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Abstract. In this paper, we present efficient SNARKs for Boolean cir-
cuits, achieving significant improvements in the prover efficiency. The
core of our technique is a novel tower sumcheck protocol and a tower
zero-check protocol tailored for tower fields, which enable this efficiency
boost. When instantiated with Wiedemann’s binary tower fields with
the base field of GF (2) and the top-level field GF (22

ℓ

), assuming the
quadratic complexity of multiplications O(22ℓ) in the top-level field with
2ℓ bits, the prover time of our sumcheck protocol is O(21.5ℓN). It is faster
than the standard sumcheck protocol over the large field with the com-
plexity of O(22ℓN). To achieve a reasonable security level, 2ℓ is usually
set to 128.
Leveraging this advancement, we improve the efficiency of IOP proto-
cols over the binary or small characteristic fields for Plonkish, CCS,
and GKR-based constraint systems. Moreover, to further improve the
prover efficiency of the SNARKs, we introduce a basis-switching mecha-
nism that efficiently transforms polynomial evaluations on the base-field
polynomial to evaluations on the tower-field polynomial. With the basis-
switching, we are able to compile the binary-field IOPs to SNARKs using
large-field polynomial commitment schemes (PCS) that batch the wit-
ness over the base field. The size of the large-field PCS is only 1

2ℓ
of the

size of the witness over the base field. Combining the IOP and the PCS,
the overall prover time of our SNARKs for Boolean circuits significantly
faster than the naive approach of encoding Boolean values in a large
field.

1 Introduction

Succinct Non-interactive Arguments of Knowledge (SNARKs) enable a prover
to generate a short proof to convince a verifier that a statement on the prover’s
witness is true. Theoretical constructions for all NP statements were proposed by
Kilian [29] and Micali [32] utilizing probabilistically checkable proofs. In recent
years, there have been numerous constructions of modern SNARKs with good
efficiency in practice.

A widely-used approach is compiling Interactive Oracle Proofs (IOPs) with
Polynomial Commitment Schemes (PCS), as formalized by Bünz et al. [13]. Early
constructions often combine IOPs with PCS based on Elliptic Curves (EC) due
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to their small proof size, as proposed in papers such as [22, 25, 33]. However,
secure elliptic curves are typically constructed on large prime fields, which in
turn serve as the scalar field in the associated IOP protocols. For example, the
order of the BN254 curve is a prime of 254 bits, making scalar-field operations
computationally expensive. This overhead makes EC-based SNARKs impractical
for large-scale applications.

Recent advancements in polynomial commitment protocols, such as FRI [8]
and Brakedown [24], have significantly improved the efficiency by leveraging
error-correcting codes over small-characteristic fields. Extending this approach
further, some schemes construct PCS directly over characteristic-2. Notably,
Binius [19] and FRI-Binius [20] demonstrate how to pack multiple bits into a
large field, and only commit to a polynomial over the large field with the same
number of bits as the witness in the binary field, which improves the efficiency
of the PCS. Their protocols have shown exceptional performance in proving
Boolean circuits, including applications such as the Keccak hashing circuit.

Despite these advancements, a key remaining challenge is to develop an ef-
ficient IOP protocol over small-characteristic fields. In particular, most circuits
are defined over a base field, while the challenges are sampled from a significantly
larger extension field to ensure the soundness property. This discrepancy intro-
duces substantial computational overhead. For example, in Binius, although the
circuit is defined over GF (2), the IOP protocol has to be executed over GF (2128)
to sample the random challenges. The witness over GF (2) is packed only in the
PCS, but not the IOP protocol. This limitation significantly undermines the per-
formance benefits of the packing technique used in the PCS, ultimately limiting
the efficiency of the entire SNARK.

1.1 Our Contributions

In this paper, we propose several techniques to address the issue above:

Efficient Sumcheck and Zerocheck Protocols over Tower Fields. We
introduce an efficient sumcheck protocol, referred to as the tower sumcheck pro-
tocol, which is defined over arbitrary tower fields where the extension degree
is a prime power. This protocol is specifically designed to embed prover mes-
sages within the tower field and to utilize its hierarchical structure to reduce the
prover’s cost. Furthermore, we propose an optimized zerocheck protocol, named
the tower zerocheck protocol, which builds upon the sumcheck framework while
incorporating zerocheck-specific optimizations to further enhance efficiency. For
the tower field with GF (2) as the base field and extension degree 2, assuming
the cost of a multiplication in the i-th level of the tower field isMi = O(22i), our
protocol has a complexity of O(21.5ℓN), whereas the previous protocol incurs a
complexity of O(22ℓN).

Efficient IOPs over Small-Characteristic Fields for Plonkish, CCS,
GKR Arithmetizations. Using our tower sumcheck and zerocheck proto-
cols, we design efficient IOP protocols over small-characteristic fields for several
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widely used arithmetizations, including Plonkish [22], customizable constraint
systems (CCS) [39], and GKR [23]. We achieve similar improvements on the
prover time compared the baseline approach of embedding the elements of small-
characteristic fields naively in large fields in these schemes.

Efficient SNARKs for Boolean Circuits. Finally, to construct SNARKs
over small-characteristic fields, e.g., Boolean circuits, we propose an efficient
basis-switching technique, which enables us to encode the witnesses into a poly-
nomial defined over the large field with the same number of bits as the witness
and run a PCS over the large field. Suppose the base-field witness vector has size
2n and the polynomial commitment scheme uses a field Tpcs with bit width 2ℓpcs .
Compared with the naive solution that commits a polynomial embedding each
bit into an extension field Tpcs, our approach only needs to commit a polyno-
mial of size 2n

2ℓpcs
. Although FRI-Binius proposes a ring-switching technique that

achieves a similar size reduction, our method offers greater efficiency for the
prover. Specifically, our method only incurs a constant overhead on the prover,
while the FRI-Binius reduction needs O

(
2n−ℓpcs · poly(λ, n)

)
prover time. With

our basis-switching technique and an efficient PCS over the large field, we can
compile these IOP protocols into highly efficient SNARKs.

1.2 Related Work

SNARK over Large Fields. There are many SNARK constructions over fields
of large prime characteristics based on different cryptographic primitives, such
as [12, 22, 25, 30, 33, 44]. We refer the readers to [43] for a survey on modern
SNARK constructions.

Sumcheck and Zerocheck. The sumcheck protocol, introduced by Lund et
al. [31], is a fundamental tool in interactive proofs and the building block of many
SNARKs. Algorithms with linear prover time for sumcheck over the product of
multilinear extensions were proposed in [42, 46]. Setty [38] presented a SNARK
protocol based on sumcheck to prove R1CS instances. It also proposed zerocheck,
which was formalized by Chen et al. [14] as the zerocheck IOP. As shown by Chen
et al. [14], zerocheck IOP is important when constructing a SNARK scheme
based on Plonkish arguments.

SNARKs over Small-Characteristic Fields. Small-characteristic fields, par-
ticularly binary fields, have recently gained attention for their compact represen-
tation and high performance, which align well with practical circuit implementa-
tions. Thanks to the polynomial commitment scheme based on error-correcting
code [2–4, 8, 11, 24, 47–49], there has been a list of SNARK protocols based on
small-characteristic field, such as [9,27] and practical implementations [34,35,41].

Ron-Zewi et al. [36] and Holmgren et al. [28] used tensor code and code-
switching to construct the binary-field multi-sumcheck protocol, and then a suc-
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cinct argument of circuit satisfiability problem. Although they achieved linear-
time prover and sublinear-time verifier with a private linear preprocessing step,
the soundness error is an arbitrarily small constant, not negligible.

Diamond et al. [19, 20] introduced constructions of polynomials defined on
the tower fields with characteristic 2. By packing multiple bits into extension
field elements, these works achieved significant improvements in prover efficiency.
Considering the circuit is still written over GF (2), however, they need to convert
a base-field polynomial evaluation to an evaluation of the large-field polynomial.
Soukhanov et al. [40] proposed an approach that exploits Frobenius mapping to
construct the conversion. All of the approaches above leverage large-field PCS
to commit base-field witness represented by the same number of bits, however,
all these protocols propose seldom techniques to accelerate the IOP prover cost.
When instantiated with the sumcheck protocol, even though the witnesses are
defined over the base field, the prover’s computational cost involves approxi-
mately O(N) multiplications over a large extension field denoted by hundreds
of bits, where N is the witness size.

Recent Optimization of Small-Characteristic Field Sumcheck. Gruen et
al. [26] introduced several techniques to accelerate the zerocheck IOP protocol,
which are not specific to small fields. Dao et al. [7, 16, 17] proposed further
optimizations for the small-characteristic and binary-field sumcheck protocol.
These techniques are also compatible with our algorithms and to further improve
the concrete efficiency.

Applications. Theoretically, a Boolean circuit composed of AND and XOR
gates is sufficient to describe any deterministic algorithm. With the develop-
ment of practical SNARK protocols, there has been increasing effort to integrate
binary fields into real-world applications. One such application is the computa-
tion of hash functions. Bertoni et al. [10] introduced the Keccak hash function,
while more ZK-friendly hash functions over binary tower fields have been pro-
posed by [6]. Additionally, Jolt [1,5] has begun leveraging binary tower fields to
construct Zero-Knowledge Virtual Machine (ZKVM).

2 Technical Overview

As previously mentioned, a SNARK is constructed by first designing an IOP
protocol and then compiling it using a PCS. Especially, when proving statements
about a Boolean circuit, an option is to construct a multivariate polynomial IOP
over a binary field (or GF (2)) and compile it using a PCS for polynomials in
GF (2)[X].

