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Abstract

zkVMs are SNARKs for verifying CPU execution. They allow an untrusted prover to show that it
correctly ran a specified program on a witness, where the program is given as bytecode conforming to
an instruction set architecture like RISC-V. Existing zkVMs still struggle with high prover resource costs,
notably large runtime and memory usage. We show how to implement Jolt—an advanced, sum-check-
based zkVM—with a significantly reduced memory footprint, without relying on SNARK recursion, and
with only modest runtime overhead (potentially well below a factor of two). We discuss benefits of this
approach compared to prevailing recursive techniques.

1 Introduction

Succinct Non-Interactive Arguments of Knowledge (SNARKs) enable an untrusted prover to convince a
verifier that it possesses knowledge of a witness w satisfying a claimed property. Naively, one can always
send w to the verifier, but a SNARK allows the prover to generate a short proof π that the verifier can check
much more quickly than it could directly verify w.

A zkVM is a SNARK designed to prove that a certain CPU execution was carried out correctly on some
input. The code to be executed is specified in bytecode (machine code), corresponding to a particular VM
or instruction set architecture (ISA). Because the proof attests to the correctness of the underlying CPU
execution, developers can write high-level programs that compile down to this ISA and still benefit from a
succinct proof of correctness.

Although easy for developers to use, modern zkVMs impose large computational burdens on the prover,
often requiring hundreds of thousands or even millions of times more work than directly running the
program. Memory usage is also significant: proving just one million CPU cycles (which is trivial to run
natively, taking less than a millisecond on a modern laptop) requires gigabytes of RAM, and proving a
billion cycles requires terabytes. More generally, prover space scales linearly with the number of CPU
cycles T being proven.

Background on designing SNARKs and zkVMs. At a high level, most SNARKs are designed by first
designing a protocol known as a polynomial IOP (PIOP) and then designing a cryptographic protocol called
a polynomial commitment scheme (PCS). Combining the two yields a succinct interactive argument, which can
then be rendered non-interactive via the Fiat-Shamir transformation.

In zkVMs, the protocol typically begins with the prover committing to the VM’s execution trace: this is
effectively a list of everything that happened at each cycle of the VM’s execution. The prover then applies a
PIOP to prove that the committed execution trace is valid, meaning that it actually corresponds to the VM’s
execution on a witness.

1.1 The Prevailing (Recursive) Approach to Controlling Prover Memory

A widely used strategy to manage the zkVM provers’ memory consumption is to shard the execution trace
into smaller pieces (e.g., blocks of 1 million cycles) and prove each shard separately. These shard proofs are
then combined using SNARK recursion or a “folding” procedure into a single, short proof. This approach
allows the prover to store and prove only one or two shards at a time. In zkVM contexts, this approach is
often called “continuations” or “recursive composition.”
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This technique does indeed reduce memory usage in each shard proof, but it also introduces various
downsides. Below, we give a brief overview of the main challenges.

1.1.1 Verifier Implementation Complexity

Because each shard’s proof depends on a commitment to the VM state at that shard’s start, shards cannot
be proved in complete isolation. The prover must ensure that the register and memory state at the end
of shard i matches the state at the beginning of shard i + 1. Existing work provides ways to handle this
matching efficiently [AS24, ST25], but it remains an additional layer of complexity.

Even more fundamentally, using recursion means that the proof statement is no longer just “I ran this
program for T steps correctly.” Rather, it becomes “I hold multiple proofs (one per shard) that each shard
was executed correctly from some committed state to the next.” This makes it more difficult for external
parties to see that the intended statement is being proven. It increases the surface area for bugs, complicates
formal verification efforts, and makes the entire system harder to audit.

1.1.2 Security Considerations

SNARKs without recursion enjoy firmer theoretical underpinnings in certain idealized security models. For
instance, unconditional security in the random oracle holds for some non-recursive SNARKs, but not for
their recursive counterparts.4,5 Furthermore, recursion typically requires taking a SNARK verifier, turning
it into a circuit or constraint system, and then applying another SNARK to that circuit. These circuits
are non-trivial to implement, particularly if one wants to keep their size small to mitigate performance
bottlenecks. These circuits today are still often specified in extremely low-level domain-specific languages,
a process that is error-prone, time-intensive, and difficult to verify for correctness.

Additionally, practical forms of recursion often rely on algebraic hash functions have seen less cryptanal-
ysis than standard hash functions like SHA2 or SHA3.6 Although ongoing efforts continue to strengthen
confidence in these constructions, having the option to forgo recursion, and thus avoid the reliance on
algebraic hashing altogether, remains appealing from both a security and implementation standpoint.

1.1.3 Performance Overheads

A third limitation stems from the cost of recursion itself. With brute-force recursion, each shard’s proof is
verified inside a larger SNARK, requiring the system to encode and prove a SNARK verifier circuit. Storing
this verifier circuit already imposes nontrivial overhead on the prover in both time and memory.

There are approaches (especially using elliptic-curve-based commitments) that exploit homomorphisms
to reduce some of this overhead. However, similar techniques for hash-based SNARKs remain costly in
practice [BMNW24, KNS24, Sze24].

Another source of prover overhead in recursive approaches today is the issue raised in Section 1.1.1 of
ensuring that the state of the VM’s memory at the end of shard i is equal to its state at the start of shard
i + 1. Prominent projects currently pay large prover overheads to address this issue, with some using
Merkle-hashing (causing the first read to each memory page in a given shard to cost over one thousand
VM cycles7) and others resorting to collision-resistant multi-set hash functions whose evaluations involve
elliptic curve group operations, many times more expensive than lightweight fingerprinting techniques
that have long been used in non-recursive contexts [Gro24, RR25]. Although highly efficient methods are
known for addressing this issue [AS24, BC24, ST25], these methods have not yet seen wide deployment.

4However, see Section 1.3.4 for additional discussion of idealized models and the (non-)implications of security therein.
5There have been some efforts to avoid heuristic security in folding-based recursion [LS24, EGS+24].
6Note this is not always the case. For example, if working over fields of characteristic two, very fast SNARKs are known for

standard hash functions [DP23]. As another example, in folding schemes that use homomorphic commitments [KST22, KS24, BC23],
hashing done in circuitry is a low-order cost, so using non-algebraic hash functions does not significantly alter prover time or space.

7See https://dev.risczero.com/api/zkvm/optimization#paging.
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In summary, due to performance overheads arising from the use of SNARK recursion, it is possible that
a non-recursive approach to controlling prover space ultimately leads to a faster or smaller space prover
than recursive approaches. Our goal is to take a significant step toward making that possibility a reality
(although realizing a high-performance implementation of our proving algorithms will still be a major
engineering challenge).

1.1.4 Large Shards Can Lead to Faster Proving

A final issue, especially pertinent to this work, is that some SNARKs benefit heavily from the ability to
consider large shard sizes, notably larger than what is typically used in zkVMs today (roughly 220 CPU
cycles). In particular, very recent work of Setty and Thaler introduces two highly efficient memory-checking
arguments called Twist and Shout [ST25]. Twist applies to read/write memories and Shout to read-only
memories.

In the context of continuations, let T denote the number of CPU cycles in a shard and K denote the size
of the VM’s memory. The Twist and Shout provers (in the context of continuations) incur a number of field
multiplications linear in the memory size K. To ensure that this does not become a bottleneck, the shard
size should be comparable to (or larger than) the size of the CPU’s memory.

Thus, even if one is willing to use SNARK recursion, any zkVM that aims to support CPUs with, say,
gigabytes of memory would benefit substantially from larger shard sizes—for example, on the order of 230

rather than 220 cycles. Existing zkVMs cannot handle this without requiring multiple terabytes of prover
space.8

Moreover, certain commitment schemes that pair naturally with Twist and Shout have undesirable
prover time bottlenecks when applied to small polynomials. For instance, when combining Twist and
Shout with the Dory polynomial commitment scheme [Lee21], the prover performs a multi-pairing of size
O(
√

T) for each shard of size T, in addition to more standard operations (e.g., MSMs of size about T).
Because pairing evaluations are concretely expensive, the O(

√
T)-sized multi-pairing can be a bottleneck

when T is under about 224, but is a low-order prover cost when T is large (see [ST25, Sections 2.9.1 and
9.2.3] for details). This means Dory will be slower than alternative commitment schemes if applied to small
shards, but just as fast as other schemes if shards are large.

Consequently, Twist and Shout are likely to perform best when shard sizes can be significantly larger
than those typically used today. Hence, even if recursion is used, an approach that also controls space
directly can improve prover time by allowing larger shards without ballooning memory usage.

A related observation is that, even if recursion and small shards are used (e.g., shards of size T equal to
roughly one million cycles or less, as is popular today), prover memory will be minimized if each shard is
proven using our techniques (i..e, with space sublinear rather than linear in T). Hence, our results will be
useful in any context where prover space costs are paramount.

Summarizing all of the above, recursion-based sharding may not be the best approach to controlling
prover memory usage. Instead, one can attempt to bound the prover’s space costs directly. This unlocks
simpler verification procedures, stronger security guarantees, and the ability to choose larger shard sizes,
skip sharding entirely, or minimize prover space even if small shards are used.

1.2 Non-Recursive Small-Space Techniques

Controlling prover memory in sum-check-based SNARKs without resorting to recursion is not new. Early
implementations of the sum-check protocol already demonstrated how the prover can operate with small
space by streaming the witness, often incurring only logarithmic overhead in runtime [CTY11, CMT12,
BTVW14]. As discussed above, this technique can also be used in conjunction with recursion to allow for
larger shards.

8Ligetron [WHV24] is an exception, but it has a linear-time verifier, and is not based on the sum-check protocol (we believe that
sum-check-based proof systems lead to the fastest possible provers).
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Despite its promise, non-recursive sum-check-based techniques for reducing space have been underuti-
lized in practice. We attribute this partly to the fact that sum-check-based SNARKs themselves have only
relatively recently grown in popularity, as showcased by newer zkVMs such as Jolt [AST24], a zkVM that
achieves state-of-the-art prover runtime and is built around the sum-check protocol.

A second reason may be that most memory-checking arguments require the prover to sort memory op-
erations, and this sorting procedure is incompatible with small-space, non-recursive proving. However,
memory-checking procedures that avoid sorting have long been known, and indeed Jolt uses such proce-
dures.

A third potential reason is a belief that controlling prover space while avoiding recursion forces the
prover to suffer a logarithmic-factor slowdown in runtime, as small-space implementations of the sum-
check prover take time O(T log T) instead of O(T) [CTY11, CMT12, BTVW14].

In this paper, we show that a large concrete slowdown is not necessary, i.e., that Jolt can be adapted
to run in small space without incurring a crippling time penalty–indeed, our estimates suggest a modest
slowdown of well under a factor of 2, rather than the naive log T factor that prior theoretical bounds imply
(where in the zkVM context, T denotes the number of cycles in the VM execution that is being proved).

Note that we do not actually avoid an O(T log T) prover runtime (at least, not if we want prover space
to be T1−Ω(1)). Hence, there is both a positive framing and a negative framing of our results. The positive
framing is that we show the fastest known methods of implementing zkVM provers already are naturally
small-space, and hence the prover can be made small-space “almost for free”. The negative framing is
that zkVM proving is currently so slow (i.e., requiring just O(T) field operations to prove T cycles, but
with an enormous constant hidden by the Big-Oh notation) that the prover time looks concretely more like
O(T log T) rather than O(T). In other words, one can make zkVM provers small-space with minimal time
hit only because the prover is so slow to begin with.

Both framings have merit. In Section 7.1, we estimate that the Jolt prover (with Twist and Shout, and
combined with an appropriate elliptic-curve commitment scheme), when applied to RISC-V executions
with a memory size of K = 225, incurs roughly 900T field multiplications (900 field multiplications per VM
cycle proved) when using space O(T). Meanwhile, we estimate that a small-space implementation of the
prover incurs about 900T + 12T log T field multiplications. The key point is that 12T log T is much less than
900T for realistic values of T. In other words, quasilinear time with a small leading constant is faster than
linear time proving with a large leading constant. See Section 1.3.3 for additional discussion.

Two versions of Jolt: Spice+Lasso vs. Twist+Shout. Currently, Jolt handles read/write memory by using
a protocol called Spice [SAGL18] and manages read-only memory (such as instructions) via Lasso [STW24].
A new version, under active development and nearing completion, will replace Spice with Twist and Lasso
with Shout [ST25]. Twist and Shout are memory-checking protocols that promise even faster proving than
Spice and Lasso (as well as shorter proofs). In both versions of Jolt, the entire proof system is built on the
sum-check protocol.

We describe how both versions of Jolt—(1) Spice+Lasso and (2) Twist+Shout—can be made small-space
without recursion. Interestingly, the Twist+Shout version is simpler to adapt and comes with lower over-
heads, thanks to its more streamlined memory-checking logic. The reasons we discuss both versions in
this work are: (1) the Spice+Lasso version is already implemented, while the Twist+Shout version is still
in progress; (2) the Twist+Shout version performs best when combined with either an elliptic curve com-
mitment scheme (e.g., Dory or HyperKZG), a lattice-based commitment with similar properties to curve-
based ones [NS25], or a hashing-based commitment schemes over binary fields (e.g., Binius or Blaze). The
Lasso+Spice version of Jolt may still prove useful for projects that, for whatever reason, seek to work with
other commitment schemes that operate over other fields than the above; (3) Exciting progress in lattice-
based folding schemes [NS25] involve polynomial commitments with expensive evaluation proofs. This
may force the use of relatively small shard sizes within the folding scheme. Spice and Lasso may yet prove
superior to Twist and Shout in this small-shard scenario.
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The “right” goal for space usage: logarithmic space is much lower than needed. Many works seek
SNARK provers that, when proving correct execution of a computer program running in space K and time
T, use space O(K + log T). In fact, we achieve this time bound in this paper (for some choices of the
polynomial commitment scheme).

However, we argue that far weaker space bounds are sufficient in practice. This is for two reasons. First,
the values of K and T that arise in prominent SNARK applications (e.g., zkEVMs, which seek to prove
statements of the form “I correctly processed this Ethereum block”) often have K ≥ 225 (corresponding to
dozens of MBs of space used by the program execution) and T ≤ 235.9 This means that O(K + log T) and
O(K + T1/2) are the same in practice up to constant factors: both are dominated by the O(K) term. Second,
depending on the hidden constant, O(K + T1/2) space (or even higher) can already improve dramatically
upon the concrete space usage of existing recursive approaches to controlling the zkVM prover space. In-
deed, today’s zkVMs require about 10 GB or more of prover space (at least if one is not willing to pay a
substantial hit to prover time). Yet storing even T1/2 field elements for T = 240 translates to just a few
dozen MBs of prover space, orders of magnitude less than the roughly 10+ GBs used by recursion-based
zkVMs today.

Although we achieve O(K + log T) prover space, allowing for higher space bounds can lead to a much
simpler and faster prover implementation. Let us give an illustrative example. Consider Jolt with Twist
and Shout, and Dory [Lee21] as the polynomial commitment scheme. Because the Dory commitment key
consists of random group elements (which, in practice, are generated by evaluating a cryptographic PRG at
different inputs), the commitment key can be generated “on the fly”. But the Dory prover implementation
is substantially simpler and much faster if the key is explicitly stored by the prover (see Section 1.3.1 for
details).

When Dory is applied within Jolt using Twist and Shout, the commitment key consists of 2
√

KT group
elements. (By using a more complicated variation of Twist, the commitment key can be reduced in size to
2
√

K1/d · T for any integer d > 1, but the Twist prover is fastest when d = 1).
Consider K = 225 and T = 235 as a representative instance. Storing 2

√
KT field elements costs about

100 GBs of space, which (while certainly much more space-intensive than desirable) is already acceptable
in some settings. However, the size of the Dory commitment key can be lowered by a factor of 10 or more
with a modest increase in verifier costs (see [ST25, Section 3.1.1] for details), and this would bring the
commitment key size down to 10 GBs or less, which is roughly the amount of space used by recursion-
based zkVMs today. Thus, we see that even O(

√
KT) space can be acceptable for the prover in practice.

That is, while O(T) space is too much, even modest improvements often suffice.
Another reason that a space bound of roughly O(

√
T) space is an attractive target is that certain mean-

ingful optimizations to sum-check proving run in this space bound [DT24] (these techniques can more
generally achieve a space bound of T1/c for any integer c ≥ 1, but values of c larger than 2 lead to slower
provers.)

Why the Jolt prover slowdown is smaller than a log T factor. Although prior theoretical analyses of
streaming sum-check [CMT12, CTY11, BTVW14, BHR+20] suggest an O(T log T) time bound for space-
bounded provers and an O(T) bound for a memory-intensive ones, several factors substantially reduce the
prover time blowup in Jolt, concretely to a factor of well below 2 (per our analytic estimates in Section 7.1).

1. Sparse sums for most of the protocol. In Jolt (and especially in its Twist+Shout variant), the sum-
check protocol is applied several times to sums over a large number of terms—yet most of these terms
are zero. The prover employs “sparse techniques” dating back to [CTY11, CMT12] to handle these
zero-terms efficiently, and these same sparse-sum optimizations also allow for small-space operation
without extra overhead during the early rounds of sum-check. Only in the final rounds of the protocol
do the relevant sums become “dense”, and only then does the prover pay a time overhead for storing

9Today, a crude estimate for how many RISC-V cycles are required to prove a “heavy” Ethereum block is roughly 230. However,
there are proposals to scale the amount of processing performed within each block by an order of magnitude or more [But25].
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fewer items in memory. Since those “dense” rounds comprise only a fraction of the prover total work,
the resulting overall slowdown for the prover is considerably less than a full factor of log T.

2. Some sum-checks are directly compatible with a streaming prover. For some of the sum-check
invocations in Jolt, something even stronger holds: these sum-check instances are amenable to the
so-called sparse-dense sum-check proving algorithm from [STW24, Appendix G]. This protocol is in-
herently streaming, meaning the prover naturally runs in small space and very few passes over the
values being summed, with essentially no slowdown needed to achieve this.

In this work, we go a step further and describe a generalization of the sparse-dense sum-check pro-
tocol, which we call the prefix-suffix inner product protocol. This prover algorithm is a significant
departure from that of [STW24, Appendix G], hewing much more closely to the standard linear-time
sum-check prover algorithm [CTY11]. In a sense, the prefix-suffix inner product protocol identifies
conditions under which the standard linear-time algorithm can actually be run in sublinear space.

Even for sum-check invocations where the sparse-dense sum-check protocol does apply, the new
prefix-suffix inner product protocol is simpler and concretely faster. More importantly for us, the
generality of this new protocol let us render the prover in several of Jolt’s sum-check invocations
small space with no slowdown.

3. “Small-value” sum-check is also directly compatible with a streaming prover. We explain in Section
3.1.3 that certain techniques to speed up the Spartan prover as applied in Jolt (which leverage that all
values arising in this Spartan instance are “small”) [BDT24] are also compatible with a streaming
prover, with little to no time overhead.

To summarize the above three items, the fastest known ways of implementing the Jolt prover are
already naturally space-controlled. For several sum-check invocations in Jolt, little to no overhead
arises in making the prover small space. And for all of the others, time overheads arise only in late
rounds of the protocol, and these rounds are only a small fraction of overall prover cost.

4. Parallelism in repeated witness generation. The small-space Jolt prover does have to generate the
entire execution trace (the VM’s state at each step) many times. In Jolt, this so-called witness gener-
ation procedure currently accounts for under 5% of the total prover time when done once, so doing
it even several dozen times is not necessarily prohibitive. Moreover, we can exploit multithreading
to dramatically lower the cost of repeated witness generation. Concretely, the first time the witness
is generated (which is often done serially today, since arbitrary computer programs may not be par-
allelizable), the prover can store a small number of checkpoints—snapshots of the VM state at fixed
intervals. This ensures that the prover can regenerate each chunk of the trace in parallel when needed.
With M threads, this can yield up to a factor-M speedup compared to naively regenerating the wit-
ness from scratch in serial. This ensures repeated witness generation is only a modest additional cost
for the prover.

5. Stopping space-control early. The space required by the standard linear-time sum-check proving al-
gorithm [CTY11] halves in each round. Hence, after enough rounds have passed, the prover “switch”
from a small-space prover implementation to the standard linear-time prover implementation, with-
out increasing its space requirements. This saves a meaningful constant factor in prover time, while
keeping the prover’s space bounded by an small polynomial in the number T of VM cycles proven,
e.g., T1/2.

6. No slowdown in committing or producing evaluation proofs. With commitment schemes like Hyrax
[WTS+18] and Dory [Lee21], if the prover is allowed space square root in the size of the committed
polynomial, no slowdown whatsoever occurs compared to allowing a linear-space prover (see Section
6 for details).
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Overview of the techniques. As discussed above, it’s well-known that sum-check proving can be done
in small space if the prover is capable of streaming the terms being summed (i.e., of iteratively generating
the terms one after the next). So the bulk of our effort lies simply showing in that the Jolt prover is indeed
able to stream the terms being summed in all relevant sum-checks.

For Twist and Shout, this is immediate from inspection of the efficient proving algorithms given in the
paper [ST25]. For Spartan’s application in Jolt, the main observation is simple: the primary sum-check
invocation in Spartan requires the prover to stream the three vectors Az, Bz, and Cz, where here z is a
solution to the R1CS instance. In Jolt, z is essentially an execution trace of the VM, and A, B, and C are
essentially block-diagonal matrices (with constant-sized blocks, capturing under 100 constraints per CPU
cycle). z can be streamed while executing the VM, and hence Az, Bz, and Cz can be streamed as well,
due to the block-diagonal structure of A, B, and C. Intuitively, this simply means that every constraint
in Jolt for cycle j of the VM’s execution involves only those variables of z captures only what happens at
cycle j, and there are only constantly many such variables. For the grand products in Lasso and Spice,
our main observation is that, while streaming over inputs to the grand product (which are simply random
fingerprints of values and counts or timestamps arising in reads or writes to memory performed during the
VM’s execution), the prover can also stream “partial products” of those inputs, via a depth-first traversal of
the binary tree of multiplication gates computing those partial products.

For polynomial commitment schemes, we observe that for many polynomial commitment schemes the
prover is directly implementable in space O(

√
T) where T is the size of the polynomial being committed.

Hence, no time overhead whatsoever is required to implement the prover in this space bound. If space
as low as O(log T) is desired, techniques from prior work [BHR+20] are easily adapted to a variety of
polynomial commitments to achieve this while maintaining O(T log T) prover time.

Our new prefix-suffix inner product protocol, like the sparse-dense sum-check protocol that it general-
izes [STW24], is used to compute ∑x ux · ax where ux is an arbitrary vector in Fn and ax is a “structured”
vector in Fn. The primary insight in our new protocol is a cleaner formulation of what structure in ax is
exploitable to ensure a small-space prover that runs in linear time.

