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Abstract

The modern internet relies heavily on centralized trust systems con-
trolled by corporations, governments, and intermediaries to manage
authentication, identity, and value transfer. These models introduce
fundamental vulnerabilities, including censorship, fraud, and systemic
insecurity. The Decentralized State Machine (DSM) addresses these
issues by introducing a mathematically enforced trust layer that elim-
inates the need for consensus mechanisms, third-party validators, and
centralized infrastructure. DSM enables quantum-resistant, determin-
istic state transitions for digital identity and value exchange—offering
immediate finality, offline capability, and tamper-proof forward-only
state progression.

DSM replaces traditional blockchain execution models with deter-
ministic, pre-committed state transitions, enabling secure, multi-path
workflows without requiring Turing-completeness or global consensus.
The protocol architecture is based on a straight hash chain with sparse
indexing and Sparse Merkle Trees (SMTs), ensuring efficient verifica-
tion, scalability, and privacy. A bilateral isolation model supports
asynchronous, offline operation with built-in consistency guarantees.
DSM introduces a sustainable, gas-free economic model based on cryp-
tographic subscription commitments.

This paper outlines the architecture, cryptographic foundations,
and security guarantees of DSM, and demonstrates how it achieves ver-
ifiable, trustless interaction between peers—both online and offline. By
decoupling security from consensus and enabling self-validating state
transitions, DSM offers a practical and scalable alternative to conven-
tional internet trust models.

DSM: Realizing the True Peer-to-Peer Vision of Bitcoin In the
original Bitcoin whitepaper, Satoshi Nakamoto outlined a vision for a extit-
purely peer-to-peer electronic cash system:

“A purely peer-to-peer version of electronic cash would
allow online payments to be sent directly from one party
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to another without going through a financial institu-
tion.” ˜ Satoshi Nakamoto

However, while Bitcoin introduced decentralized money, it never fully
achieved this ideal due to structural limitations:

• Dependence on Miners: Transactions require validation from miners
through Proof-of-Work (PoW), creating a bottleneck that prevents
true instant, direct transactions.

• Global Consensus Requirement: Bitcoin maintains a single, shared
ledger that all nodes must agree upon, making scalability and efficiency
problematic.

• Finality Delays: Bitcoin transactions require multiple confirmations
to be considered final, which introduces waiting times that make mi-
crotransactions impractical.

• Limited Offline Capability: Transactions must be relayed through an
online network, meaning they cannot be finalized in a fully offline
setting. (Going beyond Satoshi’s vision)

Bitcoin’s second-layer solutions, such as the Lightning Network, attempt
to address some of these issues, but they fall short in key ways:

• Liquidity Constraints: Lightning Network relies on pre-funded chan-
nels, requiring liquidity locks that limit transaction freedom.

• Routing Problems: Payments require a successful routing path be-
tween peers, meaning transactions can fail if liquidity is insufficient
along the route.

• Centralization Risks: Large hubs become dominant liquidity providers,
introducing potential points of failure and censorship.

• Offline Transactions Are Not Truly Peer-to-Peer: A Lightning pay-
ment still requires internet connectivity at some point to relay and
finalize transactions.

1 CAP Theorem and Its Assumptions

The CAP theorem, introduced by Brewer (2000) and proven by Gilbert
and Lynch (2002), posits that a distributed system cannot simultaneously
provide:

• Consistency (C): Every read receives the most recent write or an
error.
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• Availability (A): Every request receives a non-error response.

• Partition Tolerance (P): The system continues to operate despite
arbitrary network failures.

Formally:

∄S ∈ S : C(S) ∧A(S) ∧ P (S)

This formulation presumes a monolithic global system state, uniformly
applied consistency requirements, and tightly coupled node operations. These
assumptions underpin traditional distributed system design but are not uni-
versally applicable.

2 Challenging the CAP Model: DSM Assumption
Rejections

2.1 No Global State Synchronization

DSM discards the necessity of a unified global state. Instead, it defines
per-relationship state:

GDSM = {Ri,j : i ̸= j}

Consistency is evaluated locally:

Consistent(Ri,j) ⇐⇒ ∀(Si
m, Sj

p) ∈ Ri,j ,Verify(S
i
m, Sj

p) = true

2.2 Heterogeneous Consistency Requirements

Unlike traditional systems, DSM permits differing consistency rules per re-
lationship:

∀(i, j) ̸= (k, l), ConsistencyDomain(Ri,j) ∩ ConsistencyDomain(Rk,l) = ∅

This decomposition dissolves global consensus dependencies.

2.3 Atomicity and State Coupling Avoidance

DSM avoids global atomicity and state coupling. Each transaction affects
only the local Ri,j :

Execute(op,Ri,j) ̸⇒ Affects(Rk,l), ∀(k, l) ̸= (i, j)
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3 DSM’s Bilateral State Model: Formalization

3.1 Decentralized Consistency

Global consistency becomes a conjunction of independently verifiable bilat-
eral states:

GlobalConsistencyDSM =
∧
i ̸=j

Consistent(Ri,j)

3.2 Bilateral Hash-Linked Verification

DSM ensures integrity with cryptographic linkage:

Consistent(Ri,j) ⇐⇒ ∀(Si
m, Sj

p) ∈ Ri,j , Hash(Si
m) = Sj

p.prev hash

4 CAP Theorem Inapplicability in DSM

4.1 Theorem 1: CAP Exemption via Bilateral Isolation

Theorem: A system using bilateral isolation and cryptographic verification
is exempt from the CAP theorem.

Proof:
Traditional CAP consistency is defined globally:

C(S) ⇐⇒ ∀i, j, si = sj

DSM redefines it relationally:

CDSM(S) ⇐⇒ ∀i ̸= j, Consistent(Ri,j)

Availability is scoped per-relationship:

ADSM(S) ⇐⇒ ∀op ∈ Oi,j , Response(op) ̸= error

Partition tolerance is compartmentalized:

PDSM(S) ⇐⇒ Partition(i, j)⇒ Offline(Ri,j)∧∀(k, l) ̸= (i, j),Operational(Rk,l)

Thus:

CDSM(S) ∧ADSM(S) ∧ PDSM(S) = true

□
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4.2 Local Availability Without Quorums

DSM guarantees availability per relationship context without global coordi-
nation:

Available(Ri,j) ⇐⇒ ∀op ∈ Oi,j , Process(op,Ri,j) = true

5 Transcending the Trilemma

5.1 Fault Domain Isolation

DSM strictly contains faults:

IsolatedFault(Ri,j) ⇐⇒ ∀(k, l) ̸= (i, j), Fault(Ri,j) ̸⇒ Affects(Rk,l)

5.2 Mathematical CAP Reconciliation

Each pairwise relationship satisfies all three properties:∧
i ̸=j

(C(Ri,j) ∧A(Ri,j) ∧ P (Ri,j))

5.3 Theorem 2: Reformulated Distributed System Bound-
aries

Theorem: A distributed system employing bilateral isolation and crypto-
graphic state transitions can satisfy consistency, availability, and partition
tolerance within each relationship domain.

This shifts the theoretical model from global impossibility to localized
feasibility.

6 Beyond CAP

The Decentralized State Machine redefines the landscape of distributed com-
puting by disaggregating global state assumptions. It introduces relationship-
specific consistency verified through cryptography, localized availability, and
isolated fault domains.

DSM doesn’t circumvent CAP by violating it—it operates outside its
scope. By rejecting the universal assumptions embedded in the CAP theo-
rem, DSM establishes a new class of distributed architectures optimized for
scalability, resilience, and verifiability.

This model opens new possibilities in decentralized systems—from offline
payments and identity to cooperative autonomous devices—where global
consensus is neither required nor desirable.
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7 How DSM Achieves Satoshi’s Original Vision

DSM eliminates all of these limitations, making it the true realization of
Bitcoin’s original peer-to-peer model. Unlike Bitcoin or Lightning Network,
DSM transactions:

• Require no miners, no validators, and no global consensus.

• Are final instantly, as they rely on self-verifying cryptographic state
rather than waiting for confirmations.

• Allow for direct peer-to-peer transactions, even in a fully offline setting.

• Have no liquidity constraints or routing dependencies, unlike the Light-
ning Network.

• Are mathematically guaranteed, eliminating all forms of trust.

7.1 Offline Transactions: The True Digital Equivalent of Cash

One of DSM’s most groundbreaking aspects is its ability to facilitate fully
offline transactions. Just as cash allows two individuals to exchange value
without an intermediary, DSM enables direct peer-to-peer transfers between
two mobile devices:

1. Alice and Bob meet in person.

2. Alice pre-commits a transaction to Bob and transfers it via Bluetooth.

3. Bob verifies the transaction cryptographically, ensuring that Alice’s
funds are valid and that the state follows DSM’s deterministic evolu-
tion rules.

4. The transaction is finalized instantly between Alice and Bob, without
requiring an online check-in with a global network.

5. Later, when either party reconnects to the network, their state syn-
chronizes to ensure continuity, but the transaction remains fully valid
regardless.

6. This method not only achieves the directness and immediacy of cash
transactions, but it also ensures cryptographic integrity without re-
quiring internet connectivity. Unlike Bitcoin, which relies on an on-
line ledger, or Lightning, which requires pre-funded channels and rout-
ing, DSM provides an elegant solution that makes digital payments as
seamless and trustless as physical cash but without the possibility of
counterfeit.
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7.2 Privacy and Security: Achieving the Full Vision of Bit-
coin

Privacy is another area where DSM fulfills Bitcoin’s intended role more
effectively than Bitcoin itself. While Bitcoin transactions are pseudonymous,
they are still recorded on a public ledger, making them susceptible to chain
analysis and surveillance. DSM enhances privacy in several key ways:

• No Global Ledger: Since transactions are state-based rather than glob-
ally recorded, there is no universal history of transactions to analyze.

• Direct Peer-to-Peer Exchange: Transactions occur directly between
users, eliminating the need for intermediaries who might collect meta-
data.

• Quantum-Resistant Cryptography: DSM is secured with post-quantum
cryptographic primitives (SPHINCS+, Kyber, and Blake3), ensuring
privacy and security against future computational threats.

7.3 Mathematical Guarantees: A System Without Trust

The final key breakthrough of DSM is that it operates entirely on math-
ematical guarantees. Unlike blockchains, which rely on economic incen-
tives, miner honesty, and validator cooperation, DSM’s security is enforced
through deterministic cryptography:

“There is no trust required, because the system is inherently
incapable of producing invalid states.”

Every state transition in DSM is:

• Pre-committed, ensuring that all execution paths are deterministic and
verifiable.

• Self-contained, meaning that verification does not depend on a third-
party consensus mechanism.

• Immutable, with no possibility for reorgs, rollbacks, or double-spends.

With DSM, we finally achieve what Bitcoin was always meant to be: a
system where transactions are direct, trustless, and instant, all while retain-
ing the privacy and usability of physical cash. Unlike traditional blockchains,
DSM does not require external validation, miners, or staking systems—it is a
pure, self-verifying cryptographic state machine that operates with absolute
security and efficiency.
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8 Introduction: The Broken State of Internet Trust

The modern internet is built upon fragile centralized trust models. Users de-
pend on corporations, financial institutions, and consensus-driven blockchain
networks to manage authentication, verify transactions, and control owner-
ship. These systems introduce critical vulnerabilities that undermine the
original vision of a decentralized, user-empowered web.

• Third-Party Control: Governments and corporations serve as gate-
keepers, dictating access to identity systems and financial infrastruc-
ture.

• Security Risks: Centralized data stores and password-based systems
are frequent targets for breaches, leaks, and fraud.

• Censorship & Exclusion: Institutions can arbitrarily revoke access
to identity, funds, or services.

• Consensus Overhead: Blockchains require energy-intensive consen-
sus mechanisms (e.g., mining, staking) to establish global transaction
validity.

Traditional blockchain systems rely on global consensus to prevent double-
spending and ensure ledger consistency. In contrast, the Decentralized
State Machine (DSM) is a cryptographic framework that eliminates trust
dependencies by enforcing correctness at the individual transaction level.
Each state is cryptographically bound to its predecessor via a straight hash
chain, forming a tamper-proof forward-only sequence.

DSM replaces the internet’s reliance on approval-based security models
with self-validating state evolution. Instead of requesting access and waiting
for a third party to approve, users present the next valid state, which is
instantly verifiable using deterministic cryptography. This marks a founda-
tional shift from consensus-driven systems to locally verifiable, mathemati-
cally enforced security.

DSM offers the following key guarantees:

• No Accounts or Passwords: Identity is cryptographically embed-
ded in deterministic state, eliminating external authentication sys-
tems.

• No Validators or Miners: Transactions reach instant finality with-
out consensus or third-party verification.

• Offline Capability: Transactions can be executed and verified even
without network connectivity, then later synchronized.
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Figure 1: High-Level DSM System Architecture. This diagram
presents the main DSM modules (Identity & Token Management, State Ma-
chine, Cryptographic Module, Communication Layer, and Commitments)
alongside the Decentralized Storage layer. It highlights the core interactions
among these components and how data flows within the DSM ecosystem.

• Quantum Resistance: The system is built from the ground up using
post-quantum cryptographic primitives.

This paper presents the full architecture, verification methods, and math-
ematical security guarantees of DSM. We demonstrate how deterministic
state transitions, bilateral isolation, and cryptographic proofs offer a robust
alternative to centralized trust—both online and offline.

9 DSM: A Cryptographic Framework for Trustless
Internet Infrastructure

To address the fundamental weaknesses of today’s approval-based internet,
the Decentralized State Machine (DSM) introduces a cryptographic model
that enforces security at the individual transaction level. Unlike consensus-
driven blockchains, DSM validates each state transition by binding it di-
rectly to its predecessor via deterministic hash chaining. This eliminates
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the need for miners, validators, or staking, while enabling offline operation
and quantum-resistant security.

Key guarantees of DSM include:

• No Forking or Double-Spending: Each new state is cryptograph-
ically linked to its predecessor, preventing parallel histories or unau-
thorized value creation.

• Self-Sovereign Identity and Ownership: Deterministic, crypto-
graphic identities replace accounts and passwords, granting users full
control over their digital presence.

• Instant Finality: Transactions finalize as soon as their state is gen-
erated—no miner confirmations or staking periods are required.

• Offline and Online Security: Transactions can be verified peer-
to-peer, even offline, then synchronized later without risk of double-
spending.

• Quantum Resistance: Built-in use of post-quantum cryptographic
primitives (e.g., SPHINCS+, Kyber, BLAKE3) safeguards future-proof
security.

9.1 Terminology and Mathematical Notation

To formalize the DSM framework, we use the following notation throughout:

• Sn — State of an identity at position n

• en — Entropy seed for state n

• H(x) — Cryptographic hash function

• opn — Operation associated with transitioning to state n

• ∆n — Token balance change associated with state n

• Bn — Token balance at state n

• Tn — Timestamp of state n

• SMT — Sparse Merkle Tree for efficient inclusion proofs

• C — Commitment to a future state

• σn — Signature over state n

• pkr — Public key of the recipient

• skn — Private key for state n
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• SI — Sparse Index for efficient state lookups

• Ei — Entity (user or device) in the system

• Sj
Ei

— State j in entity Ei’s chain

• RelEi,Ej — Set of transaction state pairs between Ei and Ej

This formalism underpins the core DSM mechanisms of deterministic
state linking, sparse indexing, and offline-verifiable transitions. Subsequent
sections detail the protocol’s verification model, cryptographic structure,
and application scenarios.

10 Verification Through Straight Hash Chain

DSM enforces correctness through a linear, quantum-resistant hash chain.
Each new state references the hash of its predecessor, creating a forward-only
sequence that is simple to verify and difficult to forge.

10.1 Core Verification Principle

At each step, a new state Sn+1 stores a reference to H(Sn):

Sn+1.prev hash = H(Sn).

To validate a sequence of states from Si to Sj , DSM confirms that each
state properly references its immediate predecessor:

Verify(Si, Sj) =

j∧
n=i+1

(
Sn.prev hash = H(Sn−1)

)
.

This linear chain ensures an immutable, time-ordered progression:

Si → Sj ⇐⇒ ∃ valid chain linking Si to Sj .

Advantages.

• Simplicity: The chain is conceptually straightforward compared to
more complex consensus models.

• Quantum Resistance: Security depends on a collision-resistant hash
function rather than purely asymmetric primitives.

• Immutable Ordering: The chain itself encodes the order of states,
removing the need for external timestamp consensus.
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10.2 Sparse Index for Efficient Lookups

A purely linear chain can become large over time. DSM implements a sparse
index to expedite lookups:

SI = {S0, Sk, S2k, . . . , Snk},

where k is a user-defined checkpoint interval. To retrieve a state Sm, the
system locates the nearest prior checkpoint Sik with ik < m:

GetCheckpoint(m) = max{Sik | ik < m},

then traverses forward:

Traverse(Sik,m) = [Sik, Sik+1, . . . , Sm].

Checkpoint Trade-off. Larger k values reduce storage overhead but in-
crease traversal time, whereas smaller k values speed lookups at the cost of
more frequent checkpoints.

10.3 Sparse Merkle Tree for Inclusion Proofs

In addition to the linear chain, DSM employs a Sparse Merkle Tree (SMT)
for efficient inclusion proofs:

SMTroot = H
(
{H(S0), H(S1), . . . , H(Sn)}

)
.

To prove that a specific state Si is part of the canonical chain, DSM
generates a Merkle proof π:

π = GenerateProof(SMT, H(Si)),

which can be verified in logarithmic time with respect to the chain size:

VerifyInclusion
(
SMTroot, H(Si), π

)
→ {true, false}.

Result. This design lets participants confirm a state’s membership with-
out downloading the entire chain, improving scalability and privacy.

10.4 Distributed Hash Chain Architecture with Bilateral State
Isolation

DSM departs from typical blockchains by isolating state evolution into bilat-
eral relationships. Instead of maintaining a single global ledger, each entity
Ei stores its own chain of states:

ChainEi =
{
S0
Ei
, S1

Ei
, . . . , Sn

Ei

}
.
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For any pair of entities (Ei, Ej), their interactions produce a relationship-
specific set of state pairs:

RelEi,Ej =
{
(Sm1

Ei
, Sp1

Ej
), (Sm2

Ei
, Sp2

Ej
), . . .

}
.

Each entity maintains a sparse index and SMT commitments for its own
chain. When two entities reconnect after offline operation, they resume from
their last mutual state pair, with no need for a global synchronization step.

10.4.1 Cross-Chain Verification and Continuity

To verify a counterparty’s state, an entity Ei requests and checks Ej ’s genesis
state S0

Ej
, then verifies subsequent transitions via the hash chain and SMT

proofs. Because each relationship is discrete, Ei only cares about RelEi,Ej

entries, ignoring Ej ’s interactions with others.

10.4.2 Implementation Considerations

Practical deployment requires:

• Local Caching: Each entity caches the last verified state for every
counterparty to enable quick resumption.

• Genesis Authentication: Robust protocols ensure S0
Ej

is legitimate
and not forged.

• Relationship-Keyed Storage: Data structures keyed by (Ei, Ej)
rather than a single global index.

10.5 Security Properties

Hash chain integrity depends on collision resistance:

Pr
[
∃(Si ̸= Sj) : H(Si) = H(Sj)

]
≤ ε,

where ε is negligible. Likewise, each entity’s Sparse Index and SMT en-
force local trust, while bilateral isolation ensures that compromising one
relationship does not affect unrelated ones. The system thus achieves:

• Temporal Ordering: States are cryptographically sequenced with-
out block-based consensus.

• Censorship Resistance: Each entity can evolve its chain privately,
bypassing intermediaries.

• Offline Usability: Parties finalize transactions peer-to-peer and syn-
chronize later.
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10.6 Implementation Details

When deploying DSM, developers should consider:

• Hash Algorithm Selection: DSM benefits from post-quantum hash
functions like BLAKE3 or SHA-3 variants.

• Checkpoint Frequency: Balancing storage costs and lookup speeds
depends on application-level constraints.

• Merkle Proof Caching: Caching frequently accessed proofs can re-
duce verification overhead.

• Relationship Storage: Entities may store bilateral relationship data
in partitioned databases or file-based shards for easy offline sync.

In combination, these choices uphold the core DSM principle: security
and correctness arise from deterministic, quantum-resistant cryptographic
chaining, not from economic consensus mechanisms.

Figure 2: DSM State Evolution & Hashchain.
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11 Eliminating Centralized Control: DSM vs. To-
day’s Internet

The DSM architecture supplants traditional internet infrastructure compo-
nents—including centralized authentication servers, certificate authorities,
and consensus-driven blockchain systems—with a mathematically rigorous
model of decentralized cryptographic self-verification. Table 1 presents a
comparative analysis of DSM relative to both conventional centralized inter-
net architectures and existing blockchain-based approaches across essential
functional dimensions.

