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Abstract

Recently, NTRU+Sign was proposed as a new compact signature scheme, following ‘Fiat-Shamir
with Aborts’ (FSwA) framework. Its compactness is mainly based on their novel NTRU-based key
structure that fits well with bimodal distributions in the FSwA framework. However, despite its com-
pactness, NTRU+Sign fails to provide a diverse set of parameters that can meet some desired security
levels. This limitation stems from its reliance on a ring Zq[x]/⟨xn + 1⟩, where n is restricted to pow-
ers of two, limiting the flexibility in selecting appropriate security levels. To overcome this limitation,
we propose a revised version of NTRU+Sign by adopting a ring Zq[x]/⟨xn − xn/2 + 1⟩ from cyclo-
tomic trinomials, where n = 2i3j for some positive integers i and j. Our parameterization offers three
distinct security levels: approximately 120, 190, and 260 bits, while preserving the compactness in
Zq[x]/⟨xn + 1⟩. We implement these re-parameterized NTRU+Sign schemes, showing that the perfor-
mance of NTRU+Sign from cyclotomic trinomials is still comparable to previous lattice-based signature
schemes such as Dilithium and HAETAE.

1 Introduction

Recently, Woo et al. [27] proposed a new NTRU-based signature scheme called NTRU+Sign, which
achieves the most compact signature sizes at similar security levels. Compared to its predecessor BLISS
[11], the compactness of NTRU+Sign comes from two distinct techniques. First, NTRU+Sign is based on
their novel NTRU-based key structure that fits well with bimodal distributions when using ‘Fiat-Shamir with
Aborts (FSwA)’ paradigm [20, 21]. Given two short polynomials f and g in a ring Zq[x]/⟨xn + 1⟩, BLISS
sets a signing key s as s = (g, 2f + 1), whereas NTRU+Sign sets it as s = (g,−f). This distinction
significantly reduces the ℓ2 norm of sc (that is, ||sc||), where c is a polynomial whose coefficients consist
of 0 or 1 with a fixed Hamming weight. Second, [27] also uses the canonical embedding into Cn [8] to
estimate an upper bound on ∥sc∥ in advance, providing a tighter bound than the one obtained by the Gram
matrix method used in BLISS. These two techniques enable NTRU+Sign to achieve a more compact size of
a signature than previous schemes such as Dilithium [12], HAETAE [8], and (re-parametrized) BLISS.

§This work was supported by Korea Research Institute for defense Technology planning and advancement(KRIT) grant funded
by the Korea government(Defense Acquisition Program Administration) (KRIT-CT-24- 001, Defense Space Security Research Lab,
2025).
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Table 1: Comparision to previous lattice-based signature schemes

Classical |sig| |vk| |sig|+|vk| Sampling
Algorithm Security (bytes) (bytes) (bytes) Distribution
Falcon-5121 120 897 666 1,563 Gaussian
Dilithium-22 123 2,420 1,312 3,732 Hypercube
Dilithium-G-23 118 1,921 800 2,721 Gaussian
HAETAE-1204 119 1,474 992 2,466 Hyperball
G+G-1205 121 1,677 1,472 3,149 Convolved Gaussian

Patronus-1207 120 2,070 832 2,902 Polytope
NTRU+Sign-648 118 1,009 1,053 2,062 Gaussian

Dilithium-32 182 3,293 1,952 5,245 Hypercube
Dilithium-G-33 183 2,462 1,184 3,646 Gaussian
HAETAE-1804 180 2,349 1,472 3,821 Hyperball
G+G-1805 178 2,143 1,952 4,095 Convolved Gaussian

NTRU-G+G-1806 178 1,769 2,080 3,849 Convolved Gaussian
Patronus-1807 182 2,575 1,152 3,727 Polytope

NTRU+Sign-10248 211 1,511 1,664 3,215 Gaussian
NTRU+Sign-972 193 1,557 1,701 3,258 Gaussian
Falcon-10241 273 1,793 1,280 3,073 Gaussian
Dilithium-52 252 4,595 2,592 7,187 Hypercube
Dilithium-G-53 277 3,553 1,760 5,313 Gaussian
HAETAE-2604 256 2,948 2,080 5,028 Hyperball
G+G-2605 260 2,804 2,336 5,140 Convolved Gaussian

Patronus-2607 262 3,721 1,632 5,353 Polytope
NTRU+Sign-1296 264 2,020 2,268 4,288 Gaussian

1 Hash-and-Sign-based signature [16]
2 FSwA-based signature with uniform hypercube distribution [12]
3 Gaussian version of Dilithium [9]
4 FSwA-based signature with bimodal hyperball distribution [8]
5 Signature without rejection sampling based on M-LWE [10]
6 G+G based on NTRU [10]
7 FSwA-based signature with uniform polytope distribution [3]
8 FSwA-based signature with bimodal Gaussian distribution [27]

However, despite its compactness, NTRU+Sign supports only a limited set of parameters due to its un-
derlying ring Zq[x]/⟨xn+1⟩. Since n is selected as a power-of-two, the choice of n that meets some required
security levels is very limited. In fact, setting n = 1024 is their only practical case, where the security param-
eter λ of NTRU+Sign-1024 is estimated to be λ = 211 under the classical Core-SVP (Shortest Vector Prob-
lem) methodology [1]. To address this limitation, we propose transitioning to the ring Zq[x]/⟨xn−xn/2+1⟩,
where n = 2i3j for some positive integers i and j. As already shown in the case of key encapsulation mech-
anism (KEM) [24, 19], the rings from cyclotomic trinomials offer greater flexibility than Zq[x]/⟨xn + 1⟩ in
achieving a desired level of security. Also, the Number Theoretic Transform (NTT) operation required for
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polynomial multiplications is essentially as fast as in Zq[x]/⟨xn + 1⟩, resulting in negligible performance
degradation. Using these facts, we suggest three new parameter sets for compact NTRU+Sign signatures,
denoted as NTRU+Sign-{648, 972, 1296}, targeting security levels of approximately λ = {120, 190, 260},
respectively.

To parameterize each of NTRU+Sign-{648, 972, 1296}, the first thing that must be done is to set the
upper bound on ||sc|| as tightly as possible, which is critical to achieving compact signature sizes. To
achieve this, we borrow the ideas from BLISS and HAETAE; BLISS uses the Gram matrix method, while
HAETAE utilizes the canonical embedding into Cn based on the Fast Fourier Transform (FFT). Since both
methods were originally designed for Zq[x]/⟨xn + 1⟩, it is necessary to revisit these approaches to operate
on Zq[x]/⟨xn−xn/2+1⟩. We analyze both methods over Zq[x]/⟨xn−xn/2+1⟩ and compare the resulting
upper bounds on ∥sc∥, when parameterizing NTRU+Sign-{648, 972, 1296} respectively. Importantly, our
analysis shows that the Gram matrix method provides a tighter (i.e., smaller) upper bound on ∥sc∥ than the
FFT method (see Table 2). Accordingly, we choose the Gram matrix method to upper bound ∥sc∥, which
results in slower key generation for NTRU+Sign-{648, 972, 1296} compared to Dilithium and HAETAE.
Nevertheless, NTRU+Sign-{648, 972, 1296} give more compact size of signatures.