Key technical takeaways. Summarizing the above discussion, our work draws three key conclusions.
First, each component of the Jolt prover (Spartan, Twist, and Shout) is “almost” streaming already. At
worst, the only modification needed to render the prover small-space arises in the final log T rounds of the
relevant sum-check instances, and simply invokes a small-space prover algorithm dating back to the first
paper on linear-time and quasi-linear-time sum-check proving [CTY11]. Second, square-root rather than
logarithmic prover space is often sufficient in practice, and is especially simple to achieve. In particular,
many polynomial commitment schemes are directly implementable in space square root in the size of the
committed polynomial. Third, asymptotic bounds on prover time do not necessarily match concrete bounds
in practice. This is the case in our setting, where the O(T log T) term in our prover’s runtime has a much
smaller constant than the O(T) term (by nearly two orders of magnitude).

1.3 Additional discussion

1.3.1 The high cost of repeatedly generating commitment keys

When considering transparent elliptic curve commitment schemes, if we want the prover to use space less
than O(T1/2), the prover does not have the space to store the entire commitment key. Hence, it has to
generate the key “online” one or more times. What is the time cost of this procedure?

In practice, generating a random group element typically involves evaluating a cryptographic PRG and
then applying a hash-to-curve procedure [Ham13, BCPR16, WJSS23]. A PRG evaluation takes only several
CPU cycles per output byte produced. However, hash-to-curve procedures often require thousands of CPU
cycles per curve element produced, which is the same order of magnitude as the cost of several dozen field
operations over a 256-bit field F. In fact, the bottleneck in state-of-the-art hash-to-curve procedures [Ham13]
is computing a square root within F, which asymptotically costs O(log |F|) = O(λ) field operations.
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This means that, with such commitment schemes, lowering the prover space to less than O(
√

T) in
Jolt (e.g., achieving logarithmic space) requires more than O(T log T) field operations’ worth of prover
time. For example, when using (the simplest variation of) Hyrax [WTS+18] the prover’s time becomes
O(Tλ + T log T) = O(Tλ). When using commitment schemes like Dory [Lee21] that have logarithmic-
round evaluation protocols, the prover has to generate elements of the commitment key O(T log T) times
(see Section 6 for further details), and this is equivalent to O(T · λ · log T) field operations in total. Hence,
repeatedly generating the commitment key to produce polynomial evaluation proofs is a significant prover
time bottleneck. In practice, we do not believe this slowdown is worth the space savings. Instead, as we
advocate for above, the prover should simply store the commitment key.

1.3.2 Committing to random values in Lasso and Spice

The grand product argument we use within Spice and Lasso is the one from Spartan/Quarks [Set20,SL20],
which has the prover commit to T random values for grand products of size T. Using an elliptic curve
commitment scheme, this requires O(Tλ/ log(T)) field operations where λ is the security parameter. For
values of λ arising in practice (e.g., λ = 128), this is comparable to O(T log T) time (though in practice
committing to all these random values is a concrete prover bottleneck in Jolt when the Spartan/Quarks
grand product is used rather than alternatives such as Thaler’s grand product argument [Tha13] that are
faster for the prover but have larger proofs). For simplicity, we state an asymptotic O(T log T) runtime
bound for the Lasso and Spice provers.

1.3.3 Is Jolt with Twist and Shout linear time?

With a commitment scheme such as Dory, the Jolt prover always devotes O(T) field operations to commit-
ting to data and producing evaluation proofs. The remaining components of Jolt are the various sum-check
protocol instances in Spartan, Twist, and Shout. The linear-space prover implementations for Spartan and
Shout run in O(T) time. The RISC-V VM has 32 registers, at most two of which are read and one written
cycle. Since the number of registers is a constant, When Twist is applied to process these register reads
and writes, the prover runs in O(T) time. The only component of linear-space Jolt proving that potentially
requires superlinear time is Twist applied to the VM’s reads and writes to RAM. In the worst case this
takes time O(T log K). Unless the memory size K is modelled as a constant independent of T, O(T log K) is
superlinear in T.10

However, there are two reasons why the Jolt prover’s runtime can in fact be O(T) for “typical” program
executions even when using Twist. First, the Twist prover only “pays” field operations for cycles that
actually perform a read or write to RAM. Second, for memory accesses that are “i-local” (accessing memory
cells that were previously accessed at most 2i cycles prior), the Twist prover only pays O(i) field operations.
Accordingly, with Twist and Shout, the linear-space Jolt prover performs Θ(T log K) field operations only
when a constant fraction of cycles perform reads or writes to RAM and those memory operations are not
sufficiently local.

In summary, the prover for Jolt with Twist and Shout can be considered linear-time for many program
executions. And since the runtime of our O(

√
KT)-space proving algorithm is concretely within a small

constant factor of the linear-space prover’s time, the small-space prover’s runtime concretely behaves in a
similar fashion, even though it is asymptotically O(T log T).

1.3.4 Attacks on the Fiat-Shamir transformation

Recently, attacks have been demonstrated [KRS25] on proof systems that combine the GKR protocol [GKR15,
CMT12,Tha13] (plus any multilinear polynomial commitment scheme) with the Fiat-Shamir transformation
[FS87]. Let us refer to the attackable protocol as FS-GKR. Currently, these attacks are only known to work

10If using Spice with GKR-based grand products [Tha13] in place of Twist, the Jolt prover’s runtime is O(T) field operations in the
worst case, regardless of the memory size K. But Spice is concretely slower for the prover than Twist [ST25], and moreover this variant
of Spice also leads to bigger proofs (of size O(log2 T)) than with Twist.
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when FS-GKR is applied to a specific class of circuits, key components of which must be deterministic (i.e.,
they must take no “untrusted advice”). This causes the circuits to be large and deep. From a performance
standpoint, this is precisely the class of circuits for which the GKR protocol is unattractive, as it translates
to large proofs and a slow prover.

Despite these caveats, the attacks raise concerns about the viability of the Fiat-Shamir paradigm in
general (i.e., of designing SNARKs by first designing a public-coin interactive protocol, and then removing
interaction via the Fiat-Shamir transformation). The aforementioned attacks on FS-GKR apply even though
the protocol is unconditionally secure in the random oracle model, due to the difference between the random
oracle idealization and actual hash functions. Understanding and mitigating such attacks (possibly by
altering the FS-transformation itself [AY25]) remains an extremely important and active area of research.

Arguably, the circuits for which FS-GKR has been shown to be attackable are reminiscent of those used
in recursive proving. By this, we mean that the circuit, to “make itself attackable” when FS-GKR is applied
to it, performs the same computation that FS-GKR verifier does.11 This offers further motivation for our
work, as we focus on controlling prover memory usage without resorting to SNARK recursion.

Given the above attacks, it is worth clarifying the role of the GKR protocol within Jolt. The GKR protocol
is used in Jolt-with-Spice-and-Lasso, but it is only applied to “grand product circuits” that are vastly simpler
than those known to be attackable. Jolt-with-Twist-and-Shout does not invoke the GKR protocol at all.

1.4 Related Work

Cormode, Thaler, and Yi (CTY) [CTY11] gave two different algorithms for implementing the sum-check
prover when the sum-check protocol is applied to a product of log(T)-variate multilinear polynomials. One
performs O(T) field multiplications but requires space O(T). We call this the standard linear-time sum-check
proving algorithm. The other proving algorithm in CTY performs O(m log T), where m is the number of terms
of the sum that are non-zero–we refer to m as the sparsity of the sum, and refer to this proving algorithm
as the sparse proving algorithm. The O(m log T) time bound arises because the prover spends time O(m)
in each of the O(log T) rounds (whereas in the standard linear-time proving algorithm, the prover’s time in
round i is O(T/2i)).

The sparse proving algorithm requires just O(log T) space if the prover has streaming access to the
terms of the sum (i.e., if the prover can generate one term after the next in small space). We distill the sparse
proving algorithm for the sum-check protocol in Section 3.1.

Somewhat confusingly, the work of CTY was framed around the notion of “streaming interactive proofs”,
where streaming here refers to the verifier processing the input in a streaming fashion. An unrelated (but
historically more important) contribution of the same work was to describe the sparse sum-check prover al-
gorithm (which is small-space for the prover if the prover is capable of generating the terms being summed
in a streaming fashion). Thus, CTY achieved a “streaming verifier” and (in a different sense) also implicitly
achieved a “streaming prover” for the sum-check protocol.

The sparse sum-check prover algorithm was subsequently applied [CMT12] to achieve a quasilinear-
time prover for circuit evaluation (later improved to linear time via a series of works [Tha13, WJB+17,
XZZ+19, Set20]), and in [BTVW14] to explicitly achieve a small-space, quasilinear time proving algorithm
for circuit satisfiability. [BTVW14] was presented as a two-prover interactive proof, but from a modern per-
spective it implicitly gives a polynomial IOP (PIOP), as the second prover in the two-prover proof system
plays the same role as a polynomial commitment scheme.

[BHR+20] construct a SNARK for virtual machines (VMs) with provers operating in quasilinear time
and small space (linear in the space usage of the VM itself, plus a term that is logarithmic in the VM’s
runtime). They work in the random oracle model, assuming the hardness of the discrete logarithm problem
in prime-order groups. A key technical contribution is to identify a “streaming-prover” implementation of
the Bulletproofs/IPA polynomial commitment scheme [BCC+16,BBB+18] to combine with the small-space
PIOP of Blumberg et al. [BTVW14].

11Though unlike actual recursion circuits, the circuit for which FS-GKR is attackable also has to deterministically compute a cryp-
tographic commitment to the witness that it is fed.
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A downside of the Bulletproofs PCS is that it requires (super-)linear time verification. [BHR+21] im-
prove the verifier in [BHR+20] by leveraging the PCS from [BFS20], which features a sublinear verifier
algorithm for the evaluation protocol. They further devise a small-space commitment algorithm and a
small-space evaluation prover algorithm for the PCS in [BFS20]. This allows them to retain the PIOP from
[BHR+20, BTVW14] while replacing its PCS with the one from [BFS20], achieving sublinear verifier com-
plexity.

Gemini [BCHO22] reestablishes the result of Block et al. [BHR+20] regarding small-space, quasilinear-
time proving for VM execution, though with a multilinear analog of the KZG PCS [KZG10] in place of the
Bulletproofs/IPA PCS. As with KZG commitments themselves, the structured reference string for this PCS
is of linear size, so the prover is only small space if this SRS can be “streamed” by the prover. Gemini more
generally gives SNARKs for rank-one constraint systems where the prover may make many streaming
passes over the witness and associated constraint evaluations.

Ligetron [WHV24] is a SNARK (not based on the sum-check protocol) for WASM execution, where
the prover runs in quasilinear time and space square root of the number of gates in a circuit required
to implement the WASM execution. The proof size is also square root in the number of gates. Ligetron
involves a linear-time verifier.

Epistle [ZCL+24] introduces SNARKs with a small-space prover tailored for Plonkish constraint sys-
tems. As part of this work, they design SNARK for grand products, which verifies that the product of
all elements in a committed vector equals 1. Their prover operates within a small-space regime, but their
approach differs from ours as it does not rely on the sum-check protocol. Their technique constructs two
vectors containing the partial products of the witness vector, where one vector is a cyclic shift of the other,
and the final component of one vector encodes the product value. They then employ protocols to verify the
cyclic relationship between these vectors, along with polynomial identities that enforce the correctness of
the partial product computations. This method introduces higher overheads than our approach in Section
D.

Sparrow [PP24] presents a SNARK tailored to data-parallel circuits. In FFT-friendly fields, their ap-
proach reduces the prover’s space complexity to approximately the square root of the circuit’s size, while
the prover’s runtime is superlinear by only a doubly-logarithmic factor. The main technique in [PP24] is as
follows. Consider the sum-check protocol applied to a product of two multilinear polynomials over log T
variables. By increasing the degree of both polynomials in their first two variables from one to, respecitvely,
log T and

√
T/ log T, the sparse sum-check prover winds up spending slightly superlinear time in the first

two rounds but very little time in subsequent rounds. Moreover, the prover’s space stays bounded by
roughly O(

√
T).

In Scribe, [BMM+24] consider SNARKs for circuit satisfiability. The allow the prover to use linear space
in the size T of the circuit, but limit the prover’s access to this large memory to read/write streaming
passes. This means that the prover can repeatedly read and overwrite the entire memory from start to finish.
They adapt the sum-check-based Hyperplonk PIOP [CBBZ23] to this setting, as well as several polynomial
commitment schemes. Our work focuses on zkVMs rather than circuit-satisfiability (effectively, we focus
on a specific “circuit” that captures execution of the RISC-V VM). In this context, we avoid linear space for
the prover.

Throughout Scribe [BMM+24], the authors describe various “barriers to read-only streaming”. A brief
description of these issues and how they relate to our work is warranted. First, several of the barriers
amount to characterizing O(T log T)-time prover algorithms as too slow. But, as discussed in Section 1.2
above and Section 7.1 below, for zkVMs (a setting not considered in Scribe), O(T log T)-time prover algo-
rithms can be within a small constant factor (potentially well below 2×) slower than state-of-the-art linear-
space proving algorithms. Scribe also describes various issues arising with a depth-first traversal of a binary
tree of multiplication gates in grand product arguments (see [BMM+24, Remark 2.7] and [BMM+24, Sec-
tion 2.8.1]). Our result about making grand products streaming for the prover (Appendix D) uses exactly
this approach, showing that there is no fundamental issue with a depth-first traversal order, at least not if
O(T log T) prover runtime is acceptable.12

12Scribe also describes concerns related to achieving a fast streaming prover for polynomial commitment schemes exploiting vector-
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1.5 Paper Roadmap

We organize the remainder of this paper as follows (throughout, we use the term “streaming prover” as
shorthand for a prover that runs in space sublinear in T).

• Section 3 contains relevant background on the sum-check protocol and its efficient implementation,
especially the “small-value sum-check” prover implementation of [BDT24], the design of the Jolt
zkVM, and the Twist and Shout memory-checking arguments.

• Section 4 presents the streaming implementation of the small-value sum-check protocol prover [BDT24]
in the context of Jolt’s use of Spartan applied to the R1CS instance arising in Jolt.

• Section 5 explains the streaming implementations of the Twist and Shout provers.

• Section 6 covers a handful of polynomial commitment schemes and how to render their prover
streaming.

• Section 7 shows how to integrate these results into Jolt’s three main components (Shout, Twist, and
Spartan) to build a memory-efficient Jolt prover.

• Appendix A describes our new prefix-suffix inner product sum-check prover algorithm.

• Appendices B-E cover Spice and Lasso (the memory-checking arguments used in the Jolt implemen-
tation today) and explain how to render the prover in this version of Jolt streaming.

2 Preliminaries

We use Fp to denote a finite field of size p. In our runtime accounting, we regard an operation in Fp as
one time step, and a field element as requiring one unit of memory. Note that for Jolt to achieve λ bits of
security, it must work over a field Fp of size at least 2λ. When the field size p is clear from the context,
we omit it and simply write F. Unless stated otherwise, F is a large prime-order field, though we also
sometimes consider the binary field GF[2128].

We use tobits to denote the function that takes a value in {0, 1, . . . , 2n − 1} and returns the n-bit bi-
nary string corresponding to it. Similarly, we use val to denote the function that takes an n-bit binary
string and returns the integer value corresponding to it. That is, val(b1, . . . , bn) = ∑n

i=1 2i−1 · bi, and
tobits(val(b1, . . . , bn)) = (b1, . . . , bn). Note that we display the low-order bit b1 on the left and the high-
order bit bn on the right.

Given a function f : {0, 1}n → F, its multilinear extension (MLE) is the polynomial f̃ (X1, X2, . . . , Xn)
defined as follows:

f̃ (X1, X2, . . . , Xn) = ∑
x∈{0,1}n

f (x)
n

∏
i=1

((1− Xi)(1− xi) + Xi · xi),

where xi denotes the i-th bit of x. It is easy to check that f̃ is the unique multilinear polynomial such that
f̃ (y) = f (y) for all y ∈ {0, 1}n.

Given a vector w ∈ F2n
, the MLE w̃ corresponding to w is the multilinear polynomial that evaluates to

w over the boolean hypercube. In other words, w̃(tobits(i)) = wi, for i ∈ {0, 1, . . . , 2n − 1}, where wi is the
i-th component of w.

The following basic fact about multilinear polynomials will be useful to us:

matrix-vector-product structure in polynomial evaluation queries. The concern relates to the prover needing to iterate over (a matrix
representation of) the polynomial’s evaluations in both row-major and column-major order. However, the precise nature of the barrier
is unclear, and in Section 6 of our work, we do give a small-space prover implementation for these commitment schemes.
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Fact 2.1. Let ũ : Fn → F be any multilinear polynomial. Then for any c ∈ F and x ∈ Fn−1,

ũ(c, x) = (1− c) · ũ(0, x) + c · ũ(1, x). (1)

Proof. The left hand and right hand sides of Equation (1) are both multilinear polynomials in (c, x), and
clearly are equal when (c, x) ∈ {0, 1} × {0, 1}n−1. The claim then follows from the fact that {0, 1}n is an
interpolating set for n-variate multilinear polynomials over F.

We define the multilinear extension of the equality function over two boolean strings x, y ∈ {0, 1}n as
follows:

ẽq(X, Y) =
n

∏
i=1

((1− Xi)(1−Yi) + XiYi) .

It is easy to verify that for any pair of strings x, y ∈ {0, 1}n, ẽq(x, y) equals 1 if x = y and equals 0 otherwise.

2.1 Succinct Non-Interactive Arguments of Knowledge

A Succinct Non-interactive ARgument of Knowledge for a relation R enables any prover to convince a
verifier that it possesses a (private) witness w corresponding to publicly known x such that (x, w) ∈ R.
In this section, we formally define an Argument of Knowledge, and then state the required succinctness
property. Given a pair of probabilistic interactive algorithms P, V, we denote ⟨P, V⟩ (x; w) as the output of
the interaction of P and V, where x is publicly known, and w is privately known to P. Let R = {(x, w)} be
a relation. Next, we formally define Arguments of Knowledge (AoK).

Definition 2.2 (Succinct Argument of Knowledge). An Argument of Knowledge (AoK) for a relation R
constitutes of a probabilistic algorithm G(1λ) that takes as input the security parameter λ and outputs
public parameters pp, together with a pair of probabilistic algorithms ⟨P, V⟩ satisfying:

1. Completeness: For all λ ∈N, pp← G(1λ), and for every (x, w) ∈ R the following holds:

Pr {⟨P, V⟩ (pp, x; w) = 1} = 1

2. Knowledge-Soundness: For any pair PPT algorithms P1, P2 there exists an PPT algorithm Ext such
that the following holds:

Pr
{

(x, w) /∈ R
⟨P2, V⟩ (pp, x; st) = 1

∣∣∣ pp← G(1λ), (x, st)← P1(pp, 1λ)
w← ExtP2(pp, )

}
= negl(λ)

Remark 2.3. The AoK is succinct if the communication complexity between the prover and the verifier, and
the verifier run-time is sub-linear in the size of the witness w.

Remark 2.4. An AoK is public coin if the random bits sampled by the verifier is public. A Succinct Non-
interactive Argument of Knowledge (SNARK) is a one-message public-coin AoK, that is, the prover sends
the message to the verifier and consequently verifier outputs either 1 or 0. An interactive public-coin argu-
ment can be rendered non-interactive using the Fiat-Shamir transformation. If the interactive argument sat-
isfies an enhanced soundness property called round-by-round soundness [CCH+19], the SNARK obtained
via the Fiat-Shamir transformation is knowledge sound in the Random Oracle Model (ROM) (augmented
with any additional cryptographic assumptions upon which the security of the interactive argument is
based).
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2.2 Polynomial Commitment Scheme

A polynomial commitment scheme (PCS) enables a prover to succinctly demonstrate the correctness of
polynomial evaluations ( [KZG10]). A PCS over F consists of the tuple PC = (setup, commit, open, eval),
where:

• pp ← setup(1λ, n, N). Given a security parameter λ, the number of variables n, and an upper bound
N ∈N on the number of distinct monomials in n variables, setup generates the public parameters pp.

• (C, c̃) ← commit(pp, f , D). Given the public parameters pp, an n-variate polynomial f (X) ∈ F[X]
with at most D ≤ N monomials, commit outputs a commitment C to the polynomial along with an
opening hint c̃.

• b ← open(pp, f (X), D, C, c̃). Given the public parameters pp, commitment C, opening hint c̃, and a
polynomial f (X) with at most D ≤ N monomials, open outputs a binary decision indicating whether
the proof is valid.

• b← eval(pp, C, D, x, y; f (X)). This is a public-coin interactive protocol ⟨Peval, Veval⟩(pp, C, D, x, y; f (X))
between a PPT prover and a PPT verifier. The common input consists of the public parameters pp,
the commitment C, the monomial bound D, an evaluation point x ∈ Fn, and the claimed evaluation
y. The prover additionally has access to the opening f of C with at most D monomials. The verifier
outputs 1 if the proof is accepted (i.e., confirming f (x) = y), or outputs 0 otherwise.

A polynomial commitment scheme must satisfy the properties of completeness, binding, and knowl-
edge soundness.

Definition 2.5 (Completeness). For any polynomial f (X) ∈ F[X] with at most D ≤ N monomials, and for
any x ∈ Fn,

Pr

b = 1 :

pp← setup(1λ, N)
(C, c̃)← commit(pp, f (X), D)

y← f (x)
b← eval(pp, C, D, x, y; f (X))

 = 1.

Definition 2.6 (Binding). A polynomial commitment scheme PC satisfies binding if for every PPT adversary
A, the probability of the following event occurring is negligible in λ:

Pr

open(pp, f0, D, C, c̃0) = 1∧
open(pp, f1, D, C, c̃1) = 1∧

f0 ̸= f1

: pp← setup(1λ, N)
(C, f0, f1, c̃0, c̃1, D)← A(pp)

 .

Definition 2.7 (Knowledge Soundness). The protocol eval serves as an argument of knowledge (AoK) for
the relationReval, defined as:

Reval = {((pp, C, x←−R Fn, y ∈ F); ( f (X), c̃)) :
(open(pp, f , D, C, c̃) = 1) ∧ y = f (x)}

3 Background

3.1 The Sum-Check Protocol

The sum-check protocol is designed to verify the sum of evaluations of a given n variate polynomial g over
the Boolean hypercube {0, 1}n. In Jolt, the sum-check protocol is applied specifically to cases where g is
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expressed as a product of ℓ multilinear polynomials.13 Specifically, there exists ℓ multilinear polynomials
g1, g2, . . . , gℓ in n variables such that

g(X1, . . . , Xn) = ∏
k∈{1,...ℓ}

gk(X1, . . . , Xn) (2)

In this scenario, the sum-check protocol is employed to prove the following relation:

{(v, {Cgk}k∈{1,...,ℓ}) | Cgk is an oracle to an n-variate multilinear polynomial gk, for k ∈ {1, . . . , ℓ},
and v = ∑

x∈{0,1}n
g(x), where g is as in Equation (2) }. (3)

The sum-check protocol operates over n rounds, and in each round the prover sends a univariate poly-
nomial fi(Xi) to the verifier, who then responds with a random value ri. The polynomial fi(Xi) is defined
as follows:

f1(X1) = ∑
x∈{0,1}n−1

g(X1, x), and fi(Xi) = ∑
x∈{0,1}n−i

g(r1, . . . , ri−1, Xi, x) ∀i ∈ {2, . . . , n}.

