joint Laboratory for Data Security
and Privacy Protection, and Engineering Research Center of Trustworthy AI, Ministry of Education.

References

1. Abascal, J., Sereshgi, M.H.F., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Is the classical GMW
paradigm practical? the case of non-interactive actively secure 2pc. In: Ligatti, J., Ou, X., Katz, J.,
Vigna, G. (eds.) CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, USA, November 9-13, 2020. pp. 1591–1605. ACM (2020)

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In:
Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17,
1990, Baltimore, Maryland, USA. pp. 503–513. ACM (1990)

3. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-key blockcipher.
In: 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. pp.
478–492. IEEE Computer Society (2013)

4. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor,
V.D. (eds.) the ACM Conference on Computer and Communications Security, CCS’12, Raleigh, NC,
USA, October 16-18, 2012. pp. 784–796. ACM (2012)

5. Blum, M.: How to exchange (secret) keys. ACM Trans. Comput. Syst. 1(2), 175–193 (1983)
6. Brüggemann, A., Hundt, R., Schneider, T., Suresh, A., Yalame, H.: FLUTE: fast and secure lookup table

evaluations. In: 44th IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA, May
21-25, 2023. pp. 515–533. IEEE (2023)

7. Cui, H., Wang, X., Yang, K., Yu, Y.: Actively secure half-gates with minimum overhead under duplex
networks. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France,
April 23-27, 2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 14005, pp. 35–67. Springer
(2023)

8. Damg̊ard, I.: Practical and provably secure release of a secret and exchange of signatures. J. Cryptol.
8(4), 201–222 (1995)

9. Disser, Y., Günther, D., Schneider, T., Stillger, M., Wigandt, A., Yalame, H.: Breaking the size bar-
rier: Universal circuits meet lookup tables. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology -
ASIACRYPT 2023 - 29th International Conference on the Theory and Application of Cryptology and
Information Security, Guangzhou, China, December 4-8, 2023, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 14438, pp. 3–37. Springer (2023)

10. Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Authenticated garbling from simple correlations. In: Dodis,
Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology
Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part IV. Lecture
Notes in Computer Science, vol. 13510, pp. 57–87. Springer (2022)

11. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6),
637–647 (1985)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for
protocols with honest majority. In: Aho, A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA. pp. 218–229. ACM (1987)

13. Günther, D., Schmidt, J., Schneider, T., Yalame, H.: FLUENT: A tool for efficient mixed-protocol semi-
private function evaluation. In: Annual Computer Security Applications Conference, ACSAC 2024, Hon-
olulu, Hawaii, USA, December 9-13, 2024. pp. 1–14. ACM (2024)

14. Guo, C., Katz, J., Wang, X., Weng, C., Yu, Y.: Better concrete security for half-gates garbling (in the
multi-instance setting). In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology - CRYPTO 2020
- 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12171, pp. 793–822. Springer
(2020)

19

15. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation from fixed-key block
ciphers. In: 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. pp. 825–841. IEEE (2020)

16. Hamacher, K., Kussel, T., Schneider, T., Tkachenko, O.: PEA: practical private epistasis analysis using
MPC. In: Atluri, V., Pietro, R.D., Jensen, C.D., Meng, W. (eds.) Computer Security - ESORICS 2022 -
27th European Symposium on Research in Computer Security, Copenhagen, Denmark, September 26-30,
2022, Proceedings, Part III. Lecture Notes in Computer Science, vol. 13556, pp. 320–339. Springer (2022)

17. Hazay, C., Shelat, A., Venkitasubramaniam, M.: Going beyond dual execution: MPC for functions with
efficient verification. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key Cryptography
- PKC 2020 - 23rd IACR International Conference on Practice and Theory of Public-Key Cryptography,
Edinburgh, UK, May 4-7, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12111, pp.
328–356. Springer (2020)

18. Hong, C., Katz, J., Kolesnikov, V., Lu, W., Wang, X.: Covert security with public verifiability: Faster,
leaner, and simpler. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019 -
38th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III. Lecture Notes in Computer Science, vol.
11478, pp. 97–121. Springer (2019)

