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Abstract. In CRYPTO 2022, Esser et al. proposed a partial key ex-
posure attack on several post-quantum cryptographic schemes including
Rainbow which is a variant of UOV. The task of the attack is to recover
a full secret key from its partial information such as a secret key with
symmetric/asymmetric bit errors. One of the techniques Esser et al. de-
veloped is a partial enumeration that combines the standard algorithms
to solve the MQ problem with enumeration. Although an efficient attack
on Rainbow was proposed, UOV and its variants have still been paid
much attention since UOV and its three variants, i.e., MAYO, QR-UOV
and SNOVA, were selected as the Round 2 candidates of the additional
call for digital signature schemes proposal by NIST. In this paper, we
analyze partial key exposure attacks on UOV, MAYO, and QR-UOV. Al-
though our proposed attacks use the partial enumeration, we refine their
enumeration strategy. We employ two enumeration strategies and ana-
lyze the complexity of the proposed attacks. Then, we find a structural
difference between UOV and its variants to resist partial enumeration.
Specifically, the partial enumeration is effective if the number of vinegar
variables is smaller than the number of equations and the order of a fi-
nite field is small. As a result, the proposed attack is the most effective
on MAYO. While our attacks on UOV and QR-UOV are effective only
when the symmetric error probabilities are 0.11 and 0.05, respectively,
that on MAYO is effective even when the probability is close to 0.5.

Keywords: post-quantum cryptography · multivariate cryptography ·
UOV · partial key exposure attack.

1. Introduction

1.1 Background

UOV. To ensure the security of public key cryptosystems, the corresponding
mathematical problems have to be computationally hard. In the cases of RSA [39]
and elliptic curve cryptography [29,33], the prime factorization problem and
the elliptic curve discrete logarithm problem have to be computationally hard.
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However, Shor’s quantum algorithm [40] can solve these problems in polynomial
time. Therefore, post-quantum cryptosystems (PQC) that are believed to resist
quantum attacks have been actively studied.

The National Institute of Standards and Technology (NIST) is currently
working on a standardization project for post-quantum cryptography. In July
2022, NIST selected one encryption/key-establishment scheme and three dig-
ital signature schemes to be standardized. Subsequently, NIST announced an
additional call for digital signature schemes in September 2022. Then, 14 algo-
rithms were selected as Round 2 candidates in October 2024 from among 40
submissions.

Among the above 14 algorithms, UOV [5] and its variants are arguably strong
candidates to be selected due to their compact signature sizes and efficient sign-
ing algorithms. UOV initially proposed by Kipnis et al. [28] is a form of multi-
variate quadratic (MQ) cryptosystems. In general, the MQ problem should be
computationally hard to ensure the security of MQ cryptosystems. Since the
MQ problem is NP-complete [23], MQ cryptosystems seem to possess a strong
security guarantee on the surface. Nevertheless, various critical attacks on MQ
cryptosystems including UOV variants have been proposed due to their specific
structures. For example, although Rainbow [13] was a flagship variant of UOV
and selected as a Round 3 candidate of the NIST PQC competition, Beullens [3]
proposed an efficient attack on Rainbow. Therefore, the security of MQ cryp-
tosystems has to be intensively studied.

A point to note is that there have been no critical attacks on UOV [28] for
over twenty years. Then, seven schemes were submitted to the NIST call for
additional signatures. Among them, four schemes, i.e., UOV, MAYO [4], QR-
UOV [21] and SNOVA [44], were selected as Round 2 candidates. Since they are
strong candidates to be standardized, we have to analyze the security from both
theoretical and practical points of view.

Partial Key Exposure Attacks. To provide a strong security guarantee, it
is theoretically interesting to analyze a partial key exposure attack in which
the attacker obtains not only a public key but also some partial information
of a secret key. In the case of RSA, it is widely known that half of the most
significant bits of secret primes are sufficient to solve the factorization problem
in polynomial time [10]. Similarly, there are several works [8,7,17,41,42] in which
attackers obtain some consecutive bits of a secret exponent.

Heninger and Shacham [26] analyzed a more realistic scenario to capture
practical side-channel leakages such as cold-boot attacks [24]. Specifically, they
introduced an erasure model in which the attacker obtains random fractions of
a secret key. Subsequently, the celebrated work has been followed by various pa-
pers [25,30,31,36] to analyze further realistic settings. Henecka et al. [25] studied
an error model in which the attacker obtains an erroneous secret key. To be
precise, the error model is also called a symmetric error model since each bit of
a secret key is flipped with the same probability. Then, Paterson et al. [36] stud-
ied an asymmetric error model in which the attacker also obtains an erroneous
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secret key, while the bit flip probabilities depend on whether the actual bit is 0
or 1.

