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Abstract. The transition to quantum-safe public-key cryptography has begun: for
key agreement, NIST has standardized ML-KEM and selected HQC for future
standardization. The relative immaturity of these schemes encourages crypto-agile
implementations, to facilitate easy transitions between them. Intelligent crypto-agility
requires efficient sharing strategies to compute operations from different cryptosystems
using the same resources. This is particularly challenging for cryptosystems with
distinct mathematical foundations, like lattice-based ML-KEM and code-based HQC.
We introduce PHOENIX, the first crypto-agile hardware coprocessor for lattice-
and code-based cryptosystems—specifically, ML-KEM and HQC, at all three NIST
security levels—with an effective agile sharing strategy. PHOENIX accelerates
polynomial multiplication, which is the main operation in both cryptosystems, and
the current bottleneck of HQC. To maximise sharing, we replace HQC’s Karatsuba-
based polynomial multiplication with the Frobenius Additive FFT (FAFFT), which
is similar on an abstract level to ML-KEM’s Number Theoretic Transform (NTT).
We show that the FAFFT already brings substantial performance improvements
in software. In hardware, our sharing strategy for the FAFFT and NTT is based
on a new SuperButterfly unit that seamlessly switches between these two FFT
variants over completely different rings. This is, to our knowledge, the first FAFFT
hardware accelerator of any kind. We have integrated PHOENIX in a real System-
on-Chip FPGA scenario, where our performance measurements show that efficient
crypto-agility for lattice- and code-based KEMs can be achieved with low overhead.
Keywords: Post-Quantum Cryptography · Crypto-Agility · SW-HW FPGA codesign
· Polynomial Multiplication sharing strategy · ML-KEM · NTT · HQC · FAFFT

1 Introduction
The transition to quantum-safe cryptography has begun [DRA+24], with the first inter-
national standards for post-quantum key encapsulation mechanisms (KEMs) and digital
signatures appearing in 2024. But the relative immaturity—in security analysis and in im-
plementation techniques—of schemes such as ML-KEM [Nat24b] (the first NIST standard
post-quantum KEM) and HQC [AMAB+24] (selected by NIST for future standardization
[AG25]) makes crypto-agility an important concern for long-term security [ASW+23].

Crypto-agility is promoted by NIST as a best practice to ensure the resilience of
cryptographic infrastructure in the face of evolving threats [BCC+25]. Intuitively, crypto-
agility means the ability to dynamically switch between different cryptographic algorithms
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with minimal inconvenience. This switching might mean changing parameters within
one system, or moving from one system to another completely different one, to maintain
security in the face of advances in cryptanalysis.

For example: perhaps today we use ML-KEM 512. A significant advance in module-
LWE cryptanalysis might mean revising ML-KEM’s internal parameters to maintain an
equivalent security level—or worse, it could force a migration to a KEM based on a different
hard problem, such as code-based HQC.

Cryptographic migration is hard [LGH+24], and even harder when it must be done
quickly. Crypto-agility anticipates and mitigates this difficulty starting at the design phase.
This is especially challenging when specialized hardware is involved: development cycles are
far longer, designed lifetimes of deployed systems are longer, and updates cannot be done by
distributing a patch. Efficient hardware agility depends on the ability to execute common
operations from different cryptosystems using shared hardware resources. Sometimes,
this is trivial: for example, all new NIST standard cryptosystems use the Keccak-based
hash functions and XOFs defined in FIPS 202 [Nat15], so a common core implementation
of Keccak can serve many different cryptosystems. For another example, many lattice-
based cryptosystems use the Number-Theoretic Transform (NTT) to perform polynomial
multiplication. While different algorithms use different parameters, the nature of the
function relies on the same mathematical operations, making it easy to integrate multiple
cryptosystems using the same accelerator. But when we consider crypto-agility between
cryptosystems from different paradigms—that is, with completely different underlying
mathematical problems, different algorithms, and different implementation techniques in
software and hardware—then finding ways to share computations is highly nontrivial.

1.1 Prior work

Lattice-based cryptosystems have seen plenty of agile hardware designs. Sapphire [BUC19]
presented a pioneering configurable and efficient ASIC design for cryptosystems based on
the hardness of various Learning With Errors (LWE) problems [Reg09]. Focusing on more
recent work targeting the NIST standards ML-KEM [Nat24b] and ML-DSA [Nat24a], we
find full hardware ASIC implementations including [KMK+24, AMI+22, KML+24]. Other
works follow a hardware-software co-design approach, offloading data to be processed
on separate FPGA-based hardware accelerators [NKDNPH24, LZL+24, YSZ+24], RISC-
V processors [DMSS24, MBB+23, WZZ+24] (which can be directly implemented and
integrated as configurable logic in FPGAs), and ASICs [KSFS24].

The situation is different for code-based cryptosystems, and HQC in particular.
We know of only three full-hardware implementations of HQC [AMDD+22, DXN+23,
ABPS24], though other HW/SW co-design proposals accelerate the polynomial multi-
plication [LST+23, THKX23, HTB+24], the Reed–Muller encoder [THCX24], the Reed–
Solomon decoder [LST+23], and constant-time sampling [SFW23, HTX23]. Early reference
implementations of HQC used a sparse-dense method for polynomial multiplication; but
since the last update [AMAB+24], this has been replaced by 2-way Karatsuba to mitigate
side-channel attacks, and this has become the main bottleneck of the algorithm. (The
sparse-dense implementations in [ABPS24, HTB+24] were claimed to be constant-time
and thus secure, but the shift to 2-way Karatsuba makes this work obsolete.)

For crypto-agile hardware supporting lattice-based and code-based cryptosystems, we
find three full-hardware proposals [ZZL+22, ZZO+24, SKN+24], but none of these has an
efficient hardware-sharing strategy. Koleci, Mazzetti, Martina, and Masera [KMMM23]
proposed using the NTT to accelerate binary multiplication operations in code-based
cryptosystems, but unfortunately this method is incompatible with HQC because of the
internal construction of the algorithm.
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1.2 Contributions
This article introduces Phoenix, an agile hardware coprocessor to accelerate lattice-based
ML-KEM and code-based HQC. Phoenix is a loosely-coupled accelerator:1 it can be used
as a memory-mapped peripheral and integrated in any CPU-based System-on-Chip.

Phoenix simultaneously tackles the polynomial-multiplication bottlenecks in ML-KEM
and HQC. It includes a digital design that speeds up both the Number-Theoretic Transform
(NTT) required for ML-KEM and the Frobenius Additive FFT (FAFFT), which we use to
implement efficient polynomial multiplication in HQC for the first time in software and
in hardware. This also represents first hardware acceleration of HQC mitigating earlier
side-channel attacks on its original sparse-dense multiplication algorithm.

The NTT and FAFFT algorithms are accelerated using an innovative and efficient
hardware-sharing strategy—indeed, the first hardware-sharing strategy for simultaneous
acceleration of lattice- and code-based cryptosystems. Our strategy is based on a new
SuperButterfly circuit which computes various “butterfly” structures (with different
arithmetic foundations) that appear in the NTT and FAFFT. The result is competitive
hardware acceleration for the three security levels of both ML-KEM and HQC, while
reducing the resource consumption that would be required by separate accelerators.

We have implemented Phoenix and SuperButterfly in a Xilinx Zynq-7020 FPGA
SoC, with an efficient memory-access scheme to minimize the impact of slow data transfer
on this platform. As a loosely-coupled accelerator, the Phoenix architecture can easily
be ported to other platforms, and extended to accelerate other lattice- and code-based
cryptosystems such as ML-DSA.

Our benchmarks on this SoC show important gains in efficiency for ML-KEM and
HQC (and also for a new, faster HQC variant where keys are stored in the FFT domain).
They also show an encouragingly low overhead for crypto-agility.

2 Preliminaries
We begin with a minimal treatment of the KEMs we implemented, ML-KEM and HQC. We
give only on the details needed to discuss implementation of the schemes; the underlying
theory, hard problems, and security arguments are defined in the specifications.

Recall that a general KEM comprises three algorithms: Key Generation (KeyGen),
Encapsulation (Encaps), and Decapsulation (Decaps). For Alice and Bob to establish a
shared secret key SK over a public channel,

1. Alice runs KeyGen, which outputs her public encapsulation key EK and her
private decapsulation key DK.

2. Bob obtains Alice’s encapsulation key EK. He runs Encaps on EK to obtain a
ciphertext CT and a shared secret key SK; he sends CT to Alice.

3. Alice receives CT from Bob, and runs Decaps on CT and DK to obtain SK.

2.1 ML-KEM
ML-KEM [Nat24b] is an IND-CCA2-secure lattice-based KEM, selected by NIST as the
first PQC KEM standard. Table 1 lists ML-KEM parameter sets targeting NIST security
levels I, III, and V. The polynomial length n and prime modulus q (the same in each
parameter set) define a ring

Rq := Zq[X]/(Xn + 1) ,

1Loosely-coupled hardware accelerators operate independently of the central processing unit (CPU),
with a minimum of synchronisation and interdependency, communicating with the CPU and on-chip
memory through communication interfaces such as buses.
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where Zq is the finite field of integers modulo q, with values represented in the range [0, q).
ML-KEM is constructed in two stages. The first defines K-PKE, an IND-CPA-secure

public-key encryption scheme whose security relies on the hardness of the Module Learning
With Errors problem (M-LWE) [LS15]. The second derives ML-KEM from K-PKE using
a tweaked Fujisaki-Okamoto (FO) transform [FO99] to provide IND-CCA2 security.

