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Abstract

Secure graph computation enables computing on graphs
while hiding the graph topology as well as the associated
node/edge data. This facilitates collaborative analysis among
multiple data owners, who may only hold a private partial
view of the global graph. Several works address this problem
using the technique of secure multiparty computation (MPC)
in the presence of 2 or 3 parties. However, when moving to
the multiparty setting, as required for collaborative analysis
among multiple data owners, these solutions are no longer
scalable. This remains true with respect to the state-of-the-
art framework of Graphiti (Koti et al., CCS 2024) as well.
Specifically, Graphiti incurs a round complexity linear in the
number of parties or data owners. This is due to its reliance
on secure shuffle protocol, constituting a bottleneck in the
multiparty setting. Additionally, Graphiti has a prohibitively
expensive initialisation phase due to its reliance on secure
sort, with a round complexity dependent on both the graph
size and the number of parties.

We propose emGraph, a generic framework for secure
graph computation in the multiparty setting that eliminates
the need of shuffle and instead, relies on a weaker primitive
known as Permute+Share. Further emGraph is designed to
have a lightweight initialisation, that eliminates the need for
sorting, making its round complexity independent of the graph
size and number of parties. Unlike any of the prior works,
achieving a round complexity independent of the number of
parties is what makes emGraph scalable.

Finally, we implement and benchmark the performance
of emGraph for the application of PageRank computation
and showcase its efficiency and scalability improvements
over Graphiti. Concretely, we witness improvements of up
to 80× in runtime in comparison to state-of-the-art frame-
work Graphiti. Further, we observe that emGraph takes under
a minute to perform 10 iterations of PageRank computation
on a graph of size 106 that is distributed among 25 parties/data
owners, making it highly practical for secure graph computa-
tion in the multiparty setting.

1 Introduction

Graphs are fundamental for representing and analysing com-
plex relationships in diverse real-world applications. However,
in many applications these graphs contain sensitive user in-
formation and are usually distributed across multiple data
owners. In such scenarios, performing computation while
hiding the graph topology and the associated sensitive data
is a challenge. For example, consider a financial transaction
graph where nodes (or vertices) represent bank accounts, and
edges represent transactions. Each bank (data owner) is privy
to only part of the transaction graph, related to their own
registered accounts (vertices) and the corresponding trans-
actions (edges). Nonetheless, banks would be interested in
analysing the global transaction graph for various reasons,
such as identifying fraudulent transactions, credit risk analy-
sis, etc. However, due to privacy constraints, and regulations
and commercial interests, banks cannot simply share this in-
formation with each other. Thus, there is a need for designing
techniques that allow data owners to collaboratively perform
computation on sensitive and distributed graph data while
ensuring privacy.

Secure graph computation [1,10,13,16,17,20] has emerged
as a powerful approach to address this challenge. It allows
realising diverse applications, including social network analy-
sis, recommendation systems [13], contact tracing [1, 10, 15],
transaction network analysis [8, 9, 17], graph neural network
training and inference [8, 20] etc, while ensuring privacy.
These works rely on the cryptographic technique of secure
multiparty computation (MPC). This technique allows a set
of 𝑛 parties to compute a function on their private inputs such
that an adversary controlling any 𝑡 < 𝑛 parties cannot learn
any information beyond the output. In this context of secure
graph computation via MPC, data owners can enact the role
of parties, with their local views of the graph as private inputs,
and the graph computation corresponds to the function. Al-
though, MPC can guarantee the privacy of graph data during
computation, it introduces overheads in terms of rounds (num-
ber of sequential interactions among the computing parties),
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communication (volume of the messages exchanged between
parties), and computation (the local operations performed by
each party). For large-scale real-world graphs, these over-
heads can significantly impact practicality.

To design efficient solutions, existing generic graph com-
putation frameworks [1, 10, 13] leverage the sparsity of real-
world graphs. They operate on a list-based graph represen-
tation to securely realise any message-passing graph algo-
rithm. The latter are stateful iterative algorithms where each
node/edge maintains state information. Each iteration in-
volves the following: (i) propagating information from ver-
tices onto their incident edges; (ii) receiving and aggregat-
ing data from incident edges onto vertices; (iii) using the
aggregated data to update the current state of each vertex.
Graphiti [10] forms the state-of-the-art MPC framework for
securely realising message-passing algorithms. Leveraging
the fact that many widely used graph algorithms rely on linear
aggregation functions (in step (ii)), Graphiti achieves round
complexity independent of the graph size, unlike the prior
works, making it highly efficient. Even for applications that
require non-linear aggregation, Graphiti outperforms prior
MPC solutions [1, 13].

Graphiti is designed primarily for the outsourced compu-
tation setting. In this setting, data owners do not directly
participate in the MPC computation. Instead, they delegate
these computations to a small set of servers hired on a pay-
per-use basis. Privacy is ensured as long as at least one server
remains honest and does not collude with other servers or the
data owners. However, this model may not be suitable for
all scenarios, as it requires data owners to relinquish direct
control over their data and trust that the non-collusion assump-
tion holds. Further, the data owners may be distributed across
regions with stringent privacy regulations that restrict data
movement beyond regional boundaries. In such cases, it may
be infeasible to identify and agree on a small set of servers to
outsource the computation. In contrast, a non-outsourced mul-
tiparty computation setting addresses these issues. Here, data
owners themselves enact the role of MPC parties, retaining
complete control over their data. Specifically, an honest data
owner’s privacy is guaranteed even if all other data owners
collude. Thus, non-outsourced setting may be more desirable
in certain scenarios when there are multiple data owners.

To account for the aforementioned scenarios, Graphiti can
be instantiated in the non-outsourced setting by using a
generic MPC protocol that supports arbitrary number of par-
ties. However, unlike the outsourced setting, which benefits
from customised small-party computation protocols, generic
MPC protocols incur higher overheads in terms of both rounds
and communication, thereby affecting scalability. Specifically,
in the non-outsourced multiparty scenario, Graphiti suffers
from two main limitations—(i) it requires an expensive ini-
tialisation phase that incurs a round complexity that is lin-
early dependent on both the graph size and the number of
parties; additionally, communication complexity is log-linear

in graph size, (ii) each iteration of message-passing incurs a
round complexity that is linearly dependent on the number
of parties. A higher round and communication complexity
is a critical bottleneck, as it directly impacts the runtime of
the protocol. For instance, parties could be geographically
distributed over a WAN. Here, the high round trip time (RTT)
and low bandwidth amongst them, coupled with the higher
round and communication complexity of the MPC protocols,
can result in an impractical run time for securely performing
graph computation. This motivates us to ask the question:

“Can we design a framework for secure graph computation
in the multiparty setting with round complexity independent
of both the graph size and the number of parties while min-
imising the communication complexity?”

We answer this question affirmatively and propose a novel
framework, emGraph. To put our solution in perspective, we
note the following. Keeping efficiency at center stage when
designing secure graph computation frameworks, the first ob-
servation is to operate on a list-based representation of the
graph that allows evaluating graph algorithms as message-
passing algorithms [13] rather than operating on matrices.
However, since the list is required to be reordered multiple
times in each message-passing iteration, this requires relying
on expensive secure sort operation. When performed across
several iterations, this forms a bottleneck and significantly
impacts overall efficiency. To overcome this, [1] observed
that the need for secure sort across iterations can be replaced
by that of a secure shuffle protocol that is known to be more
efficient. However, [1] still requires one invocation to a secure
sort protocol to be performed as part of a one-time initialisa-
tion, which continues to constitute a major efficiency bottle-
neck. Despite improving over [1], the work of [10] continues
to suffer from the same efficiency bottleneck. In this regard,
emGraph completely eliminates the need for the secure sort
protocol. Moreover, the need for secure shuffle is also circum-
vented and instead replaced by a much more efficient primitive
of Permute+Share. Eliminating the secure sort and shuffle
operations allows emGraph to witness tremendous efficiency
improvements and significantly improve its scalability. We
outline our key contributions next.

1.1 Contributions

We design a generic and efficient end-to-end framework,
emGraph, for secure graph computation in the multiparty set-
ting. emGraph enables the secure realisation of any message-
passing graph algorithm when the graph (and its associated
data) is distributively held by multiple data owners. emGraph
operates in the preprocessing paradigm which allows to of-
fload input-independent MPC computations to a preprocess-
ing phase to pave the way for a fast input-dependent online
phase. The distinction between the two phases is crucial in
practice, as the online phase determines the protocol’s re-
sponse time, while the preprocessing phase can be performed
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well in advance without impacting the response time. Given
the significance of achieving a fast response time, unless oth-
erwise stated, the complexities stated subsequently refer to the
online complexities. Below, we highlight our contributions:
• Novel design paradigm of emGraph: emGraph leverages
the fact that data owners themselves participate in the pro-
tocol and have direct access to their input data. Specifically,
each party or data owner has in its local view, a subgraph of
the global graph G, which includes the vertices it owns, their
neighbouring vertices, and the edges between these. emGraph
leverages this local information to design a new and efficient
Decompose-Compute-Combine (DCC) paradigm for secure
message-passing on the global graph G by: (i) decomposing
G into 𝑛 subgraphs G𝑖 for 𝑖 = 1 to 𝑛, where G𝑖’s topology
is known to a distinct party 𝑃𝑖 , (ii) computing multiple iter-
ations of the message-passing algorithm on the subgraphs
G𝑖 in parallel, instead of doing the same on the global graph
G, (iii) combining the results on these subgraphs to realise
message-passing on the global graph G. Steps (i)-(iii) are de-
signed to leverage knowledge of G𝑖’s topology by 𝑃𝑖 such that
the round complexity is made independent of the number of
parties1. In this way, we design emGraph to scale efficiently
in the multiparty setting. Similar to Graphiti, these computa-
tions are performed in two phases: a one-time initialisation
phase, and an iterative message-passing phase. To improve
the efficiency of these phases, we introduce novel techniques.
In doing so, we observe that emGraph outperforms Graphiti
even in the small-party setting, as discussed next, with the
improvements reported in Table 1.
• Lightweight initialisation phase: Computations that re-
main consistent across iterations of message-passing are
moved into a one-time initialisation phase. This initialisa-
tion phase is prohibitively expensive in Graphiti, as it requires
secure sorting operations. Specifically, it incurs a round com-
plexity dependent on the number of parties and the graph
size, i.e., O(𝑛 log(N)), where N denotes the total number of
vertices and edges in G. Further, it has a communication com-
plexity that is log-linear in the graph size, i.e. O(𝑛N log(N)).
In contrast, leveraging the fact that the topology of each sub-
graph is known to a distinct party, we design a lightweight
initialisation phase for emGraph that completely eliminates
the need for secure sorting. Consequently, our initialisation
phase achieves constant round complexity, independent of
the graph size and number of parties. Further, it achieves an
improved communication complexity of O(𝑛|E|), linear in
both the number of parties and the graph size.
• Improved message-passing phase: The goal of this phase
is to iteratively update the state of the vertices in G. In
Graphiti, each iteration incurs a round complexity that is de-
pendent on the number of parties, 𝑛. This dependence on 𝑛

