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Abstract. This paper presents new results that establish connections between isogeny

graphs and nonlinear recurrences over finite fields. Specifically, we prove several the-

orems that link these two areas, offering deeper insights into the structure of isogeny

graphs and their relationship with nonlinear recurrence sequences. We further pro-

vide two related conjectures which may be worth of further research. These findings

contribute to a better understanding of the endomorphism ring of a curve, advanc-

ing progress toward the resolution of the Endomorphism Ring Problem, which aims to

provide a computational characterization of the endomorphism ring of a supersingular

elliptic curve.

1. Introduction

1.1. On the role of Isogenies in Cryptography. Isogenies have become a fundamen-

tal object of study in the area of post-quantum cryptography. Also, their role in “tradi-

tional” cryptography through the years has been notable, as they are used in algorithms

for point counting on elliptic curves and are furthermore behind many cryptographic de-

velopments (computing distortion maps for pairing-based cryptography, designing hash-

functions, etc.). Thus, understanding isogenies, related objects and algorithms is crucial

for tackling problems in many areas of modern cryptography (see, for instance, the recent

surveys [4, 16]).

In a nutshell, an isogeny is a map connecting two algebraic curves which is surjective

and preserves the underlying group structure (for precise definitions, see [18]). Two

curves connected through an isogeny are said to be isogenous. Given two isogenous

elliptic curves over a finite field, computing an isogeny between them is assumed to be a

very hard computational problem (even if quantum resources are at hand); this problem

is typically referred to as the Isogeny Path Problem. Proving that two such curves are

isogenous is however possible in (classical) polynomial time, as Tate’s isogeny theorem

states that two elliptic curves over a finite field K are isogenous if and only if they have

the same number of points over K. A very interesting problem motivated by practical
1
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applications is finding ways to prove knowledge of an isogeny between two curves without

actually revealing it [4].

Furthermore, in cryptography, we often consider classes of isogenous curves which are

identified using special labels called j-invariants. In particular, if we work in a finite

field Fp2 (for p prime and under certain conditions), we can write an elliptic curve E in

Weierstrass Form,

y2 = x3 + ax+ b, where a, b ∈ Fp2 ,

and define its j-invariant j(E) as

j(E) = 1728
4a3

4a3 + 27b2
.

Then, over Fp2 , two elliptic curves are identified (i.e., isomorphic) if and only if they have

the same j-invariant. Isogenies define graph structures on the set of j-invariants, so-called

isogeny graphs which nodes are the j-invariants of isogenous curves and which edges are

isogenies connecting curves from each of the nodes. Again, it is an interesting challenge

to describe the structure of isogeny graphs without revealing enough information to

determine concrete paths (i.e., isogeny chains) linking two nodes.

In this paper we develop some new results to help us better understand isogeny graphs,

linking them to nonlinear recurrences over finite fields.

1.2. Related Work. We establish several conjectures that link isogeny graphs and non-

linear recurrences over finite fields. These relationships provide deeper insights into the

endomorphism ring of a curve, contributing towards the resolution of the so-called Endo-

morphism Ring Problem which seeks a computational description of the endomorphism

ring of a supersingular elliptic curve.

Eisentraeger et al. [8] proved (unsing a heuristic introduced by Kohel et al. [13])

the equivalence of the isogeny path and endomorphism ring problems under polynomial

time reductions. Later, B. Wesolowski provided an alternative proof that, instead of

relying on heuristics, assumed the generalized Riemann hypothesis (see [21]). This result

was subsequently refined by Mamah in [15], where the polynomial equivalence between

the two problems was established without using heuristics or the generalized Riemann

hypothesis.

2. 2-isogenies of elliptic curves

Let p ≥ 5 be a prime such that p ≡ 3 (mod 4) and p ≡ 1 (mod 3), or equivalently,

p ≡ 7 (mod 12). These conditions will be needed later. We denote the ground field Fp
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and its quadratic extension Fp2 . We represent the elements of Fp2 by adjoining i =
√
−1

to the base field Fp, as the fact that p ≡ 3 (mod 4) guarantees that −1 is not a square

in Fp. Hence Fp2 = Fp[i]. Note that all elements of Fp have square roots in Fp2 , but not

all elements of Fp2 have square roots in Fp2 . Finally let K = Fp be the algebraic closure

of Fp, which is a separable extension of Fp.

An elliptic curve E over K is expressed in short Weierstrass form as

E : y2 = x3 + ax+ b,

where a, b ∈ K satisfy that the discriminant ∆ = 4a3 + 27b2 ̸= 0. The j-invariant is

defined by

j = j(E) = 1728
4a3

4a3 + 27b2
.

We say that E lives over Fpm ⊂ K if it can be written in short Weierstrass form with

a, b ∈ Fpm . In this case, j ∈ Fpm . The converse follows from the explicit expressions

given in section 3.

There is an hyperelliptic quotient

π : E → P1, π(x, y) = x

which is a degree-2 map. We note that the x-coordinate xP of a point P determines the

y-coordinate up to sign.

We are interested in 2-isogenies between such elliptic curves. A 2-isogeny is a degree-2

separable isogeny ψ : E → E ′ with kernel of order 2, that is ker(ψ) = {O,P}, where P
is a point of order 2. Here O is the origin of E, which is the point at infinity, and it has

coordinate xO = ∞. The degree of an isogeny is actually its degree as a morphism of

algebraic curves, and, moreover, for a separable isogeny this is equal to the cardinality

of the kernel (see [18]). Note that even if E lives over Fpm , the point P can live over a

field extension. And the elliptic curves E and E ′ can live over different subfields of K.

The elliptic curve E has always three points of order 2 over K, each point having

(affine) x-coordinate one of the three distinct roots of x3 + ax + b = 0. Let P be any

such point of order 2 and let xP be the x-coordinate of P . We consider the 2-isogeny

ψ : E → E ′ with kernel ker(ψ) = {O,P}, which determines E ′ univocally. Write

E ′ : y′2 = x′3 + a′x+ b′ in Weierstrass form.

Let π′ : E ′ → P1 be the hyperelliptic quotient associated to E ′. Then ψ determines a

map ψ̄ : P1 → P1 on the x-coordinates, so that

π′ ◦ ψ = ψ̄ ◦ π ,
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that is, (x′, y′) = ψ(x, y) and x′ = ψ̄(x). This is easy to see: the hyperelliptic quotient

is determined by the linear system |2O| = |2P |, hence the map π′ ◦ ψ is determined by

|2O + 2P | = |2(O + P )|. Hence the map ψ̄ : P1 → P1 of degree 2 that sends xP and

x0 = ∞ to ∞, does the job.