Recently, multivariate IOP protocols have become increasingly popular due
to their linear proving complexity, in contrast to univariate protocols, which ex-
hibit quasilinear proving complexity. Sumcheck protocol serves as a fundamental
building block for many multivariate IOP protocols. However, when applied to
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a small-characteristic field, the traditional sumcheck protocol remains unopti-
mized. The main reason is that to ensure soundness, the challenges introduced
in the sumcheck protocol must be sampled from a large extension field. For ex-
ample, when running the sumcheck protocol on Fp with p as the 31-bit Babybear
field, all the computations transition to the extension field E = Fp4 after gen-
erating a challenge in the first round. In contrast, the univariate IOP for the
constraints over the same field retains the most expensive computations, such
as FFT and hashing, within the base field. In the multivariate case, this gap
significantly increases the proving time after the first round, especially when
p = 2 and the extension field is E = F2128 . As a result, this overhead reduces the
performance advantage of multivariate systems in practical implementations.

One intuitive approach to avoid this overhead is to pack multiple base-field
witnesses into an extension field. For example, given three vectors denoted as
(a0, . . . , a3), (b0, . . . , b3), (c0, . . . , c3) ∈ F4

p, we have

(c0, . . . , c3) = (a0, . . . , a3)⊕ (b0, . . . , b3) ,

where “⊕” denotes the element-wise addition. This can be equivalently repre-
sented in the extension field as

(c0, . . . , c3)E = (a0, . . . , a3)E ⊕ (b0, . . . , b3)E ,

where E = Fp4 = F(α), and the notation (c0, . . . , c3)E denotes an element c ∈ E
as explained in Section 3.1. However, this simple packing technique fails when
checking

(c0, . . . , c3) = (a0, . . . , a3)⊗ (b0, . . . , b3) ,

where “⊗” denotes the element-wise multiplication.
In our paper, instead of packing multiple witnesses into an extension field,

we retain the witnesses in the base field and utilize the extension structure of
tower fields within the protocols.

2.1 Tower Sumcheck Protocol

In this section, we introduce tower sumcheck protocol. For simplicity, we focus
on a specific version designed for a simple case where the expression is given by
the product of multilinear extensions:

σ =
∑

b∈{0,1}n
f̃0(b)f̃1(b) · · · f̃d−1(b) , (1)

where f̃0(X), . . . , f̃d−1(X) ∈ T0[X] denote the multilinear extensions (see Defi-
nition 2) defined over the base field T0. This type of sumcheck equation appears
commonly in many IOPs and SNARKs based on multivariate polynomials, such
as the GKR protocol. To efficiently generate a proof for this equation, we design
a protocol called tower sumcheck protocol. The entire proving process is con-
ducted over the following tower fields, which is defined by fixing a base field and
sequentially deriving an extension field of the previous field:

Tp,t,ℓ =
¶
T0 = GF

Ä
pt

0
ä
, T1 = GF

Ä
pt

1
ä
, . . . , Tℓ = GF

Ä
pt

ℓ
ä©

,
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where the witness polynomials are in T0[X] and the challenges are sampled from
Tℓ. For example, when p = 2, t = 2 and ℓ = 7, T0 is the binary field GF (2),
and Tℓ is GF (22

7

) = GF (2128). For a general formulation of our protocol, please
refer to Section 4.1.

The main idea behind the sumcheck protocol is to recursively reduce the
summation identity into a new identity with half of the size in each step, until it
becomes trivial to verify. For instance, in the first round, the prover sends a uni-
variate polynomial q(X) with degree d, and then the problem becomes proving
the correctness of q(X). This verification is further reduced to checking a single
evaluation of q(x0) for a random challenge x0 ∈ Tℓ, which incurs a soundness er-
ror d

|Tℓ| as established by the Schwartz-Zippel lemma (Lemma 1). Unfortunately,
due to the random challenge from Tℓ, the computations are all defined over Tℓ
after the first round, which are significantly slower than computations over the
base field.

To solve this problem, the key observation behind our approach is that, when
the polynomial q is evaluated at the basis element α0 defining the first extension
field in the tower fields i.e., T1 = T0(α0), and the polynomial’s degree d is smaller
than the field extension degree t, the coordinates of q(α0) retain the original
polynomial structure. Utilizing this property, we replace the random challenge
x0 ∈ Tℓ by the basis element α0 and reduce the verification of Equation 1 to
verifying the evaluation q(α0). This results in zero soundness error. Subsequently,
we replace the random challenges in the first ℓ rounds with the fixed basis element
(α0, . . . , αℓ−1), where each extension satisfies Ti+1 = Ti(αi). After ℓ rounds, we
switch back to random challenges from Tℓ as in the standard sumcheck. Based
on the intuition above, we propose the tower sumcheck protocol in Protocol 1.
Note that as the basis elements of the tower fields are known by both the prover
and the verifier, the first ℓ rounds are deterministic and non-interactive without
any challenge from the verifier.

We are able to show the soundness of the new tower sumcheck protocol by
the following theorem:

Theorem 1 (Tower Sumcheck (Simplified for MLE Products)). The
protocol described in Protocol 1 is a sumcheck protocol with perfect complete-
ness and a soundness error of d(n−ℓ)

|Tℓ| .

Improvements on the Prover Time. The main advantange of the tower sum-
check protocol is that in the step i < ℓ, the computation is done over Ti instead
of Tℓ, which is significantly faster than the original sumcheck protocol. To evalu-
ate the computational cost of the prover, we decompose its computation into the
following two distinct procedures. Suppose the challenges are x = (x0, . . . , xn−1)
(in the tradition x are sampled in Tℓ, while in our protocol x = (α, xℓ, . . . , xn−1),
and only xℓ, . . . , xn−1 are random challenges), then:

– Computing the message q(i)(X) for 0 ≤ i < n: In this procedure, the
prover computes the following steps:
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Protocol 1 (Tower Sumcheck Protocol (Simplified for MLE Products))
Tower sumcheck protocol is a specialized sumcheck protocol designed over the tower
fields Tp,t,ℓ to prove Equation 1. The protocol proceeds as follows:

– TSC.Proven,d,ℓ

Ä
f̃0(X), . . . , f̃d−1(X)

ä
: With the input f̃i ∈ T0(≤1)[X] for 0 ≤ i < d,

P goes through the following steps:
1. Phase 1. For i = 0, . . . , ℓ− 1, run the following steps:

(a) Send the univariate polynomial q(i)(X) ∈ Ti(≤d)[X] to the verifier, where:

q(i)(X) =
∑

b∈{0,1}n−i−1

f̃0(α0, . . . , αi−1, X,b) · · · f̃d−1(α0, . . . , αi−1, X,b) .

2. Phase 2. For i = ℓ, . . . , n− 1, run the following steps:
(a) Send the univariate polynomial q(i)(X) ∈ Tℓ(≤d)[X] to the verifier, where:

q(i)(X) =
∑

b∈{0,1}n−i−1

f̃0(α,xℓ..i, X,b) · · · f̃d−1(α,xℓ..i, X,b) .

(b) Receive a challenge xi from the verifier.

– TSC.Verify
(f̃i(·))0≤i<d

n,d,ℓ (σ): With the input σ ∈ T0, and the oracles f̃0(·), . . . , f̃d−1(·),
V goes through the following steps:
1. Set σ(0) = σ.
2. Phase 1. For i = 0, . . . , ℓ− 1, run the following steps:

(a) Receive q(i)(X) from the prover and check σ(i) = q(i)(0) + q(i)(1)
(b) Compute σ(i+1) = q(i)(αi).

3. Phase 2. For i = ℓ, . . . , n− 1, run the following steps:
(a) Receive q(i)(X) from the prover and check σ(i) = q(i)(0) + q(i)(1).
(b) Randomly generate xi ← Tℓ and send to the prover.
(c) Compute σ(i+1) = q(i)(xi).

4. Query the oracle Feval = f̃0(α,xℓ..n) · · · f̃d−1(α,x). Output Feval
?
= σ(n).

Figure 1: Tower Sumcheck Protocol (Simplified)

1. Define
Ä
a
(i)
j X + b

(i)
j

ä
:= f̃j(x0..i, X,b), b ∈ {0, 1}n−i−1, and compute

q
(i)
b (X) =

d−1∏
j=0

Ä
a
(i)
j X + b

(i)
j

ä
, for each b ∈ {0, 1}n−i−1.

2. Compute q(i)(X) =
∑

b∈{0,1}n−i−1 q
(i)
b (X).

Since the additions are much cheaper than multiplications, we only count
the cost of Step 1. Then our protocol is much cheaper in the first ℓ rounds.
Assuming c(d) is the complexity to compute the product of d binomials, Step
1 only costs O

(
c(d) N

2i+1

)
multiplications. However, in the previous protocol,

it costs O
(
c(d)N2

)
base-field multiplications in Round 0 and O

(
c(d) N

2i+1

)
top-level field multiplications in the remaining rounds.
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– Fixing variables in f̃0(x0..i+1,Xi+1..n), . . . , f̃d−1(x0..i+1,Xi+1..n): For each
0 ≤ j < d and b ∈ {0, 1}n−i−1, the prover computes

f̃j(x0..i+1,b) = f̃j(x0..i, 0,b) + xi · (f̃j(x0..i, 1,b)− f̃j(x0..i, 0,b)) .

We also improve this step a lot in the first ℓ rounds. For each polynomial,
our cost is negligible because multiplying a field element by a basis in its
extension resembles concatenation in the implementation. While the previous
protocol costs O

(
N
2

)
multiplications between T0 and Tℓ in Round 0, and

O
(

N
2i+1

)
top-level field multiplications in the remaining rounds.

The complexity comparison is shown in Table 1. when instantiated with Wiede-
mann’s binary tower fields, assuming that d and c(d) are constants, and the com-
plexity of multiplications is quadratic in the bitlength (i.e., Mi = O((22

i

)2)),
the total prover time of our sumcheck protocol is O(21.5ℓN), while the standard
sumcheck protocol runs in O(22ℓN).