In the first round, the verifier checks v = f1(0) + f1(1), and for every round i ∈ {2, . . . , n− 1} after that
the verifier checks fi(ri) = fi−1(1) + fi−1(0). At the end of the protocol, the verifier additionally checks
g(r1, . . . , rn) = fn(rn). To accomplish this, the verifier evaluates g1(r1, . . . , rn), . . . , gℓ(r1, . . . , rn) by making
a single query to each of their respective oracles and then uses these results to compute

g(r1, . . . , rn) =
ℓ

∏
k=1

gk(r1, . . . , rn).

It is well-known that the sum-check protocol has soundness error at most ℓ·n
|F| (see Section 4.1 from [Tha22]

for a formal statement and a proof of this). The sum-check protocol allows the verifier to reduce the task of
checking the relation in Equation (2) to verifying the evaluationg g at a random point (r1, . . . , rn).

There is a well-known linear-time honest prover algorithm for the sum-check protocol from [CTY11].
We note the complexity of this honest prover algorithm in Theorem 3.1.

Theorem 3.1 ([CTY11]). There is an honest prover algorithm for the sum-check protocol that takes as input the
evaluations of g1, . . . , gℓ over {0, 1}n and in each i ∈ {1, . . . , n} computes fi(Xi) in time and space O(2n−i).

Thus, for an honest prover, the sum-check protocol incurs at most a constant-factor overhead beyond
computing the witness polynomials g1, . . . , gℓ. However, the linear-time honest prover algorithm also re-
quires linear space, which becomes a bottleneck when the witness polynomials themselves are large, as is
the case in Jolt. In Section 3.1.2, we distill results from [CTY11, CMT12, BTVW14] and present an honest
prover algorithm for the sum-check protocol that trades off runtime to operate in logarithmic space. Specif-
ically, Algorithm 1 in Section 3.1.2 provides an honest prover algorithm for the sum-check protocol that
operates in O(n) space. However, it requires the terms being summed to be recomputed iteratively in each
round of the sum-check protocol. This results in linear prover time per round, and hence a logarithmic
factor overhead compared to the linear-time honest prover algorithm in Theorem 3.1.

Finally, in Section 3.1.3, we demonstrate how recent honest prover algorithms for the sum-check pro-
tocol, which have been optimized for the case where all terms being summed are “small”, can be adapted
(with no time overhead) to operate in small space as well.

13The one exception is a sum-check used in Lasso to coalesce the results of several lookups into smaller tables into the final result
of the original lookup. Even there, the relevant polynomial can be decomposed into a constant number of sums of products of
multilinear polynomials. Hence, describing g as a product of multilinear polynomials is general enough to capture all applications of
the sum-check protocol in Jolt.
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3.1.1 Overview of Linear-Time Sum-Check Prover Algorithm

Our starting point is the linear time honest prover algorithm from [CTY11, Tha13]. The algorithm accepts
as input the evaluations of g1, g2, . . . , gℓ over {0, 1}n. For k ∈ {1, . . . , ℓ} let Ak represent the evaluations of
gk, where the j-th entry of Ak is the evaluation of gk at tobits(j), for j ∈ {0, 1, . . . , 2n − 1}. In round i of the
sum-check protocol the prover sends the univariate polynomial fi(Xi) to the verifier, who responds with a
random point ri ∈ F. The polynomial fi is constructed by evaluating it at ℓ+ 1 points.

(In fact, standard optimizations reduce the number of evaluation points to ℓ, and in many cases just
ℓ− 1. The reduction from ℓ+ 1 evaluations to ℓ is possible because for the honest prover, fi(0) + fi(1) =
fi−1(ri−1), and so fi(1) can be directly inferred from fi−1(ri−1) and fi(0). The reduction from ℓ to ℓ − 1
evaluations is due to Gruen [Gru24, Section 3] and applies when g1(x) = ẽq(r, x) for some r ∈ Fn. For
simplicity we ignore these optimizations in this work.

The evaluations of fi at the relevant points is computed by using the evaluations of gk(r1, . . . , ri−1, Xi, . . . , Xn)
over {0, 1}n for k ∈ {1, . . . , ℓ}. The prover updates the arrays A1, . . . , Aℓ such that at the beginning of round
i, Ak contains the evaluations of gk(r1, . . . , ri−1, Xi, . . . , Xn) over {0, 1}n−i. This update step works as fol-
lows. At the end of round i− 1, the array Ak is updated and its size is reduced by a factor of two as follows:

Ak[m] = (1− ri−1) · Ak[2m] + ri−1 · Ak[2m + 1], for m ∈ {0, 1, . . . , 2n−(i−1)}. (4)

Thus, at the beginning of round i the size of Ak is 2n−(i−1), for k ∈ {1, . . . , ℓ} and i ∈ {1, . . . , n}. It is straight-
forward to verify that this update step ensures Ak contains the evaluations of gk(r1, . . . , ri−1, Xi, . . . , Xn) at
the start of round i. This follows from the fact that for any n-variate multilinear polynomial gk and any
x ∈ Fn−1 and r ∈ F, it holds that gk(r, x) = (1− r) · gk(0, x) + r · gk(1, x). Clearly, since the arrays Ak at the
beginning store the evaluations of gk over {0, 1}n, the algorithm requires O(k · 2n) space. Next, we describe
the logarithmic-space algorithm.

3.1.2 Sum-Check Prover in Logarithmic Space

In this section, we present Algorithm 1, which provides an honest prover algorithm for the sum-check
protocol that operates in logarithmic space. We assume that the prover has oracle access to g1, . . . , gℓ and
iteratively queries their evaluations over {0, 1}n. Specifically, the prover queries the evaluations of each
gk in the sequence: tobits(0), tobits(1), . . . , tobits(2n − 1). For all invocations of the sum-check protocol in
Jolt, the evaluations of g1, . . . , gℓ can be sequentially enumerated in this manner by simply executing the
computer program whose execution is being proven. That is, there is a witness generation algorithm that
computes each evaluation of gk in O(1) time and logarithmic space (on top of the space K needed simply
to run the VM), in the following order: gk(tobits(0)), gk(tobits(1)), . . ., gk(tobits(2n − 1)).

Let S = {α0, . . . , αℓ} be a set of ℓ+ 1 distinct points. At round i of the sum-check protocol, the prover
needs to evaluate fi at all points in S. To this end, the prover computes each summand of the following
expression

fi(αs) =
2n−i−1

∑
m=0

ℓ

∏
k=1

gk(r1, . . . , ri−1, αs, tobits(m)).

Algorithm 1 computes the summand in the expression corresponding to each m ∈ {0, . . . , 2n−i − 1}, which
is given by

ℓ

∏
k=1

gk(r1, . . . , ri−1, αs, tobits(m)).

Assume for now at Steps 18-20, ∏k∈{1,...,ℓ} gk(r1, . . . , ri−1, αs, tobits(m)) is computed correctly; we will jus-
tify this in the next paragraph. In Step 19, this term is added to accumulator[s] for s ∈ {0, . . . , ℓ}. Here
accumulator[s] serves as a variable to accumulate the terms so that at Step 23 we have, fi(αs) = accumulator[s].
Assuming gk(r1, . . . , ri−1, αs, tobits(m)) is correctly computed correctly at Step 16 the correctness of the al-
gorithm follows. Next we show how gk(r1, . . . , ri−1, αs, tobits(m)) is computed in O(1) space in Steps 4-16.
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For a clearer presentation, we denote Ak,i as the state of the array Ak at the beginning of round i in the
linear time honest prover algorithm from Section 3.1.1. We make the following observation regarding the
entries of Ak,i for k ∈ {1, . . . , ℓ} and i ∈ {1, . . . , n− 1} (proof in Appendix G).

Claim 3.2. For i ∈ {1, . . . , n− 1} and m ∈
{

0, . . . , 2n−(i−1) − 1
}

, the m-th entry of Ak,i is equal to

∑
j∈{0,...,2i−1−1}

ẽq(r1, . . . , ri−1, tobits(j)) · Ak[2
i−1 ·m + j] . (5)

From Claim 3.2 we have gk(r1, . . . , ri−1, αs, tobits(m)) is equal to

gk(r1, . . . , ri−1, αs, tobits(m)) =(1− αs) ·
(

∑
j∈[0,2i−1−1]

ẽq(r1, . . . , ri−1, tobits(j)) · Ak[2
i−1 · (2m) + j]

)
+ αs ·

(
∑

j∈[0,2i−1−1]

ẽq(r1, . . . , ri−1, tobits(j)) · Ak[2
i−1 · (2m + 1) + j]

)
(6)

Here m ∈
{

0, . . . , 2n−i − 1
}

, k ∈ {1, . . . , ℓ}, and s ∈ {0, . . . , ℓ}. In Algorithm 1, the primary strategy is to
avoid storing the intermediate arrays Ak,i entirely. Instead, the algorithm computes gk(r1, . . . , ri−1, αs, tobits(m))
in each round by using Equation (6), directly querying the oracles A1, . . . ,Aℓ at points u ∈ {0, . . . , 2n − 1}.

At the start of each round in Algorithm 1, an array accumulator is initialized, where each entry accumulator[s]
iteratively computes the value of fi(αs) for s ∈ {0, 1, . . . , ℓ} through Steps 4-21. At Step 5 witness_eval is a
two-dimensional array; witness_eval[k][s] at Step 13 eventually stores the values of gk(r1, . . . , ri−1, αs, tobits(m))
for k ∈ {1, . . . , ℓ}, and s ∈ {0, . . . , ℓ}. Steps 7-16 iteratively compute gk(r1, . . . , ri−1, αs, tobits(m)) us-
ing Equation (6) for a fixed m ∈

{
0, . . . , 2n−i − 1

}
. Using Equation (6), it becomes clear that the value

gk(r1, . . . , ri−1, αs, tobits(m)) is computed correctly at the end of Step 16. This allows accumulator[s] to ac-
cumulate the terms in the definition of fi accurately at Step 19. Thus, at the end of Step 21, accumulator[s]
holds the correct value for fi(αs), ensuring the correctness of the algorithm in each round. Since Algorithm
1 does not store the arrays A1, . . . , Aℓ, it operates in logarithmic space (i.e., space O(n)).14 However, this
comes at the cost of making O(n · 2n) oracle queries. In practice, this means that the evaluations of g1, . . . , gℓ
over {0, 1}n must be recomputed iteratively across n rounds. To optimize the prover’s space usage in the
sum-check protocol, a hybrid approach could be employed. Algorithm 1 would be used in the initial rounds
to leverage logarithmic space, and then switch to a linear-time honest prover algorithm once the arrays Ak,i,
for k ∈ {1, . . . , ℓ}, are reduced to a manageable size. Theorem 3.3 formally notes that Algorithm 1 is a quasi-
linear time, logarithmic space, honest prover algorithm for the sum-check protocol. The proof of Theorem
3.3 follows from the above discussion.

Theorem 3.3. Algorithm 1 implements the honest prover for sum-check protocol and has time complexity O(ℓ2n · 2n)
and space complexity O(n + ℓ2).

Algorithm 1 Small Space Sum-Check Prover Algorithm
P ’s input: Oracles A1, . . . ,Aℓ that take as input m ∈ {0, . . . , 2n − 1} and for k ∈ {1, . . . , ℓ}, Ak returns
gk(tobits(m)).

1. /* We use Ak to denote the array that contains the evaluations of gk over the boolean hypercube. Specif-
ically, the j-th entry of Ak is equal to gk(tobits(j)).*/

2. for i ∈ {1, . . . , n} do
3. Initialize an array accumulator of size ℓ+ 1 and set all the entries to zero.
4. for m ∈ {0, . . . , 2n−i − 1} do
5. Initialize a two dimensional array witness_eval of size ℓ× (ℓ+ 1) and set all the entries to zero.

/* witness_eval is used below to compute gk(r1, . . . , ri−1, αs, tobits(m)) */

14O(n) space is required simply to store the n verifier challenges.
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6. for j ∈ {0, . . . , 2i−1 − 1} do
7. Set ueven = 2i · 2m + j.
8. /* ueven has binary representation (j, 0, tobits(m)).*/
9. Query A1, . . . ,Aℓ at point ueven and determine A1[ueven], . . . , Aℓ[ueven] respectively.

10. Set uodd = 2i · (2m + 1) + j.
11. /* uodd has binary representation (j, 1, tobits(m)).*/
12. Query A1, . . . ,Aℓ at point uodd and determine A1[uodd], . . . , Aℓ[uodd] respectively.
13. for all k ∈ {1, . . . , ℓ} and s ∈ {0, . . . , ℓ} do
14. witness_eval[k][s] += ẽq((r1, . . . , ri−1), tobits(j)) · ((1− αs) · Ak[ueven] + αs · Ak[uodd]).
15. end for
16. end for
17. /* At this point, witness_eval[k][s] equals gk(r1, . . . , ri−1, αs, tobits(m)).*/
18. for k ∈ {1, . . . , ℓ} and s ∈ {0, . . . , ℓ} do
19. accumulator[s] += ∏ℓ

k=1 witness_eval[k][s] for all s ∈ {0, . . . , ℓ}.
20. end for
21. end for
22. /* At this point, accumulator[s] equals ∑2n−i−1

m=0 ∏ℓ
k=1 gk(r1, . . . , ri−1, αs, tobits(m)).*/

23. Set fi(αs) = accumulator[s] for s ∈ {0, 1, . . . , ℓ} and send this quantity to V .
24. end for

3.1.3 Sum-Check for Small Values

Recent work [BDT24] proposes enhancements to the linear-time honest prover algorithm for the sum-check
protocol in cases where the summed values are small. By small here, we mean one of two things:

1. The protocol is applied over a large prime-order field (say, a 128-bit or 256-bit field F) but for all
x ∈ {0, 1}n, g1(x), . . . , gℓ(x) all reside in a small subset B of the field like B = {0, 1, . . . , 232 − 1}. In
particular, it must be possible to multiply any two values in B using a single machine multiplication.

2. The protocol is applied over a field of small characteristic such as F = GF(2128), and all values in B
reside in a small subfield (which we call the base field) such as GF(2) or GF(232).15

In these settings, the standard linear-time proving algorithm (Section 3.1.1) performs O(2n) field opera-
tions, but about half of them are over the entire field F. [BDT24] improve on this by reducing the number
of necessary multiplications over the large field, concretely lowering the prover’s runtime. We provide an
overview of Algorithm 3 from [BDT24] and then show that the logarithmic-space algorithm (Algorithm 1)
can be adjusted to incorporate this method.

Algorithm 3 of [BDT24] is also applicable in the setting where a single factor g1(x) does not output
small values, e.g., g1(x) = ẽq(r, x) for a random r ∈ Fn. The speedups it offers in this context compared to
the standard linear-time algorithm are smaller but still significant. In our context, what is most important
is that Algorithm 3 from [BDT24] is no slower than the standard linear-time proving algorithm when the
values being summed are small, while also being directly streaming (i.e., the prover can be implemented in
small space with no slowdown).

To be more precise, Algorithm 3 from [BDT24] ensures that essentially all multiplications performed
by the prover in the first several rounds involve only small values, and hence they can be performed with
just a single machine multiplication (in Case (1) above), or with a single base-field multiplication. Such
operations can be at least an order of magnitude faster than a general 128-bit or 256-bit field multiplication.

15Gruen [Gru24] provides an alternative proving algorithm offering speedups in Case (2) above, but not Case (1). Case (1) is
essential for applicability to Jolt when using an elliptic curve commitment scheme.
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The number of machine- or base-field- multiplications that must be done by the prover in each round of
Algorithm 3 of [BDT24] increases by a constant factor each round (in contrast, for the standard linear-time
algorithm of Section 3.1.1, the number of field multiplications falls by a constant factor round-over-round).
Hence, after several rounds have passed, it is faster for the Algorithm 3 prover to “switch over” to an
alternative proving algorithm.

Remark 3.4. Bagad et al. [BDT24] also provide a more efficient algorithm they call Algorithm 4. Algorithm
4 is also directly compatible with a streaming prover but it is substantially more complicated than [BDT24,
Algorithm 3]. We focus on Algorithm 3 in this manuscript only for simplicity of exposition.

Overview of Algorithm 3 from [BDT24]. We recall that in each round, the linear-time honest prover al-
gorithm for the sum-check protocol updates arrays A1, . . . , Aℓ such that at the beginning of round i, Ak
contains the evaluations of gk(r1, . . . , ri−1, x) as x ranges over {0, 1}n−i+1. In the small-field setting, how-
ever, updating these arrays requires most operations to be performed over the large extension field, which
is computationally intensive. The main insight in [BDT24] is that, instead of updating the arrays during
the initial rounds, the prover can calculate a few additional terms at each round. Most of these calculations
can be performed over the small field, enabling the prover to utilize the arrays A1, . . . , Aℓ, along with these
additional terms, to compute the coefficients of fi more efficiently. While this approach increases the num-
ber of required multiplications overall, most are over the small field, significantly reducing the prover’s
runtime. We illustrate this algorithm for ℓ = 2, setting α0 = 0, α1 = 1, and α2 = 2. In this configuration, at
round i of the sum-check protocol the prover needs to compute fi(0), fi(1), fi(2) for i ∈ {1, . . . , n}.

Round 1: At the start the prover maintains an array C of size 2n. The j-th entry of C is A1[j] · A2[j] =
g1(tobits(j)) · g2(tobits(j)). In round 1, computing f1(0), and f1(1) is done as follows:

f1(0) = ∑
i∈{0,...,2n−1−1}

C[2 · i], and f1(1) = ∑
i∈{0,...,2n−1−1}

C[2 · i + 1]

To compute f1(2), observe that

f1(2) = ∑
x∈{0,1}n−1

g1(2, x) · g2(2, x)

= ∑
x∈{0,1}n−1

(2 · g1(1, x)− g1(0, x)) · (2 · g2(1, x)− g2(0, x))

= ∑
x∈{0,1}n−1

4 · g2(1, x) · g2(1, x)− 2(g1(1, x) · g2(0, x) + g1(0, x) · g2(1, x)) + g1(0, x) · g2(0, x)

= ∑
i∈{0,...,2n−1−1}

4 · C[2 · i + 1] − ∑
i∈{0,...,2n−1−1}

2 (A1(2 · i) · A2(2 · i + 1) + A1(2 · i + 1) · A2(2 · i))

+ ∑
i∈{0,...,2n−1−1}

C[2 · i]

Hence, to compute f1(2), the prover must compute two additional terms for all i ∈
{

0, . . . , 2n−1 − 1
}

:

• A1(2 · i) · A2(2 · i + 1), and

• A1(2 · i + 1) · A2(2 · i).

For any i ∈
{

0, . . . , 2n−1 − 1
}

, observe that these products are equivalent to g1(x) · g2(x′), where x, x′ satisfy:

• the most significant n− 1 bits of x and x′ are equal to tobits(i),

• x and x′ differ in their least significant bit.
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Thus, the prover computes g1(x) · g2(x′), for all pairs x, x′ ∈ {0, 1}n, where x and x′ only differ in their
least significant bit. These terms are added to the set C, as they will be required in subsequent rounds of
the protocol.

Round 2: In round 2, the prover has to compute f2(s), for s ∈ {0, 1, 2}. f2(s) can be expressed as follows:

f2(s) = ∑
x∈{0,1}n−2

g1(r1, s, x) · g2(r1, s, x)

= ∑
x∈{0,1}n−2

((1− r1) · g1(0, s, x) + r1 · g1(1, s, x)) · ((1− r1) · g2(0, s, x) + r1 · g2(1, s, x))

= ∑
x∈{0,1}n−2

∑
y1,y2∈{0,1}

ẽq(r1, y1) · ẽq(r1, y2) · g1(y1, s, x) · g2(y2, s, x)

Analysing the above expression, it is clear that to compute f2(s), for s ∈ {0, 1, 2} the prover must compute

• ẽq(r1, 0) · ẽq(r1, 0) = (1− r1)
2,

• ẽq(r1, 0) · ẽq(r1, 1) = (1− r1) · r1,

• ẽq(r1, 1) · ẽq(r1, 1) = r2
1

The prover computes them and stores it in the array E. Now f2(0), and f2(1) are computed using the
appropriate entries of C, and E. Recall, that at the end of round 1, the prover had to compute g1(y1, s, x) ·
g2(y2, s, x) for y1 ̸= y2 and these products were stored in C. Computation of f2(2) is done using the
following expression

f2(2) = ∑
x∈{0,1}n−2

∑
y1,y2∈{0,1}

ẽq(r1, y1) · ẽq(r1, y2) · (2 · g1(y1, 1, x)− g1(y1, 0, x)) · (2 · g1(y2, 1, x)− g2(y2, 0, x))

= ∑
x∈{0,1}n−2

∑
y1,y2∈{0,1}n−2

ẽq(r1, y1) · ẽq(r1, y2) · (4 · g1(y1, 1, x) · g2(y2, 1, x) −

2 · g1(y1, 1, x) · g2(y2, 0, x)− 2 · g1(y1, 0, x) · g2(y2, 1, x) + g1(y1, 0, x) · g2(y2, 0, x))

Similar to round 1, computing f2(2) requires the prover to additionally compute g1(x) · g2(x′), for all pairs
x, x′ ∈ {0, 1}n, where the least two significant bits of x and x′ are not equal. These terms are computed by
the prover and added to C, as they are required in the later rounds.