1While emGraph is designed in preprocessing model, its round complex-
ity remains independent of the number of parties, even when operating in an
all-online setting.

arises from the reliance on a secure shuffle protocol, which
allows secret shares of a list (in this case, the list representa-
tion of G) to be reordered based on a random permutation not
known to any party. This protocol incurs O(𝑛) rounds in the
multiparty setting [7]. In contrast, in our approach, message-
passing happens in the subgraphs whose topology is known
to one of the parties. Thus, leveraging this information, we
modify and enhance each iteration of message-passing to only
rely on a weaker primitive known as Permute+Share [3, 7],
instead of shuffle. Permute+Share allows secret shares of
a list to be reordered based on a permutation known to one
party and can be realised in O(1) rounds, even in multiparty
setting.
To give a more detailed characterisation of the round com-
plexity, note that both, Graphiti and emGraph realise each
iteration of message-passing through the primitive opera-
tions of Propagate, ApplyE,Gather and ApplyV. Informally,
Propagate transfers data from the source vertex to its out-
going edges. ApplyE updates the data on the edges based
on a user-defined function 𝑓AE. Gather aggregates the data
received on the incoming edges of a vertex, and ApplyV up-
dates the vertex’s state based on the aggregated data from
Gather as per a user-defined function 𝑓AV. The secure real-
isation of these primitives enables the secure realisation of
any message-passing graph algorithm. In Graphiti, this in-
curs a round complexity of O(𝑛 + rAE + rAV), where rAE and
rAV denote the round complexity of securely computing 𝑓AE

and 𝑓AV. On the other hand, emGraph incurs round complex-
ity independent of number of parties, i.e., O(rAE + rAV) while
maintaining the same communication as that of Graphiti.

Phase Ref Rounds Communication

Initialisation Graphiti [10] O(𝑛 · log(N)) O(𝑛 ·N · log(N))
emGraph O(1) O(𝑛 · |E |)

Message-passing Graphiti [10] O(𝑛+ rAE + rAV) O(𝑛 ·N+ (cAE + cAV) ·N)
emGraph O(rAE + rAV) O (𝑛 ·N+ (cAE + cAV) · |E |)

Given graph G = (V , E) , |V | denotes number of vertices, | E | denotes
number of edges and N = |V | + | E |.
rx and cx denote the round and communication complexity of function
𝑓𝑥 when securely realised via MPC. Here, AE,AV denote the functions
to be applied as part of ApplyE,ApplyV, respectively.

Table 1: Comparison of the initialisation and one iteration of
message-passing.
• Amortised Permute + Share: Naively using the
Permute+Share primitive in our framework results in round
complexity that is independent of 𝑛, but it introduces a sig-
nificant communication overhead that is quadratic in 𝑛, i.e.,
O(𝑛2 (N)). This is because the naive approach requires per-
muting the same input list according to 𝑛 different permuta-
tions, each known to a distinct party. This requires 𝑛 parallel
invocations of Permute+Share, where each invocation has a
communication complexity O(𝑛(N)). Instead, by leveraging
the fact that the input list remains the same across all 𝑛 in-
vocations, we design an Amortised Permute+Share protocol
that significantly reduces the online complexity. This proto-
col achieves the same online communication complexity as
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that of a single invocation of the Permute+Share protocol
while maintaining constant round complexity. Elaborately, the
Amortised Permute+Share protocol takes as input a secret-
shared list and outputs 𝑛 secret-shared lists, where each list
is permuted according to a permutation known to a distinct
party. Note that the Amortised Permute+Share protocol can
be of independent interest, as it enables multiple permutations
to be performed on a secret-shared list efficiently.
• Benchmarks: We implement and benchmark emGraph to
demonstrate its practicality and improvements over Graphiti.
Specifically, we compare the initialisation phase of emGraph
with that of Graphiti while varying graph size (N = |V| + |E|)
and number of parties. We observe improvements of 2200×
in runtime and 270× in communication for a graph of size
105 distributed among 15 parties. Similarly, we compare the
message-passing phase of emGraph and Graphiti across vary-
ing numbers of parties and observe a runtime improvement of
11× for 𝑛 = 25 parties on a graph of size 105. When consider-
ing the total runtime for 10 iterations of PageRank computa-
tion, emGraph achieves an 80× improvement in runtime and
a 106× improvement in communication compared to Graphiti
for a graph of size 105 and 15 parties. Moreover, we note
that emGraph is highly scalable and takes under a minute
to complete PageRank computation on a graph of size 106

distributed among 25 parties.

Organisation: §2 discusses the related works that design
generic secure graph computation frameworks. Preliminar-
ies are discussed in §3. Our Decompose-Compute-Combine
(DCC) approach for realising message-passing graph algo-
rithms is discussed in §4. This is followed by §5 where the
end-to-end framework of emGraph is detailed. Finally, bench-
mark results are provided in §6, followed by the conclusion
in §7. Additional details such as the framework of Graphiti,
additional experimental results, security proofs, etc. appear in
Appendices §A-§D.

2 Related works

Secure graph computation has gained significant attention
due to its applicability in privacy-sensitive scenarios. Here,
we discuss some of the relevant works that look at design-
ing generic secure graph computation frameworks. The work
of [13] was the first to propose a generic framework for secure
graph computation. Leveraging the sparsity in real-world net-
works, [13] introduced the GraphSC framework, that operates
on a list representation of the graph rather than its adjacency
matrix. This design choice reduces computational complexity
from O(|V|2) to O(|V| + |E|), where |V| and |E | denote the
number of vertices and edges, respectively. At a high level,
GraphSC realises message passing using the primitives of
Scatter and Gather. Informally, Scatter involves propagating
data from vertices to their outgoing edges, while Gather ag-
gregates data from incoming edges to update the state of

vertices. GraphSC relies on garbled circuits (GC) [19] for the
secure realisation of Scatter and Gather. While this approach
ensures constant round complexity, it incurs prohibitively high
communication and computation costs.

Towards this, [1] proposed a secret-sharing-based (SS-
MPC) realisation of GraphSC. SS-MPC protocols are known
for their reduced communication costs compared to GC but
suffer from round complexity proportional to the circuit’s
multiplicative depth. For a naive realisation of Scatter and
Gather primitives, this depth scales linearly with the graph
size (|V| + |E|). [1] introduces a round-optimised (RO) so-
lution to improve this and achieves a round complexity of
O(log( |V| + |E|)) for message passing at the expense of in-
creased communication overhead. Building upon [1], the
work of [10] designs Graphiti by introducing novel algorithms
for realising Scatter and Gather with round complexity inde-
pendent of the graph size, significantly improving efficiency.
Specifically, it leverages the fact that several widely used real-
world graph algorithms rely on linear aggregation operations
during Gather to design a solution to realise message pass-
ing in rounds independent of graph size. However, Graphiti
is tailored primarily for the outsourced computation setting
that leverages customised small-party MPC protocols. When
instantiated with generic MPC protocols, it incurs a round
complexity that scales linearly with the number of parties.
Further, it suffers from an expensive initialisation phase that
scales linearly with a number of parties and graph size, thereby
hindering scalability in the multiparty setting.

To address secure graph computation in generic multiparty
settings, [20] proposed alternative approach. [20] considers se-
cure training and inference of graph neural networks (GNNs)
in a multi-party setting. While their framework can theoret-
ically support any message-passing graph algorithm, it as-
sumes a highly restrictive security model where no two par-
ties participating in the protocol are allowed to collude. By
adopting this weaker security model, [20] aims to optimise
efficiency but still suffers from a round complexity depen-
dent on graph size. Moreover, it leaks information about the
number of edges between parties, which may reveal sensitive
details about the graph topology.

3 Preliminaries

Threat model: For the non-outsourced scenario we consider,
we rely on a general-purpose multiparty computation protocol
in the semi-honest setting. Let P = {𝑃1, . . . , 𝑃𝑛} denote the
set of 𝑛 parties, each connected via pairwise private and au-
thenticated channels in a synchronous network. We assume a
static, semi-honest, probabilistic, polynomial-time adversary
A capable of corrupting up to 𝑛−1 parties in P. We prove
security using the standard real-world/ideal-world simulation
paradigm. Our framework operates over a ring algebraic struc-
ture, with Z2ℓ denoting the ring of ℓ-bit elements.