Computing Messages Our Protocol Previous Protocol

Phase 1, Round 0 O
(
c(d)N

2

)
M0 O

(
c(d)N

2

)
M0

Phase 1, Round i ≥ 1 O
(
c(d) N

2i+1

)
Mi O

(
c(d) N

2i+1

)
Mℓ

Phase 2, Round i ≥ ℓ O
(
c(d) N

2i+1

)
Mℓ O

(
c(d) N

2i+1

)
Mℓ

Fixing Variables

Phase 1, Round 0 Negligible O
(
dN

2

)
M0

Phase 1, Round i ≥ 1 Negligible O
(
d N
2i+1

)
Mℓ

Phase 2, Round i ≥ ℓ O
(
d N
2i+1

)
Mℓ O

(
d N
2i+1

)
Mℓ

Table 1: Comparison of previous and our protocols for sumcheck proving Equa-
tion 1, where ℓ is the total level of the field tower, d is the degree of the expression,
c(d) is the cost to multiply d binomials of the form (aX + b), Mi is the cost of
multiplication in Ti, Mi is the multiplication between T0 and Ti.

2.2 Tower Zerocheck Protocol

Verifying a product of base-field MLEs is insufficient to verify a complete arith-
metic constraint system. To construct a complete IOP over small-characteristic
fields, such as the Plonkish-style protocol, we also need to verify the following
identity:

σ = out(Y) =
∑

b∈{0,1}n
‹eq(Y,b)f̃0(b)f̃1(b) · · · f̃d−1(b) (2)

where f̃0(X), . . . , f̃d−1(X) ∈ T0[X] are the multilinear extensions. This is named
zerocheck in the literature. From the prior subsection, the tower sumcheck pro-
tocol assumes that all polynomials are defined over the base field. However, in
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Protocol 2 (Tower Zerocheck Protocol (Simplified for MLE Products))
Tower zerocheck protocol is a specialized zerocheck protocol designed over the tower
fields Tp,t,ℓ to prove Equation 2. The protocol proceeds as follows:

– TZC.Proven,d,ℓ

Ä
f̃0(X), . . . , f̃d−1(X);y

ä
: With the input f̃i ∈ T (≤1)

0 [X] for 0 ≤ i < d

and y = (α,yℓ..n), P goes through the following steps:
1. Phase 1. For i = 0, . . . , ℓ− 1, run the following steps:

(a) Send the univariate polynomial q(i)(X) ∈ Tℓ(≤d)[X] to the verifier, where:

q(i)(X) =
∑

b∈{0,1}n−i−1

‹eq(αi+1..ℓ,yℓ..n;b)f̃0(α0..i, X,b) · · · f̃d−1(α0..i, X,b).

2. Phase 2. For i = ℓ, . . . , n− 1, run the following steps:
(a) Send the univariate polynomial q(i)(X) ∈ Tℓ(≤d)[X] to the verifier, where:

q(i)(X) =
∑

b∈{0,1}n−i−1

‹eq(yi..n;b)f̃0(α,xℓ..i, X,b) · · · f̃d−1(α,xℓ..i, X,b).

(b) Receive a challenge xi from the verifier.

– TZC.Verify
(f̃i(·))0≤i<d

n,d,ℓ (σ;y): With the input σ ∈ Tℓ and the output evaluation point
y = (α,yℓ..n), V goes through the following steps:
1. Set σ(0) = σ.
2. Phase 1. For i = 0, . . . , ℓ− 1, run the following steps:

(a) Receive q(i)(X) from the prover and check σ(i) = (1−αi)q
(i)(0)+αiq

(i)(1).
(b) Compute σ(i+1) = q(i)(αi).

3. Phase 2. For i = ℓ, . . . , n− 1, run the following steps:
(a) Receive q(i)(X) and check σ(i) = (1− yi−ℓ)q

(i)(0) + yi−ℓq
(i)(1).

(b) Randomly generate xi ← Tℓ and send to the prover.
(c) Compute σ(i+1) = q(i)(xi).

4. Query the oracle Feval = f̃0(α,x) · · · f̃d−1(α,x). Output Feval
?
= σ(n).

Figure 2: Tower Zerocheck Protocol (Simplified)

zerocheck, the statements involves eq(y;X) with y ∈ T n
ℓ , necessitating poly-

nomial operations over the top-level field from the outset. A natural question
arises: Can we still achieve further optimization in this scenario? The answer is
affirmative.

We propose the tower zerocheck protocol, which includes a special optimiza-
tion introduced by Gruen [26, Section 3.2]. We present the protocol in Protocol 2
and the following theorem summarizes its properties:

Theorem 2 (Tower Zerocheck (Simplified for MLE Products)). The
protocol described in Protocol 2 is a zerocheck protocol with perfect completeness
and a soundness error of (ℓ+d+2)(n−ℓ)

|Tℓ| .

For the complete version, please refer to Section 4.2.
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Improvements on the Prover Time. Similarly, we compare the performance
of our protocol with the existing zerocheck protocol [14]. We also decompose its
computation into the following two distinct procedures. Suppose the initial eval-
uation point y = (y0, . . . , yn−1) (in the tradition y ∈ T n

ℓ , while in our protocol
y = (α, yℓ, . . . , yn−1), and only yℓ, . . . , yn−1 ∈ T n−ℓ

ℓ are random challenges).
Suppose the elements assigned in the MLEs are denoted as x = (x0, . . . , xn−1)
(the form of x is similar to y), then:

– Computing the message q(i)(X) for 0 ≤ i < n: In this procedure, the
prover computes the following steps:
1. Define

Ä
a
(i)
j X + b

(i)
j

ä
:= f̃j(x0..i, X,b), b ∈ {0, 1}n−i−1, and compute:

q̂
(i)
b (X) =

d−1∏
j=0

Ä
a
(i)
j X + b

(i)
j

ä
, (3)

q
(i)
b (X) = ‹eq(yi+1..n,b) · q̂(i)b (X) , (4)

for each b ∈ {0, 1}n−i−1.
2. Compute q(i)(X) =

∑
b∈{0,1}n−i−1 q

(i)
b (X).

Similarly to the previous subsection, we only account for Step 1 in the evalu-
ation. Our protocol improves efficiency in the first ℓ rounds. Assuming c(d) is
the cost to compute the product of d binomials, computing Equation 3 only
costs O

(
c(d) N

2i+1

)
multiplications in Ti, and computing Equation 4 always

requires O
(
dN
2ℓ

)
top-level field multiplications. However, in the old proto-

col, it costs O
(
c(d)N2

)
base-field multiplications and O

(
dN

2

)
multiplications

between the base field and the top-level field in Round 0. In the remaining
rounds, since all polynomials are defined over the top-level field, it costs
O
(
c(d) N

2i+1 + d N
2i+1

)
large-field multiplications.

– Fixing variables in f̃0(x0..i+1,Xi+1..n), . . . , f̃d−1(x0..i+1,Xi+1..n): For each
0 ≤ j < d and b ∈ {0, 1}n−i−1, the prover behaves identically as Section 2.1.

The complexity comparison is shown in Table 2

2.3 Efficient SNARKs over Binary Tower Fields

Using the proposed tower sumcheck and tower zerocheck protocols, we now have
the building blocks to efficiently construct IOP protocols over binary field. We
instantiate our protocols using Wiedemann’s binary tower fields, supplemented
by an additional small technique that effectively handles the case where the
extension degree t is less than or equal to the polynomial degree d (refer to Sec-
tion 4.1). In Section 5, we instantiate the optimized binary-field IOP protocols
specially tailored for various arithmetic constraint systems, including Plonkish,
CCS, and GKR. Finally in Section 6, we introduce a novel basis-switching tech-
nique, enabling us to compile our binary-field IOP protocols into SNARKs by
leveraging existing large-field polynomial commitment schemes.
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Computing Messages Our Protocol Previous Protocol

Phase 1, Round 0 O
(
c(d)N

2

)
M0 +O

(
dN
2ℓ

)
Mℓ O

(
c(d)N

2

)
M0 +O

(
dN

2

)
M0

Phase 1, Round i ≥ 1 O
(
c(d) N

2i+1

)
Mi +O

(
dN
2ℓ

)
Mℓ O

(
c(d) N

2i+1 + d N
2i+1

)
Mℓ

Phase 2, Round i ≥ ℓ O
(
c(d) N

2i+1 + d N
2i+1

)
Mℓ O

(
c(d) N

2i+1 + d N
2i+1

)
Mℓ

Fixing Variables

Phase 1, Round 0 Negligible O
(
dN

2

)
M0

Phase 1, Round i ≥ 1 Negligible O
(
d N
2i+1

)
Mℓ

Phase 2, Round i ≥ ℓ O
(
d N
2i+1

)
Mℓ O

(
d N
2i+1

)
Mℓ

Table 2: Comparison of previous and our protocols for zerocheck proving Equa-
tion 1, where ℓ is the total level of the field tower, d is the degree of the expression,
c(d) is the cost to multiply d binomials of the form (aX + b), Mi is the cost of
multiplication in Ti, Mi is the multiplication between T0 and Ti.

3 Preliminaries

3.1 Notation

Indices, Variables, and Points. We use b to represent binary vectors, such
as b = (b0, . . . , bn−1) ∈ {0, 1}n and x = (x0, . . . , xn−1) ∈ Fn, where F is a finite
field. The notation s..t denotes the index sequence of (s, . . . , t− 1). We define
the following shorthand:

Xs..t = (Xs, Xs+1, . . . , Xt−1)

xs..t = (xs, xs+1, . . . , xt−1)

bs..t = (bs, bs+1, . . . , bt−1)

We use ⟨i⟩(k)0..n to denote the n-bit base-k representation of an index i, or

⟨i⟩(k)0..n := (i0, i1, . . . , in−1) , where i =

n−1∑
j=0

ij · kj

On the other direction, we use the following notation to map the binary repre-
sentation to the index, or

(i0, . . . , in−1)k := i , where i =

n−1∑
j=0

ij · kj

Similarly, we use this notation to map a base-field array to an extension-field
element, or

(a0, . . . , at−1)E := a ∈ E ,

where ai ∈ F for 0 ≤ i < t, E = F(α) and [E : F] = t, and a =

t−1∑
i=0

aiα
i.
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Polynomials, Oracles, and Evaluations. We define a vector of field el-
ements as a(b) : {0, 1}n → F, indexed by a binary string. Its multilinear
extension (MLE) is defined by ã(X) : Fn → F through Definition 2, where
X = (X0, . . . , Xn−1) is a list of variables. Sometimes, we don’t distinguish the
notation of a vector from its MLE. For notation, we follow these conventions:

– a(b) indexes a value in the vector;
– a(x) represents the evaluation of a(X) at some random point x (typically

generated by a verifier in an interactive proof protocol);
– aeval denotes the evaluation result;
– a(·) refers to the oracle of a(X).