19. Huang, Y., Katz, J., Evans, D.: Quid-pro-quo-tocols: Strengthening semi-honest protocols with dual
execution. In: IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San Francisco,
California, USA. pp. 272–284. IEEE Computer Society (2012)

20. Huang, Z., Lu, W., Wang, Y., Hong, C., Wei, T., Chen, W.: Coral: maliciously secure computation
framework for packed and mixed circuits. In: Luo, B., Liao, X., Xu, J., Kirda, E., Lie, D. (eds.) Proceedings
of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, CCS 2024, Salt
Lake City, UT, USA, October 14-18, 2024. pp. 810–824. ACM (2024)

21. Impagliazzo, R., Yung, M.: Direct minimum-knowledge computations. In: Pomerance, C. (ed.) Advances
in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic Techniques,
Santa Barbara, California, USA, August 16-20, 1987, Proceedings. Lecture Notes in Computer Science,
vol. 293, pp. 40–51. Springer (1987)

22. Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenticated garbling for faster secure two-
party computation. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part III. Lecture Notes in Computer Science, vol. 10993, pp. 365–391. Springer (2018)

23. Kolesnikov, V., Mohassel, P., Riva, B., Rosulek, M.: Richer efficiency/security trade-offs in 2pc. In: Dodis,
Y., Nielsen, J.B. (eds.) Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9014,
pp. 229–259. Springer (2015)

24. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security
and Cryptography Foundations. Lecture Notes in Computer Science, vol. 5126, pp. 486–498. Springer
(2008)

25. Leuven, K.: SCALE and MAMBA. https://github.com/KULeuven-COSIC/SCALE-MAMBA/ (2018)

26. Liu, Y., Lai, J., Wang, Q., Qin, X., Yang, A., Weng, J.: Robust publicly verifiable covert security: Limited
information leakage and guaranteed correctness with low overhead. In: Guo, J., Steinfeld, R. (eds.) Ad-
vances in Cryptology - ASIACRYPT 2023 - 29th International Conference on the Theory and Application
of Cryptology and Information Security, Guangzhou, China, December 4-8, 2023, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 14438, pp. 272–301. Springer (2023)

27. Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computation. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key Cryptography - PKC 2006, 9th International Con-
ference on Theory and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 3958, pp. 458–473. Springer (2006)

28. Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: More efficient and secure two-party
computation. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II. Lecture
Notes in Computer Science, vol. 8043, pp. 36–53. Springer (2013)

29. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: Feldman, S.I.,
Wellman, M.P. (eds.) Proceedings of the First ACM Conference on Electronic Commerce (EC-99), Denver,
CO, USA, November 3-5, 1999. pp. 129–139. ACM (1999)

30. Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation with online/offline dual execution.
In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016. pp. 297–314. USENIX Association (2016)

20

https://github.com/KULeuven-COSIC/SCALE-MAMBA/

31. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: Thuraisingham,
B., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. pp. 1229–
1242. ACM (2017)

32. Rosulek, M., Roy, L.: Three halves make a whole? beating the half-gates lower bound for garbled circuits.
In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 12825, pp. 94–124. Springer (2021)

33. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty computation toolkit. https:
//github.com/emp-toolkit (2016)

34. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously secure two-party
computation. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017. pp. 21–37. ACM (2017)

35. Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple generation and authenticated
garbling. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS ’20: 2020 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, USA, November 9-13, 2020. pp. 1627–1646.
ACM (2020)

36. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foun-
dations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982. pp. 160–164. IEEE Computer
Society (1982)

37. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on
Foundations of Computer Science, Toronto, Canada, 27-29 October 1986. pp. 162–167. IEEE Computer
Society (1986)

38. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data transfer in garbled circuits
using half gates. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9057, pp.
220–250. Springer (2015)

39. Zhang, W., Guo, X., Yang, K., Zhu, R., Yu, Y., Wang, X.: Efficient actively secure DPF and ram-based
2PC with one-bit leakage. In: IEEE Symposium on Security and Privacy, SP 2024, San Francisco, CA,
USA, May 19-23, 2024. pp. 561–577. IEEE (2024)

A Proof of Security

The rest of this section is devoted to a proof of the following theorem:
Theorem 1. The protocol ΠOneBitAdv along with a secure projective garbling scheme that is point-
permute-freeXOR-compatible securely realizes functionality FOneBitAdv against PPT malicious (rush-
ing) adversaries in the (FCom, FOT, FOLE, FRand, FEq)-hybrid world.

