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Abstract—Semantic communication systems, which focus on
transmitting the semantics of data rather than its exact re-
construction, redefine the design of communication networks
for transformative efficiency in bandwidth-limited and latency-
critical applications. Addressing these goals, we tackle the rate-
distortion-perception (RDP) problem for image compression, a
critical challenge in achieving perceptually realistic reconstruc-
tions under rate constraints. Formulated within the randomized
distributed function computation (RDFC) framework, we estab-
lish an achievable non-asymptotic RDP region, providing finite
blocklength trade-offs between rate, distortion, and perceptual
quality, aligning with semantic communication objectives. We
extend this region to also include a secrecy constraint, providing
strong secrecy guarantees against eavesdroppers via physical-layer
security methods, ensuring resilience against quantum attacks.
Our contributions include (i) establishing achievable bounds
for non-asymptotic RDP regions under realism and distortion
constraints; (ii) extending these bounds to provide strong secrecy
guarantees; (iii) characterizing the asymptotic secure RDP region
under a perfect realism constraint; and (iv) illustrating significant
reductions in rates and the effects of secrecy constraints and finite
blocklengths. Our results provide actionable insights for designing
low-latency, high-fidelity, and secure image compression systems
with realistic outputs, advancing applications, e.g., in privacy-
critical domains.

I. INTRODUCTION

The rapid evolution of communication systems toward se-
mantic communications marks an important shift in the design
and objectives of modern communication networks. Unlike
conventional approaches that prioritize exact signal reconstruc-
tion, semantic communication systems transmit the semantics
of the data, aligning more closely with the requirements of
real-world applications [1], [2]. This transition is particularly
impactful in bandwidth-constrained and low-latency scenarios,
such as immersive multimedia systems, autonomous vehicles,
and augmented reality, where transmitting only the semantically
significant features of the data can drastically reduce commu-
nication overhead while maintaining functional utility.

The semantic communications problem is shown to be an
instance of remote source coding problems [3], [4, pp. 118], [5,
pp. 78], where the receiver computes a hidden function of the
data observed at the transmitter. We recently extended this idea
to introduce the randomized distributed function computation
(RDFC) framework [6]. This framework takes into account that
numerous practical distributed function computation scenarios

require a controlled randomization step. Example applications
that require such a controlled randomization in the form of
preserving a synthesized probability distribution include neural
data compression methods with generative models [7], [8],
federated learning with side information [9], and compres-
sion methods used as differential privacy mechanisms [6],
[10], [11]. The synthesis of the randomization step by using
coded encoding and decoding methods, as in RDFC,–rather
adding additional random noise– allows the receiver to gen-
erate outputs that align statistically with a target distribution
while maintaining the output utility. This flexibility enables
substantial gains in communication efficiency, especially in
latency-sensitive and privacy-critical environments. Moreover,
the RDFC framework provides strong performance guarantees
with limited or no common randomness shared between the
transmitter and receiver, as the performance guarantees are for
each function computation instance [6], [12], [13].

In this work, we consider the rate-distortion-perception
(RDP) problem that considers, for instance, image compression
applications [14, Section 17.4.2]. The RDP problem is a specific
instance of RDFC and a crucial challenge in achieving per-
ceptually realistic image reconstructions under rate constraints
[15]–[19]. This problem extends the classical rate-distortion
trade-off by incorporating a perceptual quality constraint, en-
suring that reconstructed signals, such as images, not only
minimize distortion but also align with human-perceived qual-
ity. There are powerful deep learning-based discriminators that
are used to output images indistinguishable from the original
images, such as in [20]–[22]. A common way to impose
a realism constraint such that its mathematical analysis is
tractable is to impose that the probability distribution of the
reconstructed image is close to the probability distribution of
the original image; see, for instance, [23], [24] for an extensive
summary and a list of such existing methods. This set of realism
constraints is a special case of the RDFC framework, as the
synthesized randomization step should ensure for the former
that the receiver outputs are distributed according to a prob-
ability distribution close to the transmitter inputs’ probability
distribution. In this work, by formulating the RDP problem
within the RDFC framework, we adopt coded RDFC methods
with strong function computation guarantees for limited or no
common randomness to establish the non-asymptotic limits of