Partial Key Exposure Attacks on UOV Variants. Although partial key
exposure attacks on UOV and its variants were also analyzed, the attempts were
not successful until recently. For example, Polanco’s partial key exposure attack
on Rainbow [38,43] can recover a full secret key only when the symmetric bit
error probability is roughly 0.001. In CRYPTO 2022, Esser et al. [18] proposed
partial key exposure attacks on several PQC schemes including Rainbow, and
obtained impressive results. Their proposed attack on Rainbow for NIST secu-
rity level I can recover a full secret key with 80-bit security when the symmetric
(resp. asymmetric4 ) error probability5 is 0.27 (resp. 0.54). Their proposed at-
tack on Rainbow consists of two steps. Let S ◦ F ◦ T denote a public key of
Rainbow, while the linear maps S and T , and the quadratic map F are secret
keys. The first step recovers S by solving the syndrome decoding problem. Then,
the second step recovers T by applying partial enumeration that combines the
standard algorithms to solve the MQ problem [1,2,6,9,11,12,15,16,20,27,28,32,34]
with enumeration.

Since an efficient attack on Rainbow was proposed by Beullens [3], the goal
of this paper is to analyze partial key exposure attacks on UOV, MAYO, and
QR-UOV. For this purpose, we explain more about Esser et al.’s partial enu-
meration since the left linear map S is a specific structure of Rainbow. Briefly
speaking, we can recover a secret key of UOV by solving the MQ problem with
v variables. Since all parameters of UOV are determined so that the MQ prob-
lem is computationally infeasible, we want to utilize the partial information. If
the symmetric bit error probability p is very small, an erroneous secret key is
almost a correct secret key. Therefore, we can find the correct one by enumerat-
ing small errors. However, the approach is not effective if p becomes large. The
partial enumeration combines these two naive approaches. Let vMQ and vEnum
be parameters such that v = vMQ + vEnum. The partial enumeration first di-
vides v variables into vMQ and vEnum. We assume that vEnum coordinates of a
secret key contain only small errors and enumerate them. Then, we recover the
remaining vMQ coordinates by solving the MQ problem with vMQ variables. If
we cannot recover a secret key, we divide v variables again. We can expect that
the partial enumeration is also effective on UOV, MAYO, and QR-UOV due to
the structural similarity to Rainbow. However, the results are not trivial since
their structures are not completely the same.

1.2 Our Contribution

In this paper, we propose partial key exposure attacks on UOV and its two
variants, MAYO and QR-UOV. We follow Esser et al.’s partial enumeration.
4 In their asymmetric setting, a bit flipping probability from 1 to 0 is variable, while

that from 0 to 1 is a fixed probability 0.001.
5 Although Esser et al. also analyzed the erasure setting, we focus on the error setting

since the latter is more realistic and technically difficult.
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Moreover, we refine the enumeration strategy. To be honest, since the descrip-
tion of Esser et al.’s enumeration strategy is not clear, we cannot follow it com-
pletely. Instead, we provide complete descriptions of our proposed two enumera-
tion strategies. We analyze all cases and compare the qualities of these methods.
Throughout the paper, we focus on parameter sets for NIST security level I (SL
I) which achieves 143-bit security. We say that a partial key exposure attack is
effective if the complexity is less than 143-bit.

Based on our estimates, we can conclude that MAYO is much weaker than
UOV and QR-UOV against partial key exposure attacks. In particular, partial
key exposure attacks on UOV (resp. QR-UOV) are effective only when the error
probabilities are less than 0.11 (resp. 0.05), while those on MAYO are effective
even when the error probability is close to 0.5. Since Esser et al. only attacked
Rainbow by using partial enumeration, they could not provide structural ob-
servations on when the method is more effective. In contrast, since we attack
UOV, MAYO, and QR-UOV, we can find two structural differences among the
three schemes. At first, partial key exposure attacks are effective if the num-
ber of vinegar variables v is smaller than the number of equations m. To define
the parameter vMQ of partial enumeration, we cannot set an arbitrary value. In
short, vMQ has to be smaller than the number of equations m. If we set larger
vMQ > m, the partial enumeration may output an incorrect secret key even if the
enumeration step finds the correct solution. On the other hand, vMQ is always
smaller than v by definition. Therefore, we can set an arbitrary vMQ if v ≤ m
holds. Since MAYO satisfies the condition, our attack is effective on MAYO.
However, QR-UOV also satisfies the condition, while a partial key exposure at-
tack is not effective. The problem stems from the large order of the finite field
used in schemes. Although the orders of UOV (resp. MAYO) are 256 (resp. 16),
that of QR-UOV is 710. Therefore, the enumeration step becomes more time-
consuming. Summarizing the above discussion, this is the first result to clarify
the structure of UOV to resist partial key exposure attacks.

