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Abstract. Sanitizable Signature Schemes (SSS) enable a designated
party, the sanitizer, to modify predefined parts of a signed message
without invalidating the signature, making them useful for applications
like pseudonymization and redaction. Since their introduction by Ate-
niese et al. (ESORICS’05), several classical SSS constructions have been
proposed, but none have been instantiated from quantum-resistant as-
sumptions. In this work, we develop the first quantum-secure sanitizable
signature schemes based on lattice assumptions. Our primary focus is
on SSS constructions that rely on chameleon hash functions (CHFs),
a key component for enabling the controlled modification of messages.
While lattice-based CHFs exist, they do not meet the required security
guarantees for SSS, becoming insecure under adversarial access to an
adapt oracle. To address this, we construct a novel lattice-based CHF
that achieves collision resistance even in such settings, called full collision
resistance. However, our CHF lacks the uniqueness property, a limitation
we show to be inherent in lattice-based CHFs. As a result, our SSS con-
structions initially fall short of achieving the critical security property
of accountability. To overcome this, we apply a transformation based on
verifiable ring signatures (VRS), for which we present the first lattice-
based instantiation. Additionally, we provide a comprehensive analysis
of existing classical SSS constructions, explore their potential for post-
quantum instantiations, and present new attacks on previously assumed
secure SSS schemes. Our work closes the gap in constructing quantum-
secure SSS and lays the groundwork for further research into advanced
cryptographic primitives based on lattice assumptions.
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1 Introduction

In modern cryptography, the digital signature scheme is an essential primitive
that enjoys ubiquitous usage. However, depending on the use case, one might
need more advanced signature schemes which come with additional functionality.
These advanced variants usually build upon their base versions, offering strong
security guarantees for their specialized functionality and alleviating the need for
ad-hoc constructions. Advanced signature-based primitives include sanitizable
signatures, ring signatures, group signatures, threshold signatures, and more.

The main focus of this paper are sanitizable signature schemes (SSS). They
can be applied, for instance, to pseudonymize sensitive data, like patient names
in medical records, while maintaining the authenticity. Sanitizable signature
schemes allow the signer of a message to partially delegate signature rights to
a semi-trusted third party, the sanitizer. This sanitizer may modify predefined
parts of the message without invalidating the signature. In a sanitizable signature
scheme, the message is divided into blocks, among which the sanitizer can modify
exactly the admissible blocks. In contrast, all other blocks, the immutable blocks,
cannot be modified by the sanitizer without invalidating the signature. The signer
defines which blocks are admissible during the signing operation. Another use-
case of sanitizable signature schemes are classified documents. SSS constructions
allow the signing of such documents (by the signer) such that a censor (the
sanitizer) can redact certain parts, depending on which parts should not be
made public.

Sanitizable signature schemes were first introduced in Ateniese et al.’s seminal
work [3]. Since then, many more works on sanitizable signature schemes have
been published, covering new constructions focusing on different, sometimes
novel, security notions. Current literature contains only two constructions that
exclusively use basic primitives [13, 22], one construction is based on group sig-
natures [12], two are based on ring signatures [15, 30], one is based on signatures
with rerandomizable keys [23], while all others, [11, 3, 30, 16, 6], make use of
so-called chameleon hash functions (CHFs) [28].

Chameleon hash functions are families of hash functions with public and
secret keys. In contrast to regular hash functions, their input consists of not just
the message, but also an auxiliary random value. The public key of a chameleon
hash function defines a collision-resistant function mapping pairs (µ, r) to some
hash value h, where µ is the message and r is a randomly chosen auxiliary value.
With the corresponding secret key, however, one can then adapt the message to a
new µ′, by finding a suitable auxiliary value r′ such that the pair (µ′, r′) evaluates
to the original digest h, i.e., find a collision. Besides weak collision resistance,
where the adversary only receives the public key, chameleon hash functions can
support stronger forms of collision resistance, where an adapt oracle is available
to the adversary. Apart from SSS, chameleon hash functions are a widely used
building block in other cryptographic schemes. For example, they can transform
a non-adaptively secure signature scheme to an existentially unforgeable one [41].

The gist of constructing a SSS from a CHF is a simple hash-then-adapt
approach. In this approach, the admissible blocks are hashed using the CHF
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with a public key generated by the sanitizer and then signed by the signer using
a regular signature scheme. The sanitizer can thus modify the message without
altering the hash value, retaining the original signature’s validity. More advanced
constructions of SSS have been developed over the years, some of which attain
additional security properties and explore alternative approaches.

Given the general transition to post-quantum cryptography, analyzing which
advanced primitives can also be constructed from quantum-hard assumptions is
crucial. While there are positive results for various advanced primitives, sanitiz-
able signatures from quantum-hard assumptions have yet to be considered.

1.1 Our Contribution

We close the aforementioned gap by developing post-quantum secure sanitizable
signatures from lattices. Our main focus is on constructions based on chameleon
hash functions. While lattice-based CHFs exist [18, 31], we observe that they
cannot be used to instantiate existing SSS constructions. The reason is that
they do not achieve the necessary security guarantees. Thus, we develop a new
chameleon hash function inspired by the one given in [31]. Our construction
achieves collision resistance even against adversaries with access to an adapt
oracle that provides collision to the adversary—for SSS constructions this is nec-
essary since sanitized signatures are effectively that. This is our first contribution
as we believe this strongly secure CHF can be of independent interest.

However, this construction is not sufficient to already instantiate the SSS
constructions. The reason is that it lacks another property called uniqueness.
When a chameleon hash has uniqueness, it is hard to come up with two differ-
ent auxiliary values r, r′ that both map some message µ to the same digest h.
Unfortunately, the lack of the uniqueness property seems not to be a flaw of
our specific construction but a more general problem of lattice-based CHFs. The
absence of this property implies that the SSS constructions lack crucial security
properties like unforgeability and accountability. However, there is a generic
transform [15] which turns such a SSS (which they call weakly-secure) into a
secure SSS. This transform requires another advanced signature, called verifiable
ring signature (VRS), i.e., a variant of a ring signature that allows to prove or
deny ownership of a signature at a later point. Thus, as our second contribution,
we develop a lattice-based VRS scheme. To do that, we first design a generic
construction of a VRS scheme using a so-called linking indistinguishable tag
and a non-interactive zero-knowledge proof. Then, we instantiate that generic
construction with lattice-based constructions.

With these contributions (illustrated in Fig. 1), we close the aforementioned
gap by giving multiple post-quantum sanitizable signatures from lattices.

As additional contributions, we give an attack against an SSS construc-
tion [11], breaking the accountability, i.e., an attack that allows the signer to
blame the sanitizer for messages of its own choosing. Furthermore, we revisit the
SSS constructions that do not rely on chameleon hash functions. We show that for
some of them, the necessary building blocks are readily available in the lattice-
based literature, meaning they can easily be instantiated as well. Finally, we
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Fig. 1: Overview of our main results. Instantiating the SSS constructions given
in [3, 6, 11, 16] with our new lattice-based chameleon hash function results in
weak sanitizable signatures. The transformation from [15]—using these weak
sanitizable signatures and our new verifiable ring signature scheme—then yields
secure sanitizable signatures.

show additional implications between the security notions, which also show some
additional security properties for some SSS construction—in particular, security
properties that were developed after some of the older SSS constructions.

1.2 Related Work

Current literature provides a variety of constructions of sanitizable signature
schemes. Two of them, [13, 22], require standard assumptions only. Some of
them, [12, 15, 23] provide constructions based on other advanced signatures. The
work [30] by Lai et al. contains two constructions: one based on accountable ring
signatures and another one based on chameleon hash functions. Finally, many
more constructions based on chameleon hash functions exist, [3, 11, 6, 16, 15].
Besides the different primitives they use, the various works have distinct goals
regarding the security notions they achieve. The achieved security properties can
be seen in Table 1. Another construction is due to Klonowski and Lauks [27].
Later, however, Canard and Jambert [17] showed it to lack accountability.

Constructions of chameleon hash functions based on lattices are very rare.
Cash et al. [18] came forward with the first construction based on a trapdoor in
the Ajtai hash function. This chameleon hash function achieves merely a weak
form of collision-resistance. Only recently, a new lattice-based construction was
brought forward by Li and Liu [31]. They use one-time tags, making the hash
function not applicable to known generic constructions of SSS. However, we use
and improve their ideas to construct our novel chameleon hash function.

Due to the missing uniqueness of our CHF, we apply the transform introduced
in [15] to increase the security of the instantiations from weak SSS to strong SSS.
The transform relies on verifiable ring signatures (VRS). In [15], it is stated that
other ring signatures with extended functionality, such as linkable ring signatures,
imply VRS. However, we were not able to verify that claim.

[39] present (among others) a notion of ring signatures equivalent to VRS,
called claimable and repudiable ring signatures. They also show how to construct
such a ring signature. However that requires verifiable random functions, which
can be difficult to construct (e.g., [21]) or use (non-interactive) proofs in their
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Table 1: Overview of our results. The table provides an overview of the SSS
constructions that use chameleon hash functions: ACMT05 [3], BCD+17 [6],
CDK+17 [16], and BFF+09 [11]. The entries with the color blue are the results
of the instantiations of the respective constructions with our chameleon hash
function defined in Section 3.1. The entries with the color orange are the results
after using our verifiable ring signature defined in Section 3.2 to apply a trans-
form as described in [15] to ensure unforgeability as well as signer and sanitizer
accountability. The various symbols represent: the instantiation achieves the
notion (✓), the construction does not achieve the notion (✗), the instantiation
does not achieve a notion that the construction otherwise could achieve (✦), the
instantiation has not been analyzed with respect to the notion (?), and there
is no lattice-based instantiation due to missing building blocks (❍). Note that
some notions contradict each other, consequently it is impossible to come up
with a construction achieving all notions (cf. Appendix B.2).

Chameleon Hash Function based Sanitizable Signatures

ACMT05 LZCS16−1 BCD+17 CDK+17 BFF+09
[3] [30] [6] [16] [11]

Unforgeability ✓ ❍|✓ ✦|✓ ✦|✓ ✓

Signer Accountability ✓ ❍|✓ ✦|✓ ✓ ✗|✓
Sanitizer Accountability ?|✓ ❍|✓ ✦|✓ ✦|✓ ✓

NIPA ✗ ✗ ✗ ✗ ✗

Immutability ✓ ❍ ✓ ✓ ✓

Transparency ✓ ❍ ✓ ✓ ✓

Privacy ✓ ❍ ✓ ✓ ✓

Unlinkability ✗ ✗ ✗ ✗ ✗

Invisibility ? ? ✓ ✓ ?

construction. Furthermore, the construction of [39] requires a proof over state-
ments including the VRF, i.e., proofs over proofs, which is why we opted for a
more direct approach for constructing a VRS.

2 Background

We define some notation. By x ← y we define deterministic assignment of y
to x. If S is some set, we denote by x ←$ S sampling a uniform value x from
S. Overloading notation, if A is some probabilistic polynomial-time (ppt) or
quantum polynomial time (qpt) algorithm, we denote by y ←$ A(x) assigning
the random output of A(x) to y. The statement of the kind “for all y ←$ A(x)”
means for all y that can be output by the randomized algorithm A on input x.
We denote column vectors by lowercase bold-face letters a, while row-vectors
are denoted as at. Matrices A are denoted in uppercase. By ∥x∥ we denote the
Euclidian norm of x. If we want to query the random oracle on some input x, we
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denote it by y ← RO(x). We will often assume security parameters and public
parameters as implicit inputs to algorithms and omit them for readability.

The security analysis under the presence of quantum adversary takes place in
the Q1 security model, allowing local quantum computer access to adversaries,
but only classical access to oracles including the random oracle. Signature schemes
as well as public key encryption schemes follow the commonly established syntax
and notation, but for the sake of completeness are defined in Appendix A. We
will formalize less ubiquitous primitives in this section.

2.1 Chameleon Hash Function

First, we introduce chameleon hash functions, which we will later build from
lattices as one of our core contributions in this paper.

Definition 1 (Chameleon Hash Function). A chameleon hash function CH
consists of four ppt algorithms CH = (CKGen, CHash, CHashCheck, CAdapt).

(pkch, skch)←$ CKGen(1λ): The key generation algorithm CKGen takes as input
the security parameter 1λ and outputs a private-public key pair.

(h, r)←$ CHash(pkch, µ): The algorithm CHash takes as input a public key pkch
and a message µ. It outputs a hash h and randomness r, under the given
public key pkch.

b← CHashCheck(pkch, h, µ, r): Given a public key pkch, a hash value h, a message
µ, and randomness r, the deterministic algorithm CHashCheck outputs a
boolean value b ∈ {0, 1}, indicating whether the hash h is valid under pkch or
not.

r′ ←$ CAdapt(skch, h, µ, r, µ′): The algorithm CAdapt takes as input the secret key
skch, a hash h, a message µ, randomness r, and a new message µ′. It then
outputs new randomness r′, such that 1← CHashCheck(pkch, h, µ′, r′)

Definition 2 (Correctness of a Chameleon Hash Function). A chameleon
hash function CH is correct, iff

∀λ, ∀(pkch, skch)←$ CKGen(1λ),∀µ, µ′ ∈M,

∀(h, r)←$ CHash(pkch, µ),∀r′ ←$ CAdapt(skch, h, µ, r, µ′) :
CHashCheck(pkch, h, µ, r) = CHashCheck(pkch, h, µ′, r′) = 1

For security we require that the chameleon hash function is collision-resistant,
even in the presence of a collision oracle. Furthermore, we require that it hard to
distinguish whether a hash randomness pair (h, r) was output by CH or CAdapt.
We model the security games in Figs. 2,3.

Definition 3. We say that a chameleon hash function CH is fully collision-
resistant, if there exists a negligible function negl(λ) such that for all qpt adver-
saries A we have that Pr[f-CRΠ,A(1λ) = 1] ≤ negl(λ).
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f-CRCH,A(1λ)

Q ← ∅

(pkch, skch)←$ CKGen(1λ)

(h, µ, r, µ′, r′)←$AAdaptO(pkch)

return
(
CHashCheck(pkch, h, µ, r) = 1

∧ CHashCheck(pkch, h, µ′, r′) = 1

∧ µ ̸= µ′ ∧ (h, µ) /∈ Q
)

AdaptO(skch, ·, ·, ·, ·) with (h, µ, r, µ′)

if CHashCheck(pkch, h, µ, r) = 0

return ⊥

r′ ←$ CAdapt(skch, h, µ, r, µ′)

Q ← Q∪ {(h, µ), (h, µ′)}

return r′

Fig. 2: f-CR security game.

CHIndistΠ,A,b(λ)

(pkch, skch)←$ CKGen(1λ)

b′ ←$AHashOrAdaptOb,AdaptO(pkch)
return b′

HashOrAdaptOb(skch, ·, ·) with (µ, µ′)

(h, r)←$ CHash(pkch, µ)
(h′, r′)←$ CHash(pkch, µ′)
r′′ ←$ CAdapt(skch, h′, µ′, r′, µ)
if b = 0 return (h, r)
if b = 1 return (h′, r′′)

Fig. 3: CH Indistinguishability game.

There exist other, weaker notions of collision-resistance of a chameleon hash
function, called standard, enhanced, and weak collision-resistance. For definitions
and comparisons, see [20]. However, we only concern ourselves with the strongest
version, which implies the others.

Definition 4. We say that a chameleon hash function CH is indistinguishable,
if there exists a negligible function negl(λ), such that for all qpt adversaries A
we have that |Pr[CHIndistCH,A,0(λ) = 1]− Pr[CHIndistCH,A,1(λ) = 1]| ≤ negl(λ).

2.2 Lattices

Next, we cover various relevant definitions and results for lattices.

Definition 5. An n-dimensional lattice Λ is a discrete, additive subgroup of Rn.

Definition 6. In the short integer solution (SIS) problem SISn,m,q,β a qpt ad-
versary A is given a uniformly random A ∈ Zn×m

q and is asked to compute a
x ∈ Zm such that Ax = 0 and 0 < ∥x∥ ≤ β.

We define the advantage of a qpt adversary A against SISn,m,q,β as

SISn,m,q,β(A) := Pr[Ax = 0 mod q, 0 < ∥x∥ ≤ β : A←$ Zn×m
q , x←$A(A)].

Definition 7. Define the multidimensional Gaussian function with Gaussian
parameter s and center c as ρs,c(x) = exp(−∥x− c∥/s). Then, we define the
discrete Gaussian distribution over lattice Λ with Gaussian parameter s and
center c as DΛ,s,c(x) = ρs,c(x)

ρs,c(Λ) .
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To construct our chameleon hash, we need a lattice-based trapdoor. We use
so-called G-trapdoors.

Definition 8 ([36]). Let G ∈ Zn×w
q be a so-called gadget matrix, for which

SIS is easy. Define a G-trapdoor for a matrix A ∈ Zn×m
q to be some matrix

R ∈ Zm×w
q such that AR = G mod q.

We denote the quality of a G-trapdoor by its spectral norm s1(R). Note that
if one has a trapdoor R for A, then [Rt, 0w×k]t ∈ Zm+k×w

q is a trapdoor for
[A|B] for any B ∈ Zn×k

q , where 0a×b is the all-zero matrix of dimension a× b.
With a G-trapdoor, we can invert matrix-vector multiplication of the trap-

doored matrix A, where the inverted preimage has a certain (conditioned) Gaus-
sian distribution.

Theorem 9 ([36]). There exists a ppt algorithm TrapGen(1n, 1m, q) that, given
any integers n ≥ 1, q ≥ 2, and sufficiently large m = O(n log q), outputs a matrix
A ∈ Zn×m

q and a G-trapdoor R for A, such that the distribution of A is negligibly
far from uniform. Moreover, there exists a ppt algorithm PreSample(A, R, u, s)
that, given some A ∈ Zn×m

q , some G-trapdoor R ∈ Zm×w
q for A with s1(R) ∈

O(
√

n log q), some u ∈ Zn
q and large enough s = O(

√
n log q), samples from a

distribution that is within negligible statistical distance from D
Λ⊥

u (A),s·ω(
√

log n).
Furthermore, the distribution of sampling x ←$ DZm

q ,s, setting y = Ax, and
outputting (x, y) is statistically indistinguishable from the distribution of choosing
y′ ←$ Zn

q , computing x′ ←$ PreSample(A, R, y, s), and outputting (x′, y′).

If R is a trapdoor for A, we sometimes write PreSample(
[
A B

]
, R, u, s) in-

stead of PreSample(
[
A B

]
,
[
Rt 0t

]t
, u, s), since R can be extended to a trapdoor

for
[
A B

]
for any B, as noted above.

2.3 Trapdoor Commitment Scheme

A trapdoor commitment scheme is a commitment scheme that is (computation-
ally) binding and hiding, but if someone is in possession of a trapdoor to the
public parameters, then one can break binding. We model that by introducing an
additional ppt algorithm Equiv that equivocates a commitment c to any message
µ′ with the help of the trapdoor.

Definition 10. A trapdoor commitment scheme consists of four ppt algorithms
(TdGen, Com, ComCheck, Equiv).

(pp, td)←$ TdGen(1λ): On input a security parameter 1λ, the algorithm outputs
public parameters pp and a trapdoor td.