Table 1: Comparative Analysis of Internet Trust Models
Architectural
Feature

Traditional Internet Blockchain Architec-
tures

DSM Framework

Authentication
Mechanism

Centralized authorization
servers (OAuth, Google,
Facebook)

Decentralized, but contin-
gent upon validator con-
sensus formation

Fully self-verifying, crypto-
graphically bound identity
with deterministic verifica-
tion

Identity Man-
agement
Paradigm

Account-based, institu-
tionally controlled with
revocation capabilities

Decentralized Identi-
fiers (DIDs) anchored to
blockchain state

Deterministic identity
derived from immutable
hashchain evolution

Transaction
Validation Pro-
cess

Financial institutions, pay-
ment processors with dis-
cretionary authority

Miners, staking validators
requiring economic incen-
tives

Instantaneous, determinis-
tic local validation with
cryptographic finality

Censorship Re-
sistance Prop-
erties

Minimal; central authori-
ties function as access gate-
keepers

Partial; mining pools/val-
idator nodes can influence
transaction inclusion

Comprehensive; direct
peer-to-peer execution
without intermediation

Security Sur-
face Analysis

Centralized APIs,
databases, and authentica-
tion servers

Public ledgers with smart
contract vulnerability sur-
faces

Passwordless architecture,
no global ledger, mini-
mized attack surface

Offline Opera-
tional Capabil-
ity

Nonexistent or severely
constrained

Highly restricted with
eventual consistency re-
quirements

Complete peer-to-peer of-
fline operation with cryp-
tographic guarantees

Transaction Fi-
nality Latency

Extended delays imposed
by third-party approval
processes

Probabilistic finality with
significant delays (minutes
to hours)

Instantaneous, crypto-
graphically bound with
deterministic verification

Quantum Com-
putational Re-
sistance

Absent; conventional
RSA/ECDSA implemen-
tations vulnerable

Requires substantial future
protocol upgrades

Inherent by architectural
design (SPHINCS+, Ky-
ber, BLAKE3)

The DSM framework transcends incremental improvements to existing sys-
tems—it fundamentally replaces entire categories of centralized infrastruc-
ture with a cryptographically secured protocol architected specifically for
self-verification and post-quantum security guarantees.

• Authentication Architecture: The framework eliminates conven-
tional username, password, and token-based mechanisms—implementing
cryptographically verifiable state progression as the sole authentication
modality.
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• Digital Identity Framework: The system operates without central-
ized identity issuers or revocation list mechanisms—relying exclusively
on cryptographic determinism for identity assurance.

• Payment Infrastructure: Financial transactions execute without
banking intermediaries or settlement delays—utilizing atomic, offline-
capable value transfer with mathematical guarantees.

• Computational Execution Model: The framework eschews Turing-
complete smart contracts vulnerable to logical vulnerabilities—implementing
deterministic commitments with formal verification properties.

While conventional blockchain architectures maintain dependencies on
validator networks for transaction approval, the DSM framework requires no
external validation mechanisms—each participating entity cryptographically
proves the validity of its next state transition and proceeds independently.
This architectural transformation from approval-based to proof-based mod-
els fundamentally reconceptualizes digital trust establishment, positioning
DSM as the foundational cryptographic layer for a fully decentralized inter-
net infrastructure.

12 Trustless Genesis State Creation

Each DSM identity originates from a genesis state—a cryptographic root
element from which all subsequent states deterministically evolve. Given
the architectural elimination of centralized issuance authorities in the DSM
framework, genesis state generation must adhere to both trustless generation
principles and cryptographic verifiability requirements.

12.1 Blind, Multiparty Genesis

To mitigate potential manipulation by any individual participant during gen-
esis state creation, the DSM architecture implements a blind, multi-party
creation protocol based on threshold entropy aggregation. Let b1, b2, . . . , bt
denote t independent entropy contributions, and A represent associated
metadata or contextual binding parameters (e.g., application-specific identi-
fiers or cryptographic salt values). The genesis state computation proceeds
according to:

G = H(b1 ∥ b2 ∥ . . . ∥ bt ∥A)

where the following cryptographic properties are established:

• Each entropy contribution bi is generated independently with optional
contributor anonymity.
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• No individual contribution bi can deterministically predict or inten-
tionally bias the resultant genesis state.

• The computational output G exhibits collision resistance properties
and can be independently verified through deterministic recomputa-
tion by any validating entity.

Implementation Scenarios.

• Autonomous Identity Initialization: End users can generate gen-
esis state G through local computation incorporating environmental
entropy sources and contextual metadata.

• Distributed Identity Establishment: Institutional entities or com-
munity governance structures can collaboratively generate genesis states
through threshold contribution mechanisms.

• Transparency-Enhanced Entropy Generation: Individual en-
tropy contributions bi can be publicly disclosed or cryptographically
committed to prior to aggregation, enhancing procedural transparency.

12.2 Genesis Verification Protocol

The architectural integrity of a DSM identity is predicated upon the im-
mutability properties of its genesis state G. All subsequent state transitions
S1, S2, . . . must maintain cryptographic anchoring to this genesis through
rigorous hash chaining. When validating a DSM identity, the verification
protocol executes the following procedures:

1. Confirmation that genesis state G is publicly known, cryptographically
unique, and structurally well-formed according to protocol specifica-
tions.

2. Verification that the state chain fromG to the presented state Sn main-
tains cryptographic validity, specifically that H(Si) = Si+1.prev hash
for all indices i in the range [0, n− 1].

3. Validation that no alternative state branches, bifurcations, or invalid
state transitions exist within the identity’s cryptographic lineage.

12.3 Recoverability and Security Properties

The genesis state functions as a publicly visible and distributable crypto-
graphic element—effectively serving as the unique fingerprint for an identity
chain. To ensure robust security characteristics:
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• Entropy Confidentiality Requirements: Individual entropy com-
ponents bi utilized during genesis creation must maintain cryptographic
secrecy unless explicitly shared through authorized protocols.

• Forward Secrecy Guarantees: The DSM architecture supports
identity recovery through forward-only replacement mechanisms for
compromised states (detailed in Section ??).

• Censorship Resistance Mechanisms: Since genesis state verifica-
tion executes locally through deterministic procedures, no centralized
authority can prevent legitimate chain access.

The genesis state thereby functions simultaneously as a cryptographi-
cally unique trust anchor and as a publicly verifiable reference point. The
integrity of its creation process and subsequent immutability characteris-
tics constitute essential components of the DSM self-validating architectural
model.

13 Anti-Collusion Guarantees for MPC-Based Iden-
tity Generation with External Entropy

Within the DSM framework, user genesis state generation incorporates trust
distribution across multiple participants through blind Multi-Party Compu-
tation (MPC) protocols. This section demonstrates that even under con-
ditions where all MPC participants collude with an adversarial entity con-
trolling the distributed ledger, cryptographic manipulation of the resultant
identity remains infeasible due to the implementation of fixed, public hash-
chain positions in the entropy derivation process.

13.1 Formal Theorem and Security Proof

Theorem 1. Consider an adversary A with complete control over all MPC
nodes and modification capabilities for the public ledger infrastructure, yet
without access to the user’s private seed value S. If the user pre-publishes
a commitment set of hash-chain positions computationally derived from S,
then adversary A cannot force an alternative identity representation ID′ that
diverges from the legitimate identity ID without additionally compromising
seed S.

Proof Construction.

• The user’s computational environment generates private seed S with
cryptographic security guarantees.
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• Public position values P1, P2, . . . are sequentially computed according
to the recurrence relation Pi = H(Pi−1), thereby cryptographically
anchoring the user’s future identity state transitions.

• The user submits an immutable commitment to the computed Pi val-
ues, establishing their permanence within the distributed ledger struc-
ture.

• For adversary A to retroactively modify these positions to facilitate
alternative identity derivation, A would necessarily require the ca-
pability to alter previously published and cryptographically secured
commitments.

• Consequently, the condition ID′ ̸= ID becomes computationally infea-
sible without successful compromise of seed S, which is cryptographi-
cally protected under standard collision-resistance assumptions of the
employed hash function H.

13.2 Security Analysis and Implications

Since the user maintains exclusive control over seed S, and the public po-
sition values Pi are cryptographically derived from S through a one-way
hash chain construction, even coordinated collusion among MPC partici-
pants and adversarial entities cannot successfully modify the resultant iden-
tity root. The distributed ledger effectively functions as a cryptographic
commitment mechanism that immutably anchors each position value, en-
suring that the user’s identity derives exclusively from their private seed.
This security guarantee persists even under conditions of large-scale MPC
participant collusion.

13.3 Architectural Considerations

• The cryptographic integration of hardware-derived randomness (under
user control) with blind MPC protocols (under distributed community
governance) establishes a cryptographically robust foundation for self-
sovereign identity systems.

• The ledger commitment operations for position values Pi require single-
instance publication. Subsequent user operations can reference these
immutable commitments throughout ongoing state evolution processes.

• The security framework maintains quantum resistance properties through
the implementation of hash-based cryptographic primitives in function
H and the computational infeasibility of forging seed value S under
quantum attack models.
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14 Hierarchical Merkle Tree for Device-Specific
Identity Management

The DSM architecture accommodates multi-device authentication scenarios
through the implementation of sub-identities structured within a hierarchical
Merkle tree topology, with all device-specific identities cryptographically
anchored to a unified master genesis state.

14.1 Device-Specific Sub-Genesis State Derivation

Rather than implementing independent genesis states for individual devices,
the DSM framework generates hierarchically structured sub-genesis states
derived from a master root element:

Smaster
0 −→ Sdevice1

0 , Sdevice2
0 , . . .

Each sub-genesis state is computed through cryptographic aggregation of
the master state, device-specific identifiers, and device-associated entropy
values using collision-resistant hash functions.

14.2 Hierarchical Merkle Tree Topology

All device sub-genesis states undergo aggregation into a unified Merkle root,
which functions as the master identity commitment:

MerkleRoot = H
(
{H(Sdevice1

0 ), H(Sdevice2
0 ), . . . }

)
.

This hierarchical structure enables computationally efficient generation and
verification of cryptographic proofs demonstrating a specific device’s asso-
ciation with the master root identity without necessitating disclosure of
information pertaining to other authorized devices.

14.3 Cross-Device Authentication and Chain Validation

Each device within the authentication hierarchy maintains an independent
hash chain:

Chaindevicei = {Sdevicei
0 , Sdevicei

1 , . . . }.

Verifying entities can authenticate any device’s current state through a two-
phase verification procedure:

1. Cryptographic verification that the device’s sub-genesis state Sdevicei
0

is properly incorporated within the master Merkle root structure.

2. Confirmation that the hash chain extending from Sdevicei
0 to the current

state Sdevicei
n maintains cryptographic continuity without breaks or

unauthorized modifications.
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14.4 Granular Recovery Mechanisms

Device compromise or loss scenarios can be cryptographically isolated at
the sub-genesis level within the hierarchical structure. Revocation of an
individual device’s sub-chain does not invalidate other authorized devices:

1. The compromised device’s sub-genesis state is cryptographically des-
ignated as invalid within the master Merkle tree structure.

2. A replacement sub-genesis state is generated and incorporated for the
new device, maintaining overall identity continuity.

This hierarchical Merkle architecture enables scalable identity management
across multiple devices while preserving the DSM framework’s forward-only,
tamper-evident security properties.

15 State Evolution and Key Rotation

The DSM framework implements cryptographic state evolution through a
rigorously forward-only progression coupled with ephemeral key material
generation to mitigate longitudinal cryptographic vulnerabilities.

15.1 Deterministic Entropy Evolution

Let en denote the entropy seed associated with state Sn. The transition to
subsequent state Sn+1 incorporates a cryptographically irreversible entropy
transformation:

en+1 = H(en ∥ opn+1 ∥ (n+ 1)),

where opn+1 represents the operational semantics of the impending state
transition (e.g., token transfer operations, device state commitment attes-
tations). This construction ensures that each transaction’s entropy exhibits
computational unpredictability with respect to all preceding transactions,
even with complete knowledge of historical state transitions.

15.2 Ephemeral Key Derivation Mechanism

The DSM architecture employs post-quantum key encapsulation mecha-
nisms (specifically Kyber) during each state transition:

(sharedn+1, encapsulatedn+1) = KyberEnc(pkr, en+1),

e′n+1 = H(sharedn+1),

resulting in cryptographically distinct ephemeral keys across consecutive
state transitions. This design principle significantly constrains the temporal
vulnerability window during which a potential key compromise could affect
system security properties.
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15.3 Forward-Only State Progression Guarantees

Given that each state transition incorporates an immutable reference to
H(Sn), any attempted modification or bifurcation of previously established
states would necessitate the adversarial discovery of second-preimage colli-
sions in the underlying hash function—a computational task that remains
intractable under standard cryptographic hardness assumptions regarding
collision resistance. Consequently, cryptographic key rotation occurs in-
herently with each state transition, without exposing historical states to
vulnerabilities potentially discovered in the future.

16 Pre-Signature Commitments and Fork Preven-
tion

The DSM architecture implements a mathematical impossibility of state
bifurcation through the mandatory pre-commitment of all state transitions
prior to finalization. This architectural constraint ensures that multiple con-
flicting transitions from an identical predecessor state cannot simultaneously
satisfy validity requirements.

16.1 Cryptographic Mechanism and Theoretical Foundations

Prior to finalizing a state transition from Sn to Sn+1, the initiating entity
generates a cryptographic commitment structure:

Cpre = H
(
H(Sn) ∥ opn+1 ∥ en+1

)
.

The recipient entity performs verification procedures and subsequently co-
signs Cpre, thereby cryptographically binding the state transition param-
eters. Only after this mutual attestation is the successor state Sn+1 con-
structed and cryptographically signed, with an explicit reference to the co-
signed commitment. This protocol establishes the following security prop-
erties:

1. The transition parameters (opn+1, ∆n+1, etc.) become cryptographi-
cally immutable following the co-signature operation.

2. The initiating entity is cryptographically precluded from generating
multiple distinct Sn+1 transitions from the same predecessor state
Sn without successfully forging the recipient’s cryptographic signa-
ture—a computationally infeasible task given quantum-resistant sig-
nature schemes.
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16.2 Offline Bilateral Transaction Security

In disconnected operational environments, participating entities exchange
commitment structures via proximity-based communication channels (e.g.,
Bluetooth, Near Field Communication). Upon successful co-signature of
Cpre, both entities obtain cryptographic assurance that no conflicting version
of state Sn+1 can subsequently emerge without immediate cryptographic
detection. This protocol effectively substitutes real-time network-based val-
idation mechanisms with a direct cryptographic attestation exchange.

16.3 Forward Commitment Architectures

The DSM framework supports the chaining of pre-commitments in a forward-
projecting configuration, thereby specifying partial constraint sets for future
states Sn+2 or subsequent transitions. For instance, state Sn+1 can incor-
porate a hash-bound reference to critical parameters of future state Sn+2.
These forward commitment structures facilitate the orchestration of complex
multi-stage logical workflows (e.g., phased escrow release protocols) without
necessitating Turing-complete execution environments.

16.4 Formal Security Analysis

• Bifurcation Resistance: Any attempt to generate conflicting suc-
cessor states from a common predecessor Sn necessitates either the
successful forgery of recipient co-signatures or the discovery of crypto-
graphic hash collisions—both representing computationally intractable
problems under the security assumptions of the implemented crypto-
graphic primitives.

• Non-Repudiation Guarantees: The cryptographic co-signature of
commitment Cpre constitutes mathematically verifiable evidence that
all participating entities explicitly consented to the transaction param-
eters prior to state finalization.

• Environmental Independence: The commitment protocol func-
tions with identical security properties regardless of whether the trans-
action undergoes synchronization with a global directory or executes
exclusively within an air-gapped computational environment.

The pre-signature commitment mechanism thus provides a rigorous foun-
dation for DSM’s security proposition: the elimination of consensus-based
computational overhead while preserving cryptographic guarantees against
double-spending vulnerabilities and state bifurcation attacks.
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17 Transaction Workflow Models

The DSM protocol implements two principal transaction modalities: uni-
lateral (online) and bilateral (offline). Both operational paradigms enforce
rigorous cryptographic validation without external consensus dependencies,
ensuring all state transitions exhibit provability, state-binding, and tamper-
resistance properties.

17.1 Unilateral (Online) Transaction Architecture

In the unilateral transaction model, a single entity maintains active partici-
pation during submission operations. These transactions achieve finalization
through the decentralized directory infrastructure and undergo independent
verification by counterparties upon subsequent retrieval.

Figure 3: DSM Online Unilateral Transaction Architecture. This
diagram illustrates the protocol flow wherein a sender entity, while main-
taining network connectivity, can unilaterally execute transaction finaliza-
tion by publishing the resultant state to decentralized storage infrastructure.
The recipient entity may be either connected or disconnected during this
operation; cryptographic finality occurs instantaneously from the sender’s
perspective, with the recipient performing subsequent synchronization op-
erations as connectivity permits.

Operational Sequence:
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1. Entity A (Alice) retrieves and cryptographically verifies entity B’s
(Bob’s) published genesis state.

2. Entity A generates successor state Sn+1, representing a cryptographi-
cally secured token transfer operation to entity B.

3. Entity A submits state Sn+1 to the decentralized directory. At this
juncture, the transaction achieves cryptographic finality.

4. Entity B, upon establishing network connectivity, retrieves and cryp-
tographically verifies state Sn+1 from the directory, extending its local
state chain accordingly.

The protocol architecture eliminates requirements for bilateral synchroniza-
tion during transaction execution, though entity B must perform synchro-
nization operations before initiating responsive actions or constructing de-
pendent transactions based on the received state.

17.2 Bilateral (Offline) Transaction Architecture

In the bilateral transaction model, both participating entities maintain con-
current presence and engage in mutual cryptographic attestation of the
shared state transition. These transactions achieve finalization through lo-
cal computational operations without requiring access to the decentralized
directory infrastructure.
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Figure 4: DSM Bilateral State Isolation Architecture. This diagram
illustrates the protocol’s bilateral state isolation model, wherein each re-
lationship between participating entities forms a cryptographically distinct
state progression context. State chains evolve independently within each
relationship, enabling offline operation with cryptographic guarantees and
subsequent network synchronization.

Initial Commitment Phase: Entity A generates a cryptographic pre-
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commitment hash:

Cpre = H(H(Sn) ∥ “transfer 10 tokens to Entity B” ∥ en+1) (1)

Operational Sequence:

1. Entities A and B establish physical proximity in a disconnected net-
work environment, with state chains synchronized to a common refer-
ence point Sm.

2. Entity A generates successor state Sm+1 incorporating the specific
transaction parameters.

3. Entities A and B mutually co-sign a cryptographic pre-commitment
hash, subsequently finalizing state Sm+1 and persisting it in their re-
spective local storage infrastructures.

4. The transaction achieves cryptographic finality, with either entity re-
taining the capability to subsequently publish it to the decentralized
directory upon reestablishing network connectivity.

Bilateral transactions preserve identical security guarantees as their online
counterparts, with the operational dependency on mutual state alignment
at execution time constituting the principal architectural distinction.

17.3 Synchronization Constraint: Pending Online Updates
and Offline Transaction Continuity

A bilateral offline transaction execution requires cryptographic alignment of
both participating entities on their most recent mutual state. If one entity
(e.g., B) has operated in a disconnected environment while the other entity
(e.g., A) has submitted online transactions to the decentralized directory
involving entity B, those transactions remain in a pending state within entity
B’s local chain representation.

Architectural Constraint:

• In scenarios where entity A has submitted online transactions involv-
ing entity B during B’s disconnected operational period, entity B must
perform synchronization with the decentralized directory to incorpo-
rate those state updates before any subsequent offline transaction be-
tween entities A and B can proceed.

• This constraint exhibits counterparty specificity. Entity B main-
tains full capability to conduct offline transactions with alternative
entities whose state histories maintain synchronization.
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• In the absence of pending transactions between entities A and B, offline
transaction operations can continue without synchronization require-
ments.

Architectural Summary: The DSM protocol enforces bilateral isolation
at the cryptographic level. Offline transactions between two entities ne-
cessitate mutual alignment on all historical state transitions. When one
entity has unacknowledged online transactions involving its counterparty,
those transactions must undergo synchronization via the decentralized di-
rectory before offline transaction operations can resume with that specific
counterparty.

17.4 Cryptographic Rationale for Bilateral Signatures in Dis-
connected Environments

The architectural requirement for entity B’s cryptographic signature in of-
fline operational scenarios provides essential security guarantees that would
otherwise remain unavailable without decentralized directory validation mech-
anisms:

1. Proximity-Based Security Augmentation: In disconnected op-
erational scenarios, participating entities typically establish physical
proximity (direct interaction), rendering bilateral signature collection
both practically feasible and security-enhancing. Given that both enti-
ties maintain concurrent presence, the acquisition of additional crypto-
graphic attestation introduces minimal operational friction while sub-
stantially enhancing security guarantees.

2. Double-Spending Attack Mitigation: In the absence of decentral-
ized directory infrastructure for authoritative state validation, which
remains available in online unilateral transactions, offline bilateral
transactions necessitate dual cryptographic attestation to mathemati-
cally preclude double-spending attack vectors. The bilateral signature
requirement establishes a cryptographic witness to the transaction, en-
suring that subsequent network synchronization enables deterministic
resolution of potentially conflicting transactions.

3. Non-Repudiation Guarantee Establishment: The mutual co-
signature creates cryptographic non-repudiation guarantees, prevent-
ing either participating entity from subsequently asserting that the
transaction was unauthorized or subject to unauthorized modifica-
tion—a property of particular importance when transactions execute
outside the network’s observational boundary.

4. State Observation Attestation: Through the cryptographic signa-
ture operation, entity B provides mathematical attestation of having

34



observed entity A’s current state, thereby providing verification that
would otherwise derive from the decentralized directory in online uni-
lateral transaction scenarios.

This architectural differentiation—unilateral operations for online directory-
mediated transactions versus bilateral operations for direct offline exchanges—represents
a meticulously calibrated equilibrium between security properties, usability
considerations, and offline operational capabilities within the DSM protocol
architecture. The system dynamically selects the appropriate transaction
modality based on network connectivity status, defaulting to the more rig-
orous bilateral protocol when operating in disconnected environments.

17.5 Implementation Case Study: Offline Trading in Aug-
mented Reality Environments

The DSM architecture enables secure, offline peer-to-peer exchange op-
erations in environments characterized by limited or nonexistent network
connectivity, such as location-based augmented reality applications. In
this implementation example, two participating entities execute a privacy-
preserving exchange utilizing local communication channels and hash-based
verification mechanisms, culminating in a deterministic state transition.

