
Nominal State-Separating Proofs
Markus Krabbe Larsen

Department of Computer Science
IT University of Copenhagen

Copenhagen, Denmark
krml@itu.dk

Carsten Schürmann
Department of Computer Science

IT Univeristy of Copenhagen
Copenhagen, Denmark

carsten@itu.dk

Abstract—State-separting proofs are a powerful tool to struc-
ture cryptographic arguments, so that they are amenable for
mechanization, as has been shown through implementations, such
as SSProve. However, the treatment of separation for heaps has
never been satisfactorily addressed. In this work, we present the
first comprehensive treatment of nominal state separation in state-
separating proofs using nominal sets. We provide a Coq library,
called Nominal-SSProve, that builds on nominal state separation
supporting mechanized proofs that appear more concise and
arguably more elegant.

I. INTRODUCTION

State-separating proofs [4] have become a widely accepted
tool to express cryptographic games and reductions in the
computational model in a formal and precise way to make them
palatable for modern verification tools and hereby increase the
overall quality of the arguments through formal verification.
The central idea in state-separating proofs is to express games,
reductions, and the adversary as stateful packages that can be
combined in modular ways to describe cryptographic security
proofs. The state is used to store secret information local to
each package.

As an example, consider the Diffie-Hellman key exchange
protocol that stores a random value created during the prepara-
tion of the first message in the package’s local state, and then
accesses it again to compute a shared secret in a subsequent
message. If an adversary had access to the secret information
stored within the state, he would with probability 1 be able
to win the cryptographic game, which would render the way
cryptographic proofs are done void and meaningless. Thus, the
challenge is to protect the state of each package from accidental
or malicious access by other packages, for example, by sharing
state variable names.

The original formulation of state-separating proofs [4] does
not address this challenge adequately, but refers instead to
informal on-demand tacit renaming of state variables when
packages are composed in order to prevent state variable
capture. Similarly, extending Easycrypt by incorporating state-
separating proofs [6] does not address the challenge either
but leaves it instead to future work. Implementations such as
SSProve [10] (in Coq [15]) circumvent this challenge through
ad-hoc assumptions about the disjointness of state variables in
packages at the expense of modularity.

In this paper, we introduce nominal state-separating proofs,
extending state-separating proofs by nominal sets [8] to enforce

state separation between packages. In nominal state-separating
proofs, packages modeling adversaries do not have access to
the state of other packages by construction, as each package
has its own local state name space. When combining pack-
ages, nominal sets ensure that state variable are automatically
renamed away from each other so that state variable capture
becomes impossible. We demonstrate nominal state-separating
proofs by means of showing that the ElGamal cryptoystem[7]
satisfies the public key one time secrecy security property
following the proof in [13] (Ch 15.3).

To demonstrate the power of nominal state-separating proofs,
we have implemented them in a library that extends SSProve,
called Nominal-SSProve.1 With this library, operations for
combining nominal packages – or modules as we call them
– are semantically transparent, which means that a user does
not have to worry about state variable capture, even when
quantifying over adversaries. A fully mechanized proof of the
running example in Nominal-SSProve can be found here.2

We now expand on the challenge and pinpoint the lack
of modularity of state-separating proofs for game hopping
and cryptographic reductions. The main idea behind state-
separating proofs is to reason about the indistinguishability
of a pair of games G1 and G2 by an adversary A. We may
find the two games to be perfectly indistinguishable, meaning
that the adversary cannot distinguish between them, written
as Adv#G1,G2

(A) = 0, where the # symbol represents a
non-nominal advantage definition. We must assume (and make
explicit) that the state variables accessible by the adversary
are disjoint from the state variables used to define the two
games, written as A # G1 and A # G2. Without nominals,
the only way to represent disjointness constraints is to make
them explicit.

Let G1, G2, and G3 be three games, where the pairs of
(G1,G2) and (G2,G3) are perfectly indistinguishable. To show
that (G1,G3) are perfectly indistinguishable, we have to prove
that,

∀A. A # G1 ∧ A # G2 ⊃ Adv#G1,G2
(A) = 0,

∀A. A # G2 ∧ A # G3 ⊃ Adv#G2,G3
(A) = 0

⊢ ∀A. A # G1 ∧ A # G3 ⊃ Adv#G1,G3
(A) = 0

1See supplementary material.
2See supplementary material directory theories/Example/PK.

assuming that the triangle inequality,

Adv#G1,G2
(A) + Adv#G2,G3

(A) ≥ Adv#G1,G3
(A),

holds. This, however, appears to be impossible, since there is no
assumption A # G2. We cannot be sure that the adversary’s
state variables are disjoint from those of game G2. Making
the assumption A # G2 explicit is possible, but it does not
generalize well.

The solution is to revert to nominal state-separating
proofs, which provides a definition of nominal advantage
AdvG1,G2

(A) that enforces state separation between games
(G1,G2) and the adversary A. As a consequence, there is no
longer a need for explicit disjointness assumptions. Therefore,
perfect indistinguishability of G1 and G3 follows directly from
the triangle inequality, as we show in Corollary 37.

∀A. AdvG1,G2
(A) = 0,

∀A. AdvG2,G3
(A) = 0

⊢ ∀A. AdvG1,G3
(A) = 0.

A. Contributions

Our contributions consists of the ensuing points.
1) We make precise the informal requirement of tacit vari-

able renaming in [4].
2) We solve the challenge of state variable capture in state-

separating proofs.
3) We define a formal semantics of nominal state-separating

proofs.
4) We implement Nominal-SSProve as a demonstrator in

Coq.
5) We mechanize the reduction from public key one time se-

crecy for ElGamal to Decisional Diffie–Hellman (DDH).
As a result we identify two mistakes in the mechanization
of the reduction in SSProve [10].

B. Related Work

The Clutch system [9] derives its power directly from separa-
tion logic [12]. It is not designed for state-separating proofs, but
can give automatic disjointness guarantees on program contexts
similar to nominal state-separating proofs. It is expected, that
nominal state-separating proofs can be directly encoded in
Clutch, but to our knowledge the work has not been done yet.

How to handle variable names and α-conversion has been
studied by many. We refer the reader to the POPLmark
challenge [1] for an overview.

State-separating proofs have been used to express the proof
of key-schedule security for the TLS1.3 standard on paper [3],
and many other examples in the style of state-separating proofs
can be found in [13].

C. Overview

This paper is organized as follows. In Section II we define a
probabilistic stateful language together with a module system
for capturing state-separating proofs. Its static and operational
semantics is also described. In Section III, we review the
theory of nominal sets and establish that our notion of heap

forms a nominal set. In the following Section IV we then
show that our notion of adversarial advantage is compatible
with nominal sets. In Section V we give a brief overview of
Nominal-SSProve and discuss the mistakes we identfied in the
development of ElGamal in SSProve. We then conclude in
Section VI and assess results.

II. A LANGUAGE FOR STATE-SEPARATING PROOFS

We turn our attention to the definition of a simple formal
language to express state-separating proofs that extends the
simply typed λ-calculus with product types, sum types, a static
heap, sampling, and a simple module system that adequately
represents sequential and parallel package composition follow-
ing [4]. The language is inspired by functional programming.
It allows us prove correct the nominal constructions that we
shall introduce in Section IV in a proof-assistant agnostic way.
Packages are encoded as modules and package composition
as module composition. Existing tools such as Easycrypt and
Coq/SSProve embed this language into higher-order logic
and the calculus of inductive constructions, respectively, and
inherit additional language features that are irrelevant for this
presentation. In Section II-B we will cover syntactic categories
and in Section II-C the static semantics. As the language is
probabilistic, we introduce the operational semantics and the
sub-distribution monad in Sections II-D and II-E, respectively.
Finally, in Section II-F we introduce the algebraic equations,
that the module system obeys.

A. Base Types and Types

Central to our design is the notion of a sample. As in related
work, we capture sample spaces by finite sets, except here, we
approximate finite sets proof-theoretically.

α ∈ Base ::= unit | α1 × α2 | α1 + α2

Base types model finite sets to draw samples from: the unit type
is inhabited by one element () . Products concatenate samples,
and sums capture non-deterministic choice. A bit, for example,
may be represented as bit = unit + unit , which contains two
elements inl (()) and inr(()). A sample space of size n may
be expressed by fin n, defined as follows:

fin 1 = unit
fin (2n) = bit × fin (n)
fin (2n+ 1) = bit × fin (n) + unit .