K-PKE consists of three algorithms: key generation, encryption, and decryption.

• K-PKE.KeyGen: A matrix A is sampled uniformly from Rk×k
q , and secret vectors s, e

are sampled from binomial distributions on Rk
q . We compute t := As + e ∈ Rk

q . The
public key is (A, t), and the private key is s, e.

• K-PKE.Encrypt: To encrypt a 32-byte message m, we sample r, e1 ∈ Rk
q , e2 ∈ Rq

from binomial distributions, then compute u := AT r + e1 ∈ Rk
q and v := tT r + e2 +

Decompressq(m, 1) ∈ Rq (the function Decompressq(m, 1) encodes m as an element
in Rq). The ciphertext is (u, v).

• K-PKE.Decrypt: To decrypt a ciphertext (u, v) using the private key s, we compute
m := Compressq(v − sT u, 1), where the function Compressq inverts Decompressq.

The real computational “work” here is in the sampling (dominated by the cost of hashing
with Keccak), and in the costly multiplications in Rq (which is what we will accelerate).

Table 1: ML-KEM Parameter Sets.
KEM NIST Level n q k η1 η2 (du, dv)

ML-KEM-512 1 256 3329 2 3 2 (10, 4)
ML-KEM-768 3 256 3329 3 2 2 (10, 4)
ML-KEM-1024 5 256 3329 4 2 2 (11, 5)

2.1.1 The Number-Theoretic Transform (NTT)

On the surface, multiplication in Rq means multiplying polynomials of degree < n over
Zq, then reducing the result modulo Xn + 1. But Xn + 1 factors over Zq into a product of
128 irreducible quadratics:

Xn + 1 =
127∏
i=0

(X2 − ζ2BitRev7(i)+1)

where ζ is a primitive 256-th root of unity in Zq (the ML-KEM standard takes ζ = 17),
and BitRev7(i) is defined to be the integer represented by bit-reversing the unsigned 7-bit
value 0 ≤ i < 128 (so BitRev7(1) = 64, BitRev7(2) = 32, BitRev7(3) = 96, etc.; note that
{2BitRev7(i) + 1 : 0 ≤ i < 128} = {1, 3, 5, 7, . . . , 253, 255}). This gives a ring isomorphism

NTT : Rq 7−→ Tq :=
127∏
i=0

Zq[X]/(X2 − ζ2BitRev7(i)+1)

f 7−→ f̂ := (f mod X2 − ζ2BitRev7(i)+1 : 0 ≤ i < 128) ∈ Tq ;

the product ring Tq is called the NTT domain.
As we will see, the NTT is a highly efficient way of computing this isomorphism (rather

than just as a series of slow mods). The NTT is the key to fast arithmetic in Rq, since

f ×Rq g = NTT−1(NTT(f)×Tq NTT(g)) ;
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the cost of a multiplication in Tq (which is n multiplications modulo quadratics) is much
less than a multiplication in Rq (multiplication modulo a polynomial of degree 2n), even
without parallelization and vectorization. In fact, with this kind of multiplication the cost
of NTT and NTT−1 becomes dominant.

ML-KEM employs an incomplete NTT to define the NTT domain. That is,

f̂ = NTT(f) = (f̂0 + f̂1X, . . . , f̂254 + f̂255X)

where

f̂2i :=
127∑
j=0

f2jζ(2BitRev7(i)+1)j and f̂2i+1 :=
127∑
j=0

f2j+1ζ(2BitRev7(i)+1)j .

Figure 1 illustrates the divide-and-conquer scheme of the NTT operation, and its inverse
INTT. The highlighted process elements are called Cooley–Tukey (CT) and Gentleman–
Sande (GS) butterflies.

+

x -

(a) Incomplete NTTCT process using the Cooley–Tukey butterfly

+

x- /2

/2

(b) Incomplete INTTGS process using the Gentleman–Sande butterfly

Figure 1: Examples of NTT and INTT networks with their elementary process elements.
The grey boxes represent unnecessary operations in the incomplete NTT-based processes.

The NTT defines a Point-Wise Multiplication (PWM) operation, denoted by ĥ = f̂ ◦ ĝ,
with components defined by

ĥ2i = f̂2iĝ2i + ζ2br(i)+1f̂2i+1ĝ2i+1 and ĥ2i+1 = f̂2if̂2i+1 + ĝ2iĝ2i+1 . (1)

This can be computed using five multiplication in Zq, but this can be reduced to four
using an optimization based on Karatsuba’s algorithm [XL21]. The calculation is done in
two steps, each with two multiplications:
PWM0 computes s0 := f̂2i + f̂2i+1, s1 := ĝ2i + ĝ2i+1, m0 := f̂2i · ĝ2i, m1 := f̂2i+1 · ĝ2i+1;

PWM1 computes s2 = m0 + m1, m2 = s0 · s1, m3 = m1 · ζ2BitRev7(i)+1, and then the final
result h2i = m0 + m3, h2i+1 = m2 − s2.
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2.2 HQC
Hamming Quasi-Cyclic (HQC) [AMAB+24] is an IND-CCA2-secure code-based KEM,
recently selected by NIST as a future standard. HQC uses concatenated Reed–Muller
(RM) and Reed–Solomon (RS) codes to add errors to guarantee message confidentiality.
Table 2 shows the parameters sets for the three HQC instances. The parameters n and w
define a ring

R := F2[X]/(Xn + 1) ,

with a special subset Rw = {v ∈ R | ω(v) = w} where ω(·) is the Hamming weight.

Table 2: HQC Parameter Sets
HQC NIST Level n1 n2 n w wr = we

HQC-128 1 46 384 17,669 66 75
HQC-192 3 56 640 35,851 100 114
HQC-256 5 90 640 57,637 131 149

Like ML-KEM, the KEM is constructed in two stages: first defines HQC.PKE, an IND-
CPA-secure public-key encryption scheme whose security relies on the hardness of the
Quasi-Cyclic Syndrome Decoding problem (QCSD) [AMAB+24]. The second applies the
Fujisaki–Okamoto-like Hofheinz–Hövelmanns–Kiltz (HHK) transform [HHK17] to HQC.PKE
to derive the IND-CCA2-secure HQC.KEM.

HQC.PKE consists of three algorithms: key generation, encryption, and decryption.

• HQC.PKE.KeyGen: We uniformly sample a vector h from R, and secret vectors x, y
from Rw. The public key is (h, s := x + h · y), and the private key is (x, y).

• HQC.PKE.Encrypt: To encrypt a 32-byte message m, we uniformly sample r1, r2 ∈
Rwr , e ∈ Rwe , then compute u = r1 + h · r2 ∈ R and v = mG + s · r2 + h ∈ R,
where mG = C.Encode(m) is the encoding of m in the RMRS concatenated code.
The ciphertext is (u, v).

• HQC.PKE.Decrypt: To decrypt a ciphertext (u, v) using the private key y, we compute
m := C.Decode(v− u · y), where C.Decode(·) is the decoding process for the RMRS
concatenated code.

Again, the real computational “work” here is in hashing with Keccak for the sampling and
in the costly multiplications in R (which is what we will accelerate).

3 Binary Polynomial Multiplications using FAFFT
We now present the Frobenius AFFT (FAFFT), a state-of-the-art binary polynomial
multiplication. We start by reviewing classic FFT multiplication in §3.1, then Cantor
bases in §3.2. In §3.3 we present the Lin–Chung–Han Additive FFT (AFFT) [CCK+17]
for binary multiplication, explaining how to improve its efficiency using the Frobenius
partition technique of [vDHL17, LCK+18], and analyze the efficiency of the resulting
FAFFT multiplication [CCK+18, CCK21]. Finally, in §3.4 we propose the parameters set
to properly use this technique in HQC.

3.1 Binary Multiplication using Kronecker Segmentation
We briefly recall the now-standard technique of FFT polynomial multiplication using
Kronecker segmentation (see [CLRS22, VZGG03] for further detail and background).
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Suppose we want to compute the product C(x) of two polynomials A(x) = a0+· · ·+adxd

and B(x) = b0 + · · ·+ bdxd ∈ F2[x]≤d, each represented as a bit sequence of length d + 1.
Filling high-degree coefficients with 0 as required, we can assume n = 2(d + 1) is a power
of 2 (note that the coefficients of C fit into a bit sequence of length n). Fix a parameter
0 < w ≤ d and set ℓ := ⌈d/w⌉. Choose an irreducible polynomial g in F2[x] of degree
m := 2w, and let F2m = F2[z]/g(z). Now, to compute C we proceed as follows:

1. Partition the coefficients of A and B into ℓ blocks of w bits:

A(x) =
∑ℓ−1

i=0
Ai(x)xiw where Ai(x) := aiw + aiw+1x + · · ·+ a(i+1)w−1xw−1 ,

B(x) =
∑ℓ−1

i=0
Bi(x)xiw where Bi(x) := biw + biw+1x + · · ·+ b(i+1)w−1xw−1 .