Table 1 presents a comparison between previous lattice-based signature schemes [12, 9, 8, 10, 3, 16] and
NTRU+Sign-{648, 972, 1296}. In terms of the combined size of a signature and verification key, Falcon
[16] (based on ‘Hash-and-Sign’ framework [17]) achieves the shortest combined size among all compared
lattice-based signature schemes. However, Falcon requires relatively complex and complicated implemen-
tations [26] and also has limitations on parameter diversity due to its choice of a ring Zq[x]/⟨xn+1⟩. Com-
pared to other FSwA-based signature schemes [12, 9, 8, 10, 3], NTRU+Sign-{648, 972, 1296} achieves the
most compact size at the same security levels. For example, at the 120-bit security level, the combined
size of NTRU+Sign-648 is about 40% smaller than Dilithium-2, and about 20% smaller than HAETAE-
120. With appropriate parameterization, we implement NTRU+Sign-{648, 972, 1296} and compare their
performance against Dilithium and HAETAE (see Table 5). Our implementation shows that NTRU+Sign-
{648, 972, 1296}, which require no floating-point operations, provide competitive signing performance and
faster verification.

2 Preliminaries

2.1 Notation

Throughout this paper, we let Zq = Z/qZ denote the ring of integers modulo q. Define R = Z[x]/⟨xn −
xn/2 + 1⟩ and Rq = Zq[x]/⟨xn − xn/2 + 1⟩, where q is a prime and n is of the form 2i · 3j for positive
integers i and j. LetRn,τ ⊂ Rq denote the set of polynomials in which exactly τ coefficients are 1 and the
remaining coefficients are 0. An element of the ring is written in bold lowercase letters (e.g., a).
For positive integer a and q, a mod q is equal to the unique integer a′ in range [−q/2, q/2) satisfying a′ ≡
a mod q. Let [a]d denote the bit-truncation of the polynomial a =

∑n−1
i=0 aix

i, where each coefficient is
truncated by removing its lowest d-bit. Formally, [a]d =

∑n−1
i=0 [ai]dx

i where [ai]d = (ai−[ai mod 2d])/2d.
Let {0, 1}∗ denote the set of all binary strings of arbitrary length. The Central Binomial Distribution(CBD)
with k-bit, denoted ψk, is defined as ψk =

∑k
i=1(bi − b′i) where bi, b′i ∈ {0, 1} are sampled uniformly at

random. For distribution χ, let x ← χ denote that the x is chosen according to the distribution χ. If S is
a set, x ← S denotes that x is chosen uniformly at random from S. For a ring element a, let ∥a∥1 denote
ℓ1 norm that is the sum of the absolute value of all coefficients. The ℓ2 norm and ℓ∞ norm are defined as
∥a∥ =

√∑
i |ai|2 and ∥a∥∞ = maxi{|ai|}.
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2.2 Definition

Definition 2.1 (Digital Signature). A digital signature scheme SIG consists of three algorithms (KeyGen,
Sign, Verify) defined as follows:

• KeyGen(1λ) → (vk, sk): Given a security parameter 1λ, the key generation algorithm outputs a
verification key vk and a signing key sk.

• Sign(sk, µ) → σ: Given a signing key sk and a message µ, the signature generation algorithm
outputs a signature σ.

• Verify(vk, σ, µ) → b ∈ {0, 1}: Given a verification key vk, a signature σ and a message µ, the
verification algorithm, which is a deterministic algorithm, outputs a bit b ∈ {0, 1} where b = 1
indicates acceptance and b = 0 indicates rejection.

The signature scheme is said to be (1 − γ)-correct for some function γ(λ) > 0, if for all messages µ, and
all key pairs (vk, sk)← KeyGen(1λ), it holds that:

Pr[Verify(vk,Sign(sk, µ), µ) = 1] ≤ 1− γ(λ).

We define the security model of digital signature, existential unforgeability against chosen message
attacks (UF-CMA) and existential unforgeability against no message attacks (UF-NMA) as below.

Definition 2.2 (UF-CMA). Let δ ≥ 0. A signature scheme SIG = (KeyGen,Sign,Verify) is said to be
UF-CMA secure in the Random Oracle Model if, for any polynomial-time adversary A with access to both
a signing oracle and a random oracle H , the following holds:

Pr
(vk,sk)←KeyGen(1λ)

[
Verify(vk, σ∗, µ∗) = 1|(µ∗, σ∗)← AH,Sign(vk)

]
≤ δ,

where (vk, sk) ← KeyGen(1λ), and µ∗ was not previously queried to the signing oracle by A. The
probability of forging a signature δ is called the advantage of A and denoted by AdvUF-CMA

SIG (A).

Additionally, we can define UF-NMA the same as UF-CMA, except the adversary A cannot access to
the signing oracle.

Definition 2.3 (Continuous Gaussian Distribution). The continuous Gaussian distribution over Rm centered
at v ∈ Rm with standard deviation σ is defined by:

ρmv,σ(x) =

(
1√
2πσ2

)m
exp

(
−∥x− v∥22

2σ2

)
.

We denote by ρmσ (x) = ρmv,σ(x) when v = 0.

Definition 2.4 (Discrete Gaussian Distribution). The discrete Gaussian distribution over Zm centered at
v ∈ Zm with standard deviation σ is defined by:

Dm
v,σ(x) =

ρmv,σ(x)

ρmσ (Zm)
,

where ρmσ (Zm) =
∑

z∈Zm ρmσ (z). Additionally, we denote Dm
σ (x) = Dm

v,σ(x) when v = 0.
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2.3 Lattice Hardness Assumptions

Definition 2.5 (Decisional-NTRUn,q,χ [27]). Let q be an odd prime modulus, n the dimension of the ring
Rq, and χ a distribution over Rq. The advantage of an adversary A solving the Decisional-NTRUn,q,χ
problem is

AdvNTRU
n,q,χ (A) =

∣∣∣Pr[b = 1| u← Rq; b← A(u)
]
− Pr

[
b = 1| f, g ← χ; b← A((f + q̂)/g)

]∣∣∣,
where q̂ is a multiplicative inverse of 2 in Zq.

Definition 2.6 (Search-RSISn,q,β [27]). Let q be an odd prime modulus, n the dimension of the ring Rq,
and β a positive real number. The advantage of an adversary A solving the Search-RSISn,q,β problem is

AdvRSISn,q,β(A) = Pr
[
0 < ∥y∥2 ≤ β ∧ [a|In] · y = 0 mod q

∣∣a← Rq; y ← A(a) ],
where y ∈ R2

q , and In denotes the n× n identity matrix.

Definition 2.7 (BimodalSelfTargetRSISn,q,β,H [27]). Let H : {0, 1}∗×M→ Rn,τ be a cryptographic hash
function, where M ⊆ {0, 1}∗ is a message space and q̂ be a multiplicative inverse of 2 in Rq. Let q be
an odd prime modulus, n the dimension of the ring Rq, and β a positive real number. The advantage of an
adversary A solving the BimodalSelfTargetRSISn,q,β,H problem is defined as:

AdvBimodalSelfTargetRSIS
n,q,β,H (A) =

Pr
[ 0 ≤ ∥Y∥2 ≤ β ∧ ∥Y ∥∞ ≤ (q − 2)/4 ∧

H([a|I] · Y + q̂c, µ) = c

∣∣∣ a← Rq;
(
Y :=

[
y1

y2

]
, c, µ

)
← A|H⟩(a)

]
where y1,y2, c ∈ Rq.