1.3 Organization of the Paper

In Section 2, we provide the preliminaries about the MQ problem, UOV variants,
partial key exposure attacks, and partial enumeration. In Section 3, we propose
partial key exposure attacks on UOV variants under the symmetric error setting
and estimate their complexity. In section 4, we modify the attack from Section
3 and apply it to asymmetric errors.

2. Preliminaries

2.1 Multivariate Quadratic Problem

As explained in Section 1.1, UOV and its variants are constructed using the
hardness of solving multivariate quadratic equations over a finite field. This
problem is called the multivariate quadratic (MQ) problem and is defined as
follows.



Partial Key Exposure Attacks on UOV and Its Variants 5

Definition 1 (MQ Problem). Let n be the number of variables, m be the
number of equations, and q be the order of the finite field. The MQ problem
MQ(n,m, q) is a problem that takes as input a system of quadratic polynomials

F = (F1,F2, . . . ,Fm) ∈ Fq[x1, . . . , xn]
m

over the finite field Fq to find one solution to the quadratic equations

F(x) = 0.

When n ≤ m (resp. n > m) holds, MQ(n,m, q) is said to be overdetermined
(resp. underdetermined).

In the “very” overdetermined MQ problem where m is much greater than
n, a random instance has no solution with high probability [22]. On the other
hand, In underdetermined instances, the expected number of solutions increases
exponentially [22].

The MQ problem is known to be NP-complete [23]. There are many stud-
ies [1,2,6,9,11,12,15,16,20,27,28,32,34] on solving the MQ problem, and various
algorithms have been proposed so far. CryptographicEstimators [19] provides
estimations of the complexity of these algorithms. Hereafter, we use the best
complexity provided by CryptographicEstimators v1.4.06 as the estimated
value of CMQ(n,m, q), where CMQ(n,m, q) represents the complexity of solving
MQ(n,m, q).

2.2 Unbalanced Oil and Vinegar (UOV)

We explain the public and secret keys of UOV [5], which are of interest in partial
key exposure attacks. UOV is parameterized by positive integers n,m, v, o = n−v
and an order of a finite field q, and its public/secret keys have the following
format.

Secret Key. A (random) matrix

T =
(
t1 t2 . . . to

)
∈ Fv×o

q .

Public Key. A system of quadratic polynomials

P = (P1,P2, . . . ,Pm) ∈ Fq[x1, . . . , xn]
m

which satisfies

P(t) = 0

for all t ∈ Span

{[
t1

e1

]
, . . . ,

[
to

eo

]}
(the secret subspace), where ei denotes

the unit vector in Fo
q whose i-th component is 1.
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Table 1: UOV parameter sets for NIST SL I
Name n v o m q

uov-Ip 112 68 44 44 256

uov-Is 160 96 64 64 16

In UOV, the value of the parameter o is equal to the value of m. Table 1
shows the parameter sets of UOV [5] proposed for NIST security level I, which
we consider in our attack estimations.

We explain an important result used in our partial key exposure attacks.

Theorem 1 (Theorem 1 in [37]). When n ≤ 3m, a UOV secret key can
be obtained in polynomial time using the public key P and any non-zero vector
included in the secret subspace.

2.3 UOV Variants

In this paper, we develop partial key exposure attacks on UOV and two of its
variants, MAYO and QR-UOV. These two variants both have the UOV param-
eters n, m, v, o, and q, and their public and secret keys have the same structure
as those of UOV. We provide a brief overview of the distinguishing features of
the key structures of these two UOV variants compared to UOV.

MAYO. MAYO [4] has an additional parameter k in addition to the UOV
parameters. One notable feature of MAYO is that o is much smaller than m,
which allows us to choose smaller parameters without reducing its security.

