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Abstract

Bitcoin script cannot easily access and store state information onchain without an upgrade
such as BIP-347 (OP CAT); this makes performing general (stateful) computation on Bitcoin im-
possible to do directly. Despite this limitation, several approaches have been proposed to bypass
it, with BitVM being the closest to production. BitVM enables fraud-proof-based computation
on Bitcoin, relying on a 1-out-of-n honesty assumption.

This left the question of whether it is possible to achieve computation under the same honesty
assumption without requiring onlookers to ensure validity through fraud proofs. In this note, we
answer this question affirmatively by introducing ColliderVM, a new approach for performing
computation on Bitcoin today. Crucially, this approach eliminates some capital inefficiency
concerns stemming from reliance on fraud proofs.

For our construction, a key point is to replace the Lamport or Winternitz signature-based
storage component in contemporary protocols with a hash collision-based commitment. Our
techniques are inspired by ColliderScript, but are more efficient, reducing the number of hash
evaluations required by at least ×10000. With it, we estimate that the Bitcoin script length
for STARK proof verification becomes nearly practical, allowing it to be used alongside other,
pairing-based proof systems common today in applications.

1 Introduction

Computation on Bitcoin is performed by writing the program logic in Bitcoin script, which is
a Forth-like stack-based language. This programming language is very restrictive in its limited
opcode expressibility and overall limitation to around 4 million opcodes that can fit in a Bitcoin
block across all transactions, as well as each script being memory-restricted to a stack size of at
most 1000 elements.

However, arguably the biggest limitation of Bitcoin script is in its lack of native support in
performing what we term stateful computation. Roughly speaking, stateful computation refers to
a computation’s ability to persist onchain across multiple transactions and user interactions. More
concretely, stateful computation consists of two components:

• Data persistence - The ability of a program to access and modify variables that persist
beyond its own execution time. For example, accessing data that was stored onchain before
the execution of the program, or leaving some data onchain for other programs to read.1

∗Work done while consulting for StarkWare.
1While any program execution leaves some data on chain, we need this data to be accessible from within the

programs themselves.
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• Logic persistence - This is the ability of the program’s logic to persist across multiple
transactions, Bitcoin blocks, or user interactions. By default, this is not the case with Bitcoin
script, as anyone with the ability to spend a UTXO by providing the locking script with
the correct witness is able to lock the funds within new UTXOs with possibly completely
unrelated locking scripts.

Stateful computation is an important primitive that enables the following useful ways to perform
onchain computation:

• It allows splitting a computation longer than ∼ 4 million opcodes, or one that doesn’t fit into
Bitcoin’s 1000 stack element limitation into multiple transactions;2

• It allows the user to interact at different points in time with the same computational logic.

This, in turn, enables the implementation of many useful applications, such as vaults [39], smart
contracts [36, 17], and L2 bridges [21, 43], with the least amount of security assumptions and
protocol complexity.

1.1 Achieving stateful computation on Bitcoin

Below, we list the existing ways of achieving stateful computation on Bitcoin.

Multisig. This approach involves funneling all the funds in the system into the multi-signature of
a predetermined set of n entities that oversee the computation. This kind of solution has the worst
security in the list since it’s a t-out-of-n system, with t honest entities required for both safety and
liveness.3

While this approach has the benefit of being the most straightforward and most common [4],
due to its reduced security, we consider it our baseline non-solution.

Covenants. This solution is second to Multisig in terms of simplicity, and it enjoys the best
security in the list, but it requires an upgrade to Bitcoin by including an additional opcode (i.e.,
OP CAT [14], OP CTV [33], or OP TXHASH [30], among others). Covenants [24, 26, 6, 38, 37, 16] allow
the locking script to constrain the spending transaction, with the amount of constraining possible
depending on the opcode.

The utility of covenants, if sufficiently powerful,4 is twofold: They allow Bitcoin script to have
both data and logic persistence without any additional security assumptions. Unfortunately, as of
today, achieving proper covenants on Bitcoin seems infeasible, with all solutions needing some way
to bypass utilizing covenants directly.

ColliderScript. This approach uses a prohibitive amount of computation to emulate covenants.
In a similar vein to true covenants, it doesn’t require any trusted entities, and thus it inherits mostly
the same security guarantees. Moreover, while the ColliderScript [13] construction is complicated,
it has encapsulated complexity, allowing it to be used in a black-box manner, similar to covenants.

2In fact, there are other limitations, like the notion of non-standardness [3], which we ignore here.
3This introduces a tradeoff, as the system can tolerate at most t malicious actors for safety, and at most n − t

malicious actors for liveness. Thus, a smaller t is better for liveness, while a larger t is better for safety.
4For example, the covenants enabled through OP CAT, which allow Bitcoin script to arbitrarily reason about most

of the data of the spending transaction [28, 29].
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Functional encryption-based schemes. In [31, 18], a general framework is proposed for em-
ulating covenants by requiring heavy cryptographic tools such as Functional Encryption [7]. To
the best of our knowledge, this approach hasn’t yet coalesced into a concrete construction whose
security can be examined. If possible, such a construction would inherit similar security guarantees
as ColliderScript or covenants, with an additional trusted setup phase, due to the use of public key
cryptography.

