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Abstract

An oblivious RAM (ORAM) compiler is a cryptographic tool that transforms a program P running
in time n into an equivalent program P̃, with the property that the sequence of memory addresses read
from/written to by P̃ reveal nothing about P̃’s data (Goldreich and Ostrovsky, JACM’96). An efficient
ORAM compiler C should achieve some combination of the following:

• Low bandwidth blow-up. P̃ should read/write a similar amount of data as does P.
• Low latency. P̃ should incur a similar number of roundtrips to the memory as does P.
• Low space complexity. P̃ should run in as few words of local memory as possible.

It is well known that for a generic compiler (i.e. one that works for any RAM program P), certain
combinations of efficiencies are impossible. Any generic ORAM compiler must incur Ω(logn) bandwidth
blow-up, and any ORAM compiler with no latency blow-up must incur either Ω(

√
n) bandwidth blow-up

and/or local space. Moreover, while a O(logn) bandwidth blow-up compiler is known, it requires the
assumption that one-way functions exist and incurs enormous constant factors.

To circumvent the above problems and improve efficiency of particular ORAM programs, we develop
a compiler for a specific class of programs. Let P be a program that interacts with an immutable memory.
Namely, P may write values to memory, then read them back, but it cannot change values that were
already written. Using only information-theoretic techniques, we compile any such P into an oblivious
form P̃ with a combination of efficiencies that no generic ORAM compiler can achieve:

• P̃ incurs Θ(logn) amortized bandwidth blow-up.

• P̃ incurs O(1) amortized latency blow-up.

• P̃ runs in O(λ) words of local space (P̃ incurs an error with probability 2−Ω(λ)).

We show that this, for instance, implies that any pure functional program can be compiled with the same
asymptotics.

Our work builds on and is compatible with prior work (Appan et al., CCS’24) that showed similar
results for pointer machine programs that manipulate objects with constant in-degree (i.e., the program
may only maintain a constant number of pointers to any one memory cell; our immutable memory
approach does not have this limitation). By combining techniques, we can consider programs that
interact with a mixed memory that allows each memory cell to be updated until it is frozen, after
which it becomes immutable, allowing further reads to be compiled with the above asymptotics, even
when in-degree is high. Many useful algorithms/data structures can be naturally implemented as mixed
memory programs, including suffix trees (powerful data structures used in computational biology) and
deterministic finite automata (DFAs).

Keywords: ORAM, Oblivious Algorithms and Data Structures
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1 Introduction

Oblivious RAM. An Oblivious RAM (ORAM) compiler is a cryptographic tool enabling a memory-constrained
client to securely outsource its data storage to an untrusted server [GO96]. The challenge in constructing an ORAM
compiler—and our focus in this work—is that the compiler must obfuscate the client’s memory access pattern. An
ORAM compiler provides a generic approach to obfuscating access patterns. Let P be an arbitrary client program
that issues random access memory queries. An ORAM compiler C transforms P into a new program P̃ = P ↔ C:

Client Program

P

ORAM Compiler

C

Untrusted RAM

M

Compiled Program P̃

P̃ computes the same function as P, but P̃’s memory access pattern1 hides client data, allowing the client to
upload/download data from the server while preserving privacy. We refer to P̃ as an oblivious RAM program.

Applications of Oblivious RAM. The ability to hide memory access patterns has found several important
applications. Hardware enclaves, e.g. Intel SGX, leak memory access patterns that attackers can exploit to infer
sensitive information about even encrypted data stored in memory [CGPR15, ZKP16, GMN+16]; an ORAM compiler
can suppress this leakage [SGF17, MPC+18]. ORAM is also a central in the study of secure Multi Party Computation
(MPC) protocols, which enable mutually untrusting parties to securely compute functions on their joint private
data [Yao86, GMW87]. Classically, MPC protocols require that the parties encode their program as a boolean
or arithmetic circuit, but by correctly incorporating an ORAM compiler, one can also achieve MPC protocols for
arbitrary RAM programs. The combination of MPC and ORAM has been studied extensively; see [OS97, GKK+12,
KM19, BKKO20, HV21, FNO22, VHG23, FNO24] and others.

Cost metrics and our setting. The efficiency of an ORAM compiler is measured in terms of two key metrics:
bandwidth blowup and roundtrips. Bandwidth blowup measures the (amortized) number of RAM requests that P̃
issues for each RAM request issued by P. One roundtrip corresponds to P̃ sending a batch of RAM requests, then
receiving a batch of responses. We measure cost in terms of the number of roundtrips made per access.

ORAM is typically studied in the client-server setting where P̃ runs on a client with small local memory and
issues queries to an untrusted server that emulates a RAM. We, in particular, will consider compilers that run in
at most O(λ) words of space, where λ is a security parameter that will control failure probability. We focus on the
classic ORAM setting where the server simply implements a read/write memory, and the server does not perform
other useful computation, such as running operations under homomorphic encryption [DvDF+16].

The Challenge of Designing Efficient ORAM. Unfortunately, a generically-compiled oblivious RAM pro-
gram P̃ inherently requests more data from the server than the insecure RAM program P, incurring considerable band-
width blowup and roundtrips. Any generic ORAM compiler must incur a bandwidth blowup of Ω(logn) [GO96, LN18].
A long line of work—e.g. [GO96, GM11, SCSL11, SvDS+13, PPRY18] and others—improved bandwidth blowup,
ultimately leading to the remarkable achievement of OptORAMa [AKL+20], a generic ORAM compiler achieving the
optimal Θ(logn) bandwidth blow-up.

While OptORAMa achieves optimal generic compilation, it leaves much to be desired. OptORAMa suffers an
enormous hidden constant in its bandwidth blow-up (≈ 9400, thanks to the significant improvement of [DO20]),
and requires a cryptographic assumption—the existence of one-way functions. By contrast, the more practical Path
ORAM [SvDS+13] incurs a small hidden constant, is used in practice by Signal for private contact discovery [Sig],
and does not rely on cryptographic assumptions, but it incurs a sub-optimal bandwidth blowup of O(log2 n) when P

1Ultimately, the content of client data should, of course, also be hidden. In the client/server setting, it is sufficient to encrypt
client data with any CPA-secure encryption scheme. In this work we ignore memory content and hide only the memory access
pattern both because it is the far more interesting problem, and for generality. Indeed, in some settings encryption is not needed
to hide client data, such as when ORAM is used as part of an MPC protocol and the data is secret-shared.
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manipulates words of standard size w = Θ(log n). The construction of an ORAM scheme with optimal bandwidth
blowup without relying on cryptographic assumptions has remained open for decades.

Designing ORAM compilers with low roundtrips also proves challenging. Both OptORAMa and Path ORAM
require O(logn) roundtrips. A lower bound [CDH20] shows that ORAM compilers that incur a single roundtrip
either cause O(

√
n) bandwidth blowup or require O(

√
n) client storage, unless expensive server computation is used,

indicating that the first ever ORAM scheme proposed [GO96] is in some sense optimal. Thus, reducing roundtrips
comes with inherent tradeoffs.

Designing ORAM Compilers for Special-Case Problems. Since generic ORAM compilers necessarily
incur high cost, it is natural to consider designing ORAM algorithms/compilers for restricted classes of programs.
Prior work has shown that many useful programs can be handled obliviously with better efficiency than can be achieved
by a generic ORAM compiler. Stacks, queues, linked lists, binary trees, and even particular graph algorithms can be
handled with O(logn) bandwidth blow-up and O(1) roundtrip blow-up as compared to their insecure baseline [ZE13,
WNL+14, AHR24].