Round i, i > 2: Before the start of this round, C stores g1(x) · g2(x′), for all pairs x, x′ ∈ {0, 1}n, such that the
last i bits of x and x′ are not equal. Additionally, E stores the sequence {ẽq(ri−1, y1) · ẽq(ri−1, y2)}y1,y2∈{0,1}i

where ri−1 denotes (r1, . . . , ri−1) In round i, for s ∈ {0, 1, 2}, the prover has to compute fi(s). We work out
the expression for fi(s) next.

fi(s) = ∑
x∈{0,1}n−i

g1(ri−1, s, x) · g2(ri−1, s, x)

= ∑
x∈{0,1}n−i

∑
y1,y2∈{0,1}i

ẽq(ri−1, y1) · ẽq(ri−1, y2) · g1(y1, s, x) · g2(y2, s, x)

Similar to round 2, the values fi(0) and fi(1) can be computed directly using the values stored in C and E.
Computation of fi(2) is done using the following expression

fi(2) = ∑
x∈{0,1}n−i

∑
y1,y2∈{0,1}n−i+1

ẽq(r1, y1) · ẽq(r1, y2) · (2 · g1(y1, 1, x)− g1(y1, 0, x)) · (2 · g1(y2, 1, x)− g2(y2, 0, x))

= ∑
x∈{0,1}n−i

∑
y1,y2∈{0,1}n−i+1

ẽq(r1, y1) · ẽq(r1, y2) · (4 · g1(y1, 1, x) · g2(y2, 1, x) −
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2 · g1(y1, 1, x) · g2(y2, 0, x)− 2 · g1(y1, 0, x) · g2(y2, 1, x) + g1(y1, 0, x) · g2(y2, 0, x))

The computation of the above expression requires the prover to additionally compute g1(x) · g2(x′), for
pairs x, x′ ∈ {0, 1}n, where the least i significant bits of x and x′ are not equal. Similar to the previous
rounds, these terms are computed by the prover and added to C.

Switching to the linear-time honest prover algorithm. Using this approach for the first few rounds min-
imizes the number of large field operations, making it computationally efficient. However, after the initial
rounds (approximately around n

2 rounds) the overhead of maintaining the array E becomes higher than
if the linear-time honest prover algorithm were used directly. Therefore, to optimize performance, it is
preferable to switch to the linear-time algorithm after roughly half the rounds. This transition leverages the
benefits of reduced large field operations initially, followed by the faster overall update mechanism of the
linear-time approach in later rounds.

3.1.4 Small-space Sum-check Proving for Small Values

In the small-space adaptation of Algorithm 3 from [BDT24], the prover computes the array C, on-the-fly
rather than pre-computing it, by using oracles to g1 and g2 to compute C at run-time. This change signif-
icantly reduces the space requirements, since the array C now only requires O(2i) space at round i, rather
than the full O(2n) space required for precomputed storage. Further, the prover maintains the array E as is
in the original algorithm, and this requires O(2i) space. Although this runtime computation increases the
number of small-value or base-field operations, it is computationally inexpensive and only adds overhead
during the initial rounds. Thus, this small-space modification preserves efficiency while reducing storage
needs. As the rounds progress, it becomes advantageous for the prover’s runtime to switch to the linear-
time prover algorithm. This will typically happen after roughly 4 rounds have passed [BDT24]. A more
complicated variation of [BDT24, Algorithm 3], called Algorithm 4 in [BDT24], has better costs and can ex-
tend the optimal “crossover round” to round 8 or later. This would lead to at least a 28 = 256-fold reduction
in prover space compared to running the standard linear-time proving algorithm beginning in Round 1. If
further reduction of prover space is desired, rather than switching directly to the linear-space algorithm,
the prover can instead switch to the standard small-space proving algorithm of Section 3.1.2, until enough
rounds have passed that the prover can finally switch over to the linear-time prover algorithm without
increasing its overall space usage.

3.2 Jolt Overview

Jolt is a state-of-the-art zkVM designed to prove the correct execution of programs that compile to the RISC-
V instruction set architecture. At its core, Jolt leverages sum-check-based memory checking arguments
to streamline proof generation, minimizing both the number of committed values and the size of each
committed value, as well as the number of field operations needed to prove that the committed values are
well-formed.

The proof system is built on three tightly integrated components: a memory-checking argument for
read-only memory (Lasso [STW24] today, and Shout [ST25] in the near future), a memory-checking argu-
ment for read/write memory (Spice [SAGL18] today and Twist [ST25] in the near future), and a SNARK
for a simple constraint system such as R1CS (namely Spartan [Set20]). Each component, as well as the
way they are applied and combined, contributes significantly to Jolt’s efficiency and simplicity compared
to prior zkVMs.

Lasso and Shout are indexed lookup arguments (also known as SNARKs for reads into read-only mem-
ory), and Jolt uses them to handle proving correct execution of primitive RISC-V instructions, avoiding
the need for complex, instruction-specific circuits. This design significantly reduces the overhead (in both
prover time and implementation complexity) associated with proving correct instruction execution. Jolt
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also uses lookup arguments to ensure that reads into a computer program’s bytecode are processed cor-
rectly.

Spice and Twist are arguments for read/write memory, which Jolt uses to ensure that the prover cor-
rectly processes all reads and writes to registers and RAM.

Finally, Jolt employs Spartan to prove satisfaction of a rank-one constraint system (R1CS). The constraint
system essentially ensures that all primitive instructions are executed with the correct source and destina-
tion registers (and that the correct primitive instruction is executd each cycle), and that all reads and writes
to memory access the correct memory cells.

This constraint system arising in Jolt is uniform across all RISC-V cycles, meaning it is defined for a
single cycle and then replicated for every executed cycle. Jolt’s implementation adapts a variant of Spartan
to prove such a uniform R1CS especially quickly.

The Jolt prover executes the RISC-V program to generate and commit the necessary witnesses for its
three constituent proof systems: the read-only memory-checker, read/write memory checker, and R1CS
satisfaction. The witness generation algorithm operates efficiently by computing witnesses as a set of vec-
tors, with each vector of length equal to the number T of executed CPU cycles. The witness generation
algorithm computes the vector entries for each cycle sequentially, requiring only O(1) time per cycle (and
O(1) words of space, on top of the K words of space needed to run the RISC-V program).

Observation 3.5. The witness generation procedure in Jolt computes the witnesses for the three constituent
proof systems as a set of vectors, with each vector’s size bounded by O(T), where T is the number of CPU
cycles executed. The procedure iteratively generates each vector’s entries while executing the program
cycle-by-cycle, with additive constant overhead in time and words of space required.

3.3 Twist and Shout Overview

Shout is a memory-checking argument for read-only memory, while Twist is for read-write memory.

Overview of Shout. In Shout, there is a predetermined read-only memory M of size K. The prover com-
mits to (the multilinear extension r̃a of) a vector ra with length T · K, where T is the number of reads into
memory. The vector ra is interpreted as specifying T addresses, one per read operation. Each address is spec-
ified via one-hot encoding. This mans that if the k’th memory cell (for k ∈ {0, . . . , K− 1}), is being read, then
this is specified by the unit vector ek ∈ {0, 1}K whose k’th entry equals 1. Since the prover is not trusted,
the verifier must check that each address is indeed a valid one-hot encoding (i.e., a unit vector in {0, 1}K).

Let r̃v denote the multilinear extension of the vector rv ∈ FT whose j’th entry is the value returned by
the j’th read operation. That is, if the j’th address in r̃a is ek (i.e., the j’th read is to memory cell k, then
r̃v(j) = M(k) (i.e., the value stored in memory cell k).

The goal of the Shout protocol is to not only confirm that all committed addresses are indeed unit
vectors, but also to allow the verifier to evaluate r̃v(r) for a point r ∈ Flog T of the verifier’s choosing. Note
that in Shout, r̃v itself need not be committed by the prover.

The Shout protocol works by observing that

r̃v(r) = ∑
(k,j)∈{0,1}log K×{0,1}log T

ẽq(r, j) · r̃a(k, j) · M̃(k).

Hence, the verifier forces the prover to tell it r̃v(r) by applying the sum-check protocol to the (log(K) +
log(T))-variate polynomial

g(k, j) = ẽq(r, j) · r̃a(k, j) · M̃(k).

This is referred to as the read-checking sum-check in Shout.
At the end of this invocation of the sum-check protocol, the verifier has to evaluate ẽq(r, r′′), r̃a(r′, r′′),

and M̃(r′) for a random point (r′, r′′) ∈ Flog K×Flog T . The verifier can directly evaluate ẽq(r, r′′) in O(log T)
time, and can obtain the evaluation of r̃a from the commitment to r̃a.
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In addition, Shout invokes the sum-check protocol twice to confirm that all committed addresses are
indeed unit vectors. The first invocation of the sum-check protocol confirms that all entries of all committed
addresses are in {0, 1}—this is called the Booleanity-checking sum-check. The second sum-check invocation
confirms that the Hamming weight of each address is exactly 1—this is called the Hamming-weight-one-
checking sum-check.

In Jolt, Shout is applied primarily to lookup tables M for which M̃(r′) can be evaluated by the verifier for
any point r′ with only logarithmically many field operations. The one exception is for lookups into program
bytecode. In this case, M̃ is committed in pre-processing by an honest party, and using this commitment
scheme, the prover provides the necessary evaluation of M̃.

Overview of Twist. Twist is most cleanly formulated under the assumption that T read operations and
T write operations are performed in an interleaved manner, with the first read followed by the first write,
which is followed by the second read and then the second write and so forth. Let us further assume in this
formulation that all memory cells are intialized to store value 0.

Before the Twist protocol begins, the prover has already committed to r̃a (specifying all the read ad-
dresses), as well as w̃a (specifying the write addresses) and w̃v, where for j ∈ {0, 1}log T , w̃v(j) specifies the
value written by the j’th write operation. Let r̃v denote the multilinear extension of the vector whose j’th
entry equals the value returned by the j’th read operation.

The goal of Twist is to confirm that all read-address and write-address are indeed unit vectors, and to
allow the verifier to compute r̃v(r) for a point r ∈ Flog T of the verifier’s choosing.

In Twist, the prover begins by committing to (the multilinear extension Ĩnc) of an extra vector Inc ∈
Flog T . If the prover is honest, then Inc(j) is the difference between the value written by the j’th write op-
eration, namely w̃v(j), and the value stored at the relevant cell at that time. By “the value stored at the
relevant cell at that time”, we mean the following: let j′ be the largest time step strictly less than j such that
w̃a(j′) = w̃a(j). Then w̃v(j′) is what we mean by the value stored at the relevant cell at time j. If no such j′

exists, then this relevant value is 0.
Twist consists of three invocations of the sum-check protocol. The first is called the read-checking sum-

check, which intuitively allows the verifier to compute r̃v(r) assuming Ĩnc is (the multilinaer extension of) the
correct vector of increments. The second sum-check is called the write-checking sum-check, which intuitively
checks that Ĩnc is indeed (the multilinear extension of) the correct vector of increments. The third sum-check
is called the M̃-evaluation sum-check. This sum-check intuitively arises because the read-checking sum-check
actually requires the verifier to be able to evaluate a certain polynomial M̃ at a point (r′, r′′) ∈ Flog K×Flog T ,
where M̃ is not Ĩnc but is derived from Ĩnc. Specifically, M̃ is the unique multilinear polynomial such that, for
any memory address k ∈ {0, 1}log K and timestep j ∈ {0, 1}log T , M̃(k, j) equals the value stored at address
k at time j according to the write operations specified by w̃a and w̃v.

From the verifier’s perspective, the M̃-evaluation sum-check reduces the task of evaluating M̃(r′, r′′) to
the task of evaluating Ĩnc at a different point. Since Ĩnc was explicitly committed by the prover, the prover
itself can provide this evaluation of Ĩnc (along with a proof that the provided evaluation is indeed consistent
with the commitment).

In more detail, the three invocations of the sum-check protocol in Twist are applied to the following
polynomials:

• The read-checking sum-check computes the sum

∑
(k,j)∈{0,1}log K×{0,1}log T

ẽq(r, j) · r̃a(k, j) · M̃(k, j),

where r ∈ Flog T is the point at which the verifier wishes to evaluate r̃v(r).
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• The write-checking sum-check computes the sum

∑
(k,j)∈{0,1}log K×{0,1}log T

ẽq(r, j)ẽq(r′, k) · w̃a(k, j) ·
(
(w̃v(j)− M̃(k, j)

)
.

Here, r and r′ are chosen at random by the verifier before the sum-check protocol is invoked. If the
prover is honest, this sum is 0 for any choice of r and r′.

• The M̃-evaluation sum-check computes the sum

M̃(r, r′) = ∑
j∈{0,1}log T

Ĩnc(r, j) · L̃T(r′, j),

where L̃T is the multilinear extension of the so-called less-than function that on any input (j, j′) ∈
{0, 1}log T × {0, 1}log T , outputs 1 if val(j) < val(j′) and outputs 0 otherwise. Here, r and r′ are points
chosen by the verifier over the course of the read-checking sum-check.

The “dimension” parameter d. For both Twist and Shout, if the memory size K is too big, the prover is
not able to commit to r̃a (and w̃a as well in the case of Twist) directly. If using an elliptic curve commitment
scheme, the issue is that the commitment key will be too large to commit to (the multilinear extension of) a
vector of size K · T, no matter how sparse the vector is. If using a binary-field hashing-based commitment
scheme such as Binius [DP23, DP24], the issue is not that the commitment key is too large (as the commit-
ment key is just a specification of a hash function) but rather that committing to a vector of size K · T is
simply too expensive, no matter how sparse the committed vector is. In these situations, r̃a (and w̃a in the
case of Twist) can be replaced with a product of d smaller polynomials. That is, for k = (k1, . . . , kd) where
each ki consists of log(K)/d variables, r̃a(k, j) is replaced with

d

∏
i=1

r̃ai(ki, j).

We call d the dimension parameter of Twist and Shout. The larger d is, the more field operations the
prover must perform within the read-checking sum-check in Shout, and the read-checking and write-
checking sum-checks in Twist. For elliptic curve commitment schemes, larger choices of d also lead to
somewhat higher commitment costs (as the prover commits to d 1s per address, and each committed 1
costs the prover one group operation).

Hence, for curve-based commitments, one wants to to set d as small as possible subject to the constraint
that the commitment key is not too large for the prover to store. For hashing-based commitments, one wants
to set d as small as possible subject to the constraint that commitment time is not a bottleneck for the prover.
In this work, we regard d as a constant. This ensures that the Twist prover runs in time O(K + T log K) and
the Shout prover runs in time O(T).

With curve-based commitment schemes it is typically optimal to set d between 1 and 4. With hashing-
based commitment schemes over binary fields, optimal settings of d range from 1 (for very small memories
such as the 32 registers in RISC-V) to 16 (for enormous, structured lookup tables such as those arising in
Jolt’s handling of primitive instruction execution).

4 Spartan-Proving in Small Space for Uniform Constraint Systems

Jolt employs Spartan to prove the satisfaction of its R1CS-based constraint system. In this section, we
demonstrate how to implement Spartan’s prover algorithm in small space by leveraging the uniform struc-
ture of Jolt’s constraints and witness vectors.
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4.1 R1CS Structure in Jolt

An R1CS constraint system comprises three matrices A, B, C ∈ Fm×n, where typically each row contains
O(1) non-zero entries. A witness w ∈ Fn−1 satisfies the system if u = (1, w) satisfies

(A · u) ◦ (B · u) = C · u,

where ◦ denotes component-wise product. Jolt’s constraint system has a highly regular structure:

• Each CPU cycle’s execution is captured by β constraints (assumed to be a power of two for simplicity).

• These constraints are repeated across all T execution cycles, giving m = β · T total constraints.

• The constraints verify index computation, lookup correctness, and program counter updates, among
other things.

The witness vector w is constructed by interleaving k different vectors w1, . . . , wk ∈ FT :{{
wi,j
}

i∈{0,...,k−1}

}
j∈{0,...,T−1}

We call the elements in positions (j · k, . . . , (j + 1) · k − 1) of w the j-th slice of w. From Observation 3.5,
each slice is computable in O(1) space and time after executing the corresponding CPU cycle.

In addition to enforcing constraints within individual cycles, the constraint system must also perform
a single check across every pair of adjacent cycles, to ensure that the program counter (pc) used in the
next cycle is correctly determined by the instruction being executed in the current cycle. This is simply an
equality constraint: the value of the program counter at the end of cycle i should be equal to its value at
the start of cycle i + 1. However, for performance rasons, in Jolt these equality constraints are not enforced
with an explicit constraint within the R1CS instance. Rather they are enforced as described next.

Jolt introduces two vectors: one for the program counter (pc) and another for the next program counter
(pcnext), where pcnext is simply the pc values shifted by one position to the right. The R1CS itself can "pre-
tend" that the prover has committed to both pc and pcnext, even though only pc is explicitly committed. In
the terminology of Diamond and Posen [DP23], pcnext is a virtual polynomial: it’s not explicitly committed,
but the verifier is still able to obtain its evaluation at any point r, by invoking the sum-check protocol to
reduce the task of evaluating pcnext at r to the task of evaluating next (which is committed by the prover)
at a different point. This reduction is achieved by applying the sum-check protocol to the right hand side
of the following equality:

p̃cnext(r) = ∑
j∈{0,1}log T

s̃hift(r, j) · p̃c(j), (7)

where the shift function is defined as:

shift(i, j) =

{
1, if val(i) = val(j) + 1,
0, otherwise.

Thus, when the verifier needs to compute p̃cnext(r), it applies the sum-check protocol to evaluate the sum-
mation efficiently.16 We call this the pcnext-evaluation sum-check. At the end of this sum-check protocol
invocation, the verifier has to evaluate s̃hift at a randpom point, as well as pc. Evaluating s̃hift at a random

16There are alternative approaches that would also work but with higher costs and complications. One approach is to have the
prover explicitly commit to pcnext and add equality constraints to the R1CS to force pcnext to indeed equal, entry-by-entry, pc shifted
to the right by one entry. The other approach is to have a constraint for cycle i + 1 directly read the program counter at the end of
the previous cycle. Both approaches render the constraint system not quite block-diagonal, seemingly prevented the use of various
concrete optimizations to the protocol [AT+24]. Hence, we prefer to keep the constraint system block-diagonal and incur an extra
invocation of the sum-check protocol.
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point can be done in logarithmic space and time (for details, see Theorem 2 in [STW23] or Equation (21) in
Section 4.2 below).

In summary, the R1CS instance arising in Jolt can treat pcnext as a variable in the constraint system
corresponding to the RISC-V cycle; this preserves the block-diagonal nature of the R1CS. However, at the
end of Spartan applied to this R1CS, the verifier must evaluate not only p̃c at a random point r, but also
p̃cnext(r). This latter evaluation is obtained via the sum-check invocation described above.

4.2 Small-Space Honest-Prover Algorithm for Spartan in Jolt

To prove witness satisfaction in Spartan, the prover must show that the following polynomial q(S) is for-
mally zero:

q(S) = ∑
y∈{0,1}log m

ẽq(S, y) ·
((

∑
x∈{0,1}log n

Ã(y, x) · ũ(x)
)
◦
(

∑
x∈{0,1}log n

B̃(y, x) · ũ(x)
)
− ∑

x∈{0,1}log n

C̃(y, x) · ũ(x)
)

(8)
For clarity, we define:

h̃A(Y) = ∑
x∈{0,1}log n

Ã(Y, x) · ũ(x)

h̃B(Y) = ∑
x∈{0,1}log n

B̃(Y, x) · ũ(x)

h̃C(Y) = ∑
x∈{0,1}log n

C̃(Y, x) · ũ(x)

To this end the prover and verifier engage in two sum-check protocols in sequence:

1. First Sum-Check Protocol:

• Verifier samples random point rs ∈ Flog m.

• The sum-check protocol is invoked to verify:

0 = ∑
y∈{0,1}log m

ẽq(rs, y) ·
(

h̃A(y) · h̃B(y)− h̃C(y)
)

. (9)

• At the conclusion of the first sum-check protocol, the prover provides claimed evaluations of
relevant multilinear polynomials at a point ry. Specifically, the prover needs to convince the
verifier of the correctness of the following values: ẽq(rs, ry), h̃A(ry), h̃B(ry), and h̃C(ry), where
ry ∈ Flog m consists of the random field elements sampled by the verifier during the sum-check
protocol. The verifier can compute ẽq(rs, ry) directly, while establishing the correctness of the
remaining evaluations requires an additional sum-check protocol, which we describe next.

2. Second Sum-Check Protocol:

• To validate the claimed evaluations, the prover must establish:

h̃A(ry) = ∑
x∈{0,1}log n

Ã(ry, x) · ũ(x)

h̃B(ry) = ∑
x∈{0,1}log n

B̃(ry, x) · ũ(x)

h̃C(ry) = ∑
x∈{0,1}log n

C̃(ry, x) · ũ(x).
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• To minimize proof size and verifier time, these three equations are verified simultaneously using
a single sum-check protocol over their random linear combination.

• At the end of this second sum-check instance, the verifier must evaluate Ã, B̃, and C̃ at point
(ry, rx), along with ũ at rx. Here, rx ∈ Flog n comprises the random field elements chosen by the
verifier during this protocol. Due to the blog-diagonal structure of A, B, and C, the evaluations
of Ã, B̃, and C̃ can be computed by the verifier in O(log T) time. The evaluation of ũ is provided
by the prover along with an evaluation proof from the PCS used to commit to ũ.

Remark 4.1. Due to the block-diagonal nature of the constraint system arising in Jolt, this second invocation
of the sum-check protocol can in fact involve a sum over only O(1) terms (namely, the number of committed
variables per CPU cycle). For brevity, we omit a description of this optimization as it leads to only a
constant-factor improvement in the costs of Spartan, albeit a substantial one (a factor of about 2 in the
Spartan prover’s runtime, as well as Spartan’s round and communication complexity). Details can be found
at [AT+24].

In Jolt, all values arising in the vectors hA, hB, hC (whose multilinear extension polynomials are h̃A,
h̃B, and h̃C) are in {0, 1, . . . , 264 − 1} (in fact, all but one such value per cycle is in {0, 1, . . . , 232 − 1}). This
means that the prover in the first sum-check instance within Spartan can use the “small-value sum-check”
algorithm of Section 3.1.3 so long as the elements of the vectors {eq(rs, y)}y∈{0,1}log m , hA, hB, and hC are enu-
merable in lexicographic order in logarithmic space. The values in the set {eq(rs, y)}y∈{0,1}log m can indeed
be enumerated in lexicographic order in logarithmic space and O(m) = O(T) total time See [CFFZE24, Sec-
tion 4.1] or [Rot24, Appendix A] for details).17

Since the matrices A, B, and C are block-diagonal and have only O(1) non-zero entries per row, the
computation of each element of hA, hB, and hC for a specific y depends only on the variables materialized for
the corresponding cycle and hence can be computed in O(1) space and time. This completes the description
of how to implement the prover in the first Spartan sum-check instance in small space.

Similarly, for the prover to execute the second sum-check instance in small space, each element of the
witness vectors Ã(ry, x), B̃(ry, x), and C̃(ry, x) must also be computable in O(1) space and time. This follows
again from the block-diagonal structure of A, B, and C.

The protocol concludes by verifying evaluations at the point rx using the PCS for ũ. For various poly-
nomial commitment schemes, this procedure is discussed in Section 6.

The pcnext-evaluation sum-check. Recall from Equation (7) that the pcnext-evaluation sum-check applies
the sum-check protocol to the polynomial

g(j) = s̃hift(r, j) · p̃c(j).