We rely on additive secret sharing, where a value x ∈ Z2ℓ

4



is said to be ⟨·⟩-shared (or additively shared) over Z2ℓ if
each party 𝑃𝑖 ∈ P holds a share ⟨x⟩𝑖 ∈ Z2ℓ such that x =

⟨x⟩1 + · · · + ⟨x⟩𝑛. This secret sharing scheme is linear, i.e.,
given shares of x,y ∈ Z2ℓ and public constants c1,c2 ∈ Z2ℓ ,
parties can non-interactively generate shares of c1x+ c2y. To
enable secure computation over shares, we rely on a one-time
key setup [2, 4, 11, 12, 14] that establishes common random
keys for a pseudo-random function (PRF) among the par-
ties. Using these keys, subsets of parties can non-interactively
sample a common random ℓ-bit string v ∈ Z2ℓ . This enables a
party to non-interactively generate ⟨·⟩-shares of a value v as
described in §A. However, the reconstruction of a ⟨·⟩-shared
value towards a party 𝑃𝑖 ∈ P, requires interaction where every
party to communicates its share to 𝑃𝑖 .

Depending on the graph algorithm to be computed,
emGraph may may require additional MPC primitives such
as multiplication, secure comparison, equality, etc. These are
abstracted via the FMPC functionality, which takes ⟨·⟩-shared
inputs from the parties and outputs the ⟨·⟩-shares of the com-
puted function result. In this work, we instantiate FMPC us-
ing the protocols of [5] in the semi-honest setting. Finally,
emGraph also relies Permute+Share protocol of [3,7], which
takes a secret-shared list T and a permutation 𝜋𝑖 known only
to a designated party 𝑃𝑖 . It outputs ⟨TO⟩ such that TO = 𝜋𝑖 (T).
Further details of Permute+Share appears ahead.
System model: We consider a directed graph G = (V,E)
that is distributed across 𝑛 parties (data owners) in P. Each
party 𝑃𝑖 ∈ P owns a subset of vertices or nodes, denoted as
V𝑖 , such that V =

⋃𝑛
𝑖=1V𝑖 . Each vertex v ∈ V is associated

with a public label, v.id, where the label as well as the infor-
mation about which party owns this vertex is known to all
parties. Thus, V is known to all the parties. Each directed
edge e ∈ E consists of (e.src,e.dst), representing the source
and destination label, respectively. Information about exis-
tence of edges e such that both e.src,e.dst ∈ V𝑖 , is known
only to 𝑃𝑖 . For edges where e.src ∈ V𝑖 and e.dst ∈ V𝑗 with
𝑖 ≠ 𝑗 , the existence of e is known to both 𝑃𝑖 and 𝑃 𝑗 . We let E𝑖

represent the set of all edges e ∈ E where e.dst ∈V𝑖 , and have
E =

⋃𝑛
𝑖=1 E𝑖 . Each vertex and edge may also be associated

with data components. The data component of a vertex v ∈ V,
denoted as v.data, is private to the party that owns v. Similarly,
the data component of an edge e ∈ E, is denoted as e.data.
For edges where both e.src,e.dst ∈ V𝑖 , the data component is
private only to 𝑃𝑖 . For edges where e.src ∈ V𝑖 and e.dst ∈ V𝑗

with 𝑖 ≠ 𝑗 , the data is known to both 𝑃𝑖 and 𝑃 𝑗 .
Secure Shuffle and Permute+Share: Let T ∈ ZN

2ℓ be a list of
N entries, where each entry is from Z2ℓ . The list T is additively
secret-shared among all parties in P, such that each entry of T
is shared across the parties. Let ⟨T⟩𝑖 ∈ ZN

2ℓ denote the share of
party 𝑃𝑖 ∈ P. Secure shuffle’s aim is to take ⟨·⟩-shares of T as
input and generate ⟨·⟩-shares of a shuffled list TO ∈ ZN

2ℓ , where
TO = 𝜋(T), i.e., T shuffled using a random secret permutation
𝜋 (not known to any party) where TO [𝑖] = T[𝜋(𝑖)].

Secure shuffle can be constructed using a weaker build-

ing block called Permute+Share, as described in [3, 7]. The
Permute+Share protocol allows shuffling a secret-shared
list using a permutation known to one party. Specifically,
the Permute+Share protocol takes as input a secret-shared
list T and a permutation 𝜋𝑖 known to a designated party 𝑃𝑖 ,
and outputs ⟨TO⟩ such that TO = 𝜋𝑖 (T). Secure shuffle can
then be realised by performing 𝑛 sequential invocations of
Permute+Share, where each party contributes a random per-
mutation ensuring that the final permutation applied is a com-
position of all permutations that is not known to any party.

The Permute+Share protocol described in [3] consists of
two phases: preprocessing and online phase. During the pre-
processing phase, the parties generate additive secret shares
of a random list R and its permuted counterpart 𝜋𝑖 (R). These
shares can be generated using pairwise invocation (between
𝑃𝑖 and every other party) of a 2-party Share Translation pro-
tocol, as detailed in [3, 7]. Each Share Translation protocol
incurs a communication of O(N) making the total prepro-
cessing communication cost for 𝑛 invocations O(𝑛N). Given,
⟨R⟩ , ⟨𝜋𝑖 (R)⟩ generated in the preprocessing, the parties re-
construct T+R towards the designated party 𝑃𝑖 . All parties
except 𝑃𝑖 then set their output shares of TO as their respective
shares of 𝜋𝑖 (R) i.e party 𝑃 𝑗 for 𝑗 ≠ 𝑖 sets ⟨TO⟩ 𝑗 = − ⟨𝜋𝑖 (R)⟩ 𝑗 .
Party 𝑃𝑖 computes its output share as 𝜋𝑖 (T+R) − ⟨𝜋𝑖 (R)⟩𝑖 .
This ensures that the output list TO satisfies TO = 𝜋𝑖 (T). The
online phase requires one round, with a cost of O(𝑛N).

For secure shuffle, a naive approach involves 𝑛 sequential
invocations of the Permute+Share protocol, with each party
contributing one random permutation. This approach results
in O(𝑛) rounds of communication and O(𝑛2N) total commu-
nication cost during the online phase. The preprocessing cost
similarly involves O(𝑛2) invocations of Share Translation, re-
sulting in a communication cost of O(𝑛2N). The work of [7]
improves this naive realisation by optimising the online phase
communication to O(𝑛N) while maintaining the same number
of rounds and similar preprocessing costs. We refer interested
readers to [7] for further details of the optimised protocol.

Graphiti framework: Graphiti is a generic framework for
the secure realisation of message-passing graph algorithms. In
Graphiti, the input graph G = (V,E) is represented as a data-
augmented graph (DAG) list or DAG-list G which includes
an entry for each vertex and edge in G. Each entry consists of
a tuple (src,dst, isV,data) of four components: source (src),
destination (dst), is_Vertex (isV) to distinguish entries of a
vertex from an edge, and data to store various data items
associated with the vertex/edge. Specifically, a node u is rep-
resented as (u,u,1,data), and a directed edge e(u,v) is rep-
resented as (u,v,0,data). The data field can contain multiple
sub-components, some specific to vertices and others specific
to edges. To ensure the topology of the graph is hidden, every
entry in the DAG-list includes all sub-components, with irrel-
evant ones set to 0 or dummy values. Undirected graphs can
also be represented as DAG-list by accounting for every edge
twice in both directions.
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To perform the required operations across multiple itera-
tions of a message-passing algorithm, the framework relies on
the following set of primitives: (i) Propagate: enables vertices
to propagate data along their outgoing edges, (ii) ApplyE: up-
dates the data of all the edges based on a user-defined function
𝑓AE, (iii) Gather: enables vertices to aggregate data from its
incoming edges, and (iv) ApplyV: updates all vertices based
on a user-defined function 𝑓AV

2. Secure realisation of these
primitives on a secret-shared DAG-list enables the secure
realisation of message-passing. To efficiently realise these
primitives in MPC, the framework relies on three different
orderings of the DAG-list. In the vertex ordering, all vertex
entries in the list appear first, followed by all edge entries. In
the source ordering, every vertex entry in the list appears im-
mediately before entries of all its outgoing edges. Similarly, in
the destination ordering, entries of all the incoming edges of a
vertex appear immediately before the entry of the correspond-
ing vertex. Using these different orderings, each iteration of
the message-passing algorithm is achieved as follows. An
iteration begins by invoking Propagate that entails perform-
ing computation on the vertex ordered DAG-list, followed
by computations in the source ordered DAG-list. Hence, this
requires an intermediate transition from vertex ordering to
source ordering. ApplyE is then invoked to ensure each edge
in the DAG-list is updated under the function 𝑓AE and can
be performed independent of any ordering. This is followed
by invoking Gather, which entails performing computations
over destination order, followed by computations in the vertex
ordered DAG-list. Thus, Gather requires transitioning from
source ordering to destination order as well as a transition
back to vertex ordering. Finally, an invocation to ApplyV en-
sures data on each node is updated under the function 𝑓AV.
Similar to ApplyE, this can be performed in any ordering.