BitVM. Following the line of work on BitVM [22, 19, 23, 5, 20, 32], the most relevant version of
this technique to our work is due to [23] and [5], which is known as BitVM2. Instead of a single
set of n entities as in Multisig, here, there are n signers and m operators. The BitVM construction
is secure as long as 1-out-of-n signers are honest, as well as 1-out-of-m operators. Crucially, in
addition to the improved security tradeoff versus Multisig, this approach provides a separation of
trust, as signers are used for enforcing honest computation, while operators are used for actually
performing computation and taking custody of the funds.5

Moreover, BitVM2 uses a fraud proof system, allowing any onlooker to report and “slash”
fraudulent computation execution by the operator. If our computation script f is split into sub-
functions f1, . . . , fk, the fraud proof system has the benefit of only requiring maxi |fi| script size to
execute onchain in the worst case, as opposed to the entire cost of

∑
i |fi|.6

However, fraud proofs also have some downsides, a major one being capital inefficiency. In the
context of BitVM, the operator pays out of pocket per user withdrawal, and waits for the duration of
the fraud proof time window to be reimbursed. This places liquidity requirements on the operator,
potentially making exiting the system very difficult. A major goal of this work is to address this
deficiency.

2 Our contributions

At a high level, ColliderVM is a protocol that facilitates stateful computation on top of Bitcoin. As
an application, our protocol also enables the computation of STARK verifiers, which can be used
for the important goal of building trust-minimized L2 bridges.

For security, the guarantees we get are considerably better than a multisig, and our approach
does not require fraud proofs. Our protocol involves n signers, and m (bridge) operators, such that
as long as 1-out-of-n of the former is honest, the protocol is safe, and as long as 1-out-of-m of the
latter is honest, the protocol is guaranteed liveness. In addition, our construction imposes hash
collision challenges on potentially malicious operators, so, for safety, we need to assume this type
of cryptographic puzzle is computationally difficult.

While our construction has notable attractive benefits, such as avoiding the capital inefficiency
problem due to fraud proofs, it also has significant drawbacks. Nevertheless, we believe that our
protocol is far from optimal, and this approach is fruitful for enabling new applications on top of
Bitcoin.

Below, we give an outline of the ColliderVM protocol.

5Signers are expected to delete their keys after performing their role in the protocol, hence, only the operators
have the ability to take custody over the funds.

6There is an additional cost linear in the input length to all subfunctions {fi}i, even if the script size cost is only
maxi |fi|.
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Check that
1.  provided in the witness satisfies 
2. A valid signature of  is provided

Figure 1: Suppose that f(x) = f1(x) ∧ f2(x) ∧ f3(x). The signer prepares presigned transactions
such that each txi computes a single fi and spends the previous transaction in the flow, and sends
them to the operator in an offline (or setup) phase. In the online phase, to spend an individual txi,
an operator needs to provide the signer’s signature, together with an input x such that fi(x) = 1.
Because each transaction checks the signer’s signature, the logic flow is fixed, as the signer didn’t
sign on any other transactions. If the transactions are provided with the same input x then the
flow succeeds only if f(x) = 1. However, on its own, nothing protects against a malicious operator
providing potentially different xi to each txi.

2.1 The construction

We’ll first describe our construction in a simple 2-party setting. To this end, consider a protocol
between an operator and a signer. The operator knows an input x to some function f such that
f(x) = 1, which the signer wants to see evaluated on top of Bitcoin, consequently rewarding the
operator with some amount of Bitcoins for this computation. If the script implementing f fits in
a single UTXO, the signer may simply set up a UTXO that evaluates f and checks whether it
equates to 1, together with checking a signature associated with the operator’s public key.

The difficulties arise when f : X → {0, 1} does not fit into a single transaction. Now, the
signer instead splits the function f into multiple subfunctions, say f1, f2, f3, such that f(x) =
f1(x) ∧ f2(x) ∧ f3(x), where each fi fits individually into a single transaction.7 Then, the signer
may use 3 presigned transactions, tx1, tx2, tx3, where each one evaluates a single fi, spends the
previous transaction, and requires the signature of a signer. The signer sends these transactions to
the operator, which, at a later date when x is known, evaluates all fi on x. This process, illustrated
in Figure 1, enforces the execution of fi in order. Crucially, presigned transactions commit only to
the function being computed and not the function’s input. This is because a transaction’s witness,
which the function input is part of, is not being signed on.8 We give a more complete description
of this process in Section 3.2.

However, using presigned transactions alone doesn’t give us security or “soundness”. This is
because this flow doesn’t protect against an adversary capable of finding possibly distinct x1, x2, x3,

7A more complete description on how to split functions we are interested in into smaller subfunctions is given in
Section 4.3.

8To describe how presigned transactions enforce logic, suppose that tx2 spends tx1 in the presigned flow. tx1 is
only able to check that the spending transaction (hopefully tx2) was signed on by the signers, but it has no way to
enforce that it’s really tx2. Logic enforcement happens by tx2, which specifies in an input the txid of tx1, guaranteeing
tx2’s locking script will only execute after tx1 was already spent. Hence, if the signers only presign tx1 and tx2, and
delete their private key, this guarantees no other transaction flow is possible.
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Check that
1.  provided in the witness satisfies 
2. A valid signature of  is provided
3. For a provided , it holds 

Figure 2: The offline (or setup) phase in the ColliderVM construction. This time, during the
offline phase, the signer prepares |D| = 2L flows, each encoding an individual d ∈ D across all
transactions of a single flow. During the online phase, an operator willing to commit on x, needs to
find an r such that H(x, r)|B = d ∈ D. Then, the operator needs to use the specific flow associated
with this d. The security relies on the idea that finding two distinct valid B-pairs with respect to
the same d ∈ D, namely (x, r) ̸= (x′, r′), is more difficult than finding a single valid B-pair with
respect to D.

provided to tx1, tx2, tx3 respectively, such that fi(xi) = 1 holds separately, even though there is no
x such that f(x) = 1.