Tis invocation of the sum-check protocol is amenable to the new prefix-suffer inner product protocol we
describe in Appendix A (the pcnext-evaluation sum-check does not appear to be directly amenable to the
sparse-dense sum-check prove algorithm from [STW24, Appendix G]). For any integer C ≥ 1, this allows
the prover to execute the pcnext-evaluation sum-check with just C passes over the evaluations of p̃c(j) as j
ranges over {0, 1}log T . The prover’s runtime is O(T) and the space bound is O(C · T1/C). See Appendix A
for details.

5 Small-Space Proving for Twist and Shout

Shout proving. Setty and Thaler [ST25] give a variety of algorithms for implementing the read-checking
sum-check prover within Shout. The right algorithm to use depends on whether O(K + T) time is accept-
able for the prover. If K ≪ T then this runtime is acceptable. If K ≫ T then it is not. In particular, Jolt

17If O(
√

m) = O(T1/2) space is acceptable, then state-of-the-art techniques for sum-check proving actually allow the prover to
avoid materializing all evaluations of ẽq in this set [DT24]
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applies Shout twice (see Section 3.2 for details): once to perform lookups into bytecode, and once to per-
form lookups into “the evaluation table of all primitive instructions”. This table has size at least K > 264

(as primitive instructions in RISC-V operate on two 32-bit inputs), and it is unacceptable for the prover to
run in time linear in 264.

When O(K + T) runtime is acceptable, Setty and Thaler give a prover algorithm that works as follows:

• With a single pass over the read addresses and time O(T) and space O(K), the prover initializes a
data structure of size O(K), the contents of which are sufficient to get through the first log K rounds
of the read-checking sum-check (out of log(K) + log(T) total rounds) in time O(K).

• The final log T rounds apply the sum-check protocol to compute

∑
j∈{0,1}log T

ẽq(r, j) · r̃a(r∗, j) · M̃(r∗),

where r∗ is the randomness chosen by the read-checking sum-check verifier over the first log K rounds.
This invocation of the sum-check protocol is actually amenable to the sparse-dense sum-check pro-
tocol from [STW24, Appendix G] (this is more properly called the sparse-dense sum-check algorithm,
as it does not alter the standard sum-check protocol, but rather offers a particularly efficient prover
implementation when the sum-check protocol is applied to compute ∑j∈{0,1}log T p(j)q(j) if p satisfies
certain structural properties). Here, p(x) = ẽq(r, j) indeed satisfies the properties exploited by the
sparse-dense sum-check prover algorithm).

This protocol is capable of making, for any integer C ≥ 1, only C passes over the input, using space
O(K + T1/C) and running in O(CT) time.18 If we are targeting O(T1/2) space then we can set C = 2.

Here, the O(K) term in the prover’s space bound ensures that the prover can compute a size-K table
of all evaluations of the form ẽq(r∗, k) as k ranges over {0, 1}log K. This table can be computed in
O(K) time and space via standard techniques, and enables the prover to determine ra(r∗, j) for each
j ∈ {0, 1}log T with a single lookup into the table for each j.

An alternative (simpler but slower) way of implementing the final log T rounds of the sum-check
protocol is to use the standard logarithmic-space sum-check proving algorithm (Theorem 3.3), switch-
ing over to the the standard linear-time proving algorithm (Section 3.1.1) once enough rounds have
passed that the switch does not increase the prover’s overall space usage.

When runtime O(K + T) is unacceptable, Setty and Thaler observe that one can invoke the sparse-dense
sum-check protocol from [STW24, Appendix G] to allow the prover to get through the first log K rounds of
Shout’s read-checking sum-check (so long as the look table M satisfies certain structural properties that are
indeed satisfied by the primitive-instruction-evaluation-table used in Jolt). This protocol allows the prover
to complete the first log K rounds of Shout’s read-checking sum-check. For any C > 1, this algorithm runs
in time O(CK1/C + CT), uses space O(K1/C), and requires the prover to make C passes over the input. The
final log T rounds proceed identically to the case where O(K + T) runtime is acceptable.19

The situation for the Booleanity-checking and Hamming-weight-one-checking sum-checks is analogous.
If O(K1/d + T) time is acceptable, the prover algorithms given in [ST25] require one pass over the read
addresses to get through the first log(K)/d rounds of sum-check (out of log(K)/d + log T in total) and the
final log T rounds can be handled simiarly to the read-checking sum-check. If O(K1/d + T) time is not
acceptable, [ST25] shows that a variation of the sparse-dense sum-check protocol applies, such that for any

18The algorithm called Blendy [CFFZE24] is a very special case of this sparse-dense sum-check algorithm. Blendy explicitly ob-
serves that in this special case the prover only requires space K1/C and C passes over the input. The same bounds apply in general to
the sparse-dense sum-check algorithm. as well as to our new prefix-suffix inner product protocol in Appendix A.

19As our new prefix-suffix inner product protocol (Appendix A) is strictly simpler and concretely faster than the sparse-dense
sum-check protocol, and so the Jolt implementation will use our new protocol rather than the sparse-dense sum-check protocol when
Shout is fully integrated.
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integer C > 1, the prover makes C passes over the input to get through the first log(K)/d rounds of these
invocations of the sum-check protocol, runs in space O(CK1/(Cd) and time O(CK1/(Cd) + CT).

In summary, we conclude that Shout can be implemented, for any constant integer C ≥ 1 by a prover
running in space O(K1/C + T1/C), with at most a constant-factor increase in prover time.

Twist proving. Recall from Section 3.3 that Twist invokes the sum-check protocol three times, with the
three invocations called the read-checking sum-check, the write-checking sum-check, and the M̃-evaluation
sum-check.

[ST25] gives two different algorithms for implement the read-checking and write-checking prover. Both
have worst-case runtime O(T log K). One only applies when d = 1, but has the benefit that when the bulk of
memory accesses are “2i-local” (meaning, the read or write operation access a cell that was read or written
at most 2i steps prior), the prover’s runtime is O(T · i) rather than O(T log K). Both algorithms have the
following property: in each of the first log K rounds of the read-checking or write-checking sum-check, the
prover makes a single pass over the read and write operations, runs in O(K) space, and O(T) total time.

The final log T rounds of these two instances of the sum-check protocol cannot be proven with the sparse-
dense sum-check algorithm. Instead, we resort to the slower method of applying the standard logarithmic-
space sum-check proving algorithm (Theorem 3.3), switching over to the the standard linear-time proving
algorithm (Section 3.1.1) once enough rounds have passed that the switch does not increase the prover’s
overall space usage. This allows the prover to run in total time O(T log T) and space O(K + log T).

The M̃-evaluation sum-check is amenable to the prefix-suffix inner-product prover algorithm that we
describe in Appendix A. For any integer C ≥ 1, this enables the prover to compute its messages in the
M̃-evaluation sum-check protocol with C passes over the O(T) write operations to which Twist is applied,
using O(T) time and space O(C · T1/C). See Appendix A for details.

6 Polynomial Commitment Schemes in Small-Space

We categorize multilinear polynomial commitment schemes of interest into two groups: curve-based (Hy-
perKZG, Hyrax, Dory, etc.) and hash-based (BaseFold, Ligero, Brakedown, Binius, FRI-Binius, Blaze, etc.).

6.1 Small-space implementation of hashing-based commitments

For some hash-based PCS implementations such as Ligero [AHIV17], Brakedown [GLS+23] and Binius [DP23,
DP24], it is already known that the commitment and evaluation protocols require space complexity propor-
tional to the square root of the size of the committed polynomial [BBHV22]. We provide details below for
completeness.

When committing to a (log n)-variate multilinear polynomial p, the Ligero, Brakedown and Binius
polynomial commitment schemes arrange the n evaluations in the set S = {p(x) : x ∈ {0, 1}log n} into a√

n ×
√

n matrix M. They then apply the encoding function of an error-correcting code to each row of
the matrix, and the committing is the Merkle hash of the encoded rows. To simplify our description, it is
helpful to define the commitment to actually be the

√
n hash values produced by Merkle-hashing each row

independently. This increases the size of the commitment from a single hash value to
√

n hash values, but
since evaluation proofs are of size Oλ(

√
n) anyway, this leads to only a constant-factor increase in overall

proof size (commitment size plus evaluation proof size).
When producing a proof for the claim that p(r) = v for a point r ∈ Flog n requested by the verifier, these

schemes require the prover to do two things:

• Compute a linear combination of the rows of the (unencoded) matrix M, where the coefficients of the
linear combination are determined by r.

• Open up O(λ) randomly chosen columns of the committed (i.e., encoded) matrix.
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If the prover is able to stream the evaluations of p (i.e., the entries of the unencoded matrix M) row-
wise, then the commitment can be computed in O(

√
n) space with a single pass, as each row is encoded

and Merkle-hashed independently of all the other rows.
For computing evaluation proofs, the necessary linear combination of the rows can be computed in

O(
√

n) space with a single pass over the matrix. So can all O(λ
√

n) entries (and Merkle authentication
paths) of the O(λ) columns to be opened.

We mention that in typical implementations of these hashing-based commitment schemes, it is prefer-
able to commit to the encoded matrix by hashing each column and then building a size-

√
n Merkle tree

over the resulting hash evaluations. This saves a logarithmic factor in proof size, as a separate Merkle au-
thentication path does not need to be provided for each entry of an opened column. Unfortunately, this
approach does not appear to be compatible with a small-space streaming prover: the values in the matrix
have to be streamed in row-major order to allow for encoding in O(

√
n) space, and this precludes hashing

entire columns of the encoded matrix in small space.

6.2 Small-space implementation of curve-based commitments

6.2.1 Hyrax

In this section we describe the Hyrax commitment scheme for multilinear polynomials [WTS+18], and
how its prover can be implemented in a streaming manner with a constant number of passes over the
committed polynomial. Throughout, G denotes an additive group with scalar field F. For vectors u =
(u1, . . . , un) ∈ Fn and g = (g1, . . . , gn) ∈ Gn, the notation ⟨u, g⟩ denotes multiscalar multiplication, i.e.,
⟨u, g⟩ = ∑n

i=1 ui · gi, where the sum denotes group addition and ui · gi denotes scalar multiplication. For
two vectors u, v ∈ Fn, we use the same notation ⟨u, v⟩ to denote the inner product ∑n

i=1 ui · vi, where here
the sum denotes field addition and the product denotes field multiplication.

The Commitment Protocol. As with the hashing-based schemes considered in Section 6.1 above, both
Hyrax and Dory represent the multilinear polynomial p to be committed as a

√
n×
√

n matrix M, such that
evaluating the polynomial at a point r = (r1, . . . , rlog n) is equivalent to computing

rT
1 ·M · r2, (10)

where

r1 =

log n
2⊗

i=1

(1− ri, ri), r2 =
log n⊗

i= log n
2 +1

(1− ri, ri). (11)

Here, the entries of M contain all evaluations of p at inputs in {0, 1}log n.
Hyrax’s commitment key consists of

√
n elements of an appropriate elliptic curve group, g = (g1, . . . , g√n).

Each gi is a uniform random group element.

Remark 6.1. In practice, each gi can be produced by evaluating a PRG at (seed, i), where seed is some
agreed-upon seed. This means that the elements of the commitment key can be generated one after the
other in polylogarithmic space.

In Hyrax, the prover commits to each column of the matrix by performing an MSM, sending a
√

n-length
commitment to the verifier. That is, the commitment to p is a vector of group elements h = (h1, . . . , h√n),
where hi = ⟨Mi, g⟩, and Mi denotes the i’th column of M.
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Streaming prover for committing. If the prover can stream over the entries of M in column-major order
and spends O(

√
n) space to store the commitment key g, then the Hyrax-commitment to p can clearly be

computed in O(
√

n) space by applying Pippenger’s algorithm independetly to each column.
By Remark 6.1, if one desires to achieve a space bound as low as polylogarithmic, one can still iteratively

generate the group elements comprising the Hyrax commitment with a single pass over M in column-major
order. This requires iteratively generating the commitment key per Remark 6.1 once per column of M.

Evaluation proofs: Simplest variation. In the simplest instantiation of Hyrax evaluation proofs, when
the verifier requests p(r), the prover simply sends a vector k ∈ F

√
n claimed to equal M · r2, where r2 is

defined in Equation (11).
The verifier computes c∗ = ⟨r2, h⟩ and confirms that ⟨k, g⟩ = c∗ (in other words, the verifier checks that

k opens c∗, which if the prover is honest is a Pedersen vector commitment to M · r2. If so, the verifier is
convinced that p(r) = ⟨r1, k⟩. In total, the evaluation proof consists of

√
n field elements (the entries of k)

and the verifier performs two MSMs of size
√

n and computes one inner product over F of size
√

n.

Streaming prover for simplest variation of evaluation proofs. To produce evaluation proofs as per the
above protocol, the Hyrax prover merely needs to compute M · r2. This is a linear combination of the
columns of M, with coefficients given by the entries of r2. Via standard techniques [VSBW13], in O(

√
n)

space and O(
√

n) time, the prover can explicitly compute and store the entries of r2, and hence the necessary
linear combination of the columns of M can be computed in O(n) time with a single streaming pass over
M in column-major order.

By Remark 6.1, if one desires to achieve a space bound as low as polylogarithmic, one can still iteratively
generate the field elements comprising the Hyrax evaluation proof, with a single pass over M in column-
major order.

Evaluation proofs: Second variation. A more complicated variation of Hyrax evaluation proofs, de-
scribed in [WTS+18], reduces the evaluation proof size to O(log n) group elements rather than

√
n field

elements (but this leads to only a constant-factor reduction in overall communication because the Hyrax
commitment itself consists of

√
n group elements).

In this variation, rather than explicitly sending a vector k ∈ F
√

n claimed to equal M · r2, the prover
instead employs the Bulletproofs protocol [BCC+16, BBB+18] to demonstrate knowledge of such a vector.
More precisely, the prover proves that it knows a vector w1 such that

• w1 = M · r2, and

• y = ⟨r1, w1⟩, where y is the claimed evaluation p(r).

This application of Bulletproofs is an interactive protocol consisting of log(
√

n) rounds (though it can
be rendered non-interactive via the Fiat-Shamir transformation). At the beginning of round i, the prover
possesses the witness vectors wi and ui, as well as a vector Gi of group elements, of size

√
n

2i−1 . Additionally,
the prover knows yi = ⟨ui, wi⟩. In round 1, the prover sets y1 = y, w1 = M · r2, u1 = r1, and G1 = g. At
the end of each round i ∈

{
1, . . . , log

√
n
}

, the verifier samples a random scalar αi ∈ F, which is used to
compute the witness vectors and generators for the next round as follows:

wi+1 = αi ·wi,L + α−1
i ·wi,R

ui+1 = α−1
i · ui,L + αi · ui,R

Gi+1 = α−1
i · Gi,L + αi · Gi,R

where wi,L and wi,R, as well as ui,L and ui,R, denote the left and right halves of wi and ui, respectively. (To
clarify, here the expression αi · Gi denotes the vector (αi · gi,1, . . . , αigi,

√
n

2i−1
)). Similarly, Gi,L and Gi,R are the

left and right halves of Gi.
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At the start of the protocol, as in the simpler variation of Hyrax evaluation proofs, the verifier on its own
computes a commitment to w1 = M · r2, as this commitment simply equals ⟨h, r2⟩.

In each round, the prover transmits the following values, which are referred to as cross-terms:

yi,L = ⟨uT
i,L, wi,R⟩ yi,R = ⟨ui,R, wi,L⟩, ⟨wi,L, Gi,R⟩, ⟨wi,R, Gi,L⟩. (12)

Upon receiving these values, the verifier responds with αi chosen at random from F. Using these values,
the verifier computes:

wi+1 · Gi+1 = wi,L · Gi,R + α2 · (wi,L · Gi,R) + α−2 · (wi,R · Gi,L)

yi+1 = yi + α2 · yi,L + α−2 · yi,R

After log
√

n rounds, the verifier obtains w√n+1 · G√n+1 and y√n+1 = u√n+1 ·w√n+1. At this stage, the
prover sends w√n+1, while the verifier, having computed u√n+1 and G√n+1 independently, verifies the
correctness of the values w√n+1 · G√n+1 and u√n+1 ·w√n+1.

Streaming prover for second variation. Executing the evaluation protocol of this second variation of
Hyrax in O(

√
n) space with a single pass over the committed matrix in column-major order is straightfor-

ward: the prover can compute and store the entries of r2, compute and store M · r2 while making its pass
over M, and then execute the evaluation protocol (during which the prover only needs to know M · r2.

Executing the protocol in logarithmic space is more involved and requires streaming the matrix M in
column-major order, and the commitment key once per column of M in each round of the Bulletproof
protocol (note that the prover can stream the commitment key per Remark 6.1). This essentially follows
from the following two observations:

• [BHR+20] showed how to implement the Bulletproofs prover in logarithmic space with one pass over
the committed vector in each round of Bulletproofs.

• If the Hyrax prover streams over the entries of M in column-major order, it can iteratively produce
each of the entries of the vectors to which Bulletproofs is applied, namely w1, r1 and g.

We now provide full details for completeness.

Overview of the prover algorithm. Observe that the commitment to M · r2 using commitment key g =
(g1, . . . , g√n) can be rewritten as follows:

∑
i,j∈{1,...,

√
n}
(mi,j · r2,j) · gi.

This sum can be computed the prover in logarithmic space by maintaining an accumulator variable that
aggregates the terms corresponding to each mi,j. The entries of the matrix M are streamed column-wise
while the generators are streamed sequentially.

It is trivial for the prover to iteratively generate the entries of r2 in lexicographic order, with O(
√

n log n)
total time and O(log n) space. This fact is sufficient to achieve an O(n log n) prover runtime in computing
Hyrax evaluation proofs, but, as discussed earlier in Section 4, the log n factor can be avoided with slightly
more care. See [CFFZE24, Section 4.1] or [Rot24, Appendix A] for details. Hence, when processing mi,j,
r2,j can also be efficiently computed, allowing the calculation of (mi,j · r2,j) · gi, which is then added to the
accumulator variable.

Furthermore, at each round, for the prover to compute the cross-terms (Equation (12)), vector parti-
tioning is interleaved. Instead of conventional left and right halves, we define the left half of the generator
vector at round 1 as (g1, g3, . . . , g√n−1) and the right half as (g2, g4, . . . , g√n) (this is the same approach used
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to render the Bulletproofs prover streaming in [BHR+20]). The entries of M are similarly interleaved.20 This
arrangement enables the prover to compute cross-terms by streaming the entries of M column-wise, and the√

n generators sequentially (once per column), and storing at most a constant number of them in memory
at a time.

Complete description of the prover algorithm. In general, for the i-th round, the k-th element of the
generator vector Gi depends on the following elements of g for k ∈

{
1, . . . ,

√
n/2i−1}: gℓ for ℓ ∈{

2i−1 · (k− 1) + 1, . . . , 2i−1 · k
}

. Specifically, let ℓ1, ℓ2, . . . , ℓi denote the last i bits of ℓ, with ℓ1 being the
least significant bit. Then, the generator vector Gi in the i-th round can be expressed as

gi,k = ∑
ℓ∈{2i−1·(k−1)+1,...,2i−1·k}

∏
s∈{1,...,i−1}

((1− ℓs) · α−1
s + ℓs · αs) · gℓ. (13)

Similarly, the k-th element of the witness vector wi at the i-th round is given by

wi,k = ∑
ℓ∈{2i−1·(k−1)+1,...,2i−1·k}

∏
s∈{1,...,i−1}

((1− ℓs) · αs + ℓs · α−1
s ) · w1,ℓ.

Since the initial witness vector is given by w1 = M · r2, it follows that

w1,ℓ = ∑
j∈{1,...,

√
n}

mℓ,j · r2,j.

At each round i, the prover must compute the cross-terms ⟨wi,L, Gi,R⟩, ⟨wi,R, Gi,L⟩, yi,L, and yi,R. We explain
the computation of wi,L · Gi,R and wi,R · Gi,L, and similar arguments hold for the computation of yi,L, and
yi,R. The cross-terms wi,L · Gi,R and wi,R · Gi,L requires computing the following individual products for
k ∈

{
1, . . . ,

√
n/2i}:

wi,2k · gi,2k+1 and wi,2k+1 · gi,2k.

These terms can be efficiently computed iteratively by maintaining accumulator variables that update the
respective sums for ⟨wi,L, Gi,R⟩ and ⟨wi,R, Gi,L⟩.

To illustrate the process, consider the computation of wi,2k · gi,2k+1; a similar procedure applies to com-
pute wi,2k+1 · gi,2k. Expanding the expression using the previously defined formulae:

wi,2k · gi,2k+1 =

 ∑
ℓ∈{2i−1·(2k−1)+1,...,2i−1·2k}

∏
s∈{1,...i}

(
(1− ℓs) · α−1

s + ℓsαs

)
·

 ∑
j∈{1,...,

√
n}

mℓ,j · r2,j

 · gi,2k+1.

Rearranging the terms, we obtain:

wi,2k · gi,2k+1 = ∑
j∈{1,...,

√
n}

 ∑
ℓ∈{2i−1·(2k−1)+1,...,2i−1·2k}

∏
s∈{1,...,i}

(
(1− ℓs) · α−1

s + ℓsαs

)
·mℓ,j · r2,j

 · gi,2k+1.

This expression reveals that the computation naturally decomposes across columns. Specifically, the entries
of M can be streamed column-wise, enabling an efficient accumulation of terms. For a fixed column j, the
inner sum

∑
ℓ∈{2i−1·(2k−1)+1,...,2i−1·2k}

∏
s∈{1,...,i}

(
(1− ℓs) · α−1

s + ℓsαs

)
·mℓ,j · r2,j

can be computed by maintaining an accumulator that is iteratively updated as the coefficients mℓ,j are
streamed. Similarly, the generator gi,2k+1 can be computed by streaming the generators sequentially and
accumulating the corresponding terms using the recurrence relation (Equation 13). Once all 2i−1 terms
have been accumulated, the final product wi,2k · gi,2k+1 is computed in constant space. This process requires
streaming the matrix M once and the generator vector

√
n times in each round of the Bulletproofs protocol.

20This process of generating the two halves based on the value of the least significant bit and proceeding round-by-round toward
the most significant bit is similar to the approach used in the sum-check protocol.
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6.3 Other Curve-Based Commitment Schemes

The second variation of Hyrax described in Section 6.2.1 above uses two techniques. The first is to lever-
age that any (log n)-variate multilinear polynomial p, evaluated at a point r ∈ Flog n, can be expressed
as a vector-matrix-vector product per Equation (10). Leveraging this fact typically leads to commitment
keys that are only O(

√
n) in size, and evaluation proofs can be computed with roughly O(

√
n) group op-

erations. The second technique leverages logarithmic-round protocols reminiscent of Bulletproofs/IPA to
keep evaluation proofs logarithmic in size.