In the secure realisation of Propagate (Algorithm 1) and
Gather (Algorithm 2), the computations performed on the
DAG-list consist of linear operations and hence can be re-
alised non-interactively via MPC. The only interactive opera-
tion involved is the transition of the DAG-list between differ-
ent orderings. On the other hand, ApplyE and ApplyV do not
require any transitions, but the computations performed are
dependent on the functions 𝑓AE, 𝑓AV, respectively. We briefly
outline how Graphiti realises these transitions between differ-
ent orderings efficiently. Rather than relying on a secure sort
to transition between the different orderings, Graphiti relies
on a shuffle-then-sort paradigm outlined in [1]. The idea is to
first randomly order the entries of the list via a secure shuf-
fle. This is followed by performing a secure sort to transition
to the required vertex/source/destination ordering. However,
the mapping (permutation) of the elements from the random
order to the required ordering can be made public. Further,
these transitions remain the same across multiple iterations
of the message-passing algorithm. Thus, Graphiti relies on

2The framework allows adapting the primitives for edges in any direction.

a one-time initialisation phase to generate these public per-
mutations via secure sort (see Fig. 6). This approach ensures
that transitions during the message passing phase can be done
via secure shuffle followed by applying a public permutation
which is much more efficient than a secure sort. The formal
protocols for each of the primitives, the details of initialisation
and a pictorial representation of the overall process during
each iteration of the message passing phase in Graphiti are
provided in A.2. We point an interested reader to the same.
Complexity of Graphiti: The initialisation phase of Graphiti
assumes the input DAG-list is provided in vertex ordering and
involves two sequential invocations of secure shuffle followed
by two parallel invocations of secure sort, required to gener-
ate mappings corresponding to source and destination order.
When instantiated in the multiparty setting with 𝑛 parties,
secure shuffle3 [7] incurs a round complexity of O(𝑛) and
communication of O(𝑛(N)), where N = |V| + |E|. Similarly,
secure sort incurs O(𝑛(log(N))) rounds and O(𝑛N log(N))
communication. Thus overall, the initialisation phase in-
curs O(𝑛 log(N)) rounds and O(𝑛N log(N)) communication.
For each iteration of message passing, secure evaluation of
Propagate and Gather using MPC incurs O(𝑛) rounds and
O(𝑛N) communication. ApplyE is evaluated by securely com-
puting the function 𝑓AE on the appropriate data components of
each entry of the DAG-list in parallel. Let rAE and cAE denote
the round and communication complexity of computing 𝑓AE

securely. Then, ApplyE incurs O(rAE) rounds and O(cAE ·N)
communication. Similarly, ApplyV is evaluated by securely
computing the function 𝑓AV on the appropriate data compo-
nents of the first |V| entries in the DAG-list in parallel. Let
rAV and cAV denote the round and communication complex-
ity of computing 𝑓AV securely. Then, ApplyE incurs O(rAV)
rounds and O(cAV · |V|) communication. Thus, each message
passing iteration incurs a cost of O(𝑛+ rAE + rAV) rounds and
O(𝑛N+ cAE ·N+ cAV · |V|) communication4.

4 DCC approach for message passing

In this section, we describe our new Decompose, Compute
and Combine (DCC) paradigm for message-passing on graphs
that allows attaining an efficient secure graph computation
framework in the multiparty setting. Consider a single iter-
ation of traditional message-passing on a graph G, as done
in Graphiti, where G (and the associated data components) is
distributively held by the 𝑛 parties. It consists of performing—
(i) Propagate, (ii) ApplyE, (iii) Gather, and (iv) ApplyV. Ob-
serve that the state update of a vertex depends only on the data
component of its immediate neighbours and the correspond-

3While secure shuffle can be realised in O(1) rounds by applying a
secret-shared permutation matrix, this approach incurs a communication and
computation cost of O(N2 ) which is prohibitive for a sparse graph.

4In case of applications that require non-linear aggregation, Graphiti in-
curs O(𝑛 log(N) + rAE + rAV ) rounds and O(𝑛N log(N) + cAE ·N+ cAV · |V | )
communication. See [1, 10] for further details.
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ing incoming edges. Therefore, for all vertices V𝑖 owned by
a party 𝑃𝑖 , their state update depends on the neighbours of
V𝑖 and the edges with destination in V𝑖 . Consequently, to up-
date the state of all vertices in V, it suffices to independently
update the state of vertices in V𝑖 for each 𝑖 ∈ [𝑛], and then
combine these updates to get the updated state of V. To facil-
itate this, we define subgraphs G𝑖 for 𝑖 ∈ [𝑛], consisting of all
vertices V and the edges with destination in V𝑖 (denoted by
E𝑖). Note that these subgraphs, G𝑖 = (V,E𝑖)5 for 𝑖 ∈ [𝑛], are
a proper subset of G. Despite containing fewer entries than G,
assuming that the state of all the vertices in G𝑖 is up to date,
G𝑖 contains sufficient information such that performing one
iteration of message passing allows to correctly update the
state of vertices in V𝑖 .

Thus, realising one iteration of message passing on G via
DCC approach entails the following:

1. Decompose: Generating subgraphs G𝑖 for 𝑖 ∈ [𝑛] from the
global graph G.

2. Compute: Performing one iteration of message-passing on
each subgraph G𝑖 for 𝑖 ∈ [𝑛] to update the states of V𝑖 .

3. Combine: Extracting the updated state of V𝑖 from G𝑖 for
𝑖 ∈ [𝑛] and combining them to get the updated V.
Multiple iterations of message-passing can be realised by
repeatedly performing steps 1-3, where G updated in step 3
of the current iteration is used in step 1 of the next iteration to
freshly generate the subgraphs. In this way, our DCC approach
correctly realises message-passing on G as done in Graphiti.
When securely realising our DCC approach, since 𝑃𝑖 knows
the topology of the subgraph G𝑖 , secure computations on
G𝑖 (step 2) can be achieved in rounds independent of the
number of parties. Moreover, efficient secure protocols to
realise subgraph generation (step 1) and updating G (step 3)
ensure the secure realisation of message-passing in rounds
independent of number of parties. An illustrative example of
DCC approach for message-passing appears in Fig. 1.

In the subsequent sections, we first describe how to securely
realise our new approach for message-passing in round com-
plexity independent of 𝑛 but with quadratic communication.
Following this, we describe how to reduce communication
cost to linear in 𝑛 without hampering the round complexity.

4.1 Secure realisation of DCC
Input representation: In our solution, the input graph
G = (V,E) (see §3) is represented as a tuple of lists G =

(V, {E𝑖}𝑖∈[𝑛]), referred to as the data augmented graph list
or DAG list. Here, G additionally accounts for the data com-
ponents of the vertices and edges present in G. Elaborately,

5When defining G𝑖 , note that it is easy to discard unnecessary edges that
do not aid in the state update of vertices owned by 𝑃𝑖 . However, discarding
unnecessary vertices introduces several challenges when designing decom-
pose and combine phases. Hence, for ease of explanation, we first discuss
our approach when G𝑖 is defined to comprise the entire vertex set V, and
subsequently handle the case where G𝑖 is defined to only comprise V𝑖 .

G consists of a list of vertices, denoted as V, comprising all
vertices in V together with the associated data. Further, V
is ordered as V1 | |V2 | | . . . | |V𝑛, where V𝑖 denotes all the ver-
tices in V belonging to 𝑃𝑖 along with their data components
and | | denotes concatenation. G also comprises 𝑛 edge lists
E𝑖 for 𝑖 ∈ [𝑛], that represents the subset of edges in E that
have destination in V𝑖 (vertices owned by 𝑃𝑖) together with
the associated data. Each entry in V and E𝑖 consists of four
components: src and dst (to denote the source and destina-
tion of an edge, while src = dst = v.id for a vertex v), isV
(set to 1 for vertices and 0 for edges) and a data compo-
nent. At the start of the computation, during an input sharing
phase (described in §5), the parties generate secret shares of
DAG-list G = (V, {E𝑖}𝑖∈[𝑛]), where each entry in these lists
is additively secret-shared. Thus, our framework assumes |Ei |,
i.e. number of incoming edges terminating at vertices in V𝑖 , to
be public. However, |Ei | does not reveal sensitive information
about the graph’s topology or the number of edges between
specific pairs of parties, as leaked in [17, 20]6.

Each iteration of message-passing begins with the secret-
shared DAG list ⟨G⟩ = (⟨V⟩ , {⟨E𝑖⟩}𝑖∈[𝑛]) and outputs updated
secret shares ⟨G⟩, where the data components of the vertices
are updated based on operations performed during the iter-
ation of message-passing. The steps involved in the secure
realisation of a single iteration of our DCC approach are de-
scribed next.

Decompose: This step takes as input the secret shares
⟨G⟩ = (⟨V⟩ , {⟨E𝑖⟩}𝑖∈[𝑛]), and outputs the secret-shares of 𝑛
DAG-lists ⟨G𝑖⟩ = (⟨V⟩ , ⟨E𝑖⟩), where each G𝑖 is sorted in ver-
tex order (see §3). Observe that since the input G is already
secret shared as (⟨V⟩ , {⟨E𝑖⟩}𝑖∈[𝑛]), generating the DAG-lists
G𝑖 is non-interactive. Specifically, parties simply set ⟨G𝑖⟩ as
⟨G𝑖⟩ = ⟨V⟩ | | ⟨E𝑖⟩, where | | denotes concatenation operation.