Table 2 shows the parameter sets of MAYO proposed for NIST security level
I.

Table 2: MAYO parameter sets for NIST SL I
Name n v o m q k

MAYO1 66 58 8 64 16 9

MAYO2 78 60 18 64 16 4

QR-UOV. QR-UOV has an additional parameter ℓ in addition to the UOV
parameters. In QR-UOV, the secret key T and the matrices that represent each
quadratic form Pi of the public key P have the structure of a block matrix
composed of ℓ × ℓ matrices. Using a specific ℓ-degree polynomial f , each block
6 v1.4.0 is the latest version as of October 2024.
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represents an element of the quotient ring Fq[x]/(f). The polynomial f is publicly
chosen from the irreducible polynomials to ensure the security against existing
attacks [21]. In the secret key, an element g ∈ Fq[x]/(f) corresponds to a matrix
Φf

g ∈ Fℓ×ℓ
q that satisfies the following equation:

(1, x, . . . , xℓ−1)Φf
g = (g, xg, . . . , xℓ−1g). (1)

For example, if q = 7 and f = x3 − 3x − 1, a matrix corresponding to g =
3 + 5x+ 2x2 ∈ Fq[x]/(f) is

Φf
g =


3 2 5

5 2 3

2 5 2

 .

Since an ℓ × ℓ matrix over Fq contains ℓ2 elements of Fq, while an element
of Fq[x]/(f) can be represented by ℓ elements of Fq, the public/secret keys can
be compressed by replacing each block in the matrices with its corresponding
element in Fq[x]/(f) ≃ Fqℓ . The compressed public/secret keys also have the
same structure as those of UOV with n/ℓ variables and m equations. This trans-
formation is called the Pull-back method [21]. The parameter sets corresponding
to this “compressed” key are shown in Table 3.

Table 3: Compressed QR-UOV parameter sets for NIST SL I
Name7 n v o m q

QR-UOV-Ia 84 74 10 100 710

QR-UOV-Ib 75 55 20 60 313

QR-UOV-Ic 67 60 7 70 3110

QR-UOV-Id 70 52 18 54 1273

2.4 Key Exposure Model

In our partial key exposure attacks, we consider the error model [18] as the key
exposure model. In the error model, the attacker obtains an erroneous version
of a secret key.

Definition 2 (Symmetric Error Model). Let N ∈ N and k = (k1, . . . , kN ) ∈
{0, 1}N be a binary representation of a secret key. Further let ε = (ε1, . . . , εN ) ∈
{0, 1}N be an error vector. The attacker obtains

k̃ := k⊕ ε = (k1 ⊕ ε1, . . . , kN ⊕ εN )

7 The names of each parameter set are not defined in the QR-UOV submission [21],
and are assigned in this paper.
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where the binary operator ⊕ represents the XOR operation. For each i ∈ {1, . . . , N},
εi = 1 holds with an error probability p.

Note that if the error probability p is greater than 0.5, the bit-inverted k̃ can
also be considered as a key obtained in the error model, with an error probability
of 1− p < 0.5. Therefore, it is sufficient to consider only the case where p ≤ 0.5.

In Definition 2, we considered a symmetric error setting, i.e., the probability
of 0 flipping to 1 (p0→1), is equal to the probability of 1 flipping to 0 (p1→0).
However, in practical side-channel attacks such as cold-boot attacks [24], these
two probabilities might differ. We follow Esser et al. [18] and assume a symmetric
error setting in our detailed explanation of the proposed attacks (Section 3) for
simplicity. For asymmetric errors, we provide an overview and an analysis of the
attack in Section 4.

2.5 Partial Enumeration

We explain the approach of partial enumeration used by Esser et al. [18] in their
partial key exposure attack on Rainbow.

Under the condition of n ≤ 3m, Theorem 1 shows that we can recover the
whole UOV secret key T from only one column of T. Our targets in this paper,
UOV, MAYO, and QR-UOV (compressed key), satisfy this condition. Therefore,
the goal of the partial key exposure attacks against them is to recover one column
of T from an erroneous secret key T̃.

From the definition of the UOV public key, the i-th column ti of T is a
solution to the system of m equations in v variables:

P

(
x

ei

)
= 0. (2)

There are two naive methods to recover ti from a column t̃i of T̃:
(a) Enumerate some of the errors on T̃ and check if it satisfies equation (2).