Given a security parameter λ, we select a group G with a
cyclic subgroup of order q ≥ 2λ generated by g ∈ G. Formally,
G and the subgroup generated by g are denoted by base type
el = fin q and exp = fin q, respectively. We define the
cardinality |α| of base type α as follows.

|unit | = 1 |α1 × α2| = |α1| · |α2| |α1 + α2| = |α1|+ |α2|

By induction on α, it is easy to see that any base type α is
inhabited.

Theorem 1 (Inhabitation of base types). Let α be a base type,
then α is inhabited.

2

Finally, we declare function types

τ ∈ Type ::= α | τ1 → τ2

used to type cryptographic algorithms.

B. Values, Expressions, and Modules

Base types and types are inhabited by values which are
computed by expressions.

v ∈ Val ::= () | rec f x = e
| (v1 , v2) | inl (v) | inr(v)

e ∈ Exp ::= x | v | c | e1 e2 | fst (e) | snd(e)
| case e of inl (x1) ⇒ e1

| inr(x2) ⇒ e2
| !a | a := e | sample(α) | F(e)

Most of the constructs are self-explanatory, we only explain
those that are not. x, f ∈ V are local variables, subject to
instantiation by substitution. State variables are represented by
atoms and allow us to reference the heap.

Definition 1 (Atoms). The set A defines a countably infinite
set of state variables denoted a1, a2, a3 In this paper, we
use atom and state variable interchangeably.

The set of atoms is infinite, so that in any context of finitely
many atoms it is possible to pick a new atom. The nominal
constructions that we propose in Section III are built on these
atoms.

Finally, F ∈ I are identifiers referring to expressions imple-
mented in other modules, which we define below. The rec con-
struct serves as both the fix-point constructor and abstraction
according to [10]. The two concepts could have been separated
as in other presentations, but nothing is to be gained in our
setting. !a resolves an atom a ∈ A. The expression a := e binds
the result sample of e to state variable a in the heap. There is
an expression to sample uniformly from a base type α of size
|α|, for which we write sample(α). Finally, the expression F(e)
refers to a call of F ∈ I with argument e. We use parentheses in
this case in order to distinguish it from expression application
e1 e2.

We define a few shorthands that will prove useful when
writing out expressions in the language. Note that we encode
failure by looping indefinitely, and that we omit () when the
value is already sorrounded by parentheses. Finally, we allow
() in place of a binding occurence of a local variable, when
that is the only possbile value.

bool = unit + unit
false = inl ()
true = inr ()
fail = (rec f x = f x) ()
λx.e = rec f x = e

let x = e1 in e2 = (λx.e2) e1
let inl (x) = e1 in e2 = case e1 of inl (x) ⇒ e2

| inr(y) ⇒ fail
let inr(x) = e1 in e2 = case e1 of inl (y) ⇒ fail

| inr(x) ⇒ e2
a := e1 ; e2 = (λ (). e2) (a := e1)

To explain the mechanism behind identifier resolution, we
introduce modules next.

M ∈ Module ::= module | M fun F x = e

A module groups together the functionality of an application,
for example, a cryptosystem, a game, an oracle, or a reduction.
Modules are called packages in [4]. Interfaces declare the
types of the respective identifiers of a module. We distinguish
between import and export interfaces, for which we write I
and E, respectively; however, this cannot be observed in all
cases, as interfaces may appear both in the import and export
position.

C. Static Semantics

Given a fixed heap type for atoms Σ and import interface
I for cryptographic algorithms that may be invoked, a set of
constants ∆, and a context Γ,

Σ ∈ Heap ::= · | Σ, a : α
Γ ∈ Ctx ::= · | Γ, x : τ

∆ ∈ Const ::= · | ∆, c : τ
I ∈ Interface ::= interface | I sig F : α1 → α2.

In the case of a non-empty Heap, Ctx, or Const, we omit the
leading ·.

Example 1. In our running example, constants are group
operations. Formally, we write mult (x,y) for x · y, pow (g,x)
for gx and powinv (g,x) for g−x. They are declared as follows.

∆ = mult : el × el → el ,
pow : el × exp → el ,
powinv : el × exp → el

We define the typing judgments for expressions e in context
Γ as follows: Σ; I | Γ ⊢∆ e : τ . Since ∆ is always fixed
throughout an argument involving state-separating proofs, we
omit it from the judgment and write henceforth Σ; I | Γ ⊢ e : τ .
The rules for this judgment are given in Figure 1. In the interest
of brevity, we omit the definition of well-formedness judgments
for Heap, Ctx, Const, and Interface but we remark that they are
implicitly required in rules unit, ax, deref, sample, and module.

Example 2. We define the standard three algorithms for the
ElGamal cryptosystem as abbreviations in Figure 2.

Figure 1 also introduces the typing rules for well-typed mod-
ules. Informally, module M is well typed of export interface E
given a heap typing for Σ an import interface I, and a set of
constants ∆, written as judgment Σ; I ⊢∆ M : E and defined
by rules module and fun. For reasons mentioned above, we
omit the ∆ from this judgment, and simply write Σ; I ⊢ M : E.

Example 3. We define the modules necessary to capture the
DDH assumption in Figure 3. In our example, we use a lazy
form of randomness as captured by the two atoms mga ∈ A
and init ∈ A. GETA ∈ I and GETBC ∈ I are identifiers. We

3

Σ; I | Γ ⊢ () : unit
unit

Γ(x) = τ

Σ; I | Γ ⊢ x : τ
ax

Σ; I | Γ, f : τ1 → τ2, x : τ1 ⊢ e : τ2

Σ; I | Γ ⊢ rec f x = e : τ1 → τ2
rec

Σ; I | Γ ⊢ e1 : τ2 → τ1 Σ; I | Γ ⊢ e2 : τ2

Σ; I | Γ ⊢ e1 e2 : τ1
app

Σ; I | Γ ⊢ e1 : α1 Σ; I | Γ ⊢ e2 : α2

Σ; I | Γ ⊢ (e1 ,e2) : α1 × α2
pair

Σ; I | Γ ⊢ e : α1 × α2

Σ; I | Γ ⊢ fst (e) : α1
fst

Σ; I | Γ ⊢ e : α1 × α2

Σ; I | Γ ⊢ snd(e) : α2
snd

Σ; I | Γ ⊢ e : α1

Σ; I | Γ ⊢ inl (e) : α1 + α2
inl

Σ; I | Γ ⊢ e : α2

Σ; I | Γ ⊢ inr(e) : α1 + α2
inr

Σ; I | Γ ⊢ e : α1 + α2 Σ; I | Γ, x1 : α1 ⊢ e1 : τ Σ; I | Γ, x2 : α2 ⊢ e2 : τ

Σ; I | Γ ⊢ case e of x1 ⇒ e1 | x2 ⇒ e2 : τ
case

Σ(a) = α

Σ; I | Γ ⊢ !a : α
deref

Σ(a) = α Σ; I | Γ ⊢ e : α

Σ; I | Γ ⊢ a := e : unit
assign

I(F) = α1 → α2 Σ; I | Γ ⊢ e : α1

Σ; I | Γ ⊢ F(e) : α2
call

Σ; I | Γ ⊢ sample(α) : α
sample

Σ; I ⊢ module : interface module
Σ; I ⊢ M : E Σ; I | x : α1 ⊢ e : α2

Σ; I ⊢ (M fun x F = e) : (E sig F : α1 → α2) fun

Fig. 1. Static Semantics

keygen : exp × el
keygen =

let sk = sample(exp);
(sk , gsk)

enc : el → el → (el × el)
enc = λpk. λm.

let r = sample(exp);
(gr , m · pkr)

dec : exp → (el × el) → el
dec = λsk. λc.

snd(c) · fst (c)−sk

Fig. 2. Example: Algorithms of the ElGamal cryptosystem defined as abbreviations.

leave it to the reader to verify that the modules are well-typed,
i.e.

mga : unit + el; · ⊢ DDH0 : I−DDH
init : unit + unit ; · ⊢ DDH1 : I−DDH.

For the rest of the paper it is useful to introduce the abbre-
viation DDH = (DDH0, DDH1), also known as a game pair
in [4].