Moreover, the map ψ̄ clearly determines the map ψ up to sign, since y′ is determined

by y′ =
√
x′3 + a′x+ b′, up to sign.

Proposition 2.1. There is some α ∈ K, α ̸= 0, such that

ψ̄(x) = αx+
α(3x2P + a)

x− xP
. (1)

The curve E ′ has Weierstrass equation

E ′ : y2 = x3 + α2(−4a− 15x2P )x+ α3(−8axP − 22x3P ). (2)

Proof. The map ψ̄ sends ∞, xP to ∞, so it is clearly of the form ψ̄ = αx+
β

x− xP
. The

expression (1) can be derived from Vélu’s formulas [19] by direct substitution using the

kernel point (xP , 0). The factor α is then added to consider composition of the Vélu

isogeny with automorphisms. This determines the coefficient β = α(3x2P + a) to arrange

that the coefficient of x2 for E ′ vanishes. The explicit expression of the codomain curve

E ′ can be found in [17, Section 4]. □

For a 2-isogeny ψ : E → E ′, there is always another isogeny ψ∗ : E ′ → E called the

dual of ψ, The dual isogeny is defined by the property that ψ∗ ◦ ψ = [2] : E → E is

the map defined by “multiplication by 2” on the elliptic curve. The map [2] has kernel

{O,P0, P1, P2}, where P0, P1, P2 are the three points of order 2, hence if ψ is given by

P = P0, then ψ∗ is determined by the order 2 point P ′ = ψ(P1) = ψ(P2) ∈ E ′. The

existence of the dual isogeny of a separable isogeny is guaranteed when working over a

finite field.

Now let ψ : E → E ′ given by (1). Then ψ∗ is defined by the map

ψ̄∗(x) =
1

4

x

α
−

3

4
x2P + a

x

α
+ 2xP

. (3)

The correctness of (3) for the dual isogeny can be easily checked by composing both

isogenies and verifying that the result is the isogeny [2], whose expression appears in [17,

eqn. (1)], since

ψ̄∗ ◦ ψ̄(x) = ¯[2](x) =
1

4

x4 − 2ax2 − 8bx+ a2

x3 + ax+ b
.
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From the expression (3) for the dual isogeny, it is immediate to see that its kernel is

ker(ψ∗) = {O,Q0}, generated by a point Q0 ∈ E ′ of order 2 with x-coordinate

xQ0 = −2αxP . (4)

In this paper, we will focus on supersingular elliptic curves. There are many definitions

of supersingular elliptic curves, for instance that the kernel of the map [p] : E → E is

trivial. The key fact that we will use is that if ψ : E → E ′ is a 2-isogeny and E

is supersingular, then E ′ is also supersingular. Moreover, if E is supersingular then

j(E) ∈ Fp2 (see [18, Theorem V.3.1]), therefore supersingular curves are defined over

Fp2 .

3. The root form of an elliptic curve

The j-invariant classifies elliptic curves defined over K up to isomorphism. As it

may be convenient to work with a fixed representative of each class, some authors have

proposed definitions of “generic” formulas for a curve expressed in short Weierstrass form

based on its j-invariant. For instance Connell [5] writes

y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
.

Another formula, proposed by Hasegawa [11], is

y2 = x3 − 27j

j − 1728
x+

54j

j − 1728
,

or Washington [20] proposes

y2 = x3 +
3j

1728− j
x+

2j

1728− j
.

An inconvenient of these proposals is that they do not contemplate the case j = 1728.

We would like to work with a formula that includes this case as p ≡ 3 (mod 4) guarantees

that j = 1728 corresponds to a supersingular curve. For this reason, we consider working

with a new expression for a curve with j-invariant j as follows:

E(j) : y2 = x3 + jk2x± 2

3
√
−3

jk3
√
j − 1728 .

It is immediate to check that such curve has j-invaritant j for any value of k and

any chosen sign for the square roots (note that this expression does not define the sign

of either square root, therefore this definition actually corresponds to two isomorphic

curves). Clearly this form is not valid for j = 0 since the formula would yield the
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equation y2 = x3 which is singular and thus does not represent an elliptic curve. However

the selection p ≡ 1 (mod 3) guarantees that the value j = 0 does not correspond to a

supersingular curve.

The parameter k may be chosen constant or it may depend on j. As the latter

complicates the analysis considerably, we will choose it constant and for convenience we

select k =
√
−1
24

which makes

E(1728) : y2 = x3 − 3x . (5)

We name the resulting equation as follows.

Definition 3.1. We say that the elliptic curve E = E(j) with j-invariant j is written

in root form if we write the equation

E(j) : y2 = x3 − j

576
x− j

√
j − 1728

20736
√
3

. (6)

The name “root form” comes from the fact that it involves the root
√
j − 1728. Note

that if j ∈ Fqm , then the root form is an equation over Fq2m . However, the curve E(j) is

defined over Fqm .

The discriminant of a curve in root form is:

∆ = 4

(
− j

576

)3

+ 27

(
−j

√
j − 1728

20736
√
3

)2

= − j2

27648
. (7)

4. 2-isogenies between curves in root form

In expression (1), different values of α result in different codomain curves which are

isomorphic to one another. We now find the value of α that defines a 2-isogeny from E

to E ′ when both are expressed in root form. We begin by analyzing the case xP = 0.

The fact that (0, 0) is a point of order two implies that the equation of the curve must

be of the form E : y2 = x3 + ax, i.e., b = 0. According to (5) for E to be in root form

we must have a = −3. The codomain E ′ is obtained from (2), say

E ′ : y2 = x3 + 12α2x .

Since the j-invariant of the codomain is j′ = 1728, we have that ψ is a morphism between

curves with j-invariant 1728. To make this an endomorphism in E(1728), we must have

E ′ also expressed as (5) which yields α = ±i/2.