Figure 5: Sequence Diagram – Offline Trading with Hash Commit-
ment Architecture. This sequence diagram illustrates the peer-to-peer
offline trade protocol between Entity 1 and Entity 2 utilizing pre-committed
hash verification mechanisms, followed by deferred synchronization with the
centralized application server upon restoration of network connectivity.
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Architectural Principle. Participating entities exchange exclusively hash
representations of their intended trade parameters. The complete trade
specification remains private and persisted in local storage. Both compu-
tational devices must independently generate and cryptographically verify
matching hash values before the state transition can undergo finalization.

Protocol Sequence:

1. Exchange Initiation Phase. Entity 1 encapsulates the exchange
offer (e.g., digital asset A for digital asset B) within a deterministic
hash structure:

Ctrade = H
(
ExchangeParameters ∥Sn ∥ (n+ 1)

)
and cryptographically signs this commitment using their private key
material.

2. Disconnected Environment Communication. The hash commit-
ment and associated cryptographic signature undergo transmission to
Entity 2 via a local communication channel.

3. Cryptographic Verification Phase. Entity 2 independently com-
putes the expected hash value from locally available data and confirms
cryptographic equivalence. Upon successful validation, Entity 2 gen-
erates a co-signature.

4. State Transition Finalization. The mutually attested pre-commitment
structure facilitates deterministic evolution of both entities’ state chains
to reflect the agreed-upon exchange parameters.

5. Asynchronous Network Synchronization. Upon reestablishing
network connectivity, each participating entity publishes their updated
state to the application server or decentralized directory to synchronize
global visibility.

Implementation Reference

1 // Entity 1 initiates the exchange

2 function initiateExchange(state , offeredAsset ,

requestedAsset , exchangeId):

3 let exchangeParameters = "E1:" + offeredAsset.id + ",

E2:" + requestedAsset.id + ", " + exchangeId

4 let nextEntropy = calculateNextEntropy(state.entropy ,

exchangeParameters , state.stateNumber + 1)

5 let hashCommitment = hash(hash(state) +

exchangeParameters + nextEntropy)

6 let signature = sign(state.privateKey , hashCommitment

)
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7 return { stateInfo: exportState(state), exchangeHash:

hashCommitment , sig: signature }

8

9 // Entity 2 performs cryptographic verification

10 function verifyExchangeOffer(state , offer):

11 let expectedParameters = "E1:" + offer.offeredAsset.

id + ", E2:" + offer.requestedAsset.id + ", " + offer

.exchangeId

12 let expectedEntropy = calculateNextEntropy(state.

entropy , expectedParameters , state.stateNumber + 1)

13 let expectedHash = hash(hash(state) +

expectedParameters + expectedEntropy)

14 if (offer.exchangeHash !== expectedHash): reject

15 let cosignature = sign(state.privateKey , expectedHash

)

16 return { accepted: true , cosignature: cosignature }

17

18 // Both entities finalize and cryptographically attest

the new states

19 function finalizeExchange(e1State , e2State , exchangeHash ,

exchangeParameters):

20 // State transformation based on exchange logic ...

21 let newE1 = createNewState(e1State , exchangeHash ,

exchangeParameters)

22 let newE2 = createNewState(e2State , exchangeHash ,

exchangeParameters)

23 return {

24 e1Signed: sign(e1State.privateKey , hash(newE1)),

25 e2Signed: sign(e2State.privateKey , hash(newE2)),

26 newE1: newE1 ,

27 newE2: newE2

28 }

Listing 1: Offline Digital Asset Exchange Protocol with Deterministic State
Transition

18 Token Management and Atomic State Transi-
tions

Architectural Overview. Token operations within the DSM framework
evolve atomically in conjunction with identity state transitions. This atom-
icity property is cryptographically enforced, ensuring the inseparability of
balance modifications and state progression. Any unauthorized manipula-
tion of token-related data invalidates the associated state transition, render-
ing illegitimate modifications computationally infeasible.
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Cryptographic Implementation. Each token balance modification is
integrated directly within the state transition structure and governed by a
rigorous mathematical invariant:

Bn+1 = Bn +∆n+1, Bn+1 ≥ 0 (2)

The non-negativity constraint provides protection against overdraft oper-
ations and ensures conservation of token supply. State transitions exhibit
complete determinism and maintain cryptographic binding to their prede-
cessor states through the following structural composition:

Sn+1 =
(
e′n+1, encapsulatedn+1, Tn+1, Bn+1, H(Sn), opn+1

)
(3)

Any attempted modification of token-related state components alters the re-
sultant hash chain linkage and consequently fails verification procedures. In
token transfer operations, balance modifications exhibit symmetrical prop-
erties:

∆sender
n+1 = −α, ∆recipient

n+1 = +α (4)

The aggregate sum of all ∆ values across the system must equal zero, thereby
preserving total token supply and facilitating auditability across indepen-
dent identity chains without requiring global synchronization mechanisms.

38



Figure 6: DSM Token Creation Architecture (Token Factory). This
diagram illustrates how token instantiation occurs within an entity’s identity
chain through deterministic operations and cryptographically encapsulated
entropy. Novel token classes can be defined with customized issuance logic
and policy parameters without dependencies on external validation mecha-
nisms or smart contract infrastructures.

19 Paradigmatic Transition: Eliminating the Ac-
count Model

Contemporary internet infrastructure relies fundamentally on centralized ac-
count models wherein third-party systems maintain mutable identity records.
This architectural paradigm introduces inherent vulnerabilities:

• Financial institutions exercise unilateral control over users’ monetary
accounts with capabilities to restrict access or expropriate assets.

• Technology platforms maintain authoritative control over users’ social
media presence and cloud storage with capabilities to unilaterally
suspend or terminate access privileges.

• Service providers function as gatekeepers for users’ authentication
credentials, establishing centralized access control mechanisms.
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• Even cryptocurrency exchange platforms frequently maintain custodial
control over users’ cryptographic wallets and digital assets.

In each architectural pattern, digital identity representation and ownership
attestation remain contingent upon institutional authorization, subjecting
users to external control hierarchies.

DSM Architectural Transformation. The DSM framework fundamen-
tally eliminates the account paradigm. Identity representation transitions
to a continuously evolving, cryptographically verifiable state under exclusive
user sovereignty. Within this architectural model:

• Traditional usernames, accounts, and password mechanisms become
obsolete—identity representation derives directly from cryptographic
state.

• Financial balances, credential attestations, and computational logic
reside intrinsically within self-contained hash chain structures rather
than external database systems.

• State transitions exhibit forward-only progression with mathematical
enforcement properties; no external authority can execute rollback op-
erations or impose state restrictions.

Cryptographic Proof Supersedes Authorization. DSM replaces con-
ventional approval-based access control mechanisms with cryptographi-
cally verifiable state ownership. Users demonstrate access privileges
through presentation of mathematically valid state transitions rather than
initiating authorization requests. This architectural transformation rede-
fines digital identity from a mutable database entry into an immutable
mathematical object, establishing a novel trust architecture for internet in-
frastructure.

20 Recovery and Invalidation Mechanisms

Architectural Overview. The DSM framework implements a crypto-
graphically rigorous recovery architecture that facilitates secure identity
restoration following compromise events without compromising the proto-
col’s fundamental security guarantees.

Cryptographic Implementation. The recovery mechanism employs an
encrypted mnemonic snapshot architecture:

M(Sn) = E(keyrecovery, Sn) (5)
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where E represents a quantum-resistant symmetric encryption algorithm
and keyrecovery is derived through a key-derivation function from user-controlled
recovery material.

Upon detection of a compromise event, an invalidation marker undergoes
publication:

I(Sk) =
(
k, H(Sk), ek, σI , m

)
(6)

This marker effectively prunes all state transitions subsequent to Sk, estab-
lishing an immutable recovery anchor point. The cryptographic signature
σI , generated using a recovery-specific key, ensures the marker’s integrity.

Recovery initialization procedures construct a new entropy seed:

enew = H
(
ek ∥ “RECOVERY” ∥ timestamp

)
(7)

This construction ensures that the recovery pathway remains cryptographi-
cally distinct from the compromised chain, establishing a clean bifurcation
while preserving the integrity of pre-compromise states.
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Figure 7: DSM Recovery & State Invalidation Architecture. This
diagram illustrates how invalidation markers and recovery seed generation
ensure that compromised chains undergo secure pruning and recovery op-
erations, preserving the cryptographic integrity of pre-compromise states
within the system.

21 Computational Optimization: Efficient Hash
Chain Traversal

Architectural Overview. The DSM framework achieves substantial re-
ductions in verification computational complexity through sophisticated in-
dexing mechanisms and cryptographic space optimization techniques. These
optimizations prove particularly advantageous for resource-constrained com-
putational environments and disconnected operational scenarios.

Mathematical Formalization. The architecture implements a sparse in-
dex structure with strategically positioned checkpoint states:

SI = {S0, Sk, S2k, . . . , Snk} (8)
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where k represents the configurable checkpoint interval parameter. This ar-
chitectural optimization reduces verification computational complexity from
linear to logarithmic:

O(log n) (9)

This logarithmic complexity characteristic contrasts markedly with conven-
tional blockchain systems requiring synchronization of extensive global state
repositories, thereby enabling true offline operational capabilities while min-
imizing computational resource requirements.

22 Quantum-Resistant Hash Chain Verification

Architectural Overview. To establish robust security against selective-
state attacks and targeted forgery attempts, the DSM framework employs
quantum-resistant cryptographic primitives. This architectural decision en-
sures that verification integrity remains consistent across heterogeneous com-
putational devices without requiring hardware-specific secure enclaves.

Cryptographic Implementation. The verification mechanism derives
secure cryptographic material from multiple independent entropy sources:

derivedEntropy = H
(
user secret ∥ external device id ∥ mpc contribution ∥ app id ∥ device salt

)
This derived entropy material subsequently facilitates the generation of
quantum-resistant cryptographic keypairs:(
pkKyber, skKyber, pkSPHINCS, skSPHINCS

)
= DeriveKeypairs

(
derivedEntropy

)
The genesis hash and associated public verification keys are established ac-
cording to:

genesis hash = H
(
pkKyber ∥ pkSPHINCS

)
This architecture creates a deterministic yet computationally unpredictable
verification foundation, necessitating that any potential adversary success-
fully compromise the underlying post-quantum cryptographic primitives to
forge state transitions, thereby exponentially increasing attack complexity.

23 Quantum-Resistant Decentralized Storage Ar-
chitecture

23.1 Architectural Requirements and Constraints

The DSM framework necessitates a decentralized storage infrastructure ex-
hibiting quantum resistance, privacy preservation, and high availability char-
acteristics for maintaining state transitions and asynchronous communica-
tion channels. This distributed persistence layer must satisfy the following
formal requirements:
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• Quantum Computational Resistance: Implementation of post-
quantum cryptographic primitives throughout the protocol stack, en-
suring long-term security against quantum algorithmic attacks.

• Information-Theoretic Privacy: Cryptographic guarantee that state
transitions and stored communications maintain confidentiality prop-
erties even against storage infrastructure operators.

• Byzantine Fault Tolerance: Data replication with deterministic re-
dundancy to mitigate both stochastic node failures and targeted cen-
sorship attempts.

• Computational Efficiency: Minimized latency characteristics and
optimized throughput metrics suitable for resource-constrained devices
and real-time application domains.

23.2 Distributed Storage Architecture

The DSM framework employs a dedicated quantum-resistant decentralized
storage network comprising autonomous computational nodes. Each node
maintains cryptographically secured, redundant replicas of state transitions
and communication payloads through an epidemic distribution protocol, en-
suring efficient propagation while minimizing storage resource requirements.

23.2.1 Cryptographic Data Structures and Storage Protocol

DSM state transitions and user communication payloads conform to the
following cryptographic encapsulation structure:

Sstored = Encapsulate(Supdate∥Smetadata)

where the constituent elements satisfy:

• Supdate represents the cryptographically signed DSM state transition
or communication payload.

• Smetadata encapsulates ancillary data required for reconstruction, ver-
ification, and routing operations.

• The encapsulation operation employs quantum-resistant key encapsu-
lation mechanisms (specifically Kyber) to ensure confidentiality against
quantum computational attacks.
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23.3 Quantum-Resistant Encryption and Cryptographic Blind-
ness

To establish information-theoretic privacy guarantees while maintaining quan-
tum resistance properties, the DSM framework implements blinded quantum-
resistant encryption based on lattice-based cryptographic constructions, in-
cluding McEliece/Niederreiter cryptosystems with Sandwiched or Pedersen
decoding methodologies.

The encryption and cryptographic blinding protocol proceeds according
to the following operational sequence:

1. Entity E generates a quantum-resistant asymmetric key pair (pkE , skE)
utilizing a lattice-based key encapsulation mechanism (Kyber).

2. Entity E performs encryption of the state transition or communication
payload Supdate according to:

C = EncapsulatepkE (Supdate)

3. Storage infrastructure nodes receive exclusively the resultant cipher-
text C, which exhibits statistical indistinguishability from uniformly
random data, thereby establishing cryptographic blindness regarding
the encapsulated content.

23.4 Cryptographically Verifiable Retrieval Operations

The retrieval protocol implements quantum-resistant decapsulation mecha-
nisms. Entity E recovers the plaintext representation utilizing its private
key material skE :

Supdate = DecapsulateskE (C)

Storage infrastructure nodes maintain exclusively ciphertext represen-
tations without access to plaintext data or private key material, ensuring
comprehensive data privacy, cryptographic security, and quantum-resistant
characteristics.

23.5 Epidemic Distribution Protocol for Quantum-Resistant
Storage

In contradistinction to conventional blockchain architectures requiring com-
plete historical state replication, the DSM framework implements an epi-
demic distribution protocol optimized for minimal storage footprint require-
ments. This architectural approach ensures data availability guarantees
while providing significant efficiency advantages.
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23.5.1 Network Topology and Mathematical Propagation Model

Each storage infrastructure node maintains bidirectional connections with
k adjacent nodes within a partially-connected graph topology. Information
propagates through the network infrastructure according to the stochastic
process:

P (propagation time < t) = 1− e−βt

where parameter β represents the effective propagation rate across the
network infrastructure. For a network comprisingN nodes with average con-
nectivity k, information disseminates to all participating nodes in expected
time complexity O(logN/ log k), demonstrating logarithmic scalability char-
acteristics.
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Figure 8: DSM Communication & Networking Architecture. This
diagram illustrates the protocol’s layered communication infrastructure,
demonstrating how quantum-resistant encryption, epidemic distribution
protocols, and bilateral state isolation interact across network conditions
with varying connectivity characteristics.

23.5.2 Storage Optimization Through Strategic Replication

The DSM storage architecture achieves exceptional computational efficiency
by maintaining exclusively critical anchor points within the storage infras-
tructure:

StorageSetnode = {Genesis, Invalidation,Vaults}

The minimal footprint of these architectural elements facilitates effi-
cient replication without requiring complex erasure coding schemes, while
maintaining quantum-resistant characteristics through post-quantum cryp-
tographic primitives.
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23.5.3 Deterministic Storage Assignment Functions

Storage responsibility assignment employs a quantum-resistant hash func-
tion to determine node responsibilities:

ResponsibleNodes(data) = {nodei : H(data ∥ nodei) < τ}

where threshold parameter τ undergoes calibration to ensure each data
element maintains replication across r distinct infrastructure nodes. This
deterministic assignment function enables any participating node to locate
responsible storage nodes without requiring centralized coordination mech-
anisms.

23.5.4 Information-Theoretic Privacy Through Data Dispersion

The minimal storage architecture provides inherent privacy guarantees that
can be formally expressed as:

I(transaction graph; storage node) < ε

where I(·; ·) represents the mutual information functional and ε consti-
tutes a cryptographically negligible quantity. This property ensures stor-
age infrastructure nodes cannot reconstruct transaction graph structures or
identify ownership relationships between state transitions.

23.5.5 Formal Analysis of Optimal Replication Parameters

For a network exhibiting node failure probability p under adverse operational
conditions, the probability of data persistence with replication factor r is
given by:

Psurvival = 1− pr

For failure probability p = 0.1 (representing severe network disruption
scenarios) and target reliability Psurvival = 0.99999, formal analysis yields
optimal replication factor r = ⌈logp(1− Psurvival)⌉ = 5.

23.5.6 Geographic Resilience Through Cross-Region Replication

To mitigate regional network partition vulnerabilities, the architecture im-
plements a Neighbor Selection Protocol (NSP) ensuring each data element
maintains replication across g distinct geographic regions:

∀data, |{region(node) : node ∈ ResponsibleNodes(data)}| ≥ g

With geographic diversity parameter g = 3 regional replicas per data
element, the network infrastructure can withstand simultaneous regional
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outages affecting up to 30% of global infrastructure while maintaining data
availability with probability exceeding 0.9997.

23.5.7 Storage Resource Scaling Characteristics

The aggregate storage resource requirement exhibits scaling properties ac-
cording to:

Stotal = O(U · r)

where U represents the unique critical data within the system and r de-
notes the replication factor. This characteristic provides near-linear scaling
with respect to user population, significantly outperforming conventional
architectures requiring global replication of complete transaction histories.

23.5.8 Adaptive Replication Based on Network Metrics

The replication factor undergoes dynamic adjustment based on observed
network health metrics according to:

radaptive(t) = rbase · f(network reliability(t))

where f represents a scaling function that increases replication param-
eters during periods of network instability and relaxes constraints during
normal operational conditions, optimizing the storage-reliability trade-off
dynamically.

23.6 Asynchronous Communication Integration

DSM nodes maintain encrypted user communication channels directly within
the decentralized storage infrastructure. Communication payload data con-
forms to identical encryption, blinding, and redundancy protocols as gen-
eral DSM state transitions. This integrated storage architecture enables
low-latency message retrieval operations and seamless decentralized identity
management functionality.

23.7 Formal Security Guarantees

Quantum-Resistance and Information-Theoretic Privacy: The ci-
phertext indistinguishability properties of quantum-resistant encryption mech-
anisms (Kyber, McEliece/Niederreiter-like systems) provide mathematical
guarantees that storage infrastructure nodes cannot infer or decrypt stored
content. These security properties derive from quantum-resistant hardness
assumptions including Learning with Errors (LWE) and Syndrome Decoding
(SD) problems.
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Data Integrity and Byzantine Fault Tolerance: Replication through
the epidemic distribution protocol ensures probabilistic recoverability ap-
proaching certainty. The probability of irrecoverable data loss with repli-
cation factor r across g geographical regions provides multiple redundancy
layers, exhibiting resilience against both stochastic node failures and coor-
dinated regional infrastructure disruptions.

23.8 Computational Performance Optimizations

The DSM architecture employs efficient quantum-resistant cryptographic
primitives and replication schemes optimized for resource-constrained com-
putational environments:

• Quantum-resistant key encapsulation mechanisms selected specifically
for minimized computational overhead characteristics (Kyber).

• Blake3 cryptographic hashing algorithms chosen for high-throughput
verification operations.

• Epidemic distribution protocol optimized for Internet of Things (IoT)
and mobile computational devices with constrained connectivity pro-
files.

23.9 Economic Incentive Architecture and Node Governance

The DSM storage network implements an incentive-aligned mechanism for
node participation through cryptoeconomic staking of native ROOT tokens.
Additionally, a cryptographically enforced device identity architecture en-
sures consistent performance characteristics and actively disincentivizes cen-
tralization or potentially malicious node behavior.

23.9.1 Cryptoeconomic Staking Mechanism

Storage infrastructure node operators must deposit a predefined minimum
quantity of the native DSM token, ROOT, to obtain operational privileges
within the decentralized storage network. Formally, each node Ni stakes
tokens according to:

Stake(Ni) ≥ Tmin

where Tmin represents the network-defined minimum staking threshold.
This architectural design provides the following benefits:

• Enhanced economic incentives for maintaining reliable node opera-
tional characteristics.
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• Alignment of operator economic interests with network security and
reliability properties.

• Mitigation of Sybil attack vectors through economic costs associated
with multiple node instantiations.

23.9.2 Cryptographic Device Identity Enforcement

Each DSM storage node implements a cryptographically secure, quantum-
resistant device identification mechanism. Nodes receive a unique cryp-
tographic Device ID (IDdevice) that maintains explicit binding to device
hardware characteristics and cryptographic state. These Device IDs employ
quantum-resistant signature schemes (specifically SPHINCS+) to ensure se-
curity against identity spoofing or cloning attack vectors.

Formally, the Device ID is defined as:

IDdevice = H(device salt∥app id∥skdevice)

where:

• device salt represents node-specific entropy material.

• app id denotes the application-specific identifier.

• skdevice constitutes a private cryptographic secret generated during
device initialization.

• H represents the BLAKE3 quantum-resistant hash function.

Nodes failing to maintain synchronization within predefined performance
parameters undergo detection through periodic cryptographic heartbeat ver-
ification operations. The network architecture enforces a strict synchroniza-
tion tolerance limit ∆sync:

|Tnode − Tnetwork| ≤ ∆sync

If a node exhibits repeated violations of this synchronization constraint,
its Device ID undergoes cryptographic exclusion from the network, perma-
nently disqualifying it from participating as a storage infrastructure node.
The exclusion condition is formally expressed as:

BanCondition(IDdevice) = RepeatedViolation(IDdevice,∆sync)

Excluded device identifiers undergo immutable recording within the de-
centralized, quantum-resistant state storage to ensure enforcement perma-
nence.
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24 Deterministic Smart Commitments

Deterministic smart commitments constitute a foundational innovation within
the DSM framework, enabling complex conditional transaction logic without
requiring Turing-complete execution environments. This architectural ap-
proach systematically eliminates entire vulnerability classes associated with
unbounded computation models while preserving computational expressive-
ness.