Additionally, we use (bx,bs), (x, s) and (X,S) to denote the concatenation of
bit strings, random points, and variables. We also use “;” to distinguish different
groups of variables, such as ‹eq(Y;X), F (X;Y), etc.

We frequently use the following functions: For X and Y, define:‹eq(Y;X) =

n−1∏
i=0

((1− Yi)(1−Xi) + YiXi) .

We use F(≤d)[X] to denote the univariate polynomial with the degree less
than or equal to d, or each f(X) ∈ F(≤d)[X] can be represented in the following
form:

f(X) =

d∑
i=0

fiX
i .

Similarly, we use F(≤d)[X] to denote the set of multivariate polynomials where
the degree of each variable does not exceed d. Any polynomial f(X) ∈ F(≤d)[X0..n]
can be written as:

f(X) =

(d+1)n−1∑
i=0

fi

n−1∏
j=0

Xij ,

where (i0, . . . , in−1) = ⟨i⟩(d+1)
0..n is the base-(d + 1) representation of i, padded

to n bits. Moreover, we define F(≤dx;≤dy)[X;Y] as the set of polynomials where
deg(Xi) ≤ dx and deg(Yj) ≤ dy.

Tower Fields. We denote the tower field set as

Tp,t,ℓ = {T0, T1, . . . , Tℓ} ,

where T0 = GF (p) , T1 = GF
Ä
pt

1
ä
, . . . , Tℓ = GF

Ä
pt

ℓ
ä

(5)

and Ti = Ti−1(αi−1) ∼= Ti−1[X]/(hi−1(X)) ,

for some irreducible polynomial hi−1(X) ∈ Ti−1[X] of degree t, with a root
αi−1 ∈ Ti. We use the following notation to denote a list of basis elements:

α = (α0, . . . , αℓ−1)
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3.2 Finite Fields and Tower Fields

Finite field, or Galois field, is a field with a finite number of elements, supporting
addition, subtraction, multiplication, and division operations. The characteristic
of a field F is defined as the least positive integer n such that nr = 0 for all r ∈ F.
It is well known that all finite fields have prime characteristics. Specifically, if F
is a finite field of characteristic p, then its order must be pt for some t ∈ N∗. The
Galois field of order pt is denoted by GF (pt). The existence and uniqueness of
finite fields are established by the following theorems:

Theorem 3. For every prime p and every positive integer n, there exists a finite
field F with pn elements.

Theorem 4. Every subfield of the Galois field GF (pb) has pa elements, where
a divides b. Conversely , if a | b for a > 0, then there exists a unique subfield of
GF (pb) isomorphic to GF (pa).

For the structure of a finite field, we present the following theorem with an
important corollary:

Theorem 5. If G is a finite subgroup of F∗, the multiplicative group of nonzero
elements of a field F, then G is cyclic.

Corollary 1. Every finite extension E of a finite field F is a simple extension
of F, which means there exists α ∈ E such that E = F(α).

In this paper, we construct protocols over the tower fields which we formally
defined as Equation 5. From Theorem 4, we know that for each Ti ∈ Tp,t,ℓ exists
uniquely.

Terminology. Throughout this paper, we adopt the following terminology: the
term tower field refers to any field within Tp,t,ℓ, and field tower refers to the
entire set Tp,t,ℓ. Specifically, we use the base field to refer to the field T0, and the
intermediate field to refer to any other field. We also call the highest-level field
Tℓ the challenge field. Notabily, the challenge field satisfies |Tℓ| = 2O(λ) where λ
is the security parameter. When referring to binary tower fields, we also use the
term binary field to denote the base field.

The Schwartz–Zippel Lemma [18,37,50] (also known as the DeMillo–Lipton–
Schwartz–Zippel Lemma) is a fundamental result in probabilistic polynomial
identity testing. It provides a probabilistic method for determining whether a
given multivariate polynomial is identically zero.

Lemma 1 (Schwartz, Zippel). Let P ∈ R[X0, . . . , Xnx−1], be a non-zero
polynomial of total degree d ≥ 0 over an integral domain R. Let S be a finite
subset of R and let x0, . . . , xnx−1 be selected at random independently and uni-
formly from S. Then

Pr[P (x0, . . . , xnx−1) = 0] ≤ d

|S|

In this paper, we use this result in the case where R is a finite field and S = R.
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3.3 Interactive Argument

Definition 1 (Interactive Argument). We say that ARG = (G,P,V) is an
interactive argument of knowledge for a relation R if it satisfies the following
completeness and knowledge properties.

– Completeness: For every adversary A

Pr

ï
(x,w) ̸∈ R or

⟨P(pp,x,w),V(pp,x)⟩ = 1
:
pp← G(1λ)
(x,w)← A(pp)

ò
= 1

– Witness-extended emulation: ARG has witness-extended emulation with
knowledge error κ if there exists an expected polynomial-time algorithm E
such that for every polynomial-size adversary A it holds that∣∣∣∣∣∣∣Pr

 pp← G(1λ)
A(aux, tr) = 1 : (x, aux)← A(pp)

tr← ⟨A(aux),V(pp,x)⟩



− Pr

 A(aux, tr) = 1 pp← G(1λ)
and if tr is accepting : (x, aux)← A(pp)

then (x,w) ∈ R (tr,w)← EA(aux)(pp,x)


∣∣∣∣∣∣∣ ≤ κ(λ)

Above E has oracle access to (the next-message functions of) A(aux).

If the interactive argument of knowledge protocol ARG is public-coin, it has
been shown that by the Fiat-Shamir transformation [21], we can derive a non-
interactive argument of knowledge from ARG. If the scheme further satisfies the
following property:

– Succinctness. The proof size is |π| = poly(λ, log |C|) and the verification
time is poly(λ, |x|, log |C|),

then it is a Succinct Non-interactive Argument of Knowledge (SNARK) protocol.

3.4 Multilinear Extension

Multilinear extension is a type of multivariate polynomial, often represented
with an array. The definition is as follows:

Definition 2 (Multilinear Extension [15]). Let a = (a0, . . . , aN−1) be a
vector. The multilinear extension of a is the unique polynomial ã : Fn → F such
that N = 2n, and ã(⟨i⟩(2)0..n) = ai for all 0 ≤ i < N . ã can be expressed as:

ã(X) =

2n−1∑
i=0

‹eq(X; ⟨i⟩(2)0..n) · ai

=

2n−1∑
i=0

Ñ
n−1∏
j=0

(1−Xi) · (1− ij) +Xi · ij)

é
· ai,
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Protocol 3 (Sumcheck Protocol) The sumcheck protocol is an interactive proof
protocol between P and V, described as follows:

– SC.Proven,d(F (X)): With the input σ ∈ F, F : Fn → F with degree at most d for
each variable, P goes through the following steps:
1. For i = 0, . . . , n− 1, run the following steps:

(a) Set
q(i)(X) =

∑
b∈{0,1}n−i−1

F (x0, . . . , xi−1, X,b).

(b) Compute q(i)(1), . . . , q(i)(d) and send to the verifier.
(c) Receive a challenge xi from the verifier.

– SC.Verify
F (·)
n,d (σ): With the input σ ∈ F, V goes through the following steps:

1. Set σ0 = σ.
2. For i = 0, . . . , n− 1, run the following steps:

(a) Receive q(i)(1), . . . , q(i)(d), and compute q(i)(0) = σi − q(i)(1).
(b) Randomly generate xi ← F and send to the prover.
(c) Recover q(i)(X) from q(i)(0), . . . , q(i)(d) and compute σi+1 = q(i)(xi).

3. Query the oracle Feval = F (x0, . . . , xn−1). If Feval = σn, output 1. Otherwise,
output 0.

Figure 3: Sumcheck Protocol

3.5 Sumcheck Protocol

Sumcheck protocol is one of the most important interactive proofs in the lit-
erature. The sumcheck problem is to prove that the sum of a multivariate
polynomial F : Fn → F on all binary inputs is a certain value σ, i.e., σ =∑

b0,...,bn−1∈{0,1} F (b0, . . . , bn−1). Calculating the sum directly requires exponen-
tial time in n, as there are 2n combinations of b0, . . . , bn−1. Lund et al. [31] pro-
posed a sumcheck protocol that allows a verifier V to delegate the computation
to a computationally unbounded prover P, who can convince V that σ is the
correct summation.

The sumcheck protocol for F (X) =
∏d−1

i=0 fi(X) is presented in Protocol 3.
Xie et al. [46] introduced a state-of-the-art algorithm for MLE products. In
Round j, the algorithm leverages a book-keeping table to compute the evalua-
tions of fi(x0..j ,Xj..n) on the boolean hypercube {0, 1}n−j for each 0 ≤ i < d.
The performance of this approach is summarized in the following lemma:

Lemma 2. Assuming d is a constant, the sumcheck protocol for a product of
MLEs with n variables runs in O(2n) time.