(c, d)←$ Com(pp, µ): On input some pp and a message µ, the algorithm outputs
a commitment c and an opening value d.

b← ComCheck(pp, µ, c, d): On input some pp, a message µ, a commitment c and
an opening value d, the algorithm outputs a bit b.
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BindΠ,A(λ)

(pp, td)←$ TdGen(1λ)
(c, µ, d, µ′, d′)←$A(pp)
if ComCheck(pp, µ, c, d) = 1
∧ ComCheck(pp, µ′, c, d′) = 1
∧ µ ̸= µ′

return 1
return 0

DEEΠ,A,b(λ)

(pp, td)←$ TdGen(1λ)
µ←$A(pp)
(c0, d0)←$ Com(pp, µ)
c1 ←$ Com(pp, 0)
d1 ←$ Equiv(pp, td, c1, µ)
b′ ←$A(cb, db)
return b′

Fig. 4: Trapdoor commitment security games. DEE is distributional equivalence
of equivocation.

d′ ←$ Equiv(pp, td, c, µ′): On input some pp, a trapdoor td, a commitment c and
a message µ′, the algorithm outputs some opening value d′.

A trapdoor commitment scheme is correct, iff

∀λ,∀(pp, td)←$ TdGen(1λ),∀µ, µ′,∈M,

∀(c, d)←$ Com(pp, µ),∀d′ ←$ Equiv(pp, td, c, µ′),
ComCheck(pp, µ, c, d) = ComCheck(pp, µ′, c, d′) = 1.

We need two security notions for a trapdoor commitment scheme. One is the
typical binding, which states that an adversary cannot open a commitment to two
different messages. The other security notion is called distributional equivalence
of equivocation. This requires that, for fixed pp and µ, the joint distribution of
a commitment and an opening value is computationally indistinguishable when
either committing to the message or committing to 0 and equivocating to the
message. We model these security games in Fig. 4.

Definition 11. We say that a commitment scheme Π is computationally binding,
if there exists a negligible function negl such that for all qpt adversaries A it
holds that Pr[BindΠ,A(λ)] ≤ negl(λ).

Definition 12. We say that a commitment scheme Π has distributional equiva-
lence of equivocation (DEE), if there exists a negligible function negl such that
for all qpt adversaries A it holds that

|Pr[DEEΠ,A,0(λ) = 1]− Pr[DEEΠ,A,1(λ) = 1]| ≤ negl(λ).

It is possible to adapt known lattice-based commitment schemes such as Ajtai [1]
or BDLOP [5] to be trapdoor commitment schemes by replacing their uniform
generation of matrices by TrapGen. Then, one uses PreSample to construct Equiv,
and due to the properties mentioned in Theorem 9 we can show DEE.

Note that we did not define the typical notion of a hiding commitment scheme
as we do not need it explicitly for our construction. However, hiding is implied
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by DEE, since in the DEE security game c1 is generated by committing to 0.
If the commitment scheme was not hiding, the adversary could get information
about b by cb alone. Note that binding trapdoor commitment schemes with DEE
are strongly related to collision-resistant preimage-sampleable functions [24].

2.4 Linking Indistinguishable Tag

To later construct the VRS we need so-called linking indistinguishable tags (LIT)
[7, 9]. This is a secret key tagging scheme like a MAC, except that there exists
an additional linking algorithm. With this, it is possible to detect if the same
person tagged the same message twice. Additionally, there exists a function f
that computes a public key from a secret key. While this is not used for the LIT
itself, it is useful when using LITs to construct other schemes. For security we
require that it is hard to trick the linking algorithm as well as unforgeability
similar to a MAC, but also that apart from linking, it is hard to decide which
person created a tag. Also it should be hard to compute a secret key from a
public key and tags.

Definition 13. A linking indistinguishable tag scheme consists of a function f
and the following ppt algorithms:

sk ←$ KGen(1λ): On input a security parameter 1λ, it outputs a secret sk.
t←$ Tag(sk, µ): On input a secret key sk and a message µ, it outputs a tag t.
b← Vrfy(sk, µ, t): On input a secret key sk, a message µ and a tag t, it outputs

a bit b.
b← Link(µ, t0, t1): On input a message µ and two tags t0, t1, it outputs a bit b.

We require that a LIT is correct. This is the case if

∀λ, ∀sk ←$ KGen(1λ),∀µ,∀t0, t1 ←$ Tag(sk, µ) :
Vrfy(sk, µ, t0) = Link(µ, t0, t1) = 1.

For the security model, we use the one from [9], with one change improving
the security. We use the same games for tag-indistinguishability, non-invertability,
linkability, and unforgeability. However, as can be seen in Fig. 5, when defining
the oracles, we no longer return a previously computed tag if a message has been
previously queried. Instead, the adversary gets a fresh tag every time it queries
the oracle.

Definition 14. A LIT Π has tag-indistinguishability, if there exists a negligible
function negl such that for all ppt adversaries A it holds that

AdvLIT Anon
Π,A (λ) :=

∣∣∣Pr[AnonLIT
Π,A,0(λ) = 1]− Pr[AnonLIT

Π,A,1(λ) = 1]
∣∣∣ ≤ negl(λ).

Definition 15. A LIT Π has linkability if there exists a negligible function negl
such that for all ppt adversaries A it holds that

Pr[LinkableLIT
Π,A(λ) = 1] ≤ negl(λ).
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AnonLIT
Π,A,b(λ)

Q ← ∅

sk0, sk1 ←$ KGen(1λ)
pki ← f(ski), i ∈ {0, 1}

µ∗ ←$ATagO(pk0, pk1)
t∗ ←$ Tag(skb, µ∗)

b′ ←$ATagO(t∗)
if (µ∗, ·) ∈ Q

return 0
return b′

LinkableLIT
Π,A(λ)

(sk0, sk1, µ, t0, t1)←$A(1λ)
if f(sk0) ̸= f(sk1)

return 0
if ∃i ∈ {0, 1} : Vrfy(ski, µ, ti) = 0

return 0
if Link(µ, t0, t1) = 0

return 1
return 0

TagO({skj}j , ·, ·) with (i, µ)

t←$ Tag(ski, µ)
Q ← Q∪ {(µ, t)}
return t

InvertLIT
Π,A(λ)

sk ←$ KGen(1λ)
pk0 ← f(sk0)

sk′ ←$ATagO(pk0)
if pk = f(sk′)

return 1
return 0

ForgeLIT
Π,A(λ)

Q ← ∅

sk0 ←$ KGen(1λ), pk0 ← f(sk)

(sk∗, µ, t∗)←$ATagO(pk0)
if Vrfy(sk∗, µ, t∗) = 0

return 0.

if ∃ (µ, t) ∈ Q : Link(µ, t, t∗) = 1
return 1

return 0

Fig. 5: LIT security games.

Definition 16. A LIT Π is unforgeable, if there exists a negligible function negl
such that for all ppt adversaries A it holds that

Pr[ForgeLIT
Π,A(λ) = 1] ≤ negl(λ).

Definition 17. A LIT Π has non-invertability, if there exists a negligible func-
tion negl such that for all ppt adversaries A it holds that

Pr[InvertLIT
Π,A(λ) = 1] ≤ negl(λ).

Due to the aforementioned change in security model, the construction of a LIT
from [9] is not secure in the new model. This is because if this construction tags
the same message twice, the adversary receives two learning with errors (LWE)
samples with the same A. To remedy this, we propose a construction similar to
that of [9], that instead of relying on LWE uses learning with rounding (LWR) [4].
Due to this, tagging becomes deterministic and linking becomes an equality
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check. Thus, naturally there is only one tag for each message under a secret key.
Therefore, with the LWR-based LIT the security model of [9] and our new one
look the same for an adversary, which is why we can then do the same reductions
as for the LWE-based LIT of [9] to show that the deterministic LIT is secure if
LWR is hard. Thus, the following lemma follows directly from [9].

Lemma 18. There exists a LIT that has tag-indistinguishability, linkability, un-
forgeability, and invertability if decisional LWR and search LWR are hard.

For the formal proof, see Section F.1.

2.5 Non-Interactive Zero-Knowledge Proof

We model non-interactive zero-knowledge proof systems in the random oracle
model as in [9].

Definition 19 (NIZK). A non-interactive proof system (NIZK) for a relation
R in the random oracle model is defined as a triple ΠNIZK = (Setup, P, V) of ppt
algorithms:

crs←$ Setup(1λ): On input 1λ the setup algorithm outputs a common reference
string crs.

π ←$ PRO(crs, x, w, µ): On input a common reference string crs, an instance x,
witness w, and a message µ, and given oracle access to the random oracle
RO, the prover outputs a proof π.

b← VRO(crs, x, µ, π): On input a common reference string crs, a statement x, a
message µ, and a proof π, and given oracle access to the random oracle RO,
the verifier outputs a bit b.

To simplify notation, we sometimes omit the random oracle RO, but assume
implicitly that the prover and verifier have access to it. We say that the NIZK is
correct, if for all (x, w) ∈ R and m ∈ {0, 1}∗, we have that

Pr[V(crs, x, m, P(crs, x, w, m)) : crs←$ Setup(1λ)] = 1.

The message in the above definition is not necessary for a NIZK itself, but since
the NIZK we use uses the Fiat-Shamir heuristic, we want to be able make the
proof dependent on a message. For a relation R, we define LR = {x | ∃w :
(x, w) ∈ R} as the language of R. We define a shorthand notation to quickly
show what relation we want to prove.

Definition 20. We denote the generation of a proof π ←$ P(crs, x, w, µ) by

π ←$ NIZK{x; w;R(x, w)}(µ),

where P is from a non-interactive proof system ΠNIZK for the relation R.

For security, we use the standard notions of zero-knowledge and straight-line
extractability.

12



Definition 21 (Zero-Knowledge). A NIZK Π is zero-knowledge if there ex-
ists a simulator Sim consisting of three ppt algorithms Sim = (Sim.Setup, Sim.RO,
Sim.Sim) such that for all ppt A there exists a negligible function negl such that,∣∣∣∣ Pr[APO,RO(1λ, crs) = 1 : crs←$ Setup(1λ)]

− Pr[ASim.Sim,Sim.RO(1λ, crs) = 1 : crs←$ Sim.Setup(1λ)]

∣∣∣∣ ≤ negl(λ)

where RO denotes a random oracle and PO, queried on input (x, w, µ), returns
P(crs, x, w, µ). The oracle Sim(x, w, µ) checks if (x, w) ∈ R and if so, returns
Sim.Sim(x, µ). We assume that Sim is stateful, i.e., it implicitly keeps state be-
tween invocations of Sim.Setup, Sim.RO, and Sim.Sim.

Definition 22 (Straight-line extractability). Let Π = (Setup, P, V) be a
NIZK. We say that Π is a straight-line extractable proof of knowledge if there
are ppt algorithms Ext0, Ext1 such that for all ppt A0,A1, there exist negligible
functions negl0, negl1 such that∣∣∣∣ Pr[A0(1λ, crs) = 1 : crs←$ Setup(1λ)]

− Pr[A0(1λ, crs) = 1 : (crs, td)←$ Ext0(1λ)]

∣∣∣∣ ≤ negl0(λ)

and

Pr

 VRO(crs, x, m, π) = 1
∧ (x, w) /∈ R

:
(crs, td)←$ Ext0(1λ),
(x, m, π)←$A1(1λ, crs),
w ← Ext1(td, x, m, π)

 ≤ negl1(λ)

In the random oracle model, Ext1 gets the list of random oracle queries that A
made as additional input.

2.6 Verifiable Ring Signature

A verifiable ring signature (VRS) is a standard ring signature with an additional
functionality. At any point after creating a signature, a signer can output a proof
showing that in fact it created the signature. On the other hand, people who
did not sign the signature, but are part of the ring, can show that they did not
create the signature. We formalize this by adding two ppt algorithms Prove and
Judge to the standard ring signature model.

Definition 23. A verifiable ring signature consists of five ppt algorithms (Setup,
KGen, Sign, Vrfy, Link).

pp←$ Setup(1λ): On input a security parameter 1λ, the setup algorithm outputs
public parameters pp.

(sk, pk)←$ KGen(pp): On input public parameters pp, the key generation algo-
rithm outputs a secret, public key pair (sk, pk).

σ ←$ Sign(sk, R, µ): On input a secret key sk, a ring R = {pki}i and a message
µ, the signing algorithm outputs a signature σ.

b← Vrfy(R, µ, σ): On input a ring R, a message µ and a signature σ, the veri-
fying algorithm outputs a bit b.

13



π ←$ Prove(sk, R, µ, σ): On input a secret key sk, a ring R, a message µ, and a
signature σ, the prove algorithm outputs a proof π.

b← Judge(pk, R, µ, σ, π): On input a public key pk, a ring R, a message µ, a
signature σ, and a proof π, the judging algorithm outputs a bit b.

For security, we require strong unforgeability and anonymity of a ring signa-
ture, but now the adversary also has an oracle generating proofs with the Prove
algorithm. Additionally we require accountability, which means that it is hard for
an adversary to create a signature, where Judge thinks it did not create it. Fur-
thermore we require non-seizability, which means that is hard for an adversary
to create a signature, where Judge attributes the signature to an honest user. To
model this, we use the security model of [15]. The definition of the games can be
found in Fig. 6.

Definition 24. We say that a VRS Π is strongly unforgeable, if there exists a
negligible function negl such that for all qpt adversaries A and all ℓ ∈ poly(λ) it
holds that

Pr[Forgeℓ
Π,A(λ) = 1] ≤ negl(λ).

Definition 25. We say that a VRS Π is anonymous, if there exists a negligible
function negl such that for all qpt adversaries A it holds that∣∣Pr[Anon0

Π,A(λ) = 1]− Pr[Anon1
Π,A(λ) = 1]

∣∣ ≤ negl(λ).

Definition 26. We say that a VRS Π is strongly accountable, if there exists a
negligible function negl such that for all qpt adversaries A and all ℓ ∈ poly(λ) it
holds that

Pr[Accℓ
Π,A(λ) = 1] ≤ negl(λ).

Definition 27. We say that a VRS Π is strongly non-seizable, if there exists a
negligible function negl such that for all qpt adversaries A it holds that

Pr[SeizΠ,A(λ) = 1] ≤ negl(λ).

3 New Lattice Constructions

3.1 A Fully Collision-Resistant Chameleon Hash Function

We now want to construct our new chameleon hash to later use it when instan-
tiating SSS constructions. Since the security notion that [31] achieves is close
to our target security, full collision-resistance, we take their construction as a
starting point. The idea of their random oracle model construction is to first gen-
erate a trapdoored matrix A in the setup. To hash a message µ, they query the
random oracle on µ and some other values to get another matrix Ah and choose
a small Gaussian value e. Then, they use the well known Ajtai hash function to
compute [A|Ah]e = h, which is their hash value. To adapt a message, they use
the trapdoor to compute some short e′ such that [A|A′h]e′ = h for some different
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SignO({ski}i, ·, ·, ·) with (j, R, µ)

σ ←$ Sign(skj , R, µ)
QSign ← QSign ∪ {µ, σ}
return σ

ProveO({ski}i, ·, ·, ·, ·) with (j, R, µ, σ)

if pki ∈ R ∧ (µ, σ) /∈ QLoR

return Prove(skj , R, µ, σ)
else

return ⊥

LoRSignOb(sk0, sk1, ·, ·) with (R, µ)

if {pk0, pk1} ⊆ R

σ ←$ Sign(skb, R, µ)
QLoR ← QLoR ∪ {µ, σ}
return σ

else
return ⊥

Forgeℓ
Π,A(λ)

QSign ← ∅, pp←$ Setup(1λ)
∀i ∈ [ℓ], (ski, pki)←$ KGen(pp)

(R∗, µ∗, σ∗)←$ASignO,ProveO({pki}i∈[ℓ])
b0 ← Vrfy(R∗, µ∗, σ∗)
b1 ← R∗ ⊆ {pki}i∈[ℓ]

b2 ← (µ∗, σ∗) /∈ QSign

return b0 ∧ b1 ∧ b2

Anonb
Π,A(λ)

QLoR ← ∅, pp←$ Setup(1λ)
(sk0, pk0)←$ KGen(pp)
(sk1, pk1)←$ KGen(pp)

b′ ←$ASignO,ProveO,LoRSignO(pk0, pk1)
return b′

Accℓ
Π,A(λ)

QSign ← ∅, pp←$ Setup(1λ)
∀i ∈ [ℓ], (ski, pki)←$ KGen(pp)

(pk∗, R∗, µ∗, σ∗, π∗)←$ASignO,ProveO({pki}i∈[ℓ])
b0 ← Vrfy(R∗, µ∗, σ∗)
b1 ← (Judge(pk∗, R∗, µ∗, σ∗, π∗) = 0)
b2 ← R∗ ⊆ {pki}i∈[ℓ] ∪ {pk∗}
b3 ← (µ∗, σ∗) /∈ QSign

return b0 ∧ b1 ∧ b2 ∧ b3

SeizΠ,A(λ)

QSign ← ∅, pp←$ Setup(1λ)
(sk0, pk0)←$ KGen(pp)

(R∗, µ∗, σ∗)←$ASignO,ProveO(pk0)
π∗ ←$ Prove(sk0, R∗, µ∗, σ∗)
b0 ← Vrfy(R∗, µ∗, σ∗)
b1 ← (Judge(pk0, R∗, µ∗, σ∗, π∗) ̸= 0)
b2 ← (µ∗, σ∗) /∈ QSign

return b0 ∧ b1 ∧ b2

Fig. 6: VRS security games and oracles.
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A′h also output by the random oracle. The issue with this idea is that to show
security they need to assume having a unique tag τ each time a new h is created,
which they use as additional input to the random oracle. While this is no problem
in their application of redactable blockchains, the constructions of SSS that we
look at require the chameleon hash to be tag-free. If we simply removed the tag
from their construction, their construction would not be fully collision-resistant.
An adversary could query the adapt oracle for a collision [A|Ah]e = [A|A′h]e′
and return (2e, 2e′) as a new collision which wins the security game.

The problem with this approach is that e can be freely chosen by the adversary
without any restrictions. Therefore, the idea for our construction is to use the
construction of [31] without tags and to additionally bind e with a commitment
scheme to prohibit this attack. In fact, a commitment scheme is not sufficient, as
we then would not be able to implement the CAdapt algorithm correctly. Instead,
we use a trapdoor commitment scheme and its DEE property.

We can now construct our chameleon hash function. For this, let n, q > 1,
m = O(n log q), s = O(

√
n log q) large enough, and β = s ·

√
2m. Let ΠCom =

(TdGen, Com, ComCheck, Equiv) be a trapdoor commitment scheme. Let the ran-
dom oracle RO : {0, 1}∗ → Zn×m

q . We then construct our chameleon hash
function as seen in Fig. 7.

Note that we require e2 ̸= 0 for security to hold (which we show in Ap-
pendix F.2).

Theorem 28. If the commitment scheme has DEE, then the chameleon hash
function construction given in Fig. 7 has indistinguishability.

Proof. Let DCHash be the distribution of (h, r = (z, e, c, d) ←$ CHash(pkch, µ))
and let DCAdapt be the distribution of (h′, r′′ = (z′′, e′′, c′′, d′′)), where (h′, r′)←$

CHash(pkch, µ′), r′′ ←$ CAdapt(skch, h′, µ′, r′, µ) for some µ, µ′. Then we can eas-
ily see the marginal distributions of h and h′ are statistically close to uniformly
random by Theorem 56. Furthermore, z, z′′ are uniform by definition. For e, e′′
we know that their distribution is statistically indistinguishable due to Theo-
rem 9. Finally, by the DEE property of the commitment scheme we know that
(c, d), (c′′, d′′) are computationally indistinguishable. ⊓⊔

Lemma 29. The construction given in Fig. 7 does not have uniqueness (cf.
Definition 54).