For our final example in this section, we define the interface
for adversaries that we use throughout this paper.

Definition 2 (Interface of the Adversary). An adversary inter-
face is defined as

I−ADV = interface sig RUN : unit → bool

In summary, we have presented a simple functional language
that is powerful enough to express cryptographic algorithms.
If anything, this language is too powerful, because general
recursion captures a class of adversaries beyond probabilistic,

I−DDH = interface
sig GETA : unit → el sig GETBC : unit → el × el

DDH0 =
module
fun GETA () =

let a = sample(exp) in
mga := inr(ga) in
ga

fun GETBC () =
let inr(x) = !mga in
mga := inl ();
let b = sample(exp) in

(gb , xb)

DDH1 =
module
fun GETA () =

let a = sample(exp) in
init := inr ();
ga

fun GETBC () =
let inr () = ! init in
init := inl ();
let b = sample(exp) in
let c = sample(exp) in
(gb , gc)

Fig. 3. Example: Definition of DDH interface and games.

4

polynomial time computable functions. In Section IV, we
show that values and expressions form nominal sets. In future
work, we might consider extending base types to infinite types,
which would complicate working with probability distributions
but may offer other benefits, such as greater expressiveness.
Another way to extend this language is to generalize base types
beyond the sample space, as done, for example, in [9].

D. Operational Semantics

We have chosen to give call-by-value probabilistic oper-
ational semantics to our language. It might be possible to
experiment with other calling conventions, which we leave to
future work. The operational semantics are defined as a small
step relation that transforms configurations consisting of an
expression e and the current state of the heap σ.

σ ∈ State ::= · | σ, a := v

As a judgment we write ⟨e;σ⟩ →p ⟨e ′ ;σ′⟩ for a single
step, where p is a probability 0 < p ≤ 1, with which
this step is taken. For most configurations there is only one
deterministic next step the interpreter can take, meaning that
p = 1, written as ⟨e;σ⟩ → ⟨e ′ ;σ′⟩. For sampling, there might
be many possible next steps, albeit with a total probability
adding to one. There is no step rule for F(e), since calls to an
identifier will have been replaced by the corresponding inlined
expression during module composition. In the interest of space,
we introduce in Figure 4 only the essential reductions and leave
the congruence rules to the imagination of the reader. Note that
the probabilities of each essential reduction are carried through
the congruence closure.

By induction on heap type Σ appealing to Theorem 1, we
can show that

Theorem 2. For all heap types Σ, there exists a state σ that
matches Σ.

E. Sub-distribution Monad

Although the operational semantics is probabilistic, a ter-
minating computation will always result in one of finitely
many configurations, which means that we can use a sub-
distribution monad [9] to capture the probability for each such
final configuration.

Definition 3 (Sub-distribution monad). Let D(X) be the
discrete sub-distribution over X consisting of functions p :
X → [0, 1] where

∑
x∈X p(x) ≤ 1 with unit : X → D(X),

bind : D(X)→ (X → D(Y))→ D(Y), and zero : D(X).

unit(x)(x′) =

{
1 if x = x′

0 otherwise

bind(p, f)(y) =
∑
x∈X

p(x) · f(x)(y)

zero(x) = 0

The step derivation induces a probability distribution on
configurations which we capture formally as the function
step : Cfg → D(Cfg) given by

step(e, σ)(e ′ , σ′) =

{
p if ⟨e, σ⟩ →p ⟨e ′ , σ′⟩
0 otherwise

The iterated distribution of executing n ∈ N steps results in
a probability distribution of values by adding the probabilities
for each value while disregarding the state of the configuration.
It is defined as stepsn : Cfg → D(Val).

steps0(e, σ) = zero

stepsn(v, σ) = unit(v)
stepsn(e, σ) = bind(step(e, σ), stepsn−1)

Finally, the probability distribution of all values of a compu-
tation is defined as taking the following limit

steps(e, σ)(v) = lim
n→∞

stepsn(e, σ)(v).

This limit always exists since it is bounded and monotone.
From this construction we obtain the definition of the proba-
bility event v← e, which expresses that e evaluates to v in the
initial state σ0 chosen to have the leftmost values for each base
type. Existence of such a state is guaranteed by Theorem 2.

Definition 4 (Probability of value). When e has type Σ; · | · ⊢
e : τ for some Σ and τ define

Pr[v← e] = steps(e, σ0)(v)

F. Module Algebra

For higher-level cryptographic arguments, where we rep-
resent cryptographic systems, oracles, games, and reductions
as modules, we need to introduce the algebraic properties of
module composition. We start with the identity module ID(I)
that implements an interface I by forwarding each call to the
composing module.

Definition 5 (Identity Module). Let

I = interface sig F1 : α1 → α1
′ ... sig Fn: αn→ αn

′

be an interface. Then

ID(I) = module fun F1x = F1(x) ... fun Fn x = Fn(x)

is the identity module for interface I.

Lemma 3 (Identity module). Assuming the interface I is well-
formed, so is the identity module · ; I ⊢ ID(I) : I.

Before we introduce sequential composition, we define an
inlining operation that traverses an expression and replaces
every call to a function used in one module, by the definition
of the function, declared in a different module. We write this
operation as e ∝ M and is defined to replace F(e1) in e with
the corresponding function F from M applied to argument e1.

5

⟨(rec f x = e) v;σ⟩ → ⟨e [(rec f x = e)/ f][v/x];σ⟩

⟨ fst ((v1 , v2)) ;σ⟩ → ⟨v1;σ⟩ ⟨snd((v1 , v2)) ;σ⟩ → ⟨v2;σ⟩

⟨case inl (v1) of inl (x1) ⇒ e1 | inr(x2) ⇒ e2;σ⟩ → ⟨e1 [v1 /x1];σ⟩

⟨case inr(v2) of inl (x1) ⇒ e1 | inr(x2) ⇒ e2;σ⟩ → ⟨e2 [v2 /x2];σ⟩
σ(a) = v

⟨!a;σ⟩ → ⟨v;σ⟩ ⟨a := v;σ⟩ → ⟨ () ;σ, a := v⟩
v ∈ α

⟨sample(α);σ⟩ →1/|α| ⟨v;σ⟩

Fig. 4. Operational Semantics

Definition 6 (Shared sequential composition). Define sequen-
tial composition (◦) : Module ×Module → Module on a pair
of modules as follows

module ◦M2 = module
(M1val f := e1) ◦M2 = (M1 ◦M2) val f := e1 ∝ M2

To model state-separating proofs adequately, we expect that
all calls in the left module are resolved by definitions from
the right module. This principle is captured by the following
derivable typing rule.

Lemma 4 (Well-typed sequential composition). Given modules
M1,M2 with Σ; I1 ⊢ M1 : E and Σ; I2 ⊢ M2 : I1 we derive
Σ; I2 ⊢ M1 ◦M2 : E.

The interface I1 is the connection point between M1 and
M2. It ensures that every call in M1 has a corresponding
implementation in M2. Note that they all must be typeable
in the same state Σ. Separated sequential composition based
on nominals that we introduce in Section IV does not have this
limitation.

In cases where the import interface does not match, we may
need to weaken the imports (expressed by I ′ > I) given by
the following lemma.

Lemma 5 (Weakening). Given a module M with Σ; I ⊢ M : E
and I ′ > I then Σ; I ′ ⊢ M : E.

Parallel composition concatenates the functions of two mod-
ules into one bigger module and is defined as follows.

Definition 7 (Shared parallel composition). Define parallel
composition (|) : Module × Module → Module on a pair
of modules as follows

module | M2 = M2

(M1val f := e) | M2 = (M1 | M2) val f := e

We can also derive a type for parallel composition of
modules; however, we need to disallow cases where identifiers
defined by the modules overlap. Otherwise, the export interface
is not well-formed.

Lemma 6 (Well-typedness of parallel composition). Given
modules M1,M2 and export interfaces E1,E2 where the iden-
tifiers declared in E1 are disjoint from the identifiers declared
in E2. If Σ; I ⊢ M1 : E1 and Σ; I ⊢ M2 : E2 we can derive
Σ; I ⊢ (M1 | M2) : E1,E2.

The following equations allow us to work with the mod-
ules reasoning with adversaries, deriving advantages, building
oracles, and conducting proofs by game hopping. With these
rules we can algebraically manipulate the module expressions
to isolate certain parts for reduction.