The general case when xP ̸= 0 is contained in the following result.
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Proposition 4.1. Let xP be the x-coordinate of a point of order two in a curve E(j) in

root form. Assume that xP ̸= 0. Let ϵ =
j

x2P
and let

α =
12
√
3 (2160− ϵ)

xP (432− ϵ)
√
1728− ϵ

=
12
√
3 (2160x2P − j)

(432x2P − j)
√
1728x2P − j

. (8)

Then the isogeny ψ : E → E ′ has codomain curve E ′ with j-invariant j′ which satisfies:√
j′ − 1728 =

2592 (1584− ϵ)

(432− ϵ)
√
1728− ϵ

. (9)

Proof. Substituting the expression (8) for α and the value a = − j

576
in (2) we get the

curve

E ′ : y2 = x3 − 3
(2160− ϵ)3

(432− ϵ)2(1728− ϵ)
x+

216√
3

(2160− ϵ)3(ϵ− 1584)

(432− ϵ)3(1728− ϵ)3/2
. (10)

The j-invariant is

j′ = 1728
(2160− ϵ)3

(432− ϵ)2(1728− ϵ)
, (11)

from where (9) follows directly. The root form (6) of a curve with j-invariant j′ is

y2 = x3 − j′

576
x− j′

√
j′ − 1728

20736
√
3

, (12)

which is the same expression as (10). This concludes the proof. □

Remark 4.2. Formally, the result in Proposition 4.1 covers the case xP = 0, where

j = 1728, ϵ = ∞, α =
12
√
3√

−1728
= ±i/2 and j′ = 1728.

There are two values of α in (8) as the square root is defined up to sign.

We call the 2-isogeny ψ : E(j) → E(j′) between two curves in root form a “root

isogeny”. From (1), using the value (8) and a = − j

576
, we have

ψ̄(x) =
16 (2160x2P − j)√

3 (432x2P − j)
√

1728x2P − j

(
x+

1728x2P − j

x− xP

)
.

Regarding expressions (8), (9) and (11), we point out that, although the definition of

α and the result for j′ are undefined for ϵ = 432 or ϵ = 1728, it is easy to check that

these values of j correspond to null discriminant for the codomain curve.
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5. Chains of 2-isogenies

We now turn our interest to the composition of 2-isogenies using root isogenies, and

in particular to the construction of a “chain” of 2-isogenies by repeated composition of

root isogenies to obtain an isogeny of degree 2ℓ. Formally, we may define a chain as

a 2-regular graph where the nodes are associated with j-invariants and the edges are

associated with root isogenies.

We start by characterizing the points of order two in the codomain curve in root form

according to the following.

Proposition 5.1. Let E(j), xP and ϵ be as defined in Proposition 4.1. Let ψ : E → E ′

be the root isogeny defined by xP with codomain E ′. Then the three values of the x-

coordinates xQ0, xQ1 and xQ2 that correspond to the three points of order two in E ′ are:

{−2αxP , αxP (1 + η), αxP (1− η)} , (13)

where η =
1

12

√
1728− ϵ.

Proof. We evaluate the expression (x− xQ0)(x− xQ1)(x− xQ2) and obtain:

x3 − α2x2P (3 + η2)x+ 2α3x3P (1− η2) .

Substituting (8) and η2 =
1

144
(1728− ϵ), we get (10). □

According to (4), the value xQ0 = −2αxP corresponds to the dual isogeny which maps

E ′ back to E. the other two values

xQ1 = αxP (1 + η), xQ2 = αxP (1− η)

may be used to define two new isogenies from E ′ to some other curves E ′′
1 and E ′′

2 . The

values αxP (1± η) may be rewritten using (8) as:

αxP ± 12
√
3 (2160− ϵ)

(432− ϵ)
√
1728− ϵ

√
1728− ϵ

12
= −1

2
xQ0 ±

√
3
2160− ϵ

432− ϵ
. (14)

We point out that in our construction xQ1 and xQ2 are always different, since by our

definition in Proposition 2.1 α ̸= 0 which implies ϵ ̸= 2160.

A chain of 2-isogenies may thus be built using root isogenies by selecting either xQ1

or xQ2 at every step. The process is defined recurrently as follows:
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(1) Assume that we have arrived at a curve En = E(jn) from a previous curve

En−1 = E(jn−1) via the root isogeny ψ : En−1 → En, using the order 2 point

Pn−1. Then jn is given by (11) with ϵn−1 =
jn−1

x2Pn−1

.

(2) The curve En = E(jn) has three points of order two whose x-coordinates are

xQn,i
, i = 0, 1, 2. One of the points xQn,0 brings us back to En−1 via the dual

isogeny ψ∗. We focus on the other two points xQn,1 and xQn,2 , and select one of

them as xPn .

(3) The choice of xPn defines the value ϵn =
jn
x2Pn

, and the root isogeny ψ : En →

En+1, thus determining the next value jn+1 and the next curve in the chain

En+1 = E(jn+1).

6. Chain of supersingular curves

We are interested in the case of a chain of 2-isogenies consisting of supersingular elliptic

curves. If E1 is supersingular, then all curves En in the chain will be supersingular. In

particular all jn ∈ Fp2 and all the curves are defined over Fp2 .

We will start a chain with the curve

E1 = E(1728) : y2 = x3 − 3x.

From this curve and using either value of xP = ±
√
3, we obtain using (8) for the root

isogeny with ϵ1 =
j1
x2P

= 576,

α1 =
12
√
3

xP

2160− ϵ1
(432− ϵ1)

√
1728− ϵ1

= ∓ 11

2
√
2
,

which maps to the codomain curve E2 with j-invariant given by (11)

j2 = 1728
(2160− ϵ1)

3

(432− ϵ1)2(1728− ϵ1)
= 663 .

The curve equation is given by (6)

E2 : y
2 = x3 − j2

576
x− j2

√
j2 − 1728

20736
√
3

= x3 − 3

8
113 x± 21

√
3

8
√
2
113 .

Thus from E1 = E(1728) both points xP = ±
√
3 define the same root isogeny that

maps to E2 = E(663). We note that this is consistent with the fact that we have a 3-

regular graph, as the node j1 = 1728 also has an edge to itself corresponding to xP = 0.

See Figure 3 below for the graph of isogenies at this node.
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Then from E2 we define the chain by selecting at each step one of the two possibilities

in (14). According to (13), and using xP = ±
√
3, ϵ1 = 576, η =

√
1728− ϵ1

12
= 2

√
2,

α1 =
11

2
√
2
, we have that the three x-coordinates of points of order two in E2 are{

−11

√
3

2
,
11

4

√
3(
√
2 + 2),

11

4

√
3(
√
2− 2)

}
.