This can be shown by the following attack. Since the adversary in the unique-
ness game can choose the public key, it can generate a public key honestly together
with a trapdoor. Then, it can just hash some message µ to (h, r) and use the
CAdapt algorithm with input (skch, h, µ, r, µ) to get some new r′ = (z′, e′, c′, d′)
for the same message µ. While it is possible to derandomize z′, c′, d′, such that
z = z′, c = c′, d = d′ (for the same µ and e) with the help of a PRF, by design,
e′ ̸= e with overwhelming probability, since the output distribution of PreSample
is a (conditioned) discrete Gaussian. We expect it is necessary that in order to
construct a chameleon hash function with uniqueness, one needs to use another
building block than PreSample.
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CKGen(1λ)

(A, td)←$ TrapGen(n, m, q, s)

(pp, tdCom)←$ TdGen(1λ)
pkch ← (A, pp)
skch ← (td, tdCom)
return (pkch, skch)

CHashCheck(pkch, h, µ, r)

Parse (z, e = (et
1, et

2)t, c, d)← r

with e2 ∈ Zm
q , and h← h

B←RO(µ, z, c)

if h =
[
A B

]
e

∧ ComCheck(pp, e, c, d) = 1
∧ ∥e∥ ≤ β ∧ e2 ̸= 0
return 1

return 0

CHash(pkch, µ)

z ←$ {0, 1}λ

e←$ DZ2m,s

(c, d)←$ Com(pp, e)
B←RO(µ, z, c)

h←
[
A B

]
e

h← h, r ← (z, e, c, d)
return (h, r)

CAdapt(skch, h, µ, r, µ′)

h← h

if CHashCheck(pkch, h, µ, r) = 0
return ⊥

z′ ←$ {0, 1}λ

c′ ←$ Com(pp, 0)
B←RO(µ′, z′, c′)

e′ ←$ PreSample(
[
A B

]
, td, h, s)

d′ ←$ Equiv(pp, tdCom, c′, e′)
r′ ← (z′, e′, c′, d′)
return r′

Fig. 7: Lattice-based fully-collision-resistant chameleon hash function.

Theorem 30. If SISn,m,q,β′ is hard, where β′ = 2s′ · (
√

n +
√

m + t + 1) · s
√

2m
with t ≥ 0 and s′ = ω(

√
log m), and if Π is a computationally binding trapdoor

commitment scheme that has DEE, the construction CH given in Fig. 7 is fully
collision-resistant in the random oracle model.

The idea of the proof is as follows. First, we take an adversary A against
the full collision-resistance of the construction. Then, we define an alternative
security game for A to play in, in which we do not generate a trapdoor for A
and forget the trapdoor for the commitment scheme. Instead, when answering
a CAdapt query, we use the random oracle to program a trapdoor into the B
we generate during it. However, when we answer a random oracle query, we
do not program a trapdoor into B. Then, we want to construct an adversary
B against SIS that simulates A in the alternative security game. If A wins
this game by outputting a valid collision (h, µ, r, µ′, r′), there are multiple cases
that can happen. First, for (h, µ, r = (z, e, c, d)) we look at B ← RO(µ, z, c).
If B was generated without a trapdoor, we are fine and can use it to extract
an SIS solution. However, we need a second part to do that. In the case that
(h, µ′) /∈ Q, we hope that B′ ← RO(µ′, z′, c′), where r′ = (z′, e′, c′, d′), was
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generated without a trapdoor as well. In the other case, i.e., (h, µ′) ∈ Q, we can
argue that there must exist a candidate (h, µ̂, r̂ = (ẑ, ê, ĉ, d̂)). For this candidate,
we hope that B̂← RO(µ̂, ẑ, ĉ) was generated without a trapdoor as well. Finally,
if B was generated without trapdoor and either B′ or B̂ was generated without
trapdoor (in the respective case), we can extract an SIS solution. We will later
formally define this as the event Free. If, on the other hand, we have ¬Free, we
can instead break the binding of the commitment scheme. This is because with
the commitment scheme we bind e to some B and therefore to some h. If ¬Free
and thus one of the B has a trapdoor in it, the adversary used some B with two
different e, e′. A full, formal version of this proof can be found in Appendix F.2.

Since we argued before that a lattice-based trapdoor commitment scheme
with the required properties exist, we get the following corollary.

Corollary 31. There exists a construction of a chameleon hash function that is
f-CR secure, if SIS is hard.

The fully-collision-resistant chameleon hash function based on lattice assump-
tions we constructed here, will be applied to instantiate various SSS constructions
in Section 5.

3.2 A Generic Verifiable Ring Signature Construction, Instantiated
with Lattices

Let LIT = (LIT.KGen, Tag, LIT.Vrfy, Link, f) NIZK = (NIZK.Setup, P, V) respec-
tively be a LIT and NIZK for the relations required in our construction of a
VRS, which can be found in Fig. 8.

Theorem 32. If the LIT has non-invertability and if the NIZK is straight-line
extractable and zero-knowledge, then the VRS construction has strong unforge-
ability.

Proof. Let ℓ ∈ poly(λ) and let A be a qpt adversary against the strong unforge-
ability of the VRS construction. We construct an adversary B against the non-
invertability of the LIT. On input a pk, B first samples ℓ keys ski ←$ LIT.KGen(1λ)
and sets pki ← f(ski). Then, it guesses a k ←$ [ℓ] and replaces the kth public
key pkk ← pk. B then simulates A as in the strong unforgeability game, except
for the following two changes.

– When A makes a query (i, R, µ) to its Sign oracle with i = k, B generates
the tag with tSign ←$ TagO((R, µ, rSign)), where rSign ←$ {0, 1}λ as in the
construction. The proof π is generated with the simulator of the NIZK.

– When A makes a query (i, R, µ, σ) to its ProveO oracle with i = k, and
if pk ∈ R and Vrfy(R, µ, σ) = 1, and where σ = (rSign, tSign, πSign), then B
generates the tag with tProve ←$ TagO((R, µ, rSign)). The proof is generated
with the simulator of the NIZK.
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Setup(1λ)

pp←$ NIZK.Setup(1λ)
return pp

KGen(pp)

sk ←$ LIT.KGen(1λ)
pk ← f(sk)
return (sk, pk)

Sign(sk, R, µ)

if f(sk) /∈ R

return ⊥

rSign ←$ {0, 1}λ

tSign ←$ Tag(sk, (R, µ, rSign))
πSign ←$ NIZK{(R, µ, rSign, tSign);

(sk, pk);
f(sk) = pk, pk ∈ R,

LIT.Vrfy(sk, (R, µ, rSign), tSign) = 1}
σ ← (rSign, tSign, πSign)
return σ

Vrfy(R, µ, σ)

return V(crs, (R, µ, rSign, tSign), πSign) = 1

Prove(sk, R, µ, σ)

if f(sk) /∈ R ∨ Vrfy(R, µ, σ) = 0
return ⊥

tProve ←$ Tag(sk, (R, µ, rSign))
πProve ←$ NIZK{(pk, R, µ, rSign, tProve); sk;

f(sk) = pk,

LIT.Vrfy(sk, (R, µ, rSign)) = 1}
π ← (tProve, πProve)
return π

Judge(pk, R, µ, σ, πProve)

if V(crs, (pk, R, µ, rSign, tProve), πProve) = 0
∨ Vrfy(R, µ, σ) = 0

return ⊥
if pk /∈ R

return 0
return Link((R, µ), tSign, tProve)

Fig. 8: Generic VRS construction.

After A has output a forgery (R∗, µ∗, σ∗ = (r∗Sign, t∗Sign, π∗Sign)), if b0 ∧ b1 ∧ b2
is true, B uses the straight-line extractor of the NIZK to extract (sk∗, pk∗) from
π∗Sign. If pk = pk∗, B outputs sk∗.

By the definition of the non-invertability game and the zero-knowledgeness
of the NIZK, A is perfectly simulated. Since b0 and b2 are true, we know that
the straight-line extractability is successful and therefore that f(sk∗) = pk∗ and
that pk∗ ∈ R∗. Then, since b1 is true, there exists a j ∈ [ℓ] such that pk∗ = pkj .
If j = k, we therefore have f(sk∗) = pkk = pk∗, thus sk∗ is a valid solution for
the invertability game, and we have

Pr[InvLIT,B(λ) = 1] = 1
ℓ

Pr[Forgeℓ
Π,A(λ) = 1]. ⊓⊔

Theorem 33. If the LIT has tag-indistinguishability and if the NIZK is zero-
knowledge, then the VRS construction has anonymity.

Proof. Let A be an adversary against the anonymity of the VRS. We first
define an alternative security game and then construct an adversary against
the tag-indistinguishability of the LIT. The alternative security game Gameb

1
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for b ∈ {0, 1} works like Anonb
Π,A(λ), except that during the oracle calls to

SignO, ProveO, LoRSignO, the piSign and πProve are generated with the zero-
knowledge simulator of the NIZK. We know that these games only differ negligibly
by the zero-knowledge property of the NIZK. Then, we construct an adversary B
against the tag-indistinguishability of the LIT. On input (p̂k0, p̂k1), B simulates
A in Game1, except for the following changes.

– Instead of generating pk0, pk1, B instead sets pk0 ← p̂k0, pk1 ← p̂k1.
– Whenever B needs to compute a tag on a message (R, µ, rSign) to answer an

oracle query of A, B instead queries its own tag oracle on input (R, µ, rSign).

Then, after A outputs a bit b̂, B outputs b̂. We know that by the definition of
Game1 and of the tag-indistinguishability game that if b = 0 (or b = 1) then A
is simulated as in Game0

1 (or Game1
1, respectively). Thus, we know that∣∣Pr[Anon0

Π,A(λ) = 1]− Pr[Anon1
Π,A(λ) = 1]

∣∣
=
∣∣∣Pr[AnonLIT

LIT,B,0(λ) = 1]− Pr[AnonLIT
LIT,B,1(λ) = 1]

∣∣∣,
which concludes the proof. ⊓⊔

Theorem 34. If the LIT has non-invertability and linkability and if the NIZK
is straight-line extractable and zero-knowledge, then the VRS construction has
accountability.

Proof. Let ℓ ∈ poly(λ) and let A be a qpt adversary against the accountability
of the VRS construction. We define a series of games Gamei, in which A is
simulated.

Game0 is the same as Accℓ
Π,A(λ). Define the event Win0 to be the event that

b0 ∧ b1 ∧ b2 ∧ b3 is true.
Game1 is the same as Game0, except that after A outputs a forgery (pk∗, R∗, µ∗,

σ∗, π∗) with σ∗ = (r∗Sign, t∗Sign, π∗Sign) and π∗ = (t∗Prove, π∗Prove) and b0∧b1∧b2∧b3
being true, the game uses the straight-line extractor of the NIZK to extract
(sk∗Sign, pk∗Sign) from π∗Sign and sk∗Prove from π∗Prove. Define the event Win1 to be
the event that Win0 is true and that both extractions are successful. Then
we know by the straight-line extractability of the NIZK that

Pr[Win0] ≤ Pr[Win1] + negl(λ).

Thus, in Game1 we always successfully extract if A wins Game0.
Game2 is the same game as Game1, except that we always have pk∗ ∈ R∗, i.e.,

we define Win2 as Win1 ∧ pk∗ ∈ R∗. We can show that the probabilities of
Win1 and Win2 only differ negligibly by using the strong unforgeability of the
VRS. Since b0 and b3 are true, (R∗, µ∗, σ∗) forms a valid forgery in the strong
unforgeability game against the VRS. The input and oracles of A match in
the two games. Thus, since we require non-invertability and linkability, we
can construct an adversary C as in the proof of Theorem 32. Thus, we know
that

Pr[Win1] ≤ 1
ℓ

Pr[Win2].
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Game3 is the same as Game2, except that the extracted pk∗Sign is always equal to
pk∗, i.e., we define Win3 as Win2 ∧ pk∗Sign = pk∗. Again we can use the strong
unforgeability of the VRS to show that Game2 and Game3 differ negligibly.
With the same argument as in Game2, we can argue that

Pr[Win2] ≤ 1
ℓ

Pr[Win3].

We can now construct an adversary B against the linkability of the LIT. B
simulates A as in Game3, i.e., we assume that A wins, the extraction is successful,
pk∗ ∈ R∗, and the extracted pk∗Sign = pk∗. Then, B returns (sk∗Sign, sk∗Prove,
(R∗, µ∗, r∗Sign), t∗Sign, t∗Prove) to its challenger. To argue that B wins the linkability
game, we need to show that

1. f(sk∗Sign) = f(sk∗)
2. LIT.Vrfy(sk∗Sign, (R∗, µ∗, r∗Sign), t∗Sign) = LIT.Vrfy(sk∗, (R∗, µ∗, r∗Sign), t∗Prove) = 1
3. Link((R∗, µ∗, r∗Sign), t∗Sign, t∗Prove) = 0.

Condition (2) follows immediately from the successful extraction, while this fact
together with the assumption that pk∗Sign = pk∗ implies (1). For condition (3),
we know that since b1 is true, the judge outputs 0. Due to pk∗ ∈ R∗, we know
that this only happens if condition (3) is true. Thus, we know that if A wins
Game3, then B wins the the linkability game. Therefore, we have that

Pr[Accℓ
Π,A(λ) = 1] ≤ 1

ℓ2 Pr[LinkableLIT
LIT,B(λ) = 1] + negl(λ),

and the VRS is accountable5.

Theorem 35. If the LIT is unforgeable, and if the NIZK is straight-line ex-
tractable and zero-knowledge, then the VRS construction has non-seizability.

Proof. Let A be a qpt adversary against the accountability of the VRS con-
struction. We construct an adversary B against the unforgeability of the LIT.
On input pk, B simulates A as in the non-seizability game, except that B sets
pk0 ← pk, and except for the following two changes.

– When A makes a query (i, R, µ) to its Sign oracle with i = k, B generates
the tag with tSign ←$ TagO((R, µ, rSign)), where rSign ←$ {0, 1}λ as in the
construction. The proof π is generated with the simulator of the NIZK.

– When A makes a query (i, R, µ, σ) to its ProveO oracle with i = k, and
if pk ∈ R and Vrfy(R, µ, σ) = 1, and where σ = (rSign, tSign, πSign), then B
generates the tag with tProve ←$ TagO((R, µ, rSign)). The proof is generated
with the simulator of the NIZK.

5 It is possible to reduce the multiplicative loss from 1/ℓ2 to 1/ℓ by going from Game1
to Game3 directly.

21



When A outputs a forgery (R∗, mu∗, σ∗ = (r∗Sign, t∗Sign, π∗Sign)) and if b0 ∧
b1 ∧ b2 ∧ b3 is true, B uses the straight-line extractor of the NIZK to extract
(sk∗, pk∗) from π∗Sign. Then, B queries t∗Prove ←$ TagO((R∗, µ∗, r∗Sign)) and uses the
simulator to create π∗Prove to define π∗ = (t∗Prove, π∗Prove). Afterwards, B outputs
(sk∗, (R∗, µ∗, r∗Sign), t∗Sign).

By definition of the non-invertability game of the LIT and the zero-
knowledge of the NIZK, we know that A is perfectly simulated. Since b1 is true,
pk0 ∈ R∗. Furthermore, we know that Judge(pk0, R∗, µ∗, σ∗, π∗Prove) =⊥ if either
NIZK.Vrfy(crs, (pk0, R∗, t∗Prove), µ∗, π∗Prove) = 0 or Vrfy(R∗, µ∗, σ∗) = 0. However,
the former case does not happen due to the correctness of the NIZK, while the
latter is not true due to b0 being true. Thus, Judge(pk0, R∗, µ∗, σ∗, π∗Prove) = 1,
and Link((R∗, µ∗), t∗Sign, t∗Prove) = 1. Due to this and b0 being true, we know that
B wins the unforgeability game and we have

Pr[ForgeLIT
LIT,B(λ) = 1] = Pr[SeizΠ,A(λ) = 1]. ⊓⊔

We now want to instantiate the generic construction with lattice-based build-
ing blocks. For the LIT, we can use the one described in Lemma 18. The NIZK
need not only be lattice-based, but also be able to prove the statements we need.
We use the NIZK from [35] made straight-line extractable with Katsumata’s
transform [26] as seen in [9, 10]. We need to able to prove that

1. f(sk) = pk

2. pk ∈ R

3. LIT, Vrfy(sk, (R, µ, rSign), tSign) = 1.

Since R, µ, rSign are public, we can use the argument from [9] to show that we
can prove (1) and (3) with the NIZK. For (2), in our use case of SSS the ring
R will only consist of two public keys. Thus, it is sufficient if we prove (2) by
creating an OR-proof over the condition in (1). If one wants to use the VRS
with more than two parties, it is advisable to prove (2) by using accumulators
(e.g. [32]) or one-out-of-many proofs (e.g. [34]) to be more efficient.

4 Sanitizable Signature Schemes

We now move on to defining sanitizable signature schemes in this section before
providing instantiations in the next section.

The definition for sanitizable signature schemes is an extension of regular
signature schemes. Due to the addition of the sanitizer, extra operations for
generating keys for the sanitizer as well as sanitization itself are required.

Definition 36. A sanitizable signature scheme SSS is a tuple of seven prob-
abilistic polynomial-time algorithms SSS = (KGenSig, KGenSan, Sign, Sanit, Vrfy,
Proof, Judge) defined as follows:

(pkSig, skSig)←$ KGenSig(1λ): The algorithm takes the security parameter as input
and outputs a signer key pair (pkSig, skSig).
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(pkSan, skSan)←$ KGenSan(1λ): The algorithm takes the security parameter as in-
put and outputs a sanitizer key pair (pkSan, skSan).

σ ←$ Sign(µ, skSig, pkSan, ADM): On input of a message µ in the message space
M, signer secret key skSig, a sanitizer public key skSan, as well as the ad-
missible sanitization rights ADM, the algorithm outputs a signature σ or an
error message ⊥. ADM contains the indices of block that are admissible for
modification. Furthermore, we assume that ADM is always valid with regards
to the input message. ADM0 ∩ADM1 denotes the intersection of admissible
blocks.

(µ′, σ′)←$ Sanit(µ, MOD, σ, skSan, pkSig): On input of a message µ, a signature
σ, a sanitizer secret key skSan, a signer public key pkSig, as well as the
modification instructions MOD. The algorithm outputs the modified message
m′ along with the corresponding sanitized signature σ′ or an error message
⊥. We model MOD as a function which takes the old message as input and
outputs the modified message m′ ← MOD(m). We write MOD(ADM) →
⊤/⊥ to check if the intended modifications are allowed or not.

d← Vrfy(µ, σ, pkSig, pkSan): On input of a message µ, a signature σ, a signer
public key pkSig, and a sanitizer public key pkSan, the algorithm outputs a
decision bit d ∈ {⊤,⊥}.