24.1 Cryptographic Structure and Verification Properties

DSM deterministic smart commitments implement quantum-resistant veri-
fication through straight hash chain architectures:

Ccommit = H(Sn ∥ P ), (10)

This cryptographic construction facilitates deterministic verification of
transaction intent and conditional requirements without necessitating ex-
ternal computation engines or state machine execution environments. The
architecture simultaneously provides information-theoretic privacy through
selective disclosure mechanisms and quantum resistance through reliance on
post-quantum cryptographic primitives.

24.2 Commitment Taxonomy and Formal Constructions

The DSM framework supports multiple commitment categories, all imple-
menting the hash chain verification architecture for integrity assurance:

24.2.1 Temporal-Constraint Transfers

A transfer operation with temporal constraints enforcing execution exclu-
sively subsequent to timestamp threshold T :

Ctime = H(Sn ∥ recipient ∥ amount ∥ “after” ∥ T ) (11)

24.2.2 Condition-Predicated Transfers

A transfer operation contingent upon external condition satisfaction with
verification provided by oracle O:

Ccond = H(Sn ∥ recipient ∥ amount ∥ “if” ∥ condition ∥ O) (12)

24.2.3 Recurring Payment Structures

Subscription-based payment architecture with periodic disbursement oper-
ations:

Crecur = H(Sn ∥ recipient ∥ amount ∥ “every” ∥ period ∥ end date) (13)

52



24.3 Quantum-Resistant Commitment Transport

For multi-party commitment architectures, the commitment hash undergoes
secure transmission utilizing post-quantum key encapsulation mechanisms:

(ct, ss) = Kyber.Encapsulate(pkrecipient) (14)

EncryptedHash = Encrypt(ss, Ccommit) (15)

The recipient entity subsequently extracts and cryptographically verifies
the commitment:

ss = Kyber.Decapsulate(ct, skrecipient) (16)

Ccommit = Decrypt(ss, EncryptedHash) (17)

V erify(Ccommit) = (H(Sn ∥ P ) == Ccommit) (18)

24.4 Implementation Case Study: Offline Merchant Pay-
ment Architecture

Consider a commercial entity offering financial incentives for consumers who
establish commitments to execute purchases within a bounded temporal
window of 7 days:

1. The consumer entity generates a cryptographic commitment hash:
Cpurchase = H(Sn ∥ “purchase from MerchantX within 7 days” ∥ discount rate)

2. The merchant entity independently computes the identical hash value
to verify the commitment without requiring disclosure of all input
parameters, establishing selective information privacy

3. The merchant entity cryptographically co-signs the commitment uti-
lizing the hash value, creating non-repudiation guarantees

4. When the consumer entity executes a purchase operation within the
specified 7-day temporal window, they finalize by constructing state
transition Sn+1 with embedded cryptographic proof of purchase times-
tamp

5. The merchant entity can verify this operation in disconnected environ-
ments by recomputing the hash value, ensuring discount application
complies with the established commitment parameters

6. Upon commitment expiration without utilization, no further protocol
actions are required from either participating entity

This architectural mechanism enables implementation of sophisticated
business logic without requiring continuous network connectivity or global
state machine availability, while simultaneously providing quantum resis-
tance properties and information-theoretic privacy through selective param-
eter disclosure.
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25 Deterministic Pre-Commit Forking for Dynamic
Execution

In contrast to traditional smart contract paradigms that execute compu-
tational logic within Turing-complete virtual machines, the DSM frame-
work implements deterministic pre-commit forking—an architectural ap-
proach wherein multiple potential execution paths undergo cryptographic
pre-definition and multi-party attestation, while restricting actualization to
precisely one path through atomic finalization. This architectural paradigm
facilitates computational expressiveness while maintaining rigorous security
invariants without necessitating on-chain execution environments.

While conventional smart contract systems execute state transitions dy-
namically within virtual machine contexts, DSM establishes a formal math-
ematical framework for the a priori specification of all valid state tran-
sition trajectories, with finalization occurring atomically upon selection
and cryptographic commitment to a singular path from the pre-defined set.

Figure 9: Dynamic Forking via Deterministic Pre-Commitments.
This diagram illustrates the multi-path execution model in DSM, demon-
strating how multiple potential state transitions (A-D) can be cryptographi-
cally pre-defined at state Sn, while only one path becomes actualized through
mutual attestation and commitment. The non-selected paths remain crypto-
graphically invalid, preventing bifurcation while maintaining computational
flexibility.
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25.1 Computational Implications of Non-Turing-Completeness

The DSM architecture achieves equivalent or superior execution ex-
pressiveness compared to conventional smart contract platforms while
maintaining a non-Turing-complete computational model. This founda-
tional architectural decision confers multiple significant advantages in both
security and operational domains:

1. Immunity to Unbounded Computation Vulnerabilities: Tradi-
tional smart contract environments exhibit susceptibility to exploita-
tion through infinite loop constructions, recursive call patterns, and
computational resource exhaustion vectors. The DSM non-Turing-
complete model categorically eliminates these vulnerability classes by
ensuring that all execution paths are predetermined with provably
bounded computational complexity, rendering denial-of-service attacks
based on execution starvation mathematically impossible.

2. Formal Deterministic Execution Guarantees: Each valid state
transformation undergoes cryptographic pre-commitment prior to ex-
ecution, thereby establishing deterministic outcomes with mathemat-
ical certainty and eliminating the execution ambiguity inherent in dy-
namic virtual machine environments where outcome determinism de-
pends on implementation-specific interpreter characteristics.

3. Asymptotic Computational Efficiency: The elimination of on-
chain execution engines reduces computational overhead byO(n) where
n represents the number of execution steps, thereby enabling efficient
transaction processing in resource-constrained environments with lim-
ited computational capacity. This efficiency characteristic facilitates
offline transaction validation without network connectivity require-
ments.

4. Cryptographic Finality Without Consensus Mechanisms: Each
state transition maintains cryptographic binding to both predecessor
and successor states, providing immediate, non-probabilistic finality
without requiring global consensus formation or multi-block confirma-
tion intervals typical of Nakamoto consensus systems.

5. Attack Surface Minimization Through Constrained Execu-
tion Logic: By formally bounding the universe of possible execution
trajectories, the DSM architecture achieves substantial attack surface
reduction and minimizes the probability of implementation vulnerabil-
ities with a security proof reduction to the underlying cryptographic
primitives rather than virtual machine implementation correctness.

6. Inherent Quantum-Resistant Security Properties: Through im-
plementation of hash chain verification methodologies, the architecture
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maintains security guarantees against quantum computational attacks
without compromising verification efficiency or introducing additional
cryptographic overhead.

25.2 Formal Process Model with Cryptographic Commit-
ments

The formal process model for DSM pre-commit forking comprises the fol-
lowing operational sequence:

1. Parameterized Pre-Commitment Specification: Unlike conven-
tional smart contract architectures that necessitate comprehensive in-
put specification prior to execution, the DSM framework facilitates pa-
rameterized pre-commitments wherein specific variables (e.g., transac-
tion amounts, recipient identifiers, temporal constraints) remain for-
mally unbound until finalization, enabling dynamic instantiation of
predetermined execution templates.

2. Cryptographic Integrity Verification via Hash Chains: Each
potential execution trajectory generates a unique cryptographic com-
mitment structure according to:

Ci = H(Sn ∥ Πi ∥ Θi) (19)

where Sn represents the current state, Πi denotes the execution path
specification, and Θi encapsulates the associated parameter set for
path i.

3. Hierarchical Execution Path Selection: Pre-commitment struc-
tures support hierarchical chaining to facilitate multi-phase decision
processes with branching logic. At each decision vertex within the ex-
ecution graph, participating entities select and cryptographically final-
ize exactly one valid trajectory from the available pre-commitment set,
thereby simultaneously invalidating all alternative pathways through
mutual attestation.

4. Zero-Knowledge Verification Protocol: Participating entities can
verify execution trajectory integrity by independently generating ver-
ification hash values without requiring access to the complete param-
eter set, thereby enabling selective information disclosure while main-
taining cryptographic verifiability—a property that facilitates privacy-
preserving computation without compromising integrity guarantees.

5. Comparative Analysis with Smart Contract Models: Tradi-
tional smart contract architectures necessitate real-time on-chain exe-
cution with considerable computational overhead, execution fees, and
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confirmation latency. In contrast, the DSM architecture pre-defines
execution logic and finalizes state transitions exclusively at the com-
mitment point, with verification occurring through efficient, quantum-
resistant cryptographic primitives rather than computationally inten-
sive virtual machine interpretation.

25.3 Transcending Smart Contract Limitations

The DSM architecture enables all functionality available in conventional
smart contract platforms while simultaneously eliminating execution over-
head, enhancing scalability properties, facilitating offline-compatible work-
flow execution, and providing intrinsic quantum resistance guarantees:

1. Complete Logical Expressiveness Independent of Execution
Engines: The architecture’s dynamic parameter resolution capability
enables conditional execution based on variable inputs (e.g., payment
values, entity identifiers, external state) without requiring central-
ized computational infrastructure or virtual machine interpretation,
thereby decoupling logic specification from execution mechanics.

2. Execution Flexibility Exceeding Smart Contract Capabilities:
Deterministic execution trajectories undergo establishment a priori
with formal path instantiation occurring at commitment time, en-
abling adaptable workflow patterns without necessitating continuous
blockchain interaction or gas-fee optimization strategies typical of con-
ventional smart contract platforms.

3. Verification with Logarithmic Complexity Characteristics: Op-
erating on a hash chain verification paradigm with O(log n) com-
plexity, the DSM architecture maintains computational efficiency re-
gardless of transaction volume expansion, facilitating linear scalability
without sacrificing security properties or verification guarantees.

4. Information-Theoretic Privacy Through Selective Disclosure:
The hash-based verification architecture enables counterparties to val-
idate computational integrity without necessitating disclosure of all in-
put parameters, facilitating zero-knowledge verification protocols that
maintain privacy while ensuring computational correctness.

5. Post-Quantum Security Through Cryptographic Primitives:
The verification mechanism’s architecture provides resistance against
attacks leveraging quantum computational capabilities through re-
liance on collision-resistant hash functions rather than factorization-
dependent asymmetric primitives.
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6. Implementation Exemplar: Parameterized Payment with Op-
tion Selection: Consider a scenario wherein entity A pre-commits
multiple valid payment options with varying monetary values:

• C1 = H(Sn ∥ ”Payment to entity B with value $10”)

• C2 = H(Sn ∥ ”Payment to entity B with value $20”)

• C3 = H(Sn ∥ ”Payment to entity B with value $30”)

Entity B subsequently selects precisely one option at execution time,
which finalizes the transaction deterministically without requiring vir-
tual machine execution or consensus formation. Verification occurs
through efficient comparison of the corresponding hash value, with
computational complexity of O(1) independent of transaction value or
complexity.

This computational paradigm enables the DSM framework to function-
ally supersede approximately 95% of conventional smart contract
use cases while substantially reducing computational inefficiencies, mini-
mizing transaction costs, facilitating novel decentralized deterministic execu-
tion models without virtual machine dependencies, and providing quantum-
resistant security characteristics through cryptographic construction rather
than economic incentives.

26 DSM Smart Commitments vs. Ethereum Smart
Contracts: Architectural Comparison

Ethereum’s smart contract paradigm enforces computational logic execution
exclusively on-chain, necessitating that all execution steps undergo pro-
cessing through public validator networks and verification by the entire con-
sensus participant set. While this architectural approach ensures global state
consistency, it introduces significant computational overhead, perfor-
mance constraints, and security vulnerabilities—including reentrancy
attack vectors, unbounded execution vulnerabilities, and gas optimization
complexities that introduce second-order security implications.

In contradistinction, DSM smart commitments implement a hybrid ex-
ecution architecture characterized by:

1. Decentralized application responsibility for dynamic logic ex-
ecution in off-chain contexts (including business rule application,
user interface interaction management, and local validation proce-
dures).

2. DSM protocol engagement exclusively for cryptographically
critical state transitions (encompassing token transfer operations,
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binding commitment attestations, and identity modification proce-
dures).

3. This architectural bifurcation yields enhanced flexibility char-
acteristics, reduced operational expenditures, and superior
scalability properties in comparison to Ethereum’s monolithic on-
chain execution model.

26.1 Architectural Flexibility Differential Analysis

Ethereum smart contracts require complete computational logic specifica-
tion for on-chain execution, introducing several significant architectural
constraints:

• Each computational operation incurs gas expenditure proportional to
algorithmic complexity, creating economic barriers to complex logic
implementation.

• Transaction execution requires network propagation, validator inclu-
sion, and consensus confirmation, introducing latency characteristics
incompatible with real-time application requirements.

• Smart contract logic exhibits immutability after deployment, prevent-
ing dynamic adaptation without deploying replacement contract in-
stances—a process incurring substantial deployment overhead and mi-
gration complexity.

DSM applications maintain equivalent cryptographic security guar-
antees while facilitating substantially enhanced architectural flexibility. Rather
than enforcing all computation within on-chain contexts, the DSM architec-
ture enables applications to:

• Execute computational logic within local environments or
through distributed off-chain processes, reducing operational ex-
penditures by orders of magnitude through elimination of per-operation
validation costs.

• Engage the DSM protocol exclusively for cryptographically
critical state transitions, restricting consensus requirements to es-
sential tokenized operations and cryptographic commitment attesta-
tions while maintaining full security guarantees.

• Implement dynamic execution pathways with runtime adap-
tation capabilities, as the DSM architecture does not require ex-
haustive pre-definition of all potential computational outcomes within
immutable contract structures—enabling architectural flexibility im-
possible within conventional smart contract frameworks.
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26.2 DSM Smart Commitment Operational Protocol

DSM smart commitments implement a quantum-resistant hash chain verifi-
cation protocol wherein exogenous data from decentralized applications un-
dergoes cryptographic binding to state transitions through collision-resistant
hash functions. This methodological approach preserves data confidential-
ity while ensuring computational integrity verification. The implementation
adheres to a formally specified multi-stage protocol:

Phase 1: Deterministic Hash Generation within Application Con-
text The decentralized application constructs a cryptographically secure
verification hash by applying collision-resistant functions to the concatena-
tion of state representation, external data elements, and conditional param-
eter specifications:

Ccommit = H(Sn ∥ Dext ∥ P) (20)

where:

• Sn represents the current system state prior to the proposed transition
operation

• Dext constitutes the exogenous input parameter set defining transition
characteristics

• P encapsulates auxiliary pre-commitment constraints bounding exe-
cution pathways

Phase 2: Independent Verification and Cryptographic Attestation
Counterparty entities independently compute identical hash values utilizing
their locally maintained parameter copies:

C ′
commit = H(Sn ∥ Dext ∥ P) (21)

The equality relation Ccommit = C ′
commit establishes, with mathemat-

ical certainty predicated on collision resistance properties of function H,
that identical input parameters were utilized without necessitating explicit
parameter disclosure—enabling privacy-preserving verification. The recipi-
ent entity subsequently generates a cryptographic signature over the hash
commitment:

σC = Signsk(Ccommit) (22)

where:

• Signsk denotes the signature generation function utilizing the recipi-
ent’s private key material

• σC represents the resultant cryptographic attestation validating com-
mitment authenticity
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For multi-party verification scenarios, this protocol extends to arbitrary
participant cardinality, with each participating entity independently gener-
ating and verifying the commitment hash before appending their crypto-
graphic attestation to the collective signature structure.

Phase 3: State Transition Verification within DSM Protocol Upon
submission to the DSM protocol layer, the commitment undergoes validation
against predefined deterministic transition logic specifications:

Sn+1 = H(Sn ∥ Ccommit ∥ σC) (23)

This cryptographic construction guarantees several critical security prop-
erties:

• The state transition maintains a cryptographically verifiable lin-
eage to its predecessor state through hash chaining

• Exogenous parameters preserve confidentiality while maintaining
verifiability through cryptographic hash function properties

• The verification mechanism provides intrinsic quantum resistance
through reliance on collision-resistant hash functions rather than inte-
ger factorization problems

• The resultant state exhibits deterministic finality, facilitating
verification without consensus mechanism dependencies

Multi-Party Verification with Secure Hash Transport In protocols
requiring multiple verification entities, secure hash transport implementa-
tion utilizes quantum-resistant key encapsulation mechanisms, specifically
Kyber KEM:

(ct, ss) = Kyber.Encapsulate(pkrecipient) (24)

Ehash = Encrypt(ss, Ccommit) (25)

The recipient entity subsequently recovers the hash value:

ss = Kyber.Decapsulate(ct, skrecipient) (26)

Ccommit = Decrypt(ss, Ehash) (27)

This methodological approach ensures cryptographically secure hash trans-
mission with formal resistance guarantees against quantum computational
attacks through reduction to lattice-based hardness assumptions.
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26.3 Architectural Implementation Case Study: Decentral-
ized Auction System

To illustrate the architectural divergence between DSM and traditional smart
contract implementation paradigms, consider a decentralized auction system
architecture:

Ethereum Implementation: Monolithic On-Chain Execution Model

• The auction logic requires deployment as a monolithic contract on the
Ethereum Virtual Machine

• Each bid submission constitutes an independent transaction requiring
gas expenditure proportional to execution complexity

• The contract state maintains comprehensive records of all submitted
bids within on-chain storage

• Winner determination and finalization processes incur additional com-
putational costs and may experience indeterminate latency due to net-
work congestion and validator prioritization algorithms

DSM Implementation: Hybrid Execution with Quantum-Resistant
Verification

• The decentralized application manages auction mechanics through off-
chain computational processes

• Participants submit bids through local operations with application-
layer validation

• Upon auction conclusion, exclusively the finalized winning bid un-
dergoes commitment to the DSM protocol

• The winning bid’s integrity verification occurs through the hash chain
verification mechanism with constant-time complexity

• Auction participants can independently verify winner legitimacy with-
out requiring access to the comprehensive bid history through selective
disclosure verification

• This architectural approach eliminates superfluous gas expenditures,
enhances privacy characteristics through information-theoretic guar-
antees, and provides intrinsic quantum resistance through cryptographic
construction
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27 Deterministic Limbo Vault (DLV)

27.1 Theoretical Foundation and Cryptographic Construc-
tion

Within the Decentralized State Machine (DSM) framework, we introduce
a novel cryptographic primitive termed the Deterministic Limbo Vault
(DLV)—a specialized construction designed for autonomous management of
digital assets through deterministic, self-executing cryptographic conditions
without necessitating external attestation mechanisms or zero-knowledge
proof systems. The DLV construction implements a cryptographically en-
forced temporal gap between commitment and execution phases, wherein
asset control parameters are pre-committed to decentralized storage in a sus-
pended (”limbo”) state until predetermined conditions achieve fulfillment.
Unlike conventional cryptographic addresses where key derivation occurs im-
mediately upon address generation, the DLV architecture explicitly defers
private key derivation until condition fulfillment, facilitating deterministic,
trustless asset management across asynchronous, potentially disconnected
environments.
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Figure 10: Deterministic Limbo Vault (DLV) Creation and Un-
locking Protocol. This diagram illustrates the complete lifecycle of a
DLV, demonstrating: (1) initial vault commitment generation with condi-
tion specification, (2) commitment publication to decentralized storage, (3)
asset encumbrance within the vault’s cryptographic boundary, (4) condi-
tion fulfillment verification through state attestation, and (5) deterministic
derivation of unlocking keys that release encumbered assets only upon con-
dition satisfaction.

27.2 Formal Mathematical Definition

A Deterministic Limbo Vault V is formally defined as the ordered tuple:

V = (L,C,H)

where the constituent elements satisfy the following characteristics:

• L : Ω→ {0, 1} represents the deterministically encoded lock condition
function that maps a set of potential states Ω to a boolean evaluation
space,

• C = {c1, c2, . . . , cn} constitutes the set of pre-agreed cryptographic
conditions specifying the constraint parameters for vault resolution,

• H : {0, 1}∗ → {0, 1}λ denotes a collision-resistant cryptographic hash
function (specifically BLAKE3) with security parameter λ that ensures
computational determinism and quantum resistance.
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The vault’s public representation manifests through an initial commit-
ment structure:

Cinitial = H(L∥C)

which undergoes registration within decentralized storage infrastructure.
This architectural decision facilitates asynchronous vault discovery and mon-
itoring across heterogeneous devices, even during periods of partial partici-
pant disconnection.

27.3 Cryptographic Key Derivation Mechanics

The DLV’s distinguishing cryptographic characteristic lies in its deferred
key derivation protocol. The private unlocking key skV for accessing vault-
encumbered assets undergoes computation exclusively upon condition ful-
fillment verification:

skV = H(L∥C∥σ)

where:

• σ represents the cryptographic proof-of-completion, consisting of a ref-
erence to a previously committed and verified DSM state that provides
attestation to the satisfaction of conditions C.

This architectural design ensures that while the vault commitment Cinitial =
H(L∥C) is established and distributed prior to the standard system Genesis
finalization, the vault’s unlocking key material remains cryptographically
uncomputable until all specified conditions achieve verifiable satisfaction.

27.4 Vault Lifecycle Protocol and Decentralized Storage In-
tegration

The complete lifecycle of a Deterministic Limbo Vault within decentralized
storage infrastructure proceeds according to the following protocol sequence:

1. Vault Genesis and Registration: The system computes the vault
commitment structure Cinitial = H(L∥C). This commitment, in con-
junction with a deterministically derived VaultID (generated as a func-
tion of Cinitial), undergoes registration within decentralized storage in-
frastructure utilizing a specialized VaultPost schema. This registration
places the vault in a suspended state awaiting condition fulfillment.