Proof. Without loss of generality, we assume that PB is honest, while PA is corrupted by the adversary
A. The roles of PA and PB in protocol ΠOneBitAdv are symmetric, so a similar proof applies when PB

is corrupted.
For an adversary A corrupting PA in the (FCom, FOT, FOLE, FRand, FEq)-hybrid world, we construct

a simulator S, which plays the role of PB and runs A as a subroutine with auxiliary input z, interacting
with FOneBitAdv in the ideal world. The simulation has been given in Figure 2.

We now proceed to prove that the joint distribution of the view of A and the output of PB in
the ideal world is computationally indistinguishable from the joint distribution of the view of A and
the output of PB in the real protocol execution. We prove this by defining a sequence of experiments,
where the output of each consists of the view of A and the output of PB, and showing that the output
of each is computationally indistinguishable from the output of the subsequent one.
Expt0. This experiment represents the ideal-world execution between the simulator S and the honest
party PB, holding the input xB. Both interact with FOneBitAdv. We inline the actions of S, FOneBitAdv,
and PB, and rewrite the experiment as follows.

1 Sample ∆B ←$Fκ
2 , such that lsb(∆B) = 1.

2 Compute
(GC′, X ′, z)← SGb(1κ, C)

where X ′ = {X ′
i}i∈[nO]. Let Y

′ = {Y ′
i }i∈[nO] = Ev(GC′, X ′). For each output wire w = out(i), S defines

ẑ′w = lsb(Y ′
i).

21

https://github.com/emp-toolkit
https://github.com/emp-toolkit

Acting as FCom, inform the adversary A that the honest party PB has committed his garbled circuit
to FCom. Subsequently, obtain the garbled circuit GC from A.

3 If PA is the receiver in FOT, receive xA from A, send {X ′
i}i∈[nA]

to A, and store xA. If PA is the sender
in FOT, receive {(Xi,0, Xi,1)}i∈[nA+1,n] from A.

4 Send {X ′
i}i∈[nA+1,n] to A and receive {Xi}i∈[nA]

from A.
5 Acting as FCom, open GC′ to A.
6 As the receiver of FOLE, receive L0 and ∆̂A from A. As the sender, receive a0 from A and return

A0,2 ←$Fκ
2 to A. Set L′

0 := A0,2 ⊕ a0∆B.
7 For i ∈ [nO], define the Boolean function gi (resp. g′i) with fixed input xA and variable xB ∈ {0, 1}nB

as follows:
(a) Let Xi := Xi,xB[i−nA] for i ∈ [nA + 1, n].
(b) Compute Y := Ev(GC, X), where X = {Xi}i∈[n].
(c) Define Bi,1 := Yi and bi,1 := ẑw = lsb(Yi) for w = out(i).
(d) Compute y := C(xA, xB), where y = (y1, · · · , ynO) ∈ {0, 1}

nO .
(e) Let λ′

w := yi ⊕ ẑ′w, and define bi,2 := λ′
w for w = out(i).

(f) Set Bi,2 := Y ′
i ⊕ yi∆B and Bi := Bi,1 ⊕Bi,2.

(g) Output αi := Bi ⊕ bi,1∆̂A ⊕ bi,1∆B (resp. α′
i := Bi ⊕ bi,2∆̂A ⊕ bi,2∆B).