π ←$ Proof(µ, σ, {(µi, σi)}k
i=1, skSig, pkSig, pkSan): On input of a message µ, a sig-

nature σ, a set of additional message-signature pairs {(µi, σi)}k
i=1, signer

secret key skSig and public key pkSig, and the sanitizer public key pkSan, the
algorithm outputs a proof π ∈ {0, 1}∗ or an error message ⊥.

d← Judge(µ, σ, pkSig, pkSan, π): On input of a message µ, a signature σ, a signer
public key pkSig, a sanitizer public key pkSan, and a proof π, the algorithm
outputs a bit determining who generated the signature, i.e., d ∈ {Sig, San},
or returns an error message ⊥.

We follow the correctness definition of Brzuska et al. [11, 12] as well as
subsequent works that require that genuinely signed or sanitized messages are
accepted, and a genuinely generated proof by the signer will lead the judge to
determine the accountable party correctly. The formal definition can be found
in Appendix B, Definition 72.

The definition for blocks admissible for modification, ADM, and description
of desired modifications, MOD, also follows from [11]. MOD is a list of t binary
values {0, 1}t, where t is the block length of the message. The value at the i-
th position of ADM determines whether block i is admissible for modification.
ADM ⊆ N ×M describes the desired modification. The first part of the tuple
indicates the block to be modified while the second part is the new content.

4.1 Security Notions

Here we briefly describe the intuition for each of the usual security properties for
sanitizable signature schemes. Observe that most of these properties were stated
in [11, 12, 14, 16]. Furthermore, some later papers like [29] consider “stronger”
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versions of the security properties while others like [12, 30, 23] introduce slightly
weaker versions. In this work, we will adhere to the basic notions for security.

In the following list we will state all possible security notions for sanitizable
signature schemes and give a brief and informal intuition on what they achieve.
Formal definitions for all notions can be found in Appendix B.

Unforgeability No efficient adversary should be able to produce valid message-
signature pairs that it has not seen before.

Immutability A malicious sanitizer should not be able to modify blocks that
the signer has not set to be admissible for modification.

Signer Accountability A signer must not be able to craft a valid message-
signature pair and a proof, such that the Judge algorithm will output San.

Sanitizer Accountability A sanitizer must not be able to craft a valid message-
signature pair such that honest proofs generated by the signer will lead to
the Judge algorithm outputting Sig.

Accountability Both sanitizer- and signer accountability hold.
Non-Interactive Public Accountability Given a valid pair of message and

signature, a third party can correctly determine who created the signature
with no additional information.

Transparency Detecting if a signature has been sanitized must be hard.
Privacy Given a sanitized message, it must be hard to recover any information

about the original message’s content before being sanitized.
Unlinkability Two different sanitized messages cannot be identified as belong-

ing to the same initial message.
Invisibility It must be hard to detect which parts of the message may be

modified by the sanitizer.

In the literature, there exist several varieties of each of these properties, the use
of which we try to limit in this paper for improved readability. To this end, we
refer to the notion formally known as “proof-restricted transparency” simply as
“transparency”. Definitions for strong/weak variants can be found in Appendix B.

4.2 Signer Accountability

For the main body we limit ourselves to the formal definition of signer account-
ability, as we later show a new attack on this notion in Theorem 46 for one of
the constructions examined as part of this work.

Definition 37 (Signer-Accountability). A sanitizable signature scheme SSS
is (strongly) signer-accountable, if for all qpt adversaries A, the advantage in
winning the game Exp(s)sig-acc

SSS,A (λ) as described in Fig. 9, defined as

Adv(s)sig-acc
SSS,A (λ) := Pr

[
Exp(s)sig-acc

SSS,A (λ) = 1
]

is negligible in the security parameter λ.
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Exp(s)sig-acc
SSS,A (λ)

(pkSan, skSan)←$ KGenSan(1λ)
QSan ← ∅

(pk∗
Sig, π∗, µ∗, σ∗)←$ASanitO(pkSan)

if (∗, µ∗, σ∗ , pk∗
Sig) /∈ QSan

∧ Vrfy(µ∗, σ∗, pk∗
Sig, pkSan) = ⊤

∧ Judge(µ∗, σ∗, pk∗
Sig, pkSan, π∗) = San

return 1
else return 0

SanitO(skSan, ·, ·, ·, ·)
with (µ, MOD, σ, pkSig)

(µ′, σ′)←$ Sanit(µ, MOD, σ, skSan, pkSig)
QSan ← QSan ∪ {(µ, µ′, σ′, pkSig)}
return (µ′, σ′)

Fig. 9: Game based security definition for signer accountability. Inclusion of the
gray box yields strong signer accountability.

5 Lattice-Based Instantiations with CH

This section is devoted to the instantiation of the various SSS constructions
with the chameleon hash function. For other types of constructions, see Appen-
dices D and E. We explain the results of utilizing the chameleon hash function we
constructed in Section 3.1 first. Due to the missing uniqueness of the chameleon
hash function, the resulting sanitizable signature schemes lack important secu-
rity features like unforgeability and accountability.6 Luckily, we can employ the
transform by [15]. This transform takes a sanitizable signature scheme, which
does not necessarily satisfy unforgeability, and a verifiable ring signature (VRS)
to a sanitizable signature scheme that satisfies unforgeability and full account-
ability. In the present case, we make use of the VRS constructed in Section 3.2,
to increase the security guarantees of the lattice-based SSSs.

Before we iterate through the collection of SSS constructions using chameleon
hash functions, we explain the transform to ensure unforgeability and account-
ability from [15].

Theorem 38. For a sanitizable signature scheme SSS2 resulting from applying
the transformation explained in [15, Fig. 5] to a sanitizable signature scheme SSS1
and a verifiable ring signature VRS, the following implications hold: If SSS1 is
weakly immutable, then SSS2 is immutable. If SSS1 is weakly unlinkable, and VRS
is strongly unforgeable, then SSS2 is unlinkable. If SSS1 is strongly invisible then
SSS2 is strongly invisible. If VRS is strongly accountable, then SSS2 is strongly
signer accountable. If VRS is strongly non-seizable, then SSS2 is strongly sanitizer
accountable. If VRS is anonymous and SSS1 is strongly transparent, then SSS2
is strongly transparent.

6 Only in [3], sanitizer accountability has not been defined and has neither been
attacked nor proven.
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Finally, we note that standard instantiations of PRFs and PRGs are used in
the protocols, without further specification. Post-quantum secure variants are
given, for instance, in [25].

5.1 The ACMT05 Construction

The work by Ateniese et al. [3] marked the beginning of sanitizable signatures
and gave the first construction of such. This first construction makes use of
only two building blocks, a secure digital signature scheme Σ and a chameleon
hash function CH which is strongly unforgeable. While the strongly unforgeable
notion is not defined explicitly, we inferred that full collision-resistance and
indistinguishability is sufficient.

The sanitizable signature scheme in [3] is stated to be indistinguishable, un-
forgeable, and satisfy identical distribution of sanitized and original signatures, [3,
Section 4.4]. By the general relations between the notions, we have the following
results.

Corollary 39. The construction by Ateniese et al. in [3] instantiated using a
DSS from {Dilithium, Falcon} and the chameleon hash function constructed in
Fig. 7 satisfies unforgeability, signer accountability, immutability, transparency,
and privacy.

We note that sanitizer accountability and invisibility have been developed
after the publication of the work by Ateniese et al. The corresponding construc-
tion has not been analyzed regarding this notion. Here, we take the easy road
and apply Theorem 38, to additionally achieve sanitizer accountability.

Corollary 40. Using the transform from Theorem 38 and combining the veri-
fiable ring signature given in Fig. 8 with the construction by Ateniese et al. in
[3] as instantiated in Corollary 39, we obtain a sanitizable signature that satis-
fies unforgeability, signer accountability, sanitizer accountability, immutability,
transparency, and privacy.

5.2 The LZCS16−1 Construction

Recall that [30] gives two constructions. One is based on accountable ring sig-
natures, (cf. Appendix E) while the other uses rerandomizable tagging schemes
which are constructed from tag-based trapdoor functions and double-trapdoor
chameleon hash functions. While tag-based trapdoor functions are merely weaker
versions of chameleon hash functions, and thus, can be instantiated from our
lattice-based chameleon hash function given in Fig. 7, it is not clear whether
double-trapdoor chameleon hash functions can be instantiated from lattices.
Thus, as of now, the construction by Lai et al. using chameleon hash functions,
cannot be instantiated from known lattice constructions.
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5.3 The BCD+17 Construction
The construction by Beck et al. [6] uses a regular digital signature scheme, a
labeled PKE, and a secure chameleon hash function, by which they mean indis-
tinguishable, unique, and standard collision-resistant. Further, the sanitizable
signature construction requires a PRG and a PRF.

As labeled PKEs are non-standard, we present a brief account including how
to construct them from regular PKEs. In the construction, the labeled PKE
provides strong invisibility of the sanitizable signature scheme, in which the
signer public key is used as a label to prevent re-use of ciphertexts from different
signer public keys. Further details including full definitions and proofs of the
following can be found in Appendix A.5.

Labeled PKEs from regular PKEs. A labeled PKE (we refer to Appendix A.5)
consists of a triple (KGenτ , Encτ , Decτ ), closely resembling the properties of reg-
ular PKEs. The key generation algorithm KGenτ creates a key pair (pk, sk). The
probabilistic encryption algorithm Encτ additionally requires a label τ ∈ {0, 1}n,
where the length n of the label depends on the security parameter λ. The de-
cryption algorithm Decτ additionally requires the label τ . The (perfect) correct-
ness of a labeled PKE is defined as Encτ (sk, Decτ (pk, µ, τ), τ) = µ whenever
(pk, sk)←$ KGenτ is honestly generated.

We explain now, how IND-CCA secure PKEs can be transformed to IND-
CCA secure labeled PKEs with the proof provided in Appendix A.5. Given a
PKE Π = (KGen, Enc, Dec), we define a labeled PKE Πτ = (KGenτ , Encτ , Decτ )
as follows. First, we note that for any label set {0, 1}n we can concatenate a
label τ and a message µ as τ∥µ so that both, the label and the message can be
recovered from τ∥µ by either projecting to the first n bits or removing them.
Then, KGenτ = KGen and Encτ (pk, µ, τ)← Enc(pk, τ∥µ). Finally, the decryption
Decτ on input (sk, c, τ) first runs Dec(sk, c) to get τ ′∥µ′. Then, Decτ checks if τ ′

coincides with the input label τ . If so, Decτ returns µ′. Otherwise, it returns ⊥.

Instantiation of the SSS construction. The uniqueness, which our con-
struction in Section 3.1 does not achieve, is required for unforgeability, signer
accountability, and sanitizer accountability. So that we have the following result
that follows from [6, Theorem 1] and the construction given in Section 3.1.
Corollary 41. The SSS construction by Beck et al. [6] instantiated with a sig-
nature scheme among {Dilithium, Falcon}, the PKE Kyber, and the chameleon
hash function given in Fig. 7, satisfies immutability, transparency, privacy, and
strong invisibility.

The missing unforgeability and signer and sanitizer accountability are added
via the transform Theorem 38.
Corollary 42. The transform in Theorem 38 applied with the VRS given in
Fig. 8 to the construction by Beck in [6] as instantiated in Corollary 41, satis-
fies unforgeability, signer accountability, sanitizer accountability, immutability,
transparency, privacy, and strong invisibility.
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5.4 The CDK+17 Construction

In [16], Camenisch et al. introduce a new notion called chameleon hash func-
tion with ephemeral trapdoors (CHET). They show how to generically construct
CHET from chameleon hash functions such that the required security proper-
ties carry over. Thus, it is sufficient to have a chameleon hash function with
the required properties. In total, the requirements are a correct, indistinguish-
able, unique, and standard collision-resistant chameleon hash function, a secure
DSS, an IND-CPA secure PKE, PRGs, and PRFs, and an indistinguishable and
standard collision-resistant CHET.

In their construction, Camenisch et al. use the uniqueness of the CHF in the
proof of unforgeability and sanitizer accountability. Hence, from [16, Theorem 3]
and taking into account the missing uniqueness, we get the following.

Corollary 43. The construction by Camenish et al. in [16] instantiated using
a DSS from {Dilithium, Falcon}, the PKE Kyber, the chameleon hash function
given in Fig. 7, which is used twice, for the chameleon hash function and the
CHET, satisfies signer accountability, immutability, transparency, privacy, and
invisibility.

To ensure unforgeability and sanitizer accountability, we apply Theorem 38.

Corollary 44. The transform in Theorem 38 applied with the VRS given in
Fig. 8 to the construction by Camenisch et al. in [16] as instantiated in Corol-
lary 43, satisfies unforgeability, signer accountability, sanitizer accountability,
immutability, transparency, privacy, and invisibility.

5.5 The BFF+09 Construction

Brzuska et al. [11] give a SSS construction that relies on a chameleon hash
function but—unlike the constructions in [6] and [16]—they do not require the
chameleon hash function to satisfy the uniqueness property. It therefore is an
interesting candidate to be instantiated using the new construction in Section 3.1,
without the need for the transform in Theorem 38. However, it turns out that
an error in the security proof makes the signer accountability of the construction
vulnerable to a generic attack. Therefore, this section is structured differently
than the prior ones. First, we show that the security formalization of tagged
chameleon hashes is unachievable and needs to be replaced in the construction by
the tagged version of full collision resistance. Afterwards, we present the attack on
signer accountability, which works irrespectively of the underlying building blocks.
Still, the construction by Brzuska et al. can be instantiated with the chameleon
hash function we constructed, merely missing the signer accountability. To achieve
signer accountability as well, we can apply the transform in Theorem 38.

Idea of the Construction. We begin with a short description of the con-
struction given in [11]. The full construction can be found in Appendix C.2.
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First, the message is divided into blocks. Admissible blocks are hashed using a
tagged chameleon hash function. The signer computes the tag as the output of
a pseudorandom function with a random input value and provides this random
input as proof for the accountability. It then signs the output of the tagged
chameleon hash function. The sanitizer can use its private key to find collisions
on the chameleon hash function, however it chooses the tag randomly. While
this ensures sanitizer accountability, we show that signer-accountability for this
construction is unachievable, contrary to the claim in [11]. Indeed, there are two
distinct errors in the presentation of [11]. First, the notion of collision-resistance
under random-tagging attacks, which is a strong version of collision-resistance
for chameleon hash functions, is too strong and in fact, cannot be achieved by
any chameleon hash function. The reason is the oracle being too strong and the
winning condition too weak. We present the generic attack here in detail. Second,
the claimed signer-accountability does not hold independently of the chameleon
hash function’s security properties. We present an outline of the generic attack
at the end of this section and the detailed proof in Appendix F.3.

Infeasibility of Random Tagging. To show security, Brzuska et al. [11]
rely on different properties for the different SSS security notions. For signer
accountability, they rely on the collision-resistance under random-tagging attacks
of the used chameleon hash function. This security notion was developed along
with the SSS construction and we describe it in Fig. 10.

RndTagCH
A (λ)

(pk, sk)←$ CKGen(1λ)

(TAG, µ, r, TAG′, µ′, r′)←$AAdaptO(pk)
return 1 if (TAG, µ) ̸= (TAG′, µ′)
∧ CH(pk, TAG, µ, r) = CH(pk, TAG′, µ′, r′)
∧ {(TAG, µ), (TAG′, µ′)} ̸= {(TAGi, µi), (TAG′

i, µ′
i)}, for all i = 1, . . . , q

∧ {(TAG, µ), (TAG′, µ′)} ̸= {(TAG′
i, µ′

i), (TAG′
j , µ′

j)}, for all i, j = 1, . . . , q

AdaptO(sk, TAGi, µi, ri, µ′
i)

TAG′
i ←$ {0, 1}2n

r′
i ←$ CAdapt(sk, TAGi, µi, ri, TAG′

i, µ′
i)

Store (TAGi, µi), (TAG′
i, µ′

i)
return (TAG′

i, r′
i)

Fig. 10: Collision-resistance under random-tagging attacks from [11].

To exclude trivial wins, the game numbers the adversary’s queries and stores
them as (TAGi, µi) and (TAG′i, µ′i), for i = 1, . . . , q. An adversary wins, if it can
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(TAG, µ) (TAG′, µ′)

(TAG∗, µ∗)
q1 q2 (TAG1, µ1) (TAG2, µ2) (TAG3, µ3)

q1 q2

Fig. 11: Left: a trivial collision that is excluded in the security game. Right: a
trivial collision that composes a generic attack on the security notion.

output a non-trivial collision CH(pk, TAG, µ, r) = CH(pk, TAG′, µ′, r′) with

{(TAG, µ), (TAG′, µ′)} ≠ {(TAGi, µi), (TAG′i, µ′i)} for all i,

and {(TAG, µ), (TAG′, µ′)} ≠ {(TAG′i, µ′i), (TAG′j , µ′j)} for all i, j.

The former condition prevents the adversary to output a collision that it obtains
from a single query to its oracle AdaptO. The latter prevents the adversary trivial
transitive collisions: By querying the oracle AdaptO twice on the same input for
different target messages, as depicted on the left of Fig. 11.

It turns out, that the two excluded types of trivial collisions do not suffice. In
fact, the adversary can make an arbitrary query to the oracle AdaptO and then
make a second query on the response of the first query. Then, all three tuples
collide, but the first and third as output, are not defined as a trivial win. This is
depicted on the right of Fig. 11. In conclusion, no chameleon hash function can
satisfy this security notion as stated in the theorem below.

Theorem 45. Collision-resistance under random-tagging attacks is unachiev-
able for any chameleon hash function.

Proof. The attack idea is depicted in Fig. 11. Given a public key pk we define
the attacker against collision-resistance under random-tagging attacks as follows:
First, the adversary picks distinct messages µ1, µ2, and µ3. Further it generates
TAG1 and r1. Then, the adversary makes two queries to the oracle: first, query
(TAG1, µ1, r1, µ2) to receive (TAG2, r2), second, (TAG2, µ2, r2, µ3) to receive
(TAG3, r3). Thus, we have a collision of the hash values of (pk, TAG1, µ1, r1)
and (pk, TAG3, µ3, r3), the definition of the oracle. The adversary returning
(TAG1, µ1, r1) and (TAG3, µ3, r3) wins the game. Indeed, the collision is valid, as
(TAG1, µ1) was never an output (hence the collision is not of the second form),
and (TAG1, µ1) and (TAG3, µ3) were not part of the same query. ⊓⊔

Signer-Accountability. Theorem 45 leaves a gap in the construction of [11] as
no instantiation achieves signer accountability. A natural question that arises is
whether the construction is secure if one strengthens the requirements towards
the underlying chameleon hash function by excluding the transitivity attack that
we described above. Here, we answer this question in the negative by providing
a generic attack against the signer accountability.

We show that a signer can put the blame on a message to the sanitizer even
though the sanitizer did not sanitize to this message. On a high-level, the attack
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works as follows. The signer prepares an arbitrary message containing two blocks
µ1∥µ2 such that only the second one is admissible. It then lets the sanitizer
change the message to µ1∥µ∗2. Finally, the adversary can create a signature on
the message µ∗1∥µ∗2 by replacing the first message block. When questioned about
the message µ∗1∥µ2 created by the signer, the judge will blame the sanitizer. This
is stated formally in the following theorem, the proof is given in Appendix F.3.

Theorem 46. There is an efficient adversary A that breaks signer accountability
of the BFF+09 construction with probability 1, using a single query to SanitO.

Instantiations. Finally, we want to apply our constructions in Section 3 to the
construction by Brzuska et al. To account for the unachievable security notion for
tagged chameleon hash functions, we refer to Appendix C.1 for the notion of f-CR
tagged chameleon hash functions, which can be constructed from a f-CRCHash as
in Fig. 7. As uniqueness of the CHF is not required, we get the following result.