Lemma 7 (Identities). For a module M with type Σ; I ⊢ M : E,
the following equations hold.

ID(E) ◦M = M ID(interface) | M = M
M ◦ ID(I) = M M | ID(interface) = M

Lemma 8 (Associativity). For modules M1,M2,M3 ∈ Module
the sequential and parallel composition operators are associa-
tive.

(M1 ◦M2) ◦M3 = M1 ◦ (M2 ◦M3)

(M1 | M2) | M3 = M1 | (M2 | M3)

Lemma 9 (Interchange). For modules M1,M2,M3,M4 where
Σ; I1 ⊢ M1 : E1, Σ; I2 ⊢ M2 : E2, Σ; I ⊢ M3 : I1, Σ; I ⊢ M4 :
I2, and I1 defines different identifiers from I2, then

(M1 | M2) ◦ (M3 | M4) = (M1 ◦M3) | (M2 ◦M4)

The well-typedness assumptions for interchange ensure that
there are no calls from M1 to M4 and from M2 to M3.

Looking back at Lemmas 4 and 6, states are shared between
modules M1 and M2, which is expressed by the use of the
same heap type Σ in both typing derivations:Σ; I1 ⊢ M1 : E
and Σ; I2 ⊢ M2 : I1. It is this sharing that motivates the rest
of the paper. In case that we compose an adversary (of export
interface I−ADV) with existing modules DDH0 and DDH1

in Example 3, we must prevent the adversary from reading
from state variables mga or init , otherwise it could trivially
distinguish the games.

6

The alternative to having one Σ as heap-type, is to use two
different heap types Σ1 and Σ2, for modules M1 and M2, re-
spectively, so that Σ1; I1 ⊢ M1 : E and Σ2; I2 ⊢ M2 : I1. When
composing M1 and M2 (either sequentially or in parallel), the
resulting module M will be well-typed in Σ1,Σ2; I2 ⊢ M : I1.
If we do this, however, we need to worry about variable
capture. This can be avoided by using separated concatenation
of heaps Σ1∗Σ2 which prevents variable capture as we discuss
in the next section.

Our solution is to ensure separation between modules using
nominal sets.

III. NOMINALS

Nominal sets for reasoning about open terms with names
were discovered in the seminal paper by Gabbay and Pitts [8]
and applied to model languages with binding. α-conversion,
which is a conceptually simple but notoriously annoying
problem when modelling languages with binding operators,
can be seen as an instance of a nominal set, where atoms
are automatically renamed to keep the naming of two terms
disjoint from one another. The central idea of nominal sets is
a permutation model of set theory with names (also known as
Fraenkel and Mostowski sets). In this section we briefly review
the nominal techniques and their properties following [11],
keeping in mind that we apply these techniques to heaps the
theory of state-separating proofs. In the following section we
show how to keep the internal state of modules disjoint from
one another using nominal sets. We introduce Perm A-sets in
Section III-A, equivariance in Section III-B, support sets in
Section III-C, α-equivalence in Section III-D. The proofs of
important lemmas and theorems presented in this section are
summarized in Appendix A.

A. Perm A-sets

Recall the definition of atoms A from Definition 1. Permu-
tations among atoms are central to nominal sets.

Definition 8 (Permutations). Let Perm A denote the group of
permutations that act on a finite subset of A. Perm A defines
the usual group structure: For two permutations π1, π2 ∈
Perm A, we write their group product as π1π2, while π−1

1

denotes the inverse permutation of π1. Finally, we take id to
denote the neural element.

The following definition gives us a general notion of sets
that support applying a permutation of atoms to its elements.

Definition 9 (Perm A-set). A set X with a group action (·) :
Perm A×X → X is called a Perm A-set (read: permutation
set). The group action must obey the following equations for
all π1, π2 ∈ Perm A and x ∈ X

id · x = x, (Identity)
π1 · π2 · x = (π1π2) · x. (Compatibility)

Equations (Identity) and (Compatibility) are standard for
group actions. We illustrate the concept of permutation sets by

a few examples to give the reader a chance to get acquainted
with them.

Lemma 10 (Perm A-sets). It is easy to see that the following
sets are Perm A-sets by checking (Identity) and (Compatibil-
ity).

• The set A of atoms is a Perm A-set with group action
π · a = π(a).

• Given Perm A-sets X and Y , their Cartesian product
X × Y is a Perm A-set with group action π · (x, y) =
(π · x, π · y).

• The set of real numbers R is a Perm A-set with group
action π · r = r.

• The set Pfin(X) = {F | F ⊂ X and F finite} for any
Perm A-set X is also a Perm A-set with group action
π · F = {π · x | x ∈ F} for F ∈ Pfin(X).

The following lemma shows how permutations act on heaps.

Lemma 11. Heap and State are Perm A-sets with group
action

π · (Σ , a : α) = (π · Σ, π(a) : α)

π · (σ , a := v) = (π · Σ, π(a):= v)

In the last equation, v is invariant under the permutation,
since v does not contain any atoms, as it is a sample.

B. Equivariance

We review the concept of equivariant functions. These cap-
ture the property of being name invariant in the sense that the
result of an equivariant function does not depend on the specific
names used.

Definition 10 (Equivariant function). A function f : X → Y
between Perm A-sets X and Y is equivariant if for all π ∈
Perm A and x ∈ X , π · f(x) = f(π · x).

In contrast, if a non-equivariant function f were to create
a new atom, it is easy to construct a permutation, so that π ·
f(x) ̸= f(π · x).

Example 4. The function f : A→ A×A given by f(a) = (a, a)
is equivariant, since for all π ∈ Perm A and a ∈ A,

π · f(a) = π · (a, a) = (π · a, π · a) = f(π · a)

On the other hand, the function g : A → A × A given by
g(a) = (a1, a) is not equivariant, since for π = (a1 a2) and
some a ∈ A different from a1 and a2, we have that

(a1 a2) · g(a) = (a2, a) ̸= (a1, a) = g((a1 a2) · a)

Lemma 12 (Equivariant set operations). Intersection and union
are equivariant on Pfin(X) for a Perm A-set X . That is, for
all A,B ∈ Pfin(X) and π ∈ Perm A it holds that π ·(A∩B) =
(π ·A) ∩ (π ·B) and π · (A ∪B) = (π ·A) ∪ (π ·B).

From this fact we can infer that subset inclusion and set
disjointness are also equivariant in the sense that A ⊆ B if
and only if π · A ⊆ π · B and A ∩ B = ∅ if and only if
π ·A ∩ π ·B = ∅.

7

Finally, we prove that shared module compositions are
equivariant.

Theorem 13 (Equivariance of shared module compositions).
M1 ◦M2 and M1 | M2 are equivariant.

C. Support

We turn to the finiteness criterion of what is called the
support of a nominal set.

Definition 11 (Finite support). Let X be a Perm A-set and
S ∈ Pfin(A) a finite subset of atoms. We say S is a support
set for x ∈ X if for all permutations π ∈ Perm A so that
π(a) = a for all a ∈ S, it holds that π · x = x.

Finding a support set for an element in a Perm A-set
guarantees that any permutation that preserves the atoms in
the support set will also preserve the value. In some sense the
support set contains at least all of the atoms that are present in
the element, but we define this without having to say what an
atom being present means. We expand this concept to a whole
Perm A-set with the definition of a nominal set.

Definition 12 (Nominal set). A Perm A-set X has a finite
support function supp : X → Pfin(A) if for all x ∈ X ,
supp(x) is a support set for x and for any other support set
S for x, it is the case that supp(x) ⊆ S. A Perm A-set with
a finite support function is called a nominal set.

Henceforth, we will use the names X , Y and Z to denote
arbitrary nominal sets. The Perm A-sets that we have seen
until this point are also nominal sets.

Lemma 14 (Nominal sets). The following Perm A sets are
nominal sets.

• The set A has supp(a) = {a}.
• The set X × Y has supp(x, y) = supp(x) ∪ supp(y).
• The set R has supp(r) = ∅. In fact, every Perm A-set

with π · x = x has an empty support set and is called a
discrete nominal set.

• The set Pfin(X) has supp(S) =
⋃

x∈S supp(x)

Lemma 15 (Heaps and states are nominal sets). The following
Perm A sets are nominal sets.