3.6 Polynomial Interactive Oracle Proof (PIOP)

Definition 3 (Public-coin Polynomial Interactive Oracle Proof [13]).
Let R be a binary relation and F be a finite field. Let X = (X0, . . . , Xn−1) be a
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vector of n indeterminates. A (n, d) Polynomial IOP for R over F with soundness
error ϵ and knowledge error δ consists of two stateful PPT algorithms, the prover
P, and the verifier V, that satisfy the following requirements:

– Protocol syntax. For each i-th round there is a prover state stPi and a
verifier state stVi . For any common input x and R witness w, at round 0 the
states are stP0 = (x,w) and stV0 = x. In the i-th round (starting at i = 1) the
prover outputs a single proof oracle P(stPi−1) → πi, which is a polynomial
πi(X) ∈ F[X]. The verifier deterministically computes the query matrix i ∈
Fn×ℓ from its state and a string of public random bits coinsi ← {0, 1}∗,
i.e, V(stVi−1, coinsi) → Σi. This query matrix is interpreted as a list of ℓ
points in Fn denoted (σi,1, . . . , σi,ℓ). The oracle πi is queried on all points in
this list, producing the response vector (πi(σi,1), . . . , πℓ(σi,ℓ)) = ai ∈ F1×ℓ.
The updated prover state is stPi ← (stPi−1), Σi) and verifier state is stVi ←
(stVi−1, Σi, ai). Finally, V(stVt ) returns 1 or 0.
(Extensions: multiple and prior round oracles; various arity. The syntax can
be naturally extended such that multiple oracles are sent in the i-th round;
that the verifier may query oracles sent in the i-th round or earlier; or that
some of the oracles are polynomials in fewer variables than n.)

Furthermore, a PIOP is stateless if for each 0 ≤ i < t,V(stVi−1, coinsi) =
V(i, coinsi).

3.7 Interactive Oracle Polynomial Commitment Scheme (IOPCS)

We refer to FRI-Binius for the definition of IOPCS as follows:

Definition 4 (IOPCS [20, Definition 2.8]). An interactive oracle polyno-
mial commitment scheme (IOPCS) is defined as Π = (Setup,Commit,P,V) with
the following syntax:

– pp← Π.Setup(1λ, n). On input the security parameter λ ∈ N and a number-
of-variables parameter n ∈ N, outputs pp, which includes, among other
things, a field E.

– comf ← Π.Commit(pp, f). On input pp and a multilinear polynomial f(X) ∈
E[X], outputs a handle comf to a vector.

– b← ⟨P(comf , y,x; f),V(comf , y,x)⟩ is an IOP. The parties have as common
input a vector handle comf , an evaluation point x ∈ En, and a claimed
evaluation y ∈ E. P has as further input a multilinear polynomial f(X) ∈
E[X]. V outputs a success bit b ∈ {0, 1}.

The security of IOPCS is as follows:

Definition 5 (IOPCS Security [20, Definition 2.9]). For each interac-
tive oracle polynomial commitment scheme Π, security parameter λ ∈ N, and
number-of-variables parameter n ∈ N , PPT query sampler Q, PPT adversary
A, and PPT emulator E, we define the following experiment:
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– The experimenter samples pp ← Π.Setup(1λ, n), and gives pp, including E,
to A and E.

– Adversary, after interacting arbitrarily with the vector oracle, outputs a han-
dle comf ← A(pp).

– On input A’s record of interactions with the oracle. E outputs f(X) ∈ E[X].
– The query sampler outputs x← Q(pp); A responds with an evaluation claim

y ← A(x).
– The experimenter defines the following two random bits:
• Obtain the bit b ← ⟨A(y,x),V(comf , y,x)⟩ by running the evaluation

IOP with A as V.
• Obtain the further bit b′ := f(x)

?
= y.

The IOPCS Π is secure if, for each PPT adversary A, there is a PPT emulator
E and a negligible function negl such that, for each λ ∈ N, each n ∈ N, and each
PPT query sampler Q, Pr[b = 1 ∧ b′ = 0] ≤ negl(λ).

Definition 6 (Small-Field IOPCS [20, Definition 2.10]). A small-field in-
teractive oracle polynomial commitment scheme (small-field IOPCS) is a tuple
of algorithms Π = (Setup,Commit,P,V) with the following syntax:

– pp ← Π.Setup(1λ, n,F). On input the security parameter λ ∈ N and a
number-of-variables parameter n ∈ N, a field F, outputs pp, which includes,
among other things, a field E/F.

– comf ← Π.Commit(pp, f). On input pp and a multilinear polynomial f(X) ∈
F[X], outputs a handle comf to a vector.

– b← ⟨P(comf , y,x; f),V(comf , y,x)⟩ is an IOP. The parties have as common
input a vector handle comf , an evaluation point x ∈ En, and a claimed
evaluation y ∈ E. P has as further input a multilinear polynomial f(X) ∈
F[X]. V outputs a success bit b ∈ {0, 1}.

The security of small-field IOPCS, Π exactly as in Definition 5 expect that we
require that E output a polynomial f(X) ∈ F[X].

4 Sumcheck Protocols over Tower Fields

4.1 Sumcheck Protocol over Tower Field

In this subsection, we introduce an efficient sumcheck protocol over tower fields.
We define the sumcheck relation as follows:

Definition 7 (Sumcheck Relation). The relation R(nx,d)
SUM is the set of all

tuples (x;w) = (σ,y, F (·; ·);F (X;Y)) such that:

σ = out(y) =
∑

b∈{0,1}nx

F (b;y) (6)

where F (X;Y) ∈ T0(≤d;≤1)[X0..nx
;Y0..ny

].
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The traditional sumcheck protocol establishes the validity of a summation
identity by leveraging Schwartz-Zippel Lemma (Lemma 1) and reduction. Specif-
ically, the protocol begins with the equation:

out(Y) =
∑

b∈{0,1}n
F (b;Y) . (7)

At the first step, the verifier provides a random challenge y, reducing the problem
to verifying:

out(y) = σ(0) =
∑

b∈{0,1}n
F (b;y) (8)

When running the sumcheck protocol, at the beginning of each step i, the goal
is to prove

σ(i) =
∑

b∈{0,1}n−i

F (x0..i−1,b;y) . (9)

To achieve it, the prover computes q(i) =
∑

b∈{0,1}n−i F (x0..i−1, X,b1..n−i−1;y),
and upon receiving a fresh challenge xi from the verifier, reduces the problem
to verifying

σ(i+1) =
∑

b∈{0,1}n−i−1

F (x0..i,b;y) (10)

This reduction process continues iteratively until the problem is fully reduced to
verify

σ(n) = F (x;y) (11)

at which point the correctness is verified by the oracle access to F (X;Y).
However, when constructing the sumcheck protocol on the field tower Tp,t,ℓ,

it is essential to account for the case where the initial evaluation point is set as
y = (α,yℓ..n), where α represents the basis elements of each intermediate fields,
and yℓ..n consists of randomly sampled elements from the challenge field. The
reason for considering this specific form of y will become clear in the following
sections. To analyze the soundness error of our proposed protocol, we introduce
a new reduction that preserves the variables Y and X throughout the execution
of the protocol, as formalized in the following lemma:

Lemma 3 (Sumcheck Reduction Lemma). With the polynomial F (X;Y) ∈
T0(≤d;≤1)[X0..nx ;Y0..ny ] and σ(i)(X0..i;Y) ∈ T0(≤d;≤1)[X;Y], there is:

σ(i)(X0..i;Y) =
∑

b∈{0,1}nx−i

F (X0..i,b;Y) (12)

for 0 ≤ i < nx if and only if there exists σ(i+1)(X0..i+1;Y) ∈ T0(≤d;≤1)[X;Y],
such that

1. σ(i)(X0..i;Y) = σ(i+1)(X0..i, 0;Y) + σ(i+1)(X0..i, 1;Y);
2. σ(i+1)(X0..i+1;Y) =

∑
b′∈{0,1}n−i−1 F (X0..i+1,b

′;Y).
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Typically, the sumcheck protocol utilizes the Schwartz-Zippel Lemma to suc-
cinctly validate the sumcheck reduction. To enhance the efficiency of the proto-
col over tower fields, we exploit the extension structure within the field tower
and embed the message q(i)(X0..i+1;Y) into intermediate field elements. Before
demonstrating the protocol, we prove a generalized Schwartz-Zippel Lemma,
which is stated as follows:

Lemma 4 (Embedding Lemma). Let Tp,t,ℓ = (T0, . . . , Tℓ) be a field tower
with the basis elements (α0, . . . , αℓ−1),. Consider a nonzero polynomial q(X)
over the base field, or q(X) ∈ T0[X0..n0+n1 ], where n0 ≤ ℓ, each variable Xi for
i < n0 has degree less than t, and each variable Xi for n0 ≤ i < n0 + n1 is at
most d. If S ⊆ E is a finite set, then for a uniformly random distribution US
over S

Pr
xn0 ,...,xn0+n1−1←US

[q(α0..n0 ,xn0..n0+n1) = 0] ≤ dn1

|S|
.

Proof. Because deg(Xi) < t for i < n0, then q(X) ̸= 0 if and only if:

q(α0..n0
,Xn0..n0+n1

) ̸= 0 .

By applying Lemma 1 on q′(X) = q(α0..n0
,X), we draw the conclusion in the

lemma.

The tower sumcheck protocol is presented in Protocol 4. Currently, we only
focus on the case where s = 1, α(s) = α and ℓ(s) = ℓ. The protocol consists
of two phases. Phase 1 consists of several non-interactive rounds, where in each
round i, the prover sends the polynomial q(i)(X) to the verifier, and assigns an
additional variable Xi in F (α0..i, Xi..n) to the basis αi. After that, Phase 2 pro-
ceeds identically to the traditional sumcheck protocol, completing the reduction
process. Finally, the verifier queries the oracle F (·; ·) at the point (α,xℓ..n;y)
to verify the correctness. The oracle access can be instantiated directly using
a polynomial commitment protocol or further verification steps. We summarize
our result in the following theorem:

Theorem 6 (Sumcheck over Tower Fields (When s = 1)). Assuming
nx ≥ ℓ and nx ≥ ℓ. Let Tp,ts,ℓ(s) =

¶
T (s)
0 , . . . , T (s)

ℓ(s)

©
be a field tower, where s = 1,

α(s) = α and ℓ(s) = ℓ. The protocol as described in Protocol 4 is a sumcheck
protocol to ensure whether (σ,y = (α,yℓ..ny

), F (·; ·);F (X;Y)) ∈ R(nx,d)
SUM where

d+ 1 < t, with perfect completeness, and (ℓ+1)(ny−ℓ)+d(nx−ℓ)
|Tℓ| soundness error.