Theorem 2.8 (Reduction from RSIS to BimodalSelfTargetRSIS [27]). For positive odd modulus q, H :
{0, 1}∗ × M → Rn,τ be a cryptographic hash function modeled as random oracle, and there exist an
adversary B solving RSISn,q,4β+2

√
τ with negligible advantage. Then the advantage of an adversary A

solving BimodalSelfTargetRSISn,q,β,H is:

AdvBiomodalSelfTargetRSIS
H,n,q,β (A) ≈

√
AdvRSISn,q,4β+2

√
τ (B)/Qh,

where Qh is the number of classical queries to H .

2.4 Rejection Sampling

Lemma 2.9 (Rejection Sampling [21]). Let V be an arbitrary set, and let h : V → R and f : Zm → R be
probability distributions. If gv : Zm → R is a family of probability distributions indexed by v ∈ V with the
property that there exists a constant M ∈ R such that

∀v ∈ V,Pr[M · gv(z) ≥ f(z)|z ← f ] ≥ 1− ϵ,

then the output distributions of the following two algorithms are within a statistical distance of ϵ/M :

1. v ← h,z ← gv, output (z, v) with probability min
( f(z)
M ·gv(z) , 1

)
.

2. v ← h, z ← f , output (z, v) with probability 1/M .

And the probability that those two algorithms output z is identically f(z) · (1− ϵ)/M .
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3 NTRU+Sign Signature Schemes

3.1 Algorithms

We present three algorithms of NTRU+Sign consisting of KeyGen, Sign, and Verify. The algorithm
description is the same as [27], except with two underlined notations: one is a function Nτ (s) computing
upper bound on ∥sc∥ in the KeyGen algorithm, and the other is a more generalized form of the modulus
p = (q + q0)/2

d for (−q0) ≡ q mod 2d, instead of p = (q − 1)/2d in [27].

Algorithm 1 KeyGen
Input: 1λ
Output: verification key vk, signing key sk

1: f , g ← ψn1 ▷ CBD sampling
2: if g is not invertible in Rq, then restart
3: s := (g,−f)
4: if (Bsc)

2 < Nτ (s), then restart
5: a := (f + q̂)/g mod q ▷ q̂ = 2−1 mod q
6: vk := a
7: sk := s
8: return (vk, sk)

Algorithm 2 Sign
Input: signing key sk = s, message µ
Output: signature σ = (z1,h, c) on message µ

1: y = (y1,y2)← Dnσ ×Dnσ ▷ Discrete Gaussian sampling
2: u := ay1 + y2 mod q
3: c := H([u]d mod p, µ) ∈ Rn,τ ▷ p = (q + q0)/2

d

4: Choose a random bit b← {0, 1}
5: z = (z1, z2)← y + (−1)bsc ▷ zi = yi + (−1)bsic
6: Continue with probability 1/(Mexp(−∥sc∥

2

2σ2 )cosh( ⟨z,sc⟩
σ2 )) ▷ Rejection sampling

7: otherwise restart
8: if [u]d ̸= [u+ (−1)bc]d, then restart ▷ Equality check
9: if ∥(z1, 2

dh)∥ > B2, then restart
10: if ∥(z1, 2

dh)∥∞ > B∞, then restart
11: return (z1,h, c)

Algorithm 3 Verification
Input: verification key vk, signature (z1,h, c), message µ
Output: Accept or Reject the signature

1: if ∥(z1, 2
dh)∥ > B2, then Reject

2: if ∥(z1, 2
dh)∥∞ > B∞, then Reject

3: Accept if H([az1 + cq̂ mod q]d + h mod p, µ) = c

6



Rejection in the KeyGen and Sign algorithms. There are two rejection conditions in the KeyGen
algorithm. The first one relates to the invertibility of g, which is an unavoidable step due to the reliance on
the NTRU problem. The second one is to select s such that Nτ (s) does not exceed (Bsc)

2. Since we set
Bsc quite high to ensure about a 90% acceptance rate, the second rejection rarely occurs. We will discuss
the function Nτ (·) and the selection of Bsc in Section 4 and 5.1.

In the Sign algorithm, a rejection sampling is done at line 6, with the probability of passing this step
being 1

M according to Lemma 2.9. Also, an equality check is done at line 8, which can pass with probability
1

Meq
=

(
(2d − 1)/2d

)τ . Lastly, the Sign algorithm checks whether the Euclidean norm and infinity norm
of (z1, 2

dh) exceed the thresholds B2 and B∞ at line 9 and 10, respectively. These threshold values are set
sufficiently high so that the rejection at these steps occurs with negligible probability. Therefore, the total
expected number of repetitions in the Sign algorithm, denoted by Mtotal, is given by Mtotal = M ×Meq.
We discuss the selection of M and Meq in Section 5.2.

3.2 Security

Let FS(Ident, H) be the Fiat-Shamir transform [15] that converts an identification scheme Ident into a
signature scheme using a hash function H . As usual, NTRU+Sign is derived from FS(NTRU+Ident, H),
where NTRU+Ident is the underlying identification scheme corresponding to NTRU+Sign. We refer to [27]
for the details on NTRU+Ident and [4] for its relevant paHVZK (Perfect Accepting Honest-verifier Zero-
knowledge) property. Also, the commitment min-entropy α is given by log2

(
(2d/(

√
2πσ − 1))n

)
[27],

which holds under the assumption that the d low bits of a commitment u are uniformly distributed.

Theorem 3.1 (Reduction from UF-NMA to UF-CMA [27, 4]). Let ϵzk, α ≥ 0 and H is a hash function
modeled as a random oracle. Assume that NTRU+Ident is a paHVZK public-coin identification protocol
with aborting probability β and the commitment w has min-entropy α. If there exist an adversary A against
UF-CMA security of NTRU+Sign = FS(NTRU+Ident, H) with at most QH queries to the random oracle
H and QS classical queries to the signing oracle, there exists an adversary B against UF-NMA security of
NTRU+Sign such that

AdvUF-CMA
NTRU+Sign(A) ≤AdvUF-NMA

NTRU+Sign(B) +
2−α/2+1Qs

1− β

√
Qh + 1 +

Qs
1− β

+ 2−α/2+1(Qh + 1)

√
Qs

1− β
+Qsϵzk.

Theorem 3.2 (Reduction from NTRU and BimodalSelfTargetRSIS to UF-NMA [27]). Let H and H ′ are
hash function modeled as a random oracle such that H(x mod p, µ) = H ′((x mod p) · 2d mod q, µ). As-
sume that there exists an adversary A against UF-NMA security of NTRU+Sign with at most QH queries
to the random oracle H . Then there exist two adversaries B against NTRU problem and C against Bimodal-
SelfTargetRSIS such that

AdvUF-NMA
NTRU+Sign(A) ≤ AdvNTRUn,q,ψ1

(B) + AdvBimodalSelfTargetRSIS
n,q,B2+(2d+q0)

√
n,H′(C).