The first point corresponds to the dual isogeny that brings us back to E1, and the last

two points may be used to map to a new curve E3.

Theorem 6.1. Let xPn be the x-coordinate of a point of order two in a curve En = E(jn)

in root form. Let ψ : En → En+1 be the root isogeny defined by xPn, where En+1 =

E(jn+1) is the codomain of the root isogeny, and let xQn,i
, i = 1, 2, be the x-coordinates

of the points of order two in En+1.

Assume that jn ̸= 1728,
√
jn − 1728 ∈ Fp2, and xPn ∈ Fp2 with xPn ̸= 0. Then the

following are true:

(1)
√
jn+1 − 1728 ∈ Fp2,

(2) xQn,i ∈ Fp2, for i = 0, 1, 2,

Proof. We begin by proving (a). Recall that by definition xPn is any one of the three

solutions of the cubic

x3 − jn
576

x− jn
√
jn − 1728

20736
√
3

= 0 . (15)

Let us call the roots of this cubic x1, x2, x3 and, without loss of generality, assume

x1 = xPn .

Since, by hypothesis,
√
jn − 1728 ∈ Fp2 , the cubic has all its coefficients in Fp2 . The

discriminant of this cubic was given in (7) as ∆ = − j2n
27648

, which is a square in Fp2 .

By [7, Lemma 2], the discriminant of a cubic is not a square in Fp2 if and only if it has

exactly one root in Fp2 . Applied to this case, we get that (15) does not have exactly one

root. Since it has already one solution in Fp2 , namely x1 = xPn ∈ Fp2 , then at least one

of x2, x3 must also be in Fp2 . As x1 + x2 + x3 = 0, this implies that also x3 ∈ Fp2 .

Call ϵi =
jn
x2i

, i = 1, 2, 3. Using equation (11), we get

jn+1 = 1728
(2160− ϵi)

3

(432− ϵi)2(1728− ϵi)
∈ Fp2 .
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Moreover, operating the above expression, we get that ϵi are the three roots of the cubic

equation

(1728− jn+1)ϵ
3 + 2592 (jn+1 − 4320)ϵ2+

+ 1679616 (14400− jn+1) + 322486272 (jn−1 − 54000) = 0 . (16)

We recall that for a cubic in general form a ϵ3+b ϵ2+c ϵ+d, the discriminant is calculated

as

∆ = b2c2 − 4 ac3 − 4 b3d− 27 a2d2 + 18 abcd .

Applying this formula to (16) we get the discriminant

∆ϵ = 238324j2n+1(jn+1 − 1728) .

The cubic (16) has three roots ϵ1, ϵ2, ϵ3 and they lie in Fp2 . Therefore, using the result in

[7, Lemma 2] again, we have that ∆ϵ is a square in Fp2 . This implies that
√
jn+1 − 1728 ∈

Fp2 .

Now we prove (b). Since xPn ∈ Fp2 and jn ∈ Fp2 , we have ϵn =
jn
x2Pn

∈ Fp2 . Using (9)

and
√
jn+1 − 1728 ∈ Fp2 , we have that

√
1728− ϵn ∈ Fp2 . From (8), we have αn ∈ Fp2 .

According to (4), we have that xQn,0 = −2αnxPn ∈ Fp2 . Now, according to (14)

xQn,i
= −1

2
xQn,0 ±

√
3
2160− ϵn
432− ϵn

∈ Fp2 ,

for i = 1, 2. Therefore xQn,i
∈ Fp2 , for i = 0, 1, 2. □

Note that in Theorem 6.1, if jn = 1728 then the discussion previous to the theorem

assures that the result also holds. In the case xPn = 0 then jn = 1728 and the 2-isogeny

is from E(1728) to itself. In both cases, the conclusion also holds.

Corollary 6.2. For all curves En in a chain we have
√
jn − 1728 ∈ Fp2 and xPn ∈ Fp2.

Proof. We proceed by induction starting with the curve E2. For E2 we have that j2 =

663 ̸= 1728 and
√
j2 − 1728 = 378

√
2 ∈ Fp2 and xP2 =

11

4

√
3(
√
2+2) ∈ Fp2 . As xP2 ̸= 0,

we have by Theorem 6.1 that
√
j3 − 1728 ∈ Fp2 and xQ2,i

∈ Fp2 for the three points of

order 2. Note that we choose P3 as either Q2,1 or Q2,2, so xP3 ∈ Fp2 .

We continue the process recursively. If we have jn ̸= 1728, then we apply Theorem

6.1. If at some stage, jn = 1728 then the result also holds by the discussion above. □

Remark 6.3. As
√
jn − 1728 ∈ Fp2 , we have that (12) is an equation for E(jn) defined

over Fp2 .
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7. A recurrence associated with a chain of 2-isogenies

In Proposition 5.1 we defined η =
1

12

√
1728− ϵ. The interest of this value is high-

lighted in the following

Proposition 7.1. For each n ≥ 1, let xPn be the x-coordinate of a point of order two

in the curve En = E(jn) expressed in root form. Let ϵn =
jn
x2Pn

, ηn =
1

12

√
1728− ϵn,

and let ψ : En → En+1 be the root isogeny defined by xPn, whose codomain curve is

En+1 = E(jn+1). Then, with a suitable choice of sign for each ηn, we have the recurrence

η2n+1 = 8ηn
ηn + 3

(ηn + 1)2
, (17)

and all ηn ∈ Fp2.

Proof. From (8), we have

α2
nx

2
Pn

= 432
(2160− ϵn)

2

(432− ϵn)2(1728− ϵn)
,

whence, using (11), we get

jn+1 = 4α2
nx

2
Pn
(2160− ϵn) .

From Proposition 5.1,

x2Pn+1
= α2

nx
2
Pn
(1± ηn)

2 ,

where the choice of sign indicates the two possible choices for the point xPn+1 in the curve

En+1. Therefore

x2Pn+1
=

jn+1

4(2160− ϵn)
(1± ηn)

2 .

This provides the following expression for ϵn+1,

ϵn+1 =
jn+1

x2Pn+1

=
4(2160− ϵn)

(1± ηn)2
.