Proof. The perfect completeness is obvious.
To prove the soundness error, Suppose there are

{
σ̄(i)(X0..i;Y)

}
0≤i≤ℓ such

that

σ̄(0)(α,yℓ..ny
) = σ(0) ,

σ̄(i+1)(α0..i, Xi;α,yℓ..ny ) = q(i)(Xi) for 0 ≤ i < ℓ ,
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Protocol 4 (Tower Sumcheck Protocol) Tower sumcheck protocol is a specially
designed sumcheck protocol over the tower fields Tp,ts,ℓ(s)s. It is described as follows:

– TSC.Proven,d,s,ℓ(s) (F (X;Y);y): With the input F (X;Y) ∈ T0(≤d;≤1)[X;Y] and the
initial evaluation point y, P goes through the following steps:
1. Phase 1. For i = 0, . . . , ℓ(s) − 1, run the following steps:

(a) Send the univariate polynomial q(i)(X) to the verifier, where

q(i)(X) =
∑

b∈{0,1}n−i−1

F
Ä
α
(s)
0 , . . . , α

(s)
i−1, X,b;y)

ä
.

2. Phase 2. For i = ℓ(s), . . . , n− 1, run the following steps:
(a) Send the univariate polynomial q(i)(X) to the verifier, where

q(i)(X) =
∑

b∈{0,1}n−i−1

F
Ä
α(s),xℓ(s)..i, X,b;y

ä
.

(b) Receive a challenge xi from the verifier.
– TSC.Verify

F (·;·)
n,d,s,ℓ(s)

(σ,y): With the input σ, the initial evaluation point y, and oracle
access to F (X;Y), V goes through the following steps:
1. Set σ(0) = σ.
2. Phase 1. For i = 0, . . . , ℓ(s) − 1, run the following steps:

(a) Receive q(i)(X) from the prover and check σ(i) = q(i)(0) + q(i)(1).
(b) Compute σ(i+1) = q(i)(α

(s)
i ).

3. Phase 1. For i = ℓ(s), . . . , n− 1, run the following steps:
(a) Receive q(i)(X) from the prover and check σ(i) = q(i)(0) + q(i)(1).
(b) Randomly generate xi ← Tℓ and send to the prover.
(c) Compute σ(i+1) = q(i)(xi).

4. Query the oracle Feval = F (α(s),xℓ(s)..n;y). Output Feval
?
= σ(n).

Figure 4: Tower Sumcheck Protocol

In Phase 2, from the analysis of the traditional sumcheck,

σ(ℓ) =
∑

b∈{0,1}n−ℓ

F (α,b;α,yℓ..ny
) .

with soundness error d(nx−ℓ)
|Tℓ| . From Lemma 4, and d+1 < t, it proves that there

exists σ̄(ℓ)(X,Y) such that

σ̄(ℓ)(X0..ℓ,Y) =
∑

b∈{0,1}n−ℓ

F (X0..ℓ,b;Y) . (13)

with (ny−ℓ)+d(nx−ℓ)
|Tℓ| soundness error.
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As for Phase 1, we prove the statement by induction from Round ℓ− 1 to 0.
Suppose

σ̄(i+1)(X0..i+1,Y) =
∑

b∈{0,1}n
F (X0..i+1,b;Y) (14)

with (ℓ−i)(ny−ℓ)+d(nx−ℓ)
|Tℓ| soundness error, which is true when i = ℓ − 1. Then

from the algorithm, we have

σ(i) = q(i)(0) + q(i)(1) , or

σ̄(i)(α0..i;α,yℓ..ny ) = σ̄(i+1)(α0..i, 0;α,yℓ..ny ) + σ̄(i+1)(α0..i, 1;α,yℓ..ny ) ,

which implies

σ̄(i)(X0..i;Y) = σ̄(i+1)(X0..i, 0;Y) + σ̄(i+1)(X0..i, 1;Y) (15)

with soundness error (ny−ℓ)
|Tℓ| . By applying Lemma 3 on Equation 15, it implies

that
σ̄(i)(X0..i;Y) =

∑
b∈{0,1}nx−i

F (X0..i,b;Y)

with soundness error (ℓ+1−i)(ny−ℓ)+d(nx−ℓ)
|Tℓ| and at the final step, it implies

out(Y) = σ̄(0)(Y) =
∑

b∈{0,1}n
F (b;Y)

with soundness error (ℓ+1)(ny−ℓ)+d(nx−ℓ)
|Tℓ| .

Extend Protocols to Tower Fields with Small Extension Degree t.
In the previous subsections, we propose an efficient sumcheck protocol under
the assumption that d + 1 < t, where t denotes the extension degree between
adjacent fields in Tp,t,ℓ, and d represents the maximum degree of the variables
in the given expression. However, many commonly used tower fields only satisfy
t ≤ d + 1. For example, Wiedemann [45] proposed a binary field tower with
quadratic extensions, which has been adopted to construct SNARK and PCS by
Binius and FRI-Binius. In this section, we extend our solution to tower fields
where t ≤ d + 1, provided that t is a prime power. We propose the following
Lemma:

Lemma 5. Let Tp,t,ℓ be a field tower where t is a prime power. Suppose the
tower fields Ti, Tj , Tk ∈ Tp,t,ℓ satisfy the following extension relationships:

– Tj = Ti(α), with extension degree ta,
– Tk = Tj(β) with extension degree tb.

Then Tk can be expressed as a direct extension of Ti via β with an overall exten-
sion degree of ta+b, i.e.,

Tk = Ti(β), [Tk : Ti] = ta+b.
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Proof. By the tower rule of field extensions, we have [Tk : Ti(β)] · [Ti(β) : Ti] =
[Tk : Tj ]·[Tj : Ti] = ta+b. Since t is a prime power, [Ti(β) : Ti] satisfies [Ti(β) : Ti] |
ta or ta | [Ti(β) : Ti]. From the uniqueness of the fields (Theorem 4), Ti(β) ⊆ Tj
or Tj ⊆ Ti(β). Considering β ̸∈ Tj , there should be Tj ⊂ Ti(β), which implies
Tj(β) ⊆ Ti(β). On the other hand, there is Ti ⊂ Tj , which implies Ti(β) ⊆ Tj(β).
Therefore, Ti(β) = Tj(β) = Tk.

We have the following corollary:

Corollary 2. Let Tp,t,ℓ = {T0, . . . , Tℓ} be a field tower, where each intermediate
field is defined as Ti = Ti−1(αi−1) for basis elements (α0, . . . , αℓ−1) and t is a
prime power, we can construct Tp,ts,ℓ(s) =

{
T0·s, . . . , T⌊ℓ/s⌋·s

}
for s > 1, where

Ti·s = T(i−1)·s(αi·s−1).

Therefore, when applying our protocol to a given tower field Tp,t,ℓ with t ≤ d,
we can construct Tp,ts,ℓ(s) such that ts > d+1. We denote the basis for Tp,ts,ℓ(s)

as α(s) =
Ä
α
(s)
0 , . . . , α

(s)

ℓ(s)−1

ä
and set ℓ(s) = ⌊ℓ/s⌋.

Then we restate and generalize Theorem 6 as follows:

Theorem 7 (Sumcheck over Tower Fields). Let Tp,ts,ℓ(s) =
¶
T (s)
0 , . . . , T (s)

ℓ(s)

©
be a field tower. The protocol as described in Protocol 4 is a sumcheck protocol
to ensure whetherÄ

σ, (α(s),y0..ny−ℓ(s)), F (·; ·);F (X;Y)
ä
∈ R(nx,d)

SUM ,

with perfect completeness, and (ℓ(s)+1)(ny−ℓ(s))+d(nx−ℓ(s))
|Tℓ| soundness error.

4.2 Zerocheck Protocol over Tower Field

In Section 4.1, we introduced the tower sumcheck protocol, building upon Lemma 3
and Lemma 4, to efficiently prove summation identities with base-field witnesses.
However, to construct efficient IOP protocols, we mainly require an optimized
method to verify the polynomial identities. Although a polynomial identity can
be converted to a certain summation identity and proved by the sumcheck pro-
tocol, designing a special zerocheck protocol to prove the polynomial identities
enables us to include more optimizations such as those proposed by Gruen [26,
Section 3.2] and to further reduce the degree of the prover messages q(i)(X).

In this subsection, we introduce the zerocheck relation, which expresses the
equality between out(X) and F (X) over evaluations on the points in {0, 1}n.

Definition 8 (Zerocheck Relation). The relation R(n,d)
IDENT is set of all tuples

(x,w) = (σ,y, F (·);F (X)) such that:

σ = out(y) =
∑

b∈{0,1}n
‹eq(y,b)F (b) (16)

where ‹eq(Y,X) is defined in Section 3.1 and F (X) ∈ T0(≤d)[X0..n].
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We also formally establish the following zerocheck reduction lemma, which
serves as the foundation for our zerocheck protocol:

Lemma 6 (Zerocheck Reduction Lemma). With the polynomial F (X) ∈
T0(≤d)[X0..n] and σ(i)(X0..i;Yi..n) ∈ T0(≤d;≤1)[X;Y], there is

σ(i)(X0..i;Yi..n) =
∑

b∈{0,1}n−i

‹eq(Yi..n;b)F (X0..i,b) (17)

for 0 ≤ i < n if and only if there exists σ(i+1)(X0..i+1,Yi+1..n) ∈ T0(≤d;≤1)[X;Y],
such that

1. σ(i)(X0..i;Yi..n) = (1−Yi)σ
(i+1)(X0..i, 0,Yi+1..n)+Yiσ

(i+1)(X0..i, 1,Yi+1..n);
2. σ(i+1)(X0..i+1;Yi+1..n) =

∑
b′∈{0,1}n−i−1 ‹eq(Yi+1..n;b

′)F (X0..i+1,b
′).