RDP in finite blocklength regimes.
We characterize achievable non-asymptotic trade-offs be-

tween rate, distortion, and perceptual quality for the RDP prob-
lem. These non-asymptotic limits will provide system designers
with theoretical benchmarks against which practical strategies
can be tested and with design guidelines, offering actionable
insights for real-world applications where low-latency image
compression is vital.

Moreover, distributed function computation problems are
usually susceptible to information leakage through public com-
munication channels [25]. Since we propose coding-theoretic
methods for the RDP problem, these code constructions can
be modified by using physical layer security (PLS) methods
to minimize information leakage to an eavesdropper. Thus,
we also consider image compression scenarios, where the
transmitter output is observed by not only the receiver but
also any eavesdropper. This provides an additional layer of
security guarantee that is independent of the attackers’ com-
putational power, making them resistant to quantum attacks,
unlike classical cryptographic methods [26]. Moreover, PLS is
also known to be vital for joint source-channel coding-based
image compression applications [27], which are direct exten-
sions of our RDP models. We establish asymptotic and non-
asymptotic secure RDP regions with strong secrecy guarantees,
where the leakage is asymptotically negligible, unlike common
PLS methods that limit the normalized leakage, providing weak
secrecy guarantees.

A. Main Contributions and Paper Organization

A summary of the main contributions is as follows. We
• Establish an achievable non-asymptotic RDP region under

realism and distortion constraints, providing inner bounds
on required rates for finite blocklengths with strong guar-
antees on perceptual quality;

• Extend the non-asymptotic RDP region to include
an information-leakage constraint, deriving achievable
bounds that ensure strong secrecy guarantees while main-
taining perceptual quality and distortion performance;

• Characterize the asymptotic secure RDP region under
perfect realism constraint, demonstrating the relationship
between near-perfect and perfect realism constraints; and

• Analyze the rate regions by (i) illustrating significant
communication load reductions achieved by RDFC meth-
ods over classical data compression methods; (ii) evalu-
ating the impact of incorporating secrecy constraints on
achievable rates; and (iii) drawing analogies between non-
asymptotic and asymptotic results.

In Section II, we define the model used for a point-to-
point RDFC problem aiming to obtain high perceptual quality
in image compression under distortion and communication
constraints, as well as nonasymptotic RDP regions with and
without secrecy constraint. In Section III, we establish three
main results of this work by characterizing two achievable rate
regions for finite lengths and the optimal rate region for secure
RDP problems in the asymptotic regime. In Section IV, we
compare the established rate regions with each other and with

classical data compression methods, as well as their asymptotic
counterparts. In Section V, we provide the proof sketches
for the two main results of this work given in Section III.
In Section VI, we conclude the paper and list the potential
scientific and technological impact of our RDP results.

B. Notation

We represent random variables with upper-case letters X and
their realizations with lower-case letters x. A random variable
X has probability distribution PX with support supp(PX).
Calligraphic letters, e.g., X , denote sets with cardinality |X |.
We represent n-letter random variable sequences as Xn =
X1, X2, . . . , Xn. Denote the probability distribution of a se-
quence of independent and identically distributed (i.i.d.) ran-
dom variables as Pn

X ≜
∏n

i=1 PX . Denote total variation
distance as

∥PY − PX∥TV ≜
1

2

∑
b∈B

|PY (b)− PX(b)|. (1)

O(·) denotes the Big O notation. Denote information density
of a probability distribution PXY as

ı(X,Y ) = log
PXY (x, y)

PX(x)PY (y)
. (2)