• The set Heap has supp(Σ , a : α) = supp(Σ) ∪ {a}.
• The set State has supp(σ , a := v) = supp(σ) ∪ {a}.

Note that the supp function maps an element from any
nominal set into a finite set of atoms. This allows us to state
disjointness generically.

Definition 13 (Disjoint support). We say that x ∈ X and y ∈ Y
are disjoint written x # y when supp(x) ∩ supp(y) = ∅.

Lemma 16 (Disjoint support properties). For elements x ∈ X ,
Y ∈ Y and z ∈ Z and equivariant function f : X → Z it
holds that

• if x # y then y # x,
• if x # x then supp(x) = ∅,
• if x # y then f(x) # y,
• if x # y then π · x # π · y for π ∈ Perm A.

Now we understand what disjointness means, but we have
not proposed a way to render two elements of nominal sets
disjoint, which we achieve by active renaming using the
permutation fresh.

Definition 14 (Fresh). Fix some bijection between the atoms
and the natural numbers idx : A→ N. Define fresh : X×Y →
Perm A so that 3

fresh(x, y)(a) = idx−1 (idx(a) + k(x)) for a ∈ supp(y),

where
k(x) = max

a′∈supp(x)
idx(a ′).

The purpose of fresh is to choose an element y′ ∈ Y related
to y ∈ Y , so that the support of a fixed x ∈ X is disjoint from
the support of the chosen y′. This property is captured in the
following lemma.

Lemma 17 (Fresh disjoint). For all elements x ∈ X and y ∈
Y , it holds that x # fresh(x, y) · y.

To show the usefulness of fresh we introduce separated
concatenation of heaps, denoted by Σ1 ∗ Σ2, as motivated at
the end of Section II-F.

Definition 15 (Separated concatenation). For Σ1,Σ2 ∈ Heap
define separated concatenation so that

Σ1 ∗ Σ2 = Σ1, fresh(Σ1,Σ2) · Σ2.

Separated concatenation enforces support separation by ac-
tively renaming atoms in the right argument using fresh. We
will re-use this pattern when defining separated compositions.

D. α-equivalence

To capture the nice properties of separated concatenation,
we introduce α-equivalence. Two elements are α-equivalent, if
they are equal modulo a permutation of atoms. This notion of
α-equivalence is defined for any nominal set.

Definition 16 (α-equivalence). For elements x, x′ ∈ X we say
that x and x′ are α-equivalent written x ≡ x′ when there exists
a permutation π ∈ Perm A so that π · x = x′.

Theorem 18. α-equivalence is an equivalence relation.

When concatenating two heaps, without considering α-
equivalence, state variable capture might be unavoidable.
When concatenating two heaps using separated concatenation,
which takes α-renaming into account, variable capture will be
avoided. α-congruence expresses the fact that we can replace
heaps by α-equivalent heaps and still avoid variable capture.

Definition 17 (α-congruence). Assuming X1, . . . Xn, and Y
are nominal sets. An n-ary function f : X1×· · ·×Xn → Y is
an α-congruence if whenever xi ≡ x′

i for i ∈ {1, . . . , n} then
f(x1, . . . , xn) ≡ f(x′

1, . . . , x
′
n).

3The definition is injective, so we obtain a permutation by mapping elements
from the finite set fresh(x, y)(supp(y)) \ supp(y) to the finite set of equal
size supp(y) \ fresh(x, y)(supp(y)) injectively.

8

We show that any unary equivariant function is also an α-
congruence.

Example 5. Let f : X → Y be given and assume that f is
equivariant. For x, x′ ∈ X assume that x ≡ x′, thus there
exists π so that π ·x = x′. Hence, f(x′) = f(π ·x) = π ·f(x),
so f(x) ≡ f(x′) i.e. f is an α-congruence.

This argument does apply to binary functions, since the
support of the two elements may overlap. Swapping elements
in the overlap for one argument will result in a different sharing
of names; thus the structure of atoms is not preserved in the
result. Note that the shared compositions are not α-congruent
for this reason. However, separated concatenation enjoys the
property of being a binary α-congruence, since state variable
capture is impossible.

Theorem 19 (Separated concatenation is an α-congruence).
When Σ1 ≡ Σ′

1 and Σ2 ≡ Σ′
2, then Σ1 ∗ Σ2 ≡ Σ′

1 ∗ Σ′
2.

IV. NOMINAL STATE-SEPARATING PROOFS

We will now demonstrate how to extend the language of
state-separating proofs introduced in Section II by nominals,
which results in a concept called nominal state-separating
proofs. We argue that all concepts introduced in that section
are nominal sets where atoms are state variables. We describe
nominal expressions in Section IV-A and nominal modules in
Section IV-B. In Section IV-C, we introduce the concepts of
nominal advantage and nominal indistinguishability between
pairs of games. The proofs for the lemmas and theorems in
this section can be found in Appendix A.

A. Nominal Expressions

Recall that we distinguish different kinds of variables: Local
variables are declared within each function, state variables – or
atoms – are declared globally and shared across functions, and
identifiers are used to refer to imported functions. When mov-
ing to nominal expressions, we move away from a single shared
heap to many separate heaps, as discussed in Section III-D. As
a starting point, we show that Expr is a Perm A-set.

Definition 18 (Group action for Expr). Let π ∈ Perm A
be a permutation and e ∈ Expr. We define the group action
· : Perm A× Expr → Expr. We only present the base cases
here, leaving it to the reader to define the remaining cases by
forming the congruence closure. We omit the proofs of identity
and compatibility.

π · (x) = x π · (F(e)) = F(π · e)

π · (()) = () π · (sample(α)) = sample(α)

π · (! a) = !π(a) π · (a := e) = π(a) := (π · e)

Next we define the support function for Expr .

Definition 19 (Support function for Expr). The support func-
tion supp : Expr → Pfin(A) is defined according to the struc-
ture of Expr. We only give base cases, since the congruence

closure is straightforward and omitted in the interest of space,
as is the proof of the well-definedness of the support function.

supp(x) = ∅ supp(F(e)) = supp(e)

supp(()) = ∅ supp(sample(α)) = ∅
supp(!a) = {a} supp(a := e) = {a} ∪ supp(e)

Finally, we show that Expr is a nominal set.

Lemma 20 (Nominal expressions). The set of expressions
Expr , together with the group action · : Perm A × Expr →
Expr and the support function supp : Expr → Pfin(A) forms
a nominal set.

We have already seen that Heap is also a nominal set,
so we state and prove that well-typedness is preserved under
permutation.

Lemma 21 (Type preserved by permutation). Given Σ; I | e : τ
we have π · Σ; I | π · e : τ .

Moving from the static to the dynamic semantics, we show
that operational semantics introduced in Section II-D is also
equivariant, which means that the probability distribution on
the resulting values is invariant under the group action: π ·
Pr[v ← e] = Pr[π · v ← π · e]. We structure the argument
into smaller steps, starting with the fact that being a value is
preserved under permutation.

Lemma 22 (Preservation of values). If v ∈ Val , then π · v ∈
Val .

Recall that the probabilistic small-step operational semantics
enabled us to define a step : Cfg → D(Cfg) function, that
maps configurations to a probability distribution of configura-
tions. Recall that configurations are defined as products of two
nominal sets, which means that they are also nominal sets. We
can show that the step-function is equivariant, meaning that
the probability distribution remains intact under permutations.
With the group action derived from the group action of the
configurations, we can show that step is equivariant.

Lemma 23 (Step equivariance). The function step : Cfg →
D(Cfg) is equivariant.

In Definition 3, we introduced the sub-distribution monad in
order to iterate the single-step reductions of the operational se-
mantics. We can show that the sub-distribution monad inherits
the nominal set property from the nominal expressions, by the
virtue that unit, bind and zero are bound to value (of functional
type), for which we have already established in Lemma 20 that
they are nominal sets.

Lemma 24 (Sub-Distribution equivariance). The functions
unit, bind and zero are equivariant.

Based on these observations, we can generalize the equivari-
ance property of the single-step relation step to the multi-step
case steps.

Theorem 25 (steps equivariance). The function steps : Cfg →
D(Cfg) is equivariant.

9

This means that the mapping of configurations into the
sub-distribution monad is equivariant, and it follows directly
that that the probability distribution on result values is also
equivariant.