Proof. We rewrite Equation 17 as follows:

σ(i)(X0..i;Yi..n) =
∑

b∈{0,1}n−i

‹eq(Yi..n;b)F (X0..i,b)

=
∑

b∈{0,1}

∑
b′∈{0,1}n−i−1

‹eq(Yi,Yi+1..n; b,b
′)F (X0..i, b,b

′)

=
∑

b∈{0,1}

‹eq(Yi, b)
∑

b′∈{0,1}n−i−1

‹eq(Yi+1..n;b
′)F (X0..i, b,b

′)

Let σ(i+1)(X0..i+1;Yi+1..n) =
∑

b′∈{0,1}n−i−1 ‹eq(Yi+1..n;b
′)F (X0..i+1,b

′), we
can derive the following equation:

σ(i)(X0..i;Yi..n) =
∑

b∈{0,1}

‹eq(Yi; b) · σ(i+1)(X0..i, b;Yi+1..n)

Building upon this reduction, we propose the tower zerocheck protocol, a spe-
cialized approach designed to generate a proof for the relation RIDENT. This
protocol also leverages the hierarchical structure of tower fields to improve com-
putational efficiency.

The tower zerocheck protocol is demonstrated in Protocol 5. We summarize
the result by the following theorem:

Theorem 8 (Zerocheck over Tower Fields). With the tower fields Tp,ts,ℓ(s) =¶
T (s)
0 , . . . , T (s)

ℓ(s)

©
, the protocol as described in Protocol 5 is to ensure whetherÄ

σ, (α(s),yℓ(s)..n), F (·);F (X)
ä
∈ R(n,d)

IDENT ,

where d < ts, with perfect completeness, (ℓ+d+2)(n−ℓ(s))
|Tℓ| soundness error.

Proof. The proof is similar to Theorem 7.
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Protocol 5 (Tower Zerocheck Protocol) Tower zerocheck protocol is a specially
designed zerocheck protocol over the tower fields Tp,ts,ℓ(s) . It is described as follows

– TZC.Proven,d,s,ℓ(s) (F (X);y): With the input F (X) ∈ T0(≤d)[X] and the initial eval-
uation point y, P goes through the following steps:
1. Phase 1. For i = 0, . . . , ℓ(s) − 1, run the following steps:

(a) Send the univariate polynomial q(i)(X) to the verifier, where

q(i)(X) =
∑

b∈{0,1}n−i−1

‹eq (yi+1..n;b)F
Ä
α

(s)
0..i−1, X,b

ä
.

2. Phase 2. For i = ℓ(s), . . . , n− 1, run the following steps:
(a) Send the univariate polynomial q(i)(X) to the verifier, where

q(i)(X) =
∑

b∈{0,1}n−i−1

‹eq(yi+1..n;b)F (α(s),xℓ(s)..i, X,b) .

(b) Receive a challenge xi from the verifier.
– TZC.Verify

F (·)
n,d,s,ℓ(s)

(σ;y): With the input σ ∈ Tℓ and the initial evaluation point y,
V runs the following steps:
1. Set σ(0) = σ.
2. Phase 1. For i = 0, . . . , ℓ(s) − 1, run the following steps:

(a) Receive q(i)(X) and check σ(i) = (1− yi)q
(i)(0) + yiq

(i)(1).
(b) Compute σ(i+1) = q(i)(α

(s)
i ).

3. Phase 2. For i = ℓ(s), . . . , n− 1, run the following steps:
(a) Receive q(i)(X) and check σ(i) = (1− yi)q

(i)(0) + yiq
(i)(1).

(b) Randomly generate xi ← Tℓ and send to the prover.
(c) Compute σ(i+1) = q(i)(xi).

4. Query the oracle Feval = F
Ä
α(s),xℓ(s)..n

ä
. Output Feval

?
= σ(n).

Figure 5: Tower Zerocheck Protocol

5 IOP Protocols over Tower Fields

In this section, we instantiate tower IOP protocols for three widely adopted
arithmetic constraint systems, Plonkish, CCS, and GKR, using the algorithms
developed in the previous section as fundamental building blocks. Before our
work, protocols introduced by Chen et al. [14], Setty et al. [39] and Xie et al. [46]
provided constructions based on large fields, named HyperPlonk, SuperSpartan,
and Libra, respectively. However, these prior works did not explore methods to
efficiently instantiate such protocols over small-characteristic fields, especially
the fields with characteristic 2, other than employing the trivial approach. In
this section, we fill the gap by proposing optimized instantiations, leveraging
tower sumcheck and zerocheck protocols.
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In the remainder of this paper, we fix the usage of Wiedemann’s binary
field tower and its derived towers, following Corollary 2. We adopt the notation
T2,2s,ℓ(s) = (T0·s, T1·s, . . . , Tℓ(s)·s), where ℓ(s) = ⌊ℓ/s⌋ for s ∈ N∗, to represent all
potentially used tower fields.

5.1 Tower Protocol for Plonkish Relation

In this subsection, we present an IOP protocol for the Plonkish constraint sys-
tem. Before introducing the main theorem, we propose the following definitions
and lemmas.

Definition 9. The relation RZERO is the set of all tuples (x;w) = (I(·); I(X))

where I(X) ∈ T (≤d)
0 [X] and I(b) = 0 for all b ∈ {0, 1}n.

Lemma 7. There exists a tower protocol to prove RZERO over the field tower
T2,2s,ℓ(s) for some 2s > d, with perfect completeness and negligible soundness
error.

Proof. Because (I(·); I(X)) ∈ RZERO is equivalent to (0,y, I(·); I(X)) ∈ RIDENT

with a randomly generated y, then from Theorem 8, we derive this lemma.

Definition 10. The indexed relation RPERM is defined as the set of tuples

(i;x;w) = (perm(X); f(·), g(·); f(X), g(X)) ,

where

– when evaluated on the Boolean hypercube, perm =
(
perm0, . . . , permn−1

)
:

{0, 1}n → {0, 1}n is a permutation function;
– each permj : {0, 1}n → {0, 1} (for 0 ≤ j < n) defines a mapping from b to

the j-th bit of the destination index;
– f(X), g(X) ∈ T0(≤1)[X] and g(b) = f(perm(b)) for all b ∈ {0, 1}n

Lemma 8. There exists a tower protocol to prove RPERM over T2,2s,ℓ(s) for some
s ≥ 2, with perfect completeness and negligible soundness error.

Proof. To prove the permutation relation, (perm(X); f(·), g(·); f(X), g(X)) ∈
RPERM, with a challenge r ∈ Tℓ, we define f ′(X), g′(X), v(X) ∈ Tℓ[X] as fol-
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lows:

f ′(X) := r + ‹eq Äα(s)
0..⌈log(n+1)⌉; ⟨n⟩

(2)
0..⌈log(n+1)⌉

ä
f(X)

+

n−1∑
j=0

‹eq Äα(s)
0..⌈log(n+1)⌉; ⟨j⟩

(2)
0..⌈log(n+1)⌉

ä
permj(X) ,

g′(X) := r + ‹eq Äα(s)
0..⌈log(n+1)⌉; ⟨n⟩

(2)
0..⌈log(n+1)⌉

ä
g(X)

+

n−1∑
j=0

‹eq Äα(s)
0..⌈log(n+1)⌉; ⟨j⟩

(2)
0..⌈log(n+1)⌉

ä
Xj ,

v(0,b) :=

®
f ′(b)/g′(b) , if g′(b) ̸= 0

0 , otherwise
for b ∈ {0, 1}n,

v(1,b) := v(b, 0) · v(b, 1) for b ∈ {0, 1}n,

and then run the traditional zerocheck protocol on Tℓ on the following identity:

0 =
∑

b∈{0,1}n
‹eq(Y,b) · (v(1,b)− v(b, 0) · v(b, 1))

0 =
∑

b∈{0,1}n
‹eq(Y,b) · g′(b) · (g′(b) · v(0,b)− f ′(b))

Using the building blocks above, we define HyperPlonk Indexed Relation as
follows:

Definition 11. (HyperPlonk Indexed Relation (Rewrite) [14, Definition 4.1])
Fix public parameters pp := (T2,2,ℓ,Mio, N,Mwit,Msel, I) where T2,2,ℓ is Wiede-
mann’s field tower, Mio = 2mio is the public input length, N = 2n is the number
of constraints, Mwit = 2mwit and Msel = 2msel are the number of witnesses and
selectors per constraint, and I : T Mwit+Msel

0 → T0 is an algebraic map with de-
gree d < ts. The indexed relation RPLONK is the set of all tuples (i,x,w) where
perm; {0, 1}n+mwit → {0, 1}n+mwit is a permutation, and

i :=
Ä
sel(X) ∈ T0(≤1)[X0..n+msel

], perm(X) ∈
Ä
T0(≤1)[X0..mio ]

änä
;

x :=
Ä
io(X) ∈ T0(≤1)[X0..mio ],wit(·)

ä
;

w :=
Ä
wit(X) ∈ T0(≤1)[X0..n+mwit ]

ä
;

such that

– the wiring identity is satisfied, that is (perm(X); (wit(·),wit(·));wit(X)) ∈
RPERM (Definition 10);

– the gate identity is satisfied, that is, (I(·); I(X)) ∈ RZERO (Definition 9),
where the virtual polynomial I(X) ∈ T (≤d)

0 [X0..n] is defined as:

I(X) := I
Ä
sel(⟨0⟩(2)0..msel

,X), . . . , sel(⟨Msel − 1⟩(2)0..msel
,X),

wit(⟨0⟩(2)0..mwit
,X), . . . ,wit(⟨Mwit − 1⟩(2)0..mwit

,X)
ä (18)
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– the public input is consistent with the witness, that is, the public input polyno-
mial io(X) ∈ T0(≤1)[X0..mio ] is identical to wit(0n+mwit−mio ,X) ∈ T0(≤1)[X0..mio ],
where 0n+mwit−mio denotes the array consisting of n+mwit −mio zeros.

With the Plonkish constraint system defined above, we have the following
theorem:

Theorem 9. Let pp := (T2,2,ℓ,Mio, N,Mwit,Msel, I) be the public parameters
where Mwit,Msel = O(1) are some constants and d := deg(I). There exists a
multivariate PIOP over the field tower T2,2s,ℓ(s) , s = ⌊log(d)⌋ + 1, for relation
RPLONK with perfect completeness and negligible soundness error.