2. Now, applying the map x 7→ z ∈ F2m to each coefficient block, we set

A(x) 7−→ A′(y) := a′
0 + a′

1y + · · ·+ a′
l−1yl−1 ∈ F2m [y] where a′

i := Ai(z) ,

B(x) 7−→ B′(y) := b′
0 + b′

1y + · · ·+ b′
l−1yl−1 ∈ F2m [y] where b′

i := Bi(z) .

3. Using the FFT, evaluate A′(y) and B′(y) at ℓ points α0, . . . , αℓ−1 in F2m [y]≤ℓ to get

(â0, . . . , âℓ−1) := (A′(α0), . . . , A′(αℓ−1) ,

(b̂0, . . . , b̂ℓ−1) := (B′(α0), . . . , B′(αℓ−1) .

4. Perform point-wise multiplication (PWM) on the ℓ evaluations:

(ĉ0, . . . , ĉℓ−1) := (â0 · b̂0, . . . , âℓ−1 · b̂ℓ−1) .

5. Use the IFFT to interpolate the C ′(y) such that C ′(αi) = ĉi for 0 ≤ i < ℓ.

6. Map C ′(y) to C(x) ∈ F2[x]≤n via z 7→ x and y 7→ xw, collecting terms and coefficients
using the InterleavedCombine operation.

3.2 Cantor Basis Representations of Binary Fields
The representation of elements of F2m as vectors in Fm

2 always depends on a choice of
F2-basis (β0, . . . , βm−1) of F2m . Cantor [Can89] defined useful bases when m is a power
of 2, i.e. m = 2ℓm for some ℓm > 0. Gao and Mateer [GM10] give an explicit recursive
construction:

β0 = 1 and β2
i + βi = βi−1 for 0 < i < m . (2)

(Cantor bases are not unique: there are two choices for βi at each step, differing by 1.)
Given a Cantor basis (βi)m−1

i=0 of F2m , we have a sequence of subspaces

Vk := ⟨β0, β1, ..., βk−1⟩ for 0 ≤ k ≤ m .

Note that V0 = {0}, and Vk is the subfield F2k ⊂ F2m if and only if k is a power of 2. Each
of the Vk defines a subspace vanishing polynomial:

sk(x) :=
∏

a∈Vk

(x− a) for 0 ≤ k ≤ m .

These polynomials satisfy three important properties (see [Can89, GM10]):
• Linearity: sk(x + y) = sk(x) + sk(y) for all 0 ≤ k ≤ m;

• Two terms for fields: sk(x) = x2k + x ⇐⇒ k is a power of 2, i.e., Vk is a field;

• Recursivity: sk+1(x) = s2
k(x) + sk(x) = s1(sk(x)) for 0 ≤ k < m, and more

generally sk+i(x) = sk(si(x)) = si(sk(x)) for all k ≥ 0 and i ≥ 0 with k + i ≤ m.
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Evaluating si(x). Evaluating si(x) is an important operation for us, and the properties
above allow us to do this very efficiently. First, by definition, si(βj) = 0 for j < i. Then,
rewriting (2) as s1(βj) = βj−1 for 0 < j < m, recursivity gives si(βj) = βj−i for i ≤ j < m;
then, by linearity, if we identify elements of F2m with their coefficient vectors, we get

si((a0, . . . , am−1)) = (ai, . . . , am−1, 0, . . . , 0) for i ≥ 0 . (3)

That is: evaluating si corresponds to a simple shift of the coefficient vector by i places.
This suggests a particularly convenient encoding of elements of F2m using unsigned m-bit
integers: let ϕβ : [0, 2m)→ F2m be the bijection defined by

ϕβ :
∑m−1

j=0
cj2j 7−→

∑m−1

j=0
cjβj where cj ∈ {0, 1} for all 0 ≤ j < m .

With this encoding, Equation (3) becomes

si(ϕβ(n)) = ϕβ(n≫ i)

where n≫ i means n shifted right by i bits.

3.3 Optimized multiplication in F2[x] using the Frobenius AFFT
We can now present a series of optimizations to the general FFT-based binary polynomial
multiplication scheme above.

3.3.1 Basis Conversion for Polynomials

Evaluation and interpolation of a polynomial f ∈ F2[x]<n at n = 2ln points in F2m

expressed in a Cantor basis is particularly efficient if f is represented in a particular basis
of F2[x] called novelpoly.

Definition 1. Given a Cantor basis (β0, . . . , βm−1) for F2m , the associated novelpoly
basis [CCK+17] of F2[x] is the sequence of polynomials X0, X1, . . . where

Xk(x) :=
∏

i≥0
(si(x))bi where k =

∑
i≥0

bi2i with bi ∈ {0, 1} (4)

and the si are the vanishing polynomials for the Cantor basis. That is: Xk is the product
of all the si(x) where the i-th bit of k is set. We will use the variable x for polynomials in
the monomial basis, and X for polynomials in the novelpoly basis.

We need to convert a polynomial f(x) in the usual monomial basis to and from a
polynomial g(X) in the novelpoly basis. The algorithm proposed in [BC14] converts f(x)
to g(X) recursively by finding the largest i such that 2i < deg(f), then dividing fi(x)
by si(x) to get f(x) = f0(x) + si(x)f1(x); then f0 and f1 are divided again, and so on.
Division by si(x) is performed by XOR operations, with the number of XORs depending on
the number of non-zero terms in si(x). To reduce the number of XORs, [LANH16] finds the
largest i such that 22i = deg(f) and then performs variable substitution to express f as a
power series in s2i . By the two terms for fields property of the vanishing polynomials,
this optimization selects only the si(x) which contains two terms, consequently reducing
the cost of each division of the basis conversion. See [CCK+17, §2.4] for more details.

3.3.2 FFT-like Operations and their Butterfly Structures

Given f(x) ∈ F2m [x]<n converted to g(X) in the novelpoly basis, we can efficiently
evaluate f at the set α + Vℓn = {α + u | u ∈ Vℓn} for α ∈ F2m (where n = 2ℓn) using the
FFTLCH algorithm [CCK+17, §2.3.2, Alg. 1].
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The algorithm follows a typical divide-and-conquer process: we rewrite f(x) = g(X) =
p0(X) + X2ln−1(x) · p1(X), with p0 and p1 half the length of g. The general idea of
evaluating at all points of Vℓn

is to divide the subspace in two sets, Vℓn−1 and Vℓn
/Vℓn−1 =

Vℓn−1 + βℓn−1 := {x + βℓn−1 : x ∈ Vℓn−1}. Since si(x) = X2i(x) is linear, evaluations at
Vi + βi share common computations with the evaluation at Vi.

In practice, given α + Vℓn
as the starting evaluation point set, we first find max(i) such

that 2i < n. Then we divide by si(x) to get g(X) = p0(X) + si(x) · p1(X). Then, we
use the polynomials pi(X) to perform an elementary butterfly structure, here called an
FFTLCH butterfly:

h0(X)← p0(X) + si(α) · p1(X) ,

h1(X)← h0(X) + p1(X) .

At this point, the algorithm continue recursively its execution of the new half-sized
polynomials. To do that, it recalls the FFTLCH function passing as scalar input α and
α + βi, for the respectively h0(X) and h1(X) polynomials.

The inverse process IFFTLCH follows a unit-and-build approach: starting from the
known h0(X) and h1(X), it computes the original value p0(X), p1(X) using the IFFTLCH
butterfly structure

p0(X)← h0(X) + si(α) · p1(X) ,

p1(X)← h0(X) + h1(X) .

The whole process is composed of ℓn layers, each of n/2 butterfly operations. Figure 2
illustrates the FFTLCH and an IFFTLCH processes, highlighting the butterfly structures
above.

+

x

+

(a) The HQC FFTLCH process and its elementary processing element, the FFTLCH butterfly.

+

x

+

(b) HQC IFFTLCH process and its elementary processing element, the IFFTLCH butterfly.

Figure 2: Example of a FFTLCH and IFFTLCH network with the FFTLCH butterfly and the
IFFTLCH butterfly.
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3.3.3 The Frobenius map and the new evaluated points

To multiply polynomials f and g ∈ F2[x]<d such that deg(f · g) < n = 2ℓn = 2(d + 1),
we can split f, g into ℓ-bit blocks, apply the AFFT to f and g in F2m [x] to evaluate them
at Vℓn

, perform PWM, and finally apply the inverse AFFT to obtain (f · g)(x). Here the
AFFT procedure first performs polynomial basis conversion using a function BasisCvt, and
uses FFTLCH to evaluate polynomials in the novelpoly basis; the inverse AFFT performs
IFFTLCH and iBasisCvt. This process exactly describes Kronecker segmentation algorithm,
in 3.1, using evaluation points in Cantor basis.

Definition 2. We let ϕ2 denote the Frobenius map (squaring) over F2, mapping a ∈ F2m

to ϕ2(a) := a2. Note that

C(ϕ2(a)) = ϕ2(C(a)) for all C ∈ F2[x] (5)

which means that the value of C at point ϕ2(a) can be derived from the value C(a) by
computing ϕ2(C(a)).