Compute: This step entails performing message-passing com-
putations on the DAG-lists. Specifically, it takes as input the
secret shares of DAG-list G𝑖 for 𝑖 ∈ [𝑛] and outputs its updated
shares, where the data component of the vertices is updated.
For ease of explanation, we discuss the message-passing com-
putations of a single DAG-list G𝑖 . Similar computations are
performed on all the other DAG-lists in parallel.
Naive approach: Given ⟨G𝑖⟩, the parties can naively invoke
the message-passing computations of Graphiti on it. This
involves (see §3) the secure realisation of the Propagate,
ApplyE, Gather, and ApplyV on ⟨G𝑖⟩. Propagate involves non-
interactive computations in vertex order of ⟨G𝑖⟩, followed by
transitioning to source order of ⟨G𝑖⟩. Gather involves non-
interactive computations in destination order of ⟨G𝑖⟩ followed
by a transition back to vertex order of ⟨G𝑖⟩. An additional
intermediate transition from source order to destination order
of ⟨G𝑖⟩ is required between Propagate and Gather. Each of

6To mitigate any potential leakage, a practical alternative is to disclose a
public upper bound on |Ei | rather than the exact value and pad E𝑖 for 𝑖 ∈ [𝑛]
with dummy edges.
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Figure 1: Example of message-passing via DCC when a graph G is decomposed into G1,G2,G3 which is in the view of parties
𝑃1, 𝑃2, 𝑃3, respectively. For simplicity, we consider the ApplyE and ApplyV functions to be identity functions and the aggregation
operation in Gather to be addition. Fig. 7 illustrates the traditional approach for message passing on G without DCC

these transitions required for Propagate, Gather, and the in-
termediate step incur a round complexity of O(𝑛) due to the
reliance on secure shuffle. Further, ApplyE and ApplyV involve
applying the respective functions 𝑓AE and 𝑓AV to each entry
in the DAG-list, regardless of the order of ⟨G𝑖⟩. Specifically,
let rAE and rAV be the round complexity required to securely
apply the function 𝑓AE and 𝑓AV during ApplyE and ApplyV,
respectively. Then ApplyE and ApplyV incur a round complex-
ity of O(rAE) and O(rAV), independent of 𝑛. Thus, the overall
round complexity of this approach is O(𝑛+ rAE + rAV), which
scales linearly with 𝑛, constituting a bottleneck. However, we
observe that the topological information of G𝑖 , known to party
𝑃𝑖 , can be leveraged to improve the round complexity of these
transitions to be independent of 𝑛. This is described next.

Enhanced approach: We now describe how the transitions
between the various orderings of G𝑖 can be realised efficiently,
with round complexity independent of 𝑛. We detail the steps
involved for transitioning from vertex to source order. Sim-
ilar steps can be performed for the other transitions as well.
Recall that for the DAG-list G𝑖 , party 𝑃𝑖 is fully aware of its
topology and thereby the labels of vertices and edges in the
G𝑖 . This allows 𝑃𝑖 to define a mapping/permutation (say 𝜋𝑆

𝑖
)

that reorders the DAG-list G𝑖 present in vertex order to source
order. This permutation is then securely applied to ⟨G𝑖⟩ to
generate its source order. Since 𝜋𝑆

𝑖
cannot be provided in clear

to other parties as it may leak topology information about G𝑖 ,
the reordering is performed as follows.

Parties first permute ⟨G𝑖⟩ using a random permutation
�̂�𝑆
𝑖

known to 𝑃𝑖 . This reorders ⟨G𝑖⟩ to a random or-
der. The random permutation is applied securely using the
Permute+Share protocol, which enables permuting a secret-
shared list based on a permutation known to one party and
incurs a round complexity of O(1). Following, this 𝑃𝑖 , com-
putes and sends the public permutation 𝜎𝑆

𝑖
= 𝜋𝑆

𝑖
◦ �̂�𝑆−1

𝑖
that

Permute+Share
Vertex order Random Order

source sort

Public mapping

Source order

Figure 2: Transition from vertex to source order of G𝑖 .

maps the randomly ordered DAG-list ⟨G𝑖⟩ to source order.
Since 𝜎𝑆

𝑖
maps a random order of ⟨G𝑖⟩ to its source or-

der, it does not reveal any information about the topology
of G𝑖 . The permutation 𝜎𝑆

𝑖
is then applied by all parties,

non-interactively, on their local shares ⟨G𝑖⟩ in the random
order to generate the source order ⟨G𝑖⟩. A pictorial repre-
sentation of the transition from vertex order to source order
appears in Fig. 2. Further, observe that this mapping from
vertex order to source order remains the same across mul-
tiple iterations of message-passing phase. Hence, the same
random permutation can be used in every iteration. Thus, the
public permutation 𝜎𝑆

𝑖
can be computed once and sent dur-

ing a one-time initialisation phase. This concretely reduces
the overhead for every transition by one round. In this way,
all the transitions required during message-passing can be
realised in O(1) rounds. Thus, the overall round complex-
ity of this approach is O(rAE + rAV) = O(1)(for transitions in
Propagate , Gather and the intermediate transition) + O(rAE)
(for ApplyE) + O(rAV) (for ApplyV). Pictorial representation
of the enhanced approach for performing message-passing
computations on DAG-list G2 in compute appears in Fig. 3.

Combine: This step takes as input secret shares of DAG-lists
G𝑖 for 𝑖 ∈ [𝑛] and outputs and secret-shares of V and {E𝑖}𝑖∈[𝑛] ,
where V = V1 | |...| |V𝑛, with V𝑖 and E𝑖 updated as per message-
passing computations in G𝑖 . Recall that, at the end of one
iteration of message-passing in compute, the DAG-list G𝑖 is
already sorted in vertex order. Note that labels of vertices in V
as well as V𝑖 is public information. Thus, the parties can non-
interactively extract the shares of vertex entries v ∈ V𝑖 from
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Figure 3: Enhanced approach for performing message passing computations on G2 whose topology is known to 𝑃2.

shares of V in G𝑖 . Following this, parties can non-interactively
set ⟨V⟩ = ⟨V1⟩ | |...| | ⟨V𝑛⟩. Similarly, the parties can extract
shares of E𝑖 from G𝑖 non-interactively since these are the last
|E|𝑖 entries in G𝑖 , where |E|𝑖 is public information. Thus, this
step does not require any additional rounds of communica-
tion. Finally, the secret-shares of updated V and E𝑖 together
constitute the shares of G that is updated through one iteration
of message-passing. This updated ⟨G⟩ serves as the input for
the next iteration of DCC.

Complexity of the solution: Each iteration of message pass-
ing involves three main steps. First, ‘decompose’ where the
generation of G𝑖 is achieved non-interactively and incurs
no additional communication or rounds. Second, ‘compute’
where message-passing on each G𝑖 is performed securely
by realising the operations Propagate, ApplyE, Gather, and
ApplyV. For a G𝑖 of size O(|V| + |Ei |), Propagate, Gather and
the intermediate transition incur O(1) rounds and communi-
cation of O(𝑛( |V| + |Ei |)). ApplyE incurs O(rAE) rounds and
a communication of O ((|V| + |Ei |) · cAV). Similarly, ApplyV
incurs O(rAV) rounds and a communication of O(|V| · cAV).
Here, rAE and rAV (respectively cAE and cAV) denote the round
(respectively communication) complexity of securely com-
puting the functions 𝑓AE and 𝑓AV. Thus, compute on G𝑖 incurs
O(rAE + rAV) rounds and O (𝑛( |V| + |Ei |) + (|V| + |Ei |) · cAE +
|V| · cAV) communication. Since computations on each G𝑖

can be performed in parallel, the total communication com-
plexity for this step is O(∑𝑛

𝑖=1 𝑛( |V| + |Ei |) + (|V| + |Ei |) · cAE

+|V| · cAV) = O(𝑛2 |V| + 𝑛|E| + 𝑛( |V| + |Ei |) · cAE +𝑛|V| · cAV))
and the round complexity is O(rAE + rAV) rounds. Finally,
during ‘combine’, the generation of updated G from G𝑖s is
also achieved non-interactively. Therefore, the total cost in-
curred for one iteration of DCC is O (rAE + rAV) rounds and
O(𝑛2 |V| +𝑛|V| · cAE +𝑛|V| · cAV +𝑛|E| +|E| · cAE) communica-
tion. Thus, the round complexity is independent of 𝑛, and the
communication is quadratic in 𝑛.

4.2 Achieving linear communication

We now describe how to achieve a communication complex-
ity that is linear in 𝑛. The primary bottleneck arises due
to Propagate and Gather incurring quadratic communica-
tion during the compute step. Specifically, the communica-
tion cost for Propagate and Gather in compute step for each

DAG-list G𝑖 is O(𝑛 · ( |V| + |Ei |)). Since there are 𝑛 DAG-lists,
the communication cost accumulates to O(𝑛2 |V|). Hence,
subsequently, we limit our discussion to improving the com-
munication in Propagate and Gather.

To improve this communication complexity, we observe
that it suffices for each G𝑖 to include only the vertices in
V𝑖 and their immediate neighbours rather than all vertices V.
This is because only these vertices contribute to updating the
state of vertices in V𝑖 . Let V̄𝑖 denote the set of vertices in V𝑖

along with their immediate neighbours. Since the size of V̄𝑖 is
bounded by |V̄𝑖 | ≤ 2|Ei |, this reduces the size of DAG-list G𝑖

to O(|Ei |). Consequently, the communication cost incurred for
Propagate and Gather in each G𝑖 is reduced to O(𝑛 · |Ei |). As
a result, the total communication cost across all G𝑖s reduces
to O

(∑𝑛
𝑖=1 𝑛|Ei |

)
= O(𝑛|E|).

While this optimisation reduces the communication cost
of message-passing, it introduces the new challenge of gen-
erating the DAG-list representation G𝑖 to only include the
newly defined V̄𝑖 during the decompose phase. Specifically,
constructing G𝑖 now requires identifying the immediate neigh-
bours of vertices in V𝑖 . The labels of these neighbours are
private and not known to all parties. Thus, during each itera-
tion of message-passing, their secret shares must be securely
extracted from the secret-shared list of vertex set V present in
G. Once extracted, these can be concatenated with E𝑖 to form
the DAG-list representation of the newly defined G𝑖 .

A naive approach to securely extract V̄𝑖 would involve in-
voking the Permute+Share primitive. Party 𝑃𝑖 , knowing the
labels of vertices in V̄𝑖 , defines a permutation that reorders
the vertex list V such that all vertices in V̄𝑖 appear first, fol-
lowed by the remaining vertices. The parties then set the
first min( |V|,2|Ei |) entries of the permuted list as the secret
shares of V̄𝑖 . This process incurs the cost of one invocation of
Permute+Share, which requires one round and O(𝑛|V|) com-
munication for a list of size |V|. Since there are 𝑛 DAG-list,
and their generation can occur in parallel, the total cost of
DAG-list generation using this naive approach is one round
and O(𝑛2 |V|) communication. This is unlike the previous
case where the subgraph generation was non-interactive.