Compute αi := gi(xA, xB) and α′
i := g′i(xA, xB) for i ∈ [nO], pick random values {ri, r′i}i∈[nO], and

forward these random values to A with respect to FRand.
Randomly select b←$Fκ

2 and send it to A. Meanwhile, receive a ∈ Fκ
2 from A.

8 Receive β̂ ∈ Fκ
2 from A with respect to FEq. Compute β := β̂ ⊕ b∆̂A ⊕ L0 ⊕ L′

0 ⊕ a∆B, and then check

if β =
(∑

i∈[nO] riαi

)
⊕

(∑
i∈[nO] r

′
iα

′
i

)
. If the equation does not hold, simulate rejection by honest

PB. Otherwise, proceed to the next step.
9 Compute y := C(xA, xB). For i ∈ [nO], proceed as follows.

(a) Compute bi,2 = λ′
w := yi ⊕ ẑ′w for w = out(i) and send it to A. Simultaneously, receive ai,1 from

A.
(b) Receive α̃i with respect to FEq. Then compute b̂i,1 := yi⊕ai,1 and check if αi⊕ b̂i,1∆B⊕ b̂i,1∆̂A =

α′
i ⊕ bi,2∆B ⊕ bi,2∆̂A. If the equation does not hold, simulate rejection by PB.

Then check if α̃i = αi⊕ ai,1∆B⊕ ai,1∆̂A⊕ yi∆̂A. If the equation does not hold, simulate rejection
by PB. Otherwise, output whatever A outputs and continue.

Expt1. Since each gi and g′i perform similar computation in steps 7a–7g, redundant calculations can
be combined. Step 7 of the previous experiment can be modified as follows:

7 Pick random {ri, r′i}i∈[nO] and forward them to A as FRand.

Follow the procedure below to compute αi and α′
i for i ∈ [nO].

(a) Let Xi := Xi,xB[i−nA] for i ∈ [nA + 1, n].
(b) Compute Y := Ev(GC, X), where X = {Xi}i∈[n].
(c) Define Bi,1 := Yi and bi,1 := ẑw = lsb(Yi) for w = out(i) and i ∈ [nO].
(d) Compute y := C(xA, xB), where y = (y1, · · · , ynO) ∈ {0, 1}

nO .
(e) Let λ′

w := yi ⊕ ẑ′w, and define bi,2 := λ′
w for w = out(i) and i ∈ [nO].

(f) Set Bi,2 := Y ′
i ⊕ yi∆B and Bi := Bi,1 ⊕Bi,2 for i ∈ [nO].

(g) Let αi := Bi ⊕ bi,1∆̂A ⊕ bi,1∆B and α′
i := Bi ⊕ bi,2∆̂A ⊕ bi,2∆B for i ∈ [nO].

Randomly select b←$Fκ
2 and send it to A. Meanwhile, receive a ∈ Fκ

2 from A.

It is easy to verify that the outputs of Expt1 and Expt0 are identically distributed.

Expt2. Move the computation of y := C(xA, xB) from Step 7 to Step 3, with the same computation
of y in Step 9 eliminated. Since the computation of y based on xA, xB, and C is deterministic, this
rearrangement does not alter the output distribution. Additionally, the assignment Xi := Xi,xB[i−nA]

for i ∈ [nA+1, n] is moved from Step 7 to Step 3. Moreover, computations including Y := Ev(GC, X),
Bi,2 := Y ′

i ⊕ yi∆B, λ
′
w := yi ⊕ ẑ′w, bi,2 := λ′

w, Bi,1 := Yi, bi,1 := ẑw = lsb(Yi), and Bi := Bi,1 ⊕ Bi,2

for w = out(i) and i ∈ [nO], are moved from Step 7 to Step 5. We also note that bi,2 does not need to
be recomputed in Step 9, as it is already computed (in Step 5 of this experiment).

It is evident that the outputs of Expt2 and Expt1 are identically distributed.

Expt3. Step 6 of the previous experiment is modified as follows.

6 Use FOLE to receive L0 and ∆̂A from A. Sample L′
0 ←$Fκ

2 . As the sender of FOLE, receive a0 from A,
compute A0,2 := L′

0 ⊕ a0∆B, and send it to A.