Corollary 47. The construction by Brzuska et al. in [11] instantiated using a
DSS from {Dilithium, Falcon} and the tagged chameleon hash function deduced
from the chameleon hash in Fig. 7 as explained in Appendix C.1 satisfies un-
forgeability, sanitizer accountability, immutability, transparency, and privacy.

This follows from [11, Theorem 5.3], again noting that signer accountability
does not hold. Using Theorem 38, we can increase the security to cover signer
accountability.

Corollary 48. The transform in Theorem 38 applied with the VRS given in
Fig. 8 to the construction by Brzuska et al. in [11] as instantiated in Corol-
lary 47, satisfies unforgeability, signer accountability, sanitizer accountability,
immutability, transparency, and privacy.

5.6 General Observations

Unfortunately, the efficiency of the proposed instantiations may be suboptimal
for any real world use cases. For example, the signature of the construction of [16]
instantiated securely with our building blocks and the transform of [15] contains
an encryption of a chameleon hash trapdoor, i.e. an encryption of a G-trapdoor
R for each message block. On the positive side, we do not impose inefficient
requirements such as a superpolynomial modulus and the reduction losses are
not substantial.

Corollary 49. There exists an SSS construction that has unforgeability, signer
accountability, sanitizer accountability, immutability, transparency, privacy, and
invisibility in the random oracle model, if LWE and LWR and SIS with polynomial
modulus are hard.

Furthermore, we expect our building blocks and thus the generic constructions
of SSS to carry over to ring or module lattices in a straightforward fashion.
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An additional drawback is the necessary inclusion of the transform of [15]
for many SSS constructions, which incurs the cost of a NIZK. However, a secure
construction without this transformation requires uniqueness of the chameleon
hash function, which seems highly non-trivial for lattice-based constructions.
Previous non lattice-based constructions used bijections to ensure that only one
auxiliary value exists, thus even with a trapdoor an adversary cannot find a
second auxiliary value to break uniqueness. Lattice-based trapdoored functions,
especially ones used in conjunction with PreSample, have many different preim-
ages for each image by design, which leads us to believe that a chameleon hash
achieving uniqueness requires a fundamentally different approach to trapdoor its
hash function.
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A Additional Preliminaries

This section introduces additional details relevant to understanding proofs in
detail, but were left out of the main body due to their length.

A.1 Digital Signature Scheme

A signature scheme is a public key based scheme to generate unforgeable signa-
tures over arbitrary messages. Valid signatures can be generated only by a party
with access to the secret key, while any party with access to the public key can
validate signatures.

Definition 50. A signature scheme Sig consists of three algorithms Σ =
(KGen, Sign, Vrfy).

(pk, sk)←$ KGen(1λ): This probabilistic key generation algorithm generates a key
pair for the signature scheme. It takes the security parameter as input and
outputs a key pair (pk, sk).

σ ←$ Sign(sk, µ): This potentially probabilistic signing algorithm takes as input
a secret key sk and some message m, and outputs a signature σ.

b← Vrfy(pk, σ, µ): This deterministic algorithm takes as input a public key pk,
a signature σ and a message m, and outputs a boolean value of either 1 or 0,
denoting a valid or invalid signature under the provided public key.

Definition 51. A signature scheme Sig is correct, iff for any security parameter
λ ∈ N, all generated key pairs (pk, sk) ←$ KGen(1λ), all messages µ ∈ M and
all signatures σ ←$ Sign(sk, µ), it holds that Pr[Vrfy(pk, σ, µ) = ⊤] = 1.

A.2 Public-key Encryption Scheme

A public-key encryption scheme is a public key based scheme which allows
parties to securely communicate over an insecure channel. Messages can be
encrypted under a public key and decrypted only by the party in possession of
the corresponding secret key.

Definition 52. A public key encryption scheme Π consists of three algorithms:
Π = (KGen, Enc, Dec)

(pk, sk)←$ KGenSig(1λ): This probabilistic key generation algorithm generates a
key pair for the signature scheme. It takes no input and outputs a key pair
(pk, sk).

c←$ Enc(sk, µ): This potentially probabilistic encryption algorithm takes as input
a secret key sk and some message µ, and outputs a ciphertext c.

µ← Dec(pk, c): This deterministic algorithm takes as input a public key pk, and
a ciphertext c. It outputs either the decryption of the provided ciphertext
under the given secret key or ⊥.

Definition 53. A public-key encryption scheme Π = (KGen, Enc, Dec) is correct,
if Pr[µ′ ̸= µ : (pk, sk)←$ KGenSig(1λ), c←$ Enc(pk, µ), µ′ ← Dec(sk, c)] = 0.
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A.3 Chameleon Hash Function Uniqueness

While we claimed the construction in Section 3.1 does not have uniqueness, we
did not yet define the security game. It should be hard for an adversary to find
a message µ and two values r, r′ such that µ hashes to the same value with both
r and r′. The definition of the security game can be found in Fig. 12.

CHUniqueΠ,A(λ)

(pkch, h, µ, r, r′)←$A(1λ)
if CHashCheck(pkch, h, µ, r) = 1 ∧ CHashCheck(pkch, h, µ, r′) = 1 ∧ r ̸= r′

return 1
return 0

Fig. 12: Uniqueness security game.

Definition 54. We say that a chameleon hash function CH has uniqueness, if
there exists a negligible function negl(λ) such that for all qpt adversaries A we
have that

Pr[CHUniqueCH,A(λ) = 1] ≤ negl(λ).

A.4 Additional Results concerning Lattices and Discrete Gaussians

To prove the security of our fully collision-resistant hash function of Section 3.1,
we need some additional definitions, theorems and lemmas about lattices and
discrete Gaussians.

Theorem 55 ([37]). For any n-dimensional lattice Λ, vector c ∈ Rn, and reals
0 < ϵ < 1, s > ηϵ(Λ), we have

Pr
x←DΛ,s,c

[∥x− c∥ > s
√

n] ≤ 1 + ϵ

1− ϵ
· 2−n .

Here, ηϵ(Λ) describes the smoothing parameter of the lattice Λ [37].

Theorem 56 ([24]). Let n and q be positive integers with q prime, and let
m ≥ 2n log q. Then for all but a 2q−n fraction of all A ∈ Zn×m

q and for any
s ≥ ω(

√
log m), the distribution of the syndrome u = Ae mod q is statistically

close to uniform over Zn
q , where e← DZm,s.

Lemma 57 ([36]). For R ← Dm
Zn,s we know that there is a constant C > 0 such

that for any t ≥ 0 we have that s1(R) ≤ C · s · (
√

n +
√

m + t) with overwhelming
probability.

Heuristically, C < 1 so we ignore the factor.
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A.5 Labeled PKEs

The SSS construction in [6] requires the use of labeled PKEs to ensure strong
invisibility. In Section 5.3, we presented a brief outline of labeled PKEs, how
these are defined, and how one can generically transform (regular) PKEs to
labeled PKEs such that the IND-CCA security of the former translates to the
IND-CCA security of the latter.

Here, we explain more details about labeled PKEs, the definition of IND-
CCA security of labeled PKEs, and we present the transform and the formal
reduction from regular PKEs to labeled PKEs. The definitions are based on
[6]. Intuitively, labels are circumstantial data, under which the encryption and
decryption algorithms are run. While it is assumed in [6] that the label set can
be unbounded, the particular use-case shows that the label will have a specific
form, thus, imposing the restriction that the label set is the set of binary strings
of a fixed length, which depends on the security level, causes no harm.

Definition 58. A labeled PKE is a triple (KGenτ , Encτ , Decτ ) such that

KGenτ Takes a security parameter λ as input and creates key pairs (sk, pk)
Encτ Takes a public key pk, a message µ, and a label τ , and outputs a ciphertext

c

Decτ Takes a secret key sk, a ciphertext c, and a label τ , and outputs a message
µ.

The labeled PKE is (perfectly) correct, if for any key pair (sk, pk) generated using
the algorithm KGenτ , any message µ and any label τ , the equality

Decτ (sk, Encτ (pk, µ, τ), τ) = µ

holds. The labeled PKE is ϵ-correct, if

P (Decτ (sk, Encτ (pk, µ, τ), τ) = µ) > ϵ,

where the probability is taken over the probability of the key generation, encryp-
tion, choices of the message, and choices of the label.

The security notion that is interesting for the purpose of this work is IND-
CCA security, which we define next.

Definition 59. Let Πτ be a labeled PKE. Then, Πτ achieves IND-CCA security,
if for all qpt adversaries A, the advantage in winning the game IND-CCA(λ) as
described in Fig. 13, which is given as

AIND-CCA
Πτ

(A),

is negligible in the security parameter.
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IND-CCAΠτ ,A(λ)

(sk, pk)←$ KGenτ (λ)
b←$ {0, 1}

(µ0, µ1, τ∗, state)←$ADecOτ
0 (pk)

c∗ ←$ Encτ (pk, µb, τ∗)

b′ ←$ADecO′
τ

1 (pk, c∗, state)
if b = b′

return 1
return 0

DecOτ (sk, ·, ·) with (c, τ)

return Decτ (sk, c, τ)

DecO′
τ (sk, ·, ·) with (c, τ)

if c = c∗

return ⊥
return Decτ (sk, c, τ)

Fig. 13: IND-CCA security game for a labeled PKE Πτ = (KGenτ , Encτ , Decτ ).

Labeled PKEs can be easily constructed from regular PKEs. For this, we
assume that the label set is given as {0, 1}n for some n that depends on the
security parameter.7 Then, for any label τ and any message µ, it is possible to
recover both from the concatenation τ∥µ. This is the essential assumption on
the behavior of the label used in the decryption in the following transform.

Transform 60 Given a regular PKE Π = (KGen, Dec, Enc), the labeled PKE
Πτ = (KGenτ , Encτ , Decτ ) is defined as follows:

KGenτ The key generation is exactly KGen
Encτ On input (pk, µ, τ), returns Enc(pk, τ∥µ)
Decτ On input (sk, c, τ), runs Enc with input (sk, c) to receive τ ′∥µ′. Then,

checks whether τ = τ ′ holds. If not, returns ⊥, otherwise, it returns µ′.

Proposition 61. Let Π be a PKE and Πτ the associated labeled PKE under
Transform 60. For any adversary A against IND-CCA of Πτ , there exists an
adversary B against IND-CCA of Π such that

AIND-CCA
Πτ

(A) ≤ AIND-CCA
Π (B) .

Proof. The reduction B needs to simulate the two phases of the IND-CCA game of
Πτ . First, B receives a public key as input, which it forwards to A. On decryption
queries by A with input (c, τ), where c is a ciphertext and τ is a label, B sends c

7 The definition in [15] allows labels to be bit strings of arbitrary length. For the given
construction, however, labels will contain the public key which size depends on the
security parameter.
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to its own decryption oracle. When B receives τ ′∥µ′ as response, it checks whether
τ = τ ′ holds. If so, B returns µ′ to A, otherwise ⊥. The first phase finishes with
A returning (µ0, µ1, τ∗, state) and B returns (τ∗∥µ0, τ∗∥µ1, state∥τ∗). Note that
the reduction explicitly has access to τ∗ in the second phase.

The second phase begins with B receiving cb, which—by the messages out-
putted after the first phase—is either a ciphertext for τ∗∥µ0 or τ∗∥µ1, and
state∥τ∗. The reduction forwards (cb, state) to A. Queries to the decryption or-
acle by A are of the form (c, τ). The reduction B forwards c to its decryption
oracle to receive τ ′∥µ′ and returns µ′ to A, if τ ′ = τ . Note that B may receive ⊥
from its decryption oracle. In this case, B returns ⊥ to A. For B one inadmissible
query is cb itself, while for A, an inadmissible query is (cb, τ∗). A priori, A can
query (cb, τ) for τ ̸= τ∗. However, as the correct decryption of cb would yield
τ∗∥µb, the transformed labeled PKE would return ⊥, as the labels do not match.
Thus, B can return ⊥ whenever a query (cb, ·) is made by A.

Finally, A returns a guess b′ and wins, if and only if Decτ (sk, cb) = µb′ , or,
in other words, Dec(sk, cb) = τ∗∥µb′ . Hence, B returning b′ wins, if and only if
A wins. ⊓⊔

B Formal Details about the Security Notions and
Correctness of SSS

This section will give formal definitions for all security notions as well as the
relations between them.

B.1 Security Notions

Unforgeability Intuitively, unforgeability requires that no adversary should be
able to produce a valid message-signature pair that it has not seen before. Note
that a valid output can either be signed directly or be the result of sanitizing
another unrelated message. It is up to the attacker to break either the signing
or the sanitizing part, correspondingly it gets access to both oracles. To exclude
trivial wins, the game checks that the output message was not used in a query
to either the signing or sanitizing oracle.

Definition 62 (Unforgeability). A sanitizable signature scheme SSS is
(strongly) unforgeable, if for all qpt adversaries A, the advantage in winning the
game Expunf

SSS,A(λ) as described in Fig. 14, defined as

Advunf
SSS,A(λ) := Pr

[
Expunf

SSS,A(λ) = 1
]

is negligible in the security parameter λ.
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Expunf
SSS,A(λ)

(pkSig, skSig)←$ KGenSig(1λ)

(pkSan, skSan)←$ KGenSan(1λ)
QSig ← ∅,QSan ← ∅

(µ∗, σ∗)←$ASignO,SanitO,ProofO(pkSig, pkSan)
if Vrfy(µ∗, σ∗, pkSig, pkSan) = ⊤
∧ (µ∗, ∗, pkSan, σ∗) /∈ QSig

∧ (µ∗, ∗, σ∗ , pkSig) /∈ QSan

return 1 else return 0

SignO(skSig, ·, ·, ·) with (µ, ADM, pkSan)

σ ← Sign(µ, skSig, pkSan, ADM)
QSig ← QSig ∪ (µ, ADM, pkSan, σ)
return σ

SanitO(skSan, ·, ·, ·, ·)
with (µ, MOD, σ, pkSig)

(µ′, σ′)←$ Sanit(µ, MOD, σ, skSan, pkSig)
QSan ← QSan ∪ {(µ, µ′, σ′, pkSig)}
return (µ′, σ′)
ProofO(skSig, ·, ·, ·, ·)

with (µ, σ, {(mi, σi)}k
i=1, pkSan)

π ←$ Proof(µ, σ, {(mi, σi)}k
i=1, skSig, pkSan)

return π

Fig. 14: Game based security definition for (strong) unforgeability. Inclusion of
the gray box yields strong unforgeability.

(weak) Immutability Intuitively, a malicious sanitizer must not be able to modify
blocks that are not admissible for modification. The adversary is only given
the public key of a signer and has to output a sanitizer public key (which it
can generate honestly or maliciously) and a valid message signature pair. There
are two options for the adversary to succeed: Either it has never queried the
signing oracle with the sanitizer public key it has output. This would mean that
there should not exist any valid signatures which verify under the output public
key. The other option is to output a message that none of its queries to the
signing oracle can be sanitized to. In other words, it has output an inadmissible
modification, which still verifies.

A scheme achieves weak immutability if the adversary is not allowed to query
the Sign oracle under a message that is admissable to be modified to its output,
but a different sanitizer key.

Definition 63 (Immutability). A sanitizable signature scheme SSS is (weakly)
immutable, if for all qpt adversaries A, the advantage in winning the game
Expimm

SSS,A(λ) as described in Fig. 15, defined as

Advimm
SSS,A(λ) := Pr

[
Expimm

SSS,A(λ) = 1
]

is negligible in the security parameter λ.

Privacy Intuitively, no adversary should be able to recover any information about
the content of the original message before it was sanitized. The adversary is given
access to a sign oracle, a sanitation oracle and a proof oracle (as the proof might
leak information about the signer secret key) and a left-or-right oracle. Before
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Exp(w)imm
SSS,A (λ)

(pkSig, skSig)←$ KGenSig(1λ)
QSig ← ∅

(pk∗
San, µ∗, σ∗)←$ASignO,ProofO(pkSig)

if Vrfy(µ∗, σ∗, pkSig, pk∗
San) = ⊤

∧ (∀(µi, ADMi, pkSan, ∗) ∈ QSig :
µ∗ /∈ {MOD(µi) | MOD(ADMi) = ⊤}
∨ pk∗

San ̸= pkSan)
return 1

return 0

SignO(skSig, ·, ·, ·) with (µ, ADM, pkSan)

σ ← Sign(µ, skSig, pkSan, ADM)
QSig ← QSig ∪ (µ, ADM, pkSan, σ)
return σ

ProofO(skSig, ·, ·, ·, ·)
with (µ, σ, {(mi, σi)}k

i=1, pkSan)
π ←$ Proof(µ, σ, {(mi, σi)}k

i=1, skSig, pkSan)
return π

Fig. 15: Game based security definition for (weak) immutability. Omission of the
gray box yields weak immutability.

making its decision, the adversary may observe an arbitrary amount of signing or
sanitizing queries under the challenge public keys. The adversary wins if it can
decide which of the two input messages are sanitized by the left-or-right oracle.

Definition 64 (Privacy). A sanitizable signature scheme SSS is private, if
for all qpt adversaries A, the advantage in winning the game Expprv

SSS,A(λ) as
described in Fig. 16, defined as

Advprv
SSS,A(λ) :=

∣∣∣∣Pr
[
Expprv

SSS,A(λ) = 1
]
− 1

2

∣∣∣∣
is negligible in the security parameter λ.

Unlinkability Intuitively, no adversary given a sanitized message-signature pair
should be able to identify the original message-signature pair that has been
sanitized. In other words, it must be infeasible to link the given sanitized docu-
ment to the original signed document. As a consequence, two different sanitized
messages cannot be identified as belonging to the same initial message. This is
a strictly stronger requirement than privacy and also modeled using a similar
left-or-right oracle, but with more control for the adversary. Unlike in the privacy
game, the unlinkability adversary can see the signatures before sanitation occurs.
The adversary can provide two sets of message-signature pairs with identical
admissible blocks (because the scheme might not be invisible) as well as modi-
fication instructions that map them to the same resulting message. Depending
on the secret bit b, the oracle will sanitize and return either the left or the right
message. To succeed, the adversary must correctly determine which of the input
messages is being sanitized by the oracle.

In the literature, first introduced in [15], there exists a weaker notion of
unlinkability, which restricts any adversary to only sanitizing messages it has
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Expprv
SSS,A(λ)

(pkSig, skSig)←$ KGenSig(1λ)

(pkSan, skSan)←$ KGenSan(1λ)
b←$ {0, 1},QSig ← ∅,QSan ← ∅

b′ ←$ASignO,SanitO,ProofO,LoRSanitprvO(pkSig, pkSan)
return b = b′

SignO(skSig, ·, ·, ·) with (µ, ADM, pkSan)

σ ← Sign(µ, skSig, pkSan, ADM)
QSig ← QSig ∪ (µ, ADM, pkSan, σ)
return σ

SanitO(skSan, ·, ·, ·, ·)
with (µ, MOD, σ, pkSig)

(µ′, σ′)←$ Sanit(µ, MOD, σ, skSan, pkSig)
QSan ← QSan ∪ {(µ, µ′, σ′, pkSig)}
return (µ′, σ′)
ProofO(skSig, ·, ·, ·, ·)

with (µ, σ, {(mi, σi)}k
i=1, pkSan)

π ←$ Proof(µ, σ, {(mi, σi)}k
i=1, skSig, pkSan)

return π

LoRSanitprvO(skSig, skSan, b, ·, ·) with
((µ0, MOD0), (µ1, MOD1), ADM)

σb ←$ Sign(µb, skSig, pkSan, ADM)
(µ′, σ′)←$ Sanit(µb, MOD, σ, skSan, pkSig)
if MOD0(µ0) = MOD1(µ1)

return (µ′, σ′)
return ⊥

Fig. 16: Game based security definition for privacy.

previously honestly generated using the sign oracle. We capture this by the
optional check in the LoRSanitunlO oracle.