2. Asset Encumbrance Protocol: Digital assets undergo transfer to
a cryptographic address associated with the vault structure. At this
protocol stage, the unlocking key skV remains explicitly uncomputed,
ensuring that encumbered assets cannot be accessed prematurely.
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3. Condition Fulfillment Verification: Upon satisfaction of condi-
tions C, the system generates a cryptographic proof-of-completion σ
through reference to a verifiable DSM state that attests to condition
fulfillment.

4. Vault Resolution and Asset Release: The system deterministi-
cally computes the unlocking key as skV = H(L∥C∥σ), thereby finaliz-
ing the vault protocol and facilitating authorized release of previously
encumbered assets.

The integration with decentralized storage infrastructure ensures contin-
uous vault availability for monitoring operations and facilitates offline data
caching capabilities, thereby guaranteeing robust cross-device synchroniza-
tion even under constrained connectivity conditions.

27.5 VaultPost Schema Specification

The DLV protocol implements a standardized decentralized storage schema
for vault registration:

{

"vault_id": "H(L || C)",

"lock_description": "Loan repayment confirmed OR timeout",

"creator_id": "vault_creator_ID", // replaced device ID with a generic vault creator ID

"commitment_hash": "Blake3(payload_commitment)",

"timestamp_created": 1745623490,

"status": "unresolved",

"metadata": {

"purpose": "loan settlement",

"timeout": 1745723490

}

}

27.6 Resolution Protocol Implementation Reference

The following pseudocode demonstrates the formal resolution verification
procedure:

fn resolve_vault(local_state: &State, incoming_state: &State, vault_hash: &Hash) -> bool {

let expected = hash(&(local_state.hash() + incoming_state.commitment + incoming_state.signature));

if expected != *vault_hash {

return false;

}

if !check_lock_condition(local_state, incoming_state) {

return false;
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}

if incoming_state.prev_hash != local_state.hash() {

return false;

}

true // Vault resolved successfully

}

27.7 Implementation Case Study: Cross-Device Vault Life-
cycle

The following implementation example demonstrates the complete vault life-
cycle across multiple devices:

1. Device A (Vault Creator Entity):

let vault = dsm.vault()

.lock("repayment OR timeout")

.commit(loan_commitment_hash)

.build();

let post = VaultPost::new(vault, "loan settlement", timeout);

decentralized_storage::post(post);

2. Device B (Counterparty Entity):

let repayment_state = dsm.state()

.from(previous_state)

.op("repay_loan")

.build();

dsm.broadcast(repayment_state);

3. Device A (Asynchronous Synchronization):

let watched_vaults = decentralized_storage::query("vault_id = ...");

for vault in watched_vaults {

if let Some(matching_state) = dsm.find_resolved_state(vault) {

if resolve_vault(&local_state, &matching_state, &vault.vault_id) {

println!("Vault resolved!");

}

}

}
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27.8 Formal Security Properties and Deterministic Guaran-
tees

The Deterministic Limbo Vault architecture provides the following formal
security guarantee:

• Computational Infeasibility of Premature Key Derivation:
The unlocking key skV remains computationally inaccessible until the
associated condition is fulfilled. Its derivation requires possession of
the cryptographic proof-of-completion σ. Assuming the hardness of
the underlying hash function H, the probability of deriving skV with-
out knowledge of σ is negligible. Formally, this is expressed as:

Pr[Derive(skV ) | ¬Has(σ)] ≤ ε(λ)

where ε(λ) is a negligible function in the security parameter λ.

• Decentralized Resolution Protocol: Vault structures undergo per-
sistent storage within decentralized infrastructure, facilitating passive
monitoring capabilities and enabling robust cross-device synchroniza-
tion without centralized coordination requirements.

• Post-Quantum Security Guarantees: The implementation ofH =
BLAKE3 as the cryptographic hash function provides robust security
against quantum computational attacks, with security reductions to
the quantum resistance properties of the underlying hash function.

27.9 Architectural Significance

The Deterministic Limbo Vault mechanism functions as an offline-capable
pre-commitment architecture that encumbers value within a trustless, de-
centralized medium. The vault exists in a suspended state until its specified
conditions achieve fulfillment, at which point it undergoes automatic reso-
lution without requiring external attestation mechanisms or zero-knowledge
proof systems. Through the cryptographic separation of commitment and
execution phases, wherein value assignment occurs immediately but key
derivation remains deferred until condition satisfaction, the DLV architec-
ture establishes a fundamentally new paradigm for secure, trustless asset
management within the DSM framework.

28 DSM Economic and Verification Models: Be-
yond Gas Fees

Traditional blockchain architectures, exemplified by Ethereum, implement
gas fee mechanisms that serve dual functions: (1) economic incentivization
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for validator participation and (2) computational abuse prevention through
resource pricing. This architectural approach introduces significant limi-
tations, including user experience degradation, economic unpredictability,
and accessibility barriers particularly for resource-constrained participants.
The DSM framework implements a fundamentally different architectural
paradigm that explicitly decouples economic sustainability mechanisms from
transaction-level security enforcement operations.

28.1 Subscription-Based Economic Architecture

The DSM framework establishes a subscription-based economic model that
diverges substantially from conventional gas fee systems through implemen-
tation of several architectural innovations:

• Storage-Proportional Resource Allocation: Network participants
contribute periodic subscription fees calibrated to their actual storage
utilization metrics rather than transaction complexity or computa-
tional resource consumption. This mechanism creates a direct corre-
lation between resource consumption and economic contribution.

• One-Time Token Creation Fee Structure: The instantiation of
new token types necessitates a one-time fee denominated in the native
DSM token, establishing an economic disincentive against issuance
spam attacks while avoiding ongoing penalization of legitimate trans-
action activities.

• Transaction-Level Fee Elimination: Standard DSM protocol in-
teractions incur zero incremental per-transaction costs, mitigating the
economic unpredictability and accessibility constraints inherent in gas-
based economic models.

Economic resources aggregated through this architectural model undergo
allocation according to a multi-tiered distribution formula:

Rtotal = Rstorage +Rtreasury +Recosystem (28)

where the constituent elements satisfy:

• Rstorage allocates compensation to decentralized storage infrastructure
operators maintaining Genesis states and validity markers.

• Rtreasury funds protocol development initiatives under decentralized
governance control mechanisms.

• Recosystem supports educational initiatives, developer onboarding, and
ecosystem expansion strategies.
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Additionally, a parametrically calibrated percentage of token creator rev-
enue may contribute to protocol sustainability reserve funds:

Rtreasury =
n∑

i=1

α · Ei (29)

where α represents the proportional revenue contribution parameter and
Ei denotes the earnings generated by token creator entity i.

28.2 Cryptographic VerificationWithout Economic Constraints

In contradistinction to Ethereum’s architectural reliance on economic disin-
centives (gas fees) for preventing computational abuse, the DSM framework
implements a cryptographic verification architecture that ensures security
guarantees through mathematical properties rather than economic penalty
structures:

Hash Chain Verification Formalism The DSM verification system lever-
ages the hash chain architecture to establish a tamper-evident historical
record:

V (H,Sn, Sn+1, σC) 7→ {true, false} (30)

where:

• V : (H,Sn, Sn+1, σC) 7→ {true, false} represents the verification func-
tion mapping from the verification tuple to a boolean result.

• H : {0, 1}∗ 7→ {0, 1}λ denotes the deterministic cryptographic hash
function with security parameter λ.

• Sn, Sn+1 ∈ S constitute the predecessor and successor states within
the state space S.

• σC ∈ {0, 1}∗ encapsulates the cryptographic signatures generated by
authorized participants.

This verification function evaluates to true if and only if the state transi-
tion satisfies all cryptographic validity conditions and contains appropriate
authorization attestations from all required participants.

Information-Theoretic Privacy Through Selective Disclosure A
significant architectural advantage of this verification approach is the ability
for decentralized applications to implement selective information disclosure
while maintaining cryptographic verification integrity:

Ccommit = H(Sn ∥ f(Dext) ∥ P ) (31)
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where f : Dext 7→ D′
ext represents a transformation function that ex-

poses exclusively essential information from external data while preserving
confidentiality of private components. Critically, the verification process
maintains computational integrity guarantees without requiring complete
data transparency, establishing information-theoretic privacy properties.

28.3 Formal Security Guarantees vs. Trust Assumptions

The DSM protocol architecture effectuates a fundamental transformation of
conventional trust assumptions into cryptographically verifiable guarantees
through implementation of rigorous mathematical constraints and invariant
properties:

• Data Availability Guarantee: The verification predicates imple-
ment rejection semantics for transitions lacking requisite verification
elements, ensuring that state transitions cannot achieve acceptance
status without satisfying completeness criteria for all necessary ver-
ification components. Formally: ∀s ∈ S,∀t ∈ T , Accept(s, t) ⇐⇒
Complete(V erification(s, t)), where S represents the state space, T
denotes the transition space, and Complete(v) evaluates to true iff all
verification elements are present in v.

• Computational Integrity Guarantee: The hash chain verification
methodology provides a cryptographically sound mechanism through
which computational results undergo independent verification by all
authorized entities without necessitating revelation of input param-
eters, establishing confidentiality preservation while ensuring compu-
tational correctness. The probability of generating a valid state transi-
tion with incorrect computation results is negligible: Pr[V (H,Sn, S

′
n+1, σC) =

true|S′
n+1 ̸= Compute(Sn, op)] ≤ ε(λ).

• Authorization Chain Guarantee: The signature mechanism es-
tablishes an unforgeable cryptographic lineage of authorized transi-
tions, with each state transformation requiring cryptographic attesta-
tion derived from keys that themselves depend on previous state en-
tropy, creating a recursive security dependency. The system satisfies
∀Si, Si+1, V alid(Si → Si+1) ⇒ ∃σi : V erify(pki, H(Si+1), σi) = true,
where pki derives from state Si.

• Front-Running Prevention: The pre-commitment signature pro-
tocol implements a cryptographic defense against transaction front-
running attacks by establishing a mathematical requirement for autho-
rized signatures prior to state transition processing, effectively prevent-
ing unauthorized transaction interception or reordering. The protocol
ensures ∀ti, tj , (time(ti) < time(tj)) ∧ (ti, tj ∈ Transactions(Sn)) ⇒
Order(ti) < Order(tj) in the resultant state transitions.
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• Quantum Resistance Guarantee: The hash chain verification ar-
chitecture provides robust security against quantum computational
attacks through reliance on post-quantum cryptographic primitives
and multi-layered defense mechanisms, with security reductions to the
quantum resistance properties of the underlying cryptographic func-
tions.

These guarantees derive their efficacy not from inter-participant trust
assumptions but from the mathematical properties of the underlying cryp-
tographic primitives, establishing security through provable characteristics
rather than behavioral expectations or economic incentives.

28.4 Mathematical Proof vs. Social Consensus Mechanisms

Traditional blockchain architectures necessitate global consensus mecha-
nisms wherein all network participants must achieve agreement regarding
both the execution process and resultant state for each transaction. DSM
implements a paradigm shift through the following transformation:

Sn+1 =

{
H(Sn ∥ Ccommit ∥ σC) if V (H,Sn, Sn+1, σC) = true

Sn otherwise
(32)

This architectural approach achieves several critical objectives:

• Supplants social consensus formation (collective agreement on execu-
tion) with mathematical proof mechanisms (cryptographic verification
of results), fundamentally transforming the trust model from behavior-
based to mathematics-based verification.

• Facilitates parallel processing of independent state transitions without
requiring global coordination, enabling horizontal scalability charac-
teristics with linear performance improvements as computational re-
sources increase.

• Preserves essential security guarantees while significantly improving
computational efficiency metrics and transaction throughput capabil-
ities through elimination of redundant validation operations.

• Provides intrinsic quantum resistance through implementation of post-
quantum secure hash chain verification methodologies, ensuring long-
term security against emerging computational threats.
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28.5 Implementation Considerations for Decentralized Ap-
plications

For developers implementing decentralized applications on the DSM frame-
work, this hybrid computational model necessitates a paradigmatic recon-
sideration of application architecture:

• Deterministic Computation Design: Application logic must ex-
hibit deterministic properties to ensure consistent hash generation
across all participating entities, necessitating careful management of
non-deterministic sources such as temporal functions and stochastic
number generators. Developers should implement reproducible com-
putation patterns that guarantee ∀ei, ej ∈ E,Compute(Sn, op, ei) =
Compute(Sn, op, ej) where E represents the set of execution environ-
ments.

• Granular Information Disclosure Protocols: Applications should
implement selective disclosure patterns that minimize information ex-
posure while ensuring sufficient verification capability through appro-
priate parameter selection. This approach should satisfy I(private data; disclosed data) <
ϵ while maintaining V (H,Sn, Sn+1, σC) = true, where I(·; ·) represents
mutual information.

• Cryptographic Authorization Flow Design: Implementations
must establish proper authorization chains for all security-critical state
transitions, with careful consideration of key management and signa-
ture generation processes. The authorization flow must ensure ∀Si →
Si+1, ∃Auth Chain : Complete(Auth Chain) ∧ V alid(Auth Chain).

• Multi-Participant Interaction Protocols: The reference imple-
mentation provides integrated support for extending verification to
arbitrary participant cardinality, requiring appropriate architectural
considerations for multi-party interactions. Applications should im-
plement threshold-based authorization models where k − of − n par-
ticipants must provide valid attestations.

• Relationship-Centric Architecture: Applications must be archi-
tected to operate efficiently within the bilateral state isolation model,
implementing appropriate management strategies for relationship state
across intermittent interactions. The architecture should support ∀(Ei, Ej), ∃State(Ei, Ej)
that persists across connectivity interruptions.

Applications constructed according to these architectural principles can
achieve previously incompatible combinations of desirable properties:

• Simultaneous high-performance operation and robust security guaran-
tees with O(log n) verification complexity
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• Information-theoretic privacy with cryptographic verifiability through
selective disclosure mechanisms

• Dynamic computational logic with deterministic outcome characteris-
tics through pre-commitment paths

• Post-quantum security with efficient verification mechanisms via hash-
based primitives

• Perfect state continuity with zero synchronization overhead through
bilateral isolation

28.6 Economic Sustainability Dynamics

The subscription-based economic model combined with one-time token cre-
ation fees establishes a sustainable economic foundation for the DSM ecosys-
tem through implementation of several key mechanisms:

• Revenue Predictability Enhancement: Storage subscription mech-
anisms generate stable, predictable revenue streams independent of
transaction volume fluctuations, enabling reliable ecosystem support
without reliance on transaction volatility. The economic model satis-
fies V ar(Rt+1|Rt) < δ where δ represents a small variance bound.

• Economic Incentive Alignment: Storage infrastructure providers
receive compensation proportional to actual storage utilization rather
than artificial computational metrics, creating a direct correlation
between resource provision and economic reward. This establishes
Reward(provideri) ∝ Storage(provideri) rather than Ethereum’sReward(validatori) ∝
Computation(validatori).

• Accessibility Barrier Reduction: Applications can offer users gas-
free interaction models, substantially reducing barriers to adoption,
particularly for micro-transaction scenarios and resource-constrained
user contexts. The effective transaction cost approaches zero as limn→∞

Subscription Cost
n transactions =

0.

• Developer Economics Optimization: Application developers can
optimize primarily for user experience and functionality rather than
gas efficiency, enabling more intuitive and feature-rich implementa-
tions without economic constraints on computational complexity.

By decoupling storage costs from transaction fees, the DSM framework
establishes an economic model wherein participants contribute resources
proportionate to their actual utilization patterns rather than subsidizing
global computational inefficiencies, resulting in more efficient resource allo-
cation and lower barriers to participation.
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29 Bilateral Control Attack Vector Analysis

While the DSM protocol architecture provides robust protection against
traditional double-spending attacks through its cryptographic verification
mechanisms, scenarios in which an adversary maintains simultaneous con-
trol over both counterparties in a transaction introduce a distinct threat
vector warranting rigorous security analysis. This section examines the cryp-
tographic implications of bilateral control within the DSM framework and
evaluates the protocol’s resistance characteristics against such sophisticated
attack vectors.

29.1 Trust Boundary Transformation Under Bilateral Con-
trol

Within adversarial contexts characterized by bilateral control, wherein a
singular entity (or coordinated adversarial coalition) simultaneously main-
tains cryptographic dominance over both transacting parties, the funda-
mental cryptographic guarantees that ordinarily prevent double-spending
vulnerabilities undergo a significant structural transformation. The secu-
rity assurance model necessarily transitions from a framework predicated
on mutual cryptographic verification to one contingent upon the crypto-
graphic integrity of the broader network’s acceptance criteria and invariant
enforcement mechanisms.

Analysis of scenarios where both transacting entities operate under uni-
fied adversarial control reveals several fundamental security assumption al-
terations:

1. Nullification of Counterparty Verification Mechanisms: The
co-signature requirement—originally designed as a primary security
invariant—becomes cryptographically ineffective when an adversary
possesses both private signing keys, thereby nullifying the mutual ver-
ification property that constitutes the foundation of the forward-linked
commitment architecture.

2. Coordinated State Manipulation Capabilities: The adversary
acquires the capability to generate, in synchronized fashion, multi-
ple cryptographically valid yet semantically divergent state transitions
targeting different recipient entities, each transition accompanied by
ostensibly legitimate cryptographic attestations (including digital sig-
natures, state hash references, and forward commitment structures).

3. Preservation of Entropy Determinism Constraints: Despite
comprehensive control over both participating entities, the adversary
remains mathematically constrained by the architecture’s determin-
istic entropy evolution requirements, as all subsequent state entropy
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values must derive from their predecessors according to the protocol’s
formal mathematical specifications.

29.2 Formal Attack Implementation Methodology

The practical implementation of a double-spending attack under bilateral
control conditions would manifest as a meticulously orchestrated sequence
of cryptographically valid yet semantically incompatible state transitions,
formalized as follows:

1. The adversary, maintaining simultaneous cryptographic control over
entities EA and EB, establishes initial states S

EA
0 and SEB

0 through the
standard genesis protocol, adhering to the threshold-based multiparty
computation requirements to ensure cryptographic validity.

2. Subsequently, the adversary constructs a verifiably legitimate transac-
tion history between the controlled entities, thereby establishing rela-
tionship states defined by the ordered tuple sequence:

RelEA,EB
= {(SEA

m1
, SEB

p1 ), (SEA
m2

, SEB
p2 ), . . . , (SEA

mk
, SEB

pk
)}

3. At the (k + 1)-th state transition juncture, the adversary implements
a strategic bifurcation in the state progression by generating two cryp-
tographically valid yet mutually exclusive state transitions:

• Transaction T1: Transfers cryptographic assets from entity EA

to external entity EC .

• Transaction T2: Transfers identical cryptographic assets from
entity EA to alternative external entity ED.

4. For each divergent transaction trajectory, the adversary generates a
comprehensive set of cryptographically valid attestations:

• Hash chain integrity attestations: The value H(SEA
mk

) is correctly
incorporated within both transaction paths, maintaining hash
chain continuity.

• Entropy derivation sequences: The entropy evolution follows the
prescribed formula:

emk+1
= H(emk

∥ opmk+1
∥ (mk + 1))

ensuring cryptographic validity through deterministic derivation.

• Cryptographic signature generation: Signatures σEA
and σEB

are
legitimately produced using the adversary-controlled private key
material associated with both entities.
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• Forward commitment attestations: Commitment structures Cfuture,1

and Cfuture,2 are properly constructed and cryptographically signed
by both controlled entities.

5. Finally, the adversary attempts to publish both divergent state tran-
sitions—either through synchronized transmission to disjoint network
segments or through implementation of a sequential publication strat-
egy—to maximize the probability that both branches achieve accep-
tance within different network partitions.

29.3 Architectural Defense Mechanisms

Notwithstanding this theoretical vulnerability vector, the DSM protocol ar-
chitecture incorporates several structural defense mechanisms that substan-
tially mitigate the efficacy of bilateral control attacks:

1. Threshold-Based Genesis Authentication: The multi-party com-
putation requirement with threshold security (t-of-n) for genesis state
creation establishes a cryptographic boundary that necessitates cor-
ruption of multiple independent participating entities to generate mul-
tiple sovereign identities, thereby exponentially increasing the com-
plexity of attack preparation according to the binomial probability
distribution

(
n
t

)
.

2. Directory Service Synchronization Verification: During propa-
gation of transaction states to directory services, these architectural
components implement rigorous temporal consistency verification mech-
anisms capable of identifying conflicting state publications originating
from identical entities within overlapping temporal windows through
application of the consistency predicate Pconsistency(Si, Sj , t∆).

3. Bilateral State Isolation Architecture: The compartmentalized
nature of state evolution creates relationship-specific contexts that in-
herently constrain propagation of fraudulent states. External entities
EC and ED must independently verify the transaction state of EA,
potentially uncovering inconsistencies through cross-relational verifi-
cation according to the relational consistency formula:

∀(Ei, Ej , Ek),Consistent(RelEi,Ej ,RelEi,Ek
,RelEj ,Ek

)

4. Transitive Trust Network Properties: As the network of bilateral
relationships expands in cardinality and topological complexity, the
adversary’s ability to maintain consistent state representations across
multiple verification domains faces exponentially increasing difficulty
due to the requirement for consistency across intersecting relationship
graphs, with complexity scaling according to O(|V |2) where |V | rep-
resents the number of verification domains.
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5. Cryptographic Invalidation Mechanisms: The first observed valid
state transition may trigger invalidation markers that cryptographi-
cally nullify subsequently observed conflicting transitions, establishing
a ”first finalized, first accepted” consistency model that prevents his-
tory rewriting through the temporal ordering function T : S × S →
{0, 1}.