Indeed, the most recent work on special-case oblivious RAM compilers showed that any pointer-machine pro-
gram [KU58, Sch80] P can be compiled to an oblivious RAM program P̃ with good efficiency using an oblivious
pointer machine (OPM) compiler [AHR24]. The pointer machine is a natural model of computation where one can
allocate objects in memory, then look those objects up from memory later by means of dereferencing a pointer. The
restriction on pointer machine (PM) programs as compared to standard RAM programs is that one may not perform
arbitrary operations on pointers. For instance, adding two pointers together is ill-defined.

The OPM compiler presented in [AHR24] builds on top of Path ORAM. Path ORAM continuously shuffles
memory by mapping each RAM address to a uniformly random address that is re-mapped on every access. This
mapping is recursively implemented using O(logn) smaller ORAMs—jointly called the position map—contributing
a O(logn) factor to both bandwidth blowup and roundtrips. [AHR24]’s insight, which extends that of [WNL+14], is
that an OPM compiler need not maintain a position map since only a fixed number of addresses are reachable from
a value for a pointer machine program, and the compiler has to keep track of the mapping only for these addresses.

To dereference a pointer, P̃ incurs a bandwidth blowup of O(logn log d) and O(log d) roundtrips, where d is the
fan-in of the value being pointed to. Also called degree, this is the number of pointers that point to the value. A
constant-degree pointer machine program ensures that each value in memory has constant degree. Since the compiler
presented in [AHR24] is ultimately a simplification of Path ORAM, it is efficient both in theory and practice, without
relying on cryptographic assumptions. While this implies significant improvement in cost for constant-degree PM
programs, the bandwidth blowup and roundtrips incurred for programs that manipulate values with degree of O(n)
is no better than that of Path ORAM.

1.1 Our Contribution

Immutable Memory. In this work, we develop new techniques for obfuscating the memory access pattern of
programs that manipulate an immutable memory. An immutable memory program may write fresh values to the
memory, but once a memory slot is written, it cannot be subsequently changed 2. Our main technical contribution
is an oblivious immutable memory (OIM) compiler that converts any program that manipulates immutable memory
into an oblivious RAM program. Our compiler incurs only O(logn) bandwidth blowup and requires O(1) roundtrips
for each request to immutable memory, regardless of the degree of the value being fetched. Existing lower bounds
imply that this cost is optimal [JLN19].

Many algorithms can naturally be implemented as immutable memory programs, leading to new asymptotic results
for oblivious algorithms. For instance, Church’s foundational lambda calculus is straightforwardly implemented as
an immutable memory program, so our work leads to a compiler from purely functional programs to oblivious RAM
programs, where the oblivious RAM program incurs O(logn) bandwidth blowup and O(1) roundtrips.

Lambda calculus and pure functional programming have proved indispensable to the study of programming
language design; see e.g. [Hic25]. The lambda calculus is easily extensible, and indeed, several relatively mainstream
programming languages are essentially minor extensions of the lambda calculus [M+10, Mil97] . Our work implies an
improved oblivious compiler for standard programs written in such languages.

All functional data structures [Oka98]—that is, those structures that can be constructed on top of an immutable
memory—are automatically persistent, meaning that older versions of the data structure are available even after

2Unlike prior work [TJS19], we do not require that all contents of memory be decided at the start of program execution.
New values can be written to memory even during program execution, but once written, cannot be changed.
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Table 1: Amortized communication and roundtrips of oblivious algorithms based on immutable memory in
comparison to state-of-the-art solutions for ORAM and [AHR24] for words of size Θ(log n). The cost listed
for [AHR24] assumes the worst case cost for values with arbitrary degree.
Algorithm OptORAMa Path ORAM / [AHR24] This Work

Communication⋆ Rounds Communication Rounds Communication Rounds

λ-expression evaluation O(n lg n) O(n lg n) O(n lg2 n) O(n lg n) O(n lg n) O(n)

Ukkonen’s Algorithm O(n lg n) O(n lg n) O(n lg2 n) O(n lg n) O(n lg n) O(n)

DFA Evaluation O(n lgQ) O(n lgQ) O(n lg2 Q) O(n lgQ) O(n lgQ) O(n)
⋆ Involves a hidden constant ≈ 9400 [DO20].
n denotes - λ evaluation: The time required to evaluate the lambda expression, Ukkonen’s Algorithm: The length of
the string for which the suffix tree is built, DFA Evaluation: The length of the string input to the DFA.

updates. Using our compiler, all such data structures can be made oblivious at O(logn) blow-up. An oblivious
lambda calculus compiler also has interesting use-cases for secure Multi Party Computation (MPC). Protocols that
achieve MPC typically use the circuit model of computation. Our compiler enables MPC using lambda calculus
instead. Due to its extensible nature, the lambda calculus is a compelling model of computation for MPC.

Mixed Memory. It is also interesting to consider programs that manipulate both pointer machine memory
(i.e., mutable memory) and immutable memory. Namely, consider a single program that handles both mutable and
immutable addresses. Pointees of mutable addresses can be updated; pointees of immutable addresses cannot. We
give an obliviousness compiler for any such program, allowing one to combine the increased expressivity of mutability
with the increased efficiency of immutability.

Formally, we consider a mixed-memory programs that allow for the allocation of a mutable address which can be
made immutable using a freeze operation. This allows, for instance, the construction of a data structure with loops
(e.g. directed cyclic graphs) using operations on mutable addresses. Once updates are no longer required, the data
structure can be made more efficient by freezing it. We present an oblivious mixed memory (OMM) compiler that
compiles the freeze operation into an oblivious RAM program that incurs O(logn) bandwidth blowup and O(1)
roundtrips. The cost of other operations depends on the type of address used: the cost of operations on mutable and
immutable addresses are comparable to the cost of using an OPM and an OIM compiler respectively.

Mixed memory has multiple applications. Using our OMM compiler, any program that can be written as a
combination of a constant-degree PM operations and immutable memory operations can be compiled into an oblivious
RAM program with O(logn) bandwidth blowup and O(1) roundtrip blowup. One important example is that of
Ukkonen’s algorithm [Ukk95]. This algorithm constructs the suffix tree for a string of length n in time O(n). Suffix
trees3 are the basis for many string algorithms useful, for example, in computational biology. Example uses of suffix
trees include identifying all occurrences of a set of substrings within a given string, detecting the longest repeated
substring, and many others. Oblivious versions of these algorithms are useful when performed on sensitive data such
as DNA sequences. Oblivious substring search is also useful for designing substring searchable encryptions schemes
[CS15a] with access pattern privacy. We show that Ukkonen’s algorithm can be interpreted as a mixed-memory
program where all mutable memory values have constant degree, and hence we can compile the algorithm with
O(logn) blow-up.

A deterministic finite automaton (DFA) can also be implemented as a mixed memory program. Specifically, once
a DFA for a language L is constructed by performing O(poly(Q)) operations on mutable addresses, the DFA can
be frozen. From here, we can check whether a string of length n belongs to L using O(n) operations on immutable
addresses. This can be compiled into an oblivious RAM program with O(logQ) bandwidth blowup and O(1) roundtrip
blowup when the input string has large length, or when multiple strings are evaluated.

Of course, these are just the applications we have found, and there may be others. We feel that this collection of
non-trivial applications demonstrates the flexibility of mixed-memory programs.

3While the data structure is called a suffix tree, the structure is in fact a cyclic graph where certain nodes may have in-degree
as high as O(n). In particular, a suffix tree is a tree with edges pointing both down the tree—from parents to children—and
back up the tree. Nodes in this tree point into a string, and there is no bound (other than the trivial O(n) bound) on the
number of pointers to any particular index of the string.
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1.2 Technical Overview

Recall that [AHR24] showed an efficient obliviousness compiler for constant-degree pointer-machine (PM) programs.
We denote this compiler by OPM. Our oblivious immutable memory compiler OIM is constructed by first compiling the
target immutable memory program into a constant-degree PM program. We denote our compiler from IM programs
to PM programs by CIM . With CIM constructed, we simply apply OPM to construct an obliviousness compiler OIM for
arbitrary immutable memory programs:

P ↔
OIM︷ ︸︸ ︷

CIM ↔ OPM↔ RAM

Our construction of CIM centers on the following key idea: Because values in memory are immutable, we can safely
make copies of values, without worrying that these different copies will become inconsistent. By using this insight,
we can, with care, ensure that no particular copy has more than a constant number of incoming pointers.