Notice that the only difference with p = (q + q0)/2
d is that the BimodalSelfTargetRSIS bound changes

from B2 + (2d + 1)
√
n to B2 + (2d + q0)

√
n. Other than, the remaining proof of Theorem 3.2 is exactly

the same as [27].
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4 Bound on ∥sc∥ in Zq[x]/⟨xn − xn/2 + 1⟩

For s = (s1, s2) ∈ R2
q and c ∈ Rn,τ , we provide two approaches to bounding ∥sc∥ in the ring Rq =

Zq[x]/⟨xn − xn/2 + 1⟩. The patterns in polynomial multiplication vary depending on the underlying ring,
affecting the bound on ∥sc∥. In the ring Zq[x]/⟨xn−xn/2+1⟩, unlike in Zq[x]/⟨xn+1⟩, the coefficient of
the term cnx

n (if it exists) is added to the coefficients of both xn/2 and the constant term. This follows from
the relation xn = xn/2 − 1 in the ring, which introduces additional complexity in multiplication patterns.
Consequently, deriving a tight bound on ∥sc∥ becomes challenging. To resolve this problem, we adapt
the techniques from prior methods based on FFT [8] and Gram matrix [11], each of which was originally
suggested for Zq[x]/⟨xn+1⟩. We extend their methods to the ring Zq[x]/⟨xn−xn/2+1⟩ to obtain a suitable
bound on ∥sc∥.

4.1 Bounding ∥sc∥ with Fast Fourier Transform

There are three common ways to represent ring elements. For Rq = Zq[x]/⟨Φm(x)⟩, where Φm(x) is
the m-th cyclotomic polynomial of degree n = ϕ(m), the most common representation of a ring element
a ∈ Rq is a =

∑n−1
i=0 aix

i as a polynomial. For an element a ∈ Rq, the coefficient embedding is
written as −→a = {a0, a1, . . . , an−1} ∈ Zn as a vector. The canonical embedding of a ∈ Rq is defined
as C(a) = Um · −→a T = (a(ω1),a(ω2), · · · ,a(ωn)) ∈ Cn, where {ωi}ni=1 are the distinct primitive m-th
roots of unity and Um denotes the following n×n transformation matrix for the canonical embedding, also
known as the Vandermonde matrix of all the roots.

Um =


1 ω1 ω2

1 · · · ω
ϕ(m)−1
1

1 ω2 ω2
2 · · · ω

ϕ(m)−1
2

...
1 ωϕ(m) ω2

ϕ(m) · · · ω
ϕ(m)−1
ϕ(m)

 ∈ Cϕ(m)×ϕ(m). (1)

To bound ∥sc∥ in the ring Zq[x]/⟨xn+1⟩, HAETAE leveraged the property that ∥−→a ∥ is equal to ∥C(a)∥/
√
n.

However, this equality does not hold in the ring Zq[x]/⟨xn − xn/2 + 1⟩. Thus, we first generalize the rela-
tionship between ∥−→a ∥ and ∥C(a)∥ in the ringRq = Zq[x]/⟨Φm(x)⟩. Using the relationship, along with the
properties of the cyclotomic trinomials, we derive a bound on ∥sc∥ in the ring Zq[x]/⟨xn − xn/2 + 1⟩.

Let ∥Um∥ denote the spectral norm of Um, i.e., ∥Um∥ = max∥x∦=0
∥Umx∥
∥x∥ for x ∈ Cn, and let

s1(Um) be the largest singular value of Um. It is well known that ∥Um∥ = s1(Um) and ∥Umx∥ ≤
∥Um∥ · ∥x∥ for all x ∈ Cn. Before deriving the generalized relationship between ∥−→a ∥ and ∥C(a)∥, we
introduce the following lemma about the singular value of Um, based on the previous works [22, 23, 2].

Lemma 4.1 (Upper bound of s1(Um) [23, 2]). Let s1(Um) is the largest singular value of Um, where Um

is the Vandermonde matrix in (1). For any positive integer m that corresponds to a cyclotomic polynomial
Φm(x),

s1(Um) ≤
√
γ(m)

where γ(m) =

{
m if m is odd
m/2 if m is even.

The equality is satisfied when m is power of prime.

Lemma 4.2 (Lower bound of sn(Um) [22]). Let sn(Um) is the smallest singular value of Um where Um

is the Vandermonde matrix in (1). For any positive integer m that corresponds to a cyclotomic polynomial
Φm(x), the smallest singular value of Um is:
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sn(Um) =
√
m/rad(m),

where rad(m) is a product of all primes dividing m.

Now, we present the following two useful inequalities between ∥−→a ∥ and ∥C(a)∥.

Lemma 4.3 (Upper bound of canonical embedding). Let Rq = Zq[x]/⟨Φm(x)⟩, where Φm(x) is the m-th

cyclotomic polynomial, and γ(m) =

{
m if m is odd
m/2 if m is even.

For a ∈ Rq, the upper bound of ∥C(a)∥ can be

expressed as follows:
∥C(a)∥ ≤

√
γ(m) · ∥−→a ∥.

Proof. Note that we can represent C(a) = Um · −→a . Using the fact that ∥Um∥ = s1(Um) and ∥Umx∥ ≤
∥Um∥·∥x∥ for x ∈ Cn, and also s1(Um) ≤

√
γ(m) from Lemma 4.1, we can bound ∥C(a)∥ as: ∥C(a)∥ =

∥Um · −→a ∥ ≤ ∥Um∥ · ∥−→a ∥ = s1(Um) · ∥−→a ∥ ≤
√
γ(m)∥−→a ∥, as required.

It is trivial that sn(Um) is the inverse of the largest singular value s1(U−1m ), i.e., sn(Um) = 1/s1(U
−1
m ).

Based on this, we derive the following result.

Lemma 4.4 (Upper bound of coefficient embedding). For all a ∈ Rq, the upper bound of ∥−→a ∥ is

∥−→a ∥ ≤
√
rad(m)

m
· ∥C(a)∥,

where rad(m) is a product of all primes dividing m.

Proof. Note that we can represent −→a = Um
−1C(a). By Lemma 4.2, we can bound ∥−→a ∥ as: ∥−→a ∥ =

∥Um
−1ψ(a)∥ ≤ ∥Um

−1∥ · ∥C(a)∥ = s1(Um
−1) · ∥C(a)∥ = 1

sn(Um) · ∥C(a)∥ =
√

rad(m)
m · ∥C(a)∥, as

required.

Now we propose a new bound on ∥sc∥ in the ring Zq/⟨xn − xn/2 + 1⟩, based on the above Lemma 4.3
and 4.4. Below is our new result that is obtained by following HAETAE. In the lemma below, we define the
mod operation differently: for a given integer a and modulus q, a mod q is equal to the unique integer a′ in
range [0, q).