To solve this, we make it computationally expensive for the operator to find more than a single
x to be used. This way, to cheat the system, an adversary will need to find two values x ̸= x′

that fit the requirement. Now, suppose that we’re given a set D of size 2L.9 We call an input x
with a nonce r a valid B-pair with respect to D, if, for some fixed hash function H, it holds that
H(x, r)|B ∈ D, namely, the first B bits are an element in D (therefore D ⊆ {0, 1}B).

Finding a single x satisfying the above requires trying 2B−L hash evaluations in expectation,
since each attempt with a random ri has probability 1/2B−L of hitting a member of D (assuming
the hash function behaves as a random one). In contrast, finding for two distinct x ̸= x′ and r, r′

such that (x, r) and (x′, r′) are both valid B-pairs w.r.t. D and H(x, r) = H(x′, r′) involves finding
a collision in D, which requires ∼ 2L/2 · 2B−L = 2B−L/2 hash evaluations in expectation (the 2L/2

factor comes from the birthday paradox, e.g. Chapter 5 [25]).
Thus, if the presigned transactions txi could check that the input (xi, ri) given to it (where ri

is some nonce) is a valid B-pair with respect to the same element in D, the adversary would need
to perform B−L/2 bits of work to cheat the system. On the other hand, an honest operator needs
only B − L bits of work to find a single valid B-pair (by bits of work we mean log the amount
of expected work). To check for the same element in D, the signer needs to prepare and store a
copy of the flow f1 → f2 → f3 for each element in D, totaling in 2L presigned transaction flows,
each consisting of 3 transactions. This process, being somewhat informal, we call the ColliderVM
protocol. Its offline phase we illustrate in Figure 2.

9We have freedom in choosing the elements of D, as long as it is easy to check membership in D via a Bitcoin
script. For example D could include all integers between 0 and 2L − 1.
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Generalizing the result to a function f split into k subfunctions f1, . . . , fk, we conclude the
following.10

Proposition 1. Suppose that a function f : X → {0, 1} can be split into k subfunctions f1, . . . , fk
such that f(x) =

∧k
i=1 fi(x), and suppose that each fi fits into a single Bitcoin transaction. Then,

there is a ColliderVM protocol such that

• There are 2L presigned flows of k presigned transactions in total, each evaluating a different
subfunction fi, for 1 ≤ i ≤ k.

• An honest operator needs to perform B − L bits of work to evaluate f .

• A malicious operator needs to perform B − L/2 bits of work to cheat the system.

A reasonable setting of parameters could be L = 46 and B = 120. This way, we require 246 pre-
signed flows;11 an honest operator needs to perform 74 bits of work to evaluate f , while a malicious
operator needs 97 bits of work to break the system. Compare these numbers to ColliderScript [13],
which didn’t have any flexibility in parameter choice, always requiring 256 bytes of storage, around
86 bits of work from an honest operator, and 110 bits of work from an adversary. Furthermore,
ColliderScript has a computationally intensive preprocessing phase (83-93 bits of work) which is
not required here.

Choosing a security parameter. A natural question to ask is how high should we set the
bound on work required by an adversary to break the system. While a standard choice is 128-bit
security, we argue that for some applications, such as L2 bridges in Section 3.2, a significantly lower
value suffices. The construction in Section 3.2 has B − L/2 bits of security per deposit, meaning
that if deposits are sufficiently small, the adversary is only limited to griefing attacks (i.e. those
that are not profitable but simply intended to cause damage), as expending intensive computational
resources of the same type needed to break the protocol is better utilized towards, say, mining for
the Bitcoin network. Indeed, as of today (April 2025), mining a Bitcoin block requires, on average,
78 bits of work, yielding a block reward of 3.125 BTC.

Thus, the security parameter may be set even lower. For instance, for L = 36 and B =
100, we require only 236 presigned flows; an honest operator needs to perform 64 bits of work to
evalute f , while a malicious operator needs 82 bits of work to break the system. We illustrate the
computational complexity gap between honest and malicious in Figure 3.

What properties of the computational gap are needed? The scheme we described works
in expectation. But is this sufficient? It might be more appropriate if for a given upper bound
on the adversary’s computational power it will have only a small chance of successfully cheating
(i.e. creating a convincing proof). For instance, if there is a 1 in a 1000 chance that the adversary
succeeds in finding for the desired x and x′ a collision (an r and r′ so that H(x, r)|B = H(x′, r′)|B),
then one in a thousand attempts will yield a faulty proof.

The advantage in our scheme stems from the birthday paradox, so it means that if an adversary
invests T time, it has a chance of T/2B−L to succeed.

Another important issue is the amount of memory the attacker needs. In general, to find
collisions, the best known algorithm with reasonable time requires memory proportional to the

10This way, to implement stateful computation, presigned transactions provide logic persistence, while the hash
collision-based commitment provides data persistence.

11Since signature messages are hashed with SHA256 [40, 41], revealing this many signatures is still secure.
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Figure 3: For chosen parameters B and L, and honest operator needs to perform B − L bits of
work, while a malicious operator needs to perform B −L/2 bits of work. Thus, the computational
complexity gap between them is exactly L/2 bits of work, where 2L is the number of presigned
flows.

square root of the size of the range on which we are searching for collisions. In our case this is 2L/2,
much smaller than the time which is 2B−L/2. Therefore, the memory requirement alone would not
significantly hinder the attack. It is an interesting direction to find conditions where in order to be
successful, the adversary is required to use a lot of memory.

2.2 From double to triple collisions

It is possible to further increase the work an adversary needs to do at the expense of redundancy
in Bitcoin script. For this, we construct a scheme that is robust against an adversary capable of
finding two valid B-pairs (x, r) ̸= (x′, r′), but not three of them.