The n evaluation points can be reduced using to np = n/m using the Frobenius map
and, as suggested in [LCK+18], by taking the set of evaluation point to be

Σ = βℓnp +m/2 + Vℓnp
(6)

where ℓnp = log(np) < m/2 and ℓnp + m/2 < m. Note that #Σ = np = n/m. The
Frobenius AFFT (FAFFT) is the AFFT with Σ as the evaluation set, and exploiting ϕ2 for
evaluation.

3.3.4 Truncating the FAFFT using the Encoding function

As shown in [LCK+18], given f ∈ F2[x]<n and the point sets Σ̂ = α + V(ℓnp +ℓm), where
α = βℓnp +m/2, evaluating f at Σ corresponds to performing a traditional size-n evaluation
of f at Σ̂, avoiding all the redundant operations. This is called the Truncated FAFFT, or
simply FAFFT.

Definition 3. Given Σ̂, we define the invertible linear map encode : F2[x]<n 7→ Fnp

2m [x] by∑n

i=0
fix

i ∈ F2[x] 7−→
∑np−1

i=0
f ′

ix
i ∈ Fnp

2m [x]

where

f ′
i :=

∑m−1

j=0
rj · fj·np+i with rj =

lm∏
k=1

(βm/2−k)jk and j :=
∑ℓm

i=0
ji2i .

The function encode performs the first ℓm layers of the FFTLCH process. The Truncated
FAFFT therefore starts with the usual novelpoly basis conversion for a size-n polynomial.
Then, ℓm layers of the size-n FFTLCH process is done with encode; finally, the last ℓnp

layers are computed with the usual size-np FFTLCH process over Σ.

3.4 Overall FAFFT Polynomial Multiplication
Algorithm 1 reproduces the binary polynomial-multiplication algorithm of [CCK21]. As
noted above, the operation relies on six processes: BasisCvt, Encode, FFTLCH, and their
respective inverses iBasisCvt, Decode, and IFFTLCH.

To evaluate two input polynomials a(x) and b(x) ∈ F2[x]<n at the np evaluation points
in F2m [x], defined by the Frobenius map, we first apply BasisCvt to convert them to the
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Algorithm 1: FAFFT-based Polynomial Multiplication
Input: n: Maximum length of the output polynomial.

1 Procedure FAFFT(f(x) ∈ F2[x]<d, Σ)
2 (f0, . . . , fn−1) ∈ Fn

2 ← BasisCvt(f(x))
3 (f ′

0, . . . , f ′
np−1) ∈ Fnp

2m ← Encode((f0, f1, . . . , fn−1), Σ)
4 (f̂0, . . . , f̂np−1) ∈ Fnp

2m ← FFTLCH((f ′
0, . . . , f ′

np−1), Σ)
5 return (f̂0, . . . , f̂np−1)
6 Procedure FAFFT−1(f̂(x) ∈ Fnp

2m , Σ)
7 (f ′

0, . . . , f ′
np−1) ∈ Fnp

2m ← IFFTLCH((f̂0, . . . , f̂np−1), Σ)
8 (f0, . . . , fn−1) ∈ Fn

2 ← Decode((f ′
0, f ′

1, . . . , f ′
n−1), Σ)

9 f(x) ∈ F2[x]<n ← iBasisCvt(f0, f1, . . . , fn−1)
10 return f(x)
11 Procedure BitPolyMult(a(x), b(x) ∈ F2[x]<d)
12 (â0, . . . , ânp−1) ∈ Fnp

2m ← FAFFT(a(x), Σ)
13 (b̂0, . . . , b̂np−1) ∈ Fnp

2m ← FAFFT(b(x), Σ)
14 (ĉ0, . . . , ĉnp−1) ∈ Fnp

2m ← (â0 · b̂0, . . . , ânp−1 · b̂np−1) // PWM
15 c(x) ∈ F2[x]<n ← FAFFT−1((ĉ0, . . . , ĉnp−1), Σ)
16 return c(x)

novelpoly basis. Then we apply Encode to virtually execute the first ℓm layers of FFTLCH.
The resulting polynomials a′(X), b′(X) ∈ Fnp

2m [x] are represented with np coefficients in
F2m [x]. The remaining ℓnp butterfly layers are processed by performing an usual size-np

FFTLCH process with the evaluation-point set Σ. This yields â(X) and b̂(X) ∈ Fnp

2m [x]. To
finalize the polynomial multiplication we first perform a linear point-wise multiplication,
PWMLCH, which amounts to ℓnp

multiplications in F2m [x]; then we interpolate and convert
back, using IFFTLCH, Decode, and iBasisCvt to get the final result.

Table 3 lists the parameters we used to apply Algorithm 1 in HQC. The extension field
used throughout is F232 = F2[x]/(g(x)), where g(x) = x32 + x22 + x2 + x + 1.

Table 3: FAFFT parameter for all HQC levels. Here nHQC is the n-parameter from the
HQC specification, and n denotes the next power of 2.

nHQC n m np lnp
Σ

HQC-128 17,669 65536 32 2048 11 β27 + V11
HQC-192 35,851 131072 32 4096 12 β28 + V12
HQC-256 57,637 131072 32 4096 12 β28 + V12

4 Polynomial multiplication sharing strategy
We now define our hardware-based sharing strategy for FFT-based polynomial multiplica-
tion in ML-KEM and HQC. As we saw above, these polynomial multiplications follow the
same operational approach and data handling scheme, but there are critical differences
in the butterfly structures: first, the rings Rq (for ML-KEM) and F2m (for HQC) have
completely different arithmetic operations, and second, each butterfly has a different order
of dependence of operations. Our goal is to perform all of these different butterflies (and
ultimately, both polynomial multiplications) using a single configurable agile hardware
design.
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Our solution, SuperButterfly (described in §4.1), varies the execution of arith-
metic operations while reducing resource consumption and communication overhead. We
present Phoenix, our SuperButterfly-based hardware accelerator, in §4.2, and report
experimental results in §5.

4.1 SuperButterfly
SuperButterfly is a configurable digital circuit that can perform all the butterfly
structures involved in the targeted NTT and FAFFT polynomial multiplication operations.

A SuperButterfly Unit (SBU) (see Figure 3) is a pipelined hardware architecture
with a latency of 8 clock cycles that processes 32-bit data. It takes three input data—
two for coefficients and one for constants—and provides two outputs. The SBU can be
configured to compute

• one AFFT-based butterfly for HQC, which requires a 32-bit wide data path; or

• two parallel NTT-based butterflies for ML-KEM, operating on 12-bit coefficients in
the higher and lower 16-bit halves of the data path.

This reduces the data dependency problem that occurs in the PWM1 configuration in ML-
KEM, where the calculation of the final result depends on intermediate values computed
in another butterfly.

+

+/- +/-x

0

1

0 1

{opmode,addsub,intt}

{opmode,intt}

sel2

sel4sel5

opmode opmode

COMP3COMP2

COMP1

COMP4

0

1

0

1

sel1

0

1

sel3

sel[8:0]

Figure 3: SuperButterfly hardware architecture.

The SBU circuit consists of four fundamental arithmetic units, defined in §4.1.1
and §4.1.2:

COMP1 an agile modular adder computing modular addition (with or without carries),
followed by an optional modular division by 2 (for a GS butterfly);

COMP2 an agile modular arithmetic unit extending COMP1 with modular subtraction;

COMP3 an agile modular multiplier supporting carrying and carryless multiplication;

COMP4 a second agile modular arithmetic unit like COMP2, but omitting division-
by-2.
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The SBU can be programmed in seven different butterfly configurations: four for
NTT multiplication (Figure 4), and three for FAFFT multiplication (Figure 5). We select
butterfly configurations using nine control signals:

• opmode (sel[8]) changes the operation type depending on which polynomial ring
we are using;

• addsub (sel[7]) switches addition and subtraction for NTT butterflies;

• intt (sel[6]) enables division by 2 in the INTTGS butterfly;

• pwm (sel[5]) selects different data arrangements for PWM0 and PWM1 in the NTT;

• sel[4:0] guarantee correct data flow in a given butterfly.

Table 4 lists the configurations with their control signals and active components.

Table 4: Configuration signals for programming SuperButterfly
Function sel[8:0] COMP1 COMP2 COMP3 COMP4

NTTCT 010010011 ✓ ✓ ✓
INTTGS 011000100 ✓ ✓ ✓

PWM0 000010100 ✓ ✓
PWM1 000110000 ✓ ✓ ✓

MOD_ADD 000000000 ✓
FFTLCH 100011001 ✓ ✓ ✓

IFFTLCH 100001101 ✓ ✓ ✓
PWMLCH 100010100 ✓
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0
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0 1

(a) Cooley-Tukey NTT butterfly
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0

1

0

1

0

1

0 1

(b) Gentlemen-Sande INTT butterfly
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(c) PWM0 configuration
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1

0

1

0

1

0

1

0 1
+/-SWAP
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+

+

-

(d) PWM1 configuration

Figure 4: SuperButterfly configuration features for NTT multiplication. CT and GS
are used for the NTT and INTT, respectively, while PWM0 and PWM1 which are chained
to compute the 2-way Karatsuba PWM.
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Remark 1. The SBU can also be used to compute some other ML-KEM operations in
hardware beyond NTT multiplication, such as stand-alone modular addition (MOD_ADD
in Table 4). This configuration requires only COMP1 and is not used in NTT-based
polynomial multiplication, so it is not shown in Figure 4.
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(a) FFT LCH butterfly
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(b) IFFT LCH butterfly
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0
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0
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0

1

(c) PWM butterfly

Figure 5: SuperButterfly configuration features for FAFFT multiplication. Note that
PWM is much simpler here than in the NTT, both in configuration and at the operational
level: only a carryless modular multiplication is used.