To improve the communication cost of DAG-list genera-
tion, we observe that while different permutations need to
be applied to V to generate each of the DAG-list G𝑖 , these
permutations are applied to the same list V. Leveraging this
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insight, we design an amortised Permute+Share protocol
that reduces the cost of generating all DAG-lists. The proto-
col takes as input a secret-shared list V and 𝑛 permutations
(each known to one party) and outputs 𝑛 secret-shared lists,
each permuted according to one of the input permutations.
This amortised approach reduces the total cost of DAG-list
generation to O(1) rounds and O(𝑛|V|) communication. We
next describe details of Amortised Permute+Share protocol.
Amortised Permute + Share: This protocol enables the
generation of multiple permuted lists from a single secret-
shared input list. Specifically, it takes as input a secret-shared
list ⟨T⟩ and a permutation 𝜋𝑖 from each party 𝑃𝑖 , and outputs
𝑛 secret-shared lists

〈
T 𝑗

〉
for 𝑗 = 1 to 𝑛, such that T 𝑗 = 𝜋 𝑗 (T).

Recall that in Permute+Share, the preprocessing phase
involves the generation of shuffle correlation consisting of
secret-shares ⟨R⟩ and ⟨𝜋𝑖 (R)⟩ for a random mask R, while
the online phase involves reconstructing the masked input
list (T + R) towards the designated party 𝑃𝑖 . The desig-
nated party then computes its output share as 𝜋𝑖 (T +R) −
⟨𝜋𝑖 (R)⟩𝑖 , while all other parties 𝑃 𝑗 ∈ P set their shares as
⟨TO⟩ 𝑗 = − ⟨𝜋𝑖 (R)⟩ 𝑗 for 𝑗 ≠ 𝑖. A straightforward realisation of
Amortised Permute+Share would involve running 𝑛 parallel
instances of Permute+Share, where each party contributes its
permutation 𝜋𝑖 in a distinct instance. This requires generating
𝑛 distinct shuffle correlations (⟨R𝑖⟩ , ⟨𝜋𝑖 (R𝑖)⟩) during the pre-
processing phase and reconstructing 𝑛 different masked lists
(T+R𝑖) in the online phase. However, since the reconstruction
in Permute+Share incurs a communication of O(𝑛N), com-
munication cost of naive approach accumulates to O(𝑛2N).

Towards improving the communication complexity, we
avoid using separate masks for each party and instead use a
single shared mask R not known to any party. Elaborately,
during the preprocessing phase, the parties generate ⟨R⟩ along
with ⟨𝜋1 (R)⟩, ⟨𝜋2 (R)⟩, . . ., ⟨𝜋𝑛 (R)⟩, where R is permuted
according to the permutations supplied by each party. In the
online phase, the parties reconstruct a single masked input,
T+R, among all. This reconstruction of T+R can be efficiently
realised using the 𝑃king approach [6]. Here, each party sends
its share of T+R to a designated king party, which reconstructs
the masked list and sends it to all other parties. This approach
requires only two rounds and incurs a communication cost of
O(𝑛N). After reconstruction, each party 𝑃𝑖 computes its share
of the 𝑛 output lists i.e

〈
T 𝑗

〉
for 𝑗 = 1 to 𝑛 as follows: it sets〈

T 𝑗

〉
𝑖
= 𝜋𝑖 (T+R) − ⟨𝜋𝑖 (R)⟩𝑖 for 𝑗 = 𝑖 and

〈
T 𝑗

〉
𝑖
= − ⟨𝜋𝑖 (R)⟩𝑖

for 𝑗 ≠ 𝑖. In this way, the Amortised Permute+Share protocol
can be realised in O(1) rounds and O(𝑛N) communication.
The formal protocol for Amortised Permute+Share appears
in Fig. 9 and its proof of security appears in §C. We next
discuss how Amortised Permute+Share facilitates efficient
DAG-list generation during the decompose phase. Note that
compute and combine follow along same lines as in §4.1 and
§4.1, respectively, and hence, we do not repeat the details.
DAG-list generation during decompose phase: Given
the vertex set V, which is additively shared among all par-

ties, the DAG-list generation proceeds as follows. Each
party 𝑃𝑖 defines a permutation 𝜋𝐺

𝑖
that reorders the ver-

tex list such that the vertices in V̄𝑖 (i.e., vertices associated
with 𝑃𝑖 and their immediate neighbours) appear first, fol-
lowed by the remaining vertices. Note that these permuta-
tions depend on the input graph structure, which may not
be available during the preprocessing phase. However, the
Amortised Permute+Share protocol requires permutations to
be predefined during preprocessing. To address this, the par-
ties invoke the Amortised Permute+Share protocol, with the
random permutations �̂�𝐺

𝑖
for 𝑖 ∈ [𝑛], which are applied to

the secret-shared vertex list V in parallel. The output of this
step is a set of permuted, secret-shared vertex lists, where the
permutations applied are �̂�𝐺

𝑖
for 𝑖 ∈ [𝑛]. Next, each party 𝑃𝑖

computes and shares the public permutation 𝜎𝐺
𝑖

= 𝜋𝐺
𝑖
◦ �̂�𝐺−1

𝑖

for 𝑖 ∈ [𝑛] with all other parties. Subsequently, each party
applies the public permutation 𝜎𝐺

𝑖
locally to the output of

the Amortised Permute+Share protocol. This final step ef-
fectively reorders the vertex list as per 𝜋𝐺

𝑖
, ensuring that ver-

tices in V̄𝑖 are positioned at the beginning of the list. The
resulting secret-shared outputs, denoted as

〈
V′
𝑖

〉
for 𝑖 = 1 to

𝑛, represent the permuted vertex lists for each DAG-list. To
generate the DAG-list for subgraph G𝑖 , the parties extract the
first min( |V|,2|Ei |) entries from

〈
V′
𝑖

〉
and concatenate these

with the corresponding secret-shared edge list ⟨E𝑖⟩. Observe
here that the mapping for reordering the vertices in V remains
the same across iterations. Hence, the same random permu-
tation �̂�𝐺

𝑖
for 𝑖 ∈ [𝑛] can be used in every iteration. Thus,

the public permutation 𝜎𝐺
𝑖

for 𝑖 ∈ [𝑛] can be computed once
and sent during a one-time initialisation phase by 𝑃𝑖 . This
concretely reduces the overhead for the subgraph generation
by one round. The resulting secret-shared outputs, denoted as〈
V′
𝑖

〉
for 𝑖 = 1 to 𝑛, represent the permuted vertex lists for each

subgraph. To generate the DAG-list G𝑖 , the parties extract the
first min( |V|,2|Ei |) entries from

〈
V′
𝑖

〉
and concatenate these

with the corresponding secret-shared edge list ⟨E𝑖⟩.
Complexity of the solution: Our DCC approach to
message-passing consists of three main steps. First, ‘de-
compose’ where DAG-list generation is realised using the
Amortised Permute+Share protocol. This step involves an
invocation of Amortised Permute+Share on V, which in-
curs a communication complexity of O(𝑛( |V|), and O(1)
rounds. Second, ‘compute’ where message-passing com-
putations are performed in the DAG-list G𝑖 , for 𝑖 ∈ [𝑛],
using the enhanced approach described in §4.1. In this
step, G𝑖 is of size O(|Ei |) and hence incurs a cost of
O(rAE + rAV) rounds and O ((𝑛+ cAE + cAV) |Ei |) communica-
tion. Since all G𝑖’s can be processed in parallel, ‘compute’
step incurs O(rAE + rAV) rounds and a communication of∑

𝑖∈[𝑛] O ((𝑛+ cAE + cAV) |Ei |) =O((𝑛+cAE+cAV) |E|). Finally,
‘combine’ where the extraction happens similar to as de-
scribed in §4.1, is non-interactive and incurs no additional
rounds or communication. Thus, one iteration of DCC incurs
O(rAE + rAV) rounds and O(𝑛|V| + (𝑛+ cAE + cAV) |E|) commu-
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nication. Hence, we achieve communication complexity that
is linear in 𝑛, without hampering rounds.

5 emGraph Framework

In this section, we formally describe the end-to-end proto-
col of emGraph for computing any message-passing graph
algorithm. The ideal functionality for the same, FMPA, ap-
pears in Fig. 11 and the corresponding secure protocol of
emGraph, denoted as ΠMPA, appears in Fig. 12. The protocol
takes as input the local view of the graph from each party 𝑃𝑖

(𝑖 ∈ [𝑛]), consisting of V𝑖 and E𝑖 . Additionally, the protocol
also takes as input the description of the message-passing
graph algorithm alg agreed upon by all parties. Without loss
of generality, we assume that all parties receive the updated
state of their vertices (i.e. V𝑖) as the output. However, the
protocol can be modified to reconstruct the output towards
any intended recipient. We next give an elaborate overview
of the protocol. The protocol consists of four phases: Input
Sharing, Initialisation, Message Passing, and Reconstruction
which are elaborated below.
Input sharing: In this phase, parties secret-share their input
with all other parties. Specifically, 𝑃𝑖 ∈ P generates ⟨·⟩-shares
of V𝑖 and E𝑖 , as defined in §4.1. Following this, parties set
⟨G⟩ = ⟨V⟩ , {⟨E𝑖⟩}𝑖∈[𝑛] where ⟨V⟩ = ⟨V1⟩ | | . . . | | ⟨V𝑛⟩. Observe
that, as described in §3, the generation of secret shares of V𝑖

and E𝑖 for 𝑖 ∈ [𝑛] can occur non-interactively, given the shared
key setup. Thus, this phase does not incur any overhead in
terms of rounds and communication.
Initialisation: In this phase, parties pre-compute the public
permutations that are repeatedly used during for DAG-list
generation (during ‘decompose’) and message passing com-
putation (during ‘compute’) of G𝑖 , for 𝑖 ∈ [𝑛].
• To facilitate extraction of the vertices