22

Since L′0 is uniquely defined by the randomly generated A0,2 ∈ Fκ
2 in the previous experiment, al-

tering the order in which A0,2 and L′0 are generated does not impact the output distribution of the
experiment. Consequently, the outputs of Expt3 and Expt2 remain identically distributed.
Expt4. Step 3 in the previous experiment is modified as follows.

3 If PA is the receiver in FOT, receive xA from A and send {X ′
i}i∈[nA]

to A. Compute y := C(xA, xB). If
PA is the sender, use FOT with input xB to obtain Xi := Xi,xB[i−nA] for i ∈ [nA + 1, n].

Since values Xi,1−xB[i−nA] are not used in the experiment, executing FOT honestly does not change
the output of the experiment.

Step 6 is also modified as follows.

6 Pick b0 ←$Fκ
2 . As the receiver, use FOLE to receive B0,1 := L0 ⊕ b0∆̂A, where L0 and ∆̂A are from A.

Sample L′
0 ←$Fκ

2 . As the sender, use FOLE with input L′
0 and ∆B, sending A0,2 := L′

0⊕ a0∆B based on
A’s input a0 to A. Let B0,2 := L′

0 ⊕ b0∆B and B0 := B0,1 ⊕B0,2.

In this modified step, FOLE is honestly executed in the sender role. Additionally, added B0,1, B0,2

and B0 are values unused elsewhere in the protocol. Therefore, these modifications do not affect the
experiment’s output.

In Step 7, the value b sent to A is now computed as b := b0 ⊕
(∑

i∈[nO]
ribi,1

)
⊕
(∑

i∈[nO]
r′ibi,2

)
,

and we rewrite it as follows.

7 Use FRand to choose random {ri, r′i}i∈[nO] and forward them to A.

Compute b := b0 ⊕
(∑

i∈[nO] ribi,1
)
⊕

(∑
i∈[nO] r

′
ibi,2

)
and send it to A. Meanwhile, receive a ∈ Fκ

2

from A.
Let αi := Bi ⊕ bi,1∆̂A ⊕ bi,1∆B and α′

i := Bi ⊕ bi,2∆̂A ⊕ bi,2∆B for i ∈ [nO].

Since b0 is randomly selected and is not used elsewhere, b maintains the same distribution as before.
The outputs of Expt4 and Expt3 are thus identically distributed.
Expt5. In this experiment, Step 8 from the previous experiment is modified as follows.

8 Receive β̂ ∈ Fκ
2 from A with respect to FEq. Verify if β̂ = B0 ⊕

(∑
i∈[nO] riBi

)
⊕

(∑
i∈[nO] r

′
iBi

)
⊕

(a ⊕ b)∆B. If this equation does not hold, simulate a rejection by the honest PB. Otherwise, proceed
to the next step.

In the previous experiment, we compute β := β̂⊕b∆̂A⊕L0⊕L′0⊕a∆B and check if β =
(∑

i∈[nO]
riαi

)
⊕(∑

i∈[nO]
r′iα

′
i

)
. This is equivalent to verifying that

β̂ =

 ∑
i∈[nO]

riαi

⊕
 ∑

i∈[nO]

r′iα
′
i

⊕ b∆̂A ⊕ L0 ⊕ L′0 ⊕ a∆B

=

 ∑
i∈[nO]

ri

(
Bi ⊕ bi,1∆̂A ⊕ bi,1∆B

)
⊕

 ∑
i∈[nO]

r′i

(
Bi ⊕ bi,2∆̂A ⊕ bi,2∆B

)
⊕ b∆̂A ⊕ b∆B ⊕ L0 ⊕ L′0 ⊕ a∆B ⊕ b∆B

=

 ∑
i∈[nO]

riBi

⊕
 ∑

i∈[nO]

r′iBi

⊕ b0∆̂A ⊕ b0∆B

⊕ L0 ⊕ L′0 ⊕ (a⊕ b)∆B

=B0 ⊕

 ∑
i∈[nO]