Lemma 4.5 (Upper bound of ∥sc∥ in Zq/⟨xn − xn/2 + 1⟩). Set the ringRq = Zq[x]/⟨xn − xn/2 + 1⟩ for
n = 2a3b where a and b are positive integers. For any challenge c ∈ Rn,τ with Hamming weight τ (such
that τ ≥ 2) and a secret s = (s1, s2) ∈ R2

q , the value ∥sc∥2 is upper-bounded by

Nτ (s) :=
2

n

{
τ2

k∑
i=1

i−th
max
j
∥s(ωj)∥2 + r ·

(k+1)−th
max
j

∥s(ωj)∥2
}
, (2)

where k = ⌊3n2τ ⌋, r =
3n
2 τ mod τ2, and ωj’s are the primitive 3n-th roots of unity.

Proof. Notice that m = 3n = 2a3b+1 and rad(m) = 2 · 3. By Lemma 4.4, we see that ∥−→sic∥2 ≤
rad(m)
m · ∥C(sic)∥2 = (2/n) · ∥C(sic)∥2 for i = 1, 2. Also, by the homomorphic property of the canonical
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embedding C, we have ∥C(sic)∥ = ∥C(si) · C(c)∥. Then, we rewrite ∥sc∥2 as:

∥sc∥2 = ∥s1c∥2 + ∥s2c∥2

≤ 2

n
∥C(s1c)∥2 +

2

n
∥C(s2c)∥2

=
2

n

(
∥C(s1) · C(c)∥2 + ∥C(s1) · C(c)∥2

)
=

2

n

( n∑
i=1

|s1(ωi)c(ωi)|2 +
n∑
i=1

|s2(ωi)c(ωi)|2
)

=
2

n

n∑
i=1

(|s1(ωi)|2 + |s2(ωi)|2)|c(ωi)|2

=
2

n

n∑
i=1

∥s(ωi)∥2 · |c(ωi)|2,

where s(ωi) = (s1(ωi), s2(ωi)).
According to Lemma 4.3, we have the relation

∑n
i=1 |c(ωi)|2 ≤ γ(3n)·∥

−→c ∥2 = 3n
2 τ , where ∥−→c ∥2 = τ .

Also, it is trivial that |c(ωi)|2 = |ωi,1 + ωi,2 + ... + ωi,τ |2 ≤ τ2, where ωi,j’s are the rearranged primitive
3n-th roots of unity. Let k = ⌊3nτ2 ·

1
τ2
⌋ = ⌊3n2τ ⌋ and r = 3n

2 τ mod τ2. This means that k is the maximum
number of values |c(ωi)|2 that can be equal to τ2, and r becomes 3nτ

2 − kτ
2, when

∑n
i=1 |c(ωi)|2 =

3n
2 τ .

We now bound
∑n

i=1

{
∥s(ωi)∥2 · |c(ωi)|2

}
by rearranging the values of ∥s(ωi)∥ in a decreasing order,

∥s(ωσ(1))∥ ≥ ∥s(ωσ(2))∥ ≥ · · · ≥ ∥s(ωσ(n))∥,

where σ is a permutation for the indices. Then, we have

n∑
i=1

∥s(ωi)∥2 · |c(ωi)|2 ≤
k∑
i=1

∥s(ωσ(i))∥2 · |c(ωσ(i))|2 +
n∑

i=k+1

∥s(ωσ(i))∥2 · |c(ωσ(i))|2.

Then, it reaches the maximum when the k largest ∥s(ωi)∥2’s are multiplied with τ2, i.e.,

n∑
i=1

∥s(ωi)∥2 · |c(ωi)|2 ≤
k∑
i=1

τ2∥s(ωσ(i))∥2 +
( n∑
i=1

|c(ωi)|2 − kτ2
)
∥s(ωσ(k+1))∥2

= τ2
k∑
i=1

∥s(ωσ(i))∥2 + r · ∥s(ωσ(k+1))∥2,

which concludes the proof.

4.2 Bounding ∥sc∥ with Gram matrix

The main idea of bounding ∥sc∥ in BLISS is based on the fact that ∥sc∥2 = cTSTSc, where S is a matrix
derived from a polynomial s in a ring Rq. Intuitively, considering that ∥c∥1 = τ , the upper bound on ∥sc∥2
is obtained by summing the τ largest values in each row of STS, sorting the resulting vector, and summing
its τ largest components of the vector. Obviously, given s ∈ Rq, the upper bound on ∥sc∥2 holds for any
c ∈ Rn,τ [11]. This observation also holds in the ring Zq[x]/⟨xn − xn/2 + 1⟩, and the only thing we need
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to consider is constructing an appropriate matrix S (and then STS), once s is chosen. More precisely, the
signing key s in NTRU+Sign is composed of s = (s1, s2) ∈ R2

q . Using this fact, we establish the following
lemma:

Lemma 4.6 (Upper bound of ∥sc∥ with Gram matrix). LetRq = Zq[x]/⟨xn − xn/2 + 1⟩, where n = 2a3b

for some positive integer a and b, and let c ∈ Rn,τ . For s = (s1, s2) ∈ R2
q , let S1 and S2 be the matrices

corresponding to the polynomials s1 and s2 in Rq, respectively. Then, the upper bound Nτ (s) of ∥sc∥2 is
given by:

Nτ (s) := max
I⊂{1,...,n},#I=τ

∑
i∈I

(
max

J⊂{1,...,n},#J=τ

∑
j∈J

(
(T1)i,j + (T2)i,j

))
, (3)

where Ti = STi Si ∈ Rn×n for i = 1, 2.

Proof. The proof is straightforward if we set S =

[
S1

S2

]
.

Before describing how the matrices {Ti}i=1,2 are obtained, we define some notations. For a vector
−→a = (a0, a1, · · · , an−1) ∈ Znq , which represents the coefficient embedding of a ∈ Rq, xi · −→a denotes the
coefficient embedding corresponding to the multiplication xia (for some integer i) inRq. In general, given
si ∈ Rq, the corresponding matrix Ti is represented, regardless of the ring choice, as follows:

Ti =


⟨−→si ,−→si ⟩ ⟨−→si , x · −→si ⟩ · · · ⟨−→si , xn−1 · −→si ⟩
⟨x · −→si ,−→si ⟩ ⟨x · −→si , x · −→si ⟩ · · · ⟨x · −→si , xn−1 · −→si ⟩

...
...

...
⟨xn−1 · −→si ,−→si ⟩ ⟨xn−1 · −→si , x · −→si ⟩ · · · ⟨xn−1 · −→si , xn−1 · −→si ⟩

 , (4)

where Si =
[−→si , x · −→si , · · · , xn−1 · −→si

]
. As shown in BLISS, a ring Z[x]/⟨xn + 1⟩ gives a simple

representation of the matrix T := T1 +T2 = [t, x · t, . . . , xn−1 · t], where

t =
(
⟨−→s1,−→s1⟩+ ⟨−→s2,−→s2⟩, ⟨−→s1, x · −→s1⟩+ ⟨−→s2, x · −→s2⟩, · · · , ⟨−→s1, xn−1 · −→s1⟩+ ⟨−→s2, xn−1 · −→s2⟩

)
.