〈
V̄𝑖

〉
from ⟨V⟩ during

the decompose phase, 𝑃𝑖 generates and distributes among the
rest of the parties the following mappings: 𝜋𝐺

𝑖
and 𝜎𝐺

𝑖
. These

are distributed as follows. Party 𝑃𝑖 does the following. With
the knowledge of the labels of vertices in V̄𝑖 and their position
in V, 𝑃𝑖 defines a mapping 𝜋𝐺

𝑖
which reorders the V such that

all the vertices in V̄𝑖 appear first followed by other vertices.
Following this, 𝑃𝑖 samples a random permutation �̂�𝐺

𝑖
and

computes the public permutation 𝜎𝐺
𝑖

= 𝜋𝐺
𝑖
◦ �̂�𝐺−1

𝑖
and send

it to all the parties7. Looking ahead, the extraction of
〈
V̄𝑖

〉
during decompose is achieved by applying the permutation
�̂�𝐺

−1

𝑖
using the Amortised Permute+Share protocol followed

by locally applying the public permutation 𝜎𝐺
𝑖

on ⟨V⟩. This
reorders the ⟨V⟩ as required while hiding the permutation 𝜋𝐺

from other parties.
• Similarly, to facilitate transitions between the different or-
dering of ⟨G𝑖⟩ efficiently, party 𝑃𝑖 generates and distributes

7In practice, only the first min( |V | , 2 |Ei | ) entries of 𝜎𝐺
𝑖

(that correspond
to the mapping of V̄𝑖) is communicated. Hence the overall cost for communi-
cating all the permutations 𝜎𝐺

𝑖
, for 𝑖 ∈ [𝑛], is O(𝑛 |E | ) .

among the rest of the parties the certain mappings, as follows.
With the knowledge of the topology of G𝑖 , 𝑃𝑖 defines three
permutations, i.e 𝜋𝑆

𝑖
- Permutation that rearranges G𝑖 in ver-

tex order to source order, 𝜋𝐷
𝑖

- Permutation that rearranges
G𝑖 in source order to destination order, 𝜋𝑉

𝑖
- Permutation that

rearranges G𝑖 in destination order to vertex order. Following
this, 𝑃𝑖 samples random permutations �̂�𝑆

𝑖
, �̂�𝐷

𝑖
and �̂�𝑉

𝑖
and

sends the public mapping 𝜎𝑆
𝑖
= 𝜋𝑆

𝑖
◦ �̂�𝑆−1

𝑖
, 𝜋𝐷

𝑖
= 𝜋𝐷

𝑖
◦ �̂�𝐷−1

𝑖

and 𝜎𝑉
𝑖
= 𝜋𝑉

𝑖
◦ �̂�𝑉−1

𝑖
. Note that the transitions between dif-

ferent orderings of G𝑖 can be performed efficiently by one
invocation of Permute+Share followed by applying a public
permutation, as illustrated in Fig. 2 and described in Fig. 12.

Message-passing via DCC: Consists of multiple iterations
of message-passing as required for the graph algorithm. Each
iteration comprises secure realisation of Decompose, Com-
pute and Combine as described in §4. Specifically, generation
of ⟨G𝑖⟩ from ⟨G⟩ for 𝑖 ∈ [𝑛] in Decompose step involves
one call to Amortised Permute+Share. The Compute step
involves securely performing message-passing computation,
which is done via secure realisation of Propagate, ApplyE,
Gather and ApplyV over G𝑖 for 𝑖 ∈ [𝑛]. Elaborately, for each
G𝑖 , this involves,
• Propagate: The parties evaluate steps 1-3 of algorithm 1
on ⟨G𝑖⟩. Then, parties invoke Permute+Share [3] to apply
�̂�𝑆

−1

𝑖
on ⟨G𝑖⟩, followed by applying the public permutation

𝜎𝑆
𝑖

on their local shares ⟨G𝑖⟩ to transition to the source order.
Finally, the parties evaluate steps 5-7 of algorithm 1 on ⟨G𝑖⟩.
• Apply-Edges: Parties invoke FMPC to securely realise the
computation of 𝑓𝐸 on data component at each entry in ⟨G𝑖⟩.
• Transition from source to destination order: Parties invoke
Permute+Share [3] to apply the permutation �̂�𝐷−1

𝑖
on ⟨G𝑖⟩,

followed by applying the public permutation 𝜎𝐷
𝑖

to transition
to its destination order.
• Gather: In the destination order of ⟨G𝑖⟩, parties evaluate
steps 1-3 of Gather as described in algorithm 2 on ⟨G𝑖⟩. Fol-
lowing this, parties invoke Permute+Share to apply �̂�𝑉

−1

𝑖
on

⟨G𝑖⟩, followed by applying the public permutation 𝜎𝑉
𝑖

on
their local shares ⟨G𝑖⟩ to generate its vertex order. Finally,
the parties evaluate steps 5-7 of algorithm 2 on ⟨G𝑖⟩.
• Apply-Vertices: Parties invoke FMPC to securely realise the
computation of 𝑓𝑉 on data component at each entry in ⟨G𝑖⟩.
Finally, in the ‘combine’ step, parties extract and combine
the updated vertex set ⟨V𝑖⟩ and edge set ⟨E𝑖⟩ from ⟨G𝑖⟩ for
𝑖 ∈ [𝑛] to generate ⟨G⟩, as described in §4.1, that is used in
the next iteration of DCC.
Reconstruction: After multiple iterations of message pass-
ing, the parties decompose the ⟨·⟩-shares of V as V1 | |...| |V𝑛

and reconstruct the result of V𝑖 towards party 𝑃𝑖 .
Complexity of emGraph: The input sharing phase is non-
interactive and does not incur any rounds or communica-
tion. The initialisation phase involves party 𝑃𝑖 for 𝑖 ∈ [𝑛]
sending the four public permutations each of size O(|E|𝑖)
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to all the parties, thus this step incurs one round and a total
of O(∑𝑖∈[𝑛] 𝑛|Ei |) = O(𝑛|E|) communication. Each iteration
of message-passing via DCC, as discussed in §4.2 incurs
O(rAE + rAV) rounds and O(𝑛|V| + (𝑛 + cAE + cAV) |E|) com-
munication. Finally, in the reconstruction step O(|V𝑖 |) en-
tries are reconstructed towards 𝑃𝑖 . This incurs requires one
round and O(𝑛V) communication. Thus, the total cost of se-
curely evaluating any message-passing graph algorithm alg
using emGraph is O(𝑘 · (rAE + rAV)) and O(𝑘 · 𝑛|V| + 𝑘 · (𝑛+
cAE + cAV) |E|). Here 𝑘 is the number of iterations of message-
passing required by alg.

Optimisation: Recall that in Graphiti, the DAG-list repre-
sentation of a graph is a list where each entry consists of
the following components: src, dst, isV, and data. However,
in emGraph, it suffices to have a simplified list representa-
tion where each entry contains only two components: isV and
data. The presence of src,dst components in the DAG-list
in Graphiti aid in reordering the DAG-list during message-
passing. However, in emGraph, we leverage the fact that this
information with respect to the G𝑖 is known to party 𝑃𝑖 when
reordering the G𝑖 . Hence, emGraph does not require these
components to be part of the DAG-list.
Security of emGraph: We prove the security of emGraph in
the standard real-world/ideal-world simulation paradigm. The
detailed security proof appears in §C.

6 Benchmarks

We implement and empirically benchmark the performance
of emGraph and compare it against the state-of-the-art frame-
work, Graphiti [10]. To ensure a fair comparison, both frame-
works are instantiated using the generic MPC protocol of [5]
in the semihonest setting. The protocols are implemented
from scratch in C++ using the code base of [18]. We note that
our code8 is developed for benchmarking. The benchmarks
are conducted on Ubuntu servers equipped with AMD Ryzen
Threadripper PRO 5965WX processors and 256GB RAM.
Each party is executed as a separate process on the same
machine, with the simulated network connection of 100ms
latency and 100MBps bandwidth. Our code accounts for mul-
tithreading and each party is initiated with a maximum of 10
threads. Since the performance depends only on the size of the
graph and not its structure, we benchmark both emGraph and
Graphiti on a randomly generated scale-free graph. We split
the vertices in the graph equally among all the parties, i.e.,
we assume each party approximately owns |V|/𝑛 vertices and
the corresponding edges of the graph. For all our experiments
we consider the online run time and online communication as
the parameters for benchmark. We focus on initialisation and
the message-passing via DCC phases as these are the most
compute-intensive whereas input sharing and reconstruction
happen as a one-off event.

8https://anonymous.4open.science/r/EmGraph

Initialisation: We first compare the initialisation costs of
emGraph and Graphiti [10]. Since the initialisation phase of
Graphiti has round complexity dependent on both the number
of parties and the graph size, we provide comparisons by
varying both parameters.

Table 2 reports the comparison of initialisation while vary-
ing the number of parties from 2 to 25 where N = |V| + |E|
is 105. Our initialisation clearly outperforms that of Graphiti.
Specifically, we see improvements of up to 2200× in runtime
and 270× in communication for 15 parties and graph of size
105 (|V| + |E|). Note that Graphiti’s initialisation phase is infea-
sible for more than 15 parties in our considered experimental
setup due to memory constraints. The significant improve-
ments in the runtime can be attributed to the lightweight
initialisation phase of emGraph, which only involves parties
communicating some permutations to each other in one round
of interaction. In contrast, Graphiti has an initialisation cost
proportional to number of parties, which is also computation-
ally expensive as it requires secure sorting operations9. Note
that in contrast to the theoretical expectation, the runtime for
Graphiti does not scale linearly with number of parties. We
believe this is because the computational cost incurred by
secure sorting operations overshadows the expected linear
runtime increase from additional rounds.