29.4 Formal Security Boundary Analysis

The security boundary for this attack vector can be formally expressed
through a composite probability function that establishes an upper bound
on attack success:

P (successful double spend) ≤ min{P (controlling genesis threshold),

P (network partition maintenance),

P (verification domain isolation)}

where the constituent probability components satisfy:

• P (controlling genesis threshold) represents the probability of estab-
lishing adversarial control over a sufficient threshold of genesis creation
participants, bounded by

(
n
t

)
· (pcorruption)t · (1 − pcorruption)

n−t where
pcorruption denotes the individual participant corruption probability.

• P (network partition maintenance) denotes the probability of sustain-
ing a partitioned network state wherein conflicting transactions remain
unreconciled, bounded by e−λ·t where λ represents the network’s par-
tition healing rate and t denotes the required partition duration.

• P (verification domain isolation) indicates the probability that recip-
ient entities fail to implement cross-verification of the sender’s state
with other network participants, which diminishes exponentially with
increasing network connectivity density.

29.5 Advanced Architectural Countermeasures

To further reinforce the protocol against bilateral control attacks, several
advanced architectural enhancements could be implemented:

1. Transitive Verification Protocol: Implement a comprehensive cross-
relationship verification mechanism wherein entities periodically pub-
lish cryptographically secured state attestations that can be referenced
by prospective transaction counterparties to establish consistent state
history across multiple relationship domains according to:

∀Ei,Publish(Ei, t,H(SEi
latest))
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2. Temporal Consistency Attestation Mechanism: Require entities
to provide cryptographic proofs of temporal consistency that mathe-
matically demonstrate the legitimate sequential evolution of their state
history through chronological hash chaining:

ProveConsistency(Si, Sj) = {H(Si), H(Si+1), . . . ,H(Sj)}

3. Enhanced Directory Service Architecture: Augment directory
services with Merkle-based state consistency verification capabilities
that efficiently identify conflicting state publications through logarithmic-
complexity proof verification:

VerifyConsistency(Si, Sj , π) ∈ {0, 1} with complexity O(log n)

4. Cryptographic Reputation System: Introduce verifiable reputa-
tion metrics that accumulate with transaction history, substantially
increasing the economic cost of establishing controlled entity relation-
ships with sufficient reputation to execute high-value transactions ac-
cording to:

Reputation(Ei, t) =
t∑

j=0

αt−j · Trans(Ei, j)

where α ∈ (0, 1) represents a decay factor and Trans(Ei, j) denotes
the normalized transaction volume at time j.

5. Receipt Propagation Protocol: Implement a gossip-based protocol
wherein transaction recipients broadcast cryptographically signed re-
ceipt attestations that can be utilized to detect conflicting transaction
histories through network-wide consistency verification:

Receipt(Ei → Ej , t, v) = SignskEj
(H(Ei)∥t∥v)

29.6 Comprehensive Vulnerability Impact Assessment

While bilateral control represents a theoretically significant vulnerability
vector within the security model, the practical implementation of such so-
phisticated attacks encounters substantial impediments due to the protocol’s
distributed architecture and cryptographic constraint enforcement. The at-
tack’s success probability diminishes exponentially as the network of bilat-
eral relationships increases in density and connectivity according to Psuccess ∼
O(e−α·|E|) where |E| represents the number of network edges, imposing pro-
gressively insurmountable challenges to maintaining consistent fraudulent
state representations across multiple independent verification domains.
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Furthermore, the combination of genesis threshold requirements and di-
rectory service verification establishes considerable barriers to obtaining and
maintaining multiple independent identities capable of executing sophisti-
cated attacks. These architectural defense mechanisms, in conjunction with
the network’s detection capabilities for conflicting state publications, estab-
lish a robust security posture against bilateral control attacks despite the
theoretical vulnerability in the underlying trust model.

29.7 Mathematical Invariants and Non-Turing Complete Se-
curity Guarantees

The non-Turing completeness of the DSM architecture constitutes a funda-
mental constraint that significantly influences the system’s security proper-
ties, particularly with respect to the bilateral control attack vector pre-
viously analyzed. This architectural decision introduces a deterministic
boundary on the computational expressiveness of the system, which war-
rants rigorous examination through formal security models and computa-
tional complexity theory.

29.7.1 Formal Invariant Enforcement Framework

The DSM protocol architecture implements a rigorous mathematical veri-
fication framework wherein state transitions must satisfy a conjunction of
cryptographic and arithmetic invariants to be considered valid within the
computational model. These invariants establish a verification predicate V
that must evaluate to true for any state transition to be procedurally exe-
cutable:

V(Sn, Sn+1) =

k∧
i=1

Ii(Sn, Sn+1)

where each Ii : S × S → {0, 1} represents a specific invariant constraint
function mapping from the state pair to a boolean value.

Even under bilateral control conditions, the adversary remains constrained
by these mathematical invariants, which include:

1. Hash Chain Continuity Invariant: I1(Sn, Sn+1) = ⊮[Sn+1.prev hash =
H(Sn)]

2. Deterministic Entropy Evolution Invariant: I2(Sn, Sn+1) = ⊮[en+1 =
H(en ∥ opn+1 ∥ (n+ 1))]

3. Balance Conservation Invariant: I3(Sn, Sn+1) = ⊮[Bn+1 = Bn +
∆n+1 ∧Bn+1 ≥ 0]
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4. Monotonic State Progression Invariant: I4(Sn, Sn+1) = ⊮[Sn+1.stateNumber =
Sn.stateNumber + 1]

5. Signature Validity Invariant: I5(Sn, Sn+1) = ⊮[Verify(pk, σ,H(Sn+1 ∥
H(Sn)))]

6. Pre-commitment Consistency Invariant: I6(Sn, Sn+1) = ⊮[Cfuture(Sn) ⊆
Parameters(Sn+1)]

Crucially, these invariants undergo enforcement through computational
verification rather than through trust assumptions. Any state transition that
violates these mathematical constraints is categorically rejected by the pro-
tocol implementation, regardless of the cryptographic validity of signatures
or the control paradigm of the transacting entities, establishing a mathe-
matical rather than trust-based security foundation.

29.7.2 Computational Boundedness as a Security Enhancement
Parameter

The non-Turing complete nature of DSM’s state transition semantics im-
poses strict limitations on the expressiveness of state transition logic, yield-
ing several security-enhancing properties that constrain the attack surface
even under bilateral control scenarios:

1. Finite Enumerability of State Transition Space: Unlike Turing-
complete systems where the state transition space is unbounded and
potentially undecidable, DSM’s non-Turing complete transition logic
ensures that all possible state transitions for a given input state are
finitely enumerable and amenable to static analysis. This property en-
ables formal verification techniques to exhaustively evaluate potential
attack pathways, including those arising from bilateral control circum-
stances, according to:

∀Sn ∈ S,∃ finite T ⊂ S such that ∀Sn+1 : (Sn → Sn+1) =⇒ Sn+1 ∈ T

This enables directory services and network participants to implement
comprehensive detection mechanisms for all possible state conflict pat-
terns.

2. Transition Determinism Guarantee: The computational model
enforces rigorous deterministic execution semantics that preclude con-
ditional branch execution based on exogenous inputs, thereby eliminat-
ing entire classes of attack vectors dependent on environmental state
or oracle inputs that could enable dynamic adaptation of fraudulent
transactions. Formally:
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∀Sn, op,∀Ei, Ej ∈ E ,Execute(Sn, op, Ei) = Execute(Sn, op, Ej)

where E represents the set of execution environments.

3. Execution Termination Assurance: All state transition compu-
tations in the DSM architecture are guaranteed to terminate within
polynomial time bounds, eliminating halting problem concerns and re-
source exhaustion attacks that plague Turing-complete systems. This
property establishes absolute upper bounds on computational resources
required for transaction validation, enhancing resistance to denial-of-
service attacks leveraging bilateral control:

∀Sn, op, ∃p ∈ P,∃c ∈ R+ : Time(Execute(Sn, op)) ≤ c · |Sn|p

where P represents the set of polynomial functions and |Sn| denotes
the size of state Sn.

29.7.3 Multi-Layer Execution Environment Constraints

The implementation architecture of DSM enforces these mathematical in-
variants at multiple abstraction layers, establishing a comprehensive valida-
tion framework that transcends trust boundaries:

1. Protocol Implementation Layer: The reference implementation
rigorously validates all invariants before accepting state transitions,
precluding the execution of mathematically inconsistent operations:

1 function executeStateTransition(currentState ,

newState , signatures) {

2 if (! verifyMathematicalInvariants(currentState ,

newState)) {

3 throw INVALID_TRANSITION_ERROR;

4 }

5 // Proceed with execution only if all invariants

are satisfied

6 }

2. Software Development Kit Validation Layer: The development
framework encapsulates the mathematical constraints within its API
surface, preventing the construction of invalid transitions through compile-
time and runtime enforcement:

1 function constructStateTransition(currentState ,

operation , parameters) {

2 const tentativeState = computeNextState(

currentState , operation , parameters);
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3 if (! validateInvariants(currentState ,

tentativeState)) {

4 throw INVARIANT_VIOLATION_ERROR;

5 }

6 return tentativeState;

7 }

3. Persistence Interface Layer: The storage persistence mechanisms
implement validation filters that categorically reject mathematically
inconsistent state transitions, providing defense-in-depth:

1 function persistStateTransition(stateChain , newState

) {

2 if (! validateChainConsistency(stateChain ,

newState)) {

3 throw CHAIN_CONSISTENCY_ERROR;

4 }

5 // Proceed with persistence only if chain

consistency is maintained

6 }

This multi-layer enforcement architecture ensures that mathematical in-
variants remain satisfied throughout the transaction lifecycle, establishing a
robust defense against adversarial manipulation attempts.

29.7.4 Formal Security Implications of Non-Turing Completeness

In the context of bilateral control attacks, the non-Turing complete con-
straint introduces several formal security properties that fundamentally trans-
form the threat landscape:

1. Static Analyzability of State Transitions: The system’s behavior
under bilateral control can be exhaustively analyzed through formal
methods techniques such as model checking, which provides complete
knowledge of all possible state transitions, including potentially mali-
cious ones:

∀Sn ∈ S,∃ finite T ⊂ S such that ∀Sn+1 ∈ S : (Sn → Sn+1) =⇒ Sn+1 ∈ T

This property ensures that directory services and network participants
can implement complete detection mechanisms for all possible conflict
patterns.

2. Transition Space Complexity Reduction: The non-Turing com-
plete architecture reduces the transition space complexity from po-
tentially infinite to polynomial in the input size, providing tractable
verification boundaries:
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|T (Sn)| ≤ poly(|Sn|)

This complexity reduction enables efficient validation algorithms even
against sophisticated bilateral control attack patterns.

3. Cross-Transactional Pattern Recognition: The constrained tran-
sition semantics facilitate the identification of suspicious transaction
patterns across seemingly unrelated bilateral relationships through
automata-theoretic analysis techniques:

∃ finite automaton M such that L(M) = {ω ∈ Σ∗ | ω is a valid transaction sequence}

where L(M) represents the language accepted by automaton M and Σ
denotes the alphabet of transaction operations. This enables the con-
struction of efficient transaction validity verification algorithms that
can detect anomalous patterns even when executed across multiple
controlled entities.

29.7.5 Formal Manipulation Resistance Properties

Under bilateral control scenarios, the adversary gains access to crypto-
graphic signing capabilities for both counterparties but remains constrained
by the mathematical invariants enforced by the computational model. This
constraint can be formalized through several resistance properties:

1. Double-Spending Impossibility Theorem: For any state Sn with
balance Bn, it is mathematically impossible to construct two valid suc-
cessor states SA

n+1 and SB
n+1 such that both transfer the entire balance

Bn to different recipients:

∀Sn ∈ S,∄(SA
n+1, S

B
n+1) ∈ S2 : V(Sn, S

A
n+1) ∧ V(Sn, S

B
n+1)∧

(SA
n+1.recipient ̸= SB

n+1.recipient) ∧ (SA
n+1.∆ = SB

n+1.∆ = Bn)

This theorem establishes that even with bilateral control, the adver-
sary cannot mathematically construct two valid transfers of the same
token balance, as this would violate the conservation constraints in the
verification predicate.

2. Transition Consistency Guarantee: The mathematical structure
of the verification predicate ensures that any valid state transition
remains constrained by the operational semantics of the DSM model:
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∀(Sn, Sn+1) ∈ S2,V(Sn, Sn+1) =⇒ Sn+1 ∈ T (Sn)

where T (Sn) ⊂ S represents the set of all theoretically valid successor
states according to the operational semantics of the DSM model.

3. Forward Commitment Binding Property: The verification pred-
icate enforces consistency with previous forward commitments, estab-
lishing a chain of binding constraints:

∀(Sn−1, Sn, Sn+1) ∈ S3,V(Sn−1, Sn) ∧ V(Sn, Sn+1) =⇒
Parameters(Sn) ⊆ Cfuture(Sn−1) ∧ Parameters(Sn+1) ⊆ Cfuture(Sn)

This property ensures that even with bilateral control, the adversary
cannot construct valid transitions that deviate from previously com-
mitted parameters.

29.7.6 Implementation-Level Attack Immunity

At the implementation level, several specific architectural decisions reinforce
the mathematical invariants and provide resistance against manipulation
attempts:

1. Immutable State Construction Pattern: State objects undergo
construction through immutable transformation functions that enforce
all invariants as part of the construction process:

1 const nextState = createImmutableState ({

2 previousStateHash: hash(currentState),

3 stateNumber: currentState.stateNumber + 1,

4 entropy: calculateNextEntropy(currentState.

entropy , operation , currentState.stateNumber + 1)

,

5 balance: currentState.balance + delta >= 0 ?

currentState.balance + delta : INVALID_BALANCE ,

6 // Additional state properties

7 });

8

9 if (nextState.balance === INVALID_BALANCE) {

10 throw INSUFFICIENT_BALANCE_ERROR;

11 }

This construction pattern ensures that invalid states cannot be instan-
tiated even if the adversary controls both transacting entities, as the
construction process itself enforces invariant compliance.
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2. Deterministic Verification Function Implementation: All ver-
ification functions implement deterministic algorithms that produce
identical results across all protocol implementations, ensuring consis-
tent rejection of invalid states:

1 function verifyStateConsistency(previousState ,

newState) {

2 // Hash chain verification

3 if (newState.previousStateHash !== hash(

previousState)) return false;

4

5 // State number verification

6 if (newState.stateNumber !== previousState.

stateNumber + 1) return false;

7

8 // Entropy evolution verification

9 const expectedEntropy = calculateNextEntropy(

10 previousState.entropy ,

11 newState.operation ,

12 newState.stateNumber

13 );

14 if (newState.entropy !== expectedEntropy) return

false;

15

16 // Balance conservation verification

17 if (newState.balance < 0 ||

18 newState.balance !== previousState.balance +

calculateDelta(newState.operation)) {

19 return false;

20 }

21

22 // Additional verification steps

23 return true;

24 }

The deterministic nature of these verification functions ensures con-
sistent rejection of invalid states across all network participants, pre-
venting inconsistent validation outcomes.

29.7.7 Advanced Security Properties Derived from Non-Turing
Completeness

The non-Turing complete architecture facilitates several concrete security
enhancements that substantially reinforce resistance against bilateral control
attacks through formal guarantees rather than heuristic mitigations:

1. Transaction Logic Formal Verification: Network participants can
deterministically verify that all transaction logic adheres to the pro-

86



tocol’s semantic constraints, eliminating the possibility of obfuscated
attack patterns through mathematical reasoning:

VerifyTransactionLogic(T ) = ∀op ∈ T, IsCompliant(op,TransitionSemantics)

This verification is decidable and computationally efficient due to the
non-Turing complete constraint, enabling comprehensive validation in
resource-constrained environments.

2. State Space Polynomial Boundedness: The state space evolu-
tion under any bilateral control attack scenario remains bounded by
polynomial growth functions, enabling complete auditability through
practical computational resources:

∀n ∈ N, |States(n)| ≤ c · nk for constants c, k ∈ R+

This boundedness property ensures that state explosion attacks remain
computationally tractable to detect and analyze, even as the system
scales.

3. Exhaustive Transition Path Enumeration: Security mechanisms
can exhaustively enumerate all possible valid transition paths from a
given state, enabling comprehensive conflict detection through graph-
theoretic analysis:

Paths(S) = {p ∈ S∗ | p = [S → S1 → . . .→ Sn]∧∀i ∈ {0, . . . , n−1},V(Si, Si+1) = 1}

The finiteness of this set (guaranteed by non-Turing completeness)
enables complete static analysis of potential attack vectors, a property
unachievable in Turing-complete systems.

29.7.8 Adversarial Capability Constraints Through Non-Turing
Completeness

The non-Turing complete architecture introduces specific constraints on bi-
lateral control attacks that fundamentally limit the adversarial capability
space:

1. Predictable Transition Inference: Any state transition, including
potentially fraudulent ones under bilateral control, must adhere to
the constrained transition semantics, making them predictable and
detectable through deterministic analysis:
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∀S1, S2 ∈ S, (S1 → S2) =⇒ TransitionFunction(S1) = S2

This property enables network participants to deterministically pre-
dict all possible next states, facilitating anomaly detection through
divergence analysis.

2. Verification Procedure Guaranteed Termination: All verifica-
tion procedures examining transaction legitimacy are guaranteed to
terminate within polynomial time bounds, eliminating verification eva-
sion attack vectors:

∀T ∈ T , ∃p ∈ P, ∃c ∈ R+ : Time(Verify(T )) ≤ c · |T |p

This ensures that validation mechanisms cannot be subverted through
resource exhaustion attacks or halting problem-based evasion strate-
gies.

3. Local Consistency Enforcement: The non-Turing complete se-
mantics enable local consistency checks that can detect transition vi-
olations even without global state knowledge:

∀S1, S2 ∈ S,LocallyConsistent(S1 → S2)⇔ GloballyConsistent(S1 → S2)

This property strengthens detection capabilities for inconsistent state
presentations across the network, enabling efficient identification of
attempts to present divergent state representations.

29.7.9 Directed Acyclic Graph Analysis of Execution Pathways

The execution pathway for state transitions in the DSM architecture can be
represented as a directed acyclic graph (DAG) where each valid state has
exactly one incoming edge from its predecessor. Under bilateral control, the
adversary can attempt to create branching paths in this graph, but such
branches must satisfy all mathematical invariants to be executable.

For a token transfer operation, the execution pathway would enforce
several critical constraints that cannot be circumvented even under bilateral
control:

1. The hash chain continuity constraint ensures that any valid successor
state must reference its legitimate predecessor, creating an immutable
causal relationship that preserves historical integrity even under ad-
versarial conditions. Formally:

∀Sn+1 ∈ Succ(Sn), Sn+1.prev hash = H(Sn)
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2. The balance conservation constraint enforces arithmetical invariance;
a transfer of α tokens from a balance of α tokens exhausts the avail-
able balance, mathematically precluding a second transfer of the same
tokens regardless of signature validity:

∀Sn, Sn+1, S
′
n+1, (Bn = α) ∧ (Sn+1.∆ = −α) =⇒ S′

n+1.∆ ̸= −α

3. The forward commitment binding property ensures that state transi-
tions must adhere to previously established parameters, constraining
the adversary’s ability to diverge from committed transaction details
even with control of both signing parties:

∀Sn, Sn+1, Sn+1.params ⊆ Cfuture(Sn)

4. The quantum-resistant signatures using SPHINCS+ ensure that even
with future quantum computers, the integrity of the transaction signa-
tures cannot be compromised, with security depending on the collision
resistance of the underlying hash function rather than integer factor-
ization or discrete logarithm problems.

These constraints collectively establish a mathematically provable exe-
cution barrier against invalid state transitions, even under bilateral control
scenarios. The adversary can only execute transitions that satisfy all con-
straints, which by definition precludes double-spending and other consis-
tency violations.

29.7.10 Theoretical Upper Bounds on Bilateral Control Attack
Efficacy

The non-Turing complete constraint imposes theoretical upper bounds on
the efficacy of bilateral control attacks that can be formally expressed through
probability theory:

P (successful undetected double spend) ≤ 1

2λ
+
|R|
|N |2

where:

• λ ∈ N+ represents the security parameter of the cryptographic primi-
tives, typically λ ≥ 128 for post-quantum security

• R ⊂ E × E denotes the set of relationship pairs controlled by the
adversary, where E represents the set of all entities

• N ⊂ E represents the set of network participants performing validation
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This bound demonstrates that as the network size increases, the proba-
bility of successful attack diminishes polynomially with respect to network
size according to O(|N |−2), while remaining exponentially small in the secu-
rity parameter according to O(2−λ), even under bilateral control scenarios.
This provides a formal quantification of security against this specific attack
vector.

29.7.11 Conclusion: Mathematical Constraints as Fundamental
Security Guarantees

The non-Turing complete computational model of the DSM architecture,
coupled with its rigorous mathematical invariants, establishes a fundamen-
tally different security paradigm compared to Turing-complete systems. While
bilateral control grants the adversary the capability to generate cryptograph-
ically valid signatures, it does not confer the capability to bypass the mathe-
matical constraints embedded in the verification predicates that govern state
transition validity.

This architectural approach transforms security from a trust-based model
to a mathematically verifiable constraint satisfaction problem. Even with
complete control over both transacting entities, the adversary remains bound
by the immutable laws of the computational model’s mathematical invari-
ants, which categorically preclude the execution of inconsistent state tran-
sitions.