Suppose that any two subfunctions (fi, fj) can fit into a single transaction and suppose that

f =
∧k

i=1 fi. Then, we construct a ColliderVM protocol where there is a transaction for each pair
of subfunctions (fi, fj) where 1 ≤ i < j ≤ k. Figure 4 provides an example of such a construction
for k = 3.

Consider a given flow of transactions tx1 → . . . → txq for q =
(
k
2

)
, corresponding to the

computation of f = f1∧f2∧, · · · fk. If only two types of inputs, x and x′ were used for all the pairs,
then no matter how x and x′ are partitioned among the pairs of transactions, either x or x′ was
computed and approved on all of {f1, f2, . . . fk}.

If this is not true, then it cannot be the case that there is a subfunction fi where for all the
pairs of the form (fi, fj) the input was always x (and similarly for x′), since this would mean that
x satisfies all f1, f2, . . . fk, contradicting the assumption. So breaking such a system necessarily
implies finding three colliding valid B-pairs. We conclude the following.
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Check that
1.  provided in the witness satisfies 
2. A valid signature of  is provided
3. For a provided , it holds 

Figure 4: A ColliderVM protocol flow resilient against a double collision. No matter how x
and , x′, where x ̸= x′, are distributed among the transactions, at least one of them evaluates all
subfunctions f1, f2, f3. The protocol breaks only if a triple collision (x, x′, x′′) is found.

Proposition 2. Suppose that a function f : X → {0, 1} can be split into k subfunctions f1, . . . , fk
such that f(x) =

∧k
i=1 fi(x), and suppose that each pair of subfunctions (fi, fj) fits into a single

Bitcoin transaction. Then, the ColliderVM protocol described above satisfies:

• There are 2L presigned flows of
(
k
2

)
presigned transactions in total, each evaluating a different

pair of subfunctions (fi, fj).

• An honest operator needs to perform B − L bits of work to evaluate f .

• A malicious operator needs to perform B − L/3 bits of work to cheat the system.

Here, much more lenient parameters can be chosen, allowing a larger gap for less preprocessing
work. For example, L = 39 and B = 110. This way, we require 239 presigned flows; an honest
operator needs to perform 71 bits of work to evaluate f , while a malicious operator needs 97 bits
of work.

On the flip side, this approach introduces a nontrivial Bitcoin script size overhead. While the
computation consists of k subfunctions, the number of transactions we are using is

(
k
2

)
, where each

transaction involves computing 2 subfunctions. Overall, this gives a multiplicative overhead of
2
(
k
2

)
/k = k − 1. Despite the significant overhead, we believe this kind of construction is especially

useful in cases where the bottleneck is not necessarily the script size but Bitcoin’s 1000 element
stack size limitation.

A lower bound. One might wonder whether a better splitting of f =
∧k

i=1 fi into transactions is
possible so that we achieve a better multiplicative overhead. We argue that as long as we’re limited
to two subfunctions per Bitcoin transaction, this is not possible, at least if we are pessimistic about
the behavior of the subfunctions, meaning that it is possible to satisfy k− 1 of them and not all of
them (for any k − 1 subset).

Proposition 3. A ColliderVM protocol for f =
∧k

i=1 fi as in Proposition 2 requires at least
(
k
2

)
presigned transactions.

Proof. Suppose to the contrary that such a protocol exists. This implies there is a pair of distinct
subfunctions (fi, fj) that don’t appear together in a transaction. If there are x and x′ where x
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satisfies all subfunctions but fj and x′ satisfies all subfunctions but fi, then we claim that it is
possible to cheat.

Suppose we have an adversary with two valid B-pairs, (x, r) and (x′, r′). They can cheat
the system as follows: the adversary partitions the presigned transactions into two sets: S1, which
includes all transactions containing fi, and S2, the rest (those not containing fi). Then, by providing
(x, r) as input to S1 and (x′, r′) as input to S2, the adversary guarantees that fj is not evaluated on x
and fi is not evaluated on x′, but the execution nevertheless succeeds, which is a contradiction.

Higher order collisions. Similar constructions are possible for higher order collisions. We don’t
explore them in this work, since we believe the script size overhead to be too large.

3 Extensions and Applications

First, we note that the aforementioned ColliderVM protocol can be extended to multiple operators
and signers. This is done as follows

• Instead of a single signer signing on the presigned transactions, all m signers are required to
sign them, and the locking scripts of UTXOs check for the signature of all m signers;

• Instead of the signers creating |D| = 2L flows for a single operator, they do the same for each
of the n operators.

This way, the ColliderVM protocol has safety as long as 1 out of m signers is honest (preventing
m signatures on invalid transactions), and liveness as long 1 out of n operators is honest (making
sure a presigned transaction flow reaches the Bitcoin chain by at least 1 active operator).

Below, we list important applications of the ColliderVM protocol, which applies to the extended
m-signer n-operator version as well.

3.1 Onchain computation delegation

A prototypical use case for stateful computation, as enabled by ColliderVM, is for computation
delegation, which is achieved through the use of a proof system. Performing computation directly
onchain is expensive, hence, it is beneficial to delegate the computation to a prover, and only
perform verification of said computation onchain, as enabled by the proof system. In fact, an
exponential amount of computation can be verified onchain compared to the onchain footprint,
which in practice makes the verifier cost “nearly constant.”

Unfortunately, even a cheap verifier program is unlikely to fit into a single transaction on Bitcoin
due to the strict Bitcoin script limitations, such as stack size, opcode availability, and locking script
size. As a result, the verifier must be split into multiple transactions.

To this end, a promising proof system choice to be deployed on top of Bitcoin is Circle
STARK [12], which uses a small field, making it feasibly computable.12 In fact, an implemen-
tation [1] of a verifier for this proof system uses about 3 million opcodes.