This simplicity is because of the following equality:

⟨xl · −→si , xj · −→si ⟩ =

{
⟨xl+1 · −→si , xj+1 · −→si ⟩ for 0 ≤ l ≤ n− 2, 0 ≤ j ≤ n− 2,

−⟨xl+1 · −→si ,−→si ⟩ for 0 ≤ l ≤ n− 2, j = n− 1.
(5)

However, the Equation (5) does not hold in a ring Zq[x]/⟨xn− xn/2 +1⟩. We can check this difference in a
simple example, where n is 6. For s = s0 + s1x + · · · + s5x

5 ∈ Zq[x]/⟨x6 − x3 + 1⟩, the corresponding
matrix S is:

S =
[−→s , x · −→s , x2 · −→s , x3 · −→s , x4 · −→s , x5 · −→s ]

=



s0 −s5 −s4 −s3 −s2 − s5 −s1 − s4
s1 s0 −s5 −s4 −s3 −s2 − s5
s2 s1 s0 −s5 −s4 −s3
s3 s2 + s5 s1 + s4 s0 + s3 s2 s1
s4 s3 s2 + s5 s1 + s4 s0 + s3 s2
s5 s4 s3 s2 + s5 s1 + s4 s0 + s3

 .
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To obtain some components associated with (4), we compute ⟨−→s , x · −→s ⟩ and ⟨x · −→s , x2 · −→s ⟩, and the
difference between them is shown as the following (blue) colored values:

⟨−→s , x · −→s ⟩ = s0(−s5) + s1s0 + s2s1 + s3(s2 + s5) + s4s3 + s5s4,

⟨x · −→s , x2 · −→s ⟩ = (−s5)(−s4) + s0(−s5) + s1s0 + (s2 + s5)(s1 + s4) + s3(s2 + s5) + s4s3.

Then, we can get a relation as:

⟨−→s , x · −→s ⟩ = ⟨x · −→s , x2 · −→s ⟩ − (s2 + s5)(s1 + s4) + s2s1.

Based on this observation, we can extend this relation to represent the components of Ti in (4), which is
specific to the ring Zq[x]/⟨xn − xn/2 + 1⟩. More precisely, for all integers l and k such that 0 ≤ l ≤ n− 2
and 0 ≤ k ≤ n− 1, we have

⟨xl · −→si , xk · −→si ⟩ =
⟨xl+1 · −→si , xk+1 · −→si ⟩ − (xl+1 · −→si )[n2 ](x

k+1 · −→si )[n2 ] + (xl · −→si )[n2−1](x
k · −→si )[n2−1]

for 0 ≤ l ≤ n− 2, 0 ≤ k ≤ n− 2

⟨xl+1 · −→si , x
n
2 · −→si −−→si ⟩ − (xl+1 · −→si )[n2 ](x

n
2 · −→si −−→si )[n2 ] + (xl · −→si )[n2−1](x

n−1 · −→si )[n2−1]
for 0 ≤ l ≤ n− 2, k = n− 1

,
(6)

where (−→a )[j] denotes the j-th component of −→a = (a0, a1, . . . , aj , . . . , an−1). Using this equation, we can
compute all components of Ti in (4), when a polynomial si in Zq[x]/⟨xn − xn/2 + 1⟩ is given. Once we
get two matrices T1 and T2 associated with a signing key s = (s1, s2), we can compute the upper bound√
Nτ (s) of ∥sc∥ from the Equation 4.6.

5 Parameter Selection for NTRU+Sign

5.1 Selection of ∥sc∥-Bounding Method

We begin by choosing one of the two ∥sc∥-bounding method described in Section 4. Our goal is to minimize
the upper-bound of ∥sc∥. To define the ring Zq[x]/⟨xn−xn/2+1⟩where n = 2i3j for some positive integers
i and j, we select n as 648 = 2334, 972 = 2235, and 1296 = 2434, based on their target security levels.1 For
each fixed n, we compute the value τ such that

(
n
τ

)
≥ 2λ for the target security level λ, which determines the

min-entropy of the challenge space. Using a pair of (n, τ) and a signing key s = (s1, s2), we can calculate
Nτ (s), based on the Equations 2 and 3. Note that each coefficient of s1 and s2 is sampled according to the
distribution ψ1. We repeat this process 1, 000 times by generating 1, 000 distinct signing keys {s}. After
sorting the resulting 1, 000 vaules of Nτ (s) values in increasing order, we select the 900-th value as the
upper bound of ∥sc∥, ensuring a approximately 90% acceptance rate of a signing key s in the KeyGen
algorithm. We refer to Bsc as the chosen upper bound of ∥sc∥ (with respect to the pair (n, τ)). Table 2
presents the result of our experiments, showing that the Gram matrix method described in Section 4.2 gives
smaller Bsc values than the FFT method in Section 4.1. Based on our experiments, we choose the Gram
matrix method to set Bsc, and indeed Bsc values (shown in Table 2) will be used to set other parameters of
NTRU+Sign.

1The exact security levels will be estimated later with other related parameters.
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Table 2: Upper bound of ∥sc∥ with 90% acceptance rate

NTRU+Sign-648 NTRU+Sign-972 NTRU+Sign-1296
(n, τ) (648, 35) (972, 38) (1296, 41)

FFT method 475 605 730
Gram matrix method 372 466 552

The above procedure means that, for a (candidate) signing key s, the KeyGen algorithm needs to cal-
culate Nτ (s), using the Gram matrix method in order to check if (Bsc)

2 < Nτ (s). Obviously, computing
Nτ (s) requires a significant amount of computation, compared to the FFT method. To mitigate this compu-
tational burden in the KeyGen algorithm, we set the acceptance rate (denoted as ϵsc) high around 90% to
reduce the number of repetitions. Also, it is worth noting that there is a trade-off between ϵsc and Bsc; if we
lower ϵsc by allowing more computation of the KeyGen algorithm, we can set Bsc to be smaller, which
could further reduce the signature size.

5.2 Concrete Parameters

As we have chosen n, τ , and Bsc, we can determine the remaining parameters step by step. The standard
deviation σ of the discrete Gaussian distribution Dσ and the expected number M of repetitions in rejection
sampling are given by σ = α̂Bsc and M = exp(1/(2α̂2)) by setting an appropriate α̂ ∈ [0, 1]. If α̂ is
close to 1, M approaches 1, but σ increases, leading to a larger signature size. Therefore, it is necessary to
find a balance between M and σ by adjusting α̂. In our setting, we set α̂ to be 0.56 to keep the expected
total number of repetitions Mtotal

2 in the Sign algorithm between 5 and 6. Next, we select d as the number
of dropped bits in the commitment. As shown in [9], the choice of d must satisfy the requirement that the
commitment’s min-entropy α is much larger than the security parameter λ, satisfying 2−α ≪ 2−2λ as shown
in Table 3. We set d = 8 for λ = 118, 193 and d = 9 for λ = 264.

Next, we choose the modulus q under the requirement that q ≡ 1 mod 3n/b̂, where b̂ is the degree of
the lowest level of a polynomial in NTT decomposition. Once q is chosen, we can obtain the other modulus
p such that p = (q + q0)/2

d, where (−q0) ≡ q mod 2d, and compute the infinite norm bound B∞ such
that B∞ ≤ (q − 2)/4 − 2d−1 − 1. Notice that the inequality for B∞ is derived from the security proof of
[27]. When setting B∞ = (q − 2)/4 − 2d−1 − 1, the inequality condition necessary for the security proof
is satisfied for signatures that pass line 10 of the Sign algorithm.