The variance of a random variable is denoted as Var[·] and
the inverse Q-function, i.e., the tail distribution function of a
standard normal distribution, as Q−1(·). Define for any k ∈ R,
[k]+ = max{k, 0}. Logarithms are in base 2. [a : b] denotes the
set of integers {a, a+1, . . . , b}. {·}c denotes a complementary
event. For any δ > 0, a sequence xn is defined to be δ-letter
typical with respect to PX , denoted as xn ∈ Tn

δ (PX) if the
empirical probability distribution N(.|xn)/n satisfies∣∣∣∣∣N(a|xn)

n
− PX(a)

∣∣∣∣∣ ≤ δPX(a) for all a ∈ X . (3)

II. PROBLEM DEFINITION

Consider the point-to-point RDFC problem that aims to
achieve a high perceptual quality under communication-rate and
reconstruction-distortion constraints, as depicted in Fig. 1. The
encoder observes an image Xn ∈ Xn, where X is finite, and
has access to common randomness C ∈ [1 : 2nR0 ] shared be-
tween the encoder and decoder, which is uniformly distributed
and independent of Xn. One promising way to obtain such a
uniformly-distributed and independent common randomness is
the use of digital security primitives, called physical unclonable
functions [28], from which random sequences can be extracted
and distributed. The encoder outputs an index S ∈ [1 : 2nR],
obtained as S = Enc(Xn, C), where Enc(·) is the encoding
function. Assume that the index S is observed noiselessly at
the decoder, which can be achieved by using error-correcting
codes for reliable communications. The aim of the decoder is to
output an image Y n = yn, obtained as Y n = Dec(S,C) ∈ Xn,
where Dec(·) is the decoding function, such that
(i) the induced output image probability distribution PY n ,
where yn ∼ PY n , is almost equal to the input image probability



Xn

C∈ [1 :2nR0 ]

Enc Dec

Y n s.t. Y n∼Qn
X

E[d(Xn, Y n)]≤D
S∈ [1 :2nR]

Fig. 1. An RDP model for deep learning-based image compression applica-
tions, where a realism constraint is imposed by ensuring that the distribution of
the image reconstructed at the receiver is close to the distribution of the original
image, i.e., Y n ∼ Qn

X given Xn ∼ Qn
X . This enables high perceptual quality

for the reconstructed image Y n. Moreover, the expected distortion between Xn

and Y n should be minimized to limit the image compression’s effect on the
image quality. We consider low-latency RDP by considering a finite blocklength
n and minimizing the rate R for a given common randomness rate R0 ≥ 0.

distribution Qn
X ;

(ii) the rate R is minimized, given a common randomness rate
R0; and
(iii) the distortion between the input and output images is
minimized.

Nonasymptotic performance limits of the RDP trade-off can
be characterized by fixing the blocklength n ≥ 1, which
provides low-latency image compression. Thus, we next define
two non-asymptotic regions for this RDFC problem with and
without a secrecy constraint against an eavesdropper who might
observe the index S sent through a public communication
channel. In the following, assume any ϵr, ϵD, ϵsec > 0.

Definition 1. An RDP tuple (R,R0, D) is (ϵr, ϵD, n)-achievable
for QX if there exist one encoder and one decoder such that

∥PY n −Qn
X∥TV ≤ ϵr (realism) (4)

E
[
d(Xn, Y n)

]
≤D+ϵD (distortion) (5)

where d(xn, yn) =
1

n

n∑
i=1

d(xi, yi) is any per-letter distortion

metric bounded from above by a value dmax > 0.
The nonasymptotic RDP region RRDP is the closure of the

set of all achievable tuples. ♢

We next include a secrecy constraint to consider the in-
formation leakage about the reconstructed image Y n to an
eavesdropper who observes the index S. This is particularly rel-
evant for applications such as generative artificial intelligence in
the creation of artistic digital content, where the reconstructed
output represents the final, valuable product.