Using the definition of ηn, we have ϵn = 1728− 144 η2n. Substituting

ϵn+1 = 1728− 144η2n+1 =
4(2160− 1728 + 144η2n)

(1± ηn)2
=

576(η2n + 3)

(1± ηn)2
,

and

η2n+1 = 12− 4(η2n + 3)

(1± ηn)2
= 8ηn

ηn ± 3

(ηn ± 1)2
.
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If the choice of sign is +, then we alredady have the recurrence

η2n+1 = 8ηn
ηn + 3

(ηn + 1)2
.

if the choice of sign is −, then we change ηn by η′n = −ηn (that is, we interchange the

role of the two points Qn,i, i = 1, 2), and we have

η2n+1 = 8ηn
ηn − 3

(ηn − 1)2
= −8ηn

−ηn + 3

(−ηn + 1)2
= 8η′n

η′n + 3

(η′n + 1)2
.

The new value of ηn is an allowed choice for the previous step in the recurrence.

Finally, note that all ηn ∈ Fp2 since according to (9),

ηn =

√
1728− ϵn

12
=

216(1584− ϵn)

(432− ϵn)
√
jn+1 − 1728

,

and according to Theorem 6.1, we have
√
jn+1 − 1728 ∈ Fp2 . □

Proposition 7.1 shows that a recurrence in the value η may be used to generate all the

j-invariants in a 2-isogeny chain. Indeed, since at each step η2 provides ϵ = 1728−144 η2,

we may substitute in (11) and obtain the following expression for the j-invariant:

jn+1 = 1728
(η2n + 3)3

η2n(η
2
n − 9)2

. (18)

The recurrence (17) can be simplified considerably using the change of variable

µn =
ηn + 3

2ηn
, ηn =

3

2µn − 1
. (19)

This change of variable in (18) yields

jn+1 = 256
(µ2

n − µn + 1)3

(µ2
n − µn)2

. (20)

In particular, (19) transforms the recurrence in ηn into this equivalent recurrence in µn,

µn+1 =
1

2
+

3

2ηn+1

=
1

2
+

3

2

√
8ηn(ηn + 3)

(ηn + 1)2

=
1

2
+

3
ηn + 1

ηn

2

√
8(ηn + 3)

ηn

=
1

2
+

3

(
1 +

2µn − 1

3

)
8
√
µn

,

and finally

µn+1 =
1

2
+
µn + 1

4
√
µn

. (21)
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This recurrence provides two possible values of µn+1 for each µn depending of the square

root
√
µn that we select.

Note that the fact that all ηn ∈ Fp2 implies that all µn ∈ Fp2 because of (19). On the

other hand, (21) implies
√
µn =

µn + 1

4µn+1 − 2
,

which shows that
√
µn ∈ Fp2 , or in other words, all µn are squares in Fp2 . Let µn = u2n,

with un ∈ Fp2 . Then (21) may be written as

u2n+1 =
1

2
+
u2n + 1

4un
=

(un + 1)2

4un
.

And we have the following recurrence for un,

un+1 =
un + 1

2
√
un

. (22)

Again, we may reason as before: since according to (22), we have
√
un =

un + 1

2un+1

, the fact

that un ∈ Fp2 for all n, implies that un is a square in Fp2 . Thus we may define un = v2n
with vn ∈ Fp2 , and write (22) in terms of vn as

v2n+1 =
1

2

(
vn +

1

vn

)
, (23)

which is a suprisingly simple recurrence.

Theorem 7.2. The chain of 2-isogenies En defines a recurrence given by v0 =
√√

2

and

v2n+1 =
1

2

(
vn +

1

vn

)
.

The j-invariants are related to this recurrence by

jn+1 = 256
(v8n − v4n + 1)3

(v8n − v4n)
2

. (24)

The two choices of sign of vn corresponds to the two choices of 2-isogenies in the isogeny

graph.

Proof. The change of variable µn = u2n and un = v2n gives µn = v4n, which we plug into

(20) to get (24).

The chain of 2-isogenies start with E1 = E(1728), E2 = E(663). The value j1 = 1728

with xP1 = ±
√
3 provides ϵ1 =

j1
x3P1

= 576. By the definition of η, we have η1 = 2
√
2. At
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this point, we may note that the recurrence (17) provides η1 = 2
√
2 if we set η0 = 1. For

this reason we start the recurrence at index 0 instead of 1. By (19) and η0 = 1, we get

µ0 = 2. Therefore v0 =
4
√
2. Note that we can have obtained this value from j1 = 1728

and (24).

The change of sign for vn corresponds to the choice of square root for un, and by (22)

this means a change of sign for un+1. This in turn is a choice of square root for µn+1, and

produces a change of sign for 2µn+2 − 1 by (21). By (19) this corresponds to changing

the sign of ηn+2, that is interchanging the points xQn,i
, i = 1, 2. □

To the authors, it was remarkable that a recurrence as (23), which requires to extract

square roots successively, it is defined for all n, always obtaining square roots in Fp2 . This

happens with the starting seed v0 = 4
√
2. A computational check shows that starting

at other values, the recurrence typically stops (that is a square root lies in a higher

extension field Fp2n , n ≥ 2. We raise the following conjecture.

Conjecture 7.3. Let v0 ∈ Fp2 corresponding to the j-invariant j1 = 256
(v80 − v40 + 1)3

(v80 − v40)
2

.

Then the curve E(j1) is supersingular if and only if for any recurrence (vn) defined by

(23), all vn ∈ Fp2.

Note that we have proved the “only if” direction. If Conjecture 7.3 is true, then this

would produce a good heuristic test for a j-invariant to correspond to a supersingular

curve.

8. A relation with the Arithmetic Geometric Mean

The recurrence (23) has not been found by the authors explicitly in the literature, but

there is a relationship of this recurrence with the so called Arithmetic-Geometric Mean

(AGM for short) which we now present.

The AGM recurrence (going back to Gauss [6]) is defined by some starting a0, b0 ∈ K
and for n ≥ 1, we take an, bn ∈ K by

an =
an−1 + bn−1

2
, (25)

bn =
√
an−1bn−1 , (26)

where K is a field. There is a choice of square root for bn, giving rise to situations in

which the AGM recurrence terminates (if there is no square root), or situations in which

the AGM recurrence splits in a graph (taking either choice of sign for the square root).
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The AGM recurrence has been studied in fields of characteristic zero, for instance in

[12] for p-adic numbers. It is also mentioned in the literature [20, section 9.4.1], [18,

exercise 6.14]. But the only result in finite fields known to the authors appears in [10]

and is limited to the ground field Fp. In this case, the fact that p ≡ 3 (mod 4) guarantees

that there is a unique choice of square root for bn so that for the following step, bn+1 is

defined in Fp, that is an−1bn−1 is a square in Fp.