In more detail, our construction copies an immutable memory value once its degree exceeds a constant threshold.
Half of the pointers that pointed to the original value are made to point to the copy instead. This ensures that the
degree of each value in memory remains constant, thereby allowing for an implementation that uses a constant-degree
PM. There is one subtle but crucial point to this strategy: When copying a value, the copied value may itself contain
pointers to other values. Thus, when we copy the value, we increase the degree of these other values, potentially
resulting in a cascading construction of large numbers of copies throughout memory. Despite this, our amortized
analysis (based on the potential method) shows that the cost of copying a pointer into immutable memory can be
bounded to O(1) PM operations.

Mixing mutable and immutable memory. The compiler presented in [AHR24] implements PM programs of
non-constant degree by compiling them to PM programs of constant-degree using a compiler CPM . In this compilation
step, multiple pointers are made to point to a value via a constant-degree balanced binary tree of pointers with the
value at the root, and with each pointer pointing to a leaf. A pointer is dereferenced by traversing a path from the
leaf to the root of this tree to fetch the value.

Because both arbitrary-degree pointer machines and immutable memory programs can be compiled to operations
on a constant-degree pointer machine, it is possible to combine these compilation strategies and obtain obliviousness
for a single program that utilizes both arbitrary-degree mutable pointers and arbitrary-degree immutable pointers.
Dereferencing a mutable memory value with degree d incurs a number of constant-degree pointer machine operations
scaling with O(log d); dereferencing an immutable value incurs O(1) operations, regardless of the value’s degree. To
clarify, the entire execution of this mixed-memory (MM) program is ultimately made oblivious, and the server cannot
tell whether the client is using mutable or immutable memory slots.

Our oblivious MM (OMM) compiler is implemented as a constant-degree PM program CMM that simply invokes
CPM for operations on mutable addresses, and invokes CIM for operations on immutable addresses. As a nontrivial
detail, CMM additionally implements a freeze operation, which converts a mutable value—and all values reachable
from that value—into an immutable one. This is done by recursively re-arranging addresses and values from the
format required for CPM into the format required for CIM . Specifically, when a mutable address is frozen, a traversal
of the tree of pointers pointing to the value is performed. Pointers that point to the leaves of this tree are instead
made to point to copies of the value that are created based on the value’s degree. Our amortized analysis shows that
a mutable address can be frozen using O(1) PM operations.

Organization. We discuss preliminaries in §2. §3 presents our OIM compiler and §4 presents our OMM compiler.
We discuss applications in §5 and related work in §6.

2 Preliminaries

2.1 Notation

• λ denotes a security parameter that controls failure probability. We assume λ > logn. Indeed, to achieve
negligible failure probability it should be that λ = Ω(log1+ϵ n) for some positive ϵ.

• X ≡ Y denotes that X and Y are identically distributed.

• X ≈ Y denotes that probability ensembles X and Y are statistically close in λ.

6



• P ↔ Q denotes an interaction between interactive randomized algorithms P and Q, where P issues requests
that are handled by Q. We often view P ↔ Q itself as an interactive randomized algorithm; the output of
this composed algorithm is the output of P after interacting with Q. The ↔ operation is associative, so when
composing multiple algorithms we omit brackets.

• A machine M refers to an interactive algorithm that handles memory requests. A memory request is issued
using an address that is used to either write a value to or read a value from memory.

• A program P is an algorithm that issues memory requests to a machine. The memory requests that the
program can issue are constrained by the kind of machine that the program interacts with. We write P ↔ M to
denote the interaction between the program and machine. The local space of a program refers to the memory
used by the program outside of the memory provided by the machine it interacts with, and includes variables
used by the program. We do not specify inputs and assume that inputs are hard-coded as part of the program.
The costs of our compilers are based on the runtime of the program.

• A compiler C is used to compile requests issued by a program P to machine M1 into a program P ↔ C that
instead issues requests to a machine M2, while ensuring that P ↔ M1 ≡ P ↔ C ↔ M2 holds.

• We write “p points to v” and “v is the pointee of p” to mean that a value v is written to address p. From
here on, the term address is used for any machine, including pointer machines. The degree of a value is the
number of addresses pointing to it.

• We assume a word size of Θ(logn) bits, and that each value contains a constant number of words.

2.2 Definitions

Oblivious RAM Programs. An oblivious RAM program is a RAM program with a memory access sequence
that can be simulated using just the length of the program.

Definition 1 (Oblivious RAM Program). A RAM program P that runs in n steps is an oblivious RAM program if
there exists a poly-time simulator SIM that takes n as input and simulates the memory addresses accessed by P i.e.,

addrs(1λ,P) ≈ SIM(1λ, n)

Here, addrs denotes to the sequence of addresses requested by P while interacting with random access machine RAM.

The ORAM compilers most relevant to this work belong to a category of ORAMs called tree-based ORAMs
[SCSL11, SvDS+13, WCS15, RFK+15]. Tree-based ORAMs store the memory content as a tree of nodes, with each
node storing a small number of memory elements. Each memory address is mapped to a uniformly random leaf in
the tree, with the invariant that the pointee lies somewhere on the path from the root to this leaf. This mapping is
stored in a data structure called the position map, which is recursively implemented using O(logn) smaller ORAMs.

Opaque Address Programs. This work considers programs that are more restrictive than RAM programs,
and that can hence be compiled into an oblivious RAM program more efficiently. To perform this compilation, it
is necessary to restrict the types of operations that can be performed on memory addresses. For instance, we may
restrain the program from performing arithmetic operations on addresses. One way to achieve this would be to
completely specify a programming language in which programs can be legally written. Seeking a lighter approach,
we instead only specify instructions that can be performed on addresses that are used to interact with the machine.
Looking ahead, this is required since our compilers use the OPM compiler presented in [AHR24] that works only
when operations performed on addresses are restricted. Thus, we define the notion of an opaque address program.

Definition 2 (Opaque Address Program). An opaque address program is one that (1) partitions its local space
into memory addresses and (non address) data words and (2) performs operations on memory addresses only by
sending them to the memory machine that it interacts with. In particular, an opaque address program may not alter
the bits of an address or conditionally branch depending on the bits internal to an address.

Pointer Machine Programs. A pointer machine program is an opaque address program that is restricted to
use addresses that are either allocated in advance, or are copies of existing addresses. In particular, addresses cannot
be decided arbitrarily, nor computed using arithmetic.
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Definition 3 (Pointer Machine Program). A pointer machine program P is an opaque address program whose
operations on addresses are restricted to the following instructions. An address can be initialized using the following:

p := alloc allocate fresh address p; p points to the all-zeros tuple

q, r := copy p return fresh addresses q and r that each point to p’s pointee

The following instructions can be performed on an initialized address:

write p (x1, ..., xk) overwrite p’s pointee with (x1, ..., xk)

(x1, ..., xk) := read p load p’s pointee into variables (x1, ..., xk)

We say that an address becomes invalidated if it is used as the input address for a copy, write, or read instruction.
We say that P is valid if it never passes an invalid address as an argument to read/write/copy. From here on, we
only consider/define valid pointer machine programs. We define the pointer machine PM as the interactive algorithm
that handles the above memory requests in the natural manner.

We note that the above definition writes and reads tuples from pointer machine memory. This is used to generically
represent an object that may contain a combination of values of varied data types, including addresses.

The above definition is slightly different from the traditional notion of a pointer machine program, since it restricts
addresses to be used only once. We place this requirement because we need the program to explicitly label when
it copies addresses; the input of such calls to copy will be passed as input to a compiler, which handles the copy
operation in a black-box manner, then returns two fresh addresses.