Since the number of error bits is very close to its expected value with high
probability, it is possible to obtain a solution of (2) with lower complexity.
For example, when enumerating errors where only γ of the v elements in Fq

contain errors, the number of enumerations becomes
(
v
γ

)
(q − 1)γ . However,

when the number of errors is large, enumeration is inefficient compared to
methods specialized for the MQ problem.

(b) Solve equation (2) as an instance of the MQ(v,m, q). The attacker can cer-
tainly obtain a solution in one process, but cannot utilize the information
from the erroneous key so it is relatively inefficient when T̃ does not contain
many errors.

In order to take the advantages of both, Esser et al. [18] used an approach
called partial enumeration, which is a hybrid approach of methods (a) and (b)
in their partial key exposure attack on Rainbow. More precisely, they took an
approach of enumerating errors on some elements of the column to be recovered
like (a), and obtaining the remaining elements by solving the MQ problem like
(b).
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3. Our Attacks on Symmetric Errors

In this section, we propose partial key exposure attacks on UOV and its variants
under the symmetric error setting, and estimate their complexity to compare
the resistance of the schemes. As mentioned in Section 2.5, our proposed attacks
are based on the concept of partial enumeration. We explain our attacks in
Section 3.1, then explain the method of estimating the complexity and show our
estimation results on the three schemes, UOV [5], MAYO [4], and QR-UOV [21]
in Section 3.2.

3.1 Our Attacks

The integer bq denotes the number of bits used to represent the elements of Fq.
Our attacks on UOV and its variants are parametrized by the integers vMQ,
vEnum := v− vMQ and the set of errors E ∈ {0, 1}bqvEnum to be enumerated. Since
we can recover the entire UOV secret key from a single column by Theorem 1,
we focus on recovering a single column in this paper. Until a column is recovered,
the proposed method repeats the partial enumeration process shown below for
each column t̃ := t̃i of T̃.

1. Divide indices {1, . . . , v} of the vector t̃ randomly into two disjoint index
sets: IEnum and IMQ, where |IEnum| = vEnum and |IMQ| = vMQ.

2. Enumerate errors in E on IEnum, then solve (2) as an instance of MQ(vMQ,m, q)
to recover elements at IMQ for each enumerated error. If a solution is found,
output it as the recovered ti.

Hereafter, the term I-part will be used to denote the entire elements whose
index is included in an index set I. Figure 1 shows an example of IEnum and
IMQ.

t̃ = ( t̃1 t̃2 t̃3 t̃4 t̃5 t̃6 )

IEnum = { 3 5

t3 t5 IEnum-part

}

IMQ = {

t1 t2 t4 t6

1 2 4 6

IMQ-part

}

Fig. 1: An example of IEnum and IMQ

Step 2. successfully stops if E contains the actual error in the IEnum-part of t̃.
vMQ satisfies 0 ≤ vMQ ≤ min{v,m} so that the MQ instance solved in Step 2. is
overdetermined. This is because there is a high possibility that a column different
from the original secret key will be obtained as the result of Step 2.. Because
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of this condition, we have to enumerate errors on at least v −m elements when
v > m holds, even if the error probability p is large and t̃ contains numerous
errors.

The overall process of the proposed method is shown in Algorithm 1.

Algorithm 1 Partial Key Exposure Attacks on UOV and its variants
Parameters vMQ, vEnum := v − vMQ, E
Input A UOV public key P and an erroneous UOV secret key T̃
Output A recovered column t of T̃ and its index i
1: loop
2: for i = 1, 2, . . . , o do
3: t̃← t̃i: Copy the i-th column of T̃.
4: IMQ

$←− {I ⊂ {1, 2, . . . , v} | |I| = vMQ}
5: IEnum ← {1, 2, . . . , v} \ IMQ

6: for ε ∈ E do
7: Recover the error ε on IEnum-part of t̃.
8: Solve an instance of MQ(vMQ,m, q) to recover the rest.
9: if obtained t as a solution then

10: return t, i
11: end if
12: end for
13: end for
14: end loop

It should be noted that the error subset E to be enumerated remains a matter
of discretion. Since the complexity and the success probability of a single partial
enumeration process depend on E , we want to choose a “good” E for attacks.
Intuitively, a smaller E leads to lower complexity, while including highly probable
errors leads to a higher probability of success. We propose two different strategies
to decide E and then compare them in the analysis part of this section.