Definition 65 (Unlinkability). A sanitizable signature scheme SSS is (weakly)
unlinkable, if for all qpt adversaries A, the advantage in winning the game
Exp(w)unl

SSS,A(λ) as described in Fig. 17, defined as

Adv(w)unl
SSS,A (λ) :=

∣∣∣∣Pr
[
Exp(w)unl

SSS,A(λ) = 1
]
− 1

2

∣∣∣∣
is negligible in the security parameter λ.

Transparency Intuitively, no outside adversary should be able to determine the
creator of a signature. This property is modeled using a left-or-right oracle, that
either sanitizes or signs the result of the modification as a new message. The
adversary is successful, if the can determine if the message-signature pairs it is
receiving are output from the signing or the sanitizing algorithm. Transparency is
mutually exclusive with non-interactive public accountability, as they described
opposite requirements for the signatures. This notion of transparency is also
frequently referred to as "proof-restricted transparency", to highlight the fact
that the proof oracle cannot be misused for trivial wins. This is relevant in cases
where the proof oracle works without using the additional message-signature pairs,
i.e., it is “history free”. If the proof is not history free, the adversary cannot use
the proof oracle to trivially win the game, as it does not know learn the original
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Exp(w)unl
SSS,A(λ)

(pkSig, skSig)←$ KGenSig(1λ)

(pkSan, skSan)←$ KGenSan(1λ)
b←$ {0, 1},QSig ← ∅

b′ ←$ASignO,SanitO,ProofO,LoRSanitunlO(pkSig, pkSan)
return b = b′

SignO(skSig, ·, ·, ·) with (µ, ADM, pkSan)

σ ← Sign(µ, skSig, pkSan, ADM)
QSig ← QSig ∪ (µ, ADM, pkSan, σ)
return σ

ProofO(skSig, ·, ·, ·, ·)
with (µ, σ, {(mi, σi)}k

i=1, pkSan)
π ←$ Proof(µ, σ, {(mi, σi)}k

i=1, skSig, pkSan)
return π

SanitO(skSan, ·, ·, ·, ·)
with (µ, MOD, σ, pkSig)

(µ′, σ′)←$ Sanit(µ, MOD, σ, skSan, pkSig)
QSan ← QSan ∪ {(µ, µ′, σ′, pkSig)}
return (µ′, σ′)
LoRSanitunlO(skSig, skSan, b, ·, ·) with

((µ0, MOD0, σ0), (µ1, MOD1, σ1))

if (µ0, MOD0, pkSan, σ0) /∈ QSig

∨ (µ1, MOD1, pkSan, σ1) /∈ QSig

return ⊥
(ADM0, ADM1)← (σ0, σ1)
(µ′, σ′)←$ Sanit(µ, MODb, σb, skSan, pkSig)
if ADM0 = ADM1

∧MOD0(µ0) = MOD1(µ1)
∧ Vrfy(µ0, σ0, pkSig, pkSan) = 1
∧ Vrfy(µ1, σ1, pkSig, pkSan) = 1
return (µ′, σ′)

else return ⊥

Fig. 17: Game based security definition for (weak) unlinkability. Inclusion of the
gray box yields the weak variant.

signatures from the Sanit/SignO oracle which it would have to provide to the
proof oracle. Consequently, construction like [13], which are not history free, can
achieve the stronger non proof-restricted notion of transparency. This was first
observed in [12], For a detailed breakdown of the evolution of the transparency
property we refer to [29].

Many works [16, 6, 40] have defaulted to the proof-restricted variant, meaning
they do not consider the non proof-restricted variant at all and are calling the
proof-restricted variant "transparency". We will follow this approach in this paper
and use the term "transparency" to refer to proof-restricted transparency. Note
that some works like [30, 15] make this history-freeness explicit by disallowing
the input of additional message-signature pairs into the proof oracle, making
the proof-restricted variant the only viable definition. There also exists a strong
variant of transparency. The term was first introduced by [3], but their description
was later formalized by [16] to become the formal notion of invisibility. For strong
transparency, the definition by [29] has gained the most traction. For strong
transparency, the proof-restriction is slightly weakened, allowing queries where
the message, but not the signature, has been output by the Sanit/SignO oracle.
Interestingly, some works like [16, 15, 6] are using this stronger definition as
their regular version of transparency, while others like [12, 23] are using the
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weaker variant as their regular version of transparency without discussing the
strengthened notion.
Definition 66 (Proof Restricted Transparency). A sanitizable signature
scheme SSS is (strongly)proof restricted transparent (from now own we only say
transparency), if for all qpt adversaries A, the advantage in winning the game
Exp(s)transp

SSS,A (λ) as described in Fig. 18, defined as

Adv(s)transp
SSS,A (λ) :=

∣∣∣∣Pr
[
Exp(s)transp

SSS,A (λ) = 1
]
− 1

2

∣∣∣∣
is negligible in the security parameter λ.

Exp(s)transp
SSS,A (λ)

(pkSig, skSig)←$ KGenSig(1λ)

(pkSan, skSan)←$ KGenSan(1λ)
b←$ {0, 1},QSig ← ∅

b′ ←$ASignO,SanitO,Proof′O,Sanit/SignO(pkSig, pkSan)
return b = b′

SignO(skSig, ·, ·, ·) with (µ, ADM, pkSan)

σ ← Sign(µ, skSig, pkSan, ADM)
QSig ← QSig ∪ (µ, ADM, pkSan, σ)
return σ

SanitO(skSan, ·, ·, ·, ·)
with (µ, MOD, σ, pkSig)

(µ′, σ′)←$ Sanit(µ, MOD, σ, skSan, pkSig)
QSan ← QSan ∪ {(µ, µ′, σ′, pkSig)}
return (µ′, σ′)

Proof′O(skSig, ·, ·, ·, ·)
with (µ, σ, {(mi, σi)}k

i=1, pk′
San)

if pk′
San = pkSan∧

((µ, σ) ∈ Qsigsan ∨ ∃i : (µi, σi) ∈ Qsigsan)
return ⊥

π ←$ Proof(µ, σ, {(mi, σi)}k
i=1, skSig, pkSan)

return π

Sanit/SignO(skSig, skSan, pkSig, pkSan, b, ·, ·, ·)
with (µ, MOD, ADM)

if MOD(ADM) = ⊥ return ⊥
σ ←$ Sign(µ, skSig, pkSan, ADM)
(µ′, σ′)←$ Sanit(µ, MOD, σ, skSan, pkSig)
if b = 0
Qsigsan ← Qsigsan ∪ (µ′, σ′)
return (µ′, σ′)

else
σ′′ ← Sign(µ′, skSig, pkSan, ADM)
Qsigsan ← Qsigsan ∪ (µ′, σ′′)
return (µ′, σ′′)

Fig. 18: Game based security definition for (strong) transparency. Inclusion of
the gray box yields strong transparency.

Invisibility Intuitively, no efficient adversary should be able to detect whether
any specific message block is admissible for modification or not.

To formalize this notion, a left-or-right signing oracle LoRAdmO is employed
in combination with a restricted sanitizing oracle Sanit′O. The sanitizing ora-
cle is modified to prevent trivial wins. The adversary is limited to sanitizing
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message-signature pairs it previously acquired from the left-or-right oracle and
to introducing modifications which are allowed in both ADM0 and ADM1 to
prevent trivial wins. or to outputs of the modified sanitizer oracle Sanit′O. The
left-or-right oracle behaves like a signing oracle, but takes two sets of admissible
blocks ADM0 and ADM1 as input. Depending on the secret bit b sampled by the
experiment, the message is signed with either the left or the right set of admissi-
ble blocks. Additionally, access to ProofO is provided to allow the adversary to
attempt to learn skSig The adversary wins, if it correctly guesses if the oracle is
using ADM0 or ADM1 to sign the given messages.

A list Q is used to track previous queries of the adversary and to evaluate if
a given query is allowed or not.

Definition 67 (Invisibility). A sanitizable signature scheme SSS is invisible,
if for all qpt adversaries A, the advantage in winning the game Expinv

SSS,A(λ) as
described in Fig. 19, defined as

Advinv
SSS,A(λ) :=

∣∣∣∣Pr
[
Expinv

SSS,A(λ) = 1
]
− 1

2

∣∣∣∣
is negligible in the security parameter λ.

Expinv
SSS,A(λ)

(pkSig, skSig)←$ KGenSig(1λ)

(pkSan, skSan)←$ KGenSan(1λ)
b←$ {0, 1},Q ← ∅

b′ ←$ASanit′O,ProofO,LoRAdmO(pkSig, pkSan)
return b = b′

Sanit′O(skSan, pkSig, ·, ·, ·) with (µ, MOD, σ)

if ∄(µ, σ, ADM) ∈ Q : MOD(ADM) = ⊤
return ⊥

(µ′, σ′)←$ Sanit(µ, MOD, σ, skSan, pkSig)
Q ← Q∪ {µ′, σ′, ADM}
return (µ′, σ)

ProofO(skSig, ·, ·, ·, ·)
with (µ, σ, {(mi, σi)}k

i=1, pkSan)
π ←$ Proof(µ, σ, {(mi, σi)}k

i=1, skSig, pkSan)
return π

LoRAdmO(skSig, b, ·, ·, ·) with
(µ, ADM0, ADM1)

σ ←$ Sign(µ, skSig, pkSan, MODb)
Q ← Q∪ {µ, σ, ADM0 ∩ADM1}
return σ

Fig. 19: Game based security definition for invisibility.

Definition 68 (Strong Invisibility). A sanitizable signature scheme SSS is
strongly invisible, if for all qpt adversaries A, the advantage in winning the game
Expinv

SSS,A(λ) as described in Fig. 20, defined as

Advinv
SSS,A(λ) :=

∣∣∣∣Pr
[
Expinv

SSS,A(λ) = 1
]
− 1

2

∣∣∣∣
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is negligible in the security parameter λ.

Exps−inv
SSS,A(λ)

(pkSig, skSig)←$ KGenSig(1λ)

(pkSan, skSan)←$ KGenSan(1λ)
b←$ {0, 1},Q ← ∅

b′ ←$AProofO,LoRAdm′O,Sanit′′O(pkSig, pkSan)
return b = b′

Sanit′′O(skSan, ·, ·, ·, ·) with (pk′
Sig, µ, MOD, σ)

if pk′
Sig = pkSig ∧ ∄(µ, σ, ADM) ∈ Q : MOD(ADM) = ⊤

return ⊥
(µ′, σ′)←$ Sanit(µ, MOD, σ, skSan, pk′

Sig)
if pk′

Sig = pkSig ∧ ∃(µ, σ, ADM′) ∈ Q : MOD(ADM′) = ⊤
Q ← Q∪ {µ′, σ′, ADM}

return (µ′, σ)
LoRAdm′O(skSig, b, ·, ·, ·, ·) with

(pk′
San, µ, ADM0, ADM1)

if pk′
Sig = pkSig ∧ADM0 = ADM1

return ⊥
σ ←$ Sign(µ, skSig, pk′

San, MODb)
if pk′

Sig = pkSig ∧ ∃(µ, σ, ADM′) ∈ Q : MOD(ADM′) = ⊤
Q ← Q∪ {µ, σ, ADM0 ∩ADM1}
return σ

ProofO(skSig, ·, ·, ·, ·)
with (µ, σ, {(mi, σi)}k

i=1, pkSan)
π ←$ Proof(µ, σ, {(mi, σi)}k

i=1, skSig, pkSan)
return π

Fig. 20: Game based security definition for strong invisibility.

Strong invisibility strengthens this notions by allowing an adversary to query
its oracles under arbitrary signer public keys, simulating a dishonest signer. In
this case the aforementioned restrictions for the left or right and sanitize oracle
only apply when queried with the challenge public key. Note that in both the
regular and the strong variant of invisibility, a signing oracle can be simulated
by querying the corresponding left or right oracle with ADM0 = ADM1.

Accountability Intuitively, accountability formalizes the ability to hold both signer
and sanitizer responsible for messages they have signed. The strong accountability
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notion extends this to the signature, holding the respective party responsible
for the signatures they have created. For technical reasons this notion is split
into signer-accountability and sanitizer accountability. Both notions formalize
the inability of the respective party to frame the other party for a signature they
have not produced; when both notions are achieved one has accountability.

For signer-accountability we refer to Definition 37 in the main body of the
paper.
Definition 69 (Sanitizer-Accountability). A sanitizable signature scheme
SSS is (strongly) sanitizer-accountable, if for all qpt adversaries A, the advantage
in winning the game Exp(s)san-acc

SSS,A (λ) as described in Fig. 21, defined as

Adv(s)sig-acc
SSS,A (λ) := Pr

[
Exp(s)sig-acc

SSS,A (λ) = 1
]

is negligible in the security parameter λ.

Exp(s)san-acc
SSS,A (λ)

(pkSig, skSig)←$ KGenSig(1λ)
QSig ← ∅

(pk∗
San, µ∗, σ∗)←$ASignO,ProofO(pkSig)

π ← Proof(skSig, µ∗, σ∗, {µi, σi :
(µi, ∗, σi, ∗) ∈ QSig}, pkSan)

if (µ∗, ∗, pk∗
San, σ∗) /∈ QSig

∧ Vrfy(µ∗, σ∗, pk∗
Sig, pkSan) = ⊤

∧ Judge(µ∗, σ∗, pk∗
Sig, pkSan, π) = Sig

return 1
else return 0

SignO(skSig, ·, ·, ·) with (µ, ADM, pkSan)

σ ← Sign(µ, skSig, pkSan, ADM)
QSig ← QSig ∪ (µ, ADM, pkSan, σ)
return σ

ProofO(skSig, ·, ·, ·, ·)
with (µ, σ, {(mi, σi)}k

i=1, pkSan)
π ←$ Proof(µ, σ, {(mi, σi)}k

i=1, skSig, pkSan)
return π

Fig. 21: Game based security definition for (strong) sanitizer accountability. In-
clusion of the gray box yields strong sanitizer accountability.

Definition 70 (Accountability). A sanitizable signature scheme SSS is
(strongly) accountable, if it is both (strongly) signer-accountable and (strongly)
sanitizer-accountable.

Non-Interactive Public Accountability Intuitively, non-interactive public account-
ability requires that for any signature an external observer can reliably decide
whether this signature was created by the signer or the sanitizer without any
additional information. This is formalized by removing the ability to use the
proof algorithm (which takes skSig as input). Consequently, the Judge algorithm
receives the symbol ⊥ as input instead of the proof π. If the Judge algorithm
still works as expected the scheme is non-interactively publicly accountable.
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Definition 71 (Non-Interactive Public Accountability). A sanitizable sig-
nature scheme SSS achieves non-interactive public accountability, if for all qpt
adversaries A, the advantage in winning the game Expnipa

SSS,A(λ) as described in
Fig. 22, defined as

Advnipa
SSS,A(λ) :=

∣∣∣∣Pr
[
Expnipa

SSS,A(λ) = 1
]
− 1

2

∣∣∣∣
is negligible in the security parameter λ.

Expnipa
SSS,A(λ)

(pkSig, skSig)←$ KGenSig(1λ)

(pkSan, skSan)←$ KGenSan(1λ)
QSig ← ∅,QSan ← ∅

(pk∗, µ∗, σ∗)←$ASignO,SanitO(pkSig, pkSan)
if (µ∗, ∗, pkSan, σ) /∈ QSig

∧ Vrfy(µ∗, σ∗, pk∗
Sig, pk∗) = ⊤

∧ Judge(µ∗, σ∗, pk∗
Sig, pk∗,⊥) = Sig

return 1
elseif (∗, µ∗, σ∗, pk∗

Sig) /∈ QSan

∧ Vrfy(µ∗, σ∗, pk∗, pkSan) = ⊤
∧ Judge(µ∗, σ∗, pk∗, pkSan,⊥) = San
return 1

else return 0

SignO(skSig, ·, ·, ·) with (µ, ADM, pkSan)

σ ← Sign(µ, skSig, pkSan, ADM)
QSig ← QSig ∪ (µ, ADM, pkSan, σ)
return σ

SanitO(skSan, ·, ·, ·, ·)
with (µ, MOD, σ, pkSig)

(µ′, σ′)←$ Sanit(µ, MOD, σ, skSan, pkSig)
QSan ← QSan ∪ {(µ, µ′, σ′, pkSig)}
return (µ′, σ′)

Fig. 22: Game based security definition for non-interactive public accountability.

Definition 72. A sanitizable signature scheme SSS is correct, if signing correct-
ness, sanitizing correctness, and proof correctness hold.

Signing Correctness. For all security parameter λ ∈ N, any key pair (skSig, pkSig)←$

KGenSig(1λ), any message µ ∈ M, any valid ADM, and for every σ ←$

Sign(µ, skSig, pkSan, ADM), it holds that

Pr[Vrfy(µ, σ, pkSig, pkSan) = ⊤] = 1.

Sanitizing Correctness. For all security parameter λ ∈ N, any key pair
(skSig, pkSig)←$ KGenSig(1λ), any message µ ∈M, any valid ADM, and for every
σ ←$ Sign(µ, skSig, pkSan, ADM), any valid MOD with MOD(ADM) = ⊤, and
any sanitized message with signature (µ′, σ′)←$ Sanit(µ, MOD, σ, skSan, pkSig), it
holds that

Pr[Vrfy(µ′, σ′, pkSig, pkSan) = ⊤] = 1.
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Proof Correctness. For all security parameters λ ∈ N, any key pair (skSig, pkSig)←$

KGenSig(1λ), any message µ ∈ M, any valid ADM, any signature σ ←$

Sign(µ, skSig, pkSan, ADM) with Vrfy(µ, σ, pkSig, pkSan) = ⊤, any valid MOD
that does not violate ADM, any sanitized message-signature pair (µ′, σ′) ←$

Sanit(µ, MOD, σ, skSan, pkSig), with Vrfy(µ′, σ′, pkSig, pkSan) = ⊤, and poly-
nomial many additional signature-message pairs (µi, σi) for 1 ≤ i ≤ k,
and for all proofs π ←$ Proof(µ, σ, {(µi, σi)}k

i=1, skSig, pkSig, pkSan) and π′ ←$

Proof(µ′, σ′, {(µi, σi)}k
i=1, skSig, pkSig, pkSan) it holds that

Pr[Sig← Judge(µ, σ, pkSig, pkSan, π)] = 1
∧Pr[San← Judge(µ′, σ′, pkSig, pkSan, π′)] = 1.

B.2 Relations Between Security Notions

In Fig. 23 we provide an overview of the relations between the different security
properties of sanitizable signature schemes and observe an additional implication
between non-interactive public accountability and accountability in Theorem 73.