We note that [10] mentions the relation between the AGM and 2-isogenies of elliptic

curves and their j-invariants, when curves are expressed in Montgomery form; however

they limit their analysis to the base field Fp. Here we tackle the AGM in the quadratic

extension Fp2 and provide a condition for it to be well-defined in it.

Theorem 8.1. Let vn be the sequence defined by (23) starting at some v0 ∈ Fp2. Let

an, bn, n ≥ 1, defined by

bn =
n−1∏
i=0

vi, an = v2nbn .

Then an, bn are the sequences of the AGM recurrence (25), (26). Furthermore, a suffi-

cient condition for the sequences an, bn to be defined in Fp2 is that they are initiated using

any v0 (that is b1 = v0, a1 = v21v0 = (v20 + 1)/2) that satisfies (see (24)) that

j = 256
(v80 − v40 + 1)3

(v80 − v40)
2

is the j-invariant of a supersingular elliptic curve in Fp2.

Proof. The fact that an, bn ∈ Fp2 is clear from their definition and the fact that vi ∈ Fp2

for all i ≥ 0, when we initiate correctly (that is, when the j-invariant of v0 is associated

to a supersingular elliptic curve, by Proposition 7.1).

It remains to prove that an, bn satisfy (25) and (26). Clearly bn = bn−1vn−1, hence

b2n = b2n−1v
2
n−1 = b2n−1

an−1

bn−1

= an−1bn−1 ,

which is (25). Next, we use the defintion of an and the formula for the recurrence

v2n =
1

2

(
vn−1 +

1

vn−1

)
=
an
bn
,

to get

bn(v
2
n−1 + 1) = 2anvn−1 . (27)
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On the other hand, an−1 = v2n−1bn−1 = vn−1(vn−1bn−1) = vn−1bn, that is vn−1 =
an−1

bn
.

Substituting in (27),

bn

(
a2n−1

b2n
+ 1

)
= 2an

an−1

bn
,

which gives, using also (25),

an =
a2n−1 + b2n
2an−1

=
a2n−1 + an−1bn−1

2an−1

=
an−1 + bn−1

2
,

proving (26). □

There is a converse construction. Let us consider a AGM sequence (an, bn), that is a

sequence satisfying (25) and (26). Let us define

v2n =
an
bn
.

This square root exists because anbn is a square, since bn+1 is defined. Then

v2n =
an
bn

=
1

2

an−1 + bn−1√
an−1bn−1

=
1

2

(√
an−1

bn−1

+

√
bn−1

an−1

)
=

1

2

(
vn−1 +

1

vn−1

)
,

for a suitable choice of square root (that is, sign of vn−1). Note that the values of vn can

be expressed solely based on bn, since

vn =

√
an
bn

=

√
anbn
b2n

=

√
b2n+1

b2n
=
bn+1

bn
.

Therefore, for b0 = 1 we have bN =
N−1∏
i=0

vi.

Remark 8.2. Over the real numbers R, the AGM sequence is used to define a function

[6] M as

M(a0, b0) = lim
n→∞

an = lim
n→∞

bn ,

for a0, b0 > 0. The AGM sequence is uniquely determined by selecting at each step the

positive sign for bn. It can be seen that (an), (bn) both converge to the same number [6].

Therefore vn ∈ (0, 1) for n > 0, and it will converge to 1.

Note the fantastic coincidence with the famous sequence from Euler. This is the AGM

sequence in R starting with a0 =
√
2 and b0 = 1 and leads to an explicit formula that

computes π. This corresponds to v0 =
√√

2, which is also our starting value in Fp2 for

the sequence of 2-isogenies of supersingular elliptic curves.
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9. The multigraph structure of the supersingular 2-isogeny graph

Chains of supersingular curves, as defined in previous sections, correspond to paths

in supersingular 2-isogeny graphs. Supersingular isogeny graphs have been extensively

discussed in the literature and we do not intend to discuss them here. However we wish

to review some features regarding their multigraph nature which has been less thoroughly

analyzed (see for instance [9, 2]).

We recall that a supersingular 2-isogeny graph is a graph whose vertices or nodes are

the isomorphism classes of supersingular elliptic curves over a finite field and whose edges

represent degree-2 isogenies between them [17, Section 4]. Thus, each node corresponds

to a supersingular elliptic curve (up to isomorphism), and thus with a j-invariant, while

an edge connects two nodes if there is a separable isogeny of degree 2 between the

corresponding curves. If we identify each isogeny with its dual isogeny (in the sense

that an edge represents both), we may treat the graph as undirected. Furthermore the

graph is known to be connected and in fact an expander (a Ramanujan graph) in large

characteristic.

Since every supersingular elliptic curve has exactly 3 subgroups of order 2, it follows

that from each node emanate three degree-2 isogenies. Thus the graph is 3-regular in a

multigraph sense. By multigraph we mean that some edges may become self-loops (edges

from a node to itself arising from special self-isogenies) or multiple edges (arising when

two distinct 2-isogenies connect the same pair of curves, therefore in this case double

edges). Most nodes in the graph do not exhibit these anomalies, but a few special nodes

do. We are interested in discussing both self-loops and double edges and derive some

results that will be useful later when we discuss cycles in these graphs.

A powerful tool for this analysis is the classical modular equation. For a given integer

N, the modular equation ΦN (X, Y ) = 0 characterizes pairs of j-invariants corresponding

to elliptic curves linked by a cyclic isogeny of degree N . For 2-isogenies, the equation

Φ2 (X, Y ) is given by [14, Chapter 3] as

Φ2(X, Y ) = (X + Y )3 −X2Y 2 + 1485XY (X + Y )− 162000 (X + Y )2

+ 41097375XY + 8748000000 (X + Y )− 157464000000000. (28)

This equation relates any two j-invariants which are connected by an edge in the super-

singular 2-isogeny graph.
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By simple substitution it may be checked that the following change of variable

36 (X + Y ) + 4671675

2205225
= t2 + 2 ,

216XY − 160380 (X + Y )− 4438516500

3274759125
= t3 + 3 t ,

always satisfies the equation. Thus t parameterizes the equation Φ2 (X, Y ) = 0. For

reasons we will later justify, we prefer to change the parameter t to a parameter g

defined as

g =
495

2
(t+ 1) ,

which yields

XY = g3 ,

X + Y = g2 − 495 g + 54000 .