Note that the requirement to explicitly label where addresses are copied is clearly without loss of generality
because the ability to create copies indirectly allows for the repeated use of addresses. For instance, the program can
copy an address, write to one copy, and keep the other copy for subsequent operations:

p, q := copy p q is a copy of p

write q (x1, ..., xk) overwrite q’s pointee with (x1, ..., xk)

A read instruction that allows for the repeated use of addresses can be defined similarly.
A constant-degree PM program or an O(1)-PM program is a pointer machine program that ensures that the

degree of any value written to PM memory is bounded by a constant.

Single Access Machine Programs. A single access machine (SAM) program [AHR24] is a pointer machine
program that does not allow addresses to be copied, and restricts that each address can be read / written at most
once4, thereby truly enforcing single access. An OSAM compiler that compiles a SAM program into an oblivious RAM
program can be implemented as a tree-based ORAM without the position map [AHR24], thus reducing bandwidth
blowup and roundtrips by a factor of logn. Recall that the position map is a data structure that maps RAM addresses
(that may be used repeatedly) to a different uniformly random leaf in the ORAM tree each time the RAM address is
used. At a high level, since SAM addresses are used only once, an OSAM compiler need not maintain this mapping;
refer to [AHR24] for details.

Oblivious Pointer Machine Compilers. [AHR24] present compilers that compile any O(1)-PM program
P into an oblivious RAM program by first compiling P to a SAM program, and then compiling the SAM program
into an oblivious RAM program. Based on the underlying tree ORAM used to implement OSAM, two variants of
compilers are obtained: Path-OPM that builds on Path ORAM [SvDS+13] and Circuit-OPM that builds on Circuit
ORAM [WCS15], an ORAM compiler designed for MPC.

Theorem 1 (Oblivious PM [AHR24]). There exists interactive RAM programs Path-OPM and Circuit-OPM that
compile O(1)-PM programs into oblivious RAM programs. For every O(1)-PM program P running in time n and for
statistical security parameter λ, the following hold:

• Correctness. The following are statistically close in λ:

P ↔ PM ≈ P ↔ Path-OPM↔ RAM

P ↔ PM ≈ P ↔ Circuit-OPM↔ RAM

4More specifically, an invalid address is defined slightly differently for a SAM program: once an address is used in an
operation, it cannot be used to perform the same operation again, but can be used in a different operation.

8



• Space complexity. Path-OPM runs in O(λ) local space; Circuit-OPM runs in O(1) local space.

• Communication complexity.

– The interaction between compiled program P ↔ Path-OPM and random access memory RAM involves O(n)
roundtrips and O(n lgn) words of communication.

– The interaction between compiled program P ↔ Circuit-OPM and random access memory RAM involves
O(nλ) roundtrips and O(nλ) words of communication.

• Obliviousness. P ↔ Path-OPM and P ↔ Circuit-OPM are oblivious RAM programs (Definition 1).

[AHR24] also presents a compiler that compiles any (non-constant-degree) PM program into a SAM program:
the same implementation can also be perceived as a compiler to an O(1)-PM program, see §4 for details. The blowup
incurred while reading/writing a PM address depends on the degree of the dereferenced pointee.

Theorem 2 (Compiling PM to O(1)-PM [AHR24]). There exists an interactive, O(1)-PM program CPM that imple-
ments the semantics of a pointer machine. In particular, for every PM program P running in time n, the following
hold:

• Correctness. The following are identically distributed:

P ↔ PM ≡ P ↔ CPM ↔ O(1)-PM

• Space complexity. CPM runs in O(1) local space.

• Runtime complexity. The compiled program P ↔ CPM runs in time ñ = O
(
n ·
∑n

i=0(lg di + 1)
)
, where di

denotes the degree of the value read at step i of P’s computation (if the i-th operation is alloc, then we set
di = 1 such that lg di = 0).

3 Immutable Memory

An immutable memory (IM) program restricts that an address, once initialized, can only be read. An address can
be initialized by writing a value to memory or by copying an existing address.

Definition 4 (Immutable Memory Program). An immutable memory program P is an opaque address program
whose operations on addresses are restricted to the following instructions. An address can be initialized using the
following:

p := write(x1, ..., xk) write a tuple to memory as the pointee of an address p

q, r := copy p return fresh addresses q and r that each point to p’s pointee

The following instructions can be performed on an initialized address:

(x1, ..., xk) := read p load p’s pointee into variables (x1, ..., xk)

We say that an address becomes invalidated if it is used as input in a copy or read instruction. P is valid if it
never passes an invalid address as an argument to read/copy. From here on, we only consider/define valid immutable
memory programs. An immutable memory machine IM is the interactive algorithm that handles the above memory
requests in the natural manner.

3.1 Building an Oblivious Immutable Memory Compiler

We present a compiler CIM that compiles requests made to IM into requests to a O(1)-PM program. Our compiler
makes only amortized O(1) PM requests per IM request, even if values stored in IM are of arbitrary degree. The
resulting PM program can be compiled to an oblivious RAM program using an OPM compiler (Theorem 1).

Approach. The key challenge faced is in implementing IM that stores values of arbitrary degree using a O(1)-PM
program. CIM does this by creating multiple copies of a value stored in memory, with each copy having only a
constant-degree. Specifically, each time the IM program issues a copy request, if the degree of the pointee v exceeds
a certain (constant) threshold, CIM (1) makes a copy of v and (2) redirects half of v’s incoming pointers to the copy.
The degrees of the both pointee and its copy are now only half of the threshold value, allowing the IM program to
issue further copy requests.
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Figure 1: Example of how a value v is copied when its degree equals 2β. v holds addresses to intermediate
addresses (stored in gray nodes) that are updated to point to v’s copy.

The Importance of Immutability. For the above approach to work, it is crucial to assume that the memory
is immutable. If updates to values in memory were allowed, then updating the value of one copy in memory would
require all copies to also be updated, incurring too much overhead. Since memory is immutable, there is no semantic
difference to the IM program between reading a value and its copy.

Challenges. The above simple approach has two subtle, but important issues. First is the issue of how an IM
address p that points to a value v can be implemented. p cannot simply be a PM address that points to v. This is
because, if an address copy causes v’s degree to exceed the threshold, it is unclear how PM addresses that point to v
can be updated to point to v’s copy since these addresses are stored at varied locations in memory. Instead, we make
p and v hold PM addresses that point to an intermediate address pint that points to v. The address stored in v can
be used to update pint to instead point to v’s copy (see Figure 1).

The second issue is that a copied value may itself contain IM addresses, and copying the value will recursively
create copies of these addresses. This recursion can cascade, possibly creating more copies of other values. Despite
this, we show that the amortized cost of a pointer copy can be made constant by choosing the right degree-threshold
at which a value is copied. We follow the potential method of amortized analysis: the contribution of a value to the
potential is proportional to how much its degree exceeds half of the threshold at which a copy is created. Copying a
value causes the degree of both the value and its copy to drop to half. This causes a decrease in potential, accounting
for the cost of recursive calls to copy.

Putting Everything Together. We present our compiler CIM in Figure 2. We present CIM as a PM program
that uses operations that do not invalidate addresses; a program that explicitly creates copies is presented in Appendix
A. Concretely, each IM instruction is implemented as follows.

• write(x1, ..., xk): An intermediate address pint is initialized and made to point to the pointee (x1, ..., xk). A
copy of pint is stored along with the pointee in a list ptrs of addresses that point to intermediate addresses;
this can be used to update pint to point elsewhere if needed. An address that points to pint is returned.

• read p: p is read first to obtain the intermediate address pint. pint is then read to obtain the pointee.