Alas, the implementation [1] does not fall into our framework, as it assumes the existence of
OP CAT in Bitcoin script, allowing it to use hashes, such as SHA256 via OP SHA256, counting as a

12Bitcoin script has reduced expressivity due to the absence of many common opcodes such as string operations,
multiplication, and logic operations [35, 34]. This, in turn, necessitates the emulation of these common operations
with a large number of opcodes. For example, multiplication over a 31-bit field can be done with ∼ 1000 opcodes
[8, 9]. This is a severe limitation, as due to the limited size of a Bitcoin block, at most ∼ 4 million opcodes can fit
inside it across all transactions combined.
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single opcode each. Nevertheless, as there are only a few thousand invocations of OP SHA256 in
that implementation, if we replace them with emulations of hashes in “Small Script”,13 The total
program size only expands moderately. Indeed, by using BLAKE3, which admits a ∼ 45K opcode
implementation, we estimate in Section 4.3 that the verifier program size becomes ∼ 80 million
opcodes. Furthermore, by using a Bitcoin-friendly hash function, we conjecture the verification
cost to be smaller by at least an order of magnitude.

Compared to BitVM2. In contrast, BitVM2-based protocols use a pairing-based SNARK,
such as Groth16 [11], with verifier script sizes being in the gigabytes,14 necessitating a fraud-proof
system to only evaluate part of the verifier program onchain. BitVM2 protocols have a 26 bytes-
per-input-bit overhead [2] in cross-transaction storage, due to the Winternitz signatures, requiring
pairing-based proof systems, which enjoy a shorter proof size at the expense of onchain verifier
program size, compared to that of a STARK. In contrast, in ColliderVM, the cost depends on the
implementation of H(x, r)|B. As an example, using BLAKE3 [15], which requires 45K opcodes to
hash 512 bit messages, yields an overhead of 88 bytes-per-bit. However, we note that

• With a Bitcoin-friendly hash function, this cost can be brought significantly down;

• As mentioned in Section 4.3, for common applications such as a STARK verifier, it is possible
to commit to only parts of the input, which further reduces the overhead.

3.2 L2 bridges

ColliderVM can also be used to implement bridges to L2 protocols. Below, we give a high-level
outline of one possibility of what such a protocol can look like. We begin by presenting the
participating parties:

• Users willing to deposit and withdraw from the L2 network using the bridge, as well as
perform transactions on top of the L2 blockchain;

• L2 Sequencers responsible for creating new blocks for the L2 blockchain, as well as generating
proofs of said blocks; They are needed for liveness.

• (Bridge) operators responsible for handling deposit and withdraw requests from users;

• Signers who provide signatures during each user deposit operation to facilitate the security
of the protocol. They are not needed at withdrawal.

For the protocol setup, we assume there are n operators and m signers. As in the BitVM2 bridge,
the security of our protocol relies on the assumption that at least 1 operator and 1 signer are
honest. Our protocol can support any number of users, as well as that of L2 sequencers, assuming
the presence of an L2 consensus protocol for the latter to govern L2 block creation.

Consider a simple end-to-end scenario involving two users, Alice and Bob, which proceeds as
follows:

13As mentioned in [13], since 2010, Bitcoin script is a language split in two: “Big Script,” a set of opcodes used to
manipulate signatures, hashes and other cryptographic objects; and “Small Script,” a set of opcodes that do arbitrary
computations but only on 32-bit inputs. Because Big Script only supports equality checking with OP EQUAL, we are
forced to use Small Script and emulate the hashes with arithmetic opcodes.

14This costs stems from emulating large-field arithmetic in Bitcoin, as required in pairing-based proof systems, see
for example [42]. STARKs, which can operate with significantly smaller field sizes, lend themselves to more efficient
Bitcoin script emulation [8, 9].
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1. Alice deposits 1 BTC into the L2;

2. Over the L2, Alice transfers 1 BTC to Bob;

3. Bob withdraws 1 BTC from the L2.

Below, we describe how the protocol parties act to facilitate the operations involved in this scenario.
The description provided in this section is only for illustrative purposes, as a full specification of
such a bridge protocol is beyond the scope of this note.

Deposit phase. Alice participates with the signers to sign transactions as follows:15

1. Alice creates a 1 BTC deposit transaction txAlice, transferring the funds to a multi-signature
of the m signers;

2. For each of the n operators:

(a) 2L presigned transaction flows are created according to Figure 2 or Figure 4 of some pro-
gram V (to be specified later), split into q+1 transactions for each flow, {txi1, . . . , txiq, txiEnd}i∈D,
where

• txij each computes a subprogram of the verifier V ;

• The public key the signature of the transactions txij are checked against (as specified
in Figure 2) is that of the m signers and the given operator;

• The final presigned transaction in each flow, txiEnd, is different than the others:

– It does not compute a subprogram of the verifier;

– The final UTXO pays Alice’s 1 BTC to the given operator;

– It has a second input which spends Alice’s deposit transaction txAlice.

(b) The presigned transaction flows are stored by the given operator.

3. Alice uploads her deposit transaction txAlice onchain, which at the end of the deposit process
is the only new transaction existing onchain.

The transaction flows above, which are illustrated in Figure 5, will be used during a future
withdraw phase to redeem the operator for the 1 BTC he paid out of pocket to Bob by transferring
Alice’s 1 BTC to them. Therefore, the program V , on the correct execution of which the operator’s
payment is conditioned on, should reflect the fact that the operator indeed paid 1 BTC to Bob.
Naturally, following Section 3.1, to reduce onchain computational cost, it is preferable that V is a
verifier of a proof system rather than a program that checks a statement of interest directly.