Equivalently, any two adjacent j-invariants in the supersingular 2-isogeny graph are

the roots of the following quadratic equation:

j2 −
(
g2 − 495g + 54000

)
j + g3 = 0 . (29)

The interpretation of this equation is as follows. The value g characterizes a particular

edge in the graph. Hence, given a suitable value of g, the two j-invariants connected

by that edge are obtained by finding the roots of the quadratic equation (29). Likewise,

given a j-invariant we may find the three edges out of it, characterized by their value g,

by solving the cubic

g3 − j g2 + 495j g + (j2 − 54000j) = 0.

Now it is obvious why the parameter g has been selected. According to Vieta’s formulas,

the sum of the three values of g out of any node provide the node j-invariant j.

We are now in a position to analyze self loops and double edges.

9.1. Self loops. Self loops correspond to j-invariants j that satisfy Φ2 (X, Y ) = 0 when

X = Y = j. Substituting in equation (28) one obtains:

(j − 8000) (j − 1728) (j + 3375)2 = 0.

We start by analyzing the cases j = 1728 and j = −3375. These have in common that

both correspond to a double root in the cubic, which we know by checking that they

make its discriminant null. The discriminant of the cubic is

18j3 (495) (54000− j) + 4j4 (j − 54000) + 4952j4 − 4
(
4953

)
j3 − 27j2 (j − 54000)2 = 0,
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which simplifies to

4j2 (j − 1728) (j + 3375)2 = 0.

Because of our selection of the characteristic p, we know that the value j = 0 does

not correspond to a supersingular curve. The values j = 1728 and j = −3375 constitute

“pure” self loops (see Remark 9.1 for a comment on this) in the graph as shown in the

figure below (numbers in nodes correspond to values of j and values in edges correspond

to values of g).

Figure 1. Self loops corresponding to j = 1728 and j = −3375.

We now analyze the remaining case j = 8000 which we shall see is a bit different.

Substituting this value in the cubic we obtain

(g − 400)
(
g2 − 7600g + 920000

)
= 0.

The value g = 400 constitutes the self-loop, since when substituted in (29), it yields

(j − 8000)2 = 0.

The value j = 8000 is a special node in the graph as shown in the figure below.

Figure 2. Self loop corresponding to j = 8000.
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Remark 9.1. Figure 2 may cause some confusion as node j = 8000 apparently has four

edges instead of three. What is really happening is the following. In a “pure” self loop

we find two values for g which represent two different self-isogenies, namely one and its

dual. However the self-isogeny represented by g = 400 is its own dual, hence there are

still only three 2-isogenies out of this node.

9.2. Double edges. In order to identify double edges we need to impose that there are

two different solutions of g that satisfy the quadratic equation (29). For this purpose let

us first see how we would go about obtaining the value g corresponding to two j-invariants

(j1, j2). First we would add the j invariants and solve g for

g2 − 495 g + 54000− j1 − j2 = 0.

This provides two values for g given by

g =
1

2

(
495±

√
29025 + 4 (j1 + j2)

)
. (30)

And the correct value of g is the one that further satisfies the condition g3 = j1j2.

A double edge occurs when both values of g are different and both satisfy this condition,

i.e., (
1

2

(
495 +

√
29025 + 4 (j1 + j2)

))3

=

(
1

2

(
495−

√
29025 + 4 (j1 + j2)

))3

.

After simplification this becomes

(764100 + 4(j1 + j2))
√

29025 + 4 (j1 + j2) = 0.

In the expression above a null radicand corresponds to the same value of g = 495/2.

As we seek two different values for g (one for each edge) the condition becomes j1+ j2 =

−191025. Substituting in the expression (30) we have the two solutions

g = 495
1±

√
−3

2
,

and both solutions provide the same value

g3 = −4953 = −121287375.

Since j1 + j2 = −191025 and j1j2 = −4953, we obtain that double edges correspond to

the values of j given by the solutions of

j2 + 191025j − 121287375 = 0 .
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Figure 3. Double edge.

The special cases discussed above involve values of j which may or may not correspond

to supersingular curves, depending on the field characteristic. The lowest value of the

characteristic that we have found to involve all the cases corresponds to p = 103 (see

Figure 4).

Figure 4. Supersingular 2-isogeny graph for p = 103.

10. Cycles in the 2-isogeny graph

We define a j-cycle of length N in the supersingular isogeny graph as a sequence

j1, j2, . . . jN , jN+1

such that j1 = jN+1, and all jk are different. Note that the latter condition does not

permit to have an isogeny followed by the dual isogeny (backtracking), so the cycle lies

in the isogeny graph. Also we do not allow to have a cycle of some length repeated a

number of times, in particular we do not allow a self loop. Finally, in the case that there

are two edges joining jk and jk+1 (a double edge), we do not distinguish between the two

isogenies involved.
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There is recent interest on the study of cycles in the isogeny graph [1, 3, 9].

Theorem 10.1. Given a j-cycle (jn) of length N which does not include a double edge,

there is a unique sequence v1, v2, . . . , vN , vN+1 such that v1 = vN+1, j(vn) = jn+1 and

(vn) satisfies (23). We call (vn) the v-cycle associated to the j-cycle.

Proof. The sequence (vn) must satisfy:

v2n+1 =
1

2

(
vn +

1

vn

)
, (31)

jn+1 = 256
(v8n − v4n + 1)3

(v8n − v4n)
2

. (32)

Let µn = v4n, we see firstly that three consecutive values of µn determine a value of vn,

and then that three consecutive values of jn determine a value of µn. The result follows

from this.

Equations (22) and (31) are 4unu
2
n+1 = (un + 1)2, 2vnv

2
n+1 = v2n + 1, where µn = u2n,

un = v2n. That is,

vn =
un + 1

2un+1

and

4µn+1 =
(un + 1)2

un
= 2 +

u2n + 1

un
= 2 +

µn + 1

un
,

from where

un =
µn + 1

4µn+1 − 2
.

From here,

vn =
un + 1

2un+1

=

µn + 1

4µn+1 − 2
+ 1

2
µn+1 + 1

4µn+2 − 2

=
(µn + 4µn+1 − 1)(2µn+2 − 1)

2(2µn+1 − 1)(µn+1 + 1)
.

The cases µn+1 ̸= −1, 1
2
correspond to values jn+2 = 1728, which should be considered.