4.1.1 Agile modular arithmetic

The FAFFT and NTT use completely different arithmetic operations. The FAFFT uses
carryless sums, i.e. XORs, and addition and subtraction are identical. The NTT works in
Zq, with values represented by integers in [0, q), and addition and subtraction are distinct.
Given representatives a, b for elements of Zq, the representatives for (a± b) mod q are

c = (a + b) mod q =
{

ct if ct < q ,

ct + (q + 1) otherwise
where ct := a + b ; (7)

d = (a− b) mod q =
{

dt if dt < q ,

dt + q otherwise
where dt := a + (b + 1) . (8)

(Here x denotes bit-wise NOT, so x + 1 is the two’s complement representation of −x.)
Figure 6 describes an agile hardware modular adder inspired by the implementation

of [ZLL+21]. There are two internal computational units. In the NTT, each computes
a separate butterfly; in the FAFFT, with carryless additions, the butterfly result is the
concatenation of the two outputs. We can clearly see the two cases of equation (7) in the
internal unit: the second requires a sum of three terms. By using a Carry-Save-Adder
(CSA), we can perform a carryless addition, as we only need to set a third term to 0.

This circuit can also divide the final result by 2 when needed for GS butterflies in the
INTT. We do this with a shift and an addition: x

2 mod q = (x≫ 1) + x[0] ·
(

q+1
2

)
.
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Figure 6: The agile modular adder circuit (COMP1). Configurations and control signals
are listed in Table 5.

Figure 7: Agile modular arithmetic. The division-by-2 unit, highlighted in red, is included
in COMP2 (where it is needed for the GS butterfly), but not in COMP4 (where it is not
used). Configurations and control signals are listed in Table 5.

It is easy to modify COMP1 to enable agile subtraction, which is used in COMP2
and COMP4. For the FAFFT this is trivial (addition and subtraction are identical, and
computed by an XOR), and for the NTT we use equation (8). Figure 7 shows the resulting
circuit; the supported operations and corresponding control signals are listed in Table 5.

Table 5: Configurations and control signals for the agile modular adder and arithmetic
units (COMP1, COMP2, and COMP4).

COMP Control signals
Supported operation 1 2 4 opmode addsub intt KEM
Modular addition ✓ ✓ ✓ 0 0 0 ML-KEM
Modular addition + div-by-2 ✓ ✓ 0 0 1 ML-KEM
Modular subtraction ✓ ✓ 0 1 0 ML-KEM
Modular subtraction + div-by-2 ✓ 0 1 1 ML-KEM
Carryless addition ✓ ✓ ✓ 1 0 0 HQC

4.1.2 Agile modular multiplier

Our agile modular multiplication unit (COMP3, Figure 8) processes data in two steps:

1. a carryless 32-bit multiplication (with 64-bit output) for the FAFFT, or two 16-bit
carrying multiplications (each with 32-bit output) for the NTT, followed by

2. the appropriate modular reduction in each case.

For agility in the first step we use a hybrid 2-way Karatsuba architecture, called
agile_multiplier, which performs two 12-bit carry multiplications for the NTT, or one
32-bit carryless multiplication for the FAFFT.
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Figure 8: Agile modular multiplier (COMP3)

This implements Algorithm 2, a divide-and-conquer approach following the classic
Karatsuba algorithm: given two m-bit inputs, the result is the concatenation of intermediate
values computed on m/2-bit operands. The same algorithm can also be used for carryless
multiplication if all sums and subtractions are replaced by XORs. We will describe this
algorithm in detail below.

For agility in the reduction step we simply parallelize the two methods, then select
the desired result. This does not represent hardware sharing, but its effective resource
consumption is still very low. Modular reduction for the NTT uses the modified Barrett
reduction from [XL21]. (This is a more hardware-friendly approach than the Montgomery
reduction in the ML-KEM reference implementation, since it can be optimised for q = 3329
with shifts and additions.) Modular reduction for the FAFFT uses the same shift-and-add
strategy, but with carryless addition: we XOR the 32 least significant bits of the operand
and left-shift the corresponding 32 bits of the highest value, for each of the monomials in
the modulus g(x), until the 32 most significant bits of the result are equal to 0.

Algorithm 2: Hybrid 2-way Karatsuba Algorithm
Data: Two m-bit numbers a and b, one opmode control bit
Result: The product P = a · b

1 Split a into two m/2-bit parts: a1 (high) and a0 (low)
2 Split b into two m/2-bit parts: b1 (high) and b0 (low)
3 z0 ← a0 ×M0 b0 // Multiplier M0 supports carry and carryless
4 z1 ← a1 ×M1 b1 // Multiplier M1 supports carry and carryless

5 z2 ←
(

(a0⊕a1) ×M2 (b0⊕ b1)
)
⊕ z0⊕ z1 // Multiplier M2: carryless only

6 if opmode = NTT then
7 return (z1 · 2m)⊕ z0
8 else
9 return (z1 · 2m)⊕ (z2 · 2m/2)⊕ z0

Now look more closely at Algorithm 2. The multiplier M2 operates only in carryless
mode, so we implement it with a carryless 2-way Karatsuba strategy operating on m/4-bit
input data. The main innovation, and the main contribution to agility, is in the multipliers
M0 and M1. Enabling carry propagation determines the results expected by the two
butterfly structures integrated in the SuperButterfly, whereas if we disable it, the final
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result will be that of a m-bit carryless multiplication.
We implement M0 and M1 using an Array-like Schoolbook hardware multiplier [AMR23],

which offers better performance than the sequential schoolbook approach. This design
is characterized by a regular and repetitive structure which makes it easy to scale. The
architecture exploits the parallelism of partial products to generate and accumulate them
simultaneously, thus calculating the least significant m bits of the result with a critical
path of m/2 full-adders. The remaining m most significant bits are computed using a
traditional Ripple-Carry Adder (RCA) to add the intermediate sum and report values
calculated during the accumulation phase. The value of the intermediate partial product
accumulation at level i depends on the input carry values, which are output at level i−1. If
these values are forced to 0 (which we trigger using multiplexers depending on the opmode
control values), both in the array-like structure and in the RCA, then the result is the
partial product accumulation without carry propagation: that is, a carryless multiplication.

4.2 PHOENIX Design Rationale
Phoenix is a hardware accelerator that uses SuperButterfly units to accelerate poly-
nomial multiplication for ML-KEM and HQC with an effective and agile sharing strategy.
We give a high-level description in §4.2.1, describe memory organization, data arrangement,
and our conflict-free memory strategy in §4.2.2, and discuss constant management in §4.2.3.
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Figure 9: The top-level hardware architecture of Phoenix. Data and address signals are
in black and red, respectively, with control signals omitted.

4.2.1 Overall architecture

Figure 9 shows the Phoenix architecture. The datapath can be divided into four blocks:
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• Processing element contains two SuperButterfly units, SBU0 and SBU1. Gen-
erally, these work independently. The only case where they must work together is
for PWM in the NTT. Then, Control Unit configures SBU0 in PWM0 and SBU1 in
PWM1, with the output of SBU0 rearranged for input to SB1.

• Polynomial Memories divides the memory elements in two parts, memory-up and
memory-down, which store the polynomial coefficients. The size of each part is
determined by the maximum number of coefficients in each polynomial, packed into
32-bit words.

• Constant Memories stores NTT Twiddle Factors and FAFFT constants.

• Coefficient Index computes the index in memory of the coefficients consumed by
Processing element. INDEX-SBU 0 and INDEX-SBU 1 contain registers to store the
index-pairs of coefficients to be processed by SBU0 and SBU1, respectively. These
are initialized by INIT-ADDRESS (according to the polynomial size, depending on
the KEM) and incremented by UPDATE-UNIT. BANK-DECODER computes the memory
addresses and instances of coefficients to be processed.

The Control Unit orchestrates everything, sending control signals to the other blocks.
Phoenix performs operations in-place: the memory addresses used to read coefficients

are also used to write results. The operations process different coefficient couples at each
clock cycle; given the fixed latency of SuperButterfly, we use delayed data blocks
managed by the QUEUE element to correctly synchronize Processing element results.

4.2.2 Memories and memory access in PHOENIX

Our memory-access scheme uses the methodology of [MRW+22] to address the different
levels of parallelism in butterfly executions throughout FFT-like operations. From now
on, we refer to a single memory instance as a memory bank, or BRAM. For a given
array processing element of width wP E and depth dP E , we use b := 2wP E banks to store
polynomial coefficients. The scheduling algorithm of [MRW+22] generates indexes of
coefficients to be consumed by the wP E × dP E processing element units. The authors
of [MRW+22] formally prove that this scheme guarantees

• conflict-free access: the 2wP E coefficients consumed in the Processing element
unit are read from 2wP E different banks in all FFT-like operations. This avoids
simultaneously reading two or more coefficients from a single bank, though it also
induces an overhead in the bank decoder: more coefficients implies more additions
(and thus more resources) for memory-bank calculations.