EnumGamma Strategy. We use an integer γ ∈ [0, vEnum] as an additional
parameter and define E as the set of all errors on vEnum elements where exactly
γ of the vEnum elements in Fq are erroneous. There are

(
vEnum

γ

)
ways to choose

γ elements from the vEnum elements. For each choice of γ elements, there are
(2bq −1)γ candidates of bit errors. Thus, in one partial enumeration process, the
MQ problem is solved |E| =

(
vEnum

γ

)
(2bq − 1)γ times, and its complexity becomes(

vEnum
γ

)
(2bq − 1)γ · CMQ(vMQ,m, q).

We can take advantage of the bias in the number of correct elements in t̃ by
using the EnumGamma strategy. We can set the number of elements with no
enumeration vEnum − γ depending on the expected number of elements with no
errors, which leads the correct elements to be used in solution without modifi-
cation as much as possible.
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In order to derive the success probability, let ω be the number of erroneous
elements contained in t̃. The probability of successfully recovering t̃ with a single
partial enumeration is (

ω
γ

)(
v−ω

vEnum−γ

)(
v

vEnum

)
because the IEnum-part contains exactly γ of ω erroneous elements and vEnum−γ
of v − ω correct elements in successful situations.

EnumGammaLimited Strategy. In addition to γ in EnumGamma, we
also use two parameters, wmin and wmax. We make E more “limited” than
EnumGamma; We define E the set of errors where exactly γ of the vEnum el-
ements in Fq are erroneous and each of γ elements has error bits of at least
wmin and at most wmax. Since there are

∑wmax
w=wmin

(
bq
w

)
candidates of errors con-

tained in each of the γ erroneous elements, for each choice of γ elements, there
are

(∑wmax
w=wmin

(
bq
w

))γ
candidates of bit errors. The complexity of one partial

enumeration process becomes
(
vEnum

γ

) (∑wmax
w=wmin

(
bq
w

))γ
.

We can take advantage of the bias in the number of error bits contained in
each element by using the EnumGammaLimited strategy. For example, if p is
very small, the number of elements with a few error bits will be relatively large.
In such cases, we can effectively enumerate the errors by setting wmax to a small
value.

Let ω be the number of erroneous elements contained in t̃, and ωin be the
number of elements in t̃ that have error bits of at least wmin and at most wmax.
The probability of successfully recovering t̃ with a single partial enumeration is(

ωin
γ

)(
v−ω

vEnum−γ

)(
v

vEnum

)
because the IEnum-part contains exactly γ of ωin erroneous elements and vEnum−
γ of v − ω correct elements in the successful situations.

3.2 Estimation of Complexity

We follow Esser et al. [18] and assume that the error probability p is known under
the error model. Therefore, the attacker can choose attack parameters depending
on p. In this paper, for each p, we calculate the minimum complexity with respect
to attack parameters as the estimated complexity. Intuitively, a higher vEnum
achieves the minimum complexity when the enumeration part contributes well
to the reduction of complexity, while a lower vEnum achieves the minimum when
enumeration is not efficient on the other hand.

It is important to note that some errors may not be recoverable by our
attack with the specified attack parameters. More precisely, if any IEnum-part of
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t̃i cannot be recovered by enumerating errors in E , our attack algorithm does not
stop. For example, if we employ the EnumGamma strategy with parameter γ,
and we obtain T̃ that has more than γ+vMQ erroneous elements in each column,
then we cannot recover any of the column of T̃ because we can recover at most
γ + vMQ elements in partial enumeration. Therefore, we only consider attack
parameters for which the probability of obtaining such a T̃ is less than 0.05 in
our estimation. Following the work of Esser et al. [18], we randomly generate 20
pairs of T and T̃ for each p and attack parameters, then estimate the attack
complexity and take the average as the estimated complexity at the chosen p
and parameters.

On QR-UOV, we focus in this paper on recovering the compressed key T′ on
Fq[x]/(f) which we explained in Section 2.3, rather than the original secret key
T of QR-UOV. When we generate T, the element of Fq[x]/(f) corresponding to
each block of T is generated during the process [21]. Also, from equation (1), the
coefficients of the element of Fq[x]/(f) corresponding to each block of T appear
in the leftmost column. We consider in this paper that these values are obtained
under the error model, and perform a partial key exposure attack on T′.

We estimate the bit complexity of our attacks on the parameter sets for
NIST security level I of UOV, MAYO, and QR-UOV with each of two strate-
gies proposed in Section 3.1 to decide E . Specifically, we are estimating for
uov-Ip, MAYO1, and QR-UOV-Ia, respectively. Table 4 shows the specific val-
ues of these parameters and the bit complexity required for the most efficient
key recovery or universal forgery attacks. As explained in Section 2.1, we use
CryptographicEstimators [19] to estimate CMQ.