riBi

⊕
 ∑

i∈[nO]

r′iBi

⊕ (a⊕ b)∆B ,

23

where we use the fact that b0 = b⊕
(∑

i∈[nO]
ribi,1

)
⊕
(∑

i∈[nO]
r′ibi,2

)
, B0,1 = L0⊕ b0∆̂A, B0,2 = L′0⊕

b0∆B, and B0 = B0,1⊕B0,2. Therefore, the outputs of Expt5 and Expt4 are identically distributed.
Expt6. Step 9 in the previous experiment is modified as follows.

9 For i ∈ [nO], follow the procedure below.
(a) Send bi,2 to A. Meanwhile, receive ai,1 from A.
(b) Receive α̃i with respect to FEq. Then check if bi,1 ⊕ ai,1 = yi. If the equation does not hold,

simulate rejection by PB.
Then check if α̃i = Bi⊕ yi∆B. If the equation does not hold, simulate rejection by PB. Otherwise,
output whatever A outputs and continue.

In the previous experiment, we begin by verifying if αi ⊕ b̂i,1∆B ⊕ b̂i,1∆̂A = α′
i ⊕ bi,2∆B ⊕ bi,2∆̂A,

where b̂i,1 := yi ⊕ ai,1, αi = Bi ⊕ bi,1∆B ⊕ bi,1∆̂A, and α′
i = Bi ⊕ bi,2∆B ⊕ bi,2∆̂A. This is equivalent

to checking if

Bi ⊕ bi,1∆B ⊕ bi,1∆̂A ⊕ (yi ⊕ ai,1)∆B ⊕ (yi ⊕ ai,1)∆̂A

= Bi ⊕ bi,2∆B ⊕ bi,2∆̂A ⊕ bi,2∆B ⊕ bi,2∆̂A

and thus checking
(bi,1 ⊕ ai,1 ⊕ yi)(∆B ⊕ ∆̂A) = 0 .

Since ∆B is randomly chosen and GC′ is simulated, we have ∆B ̸= ∆̂A except with negligible proba-
bility. Hence, verifying bi,1 ⊕ ai,1 = yi is sufficient.

Furthermore, if bi,1 ⊕ ai,1 = yi, then checking α̃i = αi ⊕ ai,1∆B ⊕ ai,1∆̂A ⊕ yi∆̂A is equivalent to
verifying

α̃i = Bi ⊕ bi,1∆B ⊕ bi,1∆̂A ⊕ ai,1∆B ⊕ ai,1∆̂A ⊕ yi∆̂A

= Bi ⊕ yi∆B

Therefore, the output of Expt6 and Expt5 are identically distributed.
Since now αi and α′

i are no longer required in this experiment, they can be safely removed.
Expt7. In this experiment, the functionality FCom in Step 2 and 4 is executed honestly as in the
real world. Since GC and GC′ are not used before Step 5, this modification does not change the

output distribution. Additionally, in Step 7, compute B := B0⊕
(∑

i∈[nO]
riBi

)
⊕
(∑

i∈[nO]
r′iBi

)
and

honestly execute FEq in Step 8 to verify if β̂ = B ⊕ (a⊕ b)∆B. It is straightforward to verify that the
outputs of Expt7 and Expt6 remain identically distributed.
Expt8. Step 2 to Step 5 of the previous experiment is modified as follows.

2 Compute
(GC′, e′, dk′, d′, D′)← Gb(1κ, C;∆B) ,

where e′ =
{
(X ′

i,0, X
′
i,1)

}
. Here dk′ can be used to derive the point-permute bit λ′

w’s and output-wire
label L′

w,0’s for each wire w ∈ WO, respectively. Use FCom to commit GC′.
3 If PA is the receiver in FOT, send

{
X ′

i,xA[i]

}
i∈[nA]

with respect to A’s input xA to A. If PA is the sender,

use FOT to obtain Xi := Xi,xB[i−nA] for i ∈ [nA + 1, n]. Compute y := C(xA, xB).
4 Send

{
X ′

i = X ′
i,xB[i−nA]

}
i∈[nA+1,n]

to A. Receive {Xi}i∈[nA]
from A.