Proof. After instantiating Lemma 7 with the field tower T2,2⌊log(d)⌋+1,ℓ(⌊log(d)⌋+1)

and Definition 10 with the field tower T2,2,ℓ, we can derive this result.

5.2 Tower Protocol for CCS Relation

In this subsection, we present a tower IOP protocol for the CCS constraints.

Definition 12. (CCS (Rewrite) [39, Definition 2.2]) Fix public parameters pp =
(T2,2,ℓ,M,N,Nnz,Mio,mM ,mS , d ∈ N) where T2,2,ℓ is Wiedemann’s field tower,
M is the number of constraints, N is the size of public and private witnesses, Nnz

is the number of non-zero entries in the constraint matrices, Mio is the public
input, mM ,mS is the number of constraint matrices and sets defined below. We
require that N > Mio.

The indexed relation RCCS is the set of all tuples (i := (iC , iS , ic),x ∈
T Mio
0 ,w ∈ T N−Mio−1

0 ) where

– a sequence of matrices iC =
(
C0, . . . , CmM−1 ∈ FM×N)

with at most Nnz =
Ω(max(M,N)) non-zero entries in total;

– a sequence of mS multisets iS = (S0, . . . , SmS−1), where an element in each
multiset is from the domain {0, . . . ,mM − 1}; and the cardinality of each
multiset is at most d.

– a sequence of mS constants ic = (c0, . . . , cmS−1), where each constant is
from T0;

such that
mS−1∑
i=0

ci · ⃝j∈SiCj ·W = 0 (19)

Here, W = (w, 1,x) ∈ T N
0 , Cj · W denotes matrix-vector multiplication, ⃝

denotes the Hadamard product between vectors, and 0 is an M -sized vector with
entries equal to the additive identity in T0.

With the CCS structure defined above, we have the following theorem.

Theorem 10. There exists a tower IOP protocol over the field tower T2,2s,ℓ(s) , s =
⌊log (max {d, 3})⌋+ 1 for RCCS with perfect completeness and negligible sound-
ness error.
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Proof. Firstly, we construct T2,2s,ℓ(s) from T2,2,ℓ with s = ⌊log (max {d, 3})⌋+1,
following Corollary 2. Leveraging the field tower, the proving process can be split
into two stages.

In the first stage, we define fi(Y) :=
∑

b∈{0,1}n Ci(Y,b)W (X), and then
prove the following identity:

0(Z) =
∑

b∈{0,1}m
‹eq(Z,b)mS−1∑

i=0

ci ·
∏
j∈Si

fj(b)

which can be proved with Protocol 5.
In the second stage, we prove the following identity:

out(Y′,Y) =
∑

b′∈{0,1}mS

‹eq(b′,Y′)fj(Y)

=
∑

b∈{0,1}n

Ñ ∑
b′∈{0,1}mS

‹eq(b′,Y′)Cb′(Y,b)

é
W (b)

which can be proved with Protocol 4.

5.3 Tower Protocol for GKR Relation

In this subsection, we present a tower IOP protocol for the GKR constraints.

Definition 13 (GKR). Fix pp =
Ä
T2,2,ℓ, D, (Si)0≤i<D ,Mio ∈ N

ä
where T2,2,ℓ

is Wiedemann’s field tower, D is the number of layers, where Layer D is the
input and Layer 0 is the output. Si = 2si is the size of each layer, and Min are
number of the public inputs. We require that SD ≥Min.

The indexed relation RGKR is the set of all tuples (i := {(addi,muli)}0≤i<D ,x ∈
T Mio
0 ,w ∈ T SD−Mio−1

0 ) where muli(z, x, y) = 1 if and only if there is a gate com-
puting Vi,z = Vi+1,x × Vi+1,y, otherwise, muli(z, x, y) = 0, and addi(z, x, y) =
1 if and only if there is a gate computing Vi,z = Vi+1,x + Vi+1,y, otherwise,
addi(z, x, y) = 0.

If (i := {(addi,muli)}0≤i<D ,x ∈ T Mio
0 ,w ∈ T SD−Mio−1

0 ) ∈ RGKR, then there
exists V0, V1, . . . , VD = (x,w) such that:

Vi,z =

Si+1−1∑
x=0

Si+1−1∑
y=0

(muli(z, x, y)Vi+1,x · Vi+1,y + addi(z, x, y)(Vi+1,x + Vi+1,y))

Theorem 11. There exists a Tower IOP protocol over the field tower T2,2s,ℓ(s) , s =
3 for RGKR with perfect completeness and negligible soundness error.

Proof. For the output layer, we prove the following identity:‹Vi(Z) =
∑

bx,by∈{0,1}si+1
fi(Z,bx,by)

=
∑

bx,by∈{0,1}si+1
m̃uli+1(Z,bx,by)‹Vi+1(bx)‹Vi+1(by)

+
∑

bx,by∈{0,1}si+1
ãddi+1(Z,bx,by)(‹Vi+1(bx) + ‹Vi+1(by)),
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where ‹Vi is the MLE for Vi with si variables, ãdd, m̃ul are the MLEs for add
and mul. For the other layers, since there are two claims derived from the proved
layers, the identity becomes:‹Vi(Z) +W · ‹Vi(Z

′) =
∑

bx,by∈{0,1}si+1
fi(Z,Z

′,W,bx,by)

=
∑

bx,by∈
{0,1}si+1

(m̃uli+1(Z,bx,by) +W · m̃uli+1(Z
′,bx,by))‹Vi+1(bx)‹Vi+1(by)

+
∑

bx,by∈
{0,1}si+1

(ãddi+1(Z,bx,by) +W · ãddi+1(Z
′,bx,by))(‹Vi+1(bx) + ‹Vi+1(by)) .

Both identities can be proved by Protocol 4.

6 Polynomial Commitment Scheme

Building on the previous sections, we now introduce a basis-switching technique,
which plays a crucial role in compiling our binary-field IOP protocol into a
succinct argument. Similar to the ring-switching technique in FRI-Binius, this
method enables us to transform a small-field polynomial evaluation problem
into an equivalent large-field polynomial evaluation problem, As a result, our
approach seamlessly integrates with the existing large-field PCS, allowing flexible
and efficient instantiations.

6.1 Basis-Switching Technique

In this subsection, we introduce the basis-switching technique, which enables
efficient polynomial evaluation transformation over Wiedemann’s field tower
T2,2,ℓ = {T0, . . . , Tℓ}. Given a base-field polynomial f(X) ∈ T0(≤1)[X0..n], and its
evaluation feval = f

ÄÄ
α
(s)
i

ä
i=0..ℓ(s)

,xℓ(s)..n

ä
, where

Ä
α
(s)
i

ä
i=0..ℓ(s)

are the basis
elements of some derived field tower T2,2s,ℓ(s) from T2,2,ℓ, we define the following
identity

f
Ä
α(s),xℓ(s)..n

ä
=

∑
b∈{0,1}ℓpcs

‹eq Äα(s),xℓ(s)..ℓpcs ;b
ä
f(b,xℓpcs..n) (20)

where Tpcs = Tℓpcs ∈ T2,2,ℓ.
From Theorem 8, we have the following corollary:

Corollary 3 (Basis-Switching Protocol over Tower Fields). There ex-
ists an tower zerocheck protocol over the field tower T2,2,ℓ to reduce the evalu-
ation from f

(
α(s),xℓ(s)..n

)
to f(α,xℓpcs..n), with the perfect completeness and

O(
(ℓpcs+1)(n−ℓ(s))

|Tℓ| ) soundness error.
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Proof. Let y =
(
α(s),xℓ(s)..n

)
, σ = f(y). Equation 20 is equivalent to

(σ,y, f(·); f(X)) ∈ RIDENT

Considering f(X) is an MLE, we run¨
TZC.Proven,d,1,ℓpcs(f(X);y),TZC.Verifyn,d,1,ℓpcs(σ;y)

∂
in Protocol 5. In the end, the problem is reduced to the oracle query of f(α,xℓpcs..n).

6.2 Small-field PCS to Large-field PCS Reduction

We define the small-field PCS Π = (Setup,Commit,P,V) for polynomials in
T0[X] from the large-field PCS Π = (Setup′,Commit′,P ′,V ′) for polynomials in
Tℓ[X] as follows:

– Setup(1λ, T0[X0..n], T0)→ pp: compute pp′ = Setup′(1λ, Tpcs[Xℓpcs..n]), which
includes a parameter Tpcs. Return pp′.

– Commit(f ∈ T0[X0..n], pp)→ comf : define the polynomial

f ′(X) ∈ Tpcs[X0..n−ℓpcs ] =
∑

b∈{0,1}ℓpcs
‹eq(α0..ℓpcs ,b)f(b,X0..n−ℓpcs) . (21)

Run comf ′ = Commit′(f ′, pp) and return comf ′ .
– b ← ⟨P(comf , y,x; f),V(comf , y,x)⟩. Both parties run Protocol 5 to prove

the identity Equation 20. After the final step, with the oracle query y′ =
f ′(xℓpcs..n), return

b′ ←
〈
P ′(comf , y

′,xℓpcs..n; f
′),V ′(comf , y

′,xℓpcs..n)
〉
.

Theorem 12. If Π ′ = (Setup′,Commit′,P ′,V ′) is complete and sound, then so
is Π = (Setup,Commit,P,V).

Remark 1. Our basis-switching protocol only requires a constant-round sum-
check protocol and O

(
2ℓpcs

)
Mℓ prover time. This is much cheaper than the

ring-switching technique in FRI-Binius, which is O
(
2n−ℓpcs · poly(λ, n)

)
.

Remark 2. We can generalize the PCS construction to Tp,t,ℓ, t = 2s with basis
elements (α0, . . . , αℓ−1), by usingÄ

α2s−1

0 , α2s−2

0 , . . . , α20

0 , . . . , α2s−1

ℓ−1 , α2s−2

ℓ−1 , . . . , α20

ℓ−1

ä
instead during the zerocheck protocol.
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