Table 4: Parameters and the complexity of existing key recovery or universal
forgery attacks of each parameter set

Name n v o m q Attack complexity Attack type

uov-Ip 112 68 44 44 256 145 Direct

MAYO1 66 58 8 64 16 143 Reconciliation [14]

QR-UOV-Ia 84 74 10 100 710 148 Reconciliation [14]

In each plot of complexity, we marked with a dashed line the position of
bit complexity = 143, which corresponds to the number of classical gates (2143)
required for normal attacks in NIST security level I [35]. Also we marked in each
plot of parameters the position of vEnum = 24, which is the minimum value of
vEnum that we can choose for uov-Ip. The minimum value of vEnum is 0 for the
other two parameter sets.

EnumGamma. Figure 2a shows the estimated complexity of our attacks on
uov-Ip, MAYO1, and QR-UOV-Ia with the EnumGamma strategy, while Figure
2b shows the parameters of our attacks that achieve the best complexity.
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(a) Complexity (b) Parameters

The transparent marks in (b) show the value of γ.

Fig. 2: Bit complexity required and the best parameter vEnum and γ for the attack
in Section 3.1 with EnumGamma

From the estimated complexity in Figure 2a, we find that the bit complexity
already exceeds the requirements of NIST security level I (143) at p = 0.06 in
the QR-UOV-Ia and at p = 0.11 in the uov-Ip. This fact shows that our attacks
are not effective on uov-Ip and QR-UOV-Ia when p is large, because applying the
normal attack (without partial key) is more efficient in such cases. On the other
hand, the bit complexity of the attack against MAYO1 is gradually approaching
143 as p approaches 0.5, and it does not reach 143. Therefore, it is suggested
that QR-UOV-Ia has the strongest resistance among the three schemes to our
attacks with the EnumGamma strategy, followed by uov-Ip, while MAYO1 has
less resistance. We list in Table 5 the maximum error probabilities where the
attack bit complexity is 143 or less.

This order of resistance can also be found in Figure 2b. As previously stated
in Section 3.2, we can measure the effect of combining enumeration by the value
of vEnum. In QR-UOV-Ia, vEnum is always close to its lowest value 0 when p is
larger than about 0.07. This suggests that enumeration of errors is not effective.
Conversely, in MAYO1, even at p ≈ 0.5, vEnum is higher than 0, indicating that
the proposed method is more efficient than finding all elements by solving the
MQ problem.

Table 5: Max error probability of attack bit complexity ≤ 143 in Figure 2a
bit error prob.

uov-Ip 0.10

MAYO1 0.49

QR-UOV-Ia 0.05
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EnumGammaLimited. Figure 3a shows the estimated complexity of our
attacks on uov-Ip, MAYO1, and QR-UOV-Ia with the EnumGammaLimited
strategy, while Figure 3b shows the parameters of our attacks that achieves the
best complexity.

(a) Complexity (b) Parameters

The transparent marks in (b) shows the value of γ.

Fig. 3: Bit complexity required and the best parameter vEnum and γ for the attack
in Section 3.1 with EnumGammaLimited

From the estimated complexity in Figure 3a, we find that our attack with
EnumGammaLimited is effective on MAYO1 and not effective on uov-Ip and
QR-UOV-Ia as with our attack with EnumGamma. The notable difference be-
tween the results of EnumGamma and EnumGammaLimited is the reduction
of complexity on uov-Ip at p ≥ 0.1. This difference slightly reduces the maxi-
mum error probabilities shown in Table 6 where the attack bit complexity is 143
or less. The attack complexity on MAYO1 and QR-UOV-Ia is nearly equivalent
to that of the attack on each parameter set with EnumGamma.