• copy p: We first fetch the intermediate address pint, then use pint to fetch the pointee v and the list ptrs of
addresses to intermediate addresses. A copy qint of pint is created, and a new pointer q is made to point to
qint. A copy of q is also stored in ptrs. After creating this copy, if the degree of v is equal to a threshold 2β,
a copy v′ of v is created, and half of the addresses that pointed to v are made to point to v′ using a procedure
called divert. p is then updated to point to v stored alongside the updated list ptrs.

Theorem 3 (Compiling IM to O(1)-PM). There exists an interactive, O(1)-PM program CIM that implements the
semantics of a immutable memory. In particular, for every IM program P running in time n, the following hold:

• Correctness. The following are identically distributed:

P ↔ IM ≡ P ↔ CIM ↔ PM

• Space complexity. CIM runs in O(1) local space.
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def IM.write(x1, . . . , xk) → p :
ptrs := (⊥, . . . ,⊥) // Initialize a 2β-tuple
pint := PM.alloc( ) // Intermediate address that
points to the value
ptrs.add(pint)
p := PM.alloc( ) // address that points to the
intermediate address
PM.write(p, pint)
PM.write(pint, ((x1, . . . , xk), ptrs))
return p

def IM.read(p) → (x1, . . . , xk) :
pint := PM.read(p)
(x1, . . . , xk), ptrs := PM.read(pint)
return (x1, . . . , xk)

def divert(ptrs, v) :
pint := alloc( )
for each p in ptrs do

PM.write(p, pint)
PM.write(pint, (v, ptrs))

def IM.copy(p) → q :
pint := PM.read(p)
v, ptrs := PM.read(pint)
qint := PM.copy(pint)
q := PM.alloc( )
PM.write(q, qint)
ptrs.add(q)
if |ptrs| = 2β then

v′ := IM.copy(v) // recursively copies
addresses stored in v
ptrs′ := (⊥, . . . ,⊥) // Initialize a 2β-tuple
filled with ⊥

for each p in half(ptrs) do
ptrs.remove(p)
ptrs′.add(p)

divert(ptrs′, v′)
PM.write(p, (v, ptrs))
return q

Figure 2: Implementation of IM that stores k-tuples using a O(1)-PM that stores k + 2β-tuples. A value
is copied when its degree reaches 2β. The last 2β positions of a value in PM memory store addresses to
intermediate addresses that point to the value. The procedure divert is used to make intermediate addresses
point to a value’s copy.

• Runtime complexity. The compiled program P ↔ CIM runs in time O(n).

Proof. Correctness follows from inspection of Figure 2. In particular, CIM is a O(1)-PM program provided that β is
a constant. We show that by choosing any value β > out+1, where out is the maximum number of addreses held in
a value, performing copy invokes amortized O(1) PM requests. It then follows from inspection of Figure 2 that each
operation invokes O(1) requests to PM.

We use the potential method to bound the cost of copy. Specifically, each value that has a degree d > β contributes
c1 · (d−β) to the potential, where c1 is a constant that we will determine later. Note that the cost of copying a value
is dependent on β + out; let this cost be c2(β + out) for some constant c2. We now consider two cases:

• Case 1: R ≥ 1 values are copied: For each value that is copied, the potential decreases by c1(2β − 1 − β) =
c1(β − 1). Then, the cost of copying an address is upper bounded by:

R · c2 · (β + out) the cost of copying R values

+R · c1 · out increase in potential by copying addresses contained in R values

−R · c1 · (β − 1) decrease in potential due to the decrease in degree of R values

This only over-counts the cost since we assume that every address contained in a value is also copied without
invoking further recursive calls (in addition to being copied recursively). This cost can be made 0 by carefully
choosing c1 and β such that the following holds:

c2 · (β + out) + c1 · out = c1 · (β − 1)

Specifically, for some value of β, c1 must be c2·(β+out)
β−out−1

. This is well defined as long as β > out+ 1 holds.

• Case 2: No values are copied: Copying an address causes the degree of the value held at the pointee to increase
by 1, leading to an increase in potential of at most c1. In addition to this increase in potential, by inspection
of Figure 2, the cost incurred is O(1).
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By inspection of Figure 2, CIM runs in O(1) local space. Note that recursive calls to copy can be implemented
using a O(1)-PM program emulating a stack, thereby storing program state in PM machine memory.

The following holds as an immediate consequence of Theorems 1 to 3:

Corollary 1 (Oblivious IM). There exists interactive RAM programs Path-OIM and Circuit-OIM such that for every
IM program P running in time n and for statistical security parameter λ, the following hold:

• Correctness. The following are statistically close in λ:

P ↔ IM ≈ P ↔ Path-OIM↔ RAM

P ↔ IM ≈ P ↔ Circuit-OIM↔ RAM

• Space complexity. Path-OIM runs in O(λ) local space and Circuit-OIM runs in O(1) local space.

• Communication complexity.

– The interaction between compiled program P ↔ Path-OIM and random access memory RAM involves O(n)
roundtrips and O(n lgn) words of communication.

– The interaction between compiled program P ↔ Circuit-OIM and random access memory RAM involves
O(nλ) roundtrips and O(nλ) words of communication.

• Obliviousness. P ↔ Path-OIM and P ↔ Circuit-OIM are oblivious RAM programs.

4 Mixing Mutable and Immutable Memory

A mixed memory (MM) program uses both mutable and immutable memory cells. A memory address is initialized
either by allocating a mutable address, or by copying an existing address. The operations that can be performed on
an address depends on whether that address is mutable or immutable. While all addresses can be read, only mutable
addresses can be written to. The freeze operation changes a mutable address into an immutable one, and it also
recursively freezes all memory reachable from the pointee. Operations on immutable addresses are more efficient than
operations on a mutable ones by a log d factor, where d is the degree of the pointee.

Definition 5 (Mixed Memory Program). A mixed memory program P is an opaque address program whose
operations on addresses are restricted to the following instructions. An address can be initialized using the following:

p := alloc allocate a fresh address that is marked as mutable

q, r := copy p return fresh addresses q and r that each point to p’s pointee.

q and r are mutable if p is mutable and are immutable otherwise.

The following instructions can be performed on an initialized address:

p := write(x1, ..., xk) write a tuple to memory as the pointee of a mutable address p.

(x1, ..., xk) := read p load p’s pointee into variables (x1, ..., xk).

freeze p Given mutable address p that points to v, mark all addresses that point to v as immutable.

Recursively freeze mutable addresses stored in v.

We say that an address becomes invalidated if it is used as input to a copy, write or read instruction. P is valid
if it never passes an invalid address as an argument to read/write/copy. From here on, we only consider/define
valid mixed memory programs. A mixed memory machine MM is the interactive algorithm that handles the above
memory requests in the natural manner.

4.1 Building an Oblivious Mixed Memory Compiler

We present a compiler CMM that compiles requests made to MM into requests to a O(1)-PM program. [AHR24]
presents a compiler that compiles a PM program into a SAM program. Their implementation can easily be seen as a
compiler CPM that compiles a PM program into a O(1)-PM program; we will briefly explain how this is done shortly.
CMM can be implemented simply by invoking CPM for operations on mutable addresses and CIM for operations on
immutable addresses. The freeze instruction that changes a mutable address into an immutable one is unique to
MM, and we discuss its implementation in detail. Our implementation of freeze restructures values in memory from
the format required for CPM into the format required for CIM .
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Figure 3: freeze rearranges addresses from the format required for PM into the format required for IM.
An ↔ arrow between two nodes indicates that both nodes have addresses pointing to each other. Here, we
assume that β = 3.

Implementing PM as a O(1)-PM program. The implementation of freeze is based on how [AHR24]
implements CPM . An address points to a pointee by means of a balanced binary tree with the pointee at its root (see
Figure 3). Specifically, an address points to a leaf of this tree. Each node in this tree has addresses pointing to its
children and its parent. Given an address, the program can read/write values by recursively climbing the tree until
it reaches the root. Note that the cost to read/write a pointer thus scales with that pointer’s distance from the root
of the tree. Thus, [AHR24] must ensure that this distance does not grow too large; see next.