5 Open GC′ to A via FCom. Learn the garbled circuit GC generated by A from FCom. Compute Y :=
Ev(GC, X), where X = {Xi}i∈[n]. Define Bi,1 := Yi and bi,1 := ẑw = lsb(Yi) for w = out(i) and
i ∈ [nO].
Set Bi,2 := L′

w,0 ⊕ λ′
w∆B and bi,2 := λ′

w for w = out(i) and i ∈ [nO]. Let Bi := Bi,1 ⊕Bi,2.

Since the garbling scheme achieves equivocable privacy, replacing the garbled circuits simulated by
(SGb,S ′Gb) by an honestly generated garbled circuit only incurs a negligible difference in the output
distribution. Note that in the previous experiment, we set Bi,2 := Y ′

i ⊕ yi∆B. Since

Bi,2 = Y ′
i ⊕ yi∆B = L′w,ẑ′

w
⊕ yi∆B

= L′w,0 ⊕ ẑ′w∆B ⊕ yi∆B = L′w,0 ⊕ λ′
w∆B

Computing Bi,2 = L′w,0 ⊕ λ′
w∆B derive the same Bi,2 as Bi,2 = Y ′

i ⊕ yi∆B. Therefore, the output
distribution of Expt8 is computationally indistinguishable from that of Expt7.
Expt9. In this experiment, we modify Step 9 in the previous experiment as follows.

24

9 For i ∈ [nO], follow the procedure below.
(a) Send bi,2 to A. Meanwhile, receive ai,1 from A.
(b) Receive α̃i with respect to FEq. Then check if α̃i = Bi ⊕ (ai,1 ⊕ bi,1)∆B. If the equation does not

hold, simulate rejection by honest PB. Otherwise, output whatever A outputs and continue.

Since the value y is no longer used in this experiment, we can remove the assignment y := C(xA, xB)
in Step 3.

If ai,1 ⊕ bi,1 = yi, where y = C(xA, xB) as computed in the previous experiment, then verifying if
α̃i = Bi ⊕ yi∆B is equivalent to verifying if α̃i = Bi ⊕ (ai,1 ⊕ bi,1)∆B. Thus, the output distribution
of Expt9 is identical to that of Expt8.

We proceed to show that if ai,1 ⊕ bi,1 ̸= yi, then α̃i ̸= Bi ⊕ (ai,1 ⊕ bi,1)∆B except with negligible
probability. Consequently, PA will reject A as in the previous experiment.

Define ȳi = ai,1 ⊕ bi,1 = yi ⊕ 1. If ai,1 ⊕ bi,1 ̸= yi and α̃i = Bi ⊕ (ai,1 ⊕ bi,1)∆B, then the value α̃i

provided by A satisfies

α̃i = Bi ⊕ (ai,1 ⊕ bi,1)∆B = Bi,1 ⊕Bi,2 ⊕ ȳi∆B

= Yi ⊕ (L′w,0 ⊕ λ′
w∆B)⊕ ȳi∆B

= Yi ⊕ L′w,0 ⊕ (λ′
w ⊕ ȳi)∆B

= Yi ⊕ L′w,ẑ′
w⊕1

for w = out(i), where we use the fact that λ′
w ⊕ ȳi = ẑ′w ⊕ 1 in the last equation. Since A knows

both α̃i and Yi, it can derive the output-wire label L′w,ẑ′
w⊕1 of the garbled circuit GC generated by

the honest PB. This result contradicts the authenticity against one-bit leakage property of the secure
garbling scheme. Therefore, the output of Expt9 is indistinguishable from that of Expt8.

As Expt9 corresponds to a real-world execution of the protocol, this concludes the proof.
⊓⊔

25

	Highly Efficient Actively Secure Two-Party Computation with One-Bit Advantage Bound