Many other polynomial commitment schemes leverage one or both of these techniques. Via the ap-
proach of Section 6.2.1 above, all of them are also amenable to a streaming prover. A brief summary follows.

• Bulletproofs/IPA [BCC+16, BBB+18] itself is amenable to a streaming prover as already shown by
Block et al. [BHR+20]. Note that Bulletproofs/IPA has a linear-sized commitment key. If the prover
does not wish to store this key, it can generated incrementally (logarithmically many times). However,
this is slow, both asymptotically and concretely, as discussed in Section 1.3.1. Note that it is possible
to reduce the commitment key size of Bulletproofs by a logarithmic factor with only a constant-factor
increase in proof size and a low-order increase in verifier time–see [ST25, Section 3.1.1] for details.

• HyperKZG is a multilinear analog of KZG commitments [KZG10]. In HyperKZG, when committing
to a polynomial p, the prover interprets the evaluations of p at all inputs in {0, 1}log n as the coefficients
of a univariate polynomial and applies the KZG commitment procedure to that univariate polynomial.
This involves a single MSM. Evaluation proofs in HyperKZG consist of a logarithmic-round protocol
that is reminiscent of Bulletproofs and used to relate the requested evaluation of the multilinear poly-
nomial p to the univariate polynomial that was actually KZG-committed. The evaluation proofs can
be generated in a streaming manner using the techniques of [BHR+20].

However, note that HyperKZG has a linear-sized SRS. Since the SRS cannot be generated locally, it
must either be stored explicitly by the prover or repeatedly streamed from some repository. It is
possible to reduce the size of the HyperKZG SRS to O(T/ log T) with a constant-factor increase in
proof size and verifier time (see [ST25, Section 3.1.1] for details). Even so, a O(T/ log T) SRS size is
limiting in terms of scaling to large cycle counts T without resorting to recursion. Nonetheless, our
techniques can still achieve substantial concrete improvements to zkVM prover space when folding
schemes are combined with HyperKZG commitments.

• Dory [Lee21] and Kopis [SL20]. In both Dory and Kopis, commitments are computed as follows. The
prover first computes the Hyrax commitment, but since this commitment is large (comprising one
group element per column of the

√
n×
√

n matrix representing the committed polynomial), Dory and
Kopis instead have the prover commit to the Hyrax commitment using AFGHO commitments [AFG+10].
This entails computing an inner pairing product: if the Hyrax commitment is h = (h1, . . . , h√n), then
the Dory and Kopis commitments equal ∏n

i=1 e(hi, qi), where e denotes a bilinear map, ∏ denotes the
group operation within the target group of a pairing-friendly group, and q1, . . . , q√n are randomly
generated elements of G2 (i.e., the AFGHO commitment key). Just as the Hyrax commitment is com-
putable in small space, so is an AFGHO commitment thereof.

The evaluation protocol of Kopis explicitly invokes Bulletproofs/IPA twice (Kopis achieves logarithmic-
size proofs but has O(

√
n) verifier time). Dory applies a Bulletproofs-like protocol to achieve loga-

rithmic verifier time. As with the second variant of Hyrax, both Dory and Kopis evaluation proofs
can be computed in small space. If O(

√
n) space is available to the prover, no modification to the

linear-space prover implementation is needed. Alternatively, evaluation proofs can be computed in
logarithmic space by streaming the committed polynomial once per round (so O(log n) times in total)
and the commitment key once per column per round (so,

√
n · log(

√
n) times in total).

All of the above also holds for BMMTV [BMM+21], a predecessor of Dory that also achieves log-
arithmic verifier costs and O(

√
n) commitment key size, but is not transparent. As with any non-

transparent commitment scheme, the commitment key (i.e., the SRS) cannot be generated locally, so
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the prover either needs to store it explicitly (using O(
√

n) space), or else stream it repeatedly from
some repository.

7 Jolt Proving in Small Space

In this section, we present a space-efficient honest prover algorithm for the Jolt zkVM, demonstrating that
verification can be achieved with minimal memory requirements while accepting a trade-off in runtime
performance.

Theorem 7.1. For any RISC-V program executed in T cycles that uses K words of RAM, there exists an honest
prover algorithm for Jolt that uses S = O(K + log T) space and runs in O(T log T) time, plus the time to produce
O(1) polynomial evaluation proofs for the relevant polynomial commitment scheme. Here, the evaluation proof is for
a committed polynomial of size O(T) (for the version of Jolt using Lasso and Spice) or O(K1/d · T) (for the version
of Jolt using Twist and Shout; here, d is the dimensionality parameter used in Twist and Shout, see Section 3.3 for
details).

The Jolt proof system consists of three interconnected SNARKs, as described in Section 3.2: Spartan
applied to Jolt’s R1CS instance, a lookup argument (either Shout or Lasso) used to prove correct primitive
instruction execution and used to process lookups into bytecode), and a memory-checking argument for
read/write memory (either Twist or Spice), used to process the VM’s reads and writes to registers and
RAM.

Per Observation 3.5, the Jolt prover first executes the RISC-V program and iteratively generates the
necessary witness vectors for these three component proof systems. As the witness vectors are generated,
they are committed using a PCS for multilinear polynomials. We discuss polynomial commitment schemes
that enable small-space committing and evaluation proof computation in Section 6.

Hence, to establish the Jolt prover’s space efficiency, we need only demonstrate that all three component
arguments possess small-space prover algorithms. Small-space Spartan proving is discussed in Section 4.
Small-space proving for Twist and Shout is discussed in Section 5, while small-space proving for Lasso and
Spice is discussed in Appendices B-F.

7.1 Estimated Concrete Slowdowns

Recall (Section 3.2 that Jolt consists of three components: (1) an R1CS instance, to which Spartan is applied
(appropriately optimized for the highly uniform nature of the constraint system arising in Jolt), (2) a lookup
argument, used to prove correct execution of primitive instructions and to perform reads into program
bytecode and (3) a memory-checking argument for read/write memory, used to ensure that the prover
correctly maintains the VM’s registers and RAM. We now estimate the concrete slowdown that arises from
implementing the prover for these three components in small space rather than space O(T).

Let us consider T = 235, K = 225 and focus on the setting of Jolt with Twist and Shout as the memory-
checking arguments, using an elliptic curve commitment scheme such as Dory [Lee21]. For this discussion,
we consider Θ(

√
KT) space to be acceptable, justified via the discussion in Section 1.2. Note that with only

a modest increase in prover time, our techniques can reduce the prover’s space usage considerably further,
say to below Θ(K1/4 · T1/2) field elements.

High-level summary. What is the extra work required by the small-space Jolt prover compared to the
linear-space prover? It consists primarily of: (1) repeated witness generation and (2) invocation of the small-
space sum-check prover algorithm (Theorem 3.3) in the final log(T) rounds of any invocation of Twist and
Shout within Jolt, and in Spartan-proving. The cost of committing to data and computing evaluation proofs
is unchanged given the O(

√
KT) space bound.

As explained below, the extra cost of repeated witness generation is minimal primarily due to the fact
that the first time witness generation is performed it is typically done serially while subsequent runs of
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witness generation can be parallelized. The use of the small-space sum-check prover algorithm contributes
about 12T log T extra field multiplications for the prover in total. For T ≈ 235, this is roughly 400T extra
field multiplications.

As we explain below, the linear-space prover performs at least about 500T and at most about 900T field
operations in total.21 Hence, this slowdown is a small relative increase in total prover time, far less than a
factor of 2. Details on the overall cost and slowdown for each component of Jolt are provided below.

Cost of repeated witness generation. The subroutine that determines the number of times witness gener-
ation must occur is Twist applied to prove correct execution of the machine’s RAM. (Spartan would be the
bottleneck if not for the optimization described in Remark 4.1).

Implementing the Twist prover in O(K + T1/2) (much less then the O(K +
√

KT) space bound we target
here) requires performing witness generation at most log K + (1/2) · log T ≈ 40 times. As discussed in
Section 4, the first time witness generation occurs it is typically done sequentially, but subsequent runs of
witness generation can be heavily parallelized. If there are 16 threads, then running witness generation 40
times leads to an increase in total (parallel) runtime by a factor of about 40/16 < 3. Since witness generation
is currently less than 5% of Jolt’s prover time, this entails less than a 15% increase in overall prover time.

Spartan. In Spartan as applied in Jolt, a linear-space proving algorithm performs roughly 250T field oper-
ations. (More precisely, the current Spartan implementation in Jolt performs about 400T field operations, as
there are about 80 constraints per CPU cycle and Spartan can be implemented with about 5 field operations
per constraint [DT24]. However, further optimizations (see Section 3.1.3) are possible–and in the process
of being implemented within Jolt—by leveraging that all values arising in all constraints fit in a single ma-
chine word. These optimizations reduce the Spartan prover cost from about 400T field operations down to
about 250T. More importantly for our work, as discussed in Section 3.1.3, these “small value” sum-check
optimizations are directly compatible with a small-space prover (for the first several rounds of the proto-
col). Hence, the slowdown in Spartan proving that arises from keeping the prover’s space usage bounded
is modest. The precise slowdown depends on how many rounds the “small-value sum-check” technique of
Bagad et al. [BDT24] (detailed in Section 3.1.3 above) can be used before becoming slower than the standard
linear-time (and space) prover algorithm. Preliminary experiments suggest this crossover point does not
happen for at least 8 rounds. This ensures that extra prover work done by the small-space implementation
is bounded by at most about 40T field multiplications (this comes from using the small-space sum-check
proving algorithm of Theorem 1 for rounds, say, 9-18 in the first invocation of the sum-check protocol in
Spatan, before switching over to the linear-space, linear-time algorithm).

Commitment costs and evaluation proofs. The Θ(
√

KT) space bound is enough to run the Dory com-
mitment scheme and compute evaluation proofs in exactly the same manner as in the linear-space case.
The overall cost of commitments can be estimated as follows. The Jolt prover today (with Spice and Lasso)
commits to up to 61 non-zero values per cycle, but this will fall to less than 30 non-zero committed values
per cycle after the switch to Twist and Shout. Of these roughly 30 committed non-zero values per cycle, at
least 8 are equal to 1. Of the remaining 22 (or fewer) committed non-zero values, all but one are in the set
of {0, 1, . . . , 232 − 1}, and most are in the smaller set {0, 1, . . . , 216 − 1}. Hence, a crude estimate for total
commitment costs is at most 50 group operations per RISC-V cycle, translating to roughly 350 field opera-
tions per RISC-V cycle [GW20]. The cost of computing evaluation proofs in Jolt when Dory is used as the
polynomial commitment scheme is at most 30T field operations plus O(1) multi-pairings of size O(

√
KT)

and a similar number of scalar multiplications in G1 and G2. For K = 225 and T = 235, these cryptographic
group operations will not be a dominant cost for the prover.

21A 256-bit field multiplication requires less than 80 CPU cycles. So a prover requiring 900 field operations per cycle translates to a
prover slowdown relative to native execution of about 900 · 80 = 72, 000. This is broadly consistent with the observed performance of
Jolt today combined with anticipated speedups due to incorporation of Twist and Shout in place of Spice and Lasso, and other known
optimizations.
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Shout for instruction execution. The Shout prover for instruction execution lookups performs about 40T
field multiplications22 in the case of linear-space proving. The first 64 (out of 64 + log(T) ≈ 100) rounds of
this protocol is naturally space-efficient for the prover. The only prover runtime overhead when running in
small space comes in the final log(T) rounds (specifically, the added cost of using the small-space proving
algorithm from Theorem 3.3 for the first half of the final log T rounds is at most 4 · (1/2) · T · log T =
2T log T field operations). Overall, the linear-space prover implementation of Shout incurs roughly 40T
field multiplications for the prover [ST25], with the small-space implementation requiring about 40T +
2T log T ≈ 110T field multiplications when T = 235.

Shout for bytecode lookups. As long as the number of instructions in the RISC-V bytecode is noticeably
less than T, then the Shout prover for bytecode lookups performs only about 5T field operations in total
when using linear space [ST25]. A small-space prover implementation would involve at most an additional
2T log T field operations.

Twist for registers. The Twist prover applied to the 32 RISC-V registers performs, in the worst case, about
35T field operations when using linear space [ST25]. This increases by at most an additional 4T log T field
operations when run in small space (2T log T for the read-checking sum-check and 2T log T for the write-
checking sum-check).

Twist for RAM. In the worst case, Twist for RAM incurs less than 150T field multiplications for the prover
when the RAM size K equals 225. The Jolt prover only actually incurs field multiplications within Twist-for-
RAM for RISC-V cycles performing a load or store operation (i.e., a read or write to/from RAM). Moreover,
for such cycles, the Jolt prover pays much less than 110 field multiplications within Jolt’s application of
Shout to instruction-execution. On top of the above, the Twist prover incurs fewer field multiplications
when load and store operations are local (meaning many of them access memory cells that were recently
read or written).

For all of these reasons, Jolt’s application of Twist to RAM is likely to cost substantially less than 150T
field multiplications for the prover. To be conservative, we add these 150T field multiplications to our
prover time estimate anyway.

A small-space implementation of Twist for reads and writes to RAM increases the number of field op-
erations the prover performs by an additional 4T log T field operations.

In total, we conservatively estimate that the Jolt prover (once Twist and Shout are incorporated), when
run in linear space and applied to a RISC-V executions with T = 235 cycles and a memory size of k = 225,
incurs about 900 field operations per cycle in the worst case (and fewer in typical cases). A small-space
prover implementation increases this cost by roughly 12 log T ≈ 400 field operations per cycle.

Disclosures. Justin Thaler is a Research Partner, and Michael Zhu is a research engineer, at a16z crypto.
They are investors in various blockchainbased platforms, as well as in the crypto ecosystem more broadly
(for general a16z disclosures, see https: //www.a16z.com/disclosures/.)

22This 40T estimate of field multiplications within Shout-for-instruction-execution ignores a cost that is independent of T. Let us
call this ignored quantity the “fixed cost” of Shout. This fixed cost is a multiple of C264/C for a parameter C used in the sparse-dense
sum-check protocol (see Section 5 for details) or the prefix-suffix inner product protocol of Appendix A. For T ≥ 220, C can be set to 4
and the fixed cost will not be a significant contributor to prover time. Accordingly, our 40T estimate assumes C = 4 and that the fixed
cost is insignificant. For smaller CPU executions (i.e., T < 220), C can be set to a larger number, such as 8. This increases the non-fixed
cost of Shout proving to roughly 80T but substantially reduces the fixed cost. Our general focus in this work is on scaling to large CPU
executions (i.e., T ≈ 230 and up), and in this setting the 40T estimate for Shout is accurate.
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A Prefix-Suffix Inner Product Protocol

In this section we consider the sum-check protocol applied to compute the inner product of two vectors u
and a in FN . That is, the sum-check protocol is applied to compute the sum

∑
x∈{0,1}log N

ũ(x) · ã(x), (14)

where ũ is the multilinear extension of u and ã is the multilinar extension of a. We seek a linear-time
streaming prover. To achieve this, we can let u be an arbitrary vector in FN , but we must assume that ã has
some structure to it. We refer to the structural property we require of ã as prefix-suffix structure.

Definition A.1. Let i ≤ log n be an integer. A multilinear polynomial ã(x1, . . . , xlog N) has prefix-suffix
structure for cutoff i with k terms if there exist multilinear polynomials prefix1, . . . , prefixk : Fi → F and
suffix1, . . . , suffixk : Flog(N)−i → F, such that the following property holds:

ã(x1, . . . , xlog N) =
k

∑
j=1

prefixj(x1, . . . , xi) · suffixj(xi+1, . . . , xlog N). (15)

Consider the sum-check protocol applied to compute ∑x∈{0,1}log N ũ(x) · ã(x). Let C ≥ 1 be a positive
integer. Suppose for simplicity that C divides log N and that ã(x) has prefix-suffix structure with k terms,
for the cutoffs i =

log(N)
C , . . . , (C−1) log(N)

C . Below, we describe an algorithm we call the prefix-suffix inner
product protocol. This algorithm implements the honest prover in the sum-check protocol applied to compute
Expression (14) when ã meets Definition A.1. It uses space O(k · C · N1/C) and makes C passes over the
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vectors u and a. In our key applications in this paper (the pcnext and M̃-evaluation sum-checks of Sections
4.2 and 3.3 respectively), the prover performs O(C · k · N) field multiplications in general. In fact, if m
denotes the number of non-zero entries of u, then the prover’s runtime is O(C · k ·m).

Remark A.2. The number of non-zero entries m of u is called the sparsity of u. The prover’s runtime scales
linearly with the sparsity of u (so long as C is constant and ã is prefix-suffix structured). This property is
the motivation behind the name “sparse-dense sum-check protocol” coined in [STW24, Appendix G]. Due
to the fact that they are small-space for the prover, both the sparse-dense sum-check prover algorithm of
[STW24] and the prefix-suffix inner product prover algorithm are useful even when u is dense (i.e., m =

Θ(N)). This is the case in its applications to the pcnext-evaluation and M̃-evaluation sum-checks in this
paper.

Algorithm overview. Let us focus on the case k = 1. The case of general k follows from linearity. That is,
when applying the sum-check protocol to a sum of k polynomials, say to compute ∑k

j=1 ∑x∈{0,1}log N gk(x),
the prover’s message in each round is simply the sum of the messages obtained by applying the sum-check
protocol independently in parallel to each term g1, . . . , gk.

The case C = 1 follows from the standard linear-time sum-check prover implementation (Section 3.1.1).
We now turn to the case of C ≥ 2.

The protocol proceeds in C stages, with each stage covering log(N)/C rounds of the sum-check protocol.
In each stage, the prover first makes a single pass over u and a, and builds an array Q with N1/C entries,
each labeled by a vector y ∈ {0, 1}log(N)/C. The array Q can be built at the start of each stage with constant
time spent per non-zero entry of u. Once Q is built, the prover can get through all log(N)/C rounds of the
stage in O(N1/C) time.

Description of Stage 1. Since ã is prefix-suffix structured for cutoff log(N)/C with k = 1 term, we can
write ã(y, x) = prefix(y) · suffix(x) for any y ∈ Flog(N)/C and x ∈ Flog(N)−log(N)/C.

In Stage 1 the array-building procedure works as follows. The y’th entry of Q stores the sum of all
ũ(x) · suffix(x) evaluations, as x ranges over all vectors in {0, 1}log(N) whose first log(N)/C bits are equal
to y. In other words,

Q[y] = ∑
x=(x1,...,xC)∈({0,1}log(N)/C)

C
: x1=y

ũ(x) · suffix(x2, . . . , xC).

The prover also builds an array P of size N1/C that stores all values prefix(y) for y ∈ {0, 1}log(N)/C.
We claim the prover’s message in each of the first log(N)/C rounds of the sum-check protocol applied

to compute
∑

x∈{0,1}log N

ũ(x) · ã(x)

is identical to the prover’s messages in the sum-check protocol applied to compute

∑
y∈{0,1}log(N)/C

P̃(y) · Q̃(y) (16)

Here, P̃ = prefix and Q̃(y) denote the multilinear extensions of the functions that maps y ∈ {0, 1}log(N)/C

to P[y] and Q[y] respectively.
Indeed, if r1, . . . , ri−1 denotes the random verifier challenges selected in rounds 1, . . . , i, then the sum-

check prover’s message in round i specifies, for each c ∈ {0, 2}, the value:

∑
x∈{0,1}log N−i

ũ(r1, . . . , ri−1, c, x) · ã(r1, . . . , ri−1, c, x)
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= ∑
y∈{0,1}log(N)/C−i

∑
x2,...,xC∈{0,1}log(N)/C

ũ(r1, . . . , ri−1, c, y, x2, . . . , xC) · prefix(r1, . . . , ri−1, c, y) · suffix(x2, . . . , xC)

= ∑
y∈{0,1}log(N)/C

Q̃(r1, . . . , ri−1, c, y) · P̃(r1, . . . , ri−1, c, y). (17)

Expression (17) is precisely the prover’s message in round i of the sum-check protocol applied to compute
Expression (16).

Accordingly, the prover’s messages in rounds 1, . . . , log(N)/C can be computed by applying the stan-
dard linear-time sum-check proving algorithm (Section 3.1.1) to the polynomial P̃(y) · Q̃(y). Once the arrays
P and Q are initialized, this algorithm takes only O(N1/C) time with no additional passes over the vectors
u and a needed.

Stage j > 1. For simplicity of notation let us focus on Stage 2, as all other stages are similar. Let r =
(r1, . . . , rlog(N)/c) denote the verifier’s random challenges chosen over the course of the first stage. Since ã
is prefix-suffix structured for cutoff 2 log(N)/C with k = 1 term, we can write

ã(r, y, x) = prefix(r, y) · suffix(x)

for any y ∈ Flog(N)/C and x ∈ Flog(N)−2 log(N)/C. Note here that prefix and suffix are not the same functions
that appeared in Stage 1: there, prefix was a function of

log(N)/C

variables and suffix of
log(N)− log(N)/C

variables, while here in Stage 2 prefix is a function of

2 log(N)/C

variables and suffix of
log(N)− 2 log(N)/C

variables.
At the start of Stage 2, the array-building procedure works as follows. The y’th entry of Q stores the sum

of all ũ(r, y, x) · suffix(x) evaluations, as x ranges over all vectors in {0, 1}log(N)−2 log(N)/C. In other words,

Q[y] = ∑
x=(x3,...,xC)∈({0,1}log(N)/C)

C−2

ũ(r, y, x) · suffix(x).

The prover also builds an array P of size N1/C that stores all values prefix(r, y) for all y ∈ {0, 1}log(N)/C.
Similar to Stage 1, the prover’s message in each of the log(N)/C rounds of Stage 2 is identical to the

prover’s messages in the sum-check protocol applied to compute

∑
y∈{0,1}log(N)/C

P̃(y) · Q̃(y) (18)

Accordingly, the prover’s messages in Stage 2 can be computed by applying the standard linear-time
sum-check proving algorithm (Section 3.1.1) to the polynomial P̃(y) · Q̃(y). Once the arrays P and Q are
initialized, this algorithm takes only O(N1/C) time with no additional passes over the vectors u and a
needed.
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Algorithm runtime. Aside from initializing the arrays P and Q are the start of each of the C stages, the
prover spends O(C · N1/C) time and space in total.

Initializing Q in each stage j requires evaluating ũ(r, y, x) and suffix(x) for fixed r as (y, x) ranges over
{0, 1}log(N)/C × {0, 1}log(N)−j log(N)/C. In general, ũ(r, y, x) can be computed for all relevant values of y and
x in time O(j · N1/C + m) and space O(C · N1/C) where recall that m is the number of non-zero entries of u
(see [STW24, Section 3.1] for details). The cost of initializing suffix(x) is application-dependent but typically
can be done in constant amortized time per relevant value of x. Initializing P in Stage i requires evaluating
prefix(r, y) as y ranges over {0, 1}log(N)/C.