• no data-dependency: the coefficient scheduling algorithm ensures the absence of
(read-after-write) data-dependency if N ≤ bcP E , where N is the number of input
coefficients and cP E is the latency for a butterfly from coefficient index generation
until storage in memory. For example, if dP E = 1, then the coefficient at index has

bank =
( ∑L−1

i=0
di

)
mod b and address =

⌊index
b

⌋
(9)

where d0, . . . , dL−1 are the digits of the base-b expansion of index.

In our case there are only two SBUs in Processing element, so wP E = 2 and b = 4.
Polynomial Memories contains 8 Dual-Port BRAMs divided in two sets of four, one

for each polynomial. Each BRAM has 1024 32-bit data words to handle the maximum
polynomial size. For the FAFFT, one coefficient fits well in a word; for the NTT, the
corresponding pair of even and odd index coefficients share a BRAM address. We detail
the Constant Memories block below.
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4.2.3 NTT constant storage and FAFFT constant generation

Constants in embedded accelerators are typically precalculated and stored in a read-only
memory. The NTT and FAFFT use different constant values, so they cannot be shared
in common memory spaces. We therefore divide the Constant Memories block in two
sections, one for each set of constants.

For the NTT, the powers of the twiddle factors are often related and grouped within
a single address, but data must be replicated when dealing with many PE instances in
Processing element units. The incomplete NTT used in ML-KEM guarantees processing
at least two butterflies per round. We take advantage of this to use two read-only memories
(one for each SBU), each storing 256 pre-computed 16-bit twiddle factors (128 for NTTCT
and 128 for INTTGS).

The FAFFT requires a very high number of constants, so we precompute some (stored
in four different read-only memories with a size of 16 x 32 bits) and recompute on the
fly the others. Indeed, as we saw above, the FAFFT uses fast evaluation of expressions
sk(α) = βm/2+i + sk(γ) where 1 ≤ i ≤ s and γ ranges over all the points in Vs. For
HQC192 and HQC256 we have s = 12, which means 4096 32-bit evaluation points; HQC128
has s = 11. Storing all these points requires 32KB of memory, which is inconvenient for
embedded applications.

Instead, we store a subset of V12, and recompute the other elements as we require them.
The simplest approach would be to store the basis to combine β0, . . . , β11 and use a network
of XORs to combine them. We reduce overhead using the so-called four Russians method
(M4R) [ADKF70]. First, we prepare 3 read-only memories ROM1, . . . , ROM3 containing all
of the elements in V4 = ⟨β0, . . . , β3⟩, ⟨β4, . . . , β7⟩, and ⟨β8, . . . , β11⟩, respectively. Splitting
the binary vector γ of γ ∈ V12 into 4-bit chunks, i.e. γ = γ1 + γ2 + γ3 with each
γi ∈ ⟨β4i−4, . . . , β4i−1⟩, we have γ = ROM1[γ1] ⊕ ROM2[γ2] ⊕ ROM2[γ2], using the γi

as read memory addresses. To complete the evaluation of sk(α) in hardware we prepare
another read-only memory, ROM0, containing the Cantor basis values βm/2+1, . . . , βm/2+s.
In total, this requires storing only 60 32-bit points.

5 Implementing PHOENIX

We now describe the integration of Phoenix as a loosely-coupled accelerator in a real
System-on-Chip (SoC) scenario, and measure performance results for polynomial multipli-
cation. We will give further detail on integrating Phoenix to accelerate ML-KEM and
HQC in §6 below.

We implemented SuperButterfly and Phoenix using Verilog Hardware Description
Language (HDL). We simulated, synthetized and implemented them using Vivado 2019.1
design suite on a Xilinx Zynq-7020 SoC (xc7z020clg400-1) device containing a dual-core
ARM-A9 processor, a 512 MB DDR3L RAM and an Artix-7 based FPGA (13300 Slice,
140 32-Kib BRAM36 and 220 DSP), embedded on Zybo Z7-20 Diligent board. The critical
path delay of Phoenix, imposed by the SuperButterfly unit, is 8ns; this corresponds
to the maximum frequency of 125MHz. Only one CPU core is used and its clock frequency
is set to 125MHz to be close as possible to a final system without clock domain crossing
issue. To perform the profiling of the ML-KEM and HQC cryptosystems, we use the
PQClean reference2 [KSSW22] as a baseline software implementation, without using NEON
instruction or any assembly optimizations.

2https://github.com/PQClean/PQClean/
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5.1 PHOENIX integration
We connect Phoenix to the internal communication bus of our Xilinx Zybo Z7-20 board
using an AXI4-Lite hardware slave interface. Although this is not well-suited to high-
bandwidth communication compared to the full AXI4 protocol, it offers a lightweight
solution for integrating accelerators. The full SoC, depicted in Figure 10, runs at a working
frequency of 125MHz.

Cortex ARM A9

32-bit AMBA Interconnect

DRAM Controller UART
JTAG

S

S

M M S

AXI4-Lite
PHOENIXcmd, dataIN

status, dataOUT

Figure 10: Overall System-on-Chip FPGA integration of Phoenix.

Phoenix supports the hardware operations listed in Table 6. The CPU configures
Phoenix for these operations using the instruction set sketched in Figure 11.

[4:1]6 0[8:7]1

addr
opcode

up/down

security level
algo

9 config bits

Figure 11: The Phoenix instruction set. The configuration fields are labelled as follows:
algo selects the cryptosystem (ML-KEM or HQC); security level specifies the security
level of the chosen cryptosystem; u/d selects operation on Memory-up, Memory-down, or
both; addr: defines the pre-compute starting memory address for ML-KEM operations
involving polynomial error; and opcode: encodes the value of the operation to be executed.

Remark 2. We note that in ML-KEM, all three security levels use the same polynomial
size (n = 256, variable parameters are the vector and matrix dimensions: k and k × k), so
the execution of a single NTT, INTT, or PWM is the same for each level (see §6.1). In HQC,
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Table 6: Configurations of supported operations by opcode. The vector operations in the
last columns support ML-KEM optimizations discussed in §6.1.

Opcode Operation Opcode Operation Opcode Vector operation
0100 NTT 0100 FFTLCH 0101 kNTT
0001 INTT 1100 FFTLCH + LOAD 0011 kPWM
0010 PWM 0001 IFFTLCH 1010 kACCUMULATE

0010 PWMLCH 1011 kACCUMULATE + LOAD

on the other hand, HQC128 uses one polynomial size while HQC192 and HQC256 use
another.

5.2 Resource consumption
Table 7 breaks down resource consumption for our design (post-implementation), including
the major submodules described in §4.2.1 and the four components of the SBU seen
in §4.1. The most area-consuming module in Phoenix is the Processing element block,
containing two SBU units and accounting for more than 65% of the LUTs and 76% of the
FFs. Within each SBU, the major contribution is the agile modular multipler (COMP3),
accounting for 66% of the total LUTs and 40% of the FFs. The remaining 60% of FFs are
needed for data synchronization. Contrary to traditional NTT-based hardware design, our
SBUs do not use DSP resources (this will be important for the area comparison in §5.4).
COMP4 is the smallest design sub-block in the SBU, due to the absence of the division-by-2
feature.

The Polynomial Memories block contains 8 BRAM, 4 in each sub-block. For the
Constant Memories block, the two TWF ROM memory banks for ML-KEM require
2× 256× 16 bits, and are mapped into a half BRAM instance. The HQC constant memory
banks only require 16× 32-bits ROMs each; these are not mapped into BRAMs, but rather
implemented using LUTs and FFs. The 15% of FFs of Phoenix are used for data and
address synchronization because of the internal latency in the SBU units. Finally, the
Control Unit accounts for 16% of LUTs and 33 internal FSM states. This non-negligible
percentage shows the complexity of this block in managing a variety of operations on
polynomials of different lengths.

The lack of existing FAFFT hardware implementations prevents us from measuring
the real advantage in resource consumption of the integrated sharing strategy in Phoenix.
Our new main objectives will be to demonstrate the performance alignment, as well as
the overhead due to agility, of our accelerator compared with state-of-the-art FAFFT and
NTT implementations.

5.3 FAFFT performance with PHOENIX
In this section, we analyse the impact of Phoenix on a single polynomial multiplication, at
all HQC security levels, using the FAFFT. Since there is no previous hardware acceleration
of FAFFT to compare for comparison, we compare Phoenix against our own software-only
FAFFT implementation running on the same target platform (described above), operating
at 125MHz. Table 8 shows the improvement in a single FAFFT polynomial multiplication.

As we can see, the operational steps targeted for the acceleration are FFTLCH, PWMLCH
and FFTLCH. On these steps, Phoenix speeds up performance by two orders of magnitude.
Other represents clock cycles during a whole polynomial multiplication dedicated to
operations that are not reported in Table 8. This cost is higher in HW-SW implementations
due to memory transfer between the software and Phoenix. In the two case studies
reported, the overall polynomial multiplication is accelerated by 3.3× and 3.5× respectively.
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Table 7: Phoenix hardware resource counts for our Artix-7 implementation. Datapath
includes the given components but also the internal data-selection hardware, performed by
multiplexer-based components, that are not explicitly counted elsewhere.