Definition 2. An RDP tuple (R,R0, D) is (ϵr, ϵD, ϵsec, n)-
achievable for QX under a secrecy constraint if there exist
one encoder and one decoder such that (4), (5), and

||PSY n − PSPY n ||TV ≤ ϵsec (secrecy). (6)

The nonasymptotic secure RDP region RSRDP is the closure
of the set of all achievable tuples under the secrecy constraint
imposed. ♢

Note that the secrecy leakage constraint in (6) corresponds
to a strong secrecy constraint, which measures unnormalized
information leakage, unlike classical weak secrecy constraint,
used, for instance, in [29].

We next provide non-asymptotic RDP tuples achievable for
RRDP and RSRDP.

III. NONASYMPTOTIC LIMITS OF RDP TRADE-OFF

Similar to [30]–[32], denote channel dispersions for the
channels PU |X and PU |Y , respectively, as

VU |X = EPUX

[
Var[ı(U,X)|U ]

]
, (7)

VU |Y = EPUY

[
Var[ı(U, Y )|U ]

]
. (8)

We remark that PU |X and PU |Y are test channels connecting X
and Y from the model in Fig. 1 to an auxiliary random variable
U , which represents the designed codebook. Define

µxy = min
(x,y)∈supp(PXY )

PXY (x, y). (9)

Now, we provide an (ϵr, ϵD, n)-achievable nonasymptotic RDP
region RRDP. The proof sketch of Theorem 1 is given in
Section V-A below.

Theorem 1. An (ϵr, ϵD, n)-achievable nonasymptotic RDP re-
gion is the union over all joint distributions PXUY of the rate
tuples (R,R0, D) satisfying

R ≥
[
I(U ;X) +Q−1

(
ϵr+O

( 1√
n

))√VU |X

n

+O
( log n

n

)]+
, (10)

R+R0 ≥
[
I(U ;Y ) +O

( log n
n

)
+Q−1

(
ϵr+O

( 1√
n

))√VU |Y

n

]+
(11)

where X − U − Y form a Markov chain, and

D ≥ E[d(X,Y ))]− δD (12)

such that

ϵD = δD(1 +D + δD) + 2|X |2e−2nδ2Dµ
2
xydmax. (13)

It suffices to consider |U| ≤ |X |2 + 1.

The asymptotic counterparts of the bounds in (10)-(13)
recover the RDP region established in [24, Theorem 6] that
extends [33, Theorems 1 and 5], which follows by allowing
n → ∞ in (10)-(13).

Remark 1. The asymptotic RDP region, obtained by allowing
n → ∞ in Theorem 1, shows that a rate of R = I(U ;X) is
asymptotically achievable if enough common randomness C is
available, i.e., if R0 ≥ I(U ;Y )− I(U ;X). Since the minimum
rate a lossless compression method can achieve is H(X),
the RDP methods can provide remarkable gains, measured as
H(X)/I(U ;X), as compared to classical data compression
methods. The rate gains from using common randomness for
RDFC are illustrated in [6] to be more than 214 times when



RDFC methods are used for differential privacy applications.
Thus, depending on the target probability distortion QX and
the choice of the distortion metric d(·, ·), such gains can also
be illustrated for the RDP problem.

Next, we provide an (ϵr, ϵD, ϵsec, n)-achievable nonasymptotic
secure RDP region RSRDP. The proof sketch of Theorem 2 is
given in Section V-B below.

Theorem 2. An (ϵr, ϵD, ϵsec, n)-achievable nonasymptotic se-
cure RDP region is the union over all joint distributions PXUY

of the rate tuples (R,R0, D) satisfying, for any θ ∈ [0, 1], (12),
(13), and

R ≥
[
I(U ;X) +Q−1

(
θ
(
ϵr+O

( 1√
n

)))√VU |X

n

+O
( log n

n

)]+
, (14)

R0 ≥
[
I(U ;Y ) +O

( log n
n

)
+Q−1

(
(1−θ)

(
ϵsec+O

( 1√
n

)))√VU |Y

n

]+
(15)

where X−U −Y form a Markov chain. It suffices to consider
|U| ≤ |X |2 + 1.