Table 6: Max error probability of attack bit complexity ≤ 143 in Figure 3a
bit error prob.

uov-Ip 0.11

MAYO1 0.49

QR-UOV-Ia 0.05

Summary and Analysis of Estimation. The two results of our estimation
show that both uov-Ip and QR-UOV-Ia are much more resistant to our attacks
than MAYO1.
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The resistance of uov-Ip can be explained by the inequality v > m. In
uov-Ip, the number of variables v contained in the column to be recovered is
about 20 to 30 more than the number of equations m. In our partial enumer-
ation algorithm, vMQ was determined to be less than or equal to m so that
MQ(vMQ,m, q) becomes overdetermined. Therefore, even with a large p and nu-
merous errors, we have to enumerate errors on at least v − m elements. As a
result, the complexity exceeds that of the usual attack by a large amount. In
fact, for uov-Ip, the number of elements that need to be enumerated for errors
is v−m = 24, then the number of enumerations required for its full enumeration
is qv−m = 25624 = 2192, which well explains that the bit complexity exceeds the
existing attack by about 200 in the range where p is close to 0.5.

Since v > m does not hold for QR-UOV-Ia, there should be another reason
for the resistance of QR-UOV-Ia. The very large value of q may be the cause
of the resistance. If q is large, the attacker has to enumerate a huge number of
errors even if γ is small. For this reason, increasing the value of γ to increase the
number of elements in the error enumeration is not a good idea in QR-UOV.

Moreover, when q is large, there is a high probability that a single element
contains at least one error bit. When γ = 0, our attack does nothing on the
IEnum-part of the column of the erroneous secret key. Therefore, for recovery,
the IEnum-part must not contain any errors. Thus, it is not a good idea to make
vEnum large either. As a result, unless p is very small, our attack requires the
same complexity as solving the MQ problem to recover the entire private key.

4. Our Attacks on Asymmetric Errors

4.1 Overview of the Attacks

In the case of asymmetric errors, the Hamming weight of an erroneous bit vector
(e.g., an erroneous element) provides information about the number of errors. For
instance, consider a scenario where p0→1 ≪ p1→0, and the original (error-free) bit
vector consists of an equal number of 0s and 1s. In this case, the probability that
the bit 1 obtained by the attacker is erroneous is very low, while the probability
that the bit 0 is erroneous is relatively high. This information allows the attacker
to prioritize the elements with fewer error bits and include them in the IEnum-
part.

We modify the partial enumeration process described in Section 3.1 to take
advantage of this information about erroneous elements. We show our modified
process below:

1. Divide indices {1, . . . , v} of the vector t̃ randomly into two disjoint index sets:
IEnum and IMQ, where |IEnum| = vEnum and |IMQ| = vMQ. The probability of
getting each division depends on the Hamming weight of IEnum-part of t̃.

2. Enumerate errors in E on IEnum, then solve (2) as an instance of MQ(vMQ,m, q)
to recover elements at IMQ for each enumerated error. If a solution is found,
output it as the recovered ti.
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Intuitively, we want the IEnum-part of t̃ to contain elements that are unlikely
to be erroneous. We propose in this paper to determine the weight of selecting
each division as the inverse of the probability of the IEnum-part containing an
error.

4.2 Estimation of Complexity

In this paper, we estimate the bit complexity of our attacks for asymmetric errors
on MAYO1. Following previous works [18,24], we assume that p0→1 is very small
in our analysis, and fix p0→1 at 10−3. Also, we fix E = {00 · · · 00} for simplicity,
which implies that we don’t enumerate errors on the IEnum-part. This is because
the best attack parameter γ under the symmetric error setting is almost always
0 in the attack on MAYO1.

Figure 4 shows the estimated complexity of our attacks. We find that our
attack for asymmetric errors are always effective on MAYO1.

Fig. 4: Bit complexity required for our attack on MAYO1 under the asymmetric
error setting with fixing p0→1 = 10−3

From the estimated complexity in Figure 4, we find that our attacks are
effective on MAYO1 even in the case of asymmetric errors.

5. Conclusion

In this paper, we proposed partial key exposure attacks on UOV and its vari-
ants, MAYO and QR-UOV, based on the attack on Rainbow by Esser et al. [18].
We employed two enumeration strategies to refine the partial enumeration tech-
nique initially proposed by Esser et al. Also, we estimated the complexity of
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our attacks on uov-Ip, MAYO1 and QR-UOV-Ia. Our estimation demonstrated
that our attacks are most effective on MAYO1, while uov-Ip and QR-UOV-Ia
have stronger resistance. Our results indicate that our attacks are particularly
effective when v < m and q is small.

Future works will focus on developing partial key exposure attacks on SNOVA,
which aims to compare the resistance of all Round 2 candidate UOV variants
to such attacks. Additionally, we may find better ways to determine the set of
errors to improve the efficiency of our attacks, although theoretical analysis is
expected to be very challenging.
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