NIPA

Transparency

[12]

Unlinkability

[12]

Accountability Unforgeability

Privacy Immutability

[11]

E[14]

this work
/

this work

[11]

[12]

[11]

Fig. 23: The relations between different security notions for SSS. Arrows indicate
implications, a lightning indicates two notions are conflicting. A box indicates that
the notion is independent of all other notions. Citations next to the implications
or boxes cite the source where this was first observed.

In [12] it is stated, that accountability is independent of all other security
properties. At the time non-interactive public accountability has not yet been
established as a security notion for sanitizable signature schemes. Nowadays this
claim no longer holds due to the following relation between accountability and
non-interactive public accountability.
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Theorem 73. A sanitizable signature scheme SSS that is non-interactively pub-
licly accountable is also accountable.

Proof. We prove Theorem 73 using reductions. We make use of the fact that,
per definition, the proof algorithm of a non-interactively publicly accountable
SSS only outputs ⊥. Note that accountability is a compound notion consisting
of signer and sanitizer accountability. Hence, we need to provide two reductions:
one breaking non-interactive public accountability given an adversary Asig-acc
against signer accountability, and one given an adversary Asan-acc against sani-
tizer accountability that both succeed with non-negligible probability.

First, we assume Asan-acc as described above and construct a reduction BSan
that breaks non-interactive public accountability with non-negligible probability.
The reduction BSan receives two public keys (pkSig, pkSan) as part of the experi-
ment and will forward pkSig to Asan-acc. Oracle queries by Asan-acc to ProofO can
always be answered with ⊥ per definition, and queries to SignO are forwarded to
the reductions own sign oracle. Finally, Asan-acc will output (pk∗San, m∗, σ∗) where
Vrfy(m∗, σ∗, pkSig, pk∗San) = ⊤. Lastly, BSan forwards the adversary’s output as
its output. The reduction BSan is efficient, perfectly simulates the sanitizer ac-
countability game for ASan, and has the same non-negligible success probability
as ASan by definition, which we assume to be non-negligible.

The reduction BSig works analogously with two slight modifications: It does
not need to simulate the proof oracle and only forwards the output (pk∗Sig, m∗, σ∗),
omitting π∗.

We have constructed two reductions, BSan and BSig, and have shown that for
any SSS it holds that Advnipa

SSS,Asig-acc
(λ) ≤ Advsig-acc

SSS,BSig
(λ) and Advnipa

SSS,Asan-acc
(λ) ≤

Advsan-acc
SSS,BSan

(λ), which proves the result. ⊓⊔

Theorem 74. A sanitizable signature scheme SSS that is accountable is not
necessarily non-interactively publicly accountable.

Proof (Sketch). Assume any accountable SSS scheme, where the accountability is
realized by the judge algorithm evaluating its input π. This scheme is clearly not
non-interactively publicly accountable, as in this setting, the judge will receive
only the symbol ⊥ instead of the proof π. ⊓⊔

C Additional Information on BFF+09

In this appendix, we provide additional information on the BFF+09 construction
by Brzuska et al. [11]. We begin with the notion of tagged chameleon hashes,
a corrected security notion for collision-resistance, and a transform to build
such fully collision-resistant tagged chameleon hash functions from fully collision-
resistant chameleon hash functions (without tags), as constructed in Fig. 7.
Afterwards, we present the details on the construction.
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C.1 Fully Collision-Resistant Tagged Chameleon Hash Functions

The construction by Brzuska et al. [11] requires a tagged chameleon hash function
CH. A tag chameleon hash function takes a tag as additional input to the hashing
algorithm. The adapt procedure takes a message, tag, and randomness, and an
additional second message as input. It outputs a new tag and a new randomness,
such that the hash values of the input triple coincides with the hash of the second
input message and the output tag-randomness pair.

As the collision-resistance notion shown in Fig. 10 is unachievable, we present
a new formalization which follows closely the f-CR game in Fig. 2. For full
collision-resistance, the adversary receives receives a public key pk and access
to an adapt oracle which internally chooses uniformly random tags. On input µ,
the oracle that outputs (TAG, r) stores the information (h, TAG, µ), where h is
the hash of (TAG, µ, r). If the adversary outputs a hash collision by providing
two tags (TAG1, TAG2), two messages (µ1, µ2), and two randomnesses (r1, r2)
with (TAG1, µ1) ̸= (TAG2, µ2). Let hi = CH(pk, TAGi, µi, ri). Then, in the full
collision-resistance game, the output is accepted, if the one of the triples of
(h1, TAG1, µ1) and (h2, TAG2, µ2) has not been part of an adapt query. This
description closely resembles the f-CR game in Fig. 2. We note that the security
notion for tagged chameleon hash functions here is not related immediately to
tagged chameleon hash function security in [31].

Finally, it is easy to see that f-CR tagged chameleon hashes can be constructed
from f-CR chameleon hash functions without tags. Indeed, given a chameleon hash
function CH = (CKGen, CHash, CHashCheck, CAdapt), we construct the tagged
version (CKGenTAG, CHashTAG, CHashCheckTAG, CAdaptTAG) as follows:

CKGenTAG = CKGen
CHashTAG takes (TAG, µ, r) and outputs CHash(TAG∥µ, r)
CHashCheckTAG takes (h, TAG, µ, r) and outputs CHashCheck(h, TAG∥µ, r)
CAdaptTAG takes (h, TAG, µ, r, µ′), samples TAG′ uniformly randomly, and out-

puts (TAG′, CAdapt(h, TAG∥µ, r, TAG′∥µ)).

With standard techniques it can be shown that f-CR of the tagged chameleon
hash reduces to f-CR of the underlying chameleon hash function.

C.2 The BFF+09 Construction

In this section, we introduce the construction by Brzuska et al. [11], which we
have analyzed more closely in Section 5.5.

Construction 75 Let PRG be a pseudorandom generator, PRF a pseudoran-
dom function, Σ = (KGen, Sign, Vrfy) a signature scheme, and CH a fully
collision-resistant tagged chameleon hash. A sanitizable signature scheme
SanSig = (KGenSig, KGenSan, Sign, Sanit, Vrfy, Proof, Judge) is defined as follows:

Key Generation. The signer key (pkSig, skSig) is generated using KGen. The
sanitizer key (pkSan, skSan) is generated using CKGen.
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Signing. The algorithm Sign, on input µ ∈ {0, 1}tl, skSig, pkSan, and ADM, picks
NONCE ←$ {0, 1}n at random, computes x ←$ PRF(κ, NONCE), TAG ←$

PRG(x), and picks r[j] for each j ∈ ADM at random. It sets

h[j]←$ CH(pkSan, TAG, (j, µj , pkSig); r[j]),

if j ∈ ADM, or µj else. Then, it computes σ0 ← Sign(skSig, (h, pkSan, ADM))
where h = (h[1], . . . , h[l]) and returns

σ ← (σ0, TAG, NONCE, ADM, r[j1], . . . , r[jk])

where ji ∈ ADM.
Sanitizing. The algorithm Sanit on input a message µ, information MOD, a sig-

nature σ = (σ0, TAG, NONCE, ADM, r[j1], . . . , r[jk]), pkSig, and skSan, first
checks that each modification in MOD is admissible according to ADM and
that σ0 is a valid signature fo (h, pkSan, ADM). If not, it outputs ⊥. Otherwise,
for each j ∈ ADM, it lets µ′[j] be the modified block of µj, possibly µ′[j] = µj,
picks NONCE′ and TAG′ randomly and replaces r[j] for each admissible j
by r′[j] = CAdapt(skSan, TAG, (j, µj , pkSig), r[j], TAG′, (j, µ′[j], pkSig)). It out-
puts µ′ and σ′ = (σ0, TAG′, NONCE′, ADM, r′[j1], . . . , r′[jk]).

Verification. The algorithm Vrfy on input a message µ ∈ {0, 1}tl and a signature

σ ← (σ0, TAG, NONCE, ADM, r[i1], . . . , r[ik]),

pkSig, and pkSan, computes the hashes h[j] as above, sets h = (h[1], . . . , h[l])
and runs Σ.Vrfy(pkSig, (h, pkSan, ADM), σ0).

Proof. The algorithm Proof on input skSig, µ, σ, a sequence (µi, σi), and pkSan,
searches for (TAGi, (j, µi[j], pkSig), ri[j]) such that

CH(pkSan, TAGi, (j, µi[j], pkSig), ri[j]) = CH(pkSan, TAG, (j, µj , pkSig), r[j]),

for some distinct (TAG, (j, µj , pkSig), r[j]) in µ, σ, where TAGi = PRG(xi)
for xi = PRF(κ, NONCEi) for the value NONCEi in σi. If such data is found,
it returns

π ← (TAGi, (j, µi[j], pkSig), ri[j], xi),
else it outputs ⊥.

Judge. The algorithm Judge, on input µ, σ, pkSig, pkSan, and

π = (TAGπ, (j, µπ[j], pkSig), rπ[j], xπ)

checks if

pkSig = pkSig,π,

∧ CH(pkSan, TAG, (j, µj , pkSig), r[j])
= CH(pkSan, TAGπ, (j, µπ[j], pkSig), rπ[j]),

∧ block j is admissible,

∧ TAGπ = PRG(xπ).

If all conditions are satisfied, Judge outputs San, otherwise, it outputs Sig.
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D Lattice-Based Instantiations from Standard Primitives

Following the different classes of constructions, we start with a discussion of those
instantiations that rely solely on standard primitives. This includes the FH18
construction by Fischlin and Harasser [22], followed by the BFLS09 construction
by Brzuska et al. [13].

The FH18 Construction. Fischlin and Harasser [22] show in their paper that
public-key encryption is equivalent to invisible sanitizable signature schemes.
They give a construction that relies solely on standard primitives: public-key
encryption schemes and digital signature schemes.

We only give a the high-level idea of their construction and refer to [22] for
the details.

The construction works as follows. The signer key pair consists of a key pair
for the underlying signature scheme Σ. The sanitizer key pair also consists of a
key pair of the underlying signature scheme Σ and additionally contains a key
pair of the public-key encryption scheme Π. To sign a message µ, it is chopped
into blocks µ1, . . . , µl which are then signed individually using freshly generated
key pairs of Σ, yielding signatures σ1, . . . , σl. The message is chopped into blocks
and each block is signed with a freshly generated key pair. For each block, the
signer encrypts either the corresponding secret key—if the block is sanitizable—
or the zero-string—if the block is fixed. This enables the sanitizer to obtain
the secret key for each to, which allows to change the message and sign it with
that secret key. Finally, the signer (or the sanitizer, if it sanitized a message)
uses its secret key to sign the message alongside the individual signatures and
ciphertexts.

Theorem 76. If the signature scheme Σ is instantiated with one of the candi-
dates of the set {Dilithium, Falcon}, and the public-key encryption scheme instan-
tiated with Kyber.CPA, then the FH18 construction [22] is an unforgeable, im-
mutable, private, publicly accountable, and invisible sanitizable signature scheme
against qpt adversaries.

Proof. The theorem follows straightforwardly from [22]. Their proof directly
transfers to qpt adversaries, as none of the oracles are available in superposition
and there is no random oracle. Furthermore, the adversaries in their reductions
are black box, therefore there is no rewinding or cloning taking place, which
would also contradict qpt security. ⊓⊔

The above theorem shows that sanitizable signatures are possible from lattices
and, in fact, any assumptions that allow the construction of both public-key
encryption and signature schemes.8 We note, however, that [22] is a more theo-
retical work. Their main result shows that sanitizable signatures and public-key
encryption are equivalent. The construction is fairly inefficient—signatures are
very large since they contain a public key for each message block.
8 This precludes hash-based cryptography which only allows for signatures but not

public-key encryption
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The BFLS09 Construction. A more efficient construction is the BFLS09 con-
struction by Brzuska et al. [13]. The construction works as follows. The key
pairs for signer and sanitizer consists of a key pair for the underlying signature
scheme Σ. To sign a message µ, it is chopped into blocks µ1, . . . , µl and the signer
creates two signatures. First, σfix, which essentially signs all immutable message
blocks. Second, σfull, which signs the entire message—immutable and admissible
blocks. In order to sanitize a signature, the sanitizer changes the message µ to
µ∗ and replaces σfull by signing the µ∗. Verification works by verifying that σfix

is a valid signature under the public key of the signer and that σfull is a valid
signature under the public key of either signer or sanitizer.

The signature σfix on the immutable blocks prevents the sanitizer to change
any immutable blocks, as these are always verified against the public key of the
signer. The simplicity of the construction comes at the expense of not achieving
transparency: whether σfull verifies against the public key of the signer or the
sanitizer immediately reveals if a message was sanitized or not. On the other
hand, the construction is minimal in the sense that it relies solely on signature
schemes—allowing easy instantiation from, say, Dilithium.

Below we state that the BFLS09 construction can be instantiated from
lattices, which follows straightforward from [13].

Theorem 77. If the signature scheme Σ is instantiated with one of the can-
didates of the set {Dilithium, Falcon}, then the BFLS09 construction [13] is an
unforgeable, immutable, private, and accountable sanitizable signature scheme
against qpt adversaries.

E Lattice-Based Instantiations from Advanced Signatures

In this section, we cover the different SSS constructions that rely on various
types of advanced signature schemes (and not on chameleon hash functions).
These include the following constructions: the FKM+16 construction [23], the
BFLS10 construction [12], the LZCS16−2 construction [30], and the BLL+19
construction [15].

The FKM+16 Construction. The construction by Fleischhacker et al. [23] relies
on signature schemes with rerandomizable keys. On a high-level, these are signa-
ture schemes that allow to randomize a key pair (sk, pk), using some randomness
r, into a new key pair (sk′, pk′) such that (1) (sk′, pk′) is a matching key pair,
i.e., signatures generated using sk′ verify under pk′, and (2) re-randomized keys
are indistinguishable from keys generated via KGen.

Alkeilani Alkadri et al. [2] showed that rerandomizable signature schemes
can be constructed from lattices. However, they consider a weaker notion, where
only the re-randomized public key should be hard to distinguish from a public
key obtained via KGen.9 In fact, [2] identifies obstacles due to usage of Gaussian
distributions for lattice-based constructions which typically result in different
9 This modification is motivated via their goal of showing public keys to be unlinkable.
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distributions for keys generated via KGen and re-randomized ones. Thus, the
construction from [2] cannot be used to instantiate the construction by Fleis-
chhacker et al. [23]. This leaves the open problem of constructing rerandomizable
signature schemes according to [23] from lattice10 assumptions.

The BFLS10 Construction. The construction by Brzuska et al. [12] uses group
signatures and is historically the first sanitizable signature scheme that does
makes use of advanced signature notions: In this work, the construction is based
on group signatures, which are required to satisfy anonymity, traceability, and
non-frameability.

The construction can be instantiated using the group signature that has been
developed by Ling et al. [33].

Theorem 78. The BFLS10 construction [12] instantiated with a signature from
{Dilithium, Falcon} and the group signature from [33] is a lattice-based sanitizable
signature scheme that satisfies unforgeabilty, immutability, signer- and sanitizer
accountability, transparency, privacy, and unlinkability.

The LZCS16−2 Construction. In [30], Lai et al. give two distinct constructions.
One deploys chameleon hash functions, which we discuss later. Here, we focus
on the other construction, which uses accountable ring signatures as its primary
component in combination with deterministic signature schemes. For both, we
have lattice based primitives available, which achieve the required security prop-
erties and can be used for a generic instantiation. For deterministic signatures
ML-DSA [38] can be used in the deterministic mode, as standardized by NIST.
For accountable ring signatures, Beullens et al. [8] provide a lattice based as well
as an isogeny based instantiation, both of which are suitable for instantiating
this construction in practice.

The BLL+19 Construction. Finally, we review the construction by Bultel et
al. [15], which already played a crucial role in the instantiations of SSS construc-
tions using chameleon hash functions. There, we used the transform described
in [15] to increase the security to include unforgeability and accountability, if
their security proofs in the respective constructions required the chameleon hash
to satisfy uniqueness—the property that our lattice-based CHF fails to achieve.

In [15], so-called equivalence class signatures (EQS) have been used to create
a weak SSS. Then, requiring (strongly) unforgeable VRS, it is shown how to add
unforgeability and accountability features to the weak SSS resulting in a secure
SSS. The equivalence class signatures in [15] rely on pairing problems which
are not post-quantum secure. Further investigations regarding the weak SSS
construction may provide useful insights on generating other weak sanitizable
signatures. However, the pairing problem has to be replaced to ensure post-
quantum security. On the other hand, we make extensive use of the transform
in Theorem 38.
10 Recently, Das et al. [19] showed a construction from isogenies.
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F Full Proofs for Theorem Statements

F.1 Learning with Rounding-Based LITs

In Lemma 18 we stated that there exists an LWR-based LIT. We now prove
this lemma by constructing and proving secure such a LIT. First, we need to
define learning with rounding and its rounding function. We define the rounding
function ⌊·⌋p : Zq → Zp, x 7→ ⌊(p/q) · x⌋. If we use that function on vectors, we
use it component-wise.

Definition 79 (Learning with Rounding). In the learning with rounding
(LWR) problem LWRn,q,p,χ, the challenger picks a secret s ∈ Zn

q from a distribu-
tion χ and defines the LWR distribution that samples a uniform a ←$ Zn

q and
outputs (a, ⌊sta⌋p). Then, a qpt adversary A can ask for samples from either the
LWR distribution or from the uniform distribution over Zn+1

q and has to decide
from what distribution the samples are.

In the search version of LWR sLWRn,q,p,χ the qpt adversary gets samples from
the LWR distribution and has to find s.

Furthermore, we need a lemma telling us when an LWR secret is unique,
similar to [9, Lemma 1] for module LWE. For that, define Bb

a = {x ∈ Zb
q :

∥x∥∞ ≤ a}.

Lemma 80. Let n, q, p, β > 0 with q > p and 0 < β < q. Let q =
∏d

i=1 qei
i ,

where qi are prime and let j be such that qj = min{qi}. Choose m > 0 with

m ∈ poly(n) such that
(

2⌊q/p⌋
qj

)m/n

· 2β is smaller than some constant c < 1.
Then, it holds that

Pr[∃s, ŝ ∈ Bn
β : s ̸= ŝ, ⌊stA⌋p = ⌊ŝtA⌋p] ≤

(
q

ej−1
j

q

)m

· (2β)n · (⌊q/p⌋)m,

which is negligible in n.

Proof. Assume that we have s, ŝ ∈ Zn
q with s ̸= ŝ and ⌊stA⌋p = ⌊ŝtA⌋p. We can

interpret this LWR equation as an LWE equation with fixed errors. Since the
rounding function divides Zq into p intervals of size ⌊q/p⌋ and maps an element
from Zq to the index of the interval, we know that by scaling this index by ⌊q/p⌋
we get the rounded representation of x in Zq. Furthermore, since elements in
the interval [k · ⌊q/p⌋, (k + 1) · ⌊q/p⌋ − 1] are mapped to k and thus scaled to
k⌊q/p⌋, we know that the difference between x and its rounded representation in
Zq differ by at most ⌊q/p⌋. Thus, there exist e, ê ∈ Zm

q with ∥e∥∞, ∥ê∥∞ ≤ ⌊q/p⌋
such that stA + e = ⌊stA⌋p · ⌊q/p⌋ mod q and ŝtA + ê = ⌊ŝtA⌋p · ⌊q/p⌋ mod q.
Then, we know that

(st − ŝt)A + e− ê = 0
⇔(st − ŝt)A = −e + ê
⇔s̄tA = ē
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for some s̄ ∈ Bn
2β and some ē ∈ Bm

2⌊q/p⌋. Thus, we can apply [9, Theorem 6] to
say that such s̄, ē exist only with probability

ϵ(n) := Pr[∃(s̄, ē) ∈ Bn
2β ×Bm

2⌊q/p⌋ : s̄tA = ēt; A←$ Zn×m
q ]

≤
(1 + zmax

q

q

)m

· (2β)n · (2⌊q/p⌋)m,

where zmax
w := max{|Zw,s| : s ∈ Zw\{0}} with Zw,s := {a ∈ Zw\{0} : a · s = 0}.