We now show that in the applications we consider, both the time and space required only O(C · N1/C).

Runtime analysis for M̃-evaluation sum-check. In the M̃-evaluation sum-check of Twist (Section 3.3),
ũ(j) = Ĩnc(r, j) and ã(j) = L̃T(r′, j). For simplicity, let us consider C = 2 (which is sufficient to keep
the prover space bounded by O(T1/2)) and write j = (j1, j2) ∈ Flog(T)/2 × Flog(T)/2 and similarly write
r′ = (r′1, r′2). Then

L̃T(r′, j) = prefix1(j1) · suffix1(j2) + prefix2(j1) · suffix2(j2) (19)

where
prefix1(j1) = L̃T(r′1, j1),

suffix1(j2) = ẽq(r′2, j2),

prefix2(j1) = 1, and

suffix2(j2) = L̃T(r′2, j2).

To see this, observe that the right hand side of Equation (19) is clearly multilinear and agrees with the right
hand side at all inputs in {0, 1}log T . Indeed, this amounts to the observation that val(j) < val(r′) if and only
if one of the following two situations holds:

• the high order bits of j, namely j2, are less than the high order bits of r, namely r2, or

• the high order bits of j and r are equal while the low order bits of j are less than those of r.

To finish showing that the prover runs in O(T) time and O(
√

T) space, we must analyze the time and
space required to evaluate suffix1, suffix2, prefix1, and prefix2 at the relevant inputs to initialize the arrays P
and Q. suffix1(j2) = ẽq(r′2, j2) can be computed in O(

√
T) time and O(

√
T) space for all j2 ∈ {0, 1}log(T)/2

via standard techniques [VSBW13]. The same goes for suffix1(j2) = L̃T(r′2, j2) and prefix1(j1) = L̃T(r′1, j1)
[ST25, Appendix B], and trivially holds for prefix2(j1) = 1.

Runtime analysis for p̃cnext-evaluation sum-check. In the p̃cnext-evaluation sum-check of Section 4.2,
ũ(j) = P̃C(j) and ã = s̃hift(r, j). For simplicity, let us consider C = 2 (which is sufficient to keep the prover
space bounded by O(T1/2)) and write j = (j1, j2) ∈ Flog(T)/2 × Flog(T)/2 and similarly write r′ = (r′1, r′2).
Then

s̃hift(r, j) = prefix1(j1) · suffix1(j2) + prefix2(j1) · suffix2(j2) (20)

where
prefix1(j1) = s̃hift(r1, j1),

suffix1(j2) = ẽq(r2, j2),

prefix2(j1) =

(
log(T)/2

∏
ℓ=1

(1− rℓ) · j1,ℓ

)
, and

suffix2(j2) = s̃hift(r2, j2).
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To see this, observe that the right hand side of Equation (19) is clearly multilinear and agrees with the right
hand side at all inputs in {0, 1}log T . Indeed, this amounts to the observation that val(j) + 1 = val(r) if and
only if one of the following two situations holds:

• the low-order bits r1 of r are equal to val(j1) + 1, and the high-order bits of r and j are equal, or

• the low order bits of j are all-1, the low-order bits of r are all 0, and the high-order bits of r are equal
to val(j2) + 1.

To finish showing that the prover runs in O(T) time and O(
√

T) space, we must analyze the time and
space required to evaluate suffix1, suffix2, prefix1, and prefix2 at the relevant inputs to initialize the arrays P
and Q. suffix1(j2) = ẽq(r2, j2) can be computed in O(

√
T) time and O(

√
T) space for all j2 ∈ {0, 1}log(T)/2

via standard techniques [VSBW13]. The same trivially holds for prefix2(j1) =
(

∏
log(T)/2
ℓ=1 (1− rℓ) · j1,ℓ

)
, since

this equals 0 for all j ∈ {0, 1}log(T)/2 \ {1}, and prefix2(1) can be computed in O(log T) time.
Now consider suffix2(j2) = s̃hift(r2, j2) and prefix1(j1) = s̃hift(r1, j1). To simplify notation, for the re-

mainder of this section let us consider shift to be defined over 2 log T inputs, the first log T of which are
denoted simply by r (instead of r1 or r2) and the second by j (instead of j1 or j2). Per [STW23, Section 5.2],
we utilize the following explicit expression for s̃hift from [STW23]:

s̃hift(r, j) = h(r, j) + g(r, j), (21)

where
h(r, j) = (1− j1)r1 · ẽq(j2, . . . , jlog T , r2, . . . , rlog T), (22)

and

g(r, j) =
log(T)−1

∑
k=1

(
k

∏
i=1

ji · (1− ri)

)
(1− jk+1)rk+1 · ẽq(jk+2, . . . , jlog T , rk+2, . . . , rlog T). (23)

Confirming that Equality (21) holds. Intuitively, h(r, j) covers the case where the low-order bit j1 of j is 0.
In this case, if all entries of r and j are in {0, 1}, then int(r) = int(j) + 1 if and only if the low-order bit of r
is 1 and all other bits of r and j are equal bit-by-bit.

Meanwhile, g(r, j) handles the case where the low-order bit j1 of j is 1. In this case, int(r) = int(j) + 1 if
and only for some k ≥ 1:

• The first k bits of j are 1 the (k + 1)’st bit of j is zero.

• The first k bits of r are 0, and the (k + 1)’st bit of r is 1.

• r and j agree bit-by-bit on all higher order bits, i.e., rk+2 = jk+2, . . . , rlog T = jlog T .

We actually show something stronger than the claim that s̃hift(r, j) can be computed for all j ∈ {0, 1}log T

in linear time and space: we show that all such evaluations can be enumerated in linear time and polyloga-
rithmic space.

Enumerating evaluations of g(r, j) by exploiting Expression (23). As noted earlier, it is known that the
evaluations of ẽq(j2, . . . , jlog T , r2, . . . , rlog T) for all (j2, . . . , jlog T) ∈ {0, 1}log(T)−1 can be generated in lexi-
cographic order in O(log T) space and O(T) time (see [CFFZE24, Section 4.1] or [Rot24, Appendix A] for
details). This ensures that all evaluations of h(r, j) can be enumerated in lexicograhic order in O(T) total
time and O(log T) space. This algorithm amounts to a depth-first traversal of a binary tree whose leaves
are labeled by (j2, . . . , jlog T) ∈ {0, 1}log(T)−1.
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A similar statement holds for g(r, j) evaluations, though the enumeration procedure is more compli-
cated. To enumerate g(r, j) as j ranges over strings j = (j1, . . . , jlog T) ∈ {0, 1}log T with j1 = 1 in lexico-
graphic order, one can perform a depth-first traversal of a binary tree of depth log(T)− 2 with leaves labeled
by {0, 1}log(T)−2. Each layer of the tree corresponds to a value k indexing a term of the sum on the right
hand side of Equality (23). Tree leaves corresponding to k = 1 and the root corresponds to k = log(T)− 1.
We think of a depth-first traversal of this tree as performing a left-to-right traversal of each layer of the tree,
with the traversals for different layers synchronized in the natural way (i.e., the traversal of layer k advances
one node to the right only when all of the descendants of the current layer-k node have been traversed).

At each layer of the tree, the left-to-right traversal applies the algorithm that enumerates the values
ẽq(jk+2, . . . , jlog T , rk+2, . . . , rlog T) as (jk+2, . . . , jlog T) ranges over {0, 1}log(T)−(k+1) in lexicographic order.

In this manner, the root-to-leaf path for the current leaf (j3, . . . , jlog T) under consideration identifies all
log(T)− 2 evaluations

ẽq(jk+1, . . . , jlog T , rk+1, . . . , rlog T)

for k ∈ {1, . . . , log(T) − 1}. This enables the prover to evaluate the right hand side of Equation (23) for
j = (j1 = 1, j2, j3, . . . , jlog T).

The traversal at layer k costs O(T/2k+1) field multiplications. Hence, the total number of multiplications

to perform the traversals for all layers is O(∑
log(T−1)
k=1 T/2k) = O(T). Given the values produced by these

traversals, the prover performs O(T) total field multiplications to iteratively produce the desired values
g(r, j) as j ranges over bitstrings in {0, 1}log T with j1 = 1. A naive implementation that treats each layer’s
traversal independently uses O(log2 T) space, but it is straightforward to reduce this to O(log T) space as
the traversals at each layer are tightly related to each other. We omit details of this optimization for brevity.

B Overview of Lasso as Used in Jolt

In Jolt, the correctness of most operations is verified using a unified lookup table. This table is constructed
to handle all RISC-V instructions, where each entry corresponds to the operation and its operands. For
instance, a lookup table for a 32-bit XOR operation would have 264 entries. The value at index (i, j)—where
i, j ∈ {0, 1}32—is the XOR of i and j. The lookup tables for all operations are combined into a single, unified
lookup table for RISC-V. During each cycle, the prover computes the relevant index based on the operands,
and the correctness of the output is verified using Lasso.

Lasso is an indexed lookup argument that efficiently verifies lookups into large but decomposable ta-
bles. A table is deemed decomposable if its entries can be represented as a multilinear expression of values
from smaller sub-tables (see Definition E.3 in Section 7). Jolt demonstrates that the lookup table for each
RISC-V operation meets this criterion, enabling verification via Lasso. The lookup argument operates in
two stages:

1. Sum-Check Protocol: Establishes that the outputs from the large lookup table correspond to a prede-
fined multilinear expression involving outputs from the sub-tables.

2. Read-Only Memory Checking: Verifies the correctness of lookups into the sub-tables through a spe-
cialized version of the offline memory-checking argument.

The prover commits to the indexes of the sub-table lookups, ensuring the correctness of these indexes
through an R1CS constraint. This constraint captures both the index computation and its usage in the
lookup process.

The elements of the witness vectors required in both protocols can be enumerated in constant space and
time per element (see Observation 3.5). In Section 3.1, we demonstrate how an honest prover, utilizing this
witness generation algorithm, can execute the sum-check protocol while operating in logarithmic space.
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The read-only memory checking in part 2 is verified using a specialized version of the offline memory-
checking argument from Spice, where operations consist only of reads. In the next section, we describe the
offline memory-checking argument, show that it reduces to a grand-product check. In Section D, we pro-
vide an honest prover algorithm for the grand-product check protocol that leverages the witness generation
algorithm to operate in logarithmic space.

C Overview of Spice used in Jolt

Jolt leverages Spice to prove the correctness of reads and writes into memory. In this section, we outline
how Spice reduces the problem of proving the consistency of memory operations to a grand-product check
(see Appendix D). Let M represent the memory of size N, and let T denote the number of reads and writes
performed on the memory. The memory is augmented with two additional columns, and each memory
entry is represented as a tuple (index, value, timestamp). Here:

• The index and value uniquely identify the content’s position in memory.

• The timestamp records the temporal state of the memory. It is initialized to zero for all entries and is
updated as reads and writes are performed.

The update process is described below. The prover is tasked with constructing the following sets: Reads,
Writes, Memory_Init, and Memory_Fin. These four sets also consist of tuples of the same form as the memory
entries. Algorithm 2 is employed to compute these sets.

Algorithm 2 accepts as input M, the initial state of the memory; write_val, the value written into memory
at every time-step t ∈ [0, T − 1]; and address, the index of the memory where the value is written at each
time-step.23 At Steps 1-5, the array Mem is computed, and at Step 6, Memory_Init is set to Mem. Steps 9-16
compute the sets Reads and Writes. At Step 11, the tuple currently at location address[j] in Mem is pushed
into the set Reads, and at Steps 12-13, the tuple in Mem at the same location is updated. The entries of
the tuple corresponding to value and timestamp are updated with write_val[j] and universal_timestamp, re-
spectively. At Step 14, the updated tuple at location address[j] in Mem is pushed into the set Writes, and at
Step 15, the universal_timestamp is incremented by 1. The final state of Mem at the end of T rounds is set as
Memory_Fin at Step 17.

Algorithm 2 Construction of Sets for Offline Memory Checking

P ’s Input: address ∈ FT , write_val ∈ FT , M ∈ FN

/* Here T is the execution length, and M is the memory of size N. */
Output: The four sets Reads, Writes, Memory_Init, and Memory_Fin.

1. Initialize Mem as a vector of size N, each entry being a tuple with three elements.
2. /* Each tuple corresponds to index, value, and timestamp, respectively. */
3. for i ∈ [0, N − 1] do
4. Set Mem[i].0← i, Mem[i].1← M[i], and Mem[i].2← 0.
5. end for
6. Initialize universal_timestamp← 0.
7. /* Compute the sets Memory_Init, Memory_Fin, Reads, and Writes. */
8. Set Memory_Init← Mem.
9. Initialize two empty sets: Reads and Writes.

10. for j ∈ [0, T − 1] do
11. Add Mem[address[j]] to Reads.
12. Update Mem[address[j]].1← write_val[j]. /* Update the memory at the specified location with the

new value. */
23If the operation is a read, then the value written is equal to the value read.
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13. Update Mem[address[j]].2 ← universal_timestamp. /* Update the timestamp at the specified loca-
tion. */

14. Add the updated Mem[address[j]] to Writes.
15. Increment universal_timestamp← universal_timestamp+ 1.
16. end for
17. Set Memory_Fin← Mem.
18. Output Reads, Writes, Memory_Init, and Memory_Fin.

We now explain how the sets Reads, Writes, Memory_Init, and Memory_Fin computed by Algorithm 2
are used in the offline-memory checking argument. Let idx be a vector of length T such that idx[j] = j for
j ∈ [0, T − 1]. The reads and writes into memory M are consistent if and only if the following conditions
hold (see Section 3.1 in [SAGL18]):

1. The following two sets are equal: Reads∪Memory_Fin and Writes∪Memory_Init, where ∪ denotes the
union.

2. For all j ∈ [0, T − 1], reads_ts[j] ≤ idx[j], where reads_ts[j] = Reads[j].2.

We state the additional witness vectors used in the arguments used to prove (1) and (2), and then present
the main idea behind these arguments. Let reads_index, writes_index, reads_val, writes_val, and writes_ts be
length-T vectors such that for j ∈ [0, T − 1]:

reads_index[j] = Reads[j].0, writes_index[j] = Writes[j].0, reads_val[j] = Reads[j].1,

writes_val[j] = Writes[j].1, reads_ts[j] = Reads[j].2, writes_ts[j] = Writes[j].2.

Condition (2) above is proven using a lookup-table argument, where the operands are derived from
reads_ts and idx. Proving condition (1) is reduced to a grand-product check, which we explain next. Once
the required vectors are committed to, the verifier samples γ, τ ∈ F uniformly at random. Let gpr_reads_vector
be the vector of length T + N whose elements are (a + γ · v + γ2 · t − τ) for a tuple (a, v, t) ∈ Reads ∪
Memory_Fin. Similarly, let gpr_writes_vector be the vector of length T + N whose elements are (a + γ · v +
γ2 · t − τ) for a tuple (a, v, t) ∈ Writes ∪Memory_Init. Using a simple Schwartz-Zippel argument, it can
be shown that, with high probability over the randomness of γ and τ, the sets Reads ∪Memory_Fin and
Writes∪Memory_Init are equal if and only if the two products, prod_reads and prod_writes, are equal:

prod_reads = ∏
j∈[0,T+N−1]

gpr_reads_vector[j],

prod_writes = ∏
j∈[0,T+N−1]

gpr_writes_vector[j].

The prover and verifier use the grand-product check argument (see Appendix D) to prove that prod_reads
and prod_writes are computed correctly. The final step in the grand-product check argument requires the
verifier to check the evaluations of the MLEs corresponding to gpr_reads_vector and gpr_writes_vector.

The evaluations of the MLEs corresponding to gpr_reads_vector and gpr_writes_vector can be obtained
from the evaluations of the MLEs corresponding to reads_index, writes_index, reads_val, writes_val, reads_ts,
writes_ts, and idx. Hence, the offline-memory checking argument reduces to the evaluations of the MLEs
corresponding to these vectors. It is evident from the construction of these vectors that reads_index[j],
writes_index[j], and address[j] are equal for all j ∈ [0, T − 1], and hence their corresponding MLEs are equal.
Similarly, writes_ts[j] = idx[j] + 1 for all j ∈ [0, T − 1]. Hence, the prover at the beginning of the protocol
commits to the MLEs corresponding to the following vectors address, reads_val, writes_val, and reads_ts, and
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later uses the evaluation protocol of PCS to validate their evaluations. The evaluation of the MLE corre-
sponding to idx can be computed in O(log T) time using its succinct expression.24

D Grand Product Check in Small Space

The grand product relation,

R =

P ∈ F, V ∈ Fm | P = ∏
i∈{1,...,m}

vi , where vi is the i-th component of V


is a fundamental component in many SNARK constructions, where it is commonly used to verify that
two vectors are permutations of each other. This section presents a protocol for verifying the grand product
relation, featuring an honest prover algorithm that achieves quasi-linear time complexity while maintaining
only logarithmic memory usage. To construct this protocol, we employ a lemma from Quarks [SL20], which
allows for a sum-check-based protocol tailored to the grand product relation.

Lemma D.1 ([SL20]). P = ∏x∈{0,1}n v(x) if and only if there exists a multilinear polynomial f in n + 1
variables such that

1. f (0, 1, . . . , 1) = P,

2. f (x, 0) = v(x) for all x ∈ {0, 1}n,

3. f (x, 1) = f (0, x) · f (1, x) for all x ∈ {0, 1}n.

A protocol for R can be designed if the verifier is able to check Items (a), (b), and (c) from the lemma
above. Item (a) is checked directly, while Item (b) requires the verifier to check that f (u, 0) = v(u) for a
uniformly random u ∈ Fn. For Item (c), it is sufficient for the verifier to check that Equation 24 holds for a
u ∈ Fn sampled uniformly at random:

0 = ∑
x∈{0,1}n

ẽq(u, x) · ( f (x, 1)− f (0, x) · f (1, x)). (24)

This check is reduced to evaluating the polynomials ẽq(u, X), f (X, 1), f (0, X), and f (1, X) at a random
point using the sum-check protocol, where X = {X1, . . . , Xn} are the n variables.

Denote g1(X), g2(X), g3(X) as the n-variate polynomials f (X, 1), f (0, X), and f (1, X) respectively. For
convenience, also denote g0(X) as the n-variate polynomial ẽq(u, X). To leverage the small-space honest
prover algorithm (see Algorithm 1 in Section 3.1.2) in the sum-check protocol, an algorithm is required
that can iteratively compute the evaluations of gk(X) over {0, 1}n for k ∈ {0, 1, 2, 3} using minimal space.
In Jolt, however, the witness generation algorithm computes the values of v iteratively over {0, 1}n (see
Observation 3.5), and the values of gk(X) over {0, 1}n must be derived from the evaluations of v. While
storing the entire evaluation vector of v in memory is an option, this would require a prohibitive amount of
space. In Section D.1, we describe a space-efficient, honest prover algorithm for the sum-check instance
in Equation 24. This algorithm takes as input an oracle for v and queries it sequentially in the order:
v(tobits(0)), v(tobits(1)), . . ., v(tobits(2n − 1)). Assuming each entry of v can be computed in O(1) time
and space, as is the case in Jolt, the honest prover algorithm operates in O(n · 2n) time and O(n) space.
This approach significantly reduces space complexity, making it feasible for small-space computations in
protocols that utilize grand-product relations. Before proceeding to the next section, we recall that a binary
string x ∈ {0, 1}n is denoted as (x1, . . . , xn), where x1 represents the least significant bit and xn represents

24The MLE ĩdx(x0, . . . , xlog T−1) is equal to ∑j∈[0,log T−1] 2j · xj.
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the most significant bit. Hence, when we refer to the least significant j bits (or trailing j bits) of x, we
mean x1, . . . , xj. Conversely, when referring to the most significant j bits (or leading j bits) of x, we mean
xn−j+1, . . . , xn.

D.1 Small-Space Prover Algorithm

Algorithm 3 provides a small-space honest prover algorithm for the sum-check instance presented in Equa-
tion 24. We first outline the core idea of the algorithm before delving into the details. Recall that in round
i ∈ {1, . . . , n} of the sum-check protocol, the prover must compute the univariate polynomial fi(Xi) (see
Section 3.1 for more details), after which the verifier responds with a random value ri. The coefficients of fi
are obtained by interpolating its evaluations over a set S = {α0, . . . , α3}. The evaluations of fi are computed
using techniques similar to those in Algorithm 1. However, in this case, we do not have oracle access to gk.
Instead, we compute the evaluations of gk in O(n) space by leveraging an intrinsic structure in f which we
explain next.25

The polynomial f represents the computation of the product P using a depth-n binary-tree circuit com-
posed solely of product gates. The leaves of this tree, designated as layer 0, are labeled by the evaluations
of v over {0, 1}n, and each intermediate node computes the product of its two child nodes. This circuit
contains n + 1 layers, with layer j containing 2n−j nodes for j ∈ {0, . . . , n}, and the value of the node at
layer n is equal to P. Let 1j denote a binary string of length j where all bits are equal to 1. It follows that
the evaluations of f :

{
f (x, 0, 1j)

}
x∈{0,1}n−j correspond to the values of the nodes in layer j of the circuit

for j ∈ {0, . . . , n}. Moreover, for any x ∈ {0, 1}n−j, f (x, 0, 1j) equals the product of f (0, x, 0, 1j−1) and
f (1, x, 0, 1j−1). We can express this relationship in terms of g1, g2, g3 as follows: for every j ∈ {1, . . . , n}, if
x′ = (x, 0, 1j−1) for some x ∈ {0, 1}n−j, then g1(x′) = g2(x′) · g3(x′). Algorithm 3 leverages this structure
to iteratively compute the evaluations of g1, g2, g3 over {0, 1}n. Also, we set f (1n+1) to 0, and hence, g1(1n)
and g3(1n) is equal to 0, whereas g2(1n) is equal to g1(0, 1n−1) = P. Below, we describe the different steps
of the algorithm in detail.