Note that the asymptotic counterparts of the bounds in (12)-
(15) recover the secure RDP region established in [34], which
follows by allowing n → ∞ and removing multiplications with
θ and (1− θ) in (14) and (15), respectively.

The realism constraint imposed in (4) is sometimes called a
near-perfect realism constraint, since for (4) one can achieve
an ϵr such that ϵr → 0 when n → ∞, but ϵr is not equal to
zero. The perfect realism constraint imposes

∥PY n −Qn
X∥TV = 0 (perfect realism) (16)

for which we have the following asymptotic result.

Theorem 3. The asymptotic secure RDP region with perfect
realism constraint is the union over all joint distributions
PXUY of the rate tuples (R,R0, D) satisfying

R ≥ I(U ;X), (17)
R0 ≥ I(U ;Y ), (18)
D ≥ E[d(X,Y )] (19)

where X−U−Y forms a Markov chain. It suffices to consider
|U| ≤ |X |2 + 1.

Proof Sketch. The proof follows by combining the asymptotic
counterparts of the bounds in (12)-(15) by allowing n → ∞,
which recover the region established in [34], with [23, The-
orem 1]. The latter proves that if (d(·, ·), QX) is uniformly
integrable, defined in [23, Definition 3], then the rate tuples
(R,R0, D) are achievable with near-perfect realism if and only
if they are achievable with perfect realism constraint. Note that
it is shown in [23] that any (d(·, ·), QX) pair is uniformly
integrable for finite X , thus combining the results in [34] with
[23, Theorem 1] proves Theorem 3.

Remark 2. Although the asymptotic secure RDP regions with
near-perfect and perfect realism constraints have the same
bounds, the optimal code constructions are not necessarily the
same.

IV. RATE REGION COMPARISONS AND ANALYSIS

A. Comparisons Between The Rate Regions With and Without
Secrecy Constraint

The achievable rate regions with and without secrecy con-
straints differ not only in their bounds but also in their struc-
tural forms. In the achievable secure RDP region, each rate
component is separately bounded to meet the requirements of
realism and secrecy. Moreover, the realism ϵr and secrecy ϵsec
parameters are scaled by θ and (1 − θ), respectively, which
causes larger additive terms in the bounds as compared to the
achievable non-secure RDP region. Moreover, the absence of
secrecy constraints in the achievable non-secure RDP region
results in a sum-rate constraint, which expands the achievable
rate region as compared to the achievable secure RDP region.
These structural differences underscore the additional cost of
providing strong secrecy guarantees, as achieving them requires
higher communication or common randomness rates, whose
effect is increased for finite blocklengths. These differences are
crucial for applications where the decision between secure and
non-secure compression depends on specific trade-offs among
security, latency, distortion, and realism performance.

B. Comparisons Between The Rate Regions and Their Asymp-
totic Counterparts

Comparisons between the nonasymptotic achievable RDP
regions and their asymptotic counterparts elucidate the impact
of finite blocklength constraints on the RDP trade-offs. In the
non-asymptotic regimes, the achievable bounds include terms
such as Q−1(ϵ)

√
V/n, reflecting finite-length penalties due

to the statistical fluctuations inherent in finite blocklengths.
The additional terms have a similar form to the terms in
the finite-length channel and source coding results [30], [35].
These penalties vanish as n → ∞, recovering the asymptotic
rate regions, as mentioned above. However, their presence in
finite blocklength settings imposes stricter constraints on rates
and distortion as compared to asymptotic results. The insights
gained from finite blocklength analysis is crucial for estab-
lishing reference performance baselines for image compression
system designs that must operate efficiently within stringent
latency, realism, and distortion constraints.

V. PROOF SKETCHES OF THEOREM 1 AND THEOREM 2

A. Proof Sketch of Theorem 1

Proof Sketch. The achievability proof follows by applying
nonasymptotic binning methods proposed and used, e.g., in
[32], [36], [37], which basically develop finite-length code
constructions as in [30], [35] for the output statistics of random
binning (OSRB) method [38], [39]; see also [40]. We next
present the main adaptations and nuanced details of the proof
techniques employed in our work, emphasizing the differences
from their conventional usage in the literature.