Corollary 26 (Pr equivariance). Pr[· ← ·] : Val × Expr → R
is equivariant.

B. Nominal Modules

Recall form Section II-F that two modules can be composed
either sequentially, which means that calls to external functions
are resolved by inlining, or in parallel, which means that
the functions of either module are merged. In this section
we show that modules form a nominal set, and that we can
define separating module composition based on the results of
preceding sections.

As usual, as the first step, we define a group action for mod-
ules, for which we write (·) : Perm A ×Module → Module.
Its definition is straightforward.

Definition 20 (Group action for Module).

π ·module = module
π · (M fun F x = e) = ((π ·M) fun F x = (π · e))

Note that F is a function identifier, and x is a local variable;
thus the permutation does not affect them. We omit the well-
formedness proof of the group action. As a second step, we
define the support function supp : Module → Pfin(A) for
modules.

Definition 21 (Support function for Module).

supp(module) = ∅
supp(M fun F x = e) = supp(M) ∪ supp(e)

We omit the well-formedness proof of the support function.

Lemma 27 (Nominal modules). The set Module forms a nomi-
nal set together with the group action · : Perm A×Module→
Module and the support function supp : Module→ Pfin(A).

Like the definition for separated heap concatenation we now
use fresh to define separated module composition based on the
previously defined shared compositions.

Definition 22 (Separated composition). Define separated se-
quential composition as

M ◦◦ N = M ◦ (fresh(M,N) · N),

and parallel composition as

M ||N = M | (fresh(M,N) · N).

Note the similarity of how we apply fresh here in relation
to how we define separating concatenation of heaps in Sec-
tion III-C.

To express the heap of separated composition, we introduce a
pruning operation. To type a separated composition of modules
M1 and M2, we need to ensure that the separated concatenation
of heaps Σ1∗Σ2 are aligned. If there are atoms in Σ1 that do not

appear M1, then the permutations applied internally may not
match. To rectify this problem, we define a pruning operation
that strengthens Σ1 to Σ′

1 which only contains atoms that are
also used in M1. We write Σ′

1 = prune(Σ1,M1) for pruning.

Lemma 28 (Well-typedness of separated sequential compo-
sition). Given modules M1,M2 with Σ1; I1 ⊢ M1 : E and
Σ2; I2 ⊢ M2 : I1 we can derive Σ3; I2 ⊢ M1 ◦◦M2 : E where
Σ3 = prune(Σ1,M1) ∗ Σ2.

Lemma 29 (Well-typedness of separated parallel composition).
Given modules M1,M2 and export interfaces E1,E2 where
the identifiers declared in E1 are disjoint from the identifiers
declared in E2. If Σ1; I ⊢ M1 : E1 and Σ2; I ⊢ M2 : E2

we can derive Σ3; I ⊢ (M1 ||M2) : E1,E2 where Σ3 =
prune(Σ1,M1) ∗ Σ2.

As a consequence of the separation and the fact that shared
compositions are equivariant, functions we are able to derive
the following congruence theorem.

Theorem 30 (Separated congruence). For modules where
M1 ≡ M1

′ and M2 ≡ M2
′ we have

M1 ◦◦M2 ≡ M1
′ ◦◦M2

′,

M1 ||M2 ≡ M1
′ ||M2

′.

We now show that the desired algebraic rules are preserved
under either α-equivalence or equality.

Lemma 31 (Identities). For a module M with type Σ; I ⊢ M :
E, the following identities hold.

ID(E) ◦◦M = M ID(interface) ||M = M
M ◦◦ ID(I) = M M || ID(interface) = M

Lemma 32 (Associativity). For modules M1,M2,M3 the
separated sequential and parallel composition operators are
associative up to α-equivalence.

(M1 ◦◦M2) ◦◦M3 ≡ M1 ◦◦ (M2 ◦◦M3)

(M1 ||M2) ||M3 ≡ M1 || (M2 ||M3)

We lose the strict equality of the associativity rules; however,
as we will see, this is sufficient to be compatible with nominal
indistinguishability. Finally, we prove that also interchange
holds under α-equivalence.

Lemma 33 (Interchange). For modules M1,M2,M3,M4 where
Σ1; I1 ⊢ M1 : E1, Σ2; I2 ⊢ M2 : E2, Σ3; I3 ⊢ M3 : I1,
Σ4; I4 ⊢ M4 : I2, and I1 defines different identifiers from I2,
then

(M1 ||M2) ◦◦ (M3 ||M4) ≡ (M1 ◦◦M3) || (M2 ◦◦M4)

C. Nominal Indistinguishability

In cryptography, the security of a cryptographic protocol is
captured by an adversary being able to distinguish between two
games, M1 and M2. After observing an exchange of messages
(also called a transcript) that a verifier and a prover play
together, the task of the adversary is to guess which of the two

10

I−PK−OTS$ = interface
sig GET : unit → el sig QUERY : el → el × el

PK−OTS$0 =
module
fun GET () =

let inl () = !mpk in
let pk = snd(keygen) in
mpk := inr(pk);
pk

fun QUERY m =
let inr(pk) = !mpk in
let inl () = ! flag in
flag := inr ();
enc pk m

PK−OTS$1 =
module
fun GET () =

let inl () = !mpk in
let pk = snd(keygen) in
mpk := inr(pk);
pk

fun QUERY m =
let inr(pk) = !mpk in
let inl () = ! flag in
flag := inr ();
sample(el × el)

Fig. 5. Example: Definition of games PK−OTS$ specialized for ElGamal.

games was played. If the cryptographic protocol is insecure,
the adversary can identity with non-negligible probability the
correct game that was played. In our setting, following [4],
games and adversaries can be constructed by defining and
composing modules.

Definition 23 (Game). An E-game is a module G with type
Σ; · ⊢ G : E for any Σ, i.e. it cannot contain any calls of the
form F(e).

As an example, consider the DDH games from Example 3.
Both DDH0 and DDH1 are I−DDH-games.

Example 6. As part of our running example, we now introduce
the public key one time secrecy games that are presented along
with their interface in Figure 5. We leave it to the reader to
verify that

mpk : unit + el, flag : bool; · ⊢ PK−OTS$0 : I−PK−OTS$
mpk : unit + el, flag : bool; · ⊢ PK−OTS$1 : I−PK−OTS$.

Thus, both modules are I−PK−OTS$-games. As a short-
hand we refer to the game pair as PK−OTS$ =
(PK−OTS$0, PK−OTS$1).

An adversary is modelled as a module as well, which exports
a single method called RUN. Recall that we introduced the
I−ADV for the adversary, introduced in Example 2.

Definition 24 (Adversary). An E-adversary is a module A with
type Σ;E ⊢ A : I−ADV for any Σ.

With definitions for games and adversaries in place we define
advantage to be the difference in behavior of the adversary
given the two games.

Definition 25 (Advantage). We define an E-adversary A’s

advantage to distinguish between E-games G1,G2 as

AdvG1,G2
(A) = | Pr[true← RUN() ∝ (A ◦◦ G1)]

−Pr[true← RUN() ∝ (A ◦◦ G2)] |

From this definition we can easily derive symmetry

AdvG1,G2
(A) = AdvG2,G1

(A),

and the triangle inequality

AdvG1,G3
(A) ≤ AdvG1,G2

(A) + AdvG2,G3
(A).

With these properties, through a game hopping argument, we
can bound the adversary’s advantage of distinguishing between
a pair of games representing the security property.

Finally, based on this notion of advantage, we introduce the
notion of perfect indistinguishability between two games.

Definition 26 (Perfect Indistinguishability). E-games G1 and
G2 are said to be perfectly indistinguishable written G1 ≈0 G2

when
AdvG1,G2

(A) = 0

for all E-adversaries A.

In contrast to related work and thanks to the use of nominals,
our version of perfect indistinguishability is based on separated
composition, rendering any consideration regarding disjoint-
ness assumptions entirely unnecessary. To our knowledge, this
is a significant improvement of other existing works on state-
separating proofs [4], [6], [10]. The elegance of our approach
shines through in our running example: No disjointness as-
sumptions are necessary.