Steps 3-39 correspond to a single round of the sum-check protocol. We describe the algorithm for round
i. For convenience, let G(X) denote the expression g0(X)(g1(X) − g2(X) · g3(X)). As in Algorithm 1, at
Step 3, accumulator is used to accumulate the summands corresponding to fi(αs), as stated below:

fi(αs) = ∑
m∈{0,...,2n−i−1}

G(r1, . . . , ri−1, αs, tobits(m)) (25)

The stack st, initialized in Step 4, stores intermediate values computed by the algorithm. Specifically, st
holds g2(x′) for some x′ ∈ {0, 1}n until g3(x′) is computed by the algorithm. As will become evident in
the following discussion, st never stores more than n + 1 elements at a time. The three-dimensional array
g_evals, initialized in Step 5, is used to compute gk(r1, . . . , ri−1, αs, tobits(m)) for m ∈

{
0, . . . , 2n−i − 1

}
and

k, s ∈ {0, 1, 2, 3}. This is similar to witness_evals in Algorithm 1, except that here we compute the values of
gk(r1, . . . , ri−1, αs, tobits(m)) simultaneously for multiple values of m at a time. Specifically, g_evals[j][k][s]
accumulates terms corresponding to gk(r1, . . . , ri−1, αs, tobits(m)) based on the number of leading ones in
m26. The algorithm partitions the values of m ∈

{
0, . . . , 2n−i − 1

}
according to their number of lead-

ing ones, where g_evals[j][k][s] stores the accumulated terms for all m having exactly j leading ones, for
j ∈ {0, . . . , n− i}. This approach is necessitated by the sequence in which Algorithm 3 computes evalua-
tions of gk over {0, 1}n. We emphasize here that Algorithm 3 does not compute the evaluations of gk over
{0, 1}n in the lexicographic order. Steps 6-31 are explained next.

25Here f is as stated in Lemma D.1.
26Note that the rightmost bit of m is the most significant bit. The number of leading ones, in this sense, refers to the count of

consecutive ones starting from the right in the binary representation of m.
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At Step 6, the next n-bit string x is chosen according to the lexicographic order. The algorithm then
evaluates v(x) at Step 7 and pushes this value onto stack st. Steps 8-37 comprise a while loop that iterates
exactly for the number of trailing ones in x. Specifically, the loop terminates at Step 11 if xj+1 ̸= 1. When
xj+1 = 1 at Step 11, the algorithm constructs the string x(j) = (xj+2, . . . , xn, 0, 1j) at Step 12, where the
suffix consists of j ones. The algorithm then pops g3(x(j)) and g2(x(j)) from the stack to compute g1(x(j)).
The correctness of Steps 13-15 follows from the following lemma, which characterizes the state of stack st
throughout the algorithm’s execution (proof in Appendix I).

Lemma D.2 (State of Stack During Algorithm Execution). For any binary string x ∈ {0, 1}n and index
j < n, define x(j) = (xj+2, . . . , xn−1, 0, 1j) ∈ {0, 1}n, where 1j denotes j consecutive ones. Let Jx ⊆ {1, . . . , n}
denote the set of indices where xj+1 = 1. When Algorithm 3 processes input x at Step 6 in lexicographic
order, the stack st at Step 8 contains:

• If 1 ∈ Jx: The values g2(x(j)) for all (j + 1) ∈ Jx in decreasing order of j, followed by g3(x(0)),

• If 1 /∈ Jx: The values g2(x(j)) for all (j + 1) ∈ Jx in decreasing order of j.

The proof of Lemma D.2 relies on the following claim (proof in Appendix H).

Claim D.3. Let x ∈ {0, 1}n and j < n. For a given x, define x(j) as described in the preceding lemma, and
let x(n) = 1n. Consider the least significant bit of x(j). If this bit is 0, then g1(x(j)) = g2(x(j+1)). Otherwise,
if this bit is 1, then g1(x(j)) = g3(x(j+1)).

By Lemma D.2, for any x ∈ {0, 1}n with least significant bit 1, we have 1 ∈ Jx. At Steps 13 and 14
with j = 0, the algorithm pops g3(x(0)) and g2(x(0)) respectively. At Step 15, g1(x(0)) is computed as the
product of g3(x(0)) and g2(x(0)). From Claim D.3, if the second least significant bit x2 is 1, then g1(x(0))
equals g3(x(1)); otherwise, it equals g2(x(1)). Therefore, by Lemma D.2, when x2 = 1, at Steps 13 and 14
with j = 1, the algorithm pops g3(x(1)) and g2(x(1)) respectively. This argument extends inductively for
each j where xj+1 = 1, proving the correctness of Steps 13-15.

As described previously, the algorithm accumulates terms corresponding to gk(r1, . . . , ri−1, αs, tobits(m))
in g_evals for multiple values of m simultaneously. At Step 17, t determines the appropriate index in
g_evals based on the number of leading ones in x(j), capped at n − i. At Step 18, the value of the i-th
bit of x(j) dictates which term is to be added to g_evals[t][k][s]. This process is analogous to determin-
ing uodd and ueven and appropriately combining the evaluations of the witness polynomials at uodd and
ueven in Algorithm 1 (see Steps 7, 9, and 11). In particular, observe that in Algorithm 1 for ueven the
i-th bit is always zero, whereas for uodd it is always one. At Step 23, the algorithm checks if 2i terms
have been added to g_evals[t][k][s]. If this condition is met, it concludes that g_evals[t][k][s] is equal to
gk(r1, . . . , ri−1, αs, tobits(m)) for m = value(x(j)

n−i+1, . . . , x(j)
n ). The correctness of this step follows from the

lexicographic ordering of strings, which ensures that all strings with t leading ones that contribute to the
same m are processed consecutively. At Step 25, g_eval[t][k][s] is reset to 0, for k, s ∈ {0, 1, 2, 3}. Steps 27-31
handles the last-case corresponding to the string 1n. Since we set f (1n+1) = g1(1n) = g3(1n) = 0, we only
have to set g2(1n) equal to g1(0, 1n−1). Steps 29-30 are similar to Steps 19, and 24 for the special case of 1n.
Finally, since the algorithm iterates over all x ∈ {0, 1}n in the lexicographic order, it must be that at at Steps
24 and 30:

1. For s ∈ {0, 1, 2, 3}, the value added to accumulator[s] equals G(r1, . . . , ri−1, αs, tobits(m)) for some
m ∈ 2n−i.

2. For each m ∈ 2n−i, G(r1, . . . , ri−1, αs, tobits(m)) is added to accumulator[s] for s ∈ {0, 1, 2, 3}.

Hence, at Step 38, accumulator[s] is equal to fi(αs) for s ∈ {0, 1, 2, 3}. Finally, from Lemma D.2 it follows that
st at any given time stores at most n + 1 elements, and hence, Algorithm 3 is an honest prover algorithm
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for the grand-product check operating in O(n) space and O(n · 2n) time. We make a note of this in Theorem
D.4.

Theorem D.4. Algorithm 3 operating in O(n) space and O(n · 2n) time is an honest prover algorithm for the sum-
check instance corresponding to the grand-product check.

Algorithm 3 Log-Space Honest Prover Algorithm for Grand-Product Check
P ’s input: Oracle Av that take as input i ∈ {0, . . . 2n − 1]} and returns v(tobits(i)).

1. /* We use Ak to denote the array that contains the Lagrange coefficients of gk. Specifically, the j-th entry
of Ak is equal to gktobits(j).*/

2. for i ∈ {1, . . . , n− 1} do
3. Initialise an array accumulator of size 4 and set all the entries to zero.
4. Also, initialize an empty stack st.
5. Initialise a three-dimensional array g_evals of size (n + 1− i) × 4× 4. /* g_evals[j][k][s] is used to

accumulate the summands corresponding to gk(r1, . . . , ri−1, αs, tobits(m)) for some m ∈
{

0, 2n−i}*/
6. for x ∈ {0, 1}n do
7. Query Av at x, and push the output of the oracle in st.
8. Set j = 0
9. while j < n do

10. Let xj+1 denote the (j + 1)-th least significant bit of x, and 1j denote a binary string of length
j with all bits being 1.

11. if xj+1 is equal to 1 then
12. Let x(j) = (xj+2, . . . , 0, 1j) be a binary string in {0, 1}n.
13. Set g3(x(j)) = pop(st),
14. Set g2(x(j)) = pop(st),
15. Set g1(x(j)) = g2(x(j)) · g3(x(j)) and push it in st.
16. Compute g0(x(j)) as ẽq(u, x(j)) /*Here u is as in Equation 24 */
17. Set t = min(j, n− i)
18. if x(j)

i == 1 then
19. For k ∈ {0, 1, 2, 3} add the following expression to g_eval[t][k][s],

(ẽq((r1, . . . , ri−1), (x(j)
1 , . . . , x(j)

i−1)) · αs · gk(x(j))

20. else
21. For k ∈ {0, 1, 2, 3} add the following expression to g_eval[t][k][s],

(ẽq((r1, . . . , ri−1), (x(j)
1 , . . . , x(j)

i−1)) · (1− αs) · gk(x(j))

22. end if
23. if x(j) has last i bits equal to 1 then
24. For s ∈ {0, 1, 2, 3} add the following to accumulator[s]:

g_eval[t][0][s] ( g_eval[t][1][s] − g_eval[t][2][s] · g_eval[t][3][s] )

25. For k, s ∈ {0, 1, 2, 3} set g_eval[t][k][s] to 0.
26. end if
27. if j is equal to n− 1 then
28. Set g2(1n) = g1(x(j)), and compute g1(1n).
29. For k ∈ {0, 2} add the following expression to g_eval[t][k][s],

(ẽq((r1, . . . , ri−1), (x(j)
1 , . . . , x(j)

i−1)) · αs · gk(1
n)
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30. For s ∈ {0, 1, 2, 3} add the following to accumulator[s]:

g_eval[t][0][s] ( g_eval[t][1][s] − g_eval[t][2][s] · g_eval[t][3][s] )

31. end if
32. Increment j by 1.
33. else
34. Break;
35. end if
36. end while
37. end for
38. Set fi(αs) = accumulator[s] for s ∈ {0, 1, 2, 3}.
39. Interpolate the coefficients of fi(Xi) from its ℓ+ 1 evaluations { fi(αs)}s∈{0,1,2,3}, and send it to V .
40. end for

E Small-Space Proving for Lasso

Jolt employs Lasso as its indexed lookup argument system. In this subsection, we show how to implement
Lasso’s prover algorithm in small space. We begin by formally defining indexed lookup arguments and the
required table properties to apply Lasso in Jolt.

Definition E.1 (Indexed Lookup Argument). Let T ∈ FN , and let (commit, open, eval) be an extractable PCS
for multilinear polynomials. Then, a lookup argument for T is a SNARK for the following relation:{
(pp, Cã, Cb̃) | ∃a, b ∈ Fm such that ai = T[bi], ∀i ∈ [0, n− 1] and open(pp, Cã, a) = 1, open(pp, Cb̃, b) = 1

}
.

In this context, a represents the lookup vector and b the lookup indices vector. A key feature of Lasso is
that it eliminates the need for cryptographic commitments to T when the table is either MLE-structured or
decomposable.

Definition E.2 (MLE-Structured). A table T ∈ FN is MLE-structured if, for any r ∈ Flog N , T̃(r) can be
evaluated using O(log N) field operations.

Definition E.3 (Decomposable Tables). A table T ∈ FN is c-decomposable if there exists a constant k ∈ N,
and α ≤ k · c tables T1, . . . , Tα ∈ FN1/c

, and an α-variate polynomial G such that: for all r ∈ Flog N ,

T̃(r) = G(T̃1(r1), . . . , T̃k(r1), T̃k+1(r2), . . . , T̃2k(r2), . . . , T̃α(rc)).

Let n = log N. Then r and r1, . . . , rc are related as follows: if r = (r0, . . . , rn−1) ∈ FN , then:

r1 = (r0, . . . , rn/c−1), r2 = (rn/c, . . . , r2n/c−1), . . . , rc = (rn−n/c, . . . , rn−1).

The tables T1, . . . , Tα are called sub-tables.

We note that decomposability is a weaker requirement than being MLE-structured (see Section 2.3 in
[STW24]). For c-decomposable tables, Lasso’s prover commits to 3cm + c · N1/c elements, with the verifier
performing O(log m) hashes and field operations, along with checking the evaluation proofs of a few log m-
variate multilinear polynomials at a random point using a PCS.
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Space-Efficient Implementation

For a c-decomposable table T and vectors a, b ∈ Fm satisfying ai = T[bi] for all i ∈ [0, m − 1], we can
decompose the lookup operation as follows:

ai = T[bi] = G(T1[b1,i], . . . , Tk[b1,i], Tk+1[b2,i], . . . , T2k[b2,i], . . . , Tα[bc,i]),

where bi ∈ F and tobits(bi) ∈ {0, 1}log N . Here, b1,i represents the first log N/c bits, b2,i the next log N/c
bits, and so on.

Let aj ∈ Fm be defined such that aj,i = Tj[b⌊j/k⌋,i] for j ∈ [1, α]. Then for all i ∈ [0, N − 1]:

ai = G(a1,i, . . . , aα,i).

The Lasso proof consists of two main components:

1. A sum-check protocol proving the above equation (detailed in Section E.1)

2. Indexed lookup arguments for sub-tables, implemented as read-only memory checking arguments,
proving aj,i = Tj[b⌊j/k⌋,i] for j ∈ [1, α] (detailed in Section E.2)

Theorem E.4. Let T, a,
{

aj
}

j∈[1,α], b, and
{

bj
}

j∈[1,c] be as described above. If there exists a witness generation
algorithm that computes these vectors in their natural order with O(1) space and time per element, then there exists
an honest prover algorithm for the Lasso protocol that operates in O(log m + N1/c) space and O(m · log m + N1/c)
time.

E.1 Sum-checks in Lasso

Assume (commit, open, eval) is an extractable PCS for multilinear polynomials. In Lasso, the sum-check
protocol is used to reduce the following relation to opening the MLEs corresponding to a and aj ∈ Fm for
all j ∈ [1, α] at a random point, which is then verified using the PCS:{

(pp,
{

Cãj

}
j∈[1,α]

, Ca) |∃a ∈ Fm, aj ∈ Fm, ∀j ∈ [1, α] such that

ai = G(a1,i, . . . , aα,i) ∀i ∈ [0, m− 1],

open(pp, Cã, a) = 1, and open(pp, Cãj , aj) = 1 ∀j ∈ [1, α]
}

.

The polynomial G in the context of Jolt is a sum of O(1) products of variables.27 Therefore, the results
in Section 3.1 can be adapted to the sum-check instance above, yielding an honest prover algorithm that
operates in O(m) space and O(m · log m) time. In Algorithm 1, calls to the oracles are replaced by the
execution of the witness generation algorithm of Jolt (see Observation 3.5).

E.2 Grand-Product Checks in Lasso

The lookups into the sub-tables in Lasso are proved using a read-only memory checking argument adapted
from Spice. Formally, we aim to provide a SNARK for the following relation for j ∈ [1, α]:{

(pp, Cãj , Cb̃j
) |∃aj, bj ∈ Fm such that aj,i = Tj[bj[i]] ∀i ∈ [0, N − 1],

open(pp, Cãj , aj) = 1, and open(pp, Cb̃j
, bj) = 1

}
.

We refer the reader to Section C for an overview of the offline-memory checking argument from Spice
and how the above check is reduced to two grand-product checks. The following simplifications to the
discussion in Section C are applicable since lookups are only a read-only memory checking argument:

27Concretely, the number of such terms is at most 4.
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1. The vectors reads_val and writes_val in Section C correspond to aj.

2. The address vector committed to by the prover corresponds to bj.

3. In Algorithm 2, the universal_timestamp is not required. Furthermore, in Step 13, the current value of
the counter in memory is incremented by one, instead of storing the value of universal_timestamp.

4. To prove the correctness of lookup values, it suffices for the prover to demonstrate that Reads ∪
Memory_Fin is equal to Writes ∪Memory_Init. There is no need to additionally show that reads_ts[j] ≤
idx[j] for all j ∈ [0, T − 1].

The Spice protocol reduces the check that Reads ∪Memory_Fin equals Writes ∪Memory_Init to two grand-
product checks. Thus, using Algorithm 3 from Section D, we obtain an honest prover algorithm for proving
the correctness of lookups into the sub-tables. As in Section E.1, in Algorithm 1, calls to the oracles are
replaced by the execution of the witness generation algorithm of Jolt.

F Small-space Prover Algorithm for Spice used in Jolt

Jolt utilizes Spice to ensure the consistency of memory reads and writes performed in each RISC-V cycle.
Appendix C provides an overview of Spice, explaining how it reduces the problem of verifying memory
consistency to grand-product checks. In this section, we demonstrate that the prover algorithm for Spice
can be executed in a small-space setting by leveraging the small-space prover algorithm for grand-product
checks, as outlined in Algorithm 3 in Appendix D.

As discussed in Appendix C, the Spice prover establishes the equality of prod_reads and prod_writes,
where prod_reads is the product of elements in the vector gpr_reads_vector, and prod_writes is the product
of elements in gpr_writes_vector. To apply the small-space prover algorithm from Appendix D, we need to
show that the elements of these vectors can be computed sequentially in O(1) space and time.

The elements of gpr_reads_vector and gpr_writes_vector are derived from the tuples in Reads∪Memory_Fin
and Writes ∪Memory_Init, respectively. The sizes of Memory_Init and Memory_Fin is equal to the memory
footprint of the RISC-V program and are stored in memory. In each RISC-V cycle, a new element from Reads
and Writes is realized in O(1) space and time (see Observation 3.5), allowing the corresponding elements of
gpr_reads_vector and gpr_writes_vector to be computed in constant O(1) space and time.

This demonstrates that gpr_reads_vector and gpr_writes_vector can be streamed sequentially, enabling an
efficient small-space proof for the consistency of memory operations.

G Proof of Claim 3.2

We prove the claim by induction. For context, we refer to the discussion in Section 3.1 regarding the linear-
time honest prover algorithm for the sum-check protocol. Recall that Ak,i denotes the state of the arrays
maintained by the honest prover at the beginning of round i for k ∈ [1, ℓ] and i ∈ [1, n]. Initially, Ak,1
contains the evaluations of gk over {0, 1}n. For i ∈ [1, n − 1], the arrays are updated according to the
relation:

Ak,i+1[m] = (1− ri) · Ak,i[2m] + ri · Ak,i[2m + 1] (26)

Base case (i = 1): For m ∈ [0, 2n−1 − 1], applying Equation 26:

Ak,2[m] = (1− r1) · Ak,1[2m] + r1 · Ak,1[2m + 1]

= ∑
j∈{0,1}

ẽq(r1, j) · Ak,1[2m + j]

Inductive step: Assume the claim holds for some i ∈ [2, n− 1] and ri = (r1, . . . , ri), that is:

Ak,i[m] = ∑
j∈{0,1}i

ẽq(ri, j) · Ak,1[2
i ·m + j]
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We prove it holds for i + 1. Using the inductive hypothesis and Equation 26:

Ak,i+1[m] = (1− ri) · ∑
j∈{0,1}i

ẽq(ri, j)Ak,1[2
i+1 ·m + j] + ri · ∑

j∈{0,1}i

ẽq(ri, j)Ak,1[2
i+1 ·m + 2i + j]

= ∑
j∈{0,1}i+1

last bit of j is 0

ẽq(ri, j)Ak,1[2
i+1 ·m + j] + ∑

j∈{0,1}i+1

last bit of j is 1

ẽq(ri, j)Ak,1[2
i+1 ·m + j]

= ∑
j∈{0,1}i+1

ẽq(ri, j)Ak,1[2
i+1 ·m + j]

This completes the proof.

H Proof of Claim D.3

Fix x ∈ {0, 1}n and 0 ≤ j < n− 1. By the definitions of g2 and g3, we have

f (x(j+1), 0) = g2(x(j+1)) and f (x(j+1), 1) = g3(x(j+1)).

Note that x(j+1) has exactly j + 1 leading ones, implying its most significant bit is 1. Furthermore, x(j) and
x(j+1) are related as follows:

(x(j), 1) = (xj+2, x(j+1)).

Suppose xj+2 = 0. Then

g2(x(j+1)) = f (xj+2, x(j+1)) = f (x(j), 1) = g1(x(j)),

where the last equality follows from the definition of g1. A similar argument holds when xj+2 = 1, yielding

g3(x(j+1)) = f (xj+2, x(j+1)) = f (x(j), 1) = g1(x(j)).

For the special case when j = n− 1, we have x(n−1) = (0, 1n−1) and x(n) = 1n. By definition,

f (0, 1n) = g2(1n) and f (1, 1n) = g3(1n).

Using the same reasoning as above, we get

f (1, 1n−1, 1) = g1(x(n−1)) = g2(x(n)).

I Proof of Lemma D.2

Proof. We prove this lemma by induction on the lexicographic ordering of strings in {0, 1}n.

Base case: Let 0 denote the all-zeros string. At Step 7, the algorithm queries the oracle to obtain v(0).
By definition of g2, we have g2(0) = v(0). Therefore, at Step 8, st contains only g2(0). Since 0(0) = 0 and
J0 = ∅, this matches the lemma statement.

Inductive step: Assume the lemma holds for all strings lexicographically smaller than x ∈ {0, 1}n. Let
y be the immediate predecessor of x in lexicographic order. We consider two cases:
Case 1: The least significant bit of y is 0. In this case:

1. The least significant bit of x must be 1 (by lexicographic ordering).
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2. By the induction hypothesis, at Step 8, st contains g2(y(j)) for (j + 1) ∈ Jy in decreasing order.

3. Since y1 = 0, the check at Step 11 fails for j = 0, exiting the while loop.

4. In the next iteration, v(x) is pushed onto st.

5. Since x1 = 1, we have v(x) = f (0, x) = g3(x(0)).

6. Note that Jy = Jx ∪ {1} and y(j) = x(j) for all j ∈ {0, . . . , n− 1}.

Therefore, st satisfies the lemma’s conditions for x.
Case 2: The least significant bit of y is 1. Let y have ℓ consecutive trailing ones (ℓ ∈ {1, . . . , n− 1}). In
particular, y1, . . . , yℓ are equal to ones and yℓ+1 is equal to zero. Then:

1. By the induction hypothesis, st contains g2(y(j)) for (j + 1) ∈ Jy in decreasing order, followed by
g3(y(0)).

2. By Claim D.3:

• g1(y(j)) = g3(y(j+1)) for j ∈ {0, . . . , ℓ− 2},
• g1(y(ℓ−1)) = g2(y(ℓ)).

3. The while loop (Steps 9-36) executes ℓ times:

• First ℓ− 1 iterations: For each j ∈ {0, . . . , ℓ− 1}, g3(y(j)) and g2(y(j)) are popped, and g1(y(j)) =

g3(y(j+1)) is pushed.

• Final iteration: g3(y(ℓ−1)) and g2(y(ℓ−1)) are popped, and g1(y(ℓ−1)) = g2(y(ℓ)) is pushed.

4. After the while loop, st contains g2(y(j)) for (j + 1) ∈ Jy \ {1, . . . ℓ} in decreasing order, followed by
g2(y(ℓ)).

5. When x is processed, v(x) is pushed onto st.

6. By lexicographic ordering, x has ℓ trailing zeros and xℓ+1 = 1.

7. Therefore, Jx = (Jy \ {1, . . . , ℓ}) ∪ {ℓ+ 1}.

8. By definition of g2, v(x) = g2(x(0)).

Thus, at Step 8, st contains g2(x(j)) for (j+ 1) ∈ Jx in decreasing order satisfying the lemma’s conditions.
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