Consider i.i.d. random variables (Xn, Un, Y n) such that

E[d(X,Y )] ≤ D + δD (20)

for some δD ≥ 0 satisfying (13). Define the error event that
the sequences (Xn, Y n) are not δD-letter typical as

E = {(Xn, Y n) /∈ Tn
δD
(PXY )}. (21)

Similar to [41], we have (13), given (5), since

E[d(Xn, Y n)]

= Pr[E ] E[d(Xn, Y n)|E ] + Pr[Ec] E[d(Xn, Y n)|Ec]

(a)

≤ Pr[E ] dmax + Pr[Ec] (1 + δD) E[d(X,Y ))]

(b)

≤ 2|X |2e−2nδ2Dµ
2
xy dmax + (1 + δD) (D + δD) (22)

where (a) follows from the typical average lemma [42, pp. 26]
and since the distortion metric is per-letter with bound dmax, and
(b) follows from the bound on the probability of the error event
E given in [43, Eq. (6.34)], applied since a per-letter estimator
is used, and by (20).

We demonstrate the existence of non-asymptotic random
binning schemes simultaneously meeting the realism and distor-
tion constraints. Following the structure of the OSRB method,
we first analyze a source coding problem, called Protocol A,
closely related to our problem. In this problem, the encoder
observes (Un, Xn) and then maps Un independently and uni-
formly to three random bin indices: F ∈ [1 :2nR̃], S ∈ [1 :2nR],
and C ∈ [1 : 2nR0 ]. In Protocol A, the index F represent
the public choice of encoder-decoder pairs. Using a mismatch
stochastic likelihood coder (SLC) as the decoder, as in [32, Eq.
(12)] and [37, pp. 3], we bound the expected error probability
averaged over the random binning ensemble.

Broadly speaking, the rate constraints are imposed to ensure
that the encoder-decoder pair aims to satisfy the following,
with the penalties for finite blocklengths: i) (C,F ) are almost
independent of Xn; ii) (C,F, S) almost recover Un; and iii) F
is almost independent of Y n. To impose constraints ensuring
near independence, we apply [37, Theorem 1]. Similarly, to
impose reliable sequence reconstruction constraints, we ap-
ply [37, Theorem 2]. These steps yield rate constraints on
(R̃, R,R0), derived by applying Berry-Esseen Theorem such
that total variation distances between the target and observed
probability distributions are bounded by a fixed value. This
analysis corresponds to Protocol B, a channel coding problem
dual to our problem with extra randomness F . Moreover, the
proof of the realism constraint (4) follows by applying the soft
covering lemma [12, Lemma IV.1] as in the achievability proof
of [23, Theorem 2].

To eliminate the extra randomness F such that R̃ is also
eliminated from the rate constraints, we show that a fixed
realization F = f can be agreed upon publicly by the encoder
and decoder, which follows by applying arguments similar to
in [32], [38]. Finally, by selecting the free parameters similar
to the choices in [32, Eq. (36)], we obtain the results in (10)
and (11).

The cardinality bound on the auxiliary random variable U
follows by using the support lemma [4, Lemma 15.4]. We
preserve the probability distribution PXY by using (|X |2 − 1)
continuous real-valued functions, since we have Y = X . We
must preserve two more expressions that are the lower bounds
in (10) and (11). Therefore, we can limit the cardinality |U| of
U to |U| ≤ |X |2 + 1.