Module LUT FF BRAM DSP
Control Unit 826 131 0 0
Datapath 4250 3952 8.5 0

| Coeff memory address 238 128 0 0
| Write address 30 612 0 0
| Polynomial Memories 0 0 8 0
| Constant Memories 37 98 0.5 0
⌊ Processing element 3319 3114 0 0

⌊ 1× SuperButterfly 1432 1380 0 0
| COMP1 160 0 0 0
| COMP2 176 0 0 0
| COMP3 948 548 0 0
⌊ COMP4 148 0 0 0

Total = Control Unit + Datapath 5076 4083 8.5 0

The difference between the speedup of the single operations in FAFFT and the total
polynomial multiplication is mostly due to the contribution of the software encoding
and decoding operations of the polynomials: polynomial basis conversions are relatively
inexpensive, because they only use XOR operations.

Table 8: Performance impact of PHOENIX (Cycles, with speedup in italics) for a single
FAFFT polynomial operation. Recall that HQC-128 multiplies polynomials of length
n < 215, while HQC-192 and HQC-256 multiply polynomials of n < 216. SW refers to our
own software-only implementation; HW-SW uses Phoenix.

Function HQC-128 HQC-192/HQC-256
SW HW-SW SW HW-SW

2× BasisCvt 109,940 109,940 = 235,096 235,096 =
2× Encode 553,766 553,766 = 1,110,258 1,110,258 =
2× FFTLCH 3,055,142 11,520 256× 6,651,156 25,316 262×
1× PWMLCH 252,073 1,102 228× 508,071 2,258 225×
1× IFFTLCH 1,522,278 5,760 264× 3,308,442 12,658 261×
1× Decode 764,880 764,880 = 1,532,064 1,532,064 =
1× iBasisCvt 98,576 98,576 = 207,426 207,426 =
Other 1,029 332,353 9,900 673,096
Total 6,357,684 1,877,897 3.3× 13,562,413 3,798,172 3.5×

5.4 NTT performance with PHOENIX
We now describe the impact of Phoenix on performance and resources for a single NTT
operation. Unlike the AFFT, there have been many hardware implementations of the
NTT operation for ML-KEM. We decided to compare Phoenix with implementations
offering either low resource consumption [IUH22] [LTHW22] [BNAMK21], or the best
overall cryptosystem performance [YMÖS21]. We note that all these implementations
integrate 4 butterflies in their process element unit, which corresponds to our 2 SBUs.

To compare resources, we use the Slice Equivalent Cost (SEC) metric [LTHW22], which
collects and weights various hardware resource costs in a single value. For our Artix-7
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FPGA platform,

SEC := ⌊LUT/4⌋+ ⌊FF/8⌋+ 200 · BRAM + 100 ·DSP .

We also use the Area-Time Product (ATP) metric, which multiplies a design’s area (in
this case SEC) and latency, which is the cycle count divided by the maximum frequency.

Table 9: Area and performance of PHOENIX on the Artix-7 FPGA and comparison with
state-of-the-art solutions on the same FPGA. Reported execution time is referred to the
execution the NTT and INTT operations.

Time ATP
LUT FF BRAM DSP SEC Cycles MHz µs Value Ratio

This work 5076 4083 8.5 0 3479 236 125 1.88 6569 1
[YMÖS21] 2543 792 9 4 2935 232 182 1.27 3741 ÷1.8

[IUH22] 904 811 2.5 4 1227 268 216 1.24 1522 ÷4.3
[LTHW22] 1170 1164 2 4 1638 235 303 0.78 1270 ÷5.2

[BNAMK21] 801 717 2 4 1090 324 222 1.46 1590 ÷4.1

The results are shown in Table 9. As expected, compared with dedicated hardware NTT
accelerators, hardware-agility implies a higher consumption of resources. For example: the
high number of BRAMs in Phoenix is imposed by the need to compute with long HQC
polynomials. The agility overhead of Phoenix is lower compared with [YMÖS21], due
to the smaller difference in SEC: while Phoenix has 2× the LUTs and 5×5 the FFs, it
uses the same number of BRAMs and benefits from the absence of DSPs. The overhead
of agility is worse when comparing Phoenix with lower-resource approaches, such as
[IUH22][BNAMK21][LTHW22], with ATP overheads between 4.1× and 5.2×. It should
be noted that this overhead is due to a singular feature of our work. Our hardware can be
used to accelerate ML-KEM and HQC.

Reassuringly, the time-overhead of agility is mild. Phoenix executes NTT and INTT
operations with a number of cycles that is consistent with the current state of the art.
However, as the lowest-frequency solution, Phoenix has the longest total execution time.
For PWM, due to the cascading configuration of the two SBUs during the execution of
this operation, the latency is 152 clocks (128 for processing and 24 for pipeline latency).

Performances for ML-KEM KeyGen, Encaps and Decaps are reported in Section 6.3.

6 An Agile SoC for ML-KEM and HQC with PHOENIX
We now look at the impact of Phoenix on KEM performance for ML-KEM and HQC.
We optimize ML-KEM integration using the internal resources of our design in §6.1.
We show how to improve HQC performance using an alternative FAFFT-domain data
representation in §6.1.2. Section 6.2 gives results for HQC, providing a complete overview
between the pure-software and the hardware-software co-design scenarios. Additionally, we
describe their comparison using the optimization proposed in §6.1.2. We give results for
ML-KEM in §6.3, showing the speedup with respect to the reference version. Furthermore
we analyze the Phoenix positioning in the co-design and fully in the hardware state of
the art ecosystem, highlighting the impact of our proposed agile solution.

6.1 Optimizing KEM integrations
Integrating Phoenix in HQC is straightforward. As we saw in §3.4.3, the FFT is a mono-
lithic operation divided into a sequence of subroutines. Polynomials A and B are converted
to the new polynomial basis and encoded, then offloaded to the accelerator to speed up
the subsequent FFTLCH, PWMLCH, and IFFTLCH. Phoenix can simultaneously perform an
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FFTLCH and an offload to reduce the latency of the entire polynomial multiplication, but
these two operations must be performed separately between the memory-up (MU) and
memory-down (MD) blocks in order to be parallelized. To do this, we offload the first
polynomial A into MU, perform FFTLCH on A and, at the same time, we offload the second
polynomial B into MD. After the second FFTLCH operation on B, PWMLCH is done and the
result, stored in MU, is interpolated back with IFFTLCH. Finally, the output is transferred
from MU to the processor’s main memory, where it is decoded and converted back to the
original polynomial basis.

Integration in ML-KEM is different, for two reasons: first, keys are stored in the NTT
domain, and second, we must multiply matrices and vectors of polynomials. This does
not favour a monolithic hardware-based operation integration, so the overall acceleration
factor is heavily influenced by continuous interoperability and data exchange between
hardware and software. We mitigate this with vector operations for Phoenix in §6.1.1.
(For HQC, we optimise at the level of data representation instead, without adding new
hardware operations to Phoenix.)

6.1.1 Array-Array Polynomial Multiplication in ML-KEM

Given two k-vectors â0 = (â00, . . . , â0k−1) and y = (y0, . . . , yk−1) of polynomials, with the
elements of â0 in the NTT-domain (and k depending on the ML-KEM security level), we
can compute t0 = a0 · y as

t0 = NTT−1(â0 · ŷ) (10)

which first computes the polynomial vector ŷ = NTT (y), then the scalar product t̂0 = â0 ·ŷ
using PWM, before interpolating it back in the original polynomial domain to get the
result t0. In fact, this scalar product is the sum of all the PWM operations between
corresponding elements of the input vectors:

t̂0 = â0 · ŷ =
∑k−1

i=0
â0i ×P W M ŷi (11)

This sum corresponds to the accumulation phase of all the temporary PWM results.
In a traditional NTT integration approach, the accumulation phase is performed in

software with PWM in hardware. In this scenario, an NTT accelerator receives the
polynomial pair to be multiplied and stores back the result, with this process repeated k
times.

We can do better in Phoenix by exploiting the large available amount of memory
(imposed by the long polynomials in HQC) to perform polynomial vector multiplication.
To this end, we add three further operations in the Control Unit of our accelerator: kNTT,
kPWM and kACCUMULATE, together with some support functions at the hardware-software
interface level to read and write data structures such as polynomials and polynomial
vectors. The opcodes for these “vector” operations appeared in Table 6 above.

Given two polynomial vectors already offloaded in the Phoenix memories, we can
use these vector instructions to compute entirely in hardware at each ML-KEM security
level (equation (11)). For example, given a matrix Â and a polynomial k-vector ŷ,
the matrix-vector product t = Ây can be computed using k vector-vector polynomial
multiplications:

t̂ = Âŷ =
k−1∑
j=0

k−1∑
i=0

âji ×P W M ŷi .