In our case, the verifier program V , before releasing the funds to the operator, will check the
validity of the following inputs:

1. A Bitcoin SPV proof for transaction txBob where the operator pays 1 BTC to Bob (it is
associated with Alice’s deposit transaction txAlice;

2. Proof of all the state transitions of the L2 from the moment of deposit;

3. Proof that Bob indeed burned 1 BTC over the L2 (to withdraw it).

15While we also check for an operator’s signatures during the transaction flow, we don’t require operator interaction
during deposit, and can instead have the operator sign during withdrawal (i.e., the online phase).
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deposit

pay to
operator

onchain

offchain

Figure 5: The presigned transaction flow which is set up during the deposit phase, at the end of
which, only Alice’s transaction is uploaded onchain. The verifier program V is split into q subpro-
grams V1, . . . , Vq, such that each transaction in the flow computes one of them. The ColliderVM
construction is used to ensure input consistency between verifier subprograms, on which we explic-
itly elaborate in Section 4.3.

We don’t provide an argument here on why the above is sufficient to ensure the protocol is
protected against malicious behavior, but, nevertheless, some remarks are still in order.

Remark 1. In Step 1, the requirement to associate the txAlice with txBob is to uniquely couple the
deposit and withdraw together. Without it, a malicious operator could redeem multiple deposits with
a single withdrawal.

Remark 2. Step 2 guarantees that the L2 chain provided is correct, but it does not guarantee that
it is also canonical. This was addressed by Alpen Labs [5] via proposing to post the canonical L2
state to Bitcoin, ensuring uniqueness through Bitcoin’s consensus.16

Remark 3. In fact, SPV proofs on their own, as mentioned in Remark 1, are not secure over long
periods of time, as an attacker could mine a private fork of Bitcoin. This is a nontrivial problem,
which, as mentioned in [23], would be solved via the introduction of a new opcode OP BLOCKHASH.

In the absence of the above, multiple teams have proposed ways to bypass this problem, with
varying tradeoffs, including superblocks [23], anchor blocks [5], and watchtowers [10].

L2 processing phase. Here, the sequencers process the L2 transactions. In particular, for our
scenario, they need to perform the following

1. Mint 1 BTC for Alice by providing a Bitcoin SPV proof of her deposit into the bridge;

2. Process Alice’s request to transfer her 1 BTC to Bob;

3. Process Bob’s request to burn his 1 BTC.

Throughout the sequencing of the L2 blockchain, the state is continuously being proven. In addition,
following Remarks 2 and 3, we incorporate the necessary changes to the base protocol.

Withdrawal phase. To facilitate Bob’s withdrawal, the operator begins by performing the fol-
lowing:

16In case of multiple L2 states being posted to Bitcoin simulatenously, one can employ a fork choice rule to
deterministically choose the canonical state among them.
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1. Operator pays Bob out of pocket via a transaction txBob, associating it with Alice’s deposit
txAlice;

2. Executes a prover program P to generate a proof π for V ;17

3. Initiates the deposit redeem process on Alice’s transaction txAlice by doing the following:

(a) Find r such that (π, r) is a valid B-pair H(π, r)|B = d ∈ D;

(b) Given π and r, execute the deposit redeem flow txd1 → . . . → txdq → tdEnd, where txdEnd

also spends txAlice, transferring the funds to the operator.

Remark 4. Using ColliderVM as above to build an L2 bridge brings a constant denomination UX
problem, as deposits (and withdrawals) in the system must always be for an integral multiple of a
fixed quantity of Bitcoins, which hurts the user’s convenience of using the bridge.

Here, this quantity can be arbitrarily small, while in BitVM2, which also has a similar problem,
there is a moderate lower bound on this quantity due to the cost of the assert transaction [23,
Section 5].

4 Feasibility and Tradeoffs

In this section we compare ColliderVM to BitVM2 for the goal of bridging from Bitcoin to an
L2. Currently, the feasibility of our approach depends on the existence of a Bitcoin friendly hash
function, namely a hash function that can be implemented with as few Bitcoin script opcodes as
possible. In addition, we conjecture that our approach is far from optimal, and further research
into it could reduce or eliminate many of its drawbacks.

Remark 5 (Comparison with BitVMX). BitVMX [19, 20] is an improved version of BitVM1 [22],
which we choose not to compare to ColliderVM. This is mainly due to the prevalence of BitVM2
in the industry, which also has a better security model than BitVMX by virtue of allowing any
onlooker to validate the protocol, while BitVMX has a closed validator set.

Nevertheless, we remark here that the BitVMX approach trades this off with other benefits. For
instance, the closed validator set allows for interaction in the defrauding process, which makes the
use of a proof system optional, as well as avoids the 26 bytes-per-bit Winternitz storage overhead
of BitVM2 completely.

Below, we highlight the main benefits and drawbacks of our approach for building an L2 bridge.
Then, we discuss its overall feasibility.

4.1 Benefits

Capital efficiency. The main selling point of our approach is the bridge operator’s capital effi-
ciency. In BitVM2, the bridge operator pays the withdrawer out-of-pocket, needing to wait for the
fraud proof window to get reimbursed, which should be sufficiently long to be secure. For Collid-
erVM, in contrast, the operator can process a user’s withdrawal and get reimbursed immediately.

17Only parts of π will be available to each individual verifier subprogram Vi. Indeed, it is only necessary to share
a commitment to π across transactions and decommit the relevant part. We discuss in Section 4.3 how to perform
this for a STARK verifier.
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Operator (non)interaction. During transaction presigning, the signers only need to know the
long-term public keys of the operators. This simplifies communication, as the operators don’t need
to be online during this phase to interact with the signers. In contrast, in BitVM2, the operators
must share one-time signature public keys to be encoded in the locking script.