Since q =
∏d

i=1 qei
i , we know that Zq

∼= Ze1
q1
× . . .× Zed

qd
. Furthermore, we know

that zmax
q

ei
i

= qei−1
i − 1 for all i, since there are qei−1

i − 1 non-zero multiples of qi

that are smaller than qei
i and qei−1

i times any other multiple is zero. Therefore, an
element (0, . . . , 0, q

ej−1
j , 0, . . . , 0), where the index j is such that q

ej

j = mini{qei
i },

maximises zmax
q . Thus, we have

zmax = −1 + q
ej−1
j

d∏
i ̸=j

qi = q

qj
− 1

Using this and the definition of m on the bound for ϵ(n), we get

ϵ(n) ≤ 1
qm

j

· (2β)n · (2⌊q/p⌋)m

≤

((
2⌊q/p⌋

qj

)m/n

· 2β

)n

≤ cn,

which is negligible in n since c < 1. ⊓⊔

Corollary 81. For q prime, n, p, β > 0 with p < q and 0 < β < q. Choose m
such that 4β < (2p)−m/n. Let χ be a distribution over Zq such that for all x in
the support of χ we have x ≤ β. Then, the secrets of LWRn,q,p,χ are unique with
overwhelming probability.

The construction of the LWR-based LIT is, as previously mentioned, very
similar to the LWE-based construction of [9] with errors replaced by rounding.

Construction 82 For q prime, n, p, β > 0 with p < q and 0 < β < q. Choose
m such that 4β < (2p)−m/n. Let χ be a distribution over Zq such that for
all x in the support of χ we have x ≤ β. For a uniform A ←$ Zn×m

q , let
fA : Zn

q → Zm
q , x 7→ ⌊xtA⌋p. Then, the LIT ΠLIT is defined as in Fig. 24.

We now need to prove that our construction has the four required security
properties tag-indistinguishability (Def. 14), non-invertability (Def. 17), linka-
bility (Def. 15), and unforgeability (Def. 16). Since the proofs are very similar
to the proofs for the module LWE-based LIT of [9], we only give an outline for
each one.
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KGen(1λ)

s←$ χk

sk ← s

Tag(sk, µ)

Aµ ←$RO(µ) ∈ Zk×m
q

bt ← ⌊stA⌋p
t← b
return t

Vrfy(sk, µ, t)

Aµ ←$RO(µ) ∈ Zk×m
q

b̂t ← ⌊stA⌋p
if t = b̂

return 1
return 0

Link(µ, t0, t1)

if t0 = t1

return 1
return 0

Fig. 24: Learning with Errors-based LIT.

Lemma 83. Construction 82 has tag-indistinguishability in the random oracle
model if LWRn,q,p,χ is hard.

To prove this, one uses the LWR assumption twice to replace the public
keys and tags generated with sk0 and sk1 by uniformly random values, once in
AnonLIT

ΠLIT,A,0(λ) and once in AnonLIT
ΠLIT,A,1(λ). Then, the modified games are equal

and thus the adversary has advantage 0 to distinguish between them.

Lemma 84. Construction 82 has non-invertability if sLWRn,q,p,χ is hard.

To prove this, one uses LWR samples to generate the public key and the tag
oracle answers. When the adversary returns an sk′, we know by Corollary 81
that the LWR secrets are unique, meaning we have sk′ = sk, therefore sk′ is a
solution for the LWR challenge.

Lemma 85. Construction 82 is linkable in the random oracle model.

In order for the adversary to be able to win, he needs to output sk0, sk1
such that f(sk0) = f(sk1). By Corollary 81 we know that LWR secrets are
unique, thus we have sk0 = sk1. Now the tags t0, t1 output by the adversary
must both verify under pk0 for the message µ also output by it. Since tagging
is deterministic, this can only be if t0 = t1, thus we have that t0, t1 link and the
adversary always loses.

Lemma 86. Construction 82 is unforgeable in the random oracle model if
sLWRn,q,p,χ is hard.

To prove this, one uses LWR samples to generate the public key and the tag
oracle answers. When the adversary outputs some sk∗, µ, t∗), we know t = t∗

since LinkableLIT(µ, t, , t∗) = 1 Furthermore, by Corollary 81 we know that LWR
secrets are unique, thus we know that sk∗ = sk0 and sk∗ is a solution to the
LWR challenge.
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F.2 Proof of Theorem 30

Proof. Let A be an adversary against the full collision-resistance of the con-
struction. Let s′ = ω(

√
log m). We define an alternative security game for full

collision-resistance called Game1 in Fig. 25, where we neither need the trapdoor of
the commitment scheme nor the trapdoor td of A. This is achieved by leveraging
the power of the random oracle, i.e., by being able to program the random oracle.
In this game, we also remember some additional values, which will be used to
define the event Free mentioned above and to extract either an SIS solution or to
break the binding of the commitment scheme. In the original security game, we
can implement the random oracle by choosing uniform outputs and storing what
we answered so far in a set QRO. In Game1, if we answer a random oracle query,
we generate B = AU, i.e., we do not put a trapdoor into B. We indicate that
by also storing U and an indicator tdno. If, on the other hand, we are answering
an AdaptO oracle call, we generate B = AR + G with a trapdoor. Again, we
indicate this, this time by storing R and an indicator tdyes.

In the original game, Q only stored for which (h, µ) the adversary has seen
a collision. In Game1, Q also remembers if the (h, µ) is "fresh", denoted by f: if
the adversary wants AdaptO to not return ⊥, it needs to call the oracle with
a valid (h, µ) pair as the first half of the argument. If the adversary has not
seen a collision on this (h, µ), it is marked as fresh. If that is the case, Q also
remembers the r that was used to generate the h from µ. Pairs (h, µ′) for which
the adversary has seen a collision before (this includes the µ′ of a AdaptO query)
are marked as "old", denoted by o. Note that by this definition, for every old
(h, µ′), there must exist a fresh (h, µ), because in order for the adversary to see
the first collision on h, it has to query AdaptO with a valid hash, which is then
considered fresh.

We can argue that the advantages of A in the original and the alternative
game are negligibly close. This is due to Theorem 56, Theorem 9, and due to the
DEE property of the commitment scheme, as well as z being chosen from a super-
poly large space (such that no z is repeated with overwhelming probability). For
a similar proof, see [31].

We now define the event Free, by the following four subevents:

FirstFree is true if there exist B, U s.t. ((µ, z, c), B, U, tdno,⊥) ∈ QRO, where
(·, µ, r = (z, e, c, d), ·, ·) is output by A.

SecondQueried is true if (h, µ′) ∈ Q, where (h, ·, ·, µ′, ·) is output by A.
SecondFree is true if there exist B′, U′ s.t. ((µ′, z′, c′), B′, U′, tdno,⊥) ∈ QRO,

where (·, ·, ·, µ′, r′ = (z′, e′, c′, d′)) is output by A.
FreshFree is true if there exist µ̂, ẑ, ĉ, B̂, Û, ê s.t. ((µ̂, ẑ, ĉ), B̂, Û, tdno,⊥) ∈ QRO

and (h, µ̂, f, r̂ = (ẑ, ê, ĉ, d̂)) ∈ Q, where (h, ·, ·, ·, ·) is output by A.

Then, we can define

Free = FirstFree ∧ (¬SecondQueried ∧ SecondFree ∨ SecondQueried ∧ FreshFree).

We will argue that if Free holds and the adversary wins, we can reduce to SIS.
The idea is if Free holds, we can find a collision ((µ, r), (µ′, r′)) such that B, B′,
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Game1(1λ)

Q,QRO ← ∅

A←$ Zn×m
q

(pp, ·)←$ TdGen(1λ)
pkch ← (A, pp)
(h, µ, r, µ′, r′)←$ARO′,AdaptO′

(pkch)
return (CHashCheck(pkch, h, µ, r) = 1
∧ CHashCheck(pkch, h, µ′, r′) = 1
∧ µ ̸= µ′

∧ (h, µ, ·, ·) /∈ Q)

RO′(·) with x ∈ {0, 1}∗

if ∃(x, B, ·, ·) ∈ QRO

return B
U←$ DZ2m,s′

B←$ AU
QRO ← QRO ∪ {(x, B, U, tdno,⊥)}
return B

AdaptO′(skch, ·, ·, ·, ·) with (h, µ, r, µ′)

if CHashCheck(pk, h, µ, r) = 0
return ⊥

z′ ←$ {0, 1}λ

R ←$ DZ2m,s′

B←$ AR + G

e′ ←$ PreSample(
[
A B

]
, R, h, s)

(c′, d′)←$ Com(pp, e′)
x← (µ′, z′, c′)
r′ ← (z′, e′, c′, d′)
QRO ← QRO ∪ {(x, B, R, tdyes, r′)}
if ∄(h, µ, ·, ·) ∈ Q
Q ← Q∪ {(h, µ, f, r)}

Q ← Q∪ {(h, µ′, o,⊥)}
return r′

Fig. 25: The alternative security game Game1.

which are defined by the first and second pair of the collision, respectively, do
not contain a gadget G. This collision always includes the (µ, r) output by the
adversary, but the second element is either the (µ′, r′) output by the adversary
or the fresh pair (µ̂, r̂) if (µ′, r′) is old. Then, we can combine the collision into a
solution for SIS. On the other hand, if Free does not hold, we are able to break the
binding of the commitment scheme. To show this, we construct two adversaries,
B against SIS in Fig. 26 and C against the binding of the commitment scheme
in Fig. 27 that both simulate A.

Let (h, µ, r, µ′, r′) be the forgery output by A with r = (z, e, c, d) and r′ =
(z′, e′, c′, d′). If Free happens, we can easily see that B is able to find B, e, B̂, ê,
where the matrices are free of G and such that[

A B
]

e =
[
A B̂

]
ê.

Therefore, we can easily see that Av = 0 and that

∥v∥ =
∥∥[I U

]
e−

[
I Û

]
ê
∥∥

≤(s1(U) + 1) · β + (s1(Û) + 1) · β
≤2s′ · (

√
n +
√

m + t + 1) · s
√

2m
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B(A)

Q,QRO ← ∅

(pp, ·)←$ TdGen(1λ)
pkch ← (A, pp)

(h, µ, r, µ′, r′)←$ARO′,AdaptO′
(pkch)

with r = (z, e, c, d), r′ = (z′, e′, c′, d′)
if FirstFree

Let B, U be s.t. ((µ, z, c), B, U, tdno,⊥) ∈ QRO

if SecondQueried ∧ SecondFree
Let B′, U′ be s.t. ((µ′, z′, c′), B′, U′, tdno,⊥) ∈ QRO

return v←
[
I U
]

e−
[
I U′] e′

if ¬SecondQueried ∧ FreshFree

Let µ̂, ẑ, ĉ, B̂, Û, ê be s.t. (h, µ̂, f, (ẑ, ê, ĉ, ·)) ∈ Q

and ((µ̂, ẑ, ĉ), B̂, Û, tdno,⊥) ∈ QRO

return v←
[
I U
]

e−
[
I Û
]

ê

return ⊥

Fig. 26: Adversary against SIS.

by definition of β and Theorem 57. Furthermore, by definition of CHashCheck we
know that 0 ̸= e2, ê2 ∈ Zm

q , where (et
1, et

2)t = et, (êt
1, êt

2)t = êt. Due to this fact,
together with the distributions of U, Û having high min-entropy and a standard
entropy argument (see [31] for an example), we can argue that v ̸= 0. Thus, v is
an SIS solution and we know that

Pr[f-CRCH,A(1λ) = 1 ∧ Free] = SISn,m,q,β′(B).

If ¬Free happens, we make a case distinction which part of the event is not true.
Case 1 (¬FirstFree): In this case, we know that ∄((µ, z, c), B, R, tdno,⊥) ∈

QRO. We assume wlog. that the adversary queries the random oracle (or by
extension, AdaptO) to get any B, because else it has to predict the random
oracle. Since ∄((µ, z, c), B, R, tdno,⊥) ∈ QRO but A has output a valid hash
on µ, we know that B must have been generated in an AdaptO call. Therefore
∃((µ, z, c), B, R, tdyes, r∗) ∈ QRO which B can find. Furthermore, since that tuple
was generated during an AdaptO call, we know that (B, e∗, µ, ·, ·) ∈ Q. However,
by definition of the security game we know that (h, µ, ·, ·) /∈ Q. Therefore e ̸= e∗
and C has broken the binding of the commitment.

Case 2 (¬SecondQueried ∧ ¬SecondFree): In this case, since (h, µ′, ·, ·) /∈ Q
we argue as in Case 1.

Case 3 (SecondQueried ∧ ¬FreshFree): In the case that (h, µ′, ·, ·) ∈ Q we
first argue that there must exist some (h, µ̂, f, r̂) ∈ Q. Either (h, µ′, f, r̂) ∈ Q and
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C(pp)

Q,QRO ← ∅

A←$ Zn×m
q

pkch ← (A, pp)

(h, µ, r, µ′, r′)←$ARO′,AdaptO′
(pkch)

with r = (z, e, c, d), r′ = (z′, e′, c′, d′)
if ¬FirstFree

Let e∗, d∗ be s.t. ((µ, z, c), ·, ·, tdyes, (z, e∗, c, d∗)) ∈ QRO

return (c, e, d, e∗, d∗)
if SecondQueried ∧ ¬SecondFree

Let e∗, d∗ be s.t. ((µ′, z′, c′), ·, ·, tdyes, z′, e∗, c′, d∗) ∈ QRO

return (c′, e′, d′, e∗, d∗)
if ¬SecondQueried ∧ ¬FreshFree

Let µ̂, ẑ, ĉ, ê, d̂, h̄, ē, d̄ be s.t. (h, µ̂, f, ·) ∈ Q

such that ((µ̂, ẑ, ĉ), ·, ·, tdyes, (ẑ, ê, ĉ, d̂)) ∈ QRO

and (h̄, µ̂, f, (ẑ, ē, ĉ, d̄)) ∈ Q

return (ĉ, ê, d̂, ē, d̄)
return ⊥

Fig. 27: Adversary against the binding of the commmitment scheme.

we are done. Else we have added (h, µ′, o,⊥) to Q since (h, µ′, ·, ·) ∈ Q, which
happened during an AdaptO(h, µ∗, r∗, µ′) query. This means that µ′ was the
message for which AdaptO was supposed to find a collision, i.e., it was the second
message during the oracle call. During that same oracle call either (h, µ∗, f, r∗)
was added to Q, or it was already the case that (h, µ∗, ·, ·) ∈ Q. In the latter
case, we can recursively apply the above argument until we find (h, µ̂, f, r̂).

Once we have (h, µ̂, f, r̂), since ¬FreshFree holds and by our assumption that
A does not try to predict the random oracle, we know that RO(µ̂, ẑ, ĉ) = B̂ =
AR̂ + G. But since B̂ has this form, it must have been created during an
AdaptO call. Because we argued that (h, µ̂, f, ·) is fresh, this must mean when B̂
was created, it was created for some different hash h̄. Thus, there exists some
((µ̄, z̄, c̄), B̂, ·, tdyes, r̄) ∈ QRO with r̂ = (ẑ, ê, ĉ, d̂) ̸= r̄ = (ẑ, ē, c̄, d̄). However,
due to AR̂ being statistically close to uniform, we have with overwhelming
probability that the inputs to the oracle that correspond to ĥ, h̄ were equal, i.e.,
µ̂ = µ̄, ẑ = z̄, ĉ = c̄. Now since h = B̂ê ̸= B̂ē = h̄, we know that ê ̸= ē, which
are the messages committed in ĉ, c̄ respectively. Thus, C breaks the binding of
the commitment scheme. Therefore, we know that

Pr[f-CRCH,A(1λ) = 1 ∧ ¬Free] = Pr[BindΠCom,C(λ) = 1]
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and thus

Pr[f-CRCH,A(1λ) = 1] = SISn,m,q,β′(B) + Pr[BindΠCom,C(λ) = 1]. ⊓⊔

F.3 Proof of Theorem 46

Proof. For simplicity, we only consider the case of two blocks. The adversary
against signer accountability is given a public key pkSan of a sanitizer and has
access to a sanitize oracle.

The attacker honestly generates a key pair (pkSig, skSig) of the signature
scheme Σ. The attacker picks randomly a message µ = (µ1, µ2), another message
µ′[2] such that µ2 ≠ µ′[2] and sets µ′ = (µ1, µ′[2]), a random NONCE, and an
auxiliary value r[2]. Then, TAG is set to PRG(x) where x := PRF(κ, NONCE),
ADM is defined to contain the information that only block 2 is admissible for
change, MOD is set such that MOD(µ) = µ′. Finally, it sets σ0, the underlying
signature, to Sign(skSig, pkSan, ADM, TAG, µ, r[2]).

The attacker queries the sanitize oracle with message µ, modifications MOD,
and signature (σ0, TAG, NONCE, ADM, r[2]), and receives NONCE′, TAG′, and
r′[2], which constitute the new signature. In particular, it holds that

CH(pkSan, TAG, (2, µ2, pkSig), r[2]) =
CH(pkSan, TAG′, (2, µ′[2], pkSig), r′[2]). (1)

The attacker returns pk∗Sig = pkSig, µ∗ = (µ′[1], µ′[2]), for some µ′[1] ̸=
µ1, TAG∗ = TAG′, r∗[2] = r′[2], NONCE∗ = NONCE′, σ∗ the signature
Sign(skSig, pkSan, ADM, TAG∗, µ∗, r∗[2]), and the proof π∗ given by pkSig,π =
pkSig, TAGπ = TAG, (2, µπ[2], pkSig), where µπ[2] = µ2, rπ[2] = r[2] and xπ = x.

The attacker wins, as the following conditions are satisfied:
(i) µ∗ ̸= µ and µ∗ ̸= µ′,
(ii) Vrfy(pk∗Sig, pkSan, µ∗, σ∗) = 1 as the µ∗ was honestly signed,
(iii) Judge(µ∗, σ∗, pk∗Sig, pkSan, π∗) = Sanit,
where the final step holds as
(a) pk∗Sig = pkSig = pkSig,π,
(b) CH(pkSan, TAG∗, (2, µ∗[2], pk∗Sig), r∗[2])

= CH(pkSan, TAGπ, (2, µπ, pkSig,π), rπ[2]),
(c) Block 2 is admissible,
(d) TAGπ = PRG(xπ).
Indeed, (a), (c), and (d) hold by definition, (b) is Equation (1). ⊓⊔

Remark 87. The attacker does not need to construct a new hash collision, but
makes use of a collision produced by the sanitizer. The reason the present con-
struction is vulnerable is that it suffices to modify the message in a single block
to ensure condition (i), although the judge only tests a single block for collisions.
Thus, the attacker can modify the message in one block to pass the check in
condition (i), and use a collision generated by the sanitizer to convince the judge
in condition (iii).
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