B. Proof Sketch of Theorem 2

Proof Sketch. The achievability proof follows similarly to the
achievability proof of Theorem 1 given in Section V-A.
However, we here need to demonstrate that there exist non-
asymptotic random binning schemes that simultaneously meet
the following constraints

∥PY n −Qn
X∥TV ≤ θϵr, (23)

||PSY n − PSPY n ||TV ≤ (1− θ)ϵsec (24)

for any θ ∈ [0, 1]; see also [37, Theorem 4]. Broadly speaking,
we use a similar random code construction with the additional
strong secrecy constraint imposed such that, rather than impos-
ing that F is almost independent of Y n, we impose that (S, F )
are almost independent of Y n. Applying steps similar to those
in Section V-A, we obtain (14) and (15).

The cardinality bound follows similarly to Section V-A by
preserving PXY and the lower bounds in (14) and (15).

VI. CONCLUSION AND IMPACT

This paper addressed the RDP problem, extending classical
rate-distortion trade-offs by incorporating perceptual quality
and secrecy constraints within the RDFC framework. Achiev-
able non-asymptotic regions were established, and their asymp-
totic counterparts were analyzed. These results provided foun-
dational insights into low-latency, high-fidelity, and secure
image compression with realistic outputs. Although the i.i.d.
assumption for input sequences was idealistic, it offered a
basis for insightful theoretical benchmarks. Extending these
results to non-i.i.d. cases using methods such as information
spectrum techniques, as used in [44], is possible, but it results
in cumbersome expressions that limit their usefulness. Thus,
we focused on i.i.d. models to achieve a balance between
theoretical rigor and actionable insights.

The technological impact of these findings spans multiple
domains. The derived bounds and trade-offs inform the design
of systems capable of secure and efficient image compres-
sion, addressing critical needs in privacy-sensitive applications.
By ensuring security against threats from powerful quantum
computers, these results align with the ongoing transition to
quantum-safe communications. Future work could extend the
current framework to address noisy transmissions. Such efforts
would deepen theoretical understanding of joint RDP-channel
coding methods, while enhancing the practical applicability of
RDP methods in emerging deep learning-based systems.
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[13] D. Bergström and O. Günlü, “Deep randomized distributed function
computation (DeepRDFC): Neural distributed channel simulation,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Michigan, June 2025, submitted.

[14] K. Sayood, Introduction to Data Compression, 4th ed. Morgan Kauf-
mann, 2017.

[15] Y. Blau and T. Michaeli, “Rethinking lossy compression: The rate-
distortion-perception tradeoff,” in Proc. Int. Conf. Mach. Learn. (ICML),
June 2019, pp. 675–685.

[16] R. Matsumoto, “Introducing the perception-distortion tradeoff into the
rate-distortion theory of general information sources,” IEICE Commun.
Express (ComEX), vol. 7, no. 11, pp. 427–431, 2018.

[17] J. Chen, L. Yu, J. Wang, W. Shi, Y. Ge, and W. Tong, “On the rate-
distortion-perception function,” IEEE J. Sel. Areas Inf. Theory (JSAIT),
vol. 3, no. 4, pp. 664–673, Dec. 2022.

[18] G. Zhang, J. Qian, J. Chen, and A. Khisti, “Universal rate-distortion-
perception representations for lossy compression,” Adv. Neural Inf. Pro-
cess. Sys. (NeurIPS), vol. 34, pp. 11 517–11 529, 2021.

[19] L. Theis and A. B. Wagner, “A coding theorem for the rate-distortion-
perception function,” in Neural Compression: From Information Theory
to Applications–Workshop@ ICLR 2021, May.

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” Adv.
Neural Inf. Process. Sys. (NeurIPS), Dec. 2014.

[21] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. Int. Conf. Mach. Learning (ICML), Aug. 2017,
pp. 214–223.

[22] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of Wasserstein GANs,” Adv. Neural Inf. Process. Sys.
(NeurIPS), vol. 30, Dec. 2017.

[23] A. B. Wagner, “The rate-distortion-perception tradeoff: The role of
common randomness,” arXiv preprint arXiv:2202.04147, Feb. 2022.

[24] Y. Hamdi, A. B. Wagner, and D. Gündüz, “The rate-distortion-
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