Copying an address is slightly more involved than reading/writing since, to keep costs low, we must maintain that
the tree remains balanced. This balancing is achieved by ensuring that the tree is complete. An address is copied by
first fetching the root, then traversing the path to the rightmost leaf in the last level of the tree by reading addresses
to the appropriate child. The path to be traversed can be calculated using the degree of the pointee, which is stored
at the root. The copy of the address is then created at this rightmost leaf.

Implementing freeze. Calling freeze on a mutable address rearranges the leaves of the above binary tree into
intermediate addresses that point to various copies of the pointee, i.e the structure required for CIM . This is done by
performing a traversal of the tree starting at the root, creating the required number of copies based on the degree
of the pointee, and having the leaves of the tree store intermediate addresses that point to these copies. After this
rearrangement is complete, mutable addresses held in the pointee are recursively frozen. We present an O(1)-PM
program that implements CMM in Figure 3.

The efficiency of freeze. Bounding the cost of freeze is non-trivial because freeze creates copies of values,
and creating copies may cause the degrees of other values (in terms of O(1)-PM addresses) to increase, even if these
values are frozen recursively. We first bound the cost of copying a value.

Claim 1. Each of freeze’s calls to copy incurs only amortized O(1) constant-degree PM operations.

Proof. A value may contain both mutable and immutable addresses. From Theorem 3, copying an immutable address
incurs O(1)-PM operations. A copy of a mutable address p during a freeze operation is performed using O(1) PM
operations by simply extending the path to the leaf that p points to. Specifically, a copy q of p that points to a leaf
node n is performed by creating a new node n′ with an address that points to n, and having p and q point to n′.

Note that we have therefore modified the behavior of how a mutable pointer p is copied, but only for those copies
created during freeze. This modification will not ensure that the tree of pointers to p’s pointee is balanced, and
above we explained that the tree must be balanced to keep the root-to-leaf distance small. However, it will not matter
that trees may become unbalanced during freeze, since p will ultimately be frozen as well. As we will show next,
during freeze the arrangement of these PM pointer trees is irrelevant to cost, and only their size matters:

Claim 2. Let D be the total degree of all values in MM machine memory (including copies) in terms of O(1)-PM
addresses. We say that a value v is frozen if all addresses pointing to it are immutable. Suppose that a call to freeze
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def MM.read p → (x1, . . . , xk) :
if p.mutable then return CPM .read p
else return CIM .read p

def MM.write p (x1, . . . , xk) :
CPM .write p (x1, . . . , xk)

def MM.copy p → q :
if p.mutable then return CPM .copy p
else return CIM .copy p

def traverse p leaves → [ ] :
v = read p
if ¬v.left and ¬v.right then

v.frozen = true

write p v
leaves.add(p)

if v.left then
leaves := traverse v.left leaves

if v.right then
leaves := traverse v.right leaves

return leaves

def MM.freeze p :
v := read p
if v.frozen then

return
q := v.parent
while ¬v = root do

q := v.parent
v := read q

leaves := traverse(q, [ ])

n := v.degree
2β

while n do
v′ := copy(v) // copies a mutable address by
extending the path to the leaf
cnt = min(2β, |leaves|)
n = n− cnt

ptrs := leaves.remove(cnt)
divert(ptrs, v′)

for each p in v do
freeze(p)

Figure 4: O(1)-PM program implementing CMM . The procedure traverse recursively traverses the binary
tree used to implement CPM and returns a list of pointers to the leaves of this tree. The freeze procedure
uses this list to make intermediate addresses point to copies of the pointee. The implementation of divert
follows from Figure 2.

causes values v1, . . . , vℓ with degrees d1, d2, . . . , dℓ (in terms of mutable MM addresses) to be recursively frozen. If
β > out, the total increase in D is O(d1 + d2 + · · ·+ dℓ).

Proof. Let ci denote vi’s contribution to D. Note that vi holds at most out addresses. We say that the pointees of
these addresses are distance-1 from vi. The degree of each of these distance-1 addresses will increase by factor ⌈di/β⌉
as a result of the freeze operation, since we create ⌈di/β⌉ total copies of vi. However, because we also recursively
freeze these distance-1 addresses, vi indirectly increases the degree of those values at distance 2. In particular, vi
contributes at most ⌈di/β2⌉ to the degree of each value at distance 2. More generally, each frozen value vi contributes
⌈di/βk⌉ to each value at distance k. Since there are at most outk values at distance k, we can bound ci as follows:

ci = O(out · di
β

+ out
2 · di

β2
+ out

3 · di
β3

+ . . . )

= O

(
di ·

((
out

β

)
+

(
out

β

)2

+

(
out

β

)3

+ . . .

))
= O(di) (∵ β > out)

Theorem 4 (Compiling MM to O(1)-PM). There exists an interactive, O(1)-PM program CMM that implements the
semantics of a mixed memory. In particular, for every MM program P that makes nmut queries to mutable addresses
and nim queries to immutable addresses, the following hold:

• Correctness. The following are identically distributed:

P ↔ MM ≡ P ↔ CMM ↔ PM

• Space complexity. CMM runs in O(1) local space.
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• Runtime complexity. Let ñmut = O
(
n ·
∑nmut

i=0 lg di
)
, where di denotes the degree of the value read during the

ith operation on a mutable address. The compiled program P ↔ CMM runs in time O(ñmut + nim).

Proof. Since freeze restructures memory into the format required for CIM , the correctness of CMM follows from that
of CPM and CIM . We show that freeze is performed using O(1) PM operations; the runtime of CMM then follows
from the runtime of CPM and CIM .

Roughly, our proof shows that we can pay for the cost of freezing a mutable address at the time that mutable
address is created. In an amortized sense, calls to freeze become free. Specifically, we use the potential method to
bound the cost of freeze, with the potential function being c ·m, where m is the total number of mutable addresses
in memory and c is a constant to be determined later.

Suppose that a call to freeze causes values v1, . . . , vℓ with degrees d1, . . . , dℓ to be frozen recursively. Let
d = d1 + · · · + dℓ. From Claims 1 and 2, and by inspection of Figure 4, O(d) = c′ · d operations are incurred. The
amortized cost of freeze is c′ · d− c · d, since there is a decrease in potential of c for every address that points to a
value that gets frozen. By setting c = c′, this cost is 0. Note that copying a mutable address causes an increase in
potential of c. However, since this is a constant, the asymptotic cost of this operation does not change.

Note that freeze requires storing a list leaves. If this list is stored in pointer machine memory, and if recursive
calls to freeze are implemented using a stack, by inspection of Figure 4, freeze requires O(1) local space. Specifically,
leaves can be implemented as a O(1)-PM program that emulates a linked list that writes values to and reads values
from PM memory.

The following holds as an immediate consequence of Theorems 1, 2 and 4.

Corollary 2 (Oblivious MM). There exists interactive RAM programs Path-OMM and Circuit-OMM such that for every
MM program P running that makes nmut queries to mutable addresses and nim queries to immutable addresses and for
statistical security parameter λ, the following hold:

• Correctness. The following are statistically close in λ:

P ↔ MM ≈ P ↔ Path-OIM↔ RAM

P ↔ MM ≈ P ↔ Circuit-OIM↔ RAM

• Space complexity. Path-OMM runs in O(λ) local space and Circuit-OMM runs in O(1) local space.

• Communication complexity. Let ñmut = O
(
n ·
∑nmut

i=0 lg di
)
, where di denotes the degree of the value read

during the ith operation on a mutable address, and let n = nmut + nim.

– The interaction between compiled program P ↔ Path-OMM and random access memory RAM involves
O(ñmut + nim) roundtrips and O((ñmut + nim) lgn) words of communication.