In this case there is a self loop or a backtracking, cases which have been removed in our

statement.
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Next, we want to follow a similar approach to prove that three consecutive values

jn, jn+1, jn+2 determine only one possible value of µn. The conditions we impose are:

jn(µ
2
n−1 − µn−1)

2 − 256 (µ2
n−1 − µn−1 + 1) = 0,

jn+1(µ
2
n − µn)

2 − 256 (µ2
n − µn + 1) = 0,

jn+2(µ
2
n+1 − µn+1)

2 − 256 (µ2
n+1 − µn+1 + 1) = 0,

4(2µn − 1)2µn−1 − (µn−1 + 1)2 = 0,

4(2µn+1 − 1)2µn − (µn + 1)2 = 0.

These are equation (32) for jn, and (21) for µn.

From here we obtain an expression of µn that only depends on jn, jn+1, jn+2. As this

analysis is too complex for manual resolution, one follows a computational approach.

One defines the ideal generated by these five polynomials and calculate a Groebner basis

in the lexicographical order (µn+1, µn−1, µn, jn, jn+2, jn+1). Using a mathematical package

as Singular, one obtains generators for this ideal. The first two generators are

(jn − A)3 + (jn+1 − A)3 − j2nj
2
n+1 + jnjn+1(Bjn +Bjn+1 + C) + A3 = 0,

(jn+1 − A)3 + (jn+2 − A)3 − j2n+1j
2
n+2 + jn+1jn+2(Bjn+1 +Bjn+2 + C) + A3 = 0,

where A = 54000, B = 1488, C = 40773375. These are the equations Φ2(jn, jn+1) = 0

and Φ2(jn+1, jn+2) = 0, using (28).

The third generator is

µn(16jn+1)(jn+1 + 3375)(j2n+1 + 191025jn+1 − 121287375) =

= jn+2j
2
n + 512jn+2jn+1jn − 108000jn+2jn + 16jn+2j

2
n+1 + 2757375jn+2jn+1

+ 2916000000jn+2 + 256j2njn+1 − 54000j2n − 256jnj
3
n+1 + 434192jnj

2
n+1

− 140832000jnjn+1 + 5832000000jn + 188416j3n+1 + 4779648000j2n+1

− 1332976500000jn+1 − 157464000000000.

This gives a well defined value of µn if we assume that jn+1 ̸= 0,−3375 and j2n+1 +

191025jn+1 − 121287375 ̸= 0.

As we have seen in section 9, the value j = 0 (respectively j = −3375) presents a self

loop and the only way for a path to reach it is by passing twice through its adyacent

node j = 287496 (respectively j = 16581375), which is not allowed in our definition of

j-cycle as nodes may not be repeated. The condition j2n+1+191025jn+1−121287375 = 0,

on the other hand, only happens when the j-cycle traverses a double edge. This is an

exceptional situation where there is more than one solution for the associated v-cycle,
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reflecting the fact that there are actually two distinct edges that the j-cycle may follow.

These cases has been ruled out in our statement. □

To finalize, we want to analyse further structure on the v-cycles. For this, we use

two transformations. The first one is the Galois automorphism σ(v) = v defined as

conjugation on Fp2 = Fp[i], that is, σ(a + b i) = a − b i. This is a field automorphism.

Therefore, for a v-cycle v1, . . . , vN , we have that

σ(vk+1)
2 =

1

2

(
σ(vk) +

1

σ(vk)

)
,

and hence σ(v1), . . . , σ(vN) is a v-cycle, and the corresponding j-cycle is given by the

Galois conjugates of j1, . . . , jN .

The second transformation is the Moebius map

T (v) =
v + 1

v − 1
.

Note that T (0) = −1, T (−1) = 0, T (∞) = 1, T (1) = ∞. Therefore T 2 = id. If

w2 =
1

2

(
v +

1

v

)
, then

1

2

(
T (w) +

1

T (w)

)
=

1

2

(
w + 1

w − 1
+
w − 1

w + 1

)
=
w2 + 1

w2 − 1
=

=
1
2
(v + 1

v
) + 1

1
2
(v + 1

v
)− 1

=
v2 + 2v + 1

v2 − 2v + 1
=

(v + 1)2

(v − 1)2
= T (v)2 ,

that is {T (w), T (v)} form a pair satisfying the recurrence (23). So if {v1, v2, . . . , vN} is

a v-cycle, then

{T (vN), . . . , T (v2), T (v1)}
is a v-cycle of the same length. The T -transform of this cycle is again {v1, . . . , vN}.

Now we define, for a v-cycle v = {v1, . . . , vN}, the product

ωv =
N∏
i=1

vi

We have the following striking conjecture, that we have checked for values of N up to 11

(we have checked over the rationals, hence it is true for any p).

Conjecture 10.2. The values ωv always satisfy the equations

kM∏
k=1

(
2Nω2 + (−1)k(2k − 1)ω + 1

)
= 0, (33)
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where the maximum value kM is the nearest integer to
√
2
N
. The number of N-cycles is

thus 2kM .

The v-cycles should have products ωV the roots of (33).

Note that these are conjugate numbers, and the product is 1
2N

, that is

ωv =
1

2N+1

(
(−1)k+1(2k − 1)±

√
(2k − 1)2 − 2N+2

)
,

and each value corresponds to a v-cycle. If the number ωv /∈ Fp, that is the square root

is imaginary, then the two roots are conjugate. If v is the v-cycle then

ωσ(v) = ωv

is the conjugate of the product for v. Therefore, this produces the conjugate ω. Note

that in this case N(ω) =
1

2N
.

If ωv ∈ Fp, then the other root of the quadratic equation is

ω =
1

2Nωv

∈ Fp .

This appears as follows.

Proposition 10.3. For the reversed cycle T (v)†, we have

ωv ωT (v)† =
1

2N
.

Proof. We compute

ωT (v)† =
N∏
i=1

T (vi) =
N∏
i=1

vi + 1

vi − 1
=

N∏
i=1

v2i − 1

(vi − 1)2
=

=
N∏
i=1

1
2

(
vi−1 +

1
vi−1

)
− 1

(vi − 1)2
=

N∏
i=1

1
2vi−1

(vi−1 − 1)2

(vi − 1)2
=

=
N∏
i=1

1

2vi−1

=
1

2N
1

ωv

,

using the cyclicity of v. □
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