Example 7. This example demonstrates, how to express
PK−OTS$ in terms of DDH using perfect indistinguishability.
For this, we define a reduction

RED = module
fun GET () = fun QUERY m =

let inl () = ! stop ; let rsh := GETBC();
stop := inr (); (fst (rsh), m · snd(rhs))
GETA()

that is well-typed stop : unit + unit ; I−DDH ⊢ RED :
I−PK−OTS$. We show that PK−OTS$0 ≈0 RED ◦◦DDH0 and
PK−OTS$1 ≈0 RED ◦◦ DDH1.

Let an I−PK−OTS$-adversary A be given. To show that

AdvPK OTS$0,RED◦◦DDH0(A) = 0

we prove that the functions GET and QUERY exhibit the same
sub-distribution of answers for each of the two modules.

This is proven formally in a probabilistic relational Hoare
logic (see Section V). In the interest of space we will resort to
the following argument.

We define an invariant to act as the relation between the
state of the two games. As long as the support of the relation
is limited to the support of the games, the adversary cannot
break it, as the atoms of the games are inaccessible to the
adversary due to seperated composition. In this proof, the

11

relation encodes the fact that matches of inl and inr will have
the same outcome, and that under certain conditions mpk and
mga contain the same value.

Likewise, we formally prove that

AdvPK OTS$1,RED◦◦DDH1(A) = 0.

Next, we confirm what we would expect to hold.

Theorem 34 (α-equivalence implies perfect indistinguishabil-
ity). For all E-games G1,G2, when G1 ≡ G2, then G1 ≈0 G2.

As the main result, we show that advantage respects perfect
indistinguishability. Note that advantage between games is real-
valued in the interval [0, 1].

Theorem 35 (Advantage congruence). For E-adversaries A
and A′, so that A ≈0 A′ and E-games G1,G1

′,G2,G2
′ where

G1 ≈0 G1
′ and G2 ≈0 G2

′.

AdvG1,G2
(A) = AdvG1

′
,G2

′(A′)

This theorem is seldom used in its full generality. Usually
it is used in a context where A = A′.

The consequence of this theorem is that we can freely re-
place perfectly indistinguishable games in a context consisting
of module composition and advantage arithmetic, as in the next
example. First, we show how to perform a reduction.

Theorem 36 (Reduction). For an E-adversary A, I-games
G1,G2 and a module R with type Σ; I ⊢ R : E it holds that

AdvR◦◦G1,R◦◦G2
(A) = AdvG1,G2

(A ◦◦ R)

We finish our running example by showing the reduction.

Example 8 (PK-OTS reduction). For all I−PK−OTS$-
adversaries A it holds that

AdvPK−OTS$(A) = AdvDDH(A ◦◦ RED)

Since

AdvPK−OTS$0,PK−OTS$1(A)

= AdvRED◦◦DDH0
,RED◦◦DDH1(A)

= AdvDDH0
,DDH1(A ◦◦ RED),

where the first equality holds by Theorem 35 and the second
holds by Theorem 36.

Putting all pieces together, we can now solve the problem
presented in the introduction: The triangle inequality can be
easily expressed in the setting of nominal state-separating
proofs. No disjointness requirements are necessary; the renam-
ing of state variables is taken care by the nominal nature of
the operators.

Corollary 37 (Transitivity of perfect indistinguishability).
Given E-games G1,G2,G3 where G1 ≈0 G2 and G2 ≈0 G3,
then G1 ≈0 G3.

V. MECHANIZATION

We apply the theory of nominal state-separating proofs to de-
velop Nominal-SSProve4 as an extension to the Coq framework
SSProve. In Nominal-SSProve, when quantifying over mod-
ules, those modules can always be assumed to be disjoint from
each other. This means that when working within Nominal-
SSProve, disjointness assumptions about state variables are not
required in contrast to other implementations of non-nominal
state-separating proofs. This renders formalizations of security
proofs in Nominal-SSProve considerably easier.

We have mechanized the running example of this paper
in Nominal-SSProve, which includes a mechanization of the
PK−OTS$ security property, as shown in earlier sections. While
developing this example we discovered two mistakes in the
existing mechanization of the PK−OTS$ proof for ElGamal in
SSProve [10]. First, the definition of ElGamal decryption was
incorrect. The authors would have noticed that, if they had
tried to mechanize the proof of correctness of the ElGamal
cryptosystem. Second, the definition of PK−OTS$ is wrong
even after an attempt was made to fix it, as noted in footnote
4. The problem as explained still exists: The adversary cannot
access the public key until after the adversary has comitted to a
message. To be precise, it is keygen that initializes the location
pk with a public key, but this function is only evaluated after a
call to Challenge has been made; thus the value is out of reach
for the adversary.

The curious reader might have noticed our non-standard
formulation of the DDH game in Figure 3 in Section II-C.
A standard formulation takes all two or three samples in the
same function call; however, we rely on this formulation to
complete the formal proof. If we could encode the fact that a
value stored in the heap is randomly chosen, we could let the
DDH games eagerly take all two or three samples, and let the
reduction RED save the last two values until they are needed for
the encryption. We leave it as future work to resolve the issue
of lazy versus eager sampling in the context of state-separating
proofs. The problem exists specifically for formulations in the
style of state-separating proofs. If we instead retain control
flow and selectively invoke the adversary as in [2], we get to
use the fact that the value is randomly chosen.

As for implementation, we develop a general theory of
nominal sets in Coq using Hierarchy Builder [5]. We encode
the definitions of separated composition operators in Coq and
and show that they form the module algebra that we discuss
in Section IV-B. When doing proofs in Nominal SSProve, we
heavily rely on Coq’s congruence system [14] to support the
proof mechanization process. In conclusion, we have encoded
the entire theory discussed in this paper in Coq, and the
interested reader is invited to consult the git repository.

VI. CONCLUSION

We highlight the problem with ad-hoc disjointness assump-
tions in mechanizations of state-separating proofs. This is
solved by introducing nominal state-sepration proofs, where

4See supplementary material.

12

we rely on active renaming to enforce name separation. The
benefit of nominal state-separating proofs is succinct equa-
tions used to reason about advantage between games without
considering separation. Implementing nominal state-separating
proofs as Nominal-SSProve has shown actual improvements:
Theorems that quantify over an adversary need not include
assumptions about state separation, and rewriting using perfect
indistinguishability is seamless; thus resulting in shorter proofs.

REFERENCES

[1] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster,
Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Wash-
burn, Stephanie Weirich, and Steve Zdancewic. Mechanized metatheory
for the masses: The poplmark challenge. In Joe Hurd and Tom Melham,
editors, Theorem Proving in Higher Order Logics, pages 50–65, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[2] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-aided security proofs for the working cryptographer.
In Proceedings of the 31st Annual Conference on Advances in Cryp-
tology, CRYPTO’11, page 71–90, Berlin, Heidelberg, 2011. Springer-
Verlag.

[3] Chris Brzuska, Antoine Delignat-Lavaud, Christoph Egger, Cédric Four-
net, Konrad Kohbrok, and Markulf Kohlweiss. Key-schedule security
for the tls 1.3 standard. In Shweta Agrawal and Dongdai Lin, editors,
Advances in Cryptology – ASIACRYPT 2022, pages 621–650, Cham,
2022. Springer Nature Switzerland.

[4] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Ko-
hbrok, and Markulf Kohlweiss. State separation for code-based game-
playing proofs. In Thomas Peyrin and Steven Galbraith, editors, Ad-
vances in Cryptology – ASIACRYPT 2018, pages 222–249, Cham, 2018.
Springer International Publishing.

[5] Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. Hierarchy Builder:
Algebraic hierarchies Made Easy in Coq with Elpi. In Zena M.
Ariola, editor, 5th International Conference on Formal Structures for
Computation and Deduction (FSCD 2020), volume 167 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 34:1–34:21,
Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[6] François Dupressoir, Konrad Kohbrok, and Sabine Oechsner. Bringing
state-separating proofs to easycrypt a security proof for cryptobox. In
2022 IEEE 35th Computer Security Foundations Symposium (CSF),
pages 227–242, 2022.

[7] T. Elgamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory,
31(4):469–472, 1985.

[8] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing, 13(3–
5):341–363, 2001.

[9] Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Hasel-
warter, Joseph Tassarotti, and Lars Birkedal. Asynchronous probabilistic
couplings in higher-order separation logic. Proc. ACM Program. Lang.,
8(POPL), jan 2024.