Cross-transaction storage overhead. Since our approach doesn’t use one-time signatures,
instead replacing it with a hash collision puzzle, our storage overhead depends on how many opcodes
are required to evaluate the hash. As mentioned above, if we use a ∼ 45K implementation of
BLAKE3, as it hashes 512-bit message blocks, it yields an overhead of 88 bytes-per-bit, compared
to just 26 bytes-per-bit in BitVM2. Nevertheless, we believe this to be an overall benefit, as the
overhead becomes more favorable if we only commit to parts of the input (as in the STARK verifier
application in Section 4.3), and it can get even cheaper if an efficient hash function is used.

Simple flow. As seen in Figure 5, when compared to [23, Figure 7], ColliderVM does not rely
on fraud proofs and thus enjoys a drastically simpler presigned transaction flow compared to that
of BitVM2. This is beneficial not just in terms of safe implementation but also for analyzing the
security model, which, in the case of ColliderVM, does not involve economic incentives for the
onlookers.

Additional benefits. Other benefits for ColliderVM include not needing to perform the follow-
ing, which are required in the BitVM2 case:

• Keeping the presigned transactions public, to allow onlookers to defraud the computation;

• Having the operators keep their (possibly many) Winternitz signatures private, or forfeit their
ability to get reimbursed by the protocol.

4.2 Drawbacks

While ColliderVM enjoys some very attractive benefits, the current approach also has considerable
drawbacks. We discuss these from a more practical perspective in Section 4.3.

Presigned transaction processing and storage. ColliderVM requires a significant amount of
signer compute and operator storage for each deposit into the bridge. This places a limit on the
total number of deposits into the bridge that weren’t yet reimbursed due to withdrawals.

Offchain computational cost To reimburse a withdrawal, an operator needs to find a hash
preimage, which, due to the computational intensity of this task, could limit the withdrawal capacity
of the bridge.

Onchain computational cost. As discussed in the introduction, if our computation script f is
split into subfunctions f1, . . . , fk, BitVM2 has the benefit of only requiring maxi |fi| script size to
execute onchain in the worst case, as opposed to the entire cost of

∑
i |fi|, which is always required

by ColliderVM.
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4.3 Feasibility

We take the OP CAT-based Circle STARK verifier [1] for a Fibonacci-related statement as an
example. While it does not verify something generic, it also doesn’t employ some optimizations,
so we believe that a verifier for a complex statement, as in Section 3.2, might end up in the same
ballpark, if not lower in cost.

Our considered verifier has the following parameters

• Verifier script length is ∼ 3.5 million opcodes;

• There are ∼ 1700 calls to OP SHA256;

• The proof size is 26KB.

STARK verification mostly consists of M31 arithmetic and hash calls. Thus, if we replace calls
to OP SHA256 with emulated hashes, the cost will largely depend on the script size of the hash. For
example, since BLAKE3 costs 45K opcodes, the total cost becomes

3, 500, 000 + 1, 700× 45, 000 = 80, 000, 000.

However, if, say, a Bitcoin-friendly hash function costs 4K opcodes, the total cost becomes just

3, 500, 000 + 1, 700× 4, 000 = 10, 300, 000,

which is attractive since building a rollup on top of such a verifier can amortize this cost away.

Splitting the proof. As noted above, the proofs for the STARK verifier have a relatively long
length of 26KB. If we were to share the entirety of the proof across transactions, with BLAKE3,
this would result in an overhead of 88 bytes-per-bit to compute BLAKE3, incurring an additional
script cost of 18.3MB, which is non-negligible. As discussed above, switching to a Bitcoin-friendly
hash function could reduce it tenfold to just 1.8MB.

Finally, we note that ColliderVM allows “splitting the proof“ for a STARK verifier program,
i.e., making it so only parts of the proof are read by each subprogram. This means that less
data is shared across transactions, reducing storage overhead. Formally, instead of computing
f(x) = f1(x)∧f2(x)∧f3(x), where all subfunctions read the same input, it is possible to generalize
function evaluation to the equation

f(x, a, b, c) = f1(x, a) ∧ f2(x, b) ∧ f3(x, c),

where each subfunction can have an exclusive part of the input, meaning it does not need to be
shared across the transactions. In Figure 6 we give an example of how to save cross-transaction
storage overhead for the common task of multiple Merkle decommitments, a major cryptographic
task in STARK verification. Moreover, a general discussion over this equation and a comparison
to how splitting computation is done in BitVM is given in Appendix A.

Operating costs. The main drawback of our approach is its fairly expensive operating costs.
As mentioned in Section 2, for 97 bits of security (which, as discussed, might be too conservative),
we can choose the parameters L = 46 and B = 120. This will require, per deposit, 246 presigned
flows to be stored on a hard drive, and an operator will need to evaluate 274 hashes to process a
withdrawal. The tradeoff between security and the number of presigned flows is shown in Figure 3.
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Figure 6: A common operation in a STARK verifier is to read values from a Merkle tree and
perform some algebraic checks on the accessed values. In this diagram, V1 is responsible for reading
one value from the tree, V2 is responsible for reading another value, and V3 performs an algebraic
check with these values. In colors, red nodes represent values shared among transactions, with bold
nodes being actively accessed. In contrast, green nodes represent values that are given as regular
witnesses to a transaction. Note that the green values don’t need to be shared across transactions.
In practice, these Merkle decommitments constitute a significant fraction of a STARK proof.