– The interaction between compiled program P ↔ Circuit-OIM and random access memory RAM involves
O((ñ+ nim)λ) roundtrips and O((ñ+ nim)λ) words of communication.

• Obliviousness. P ↔ Path-OIM and P ↔ Circuit-OIM are oblivious RAM programs.

5 Applications

Here, we state examples of existing algorithms that can naturally be written as immutable memory programs and
mixed memory programs without being tweaked. Using our compilers, we obtain oblivious RAM programs for these
algorithms with new asymptotic results; see Table 1 for a comparison with ORAM / [AHR24]. We compare our
results with other specific constructions in §6.

Oblivious Evaluation of Lambda Expressions. Evaluation of arbitrary lambda calculus expressions can
be easily achieved as an immutable memory program. While this is likely straightforward for those highly familiar
with the lambda calculus, we present why this is so in Appendix B by arguing that a standard CEK machine is an
immutable memory program.

Fact 1 (Reducing Lambda Calculus to Immutable Memory). Let e denote an arbitrary call-by-value lambda expression
that evaluates to a value ν within n steps. There exists an immutable memory program P with O(1) local space
that computes from (a representation of) e (a representation of) ν within O(n) time.
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The following holds as an immediate consequence of Fact 1 and corollary 1:

Corollary 3 (Oblivious Lambda Calculus). There exists oblivious RAM programs evaluating arbitrary call-by-value
lambda calculus expressions with the following costs, where n is the runtime of the expression.

• O(n lgn) words of communication, O(n) roundtrips and O(λ) local space.

• O(nλ) words of communication, O(nλ) roundtrips and O(1) local space.

Oblivious Suffix Tree Construction. Ukkonen’s algorithm [Ukk95] constructs from some string the suffix
tree for that string. This algorithm can be interpreted as a mixed memory program, and hence it can be efficiently
compiled to an oblivious program. Specifically, the suffix tree can be implemented using mutable addresses, with
nodes of the tree holding immutable addresses that point to letters in the string. We note that while the degrees of
values storing letters of the string can be arbitrary, Ukkonen’s algorithm ensures that the degree of each node in the
suffix tree is O(1).

In a bit more detail, Ukkonen’s algorithm works by maintaining a tree of constant-out-degree nodes. By inspection
it can be seen that Ukkonen’s algorithm is clearly a pointer-machine program, so all that needs to be considered is
the in-degree of the nodes and their mutability. Characters of the target string can have arbitrary degree, but this
string is fixed, and hence we can mark it as immutable. The nodes of the suffix tree itself must be mutable while
running the algorithm, but they are clearly constant-degree. In particular, each tree node’s address (1) is the child
of one parent node, (2) is the target of at most one so-called “suffix link”, and (3) might be currently held as an in
client memory. Thus, the maximum in-degree of each tree node is at most three. In sum, all memory addresses in
Ukkonen’s algorithm can either be marked as immutable, or have constant in-degree. Hence, the algorithm can be
compiled to a constant-degree pointer machine program.

The above discussion, combined with Corollary 2, implies the following:

Theorem 5 (Oblivious Suffix Trees). Let Σ denote a constant-sized alphabet. There exists an MM program that
implements Ukkonen’s algorithm for length-n strings over Σ in time O(n). Accordingly, there exist oblivious RAM
programs that implement Ukkonen’s algorithm with the following costs.

• O(n lgn) words of communication, O(n) roundtrips and O(λ) local space.

• O(nλ) words of communication, O(nλ) roundtrips and O(1) local space.

Deterministic Finite Automaton. A DFA that accepts strings of a certain language can be constructed using
a PM program. Once constructed, the states of a DFA remain immutable. Thus, it is possible to implement a mixed
memory program that constructs a DFA and freezes it so that it can be efficiently used to accept / reject a string.

Theorem 6 (Oblivious Deterministic Finite Automaton). There exists an MM program that constructs a DFA
(Q,Σ, δ, q0, F ) using poly(Q) operations on mutable addresses and checks whether a string s over Σ of length n
is accepted using O(n) operations on immutable addresses. Accordingly, there exist oblivious RAM programs that
construct the DFA using poly(Q) words of communication and roundtrips, and check whether s is accepted with the
following costs:

• O(n lgQ) words of communication, O(n) roundtrips and O(λ) local space.

• O(nλ) words of communication, O(nλ) roundtrips and O(1) local space.

Applications for MPC. It is well known that one can implement an MPC protocol for any constant-sized
RAM program with a fixed (constant-sized) instruction set, even those that allow arbitrary control flow, see e.g.
[WGMK16]. This is done by carefully emulating the components of a CPU, such as the program counter (PC),
registers, ALU, and RAM. Care should be taken to hide which step of the program is being executed (the value of
the PC), as this leaks control flow. The value of the PC for each step is computed by performing a linear scan of
the program. The output of a step is then computed by executing all possible instructions in the instruction set and
selecting the output of the correct instruction using the PC. To handle RAM, the approach works by implementing
the ORAM client via an MPC circuit. Note here that the relevant ORAM cost metric is the circuit complexity of
the ORAM compiler. By using Circuit-ORAM, which is optimized for this particular metric, one can implement a
semi-honest-secure MPC protocol for any RAM program at cost O(n log2 nλ) bits of communication.

Because our techniques can be compiled to a simplification of Circuit-ORAM, all of our results can be translated
to the MPC setting. As an example of what can be achieved, we state the following immediate result for MPC
evaluation of lambda calculus programs, which integrates our handling of immutable memory into an MPC protocol.
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Corollary 4. There exists a 3-party MPC protocol that tolerates 1 semi-honest corruption and evaluates an arbitrary
lambda expression. If the expression evaluates in time n, then the protocol consumes O(n lognλ) total bits (or O(nλ)
words) of communication.

The above result is achieved by evaluating (via a CEK machine; see Section B) a lambda expression via immutable
memory, and implementing the immutable memory client by means of a Boolean circuit. This result is not achievable
by any prior MPC protocol. Of course, this is a bare-bones result: it implements in a straightforward way a stripped
down computational model in the simplest MPC setting. However, it does illustrate that mixed memory programs
are particularly interesting for the MPC setting.

Mixed memory also has the potential to aid MPC in handling programs with complex control flow. In particular,
suppose we parameterize cost by the number of program instructions S. By using our techniques, we can bring
down the overead of updating the program counter from O(S), due to performing a linear scan of the program, to
O(log(S + n)), where n is the runtime of the program to be compiled. This is done by constructing and freezing
an inter-procedural control flow graph (CFG) with each node being an instruction, and an edge between two nodes
indicating possible control flow. Similar to Theorem 6, evaluating a program can be seen as a walk of the CFG using
O(n) operations on immutable addresses.

6 Other Related Work

We reviewed most of the relevant related work in Section 1. Here, we cover works related to the applications allowed
by our new obliviousness compilers.

Secure Pattern Matching. Secure pattern matching allows a user to find all occurrences of a short string
s (of size m) in a long text T (of size n) stored at a server while keeping both s and T hidden. Prior works
that study this problem all require computation and communication costs of O(m + n) for each string that is
queried [HL08, HT10, BEDM+13, YSK+13, KRT18, ZML20]. Our oblivious suffix tree can help reduce these costs
to O((m+ z) logn) per string, where z is the number of occurrences of the queried string.

Substring Searchable Encryption. Secure pattern matching is also useful for designing substring searchable
encryption schemes [CS15b] that hide access pattern leakage. The work of [MB15] presents a scheme that improves
over using oblivious data structures [WNL+14] by a logn factor, however, only when m = Ω(logn). In contrast, our
suffix tree algorithm improves over prior work by a log factor for any set of parameters. Other substring searchable
encryption schemes with access pattern privacy require a server computation of Ω((m+o) ·n) [SNR16, IIY17, MBP21]
or rely on trusted hardware [MSBP20]. We only require a server computation of O((m+ o) · logn).