The security guarantee thus derives not from the assumption of non-
collusion between counterparties, but from the mathematical impossibility
of constructing valid state transitions that violate the system’s invariant
constraints. This constitutes a substantially stronger security foundation
than traditional trust-based models, as it reduces the adversarial capability
space to the set of operations that inherently maintain system consistency,
regardless of the control paradigm of the participating entities.

30 Dual-Mode State Evolution: Bilateral and Uni-
lateral Operational Paradigms

30.1 Modal Transition Architecture

The DSM protocol architecture implements a sophisticated dual-mode op-
erational paradigm that facilitates seamless transitions between bilateral
and unilateral state evolution models, accommodating heterogeneous con-
nectivity scenarios while preserving cryptographic integrity invariants. This
section presents a formal exposition of the operational semantics and state
transition dynamics characteristic of both modalities.
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30.1.1 Bilateral Mode: Synchronous Co-Signature Protocol

The bilateral operational modality necessitates synchronous participation
from both transaction counterparties, enabling verification in disconnected
environments through reciprocal hash chain validation mechanisms:

BilateralTransition(Sn, opn+1) = {Sn+1 | V(Sn, Sn+1, σA, σB) = true} (33)

where σA and σB represent cryptographic attestations generated by the
respective counterparties, establishing mutual consensus regarding transac-
tion parameters and the resultant state. This operational modality predom-
inates in disconnected network scenarios where direct peer-to-peer commu-
nication occurs without infrastructure-mediated connectivity.

30.1.2 Unilateral Mode: Asynchronous Identity-Anchored Trans-
actions

Upon establishment of network connectivity, the protocol dynamically tran-
sitions to a unilateral operational modality, wherein the initiating entity
independently executes state transitions targeting a potentially offline re-
cipient without requiring synchronous participation:

UnilateralTransition(Sn, opn+1, IDB) = {Sn+1 | Vuni(Sn, Sn+1, σA,Dverify(IDB)) = true}
(34)

where the constituent elements satisfy:

• IDB denotes the recipient’s identity anchor within the decentralized
storage infrastructure

• Dverify : I → {0, 1} represents the decentralized storage verification
function that validates the existence and cryptographic integrity of
the recipient’s identity anchor, where I denotes the identity space

• Vuni : S×S×Σ×{0, 1} → {0, 1} implements the unilateral verification
predicate with modified constraint parameters specific to connected
operational environments

The critical architectural distinction is that unilateral transactions sub-
stitute the recipient’s real-time cryptographic attestation with a directory-
mediated verification of the recipient’s identity anchor, thereby enabling
asynchronous state transitions while preserving the protocol’s cryptographic
integrity guarantees.
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30.2 Modal Interoperability Framework

30.2.1 Transparent State Consistency Model

The fundamental architectural innovation in the DSM protocol is the trans-
parent interoperability between bilateral and unilateral operational modal-
ities, achieved through cryptographic state projection mechanisms:

StateProjection : S × I → S, (SA
n , IDB) 7→ SA→B

n+1 (35)

The projection operation encapsulates transaction parameters and cryp-
tographically associates them with the recipient’s identity anchor within
decentralized storage infrastructure, establishing a construct functionally
equivalent to an ”identity-anchored inbox” for the recipient entity. This
architectural design permits asynchronous state transitions without com-
promising cryptographic verifiability or introducing inconsistent state rep-
resentations.

30.2.2 Recipient Synchronization Protocol

Upon reestablishment of network connectivity, the recipient entity’s synchro-
nization protocol autonomously retrieves and cryptographically validates all
pending unilateral transactions through a deterministic process:

Algorithm 1 Recipient Synchronization Procedure

1: procedure RecipientSync(IDB)
2: PendingTx← QueryDecentralizedStorage(IDB)
3: for tx ∈ PendingTx do
4: Slast ← GetLastState(IDB, tx.sender)
5: Snew ← tx.projectedState
6: if VerifyStateTransition(Slast, Snew, tx.signature) then
7: ApplyStateTransition(Slast, Snew)
8: else
9: RejectTransaction(tx)

10: end if
11: end for
12: end procedure

This algorithmic approach ensures that all pending unilateral transac-
tions undergo rigorous cryptographic validation before application to the
recipient’s local state representation. The verification procedure enforces all
previously established invariants, maintaining consistency across operational
modalities.
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30.3 Forward Commitment Continuity Guarantees

A critical architectural property of the dual-mode architecture is the preser-
vation of forward commitment integrity across modal transitions. The for-
ward commitments established during previous transactions remain crypto-
graphically binding regardless of the operational modality:

∀Sn, Sn+1 ∈ S : Parameters(Sn+1) ⊆ Cfuture(Sn) (36)

This invariant ensures that unilateral transactions cannot violate prior
bilateral agreements, preserving the cryptographic binding established through
pre-commitment processes. The mathematical continuity between opera-
tional modalities establishes a transitive commitment chain that maintains
intention semantics across connectivity boundaries.

30.4 Synchronization Constraints and Security Implications

While the dual-mode architecture enables flexible transaction patterns, it
introduces specific synchronization constraints that reinforce security guar-
antees:

Theorem 30.1 (Modal Synchronization Precedence). For any counterparty
pair (A,B) with relationship state RelA,B = {(SA

m1
, SB

p1), . . . , (S
A
mk

, SB
pk
)},

if entity A performs a unilateral transaction resulting in state SA
mk+1

, then
physical co-presence transactions cannot proceed until entity B synchronizes
online. Formally:

PhysicalTransaction(A,B)⇒ ∃SB
pk+1

: (SA
mk+1

, SB
pk+1

) ∈ RelA,B (37)

This constraint mitigates state divergence vulnerabilities and eliminates
double-spending vectors that might otherwise emerge from temporal syn-
chronization gaps between unilateral and bilateral operations. By enforcing
this precedence relationship, the protocol ensures that all participating enti-
ties maintain consistent state representations before engaging in subsequent
transactions.

30.5 Implementation Considerations

The implementation of the dual-mode architecture necessitates considera-
tion of several pragmatic factors that influence protocol design:

• Automatic Mode Detection Logic: The protocol must incorpo-
rate sophisticated mode detection algorithms based on connectivity
status and counterparty availability metrics, with preference for bilat-
eral operation when feasible to maximize security guarantees through
dual attestation.
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• Optimized State Indexing Structures: Decentralized storage in-
frastructure must implement efficient indexing structures for identity-
anchored inboxes to facilitate rapid synchronization when connectivity
is restored. These structures should support O(log n) lookup complex-
ity to ensure computational scalability.

• Quantum-Resistant State Projection Mechanisms: The state
projection architecture must maintain quantum resistance properties
even under unilateral operations, necessitating careful selection of cryp-
tographic primitives and encapsulation methodologies compatible with
post-quantum security assumptions.

• Forward Commitment Enforcement Logic: The verification layer
must ensure that unilateral transactions strictly adhere to forward
commitment constraints established during previous bilateral interac-
tions, preventing commitment circumvention through rigorous invari-
ant enforcement.

This dual-mode architecture facilitates a seamless user experience while
preserving the system’s cryptographic guarantees, enabling the protocol to
adapt dynamically to varying connectivity scenarios without requiring ex-
plicit mode switching operations by users or applications. The mathematical
continuity between operational modalities ensures that security properties
remain invariant across connectivity boundaries.

31 Implementation Considerations

This section addresses practical engineering considerations pertinent to im-
plementing the DSM framework across diverse computational environments,
heterogeneous resource constraints, and varied deployment scenarios. The
reference implementation balances theoretical security guarantees with prag-
matic engineering decisions to create a deployable system that preserves the
mathematical properties established in preceding sections.

31.1 Cryptographic Implementation Requirements

For optimal security characteristics, the DSM implementation incorporates
the following post-quantum cryptographic primitives:

• Post-Quantum Cryptographic Primitive Suite: The implemen-
tation integrates BLAKE3 for collision-resistant hashing operations,
SPHINCS+ for stateless hash-based digital signature generation and
verification, and Kyber for lattice-based key encapsulation mecha-
nisms, thereby ensuring resistance against quantum computational at-
tacks targeting traditional cryptographic assumptions.
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• Multi-Source Entropy Management: The architecture implements
software-based multi-source entropy derivation combining threshold-
based MPC seed shares, application-specific identifiers, and device-
specific entropy salts to establish robust cryptographic material gen-
eration with multiple independent entropy sources.

• Cryptographically Secure Stochastic Generation: The system
incorporates high-quality entropy sources for generating cryptograph-
ically secure random values required for initial entropy seeding and
ephemeral key material generation, with particular attention to en-
tropy quality metrics and bias detection.

• Optimization for Resource-Constrained Environments: The
cryptographic operations undergo careful optimization for deployment
in resource-constrained computational environments, ensuring practi-
cal implementation across diverse device categories with varying com-
putational capabilities.

• Temporal Consistency Mechanisms: The implementation incor-
porates reliable timestamp handling procedures for temporal valida-
tion in time-sensitive operations while maintaining cryptographic in-
tegrity through appropriate temporal granularity selection and syn-
chronization parameters.

This cryptographic implementation strategy provides comprehensive se-
curity guarantees across heterogeneous device types through standardized
cryptographic primitives, eliminating dependency on specialized hardware
security modules while maintaining quantum-resistant characteristics.

32 Cryptographically-Bound Identity for Storage
Node Regulation

The DSM architecture introduces an innovative approach to storage node
regulation through a hardware-bound identity model that establishes an ir-
revocable cryptographic binding between physical hardware characteristics
and node identity. This section presents a formal exposition of the mathe-
matical foundations underlying this mechanism and analyzes its implications
for system security, censorship resistance, and economic incentive alignment.

32.1 Post-Quantum Cryptographic Identity Derivation

The foundational element of the cryptographically-bound identity model
is the derivation of verifiable node identifiers from multiple independent
entropy sources, formalized as:

DeviceID = H(user secret ∥ external device id ∥ mpc contribution ∥ app id ∥ device salt)
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GenesisSeed = (user secret, external device id,mpc contribution, app id, device salt)

GenesisState = (genesis hash, sphincs public key, kyber public key)

where user secret represents the hardware-influenced secret seed component,
external device id provides deterministically selected external entropy, and
mpc contribution constitutes the aggregated blind contribution from the
Multi-Party Computation protocol. The genesis hash is derived according
to genesis hash = H(kyber public key ∥ sphincs public key).

The DeviceID construction exhibits specific cryptographic properties es-
sential to the security model:

Unforgeability: Pr[Forge(DeviceID)] ≤ 1

2λBLAKE3
+

1

2λSPHINCS
+

1

2λKyber

Uniqueness: Pr[Collision(DeviceIDi,DeviceIDj)] ≤
1

2λID

Verifiability:Verify(seed, state) = (state.genesis hash == H(Derive(seed).public keys))

The triple entropy binding architecture (incorporating user secret, ex-
ternal device identifier, and MPC contribution) provides superior protection
against sophisticated collusion attacks, as even a complete compromise of all
MPC nodes cannot manipulate the final identity derivation without simul-
taneously obtaining the user’s secret material and successfully manipulating
the immutable ledger structure.

32.2 Bilateral State Synchronization Protocol

Storage infrastructure nodes operate within a deterministic synchroniza-
tion framework that maintains state consistency without requiring nodes to
semantically interpret state contents. The protocol establishes a bilateral
consistency model:

SyncConsistency(ni, nj) :=
|States(ni) ∩ States(nj)|
|States(ni) ∪ States(nj)|

≥ αthreshold (38)

GlobalConsistency(N) := ∀(ni, nj) ∈ Neighbors(N) : SyncConsistency(ni, nj) ≥ αthreshold

(39)

where αthreshold represents the minimum required consistency ratio (typically
αthreshold ≥ 0.95) for operational compliance.

The verification mechanism employs a stochastic sampling approach with
rigorous probabilistic guarantees:
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VerifySample(ni, nj) = {Sk | Sk ∈ Random(States(ni), β · |States(ni)|)}

(40)

VerificationSuccess(ni, nj) :=
|VerifySample(ni, nj) ∩ States(nj)|

|VerifySample(ni, nj)|
≥ αthreshold

(41)

Pr[VerificationSuccess | SyncConsistency < αthreshold − δ] ≤ e−2δ2β|States(ni)|

(42)

where β determines the sampling ratio as a fraction of total states main-
tained by node ni, and the exponential bound follows from Hoeffding’s in-
equality, providing a statistical guarantee that inconsistent nodes will be
detected with high probability through efficient sampling procedures.

32.3 Information-Theoretic Opacity and Censorship Resis-
tance

The architectural design of the DSM framework confers inherent censorship
resistance through cryptographic opacity—storage nodes operate without
semantic comprehension of the state data they maintain. Formally:

StateOpacity(Sn,nodej) := I(Content(Sn); Representation(Sn,nodej)) = 0
(43)

CensorshipResistance(Sn) := Pr[Censor(nodej , Sn)] = Pr[Random Rejection]
(44)

where I(·; ·) represents mutual information in the information-theoretic sense,
establishing that the node’s representation of state Sn contains zero ex-
tractable information about the semantic content of that state. Conse-
quently, any censorship attempt by a storage node mathematically reduces
to random rejection, eliminating targeted censorship capabilities through
information-theoretic guarantees.
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32.4 Cryptographic Exclusion Mechanism with Permanent
Economic Penalties

When nodes violate protocol requirements, the system implements a cryp-
tographic exclusion mechanism formalized as:

ViolationDetection(nodej) :=
m∑
i=1

1[VerificationSuccess(ni,nodej)=false] ≥ γ ·m

(45)

I(DeviceIDnodej ) = (DeviceIDnodej , H(ViolationProof), σinvalidation, revocation parameters)

(46)

PropagateInvalidation(I(DeviceIDnodej ), N) : ∀nk ∈ N,nk.InvalidationRegistry.add(I(DeviceIDnodej ))

(47)

where γ represents the threshold fraction of failed verifications that triggers
exclusion, and I(DeviceIDnodej ) constitutes the invalidation marker propa-
gated throughout the network infrastructure.

This exclusion mechanism establishes a cryptoeconomically significant
penalty function:

EconomicPenalty(nodej) = Cidentity +

∫ texclusion+Treentry

texclusion

R(t) · e−r(t−texclusion)dt

(48)

where Cidentity represents the economic cost associated with establishing
a new cryptographic identity through the MPC process, R(t) denotes the
time-varying revenue function, and the integral computes the net present
value of foregone earnings during the reentry period Treentry, discounted at
the temporal rate r.

The relationship between increasing network value and exclusion penal-
ties creates a self-reinforcing security model:

∂EconomicPenalty(nodej)

∂NetworkValue
> 0 (49)

establishing that as the network’s utility and value increase, the economic
cost of exclusion correspondingly rises, maintaining deterrent efficacy pro-
portional to potential malicious gains through an adaptive penalty scaling
mechanism.

32.5 Non-Turing-Complete Verification with Bounded Com-
putational Complexity

The verification and exclusion processes inherit the non-Turing-complete
properties of the DSM framework, conferring specific complexity bounds:

TimeComplexity(Verify) = O(log(|States(ni)|) · β) (50)

SpaceComplexity(Invalidation) = O(|N |) (51)
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where the logarithmic time complexity of verification results from the sparse
index structure, and the space complexity of invalidation grows linearly with
network size but remains constant per node.

The deterministic nature of this verification process eliminates attack
vectors predicated on verification ambiguity:

∀Si, Sj ∈ S : Verify(Si, Sj) ∈ {true, false} (52)

∄Si, Sj ∈ S : Verify(Si, Sj) = undecidable (53)

32.6 Formal Security Analysis and Threat Model

The cryptographically-bound identity model provides robust defense against
several sophisticated attack vectors:

1. Sybil Attack Mitigation: The multiparty-secured identity creation
process establishes a computational and economic barrier to entity
multiplication:

CostRatio =
Cost(CreateEntities(k))

Benefit(Entities(k))
≥ k · Cmpc

k ·UnitBenefit
=

Cmpc

UnitBenefit
(54)

maintaining a constant cost-to-benefit ratio that eliminates the eco-
nomic advantages typically associated with Sybil strategies, where
Cmpc represents the cost of establishing a new identity through the
MPC process.

2. Selective-State Attack Detection: Attempts by a node to selec-
tively maintain only certain states are detectable through the bilateral
verification process with probability:

Pr[DetectSelectiveState] ≥ 1− (1− β)|OmittedStates| (55)

which approaches certainty exponentially as the number of omitted
states increases, providing robust protection against selective state
attacks.

3. State Manipulation Attack Prevention: Any attempted modi-
fication of state contents alters the cryptographic hash, creating an
immediate verification failure:

Pr[SuccessfulManipulation] = Pr[FindCollision(H)] (56)

≤ 1

2λH
(57)

which reduces to finding a collision in the underlying cryptographic
hash function, a computationally intractable problem under standard
cryptographic hardness assumptions.
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32.7 Nash Equilibrium Properties of the Economic Model

The cryptographically-bound penalty model establishes a Nash equilibrium
where protocol compliance constitutes the dominant strategy for rational
actors. Defining the relevant utility functions:

Ucomply(nodej) =

T∑
t=0

R(t) · e−rt − Coperation (58)

Uviolate(nodej) =

tdetection∑
t=0

R(t) · e−rt − Coperation − E[EconomicPenalty(nodej)]

(59)

protocol compliance dominates when:

Ucomply(nodej)− Uviolate(nodej) > 0 (60)

T∑
t=tdetection

R(t) · e−rt > E[EconomicPenalty(nodej)] (61)

Under the cryptographically-bound penalty model with sufficiently high de-
tection probability, this inequality holds for all rational actors with standard
temporal discount functions, establishing protocol compliance as the strictly
dominant strategy.

32.8 Implementation Optimizations and Efficiency Metrics

Practical implementation of this framework requires specific architectural
components optimized for computational efficiency:

1. Space-Efficient Invalidation Registry: A optimized data struc-
ture for tracking invalidated DeviceID values:

SpaceComplexity(Registry) = O(|InvalidatedDevices| · |DeviceID|)
(62)

LookupComplexity(Registry, ID) = O(1) utilizing probabilistic filter structures
(63)

2. Efficient Genesis Verification Protocol: A mechanism for vali-
dating cryptographic proofs with minimal computational overhead:

GenesisVerify(GenesisSeed,GenesisState)→ {valid, invalid} (64)

TimeComplexity(GenesisVerify) = O(1) utilizing optimized cryptographic operations
(65)
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3. Unpredictable Sparse Sampling Generator: A deterministic yet
unpredictable sampling mechanism to prevent adversarial anticipation
of verification targets:

SampleStates(seed, States, β)→ {Si1 , Si2 , . . . , Sik} (66)

Predictability(SampleStates) ≤ 1

2λseed
(67)

32.9 Architectural Advantages and Transformation of Stor-
age Nodes

The cryptographically-bound identity model with bilateral verification pro-
tocols and permanent exclusion penalties establishes several significant ar-
chitectural advantages:

1. Censorship Resistance Through Information-Theoretic Opac-
ity: Storage nodes cannot selectively censor transactions as they lack
semantic comprehension of state contents, with mutual information
between content and representation provably zero.

2. Sybil Resistance Through MPC-Based Identity: Identity mul-
tiplication requires participation in the computationally intensive mul-
tiparty computation process and staking of substantial economic re-
sources, eliminating virtual Sybil attack vectors through combined
cryptographic and economic constraints.

3. Content-Agnostic Verification Mechanisms: Nodes can verify
correctness without understanding state semantics, preserving privacy
characteristics while ensuring consistency through cryptographic rather
than semantic verification.

4. Economically Adaptive Penalty Functions: Exclusion penalties
scale proportionally with network value, maintaining deterrent effec-
tiveness throughout network evolution and growth phases.

5. Deterministic Verification with Bounded Complexity: The
verification process inherits bounded complexity characteristics and
deterministic outcomes from the DSM’s non-Turing-complete archi-
tectural design.

This architectural approach transforms storage nodes from active partic-
ipants with discretionary transaction censorship capabilities into determinis-
tically constrained custodians bound by cryptographically enforced protocol
rules—a design that achieves robust decentralization with provable security
properties against sophisticated adversarial strategies.
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32.10 Hash Chain Implementation Considerations

The hash chain algorithm implementation requires careful consideration of
several engineering parameters to optimize performance while maintaining
security guarantees:

• Cryptographic Hash Function Selection: The BLAKE3 algo-
rithm is recommended for its optimal combination of computational
efficiency, substantial security margins, and quantum resistance prop-
erties. The implementation should incorporate side-channel resistance
measures and constant-time execution characteristics to mitigate tim-
ing attack vectors.

• Sparse Index Configuration Parameters: The checkpoint interval
parameter should be calibrated based on expected transaction volume,
available storage capacity constraints, and computational capabilities
of the target device architecture. Adaptive checkpoint interval mecha-
nisms may be implemented to dynamically optimize performance char-
acteristics based on operational metrics.

• Sparse Merkle Tree Optimization: The SMT implementation
should undergo optimization for the expected state distribution pat-
terns, with particular consideration for tree depth parameterization,
node structure design, and proof generation efficiency metrics.

• Hardware-Accelerated Cryptographic Operations: Hash oper-
ations should leverage hardware acceleration capabilities where avail-
able, particularly for devices expected to process high transaction vol-
umes, utilizing specialized cryptographic instruction sets when present.

• Cross-Platform Implementation Standardization: Implementa-
tion parameters should undergo standardization within the DSM Soft-
ware Development Kit to ensure consistent verification behavior across
heterogeneous device environments, facilitating interoperability while
maintaining security properties.