6.1.2 Alternative data representation for HQC

We can optimize the use of AFFT in HQC by changing the data representation of the
private and public keys to the FAFFT domain. (This is compatible with any HQC
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implementation using the FAFFT, and in particular with Phoenix, where it requires no
new instructions.) This alternative data representation doubles the public key size, but
the efficiency benefits should still make this approach interesting for applications where
public keys are rarely transmitted, e.g. with static or pre-shared public keys.

We define a procedure FAFFTf (·) that converts to novelpoly, and encodes and evaluates
an input polynomial using the new evaluation point sets imposed by Frobenius map. The
inverse procedure FAFFT−1

f (·) interpolates back, decodes, and converts back to the original
basis. Recall that in HQC, the secret key is (x, y) and the public key is pk = (h, s = x+h·y).
If we precompute pk = (ḧ = FAFFTf (h), s̈ = FAFFTf (s)), then we can save two FAFFTf (·)s
in the Encrypt function in the underlying PKE scheme:

u = r1 + FAFFT−1
f (ḧ× FAFFTf (r2)) , (12)

v = mG + FAFFT−1
f (s̈× FAFFTf (r2)) + e . (13)

Precomputing ÿ = FAFFTf (y) saves a further FAFFTf (·) in the Decrypt function:

m = Decode(v − FAFFT−1
f (FAFFTf (u)× ÿ)) . (14)

6.2 HQC with PHOENIX
Table 10 shows the integration results for HQC-128, HQC-192, and HQC-256 using FAFFT
for polynomial multiplication. We use the PQClean reference as a baseline software
implementation, as there is no state of the art that includes hardware implementations on
the FAFFT applied to HQC. We consider “standard” HQC (compatible with the NIST
Round-4 submission specification), and “optimized HQC” proposed in §6.1.2 (with keys in
the AFFT domain). Since the “optimized” version targets applications with long-term
keys, we only report times for Encaps and Decaps.

For standard HQC, using the FAFFT in software already gives a substantial improve-
ment: for example, Encaps for HQC-128, -192, and -256 runs 3.8, 5.2, and 8.2 times
faster, respectively. Integrating Phoenix brings further improvements: looking at Encaps
again, the HW-SW codesign runs HQC-128, -192, and -256 9.0, 12.6, and 16.7 times faster,
respectively. For “optimized” HQC, we can see further improvements in the performance
of Encaps and Decaps, both in the software and with Phoenix.

Table 10: Comparison of KEM performance, in number of clock cycles: PQClean reference
implementation (SW) vs. this work (SW-based FAFFT multiplication, and HW-SW using
Phoenix). The optimized version of HQC is defined in §6.1.2. Values are in MCycles,
with speedups over baseline implementation in italics.

Standard HQC Optimized HQC
Ref. FAFFT PHOENIX FAFFT PHOENIX

HQC-128
KeyGen 28.9 7.3 3.9× 2.8 10.3× - - - -
Encaps 58.7 15.5 3.8× 6.5 9.0× 9.6 6.1× 5.1 11.5×
Decaps 91.9 27.0 3.4× 13.6 6.8× 20.6 4.5× 13.1 7.0×

HQC-192
KeyGen 85.1 15.8 5.4× 6.0 14.2× - - - -
Encaps 171.9 33.3 5.2× 13.7 12.6× 20.7 8.3× 10.9 15.8×
Decaps 262.4 54.4 4.8× 25.2 10.4× 39.9 6.6× 23.7 11.1×

HQC-256
KeyGen 155.8 17.7 8.8× 7.9 19.7× - - - -
Encaps 314.6 38.4 8.2× 18.8 16.7× 25.5 12.3× 15.6 20.2×
Decaps 483.4 69.1 7.0× 39.8 12.1× 52.4 9.2× 36.1 13.4×

We emphasize that all of these results include significant overhead from the slow data
exchange between the CPU and our loosely-coupled accelerator, with long polynomi-
als pushed through an AXI-4 Lite interface that does not offer high-performance data
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transmission. A better communication interface should further improve the results in
Table 10.

6.3 ML-KEM with PHOENIX
Table 11 presents our results for Phoenix integration in ML-KEM. In order to compare the
obtained results, we selected, from the current state-of-the-art, two significant hardware-
software co-design solutions: [FSS20] and [WZZ+24].

It is worth pointing out that a direct comparison of cycle counts for the three implemen-
tations is not fair: each was run on a different architecture and board. In particular, both
of the other system-on-chip solutions are based on the RISC-V microprocessor architecture;
there were no public ML-KEM implementations targeting our development board (i.e.,
based on the ARM architecture). For this reason, Table 11 shows not only raw cycle
counts, but also the acceleration of each HW-SW solution with respect to its own SW
baseline. This offers a fairer comparison of the acceleration capability of each solution.

Table 11: State-of-the-art comparison for NTT acceleration in ML-KEM HW-SW codesign
implementations. Clock cycles are reported for HW-SW, with speedups over the respective
SW baselines in italics.

Device KeyGen Encaps Decaps

ML-KEM 512
[FSS20] PULPino 939,932 ×1.21 1,223,887 ×1.26 1,051,003 ×1.45

This Work Zybo-Z7-20 564,189 ×1.14 570,438 ×1.30 639,403 ×1.38
[WZZ+24] PolarFire 326,983 ×1.91 415,496 ×2.01 394,661 ×2.42

ML-KEM 768
[FSS20] PULPino 1,768,400 ×1.19 2,138,810 ×1.23 1,889,930 ×1.36

This Work Zybo-Z7-20 916,828 ×1.15 954,992 ×1.25 1,048,867 ×1.33
[WZZ+24] PolarFire 536,213 ×1.92 671,082 ×1.98 639,024 ×2.32

ML-KEM 1024
[FSS20] PULPino 2,856,302 ×1.18 3,312,957 ×1.21 2,989,896 ×1.32

This Work Zybo-Z7-20 1,450,164 ×1.14 1,492,047 ×1.22 1,614,779 ×1.28
[WZZ+24] PolarFire 844,008 ×1.89 1,015,251 ×1.91 972,598 ×2.18

Phoenix accelerates different ML-KEM functions by different factors: Encaps improves
more than KeyGen, and Decaps improves even more. While the vector-based optimisations
in §6.1 allow a better acceleration of polynomial multiplication with respect to state-of-
the-art NTT accelerators, this is not immediately evident from Table 11, due to the higher
communication latency imposed by the slow bus protocol on our board. Proof of this
is provided by the slightly greater speedup for Decaps. In particular, the PKE.Decrypt
function (see 2.1) is essentially one vector-based polynomial multiplication, which is
precisely the operation targeted by our accelerator, while the PKE.KeyGen and PKE.Encrypt
functions can be seen as a series of vector-based multiplications with data transfer between
each. Even considering these limitations, the acceleration offered by Phoenix is similar
(and even slightly better in some cases) to that of the tightly-coupled3 solution in [FSS20].

When comparing our proposal to [WZZ+24], we see that Phoenix shows a lower
acceleration factor. For context, we note that the authors of [WZZ+24] propose assembly-
based optimizations for the Keccak functions coupled with the NTT hardware acceleration.
This explains some of the difference with our solution.

7 Conclusion and Further works
In this paper we introduce Phoenix, a crypto-agile loosely-coupled hardware accelerator
for ML-KEM and HQC, aiming to demonstrate performance improvements and resource

3Tightly-coupled hardware accelerators operate close to the CPU, thus offering reduced data transfer
between processor and hardware unit. This allows a high-performance solution, suitable for embedded
systems with resource contraints, like RISC-V-based designs.



Ras, Loiseau, Carmona, Pontié, Renault, Smith, Valea 27

savings compared with non-agile approaches to the individual cryptosystems. At its heart
is a new configurable hardware design, SuperButterfly, providing an efficient hardware
sharing strategy between completely different mathematical structures to speed FFT-based
polynomial multiplication operations in ML-KEM and HQC, namely the NTT and the
FAFFT.

The use of the FAFFT in HQC is innovative: our software implementation is the first of
its kind. Not only does it improve performance, even in software, but it is also the key to
agility. (It also permits an interesting optimization where keys are stored and transmitted
in the FAFFT domain; since this trades faster speeds for larger keys, it is better-suited to
applications with static or pre-shared public keys.)

We have shown that integrating Phoenix yields a significant overall speedup of HQC,
and ML-KEM performance close to the state-of-the-art. Comparing Phoenix’s resource
consumption with efficient NTT-focused hardware solutions, we see that agility (i.e.,
simultaneously supporting HQC) inevitably adds an overhead of between 1.8 and 5.2×,
depending on the reference implementation. For HQC, the lack of competing state-of-
the-art hardware FAFFT implementations targeting HQC makes it hard to fully assess
the real impact of Phoenix in this arena, but we can still show strong performance
improvements—and there is also value in being the first of its kind.

Phoenix could also accelerate polynomial multiplication in other lattice- or code-based
cryptosystems, thus offering even more general lattice-code crypto-agility. For example,
Phoenix could be used in ML-DSA [Nat24a], or any other cryptosystem that uses the
NTT, by slightly modifying the internal structure of our SuperButterfly. Indeed, the
flexibility design of SuperButterfly could be extended to add other butterfly structures,
thus accelerating another FFT-based bottleneck operation contained in HQC’s Reed–Muller
decoder: the Fast Hadamard Transform.
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