If, instead, we opt for a triple collision construction, we will set the parameters L = 39 and
B = 110. This will require storing 239 presigned flows per deposit on a hard drive, and an operator
will need to evaluate 271 hashes to process a withdrawal. The tradeoff here is the increased Bitcoin
script size. More concretely, suppose the STARK verifier is optimized enough and can be split into
4 subfunctions, each ∼ 2 million in size (meaning the verifier costs ∼ 8 million opcodes). Then, the
construction will use

(
4
2

)
= 6 transactions, each ∼ 2 × 2 = 4 million in size, costing ∼ 24 million

opcodes overall. This construction significantly improves as the verifier cost decreases.

Estimating monetary costs. We would like to argue that the costs of operating ColliderVM
are low to moderate and that the costs of a successful adversarial attack are high. Fortunately for
the analysis, the dominant operations both for the legitimate users and for the attack are the hash
computation and these are the same as in Bitcoin mining. As a result, we can easily price these
operations in Bitcoin terms.

Take for example setting the parameters to L = 36 and B = 100. This requires 236 presigned
flows; an honest operator needs to perform 64 bits of work to evaluate f , while a malicious operator
needs 82. As mentioned, currently (April 2025) mining Bitcoin require 78 bits of work for which
the miner gets 3.125 BTC. Therefore the attacker needs to spend work equivalent to around 50
BTC. The legitimate operator, at least for the hashing part, needs work that is ≈ 3.125/214 BTC,
which is very roughly and very noisily $15.

We also need to consider about the signature generation cost from the presigned flow. Esti-
mating this in Bitcoin is harder, but the computationally dominant part of generating a Schnorr
signature is generating a random multiple of the generator. This is independent of the actual value
signed and can be computed in the background, so we do not expect it to require significant costs.
There are also many optimizations possible (e.g. batch exponentiation [27]).
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5 Conclusion

In this note, we have shown that presigned transactions, together with hash collision puzzles,
can be used to verify computation onchain and build L2 bridges without relying on fraud proofs.
Furthermore, it enables STARK verification on Bitcoin, which was previously too expensive to use
due to STARK’s longer proofs not combining favorably with contemporary methods to share data
across transactions.

Our construction relies on a 1-out-of-n honesty assumption and on the hardness of finding hash
collisions. While it has notable attractive benefits, such as avoiding the capital inefficiency problem
due to fraud proofs, it also has significant drawbacks. Nevertheless, we believe that our protocol is
far from optimal, and this approach is fruitful for enabling new applications on top of Bitcoin. In
particular, we identify the following avenues for further research:

1. Finding Bitcoin-friendly hash function implementations;

2. Optimizing STARK verifier implementations on top of Bitcoin;

3. Reducing the overall work of the signers;

4. Reducing the amount of data needed to be stored on a hard drive;

5. Increasing the computational gap between honest and malicious operators.

As a final note, interestingly, our construction can also be used in fraud proof mode of operation,
by including a defrauding process to the Bitcoin script. While this retains some of the fraud proof
limitations, it results in an overall simpler flow compared to current techniques of using fraud proofs
on top of Bitcoin. We leave research in this direction to future work.
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A Splitting computation in ColliderVM

Bitcoin scripts are limited by at most 4 million opcodes, and are required to use no more than 1000
stack elements. Therefore, if a function f doesn’t fit these requirements, we must split it into n
subfunctions f1, . . . , fn. One way to do it is as follows: For a function f : X → Y and a fixed y ∈ Y,
it holds that ∃x : f(x) = y if and only if there are additional values z1, . . . , zn−1 such that f1(x) =
z1, f2(z1) = z2, . . . , fn(zn−1) = y. This splitting satisfies that f(x) = fn(fn−1(. . . f1(x) . . .)), which
is how computation splitting is done in BitVM2 [22]. Here, however, we use another equivalent
way to split computation. To this end, suppose that f : X → Y, and let g1, . . . , gn : A → {0, 1} be
Boolean functions. For our splitting, we’ll require that

∃x : f(x) = y ⇐⇒ ∃α, a1, . . . , an : g1(α, a1) = 1 ∧ . . . ∧ gn(α, an) = 1.

We show below that these two ways to split computation into n subfunctions are equivalent.

{fi}i ⇒ {gi}i: Let α be a some commitment18 on (x, z1, . . . zn−1, y), and let ai be the decommit-
ment on zi−1 and zi (where we view z0 = x and zn = y). Then, define gi such that gi(α, ai) = 1 if
and only if fi(zi−1) = zi.

{gi}i ⇒ {fi}i: Let z0 = x = (α, a1), zn = y, and zi = (α, ai+1) for i = 1, . . . , n− 1. Then, define
fi such that fi(zi−1) = zi if and only if g(α, ai) = 1.

Write-once memory. To directly obtain a splitting of f into binary functions {gi}i we’ll assume
f is a Bitcoin script program with an additional access to write-once memory, only allowing to set
each memory address once. Then, we let g be a binary function that accepts a commitment to this
memory (including the input), together with decommitments to each memory address. Instead of
setting memory values itself, g will only check that the values are set up correctly, according to a
valid execution of f , and return 1 if all checks pass (implying g returns 1 if and only if f(x) = y).

Finally, we can split g into {gi}i by performing only some of these checks in each gi. Figure 6
illustrates this process for STARK verification. We also note that this allows us to use functions f
whose Bitcoin script implementation is not limited to at most 1000 stack elements, simply because
each gi can decommit only parts of the whole memory.

18To commit a vector (x, z1, . . . , zn−1, y) to a value α, we’ll simply let α be the root of a Merkle tree whose leaves
correspond to this vector. This allows decommitting each entry individually.

20

https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki
https://eprint.iacr.org/2024/1236
https://starkware.co/blog/implementing-a-bridge-covenant-on-op-cat-bitcoin/
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