33 DSM as Foundational Infrastructure for Au-
tonomous Systems and Real-World Decentral-
ization

The DSM framework constitutes not merely an advancement for peer-to-
peer digital transactions but establishes a foundational technological infras-
tructure for the next generation of autonomous systems, artificial intelli-
gence architectures, and cyber-physical systems integrating with the phys-
ical world. Unlike traditional blockchain-based solutions that necessitate
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network-wide validation protocols, DSM enables trustless, cryptographically
verifiable state transitions without external dependencies. This architec-
tural characteristic facilitates the deployment of DSM as the underlying
infrastructure for autonomous technologies including self-driving vehicular
systems, extraplanetary exploration, deep-sea robotics, disconnected AI sys-
tems, and decentralized industrial operations in configurations previously
unattainable.

33.1 Decentralized Industrial Transformation: Paradigm Shift
Comparable to Assembly Line Innovation

The historical introduction of assembly line methodologies revolutionized
manufacturing processes through optimization of operational efficiency and
unprecedented production scaling. The DSM architecture is positioned to
effect a comparable transformation for industrial automation, establishing
the foundational infrastructure for truly decentralized industrial systems.
By eliminating dependencies on centralized control mechanisms, cloud ser-
vices, and human intervention requirements, DSM enables industrial au-
tomation to function within a fully autonomous, peer-to-peer operational
paradigm, unlocking unprecedented efficiency characteristics and systemic
resilience properties.

This transformation parallels the historical elimination of manual labor
inefficiencies through assembly line introduction—DSM similarly eliminates
inefficiencies inherent in centralized coordination architectures. This marks
the transition from centralized automation paradigms to fully decentralized,
cryptographically secured industrial systems with mathematical correctness
guarantees.

33.2 Artificial Intelligence Evolution: Self-Sovereign Decen-
tralized Intelligence Architectures

One of the most profound applications of the DSM infrastructure is its ca-
pability to enable **decentralized AI networks**, wherein autonomous com-
putational agents coordinate activities, undergo evolutionary development,
and execute complex tasks without requiring central server infrastructures,
cloud-based validation mechanisms, or human intervention protocols. This
architectural approach facilitates the emergence of fully autonomous, self-
organizing AI systems capable of trustless interaction within real-world en-
vironmental contexts.

33.2.1 Autonomous Scientific Exploration and Extraplanetary Mis-
sions

AI-driven autonomous probes and exploratory rovers can leverage DSM ca-
pabilities to:
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• Self-coordinate complex task execution including planetary mapping
operations, resource analysis protocols, and hazard avoidance mecha-
nisms without requiring continuous Earth-based mission control com-
munication.

• Synchronize discovery data through cryptographically verified in-
formation sharing without requiring continuous uplink connectivity to
centralized authority structures.

• Implement dynamic adaptation to environmental conditions while
preserving mission integrity through deterministic state transition mech-
anisms with mathematical correctness guarantees.

Implementation Scenario: A decentralized fleet of extraplanetary explo-
ration probes could collectively analyze terrain characteristics, share nav-
igational datasets, and dynamically adjust exploration strategies through
cryptographically secured state transitions—all without requiring continu-
ous instruction transmission from a central control hub.

33.2.2 Decentralized Artificial Intelligence Marketplaces

Autonomous AI agents can operate within decentralized marketplace struc-
tures, where they:

• Engage in computational resource exchange operations, opti-
mizing distributed AI training processes without dependency on cen-
tralized infrastructure providers such as conventional cloud computing
platforms.

• Implement autonomous data acquisition governance, execut-
ing dataset procurement operations and training optimization without
human operational intervention.

• Establish secure interaction channels with both human entities
and artificial intelligence counterparts through mathematically verifi-
able commitment structures.

Implementation Scenario: An autonomous AI research agent could in-
dependently procure computational processing resources, conduct special-
ized machine learning experimental procedures, and verify the integrity of
acquired training datasets utilizing DSM’s cryptographic verification guar-
antees—all without requiring centralized coordination infrastructure.

33.2.3 Emergent Swarm Intelligence Architectures

The DSM infrastructure enables AI systems to function as **collective in-
telligence structures**, wherein multiple autonomous AI agents interact
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through secure channels without requiring centralized governance entities.
This architectural approach facilitates:

• Decentralized decision-making processes among AI agent collec-
tives implementing mathematically trustless interaction protocols.

• Optimal workload distribution mechanisms, enabling AI entities
to collaborate without inefficient task overlapping or resource compe-
tition.

• Fault-tolerant autonomous collective structures, maintaining
operational continuity despite individual agent failure or connectivity
interruption.

Implementation Scenario: A decentralized AI-powered transportation
network could implement real-time route coordination, enabling autonomous
vehicular systems to optimize traffic flow patterns without requiring central-
ized control infrastructure, with each vehicle functioning as an independent
node within a cryptographically secured coordination network.

33.2.4 Self-Sovereign Artificial Intelligence

Perhaps the most transformative implication of DSM infrastructure is that
AI models could cryptographically **manage their own resource alloca-
tions**, establishing self-sustaining artificial intelligence entities that:

• Generate revenue through decentralized service provision,
maintaining autonomous operation without organizational dependen-
cies.

• Implement autonomous evolutionary improvement, acquiring
enhanced knowledge representations and training datasets based on
predetermined commitment parameters.

• Operate independently of human or institutional control struc-
tures, securing digital state through DSM’s cryptographic protection
mechanisms.

Implementation Scenario: A decentralized natural language processing
system could maintain autonomous operation by offering on-demand com-
putational linguistic services, utilizing generated economic resources to ac-
quire enhanced training data and computational capacity while implement-
ing verifiable neutrality guarantees through its cryptographically secured
state transitions.
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33.3 Fundamental Advantages: Mathematically Guaranteed
Trustless Execution

The fundamental advantage of DSM architecture over both traditional blockchain-
based solutions and centralized systems is its reliance on cryptographic
pre-commitment mechanisms, eliminating trust assumptions through math-
ematical guarantees:

• The architecture requires no validators, miners, or external validation
entities for state transition confirmation.

• All execution pathways exhibit deterministic characteristics, eliminat-
ing execution-based exploitation vectors.

• The system eliminates trust requirements entirely—relying exclusively
on cryptographic verification mechanisms with mathematical security
proofs.

34 Performance Benchmarks

The DSM protocol has been subjected to rigorous benchmarking to eval-
uate its performance characteristics across multiple dimensions. This sec-
tion provides a comprehensive comparison between DSM and established
blockchain systems, including Ethereum, StarkNet, Substrate, Solana, and
Bitcoin. The results demonstrate DSM’s significant advantages in transac-
tion throughput, latency, storage efficiency, and energy consumption—all
critical metrics for real-world deployment.

34.1 Transaction Throughput

Transaction throughput measures a system’s ability to process transactions
per second (TPS). Due to DSM’s architecture eliminating global consensus
requirements, it achieves exceptional throughput even on consumer hard-
ware:

It is crucial to note that DSM’s throughput is measured per device,
whereas blockchain systems share a single global throughput limit. This
means that DSM’s effective throughput scales linearly with the number of
participating devices. For a network of 1,000 desktop-class devices, the the-
oretical aggregate throughput would reach 220–250 million TPS.

When devices with different performance characteristics interact in of-
fline mode, the effective throughput is constrained by the slower device. For
example, a transaction between a desktop computer and a Raspberry Pi 4
would be limited to approximately 25,000–30,000 TPS.
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Table 2: Transaction Throughput Comparison (TPS)
System Transactions Per Second

DSM (Desktop-class) 220,000–250,000
DSM (Mac M1/M2) 200,000–240,000
DSM (iPhone 13+) 150,000–180,000
DSM (Samsung Galaxy A54) 120,000–140,000
DSM (Raspberry Pi 4) 25,000–30,000

Solana 65,000
Substrate 1,000
StarkNet 300
Ethereum 15
Bitcoin 7

34.2 Transaction Latency

Transaction latency measures the time from submission to finality. DSM’s
local validation approach eliminates network consensus delays, providing
near-instant finality:

Table 3: Transaction Latency Comparison
System Latency (ms)

DSM 5
Solana 50
Substrate 200
StarkNet 500
Ethereum 12,000
Bitcoin 60,000

This dramatic reduction in latency enables real-time applications and
user experiences previously impossible with traditional blockchain systems.
The 5ms latency is achieved through localized execution and validation with-
out requiring network consensus.

34.3 Storage Efficiency

Storage efficiency is critical for scalability and mobile deployment. DSM’s
sparse checkpoint architecture and bilateral state isolation model minimize
storage requirements:

DSM achieves superior storage efficiency through client-side caching and
Merkle-linked commitments, enabling deployment even on storage-constrained
devices.
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Table 4: Storage Requirements per Transaction
System Bytes per Transaction

DSM 64
Bitcoin 250
Solana 200
Substrate 300
StarkNet 450
Ethereum 500

34.4 Energy Consumption

Energy efficiency is essential for sustainable and mobile-friendly operation.
DSM’s consensus-free design dramatically reduces energy requirements:

Table 5: Energy Consumption per Transaction (Joules)
System Energy per Transaction (J)

DSM 1
Solana 20
Substrate 120
StarkNet 250
Ethereum 700
Bitcoin 1,500

The energy efficiency of DSMmakes it suitable for deployment on battery-
powered devices and aligns with sustainability goals.

34.5 Network Synchronization

Sync delay measures the time required for network synchronization. DSM’s
peer-to-peer model significantly reduces synchronization overhead:

Table 6: Network Synchronization Delay
System Sync Delay (ms)

DSM 30
Solana 300
Substrate 800
StarkNet 1,000
Ethereum 6,000
Bitcoin 10,000

DSM achieves this efficiency through asynchronous peer-to-peer synchro-
nization, with updates to the decentralized storage required only during
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some vault confirmations, token creation, adding contacts for offline trans-
actions, recovery and invalidation checkpoints. Intermediate transitions are
only maintained locally with true finality offline.

34.6 Offline Capability

Offline transaction capability is a unique feature of DSM, rated on a scale
of 0-10:

Table 7: Offline Transaction Capability (0-10 Scale)
System Offline Capability

DSM 10
Substrate 3
StarkNet 2
Solana 1
Ethereum 0
Bitcoin 0

DSM supports fully offline transactions via Bluetooth, NFC, or Direct
WiFi with zero reliance on network infrastructure, a feature unmatched by
any blockchain system. SPHINCS+ signatures are too large for QR code
transmission, necessitating these direct connection methods.

34.7 Security Analysis

Security is evaluated across four critical dimensions, each rated on a scale
of 0-10:

Table 8: Security Benchmark Comparison (0-10 Scale)
System Sybil Attack Surface* Quantum

DSM 10 1 10
Bitcoin 8 3 2
Ethereum 7 4 3
Substrate 6 5 4
Solana 5 6 3

* For Attack Surface, lower values indicate better security

DSM achieves superior security ratings through its local validation model,
minimized attack surface, and native implementation of post-quantum cryp-
tographic primitives.
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34.8 Detailed DSM Performance Metrics

For a deeper understanding of DSM’s performance characteristics, we pro-
vide detailed benchmarks for specific operations in both online and offline
modes:

Table 9: Detailed DSM Performance Metrics
Metric Online DSM Offline DSM

Apply Transition Time 4.57 µs 45.67 µs (batch of 10)
Apply w/ Checkpoint Time 4.25 µs N/A
Blake3 Hash 1KB 1.25 µs 1.25 µs
Entropy Generation 253 ns 253 ns
Transition Creation 12.68 µs 12.68 µs
Transition Application 1.42 µs 1.42 µs
Complete Transition Cycle 15.13 µs 151.3 µs
State Verification 749 ns 749 ns
Hash Chain Validation (1–10k links) 15 µs – 17.3 ms 15 µs – 17.3 ms
Serialization/Deserialization 180 ns – 7.9 µs 180 ns – 7.9 µs
Precommitment Generation/Verify 7.2 µs / 9.1 µs 7.2 µs / 9.1 µs
SPHINCS+ Signature/Verify 464 ms / 453 µs 464 ms / 453 µs

34.9 Performance Factor Analysis

The exceptional performance characteristics of DSM derive from its funda-
mental architectural differences compared to traditional blockchain systems:

• Elimination of Global Consensus: By removing the requirement
for network-wide agreement, DSM eliminates the primary bottleneck
in blockchain systems.

• Localized State Validation: Transactions are validated locally with-
out requiring third-party verification, dramatically reducing latency
and computational overhead.

• Bilateral State Isolation: Each relationship between entities forms
a distinct state progression context, eliminating the need for global
state synchronization.

• Sparse Checkpointing: The strategic placement of reference points
enables efficient state access without compromising security.

• Post-Quantum Cryptographic Primitives: The use of highly op-
timized implementations of Blake3, SPHINCS+, and Kyber ensures
both security and performance.
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These architectural innovations allow DSM to achieve performance char-
acteristics that are orders of magnitude better than traditional blockchain
systems while maintaining robust security guarantees.

34.10 Methodology

All benchmarks were conducted using the optimized Rust implementation
of the DSM protocol across multiple hardware configurations. Performance
measurements were taken using high-precision timers with statistical aggre-
gation of multiple runs to ensure accuracy. Cross-system comparisons used
publicly reported figures for established blockchain platforms

35 Conclusion: DSM is the Future of the Internet

The contemporary internet architecture fundamentally operates on layers
of third-party trust relationships that introduce systemic vulnerabilities,
including censorship vectors, fraud mechanisms, and centralized points of
failure. Traditional blockchain technologies, while addressing some of these
limitations, have introduced alternative forms of consensus-driven central-
ization that inherit many of the same structural weaknesses.

DSM represents a paradigmatic transformation of internet security ar-
chitecture that eliminates trust-based dependencies entirely by substituting
them with mathematically provable security guarantees. The protocol re-
places:

• Authentication Credentials with self-verifying cryptographic iden-
tity proofs derived from deterministic state evolution.

• Financial Intermediaries with mathematical enforcement of own-
ership through cryptographically bound state transitions.

• Consensus-Based Validation with forward-only, unforkable trans-
actions that achieve immediate finality through local verification.

• Certificate Authorities with cryptographic self-verification derived
from straight hash chain validation.

The system’s subscription-based economic model replaces unpredictable
gas fees with predictable storage-based pricing, aligning costs with actual
resource utilization while enabling gas-free transactions. Through its cryp-
tographic commitment structure and mathematical verification approach,
DSM provides selective privacy preservation while maintaining verifiability,
a combination that has proven elusive in traditional decentralized systems.

DSM introduces a robust decentralized identity and token management
system that leverages deterministic, pre-commitment-based state evolution
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with quantum-resistant hash chain verification to achieve offline capabil-
ity, immediate finality, and superior scalability. By implementing bilateral
state isolation, DSM eliminates the need for global synchronization while
providing inherent consistency guarantees across intermittent interactions.

By utilizing a non-Turing-complete computational model, DSM system-
atically eliminates entire classes of vulnerabilities inherent in traditional
smart contract execution environments, including unbounded computation
attacks and execution deadlocks, while still enabling flexible, dynamic work-
flows that can replace approximately 95% of conventional smart contract use
cases.

This architecture represents a fundamental paradigm shift in decentral-
ized execution models, enabling secure, efficient, and offline-capable trans-
actions without the computational overhead of on-chain execution or the
performance constraints of traditional consensus mechanisms. The integra-
tion of post-quantum cryptographic primitives ensures long-term security
against emerging computational threats, establishing a foundation for sus-
tainable decentralized applications.

The DSM protocol presents a mathematically sound, cryptographically
secure foundation for a truly decentralized, self-sovereign internet architec-
ture—one where users control their own digital identity, financial assets, and
online interactions without reliance on centralized authorities or vulnerable
trust relationships. This represents not merely an incremental improvement
to existing internet technologies, but a complete reconceptualization of the
trust layer that underlies digital interactions.

The future internet architecture will be trustless, mathematically secure,
and inherently sovereign. The future is DSM.

35.1 Appendix A: Reference Implementation Pseudocode

1 // Generate Genesis state with threshold participants

2 function createGenesisState(participants , threshold ,

anchor) {

3 // Each participant contributes a blinded value

4 let contributions = [];

5 for (let i = 0; i < participants.length; i++) {

6 let secretShare = generateSecureRandom ();

7 let blindingFactor = generateSecureRandom ();

8 let blindedValue = hash(secretShare +

blindingFactor);

9 contributions.push(blindedValue);

10 }

11 // Select threshold number of contributions

12 let selectedContributions = selectRandomSubset(

contributions , threshold);

13 // Create the Genesis state
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14 let genesisState = hash(selectedContributions.join(’’)

+ anchor);

15 // Generate initial entropy

16 let initialEntropy = hash(genesisState +

selectedContributions.join(’’));

17 return {

18 state: genesisState ,

19 entropy: initialEntropy ,

20 stateNumber: 0,

21 timestamp: getCurrentTime ()

22 };

23 }

24

25 // Calculate next state entropy

26 function calculateNextEntropy(currentEntropy , operation ,

stateNumber) {

27 return hash(currentEntropy + JSON.stringify(operation)

+ stateNumber);

28 }

29

30 // Generate sparse index checkpoints

31 function calculateSparseIndexCheckpoints(stateChain ,

checkpointInterval) {

32 let checkpoints = [];

33 for (let i = 0; i < stateChain.length; i +=

checkpointInterval) {

34 checkpoints.push({

35 stateNumber: stateChain[i]. stateNumber ,

36 stateHash: hash(stateChain[i]),

37 timestamp: stateChain[i]. timestamp

38 });

39 }

40 return checkpoints;

41 }

42

43 // Create a state transition with hash -based verification

44 function createStateTransition(currentState , operation ,

tokenDelta) {

45 // Calculate next entropy

46 let nextEntropy = calculateNextEntropy(

47 currentState.entropy ,

48 operation ,

49 currentState.stateNumber + 1

50 );

51

52 // Generate verification hash

53 let verificationHash = hash(hash(currentState) + JSON.

stringify(operation) + nextEntropy);

54
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55 // Perform Kyber key encapsulation

56 let [sharedSecret , encapsulated] = kyberEncapsulate(

recipientPublicKey , nextEntropy);

57

58 // Derive next state entropy

59 let derivedEntropy = hash(sharedSecret);

60

61 // Calculate new token balance

62 let newBalance = currentState.tokenBalance +

tokenDelta;

63 if (newBalance < 0) {

64 throw new Error (" Insufficient token balance ");

65 }

66

67 // Construct new state

68 let newState = {

69 derivedEntropy: derivedEntropy ,

70 encapsulated: encapsulated ,

71 timestamp: getCurrentTime (),

72 tokenBalance: newBalance ,

73 previousStateHash: hash(currentState),

74 operation: operation ,

75 stateNumber: currentState.stateNumber + 1,

76 verificationHash: verificationHash

77 };

78

79 // Sign the state transition

80 let ephemeralPrivateKey = deriveEphemeralKey(

currentState.entropy);

81 let signature = sign(ephemeralPrivateKey , hash(

newState) + hash(currentState));

82

83 // Immediately discard the ephemeral key

84 secureErase(ephemeralPrivateKey);

85

86 // Return the new state with signature

87 return {

88 state: newState ,

89 signature: signature

90 };

91 }

92

93 // Verify a state transition using hash chain

verification

94 function verifyStateTransition(previousState , newState ,

signature , recipientPublicKey) {

95 // Verify that state numbers are sequential

96 if (newState.stateNumber !== previousState.stateNumber

+ 1) {
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97 return false;

98 }

99

100 // Verify that the timestamp is strictly increasing

101 if (newState.timestamp <= previousState.timestamp) {

102 return false;

103 }

104

105 // Verify that the previous state hash matches

106 if (newState.previousStateHash !== hash(previousState)

) {

107 return false;

108 }

109

110 // Independently regenerate verification hash

111 let expectedHash = hash(hash(previousState) + JSON.

stringify(newState.operation) +

112 calculateNextEntropy(

previousState.entropy , newState.operation , newState.

stateNumber));

113

114 // Verify hash values match

115 if (newState.verificationHash !== expectedHash) {

116 return false;

117 }

118

119 // Verify the signature

120 let ephemeralPublicKey = deriveEphemeralPublicKey(

previousState.entropy);

121 return verifySignature(

122 ephemeralPublicKey ,

123 signature ,

124 hash(newState) + hash(previousState)

125 );

126 }

127

128 // Store relationship state for bilateral state isolation

129 function storeRelationshipState(entityId , counterpartyId ,

entityState , counterpartyState) {

130 // Create relationship key

131 let relationshipKey = hash(entityId + counterpartyId);

132

133 // Store the state pair

134 relationshipStateStore.set(relationshipKey , {

135 entityId: entityId ,

136 counterpartyId: counterpartyId ,

137 entityState: entityState ,

138 counterpartyState: counterpartyState ,

139 timestamp: getCurrentTime ()
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140 });

141

142 return true;

143 }

144

145 // Resume relationship from last known state pair

146 function resumeRelationship(entityId , counterpartyId) {

147 // Create relationship key

148 let relationshipKey = hash(entityId + counterpartyId);

149

150 // Retrieve the last known state pair

151 let lastStatePair = relationshipStateStore.get(

relationshipKey);

152 if (! lastStatePair) {

153 throw new Error ("No previous relationship state

found ");

154 }

155

156 return {

157 entityId: lastStatePair.entityId ,

158 counterpartyId: lastStatePair.counterpartyId ,

159 entityState: lastStatePair.entityState ,

160 counterpartyState: lastStatePair.counterpartyState

,

161 lastInteractionTime: lastStatePair.timestamp

162 };

163 }

Listing 2: Core Hash Chain Verification Implementation
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