We then need to set the Euclidean norm bound B2 in an experimental manner. After generating 1, 000
signatures {(z1,h, c)} (without executing line 9 of the Sign algorithm), we compute 1, 000 values of
∥(z1, 2

dh)∥ and set B2 as the largest Euclidean norm, hoping that the rejection from line 9 of the Sign
algorithm rarely occurs. Importantly, B2 is linked to the SIS bound, B2 + (2d + q0)

√
n, which is used to

evaluate the hardness of a related SIS problem. There is also a trade-off between B2 and the hardness of a
SIS problem: if B2 is smaller (which implies more repetitions in the Sign algorithm), then the SIS problem
becomes harder, and vice versa. Once all parameters are set, we compute the size of an encoded signature,
using range Asymmetric Numeral System (rANS) encoding [14, 18].

Based on the above analysis, Table 4 presents three parameter sets for NTRU+Sign-{648, 972, 1296},
2Mtotal = M ×Meq , where 1/M is the repetition rate related to rejection sampling and 1/Meq is the repetition rate related

to equality check.
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Table 3: Requirements for Parameter Selection

Parameter Requirements
1) Dimension of a ringRq n = 2i3j for {i, j} ∈ N2

2) Modulus for NTT q ≡ 1 mod 3n/b̂
3) Standard deviation of Gaussian distribution σ = Bsc · α̂
4) Expected # of repetitions in rejection sampling M = exp(1/(2α̂2))
5) Modulus for hint generation p = (q + q0)/2

d where (−q0) ≡ q mod 2d

6) Min-entropy of commitment 2−α = (2d/(
√
2πσ − 1))n ≪ 2−2λ

7) Challenge space
(
n
τ

)
≥ 2λ

8) Infinite norm bound B∞ ≤ (q − 2)/4− 2d−1 − 1

meeting the requirements in Table 3. Each scheme aims to achieve 118, 193, and 264 bits of security in the
classical random oracle model, respectively. For security estimation, we use the estimators from [8, 7] to
evaluate the hardness of related SIS and NTRU problems determined by these parameters. Compared to the
previous schemes such as Dilithium and HAETAE, NTRU+Sign achieves smaller signature sizes at similar
security levels, as shown in Table 5. For instance, at approximately the 120-bit security level, the signature
sizes of Dilithium-2 and HAETAE-120 are about 2.4(≈ 2420/1009) times and 1.5(≈ 1474/1009) times
longer than that of NTRU+Sign-648, respectively. Moreover, in case of the signature size plus the verifi-
cation key size, Dilithium-2 and HAETAE-120 are about 1.8(≈ 3732/2062) times and 1.2(≈ 2466/2062)
times longer than NTRU+Sign-648, respectively.

6 Performance Analysis

We provide a reference implementation for NTRU+Sign-{648, 972, 1296}. For constant-time implementa-
tion resistant to side-channel attacks [6, 13, 25], we follow the technique of GALACTICS3 [5] as in previous
work [27], where polynomial approximations of transcendental functions are used to ensure constant-time
operations related to discrete Gaussian sampling and rejection sampling in the Sign algorithm. The ap-
proximated polynomials and related tables for NTRU+Sign-{648, 972, 1296} are given in Appendix A. In
addition, we use the rANS encoding [14] to optimize the signature size.

6.1 Implementation changes according to Zq[x]/⟨xn − xn/2 + 1⟩

NTT in Zq[x]/⟨xn − xn/2 + 1⟩. All polynomial multiplications are performed in Zq[x]/⟨xn − xn/2 + 1⟩.
To accelerate these multiplications, we adapt the NTT technique [24] for Zq[x]/⟨xn − xn/2 + 1⟩, which
is essentially as fast as the NTT in the ring Zq[x]/⟨xn + 1⟩ with a power-of-two n. The main difference
is that the modulus q must satisfy q ≡ 1 mod 3n/b̂, where b̂ is the degree of the lowest layer in the NTT
decomposition. Indeed, for each pair (n, q) of NTRU+Sign-{648, 972, 1296}, we set up b to be 3 or 4.

Computation of Nτ (s). As mentioned in Section 5.1, the KeyGen algorithm needs to compute Nτ (s)
for a candidate secret key s = (s1, s2), using the Gram matrix method. Nτ (s) is calculated based on

3The open source is available at ”https://github.com/espitau/GALACTICS”
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Table 4: Parameter sets for NTRU+Sign-{648, 972, 1296}
Parameters I III V

n Dimension of a ringRq 648 972 1,296
q Modulus 7,129 9,721 9,721
σ Standard deviation of Dσ 208.32 260.96 309.12
b̂ Degree of a polynomial of lowest level in NTT 3 3 4
τ Hamming weight of c 35 38 41

⌊log2
(
n
τ

)
⌋ Min-entropy of challenge space 192 227 258

d # of dropped bits in commitment 8 8 9
M Expected # of repetitions for rejection sampling 4.92 4.92 4.92
Meq Expected # of repetitions for equality check 1.14 1.16 1.08
Mtotal Mtotal =M ×Meq 5.65 5.7 5.33
Bsc Upper bound of ∥sc∥ 372 466 552
ϵsc Key acceptance rate 0.90 0.90 0.90
α̂ α̂ = σ/Bsc 0.56 0.56 0.56
α Min-entropy of commitment 664 1,313 772
B2 Euclidean norm bound 8,500 12,520 18,185
B∞ Infinite norm bound 1,300 1,250 1,650
q0 (−q0) ≡ q mod 2d 39 7 7

NTRU Hardness (Core-SVP)
BKZ block-size b 418 663 933

Classical Core-SVP 121 193 272
Quantum Core-SVP 107 170 239

SIS Hardness (Core-SVP)
BKZ block-size b 404 705 906

Classical Core-SVP 118 206 264
Quantum Core-SVP 103 181 232

the matrices {Ti}i=1,2 in Equation 4, which correspond to si. In a naive implementation, it takes about
240, 232 K cycles to obtain Nτ (s) for a given s for NTRU+Sign-648. To improve this, we employ two
properties of the matrices {Ti}i=1,2. First, due to the symmetric property of {Ti}i=1,2, we can compute
only the upper triangular components including diagonal entries. Second, once the first row of {Ti}i=1,2 is
computed, the entries of all the other rows can be obtained by the sequential calculations from the first row
to the last row, using the equation 6. Especially, the sequential calculations involve two multiplications with
the (n2 − 1)-th and the n

2 -th components of the vectors −→si , x · −→si , . . . , xn−1 · −→si , without performing full
inner products. As a result, our new implementation reduces the computational cost of Nτ (s) to 13, 502 K
cycles for NTRU+Sign-648, achieving about 17.8 times speed-up.
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Table 5: Performance Comparison between Dilithium, HAETAE, and NTRU+Sign