[10] Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo
Winterhalter, Carmine Abate, Nikolaj Sidorenco, Cătălin Hriţcu, Kenji
Maillard, and Bas Spitters. Ssprove: A foundational framework for
modular cryptographic proofs in coq. ACM transactions on programming
languages and systems, 45(3):1–61, 2023.

[11] Andrew M. Pitts. Nominal sets. https://people.cs.nott.ac.uk/pszvc/mgs/
MGS2011 nominal sets.pdf, 2011. [Online; accessed 29-Jan-2025].

[12] J.C. Reynolds. Separation logic: a logic for shared mutable data
structures. In Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science, pages 55–74, 2002.

[13] Mike Rosulek. The joy of cryptography, 2020. https://joyofcryptography.
com.

[14] Matthieu Sozeau. Generalized rewriting, September 2023. https://coq.
inria.fr/doc/v8.18/refman/addendum/generalized-rewriting.html.

[15] The Coq Development Team. The coq proof assistant, September 2023.
https://doi.org/10.5281/zenodo.11551177.

APPENDIX A
OMITTED PROOFS

Proof (Theorem 13). First, we prove that inlining is equivari-
ant i.e. π ·(e ∝ M) = (π ·e) ∝ (π ·M). We proceed by induction
on e and consider the F(e) case with fun F x = e ′ in M.

π · (F(e) ∝ M) = π · ((λx, e ′) (e ∝ M))
= (λx, π · e ′) (π · (e ∝ M))

= (λx, π · e ′) ((π · e) ∝ (π ·M))

= (π · F(e)) ∝ (π ·M)

13

https://people.cs.nott.ac.uk/pszvc/mgs/MGS2011_nominal_sets.pdf
https://people.cs.nott.ac.uk/pszvc/mgs/MGS2011_nominal_sets.pdf
https://joyofcryptography.com
https://joyofcryptography.com
https://coq.inria.fr/doc/v8.18/refman/addendum/generalized-rewriting.html
https://coq.inria.fr/doc/v8.18/refman/addendum/generalized-rewriting.html
https://doi.org/10.5281/zenodo.11551177

We finish the proof by induction over M1.

Proof (Lemma 15). We prove that supp(Σ) is the minimal
support. Let S be a support set for Σ. Assume for contradiction
that a ∈ supp(Σ) \S. Pick an a ′ /∈ S ∪ supp(Σ) and note that
(a a ′) · Σ ̸= Σ, which is shown by induction over Σ using
the fact that a is in supp(Σ). Then S cannot be a support set
since neither a or a ′ is in S, which forces a contradiction; thus
supp(Σ) \ S = ∅, which lets us conclude that supp(Σ) ⊆ S.
The proof for State is similar.

Proof (Lemma 17). Let a ′ ∈ supp(x) and a ∈ supp(y) be
given. We have

idx(fresh(x, y)(a)) = idx(a) + k(x)

≥ idx(a) + idx(a ′)

> idx(a ′),

thus a ̸= fresh(x, y)(a).

Proof (Theorem 19). Assume that π1 ·Σ1 = Σ′
1 and π2 ·Σ2 =

Σ′
2. Define π′ = fresh(π1 · Σ1, π2 · Σ2) π2 and extend

π(a) =
{

π1(a) if a ∈ supp(Σ1)
π′(a) if a ∈ supp(fresh(Σ1,Σ2) · Σ2)

to define a permutation. Then

π · (Σ1 ∗ Σ2) = π · Σ1, π · fresh(Σ1,Σ2) · Σ2

= π1 · Σ1, fresh(π1 · Σ1, π2 · Σ2) · π2 · Σ2

= π1 · Σ1 ∗ π2 · Σ2

= Σ′
1 ∗ Σ′

2.

Proof (Lemma 23). By induction on small-step derivations we
can show, that ⟨e;σ⟩ →p ⟨e ′ ;σ′⟩ if and only if ⟨π ·e, π ·σ⟩ →p

⟨π · e ′ , π · σ′⟩. Then

π · step(e, σ)(e ′ , σ′) = π · p
= p

= step(π · e, π · σ)(π · e ′ , π · σ′).

Proof (Lemma 24). We show that bind is equivariant.

bind(π · p, π · f)(π · y) =
∑
x∈X

p(π−1 · x) · (π · f)(x)(π · y)

=
∑
x′∈X

p(x′) · (π · f)(π · x′)(π · y)

=
∑
x′∈X

p(x′) · f(x′)(y)

= bind(p, f)(y)

Proof (Lemma 28). We weaken the heap of M1 to obtain
Σ3; I1 ⊢ M1 : E. We apply π = fresh(M1,Σ2) to obtain π ·
Σ2; I2 ⊢ π·M2 : I1 and weaken the heap to get Σ3; I2 ⊢ π·M2 :
I1. Using Lemma 4 we get Σ3; I2 ⊢ M1 ◦π ·M2 : E, and since

supp(M2) ⊆ supp(Σ2), then π ·M2 = fresh(M1,M2) ·M2, so
we have derived Σ3; I2 ⊢ M1 ◦◦M2 : E.

Proof (Lemma 29). Similar to proof of Lemma 29.

Proof (Theorem 30). Similar to proof of Lemma 19.

Proof (Lemma 31). Note that

fresh(ID(E),M) = fresh(∅,M) = id,

so

ID(E) ◦◦M = ID(E) ◦M = M

ID(interface) ||M = ID(interface) | M = M

Note that for any interface I, π · ID(I ′) = ID(I ′), so

M ◦◦ ID(I) = M ◦ ID(I) = M
M || ID(interface) = M | ID(interface) = M

Proof (Lemma 32). Define

π1 = fresh(M1,M2),

π12 = fresh(M1 ◦◦M2,M3),

π′
12 = fresh(fresh(M1,M2 ·M2),M3),

π′
1 = fresh(M1,M2 ◦◦M3),

π′
2 = fresh(M2,M3).

We have

(M1 ◦◦M2) ◦◦M3 = (M1 ◦ π1 ·M2) ◦ π12 ·M3

= M1 ◦ (π1 ·M2 ◦ π12 ·M3)

≡ M1 ◦ (π1 ·M2 ◦ π′
12 ·M3)

≡ M1 ◦ (π′
1 ·M2 ◦ π′

1π
′
2 ·M3)

= M1 ◦ π′
1 · (M2 ◦ π′

2 ·M3)

= M1 ◦◦ (M2 ◦◦M3)

The proof of associativity for parallel composition is similar.

Proof (Lemma 33). The proof of interchange is similar to that
of Lemma 32, but in this case there are four separated modules.
In the mechanization, these proofs are completed using light
proof automation.

Proof (Theorem 34). Let E-games G1,G2 and an E-adversary
A be given. Assume that π · G1 = G2, then

Pr[true← RUN() ∝ (A ◦◦ G2)]

= Pr[true← RUN() ∝ (A ◦◦ π · G1)]

= Pr[true← RUN() ∝ π′ · (A ◦◦ G1)]

= Pr[true← RUN() ∝ (A ◦◦ G1)]

due to α-congruence for separated composition followed by
equivariance, thus AdvG1,G2

(A) = 0.

14

Proof (Theorem 35). We have

AdvG1,G2
(A)

≤ AdvG1,G1
′(A) + AdvG1

′
,G2

′(A) + AdvG2
′
,G2

(A)
≤ AdvG1

′
,G2

′(A),

and likewise AdvG1
′
,G2

′(A) ≤ AdvG1,G2
(A).

Proof (Theorem 36). Follows from associativity of separated
sequential composition.

Proof (Corollary 37). LetA be given. By Theorem 35 we have

AdvG1,G3
(A) = AdvG2,G2

(A) = 0.

Here are the omitted proofs.

15

	Introduction
	Contributions
	Related Work
	Overview

	A language for state-separating proofs
	Base Types and Types
	Values, Expressions, and Modules
	Static Semantics
	Operational Semantics
	Sub-distribution Monad
	Module Algebra

	Nominals
	Perm-A-sets
	Equivariance
	Support
	alpha-equivalence

	Nominal State-Separating Proofs
	Nominal Expressions
	Nominal Modules
	Nominal Indistinguishability

	Mechanization
	Conclusion
	References
	Appendix A: Omitted proofs