Oblivious DFA Evaluation. Oblivious DFA evaluation is mainly studied in the context of MPC, where a
client that holds a private input string of size n checks if the string is accepted by a private DFA held at a server.
Prior works solve this problem with Ω(n · Q) communication cost [Ker06, GHS10, MNSS12]: they rely on the server
sending a permutation of the states of the DFA to the client, requiring a communication of O(Q) for every string to
be evaluated. While we study oblivious DFA evaluation in a different setting, our work can be extended to the MPC
setting while incurring much less communication.

Lambda Calculus for MPC. While prior works propose extensions of the lambda calculus as languages using
which programs for MPC can be written [DSLH19, SDH+21], no prior work considers using lambda calculus as the
model of computation for MPC. Roughly, prior work used lambda calculus to describe protocols; our result allows
MPC protocols for programs in the lambda calculus.
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Appendices

A IM Compiler as a Constant-Degree PM Program

In §3, we presented CIM that allowed operations on addresses without invalidating them. Figure 5 presents an
implementation of CIM that explicitly creates copies.

B Oblivious Lambda Calculus

The lambda calculus is a Turing-complete model of computation that, in its simplest form, is expressed and evaluated
as follows.

Definition 6 ((Call by Value) Lambda Calculus). A lambda expression (or just expression) e is a string defined
by the following context-free grammar:

e ::= λx.e lambda abstraction

| e e function application

| x variable reference

Here, x ranges over the set of program variable names. We say that for an expression λx.e, variable x is in scope
in the subexpression e. An expression is well-formed if all occurrences of variable references are in scope; from here
on, we only consider well-formed expressions. We say that an expression e is a value if it is of form λx.e. The goal
of evaluation is to simplify an arbitrary expression e to a value. We for simplicity consider call by value evaluation
semantics, which state that to evaluate a function application e0 e1, first recursively evaluate both e0 and e1, then
perform the following rewrite:

(λx.e) ν −→ e[ν/x] where subexpression ν is a value

Here e[ν/x] denotes a (capture-avoiding) substitution: occurrences of x in e are replaced by value ν.

There are some difficulties in assigning a precise cost to a given lambda expression, since substitution is a powerful
operation that performs arbitrary numbers of replacements in one operation. We therefore take a direct approach
by recalling a classic machine that evaluates lambda expressions, and simply defining cost as the time it takes that
machine to run. Note that this is within constant factors of other cost models for the lambda calculus, e.g. the one
defined by [BG95]:

Definition 7 (CEK Machine). A CEK machine is a state transition system defined on triples (e, E,K) where
e is an expression tree called the control, E is a dictionary called the environment, and K is a stack called the
continuation. More precisely, the environment E is defined recursively, and it maps program variable names to
expression/environment pairs. The machine transitions by performing simple pattern matching/updating of its three
components:

x,E,K −→ e′, E′,K where E[x] = (e′, E′)

(e0, e1), E,K −→ e0, E, push((arg, e1, E),K)

λx.e0, E,K −→ e1, E
′, push((app, (λx.e0), E),K′) where (arg, e1, E

′,K′) = pop(K)

λx.e0, E,K −→ e1, E
′[y ← λx.e0],K

′ where (app, λy.e1, E
′,K′) = pop(K)

Definition 8 (Runtime of Lambda Expression). Let e be a well-formed lambda expression. Consider the following
CEK state:

e, empty-dictionary, empty-stack

We define the runtime of e as the number of state transitions taken by the CEK machine before the above initial
state reaches a terminal state (one where no transitions can be applied).

Fact 1 (Reducing Lambda Calculus to Immutable Memory). Let e denote an arbitrary lambda expression
with runtime n. There exists an immutable memory program P with O(1) local space that computes from (a
representation of) e (a representation of) ν within O(n) time.
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def divert(ptrs, v) :
pint := alloc()
for each p in ptrs do

PM.write(p, pint)
PM.write(pint, (v, ptrs))

def IM.copy(p) → q :
pint := PM.read(p)
v, ptrs := PM.read(pint)
qint := PM.copy(pint)
q := PM.alloc()
PM.write(q, qint)
ptrs.add(q)
if |ptrs| = 2β then

v′ := IM.copy(v) // recursively copies
addresses stored in v
ptrs′ := (⊥, . . . ,⊥) // Initialize a 2β-tuple
filled with ⊥
for each p in half(ptrs) do

ptrs.remove(p)
ptrs′.add(p)

divert(ptrs′, v′)
PM.write(p, (v, ptrs))
return q

def IM.write(x1, . . . , xk) → p :
ptrs := (⊥, . . . ,⊥) // Initialize a 2β-tuple filled
with ⊥

pint := PM.alloc() // Intermediate address that
points to the value
ptrs.add(pint)
p := PM.alloc() // address that points to the
intermediate address
PM.write(p, pint)
PM.write(pint, ((x1, . . . , xk), ptrs))
return p

def IM.read(p) → (x1, . . . , xk) :
pint := PM.read(p)
(x1, . . . , xk), ptrs := PM.read(pint)
return (x1, . . . , xk)

def divert(v, ptrs, v’) :
p′int := PM.alloc()
for each p in ptrs’ do

p, p′ := PM.copy(p)
p′int, p”int := PM.copy(p′int)
PM.write(p′, p”int)

PM.write(p′int, (v
′, ptrs′))

def IM.copy(p) → q, r :
p, p′ := PM.copy(p)
pint := PM.read(p′)
pint, p

′
int := PM.copy(pint)

v ⊔ ptrs := PM.read(p′int)
pint, p

′
int := PM.copy(pint)

qint := PM.copy(p′int)
q := PM.alloc()
qint, q

′
int := PM.copy(qint)

PM.write(q, q′int)
q, q′ = PM.copy(q)
ptrs.add(q′)
if |ptrs| = 2β then

v′ := PM.copy(v)
ptrs′ := (⊥, . . . ,⊥)
for each p in half(ptrs) do

ptrs.remove(p)
ptrs’.add(p)

divert(v, ptrs, v′)
p, r := PM.copy(p)
PM.write(p, (v, ptrs))
return q, r

def IM.write(x1, . . . , xk) → p :
ptrs := (⊥, . . . ,⊥)
pint := PM.alloc()
pint, p

′
int := PM.copy(pint)

ptrs.add(p′int)
p := PM.alloc()
p, p′ := PM.copy(p)
pint, p

′
int := PM.copy(pint)

PM.write(p′, p′int)
PM.write(pint, ((x1 . . . , xk), ptrs))
return p

Figure 5: Implementation of IM that stores k-tuples using a O(1)-PM that stores k + 2β-tuples. A value
is copied when its degree reaches 2β. The last 2β positions of a value in PM memory store addresses to
intermediate addresses that point to the value. The procedure divert is used to make intermediate addresses
point to a value’s copy. The procedures defined in the left half assume that addresses can be repeatedly used;
procedures on the right are equivalent valid PM programs that explicitly create copies. The implementation
of read is agnostic to whether the repeated use of addresses is allowed.
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Proof. By observing the CEK machine can be implemented as an immutable memory program.
Note that each CEK transition performs at most a constant number of operations on each of the three data

structures, as well as performing simple constant-time rearranging of data. All three data structures can be achieved
with immutable memory via standard techniques known in the functional programming literature.

One subtle point is that immutable-memory-based dictionaries incur worst case logarithmic overhead in the
number of entries. However, in the CEK machine, each dictionary has at most a constant number of entries, bounded
by the fact that the evaluated program has only a constant number of variables, since the program is of constant size.
Thus, reading/updating the environment (a constant-sized dictionary) is achievable within O(1) immutable memory
operations. Thus, there exists an immutable memory program that evaluates expression e in O(n) time.
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