Algorithms
Classical
Security

Size (bytes) Performance (k cycles)
|sig| |vk| |sig|+|vk| KeyGen Sign Verify

Dilithium-2 123 2,420 1,312 3,732 313 1,384 341
Dilithium-3 182 3,293 1,952 5,245 576 2,259 555
Dilithium-5 252 4,595 2,592 7,187 895 2,911 930
HAETAE-120 119 1,474 992 2,466 2,005 8,130 327
HAETAE-180 180 2,349 1,472 3,821 2,862 10,913 670
HAETAE-260 256 2,948 2,080 5,028 2,536 14,115 802

NTRU+Sign-648 118 1,009 1,053 2,062 12,991 4,107 156
NTRU+Sign-972 193 1,557 1,701 3,258 26,333 6,891 235
NTRU+Sign-1296 264 2,020 2,268 4,288 47,139 8,521 306

6.2 Comparison

Table 5 presents a performance comparison between Dilithium4, HAETAE5, and NTRU+Sign6 at the three
security levels: λ = 120, 180, 260. We run those schemes on an Intel(R) Core(TM) i7-8700K CPU @ 3.70
GHz with 16.0 GB of RAM, using their reference codes. We evaluate the performance of the KeyGen,
Sign, and Verify algorithms with average cycles of 1, 000 trials. Table 5 shows that the KeyGen algo-
rithm of NTRU+Sign is slower than the others. Obviously, this is due to our key rejection algorithm that
requires computing the Gram matrix. Nevertheless, the KeyGen algorithm of NTRU+Sign is still practi-
cally usable in the sense that it takes about 11.9 ms(millisecond) on average in case of NTRU+Sign-1296. In
terms of the signature generation speed, NTRU+Sign is between Dilithium and HAETAE. For instance, at
the 120-bit security level, NTRU+Sign is approximately 3 times slower than Dilithium, but about 1.9 times
faster than HAETAE. As already observed in [27], when relying on the FSwA framework, the speed of a
signature generation depends more heavily on the sampling method used to generate a commitment y, rather
than on the computation of rejection sampling. Then, the efficiency of the Sign algorithm can be explained
by the fact that, to generate y, Dilithium uses a uniform sampling in hypercube, HAETAE uses a hyperball
sampling, and NTRU+Sign uses a discrete Gaussian sampling. Finally, with respect to verification speed,
NTRU+Sign is faster than the others at the same security level. As stated in [27], the speedup is because
of a relatively small modulus q and absence of a need to reconstruct a part of a verification key from a seed
during the Verify algorithm.

7 Discussion

In this paper, we suggest more NTRU+Sign signature schemes that work over Zq[x]/⟨xn − xn/2 + 1⟩. Be-
cause of the flexibility of choosing the dimension n, we can present three new signature schemes, called
NTRU+Sign-{648, 972, 1296}, each of which aims to achieve {120, 190, 260}-bit security levels, respec-
tively. To parametrize these schemes, the critical factor is minimizing the upper bound of ∥sc∥, since

4The reference code is available at ”https://pq-crystals.org/index.shtml”.
5The reference code is available at ”https://kpqc.cryptolab.co.kr/haetae”.
6The reference code is available at ”https://github.com/GHH33/NTRU-T-plus-SIGN.git”.
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this upper bound determines the overall system parameters including the signature size. To compute the
bound on ∥sc∥, we choose the Gram matrix method used in BLISS [11]. However, there is still a sig-
nificant gap between the theoretical upper bound (from the Gram matrix method) and the largest ∥sc∥
value observed in practice. Indeed, for 106 signatures generated using 103 (distinct) signing keys {si}
and 103 distinct messages {mi}, the largest observed values of ∥sc∥ are {217, 278, 319} for NTRU+Sign-
{648, 972, 1296}, respectively. Those observed values are significantly smaller than the corresponding up-
per bounds {376, 470, 558} shown in Table 2. Therefore, it would be interesting to develop a new and more
precise method that sets a tighter upper bound on ∥sc∥ in a theoretical manner.
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A Constant-time Implementation of Discrete Gaussian and Rejection Sam-
pling

We refer to NTRU+Sign [27] for detailed explanations about parameters and polynomial approximations
that follow in subsequent subsections.

A.1 Discrete Gaussian

The parameters for the constant-time discrete Gaussian sampler are set as follows:

Table 6: Parameters for constant-time discrete Gaussian sampler

parameter set I III V
λ 118 193 264
n 648 972 1296
Bsc 372 466 552
σ 208.32 260.96 309.12

α̂ (= σ/Bsc) 0.56 0.56 0.56
M (= exp(1/(2α̂2))) 4.92 4.92 4.92

k (= 2⌊log2 σ⌋) 27 28 28

σ1 (= σ/k) 1.6275 1.01 1.207
τ1 9 9 9

w1 (= ⌊τ1σ1⌋) 14 9 10
θ1 86 86 86
ϑ1 60 61 62
P I1exp Pg648 Pg972 Pg1296
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Table 7: CDT for NTRU+Sign-648

i cdt[i]
0 30,463,896,446,073,161,550,872,468
1 55,687,354,025,600,429,753,252,937
2 70,004,686,913,464,605,127,428,774
3 75,576,005,108,806,338,193,817,339
4 77,062,256,039,480,156,901,128,835
5 77,334,065,552,342,848,575,357,286
6 77,368,143,662,387,384,311,989,851
7 77,371,072,698,228,315,934,032,801
8 77,371,245,286,868,506,760,026,713
9 77,371,252,258,558,450,231,571,557
10 77,371,252,451,622,875,961,586,271
11 77,371,252,455,288,135,959,366,420
12 77,371,252,455,335,838,955,015,692
13 77,371,252,455,336,264,577,786,320
14 77,371,252,455,336,267,181,195,263

Table 8: CDT for NTRU+Sign-972

i cdt[i]
0 43,525,753,036,693,317,709,751,015
1 70,427,168,452,549,206,935,188,574
2 76,778,454,067,146,715,743,456,116
3 77,351,257,787,814,540,776,010,011
4 77,370,991,450,127,548,357,347,746
5 77,371,251,147,304,660,124,260,041
6 77,371,252,452,827,398,800,863,750
7 77,371,252,455,334,427,622,851,656
8 77,371,252,455,336,266,665,869,181
9 77,371,252,455,336,267,181,195,263
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Table 9: CDT for NTRU+Sign-1296

i cdt[i]
0 38,428,599,979,725,204,174,068,606
1 65,701,121,986,719,449,682,357,581
2 75,449,615,690,336,689,573,577,967
3 77,204,672,612,493,178,206,663,406
4 77,363,815,185,019,285,173,139,720
5 77,371,083,320,565,963,821,849,574
6 77,371,250,507,039,939,108,699,962
7 77,371,252,444,000,309,379,775,658
8 77,371,252,455,302,999,176,011,080
9 77,371,252,455,336,218,008,005,127
10 77,371,252,455,336,267,181,195,263
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A.2 Rejection Sampling

The parameters for the constant time rejection sampling are set as follows:
(Qsign = 264, Qreject =M ·Qsign)

Table 10: Parameters for the constant-time Bernoulli sampler

parameter set I III V
n 648 972 1296
σ 208.32 260.96 309.12
ĉ 126167442421/221 197985439981/221 277804691115/221

ϵ 1329119/258 2017081/259 2724241/261

ϑ2 59 60 61
P
I′2
exp Pr648 Pr972 Pr1296
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