Ref #Parties Runtime (s) Comm. (MB)

Graphiti [10] 2 239.94 160.07
emGraph 0.10 1.40

Graphiti [10] 5 380.39 1360.32
emGraph 0.11 7.52

Graphiti [10] 10 562.89 5760.79
emGraph 0.14 24.12

Graphiti [10] 15 786.71 13161.35
emGraph 0.35 48.72

Graphiti [10] 20 - -
emGraph 0.36 76.76

Graphiti [10] 25 - -
emGraph 0.57 101.76

Table 2: Comparison of initialisation phase for varying num-
ber of parties and graph of size |V| + |E| = 105.

Table 3 shows the comparison as the graph size increases
from 104 to 107, with the number of parties fixed at 𝑛 = 5.
Here too, emGraph witnesses an improvement of 3450× for
a graph of size 105. Again due to computational constraints
in our experimental setup (all parties running on the same ma-
chine), Graphiti’s initialisation phase runs out of memory for
graph sizes larger than 105. Finally, we also observe that with
increasing graph size, there is minimal increase in runtime of
our initialisation. For graph size 107, the increase is slightly
higher and is attributed to the increase in communication as
for this graph size, the bandwidth becomes a bottleneck.

9The secure sorting operations in the initialisation phase of Graphiti,
are micro-benchmarked based on the secure variant of quick-sort protocol
described in [1].
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|V| + |E| Ref Runtime (s) Comm. (MB)

104 Graphiti [10] 104.14 136.02
emGraph 0.10 0.75

105 Graphiti [10] 380.39 1360.32
emGraph 0.11 7.52

106 Graphiti [10] - -
emGraph 0.13 75.20

107 Graphiti [10] - -
emGraph 0.36 752.0

Table 3: Comparison of initialisation phase for varying graph
size (|V| + |E|) and 5 parties.

Overall, these results in Table 2 and Table 3 highlight the
efficiency and scalability of emGraph’s initialisation phase,
particularly in scenarios with a large number of parties or
graphs of large size.
Message passing via DCC: We next compare the message-
passing costs of emGraph and Graphiti for the PageRank com-
putation application described in §B.2. Since the message-
passing phase of Graphiti scales with the number of parties,
we vary the number of parties from 𝑛 = 2 to 𝑛 = 25 and report
the results in Table 4. As expected, the DCC-based message-
passing approach in emGraph outperforms Graphiti, where we
witness runtime improvements of up to 11× for 𝑛 = 25 parties.
Moreover, the relative improvement of emGraph over Graphiti
grows with the number of parties, increasing from 1.5× for
𝑛 = 2 to 11× for 𝑛 = 25. This improvement can be attributed to
the constant round complexity of 5 rounds in emGraph, com-
pared to the round complexity of 3𝑛 in Graphiti. Although,
emGraph incurs a slightly higher communication cost than
Graphiti, its impact on runtime is negligible. This shows that
the improvements in the rounds overshadow the impact of
slightly increase in communication.

Ref #Parties Runtime (s) Comm. (MB)

Graphiti [10] 2 1.14 4.80
emGraph 0.74 2.64

Graphiti [10] ’5 2.99 19.20
emGraph 0.78 13.44

Graphiti [10] 10 6.06 43.20
emGraph 0.91 41.04

Graphiti [10] 15 9.12 67.20
emGraph 1.07 80.64

Graphiti [10] 20 12.18 91.20
emGraph 1.25 123.12

Graphiti [10] 25 15.26 115.20
emGraph 1.39 155.52

Table 4: Comparison of one iteration of message passing for
varying number of parties and graph of size |V| + |E| = 105.

Overall improvements: By combining data reported in Ta-
bles 2, 3, and 4, we estimate total online runtime for 10 iter-
ations of PageRank computation(computed as ‘initialisation
cost’ + 10 times the cost of ‘message passing’). For Graphiti,
overall runtime is estimated to be 877.91 seconds and the over-
all communication is estimated to be 13GB for graph of 105

and 15 parties. In contrast, emGraph achieves significantly

improved runtime of just 10.81 seconds and communication
of 130MB, representing an 80× and 106× improvement in
runtime and communication respectively, over Graphiti.

For completeness, we also provide the end-to-end bench-
marks of PageRank computation using emGraph in Table 5.
Here, we vary the number of parties, 𝑛, from 2 to 25, and the
graph size (|V| + |E|) from 104 to 106. As expected, the run-
time shows minimal variation with changes in both the num-
ber of parties and the graph size, which can be attributed to
emGraph’s constant round complexity that remains indepen-
dent of these factors. However, we observe a slightly higher
increase in runtime for a graph size of 106 when varying 𝑛,
compared to graphs of sizes 104 and 105. This discrepancy
is likely due to the computational resource constraints in our
experimental setup, where all parties are initialised as sepa-
rate processes on the same machine. As the number of parties
increases, the computational resources available to each party
decrease. We anticipate even better performance when each
party is run on a dedicated machine. Finally, emGraph demon-
strates its efficiency and practicality by processing a graph of
size 106 distributed among 25 data owners in under a minute,
making it highly suitable for real-world applications.

Graph size #Parties Runtime (s) Comm.(MB)

104

2 9.17 2.80
5 9.21 14.08

10 9.82 42.48
15 10.20 82.88
20 10.57 126.16
25 10.90 159.36

105

2 9.45 28.00
5 9.93 140.80

10 11.16 424.80
15 12.28 828.80
20 13.40 1261.60
25 14.19 1593.60

106

2 11.02 280.00
5 11.84 1408.00

10 18.21 4248.00
15 25.84 8288.00
20 36.45 12616.00
25 45.04 15936.00

Table 5: End-to-end runtime for 10 iterations of PageRank
computation using emGraph for varying number of parties
and varying graph of size.

7 Conclusion

We design emGraph, a generic secure framework for effi-
ciently evaluating message-passing graph algorithms in the
multiparty setting. For this, we introduce a novel Decompose-
Compute-Combine (DCC) approach that leverages the knowl-
edge of the topology of the subgraph held by a data owner
(or party). To attain the claimed efficiency and scalability,
emGraph completely eliminates the need for expensive opera-
tions such as secure sort and secure shuffle that constituted the
primary bottleneck in prior works. emGraph instead relies on
a much more simpler and efficient Permute+Share primitive.
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All this allows emGraph to attain improvements of up to 80×
in comparison to prior works. Finally, we also design a new
primitive called Amortised Permute+Share which can be of
independent interest.
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A Prelims

A.1 Threat model
Shared key setup: Fsetup enables the establishment of com-
mon random keys for a pseudo-random function (PRF) F
among parties. This aids in non-interactively generating cor-
related randomness. Here F : {0,1}𝜅 → Z22ℓ F is a secure PRF.
The functionality, Fsetup appears in Fig. 4.

The shared key setup enables all parties to the non-
interactive generation of ⟨·⟩-shares of a random value r. This
is done by each party locally sampling a random value for its
share ⟨R⟩𝑖 using the PRF key 𝑘𝑖 and setting R =

∑
𝑖∈[𝑛] ⟨R⟩.

The shared key setup also enables non-interactive generation
of ⟨·⟩-shares of an input value x held by a party 𝑃𝑖 ∈ P. For
this all parties 𝑃 𝑗 ∈ P sample a common random value jointly
with 𝑃𝑖 as their share of x using the key 𝑘𝑖 𝑗 and party 𝑃𝑖 sets
its share as ⟨x⟩𝑖 = x−∑

𝑗∈[𝑛], 𝑗≠𝑖 ⟨x⟩ 𝑗 .

FMPA proceeds as follows.
• Fsetup picks random keys {{𝑘𝑖}𝑖∈[𝑛] , {𝑘𝑖 𝑗 }𝑖, 𝑗∈[𝑛] , 𝑘𝑎𝑙𝑙}.
• Send (Output, 𝑘𝑖 , {𝑘𝑖 𝑗 } 𝑗∈[𝑛] , 𝑘𝑎𝑙𝑙) to party 𝑃𝑖 for 𝑖 ∈ [𝑛].

Functionality Fsetup

Figure 4: Ideal functionality for setup.
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A.2 Graphiti

Graphiti securely evaluates a graph algorithm by invoking
multiple iterations of the message-passing phase. Each itera-
tion involves performing Propagate, which entails performing
computations on the DAG-list in the vertex order, followed
by a transition to the source order. This is followed by ApplyE
that ensures that data on each edge in the DAG-list is updated
under the function 𝑓AE (·). This is followed by a transition
from source order to the destination order to perform Gather.
Gather entails performing computations on the destination
order, and transitioning to the vertex order. Finally, ApplyV en-
sures that data on each node in the DAG-list is updated under
the function 𝑓AV (·). A pictorial representation of the overall
process during each iteration of the message passing phase in
Graphiti appears in Fig. 5. We next describe the approach of
Graphiti to realise these primitive Propagate and Gather.
Propagate. The formal details of Propagate appear in Algo-
rithm 1. Let G represent the DAG-list where N = |V| + |E|
denotes the size of DAG-list. G[𝑖] denotes the 𝑖th entry. Let
G[𝑖] .datas denote the data to be propagated (if the entry is
a vertex) and G[𝑖] .datar denotes the data component that re-
ceives the propagated information . Initially, G[𝑖] .datar = 0
for all entries, and G[𝑖] .datas = 0 for edge entries. Consider
a linear scan of the DAG-list sorted in source order where,
during the scan, the datar is updated as the data present at
all the vertices preceding this edge. This is realised by per-
forming a cumulative sum of the datas present at every entry
preceding the current entry, i.e. G[𝑖] .datar =

∑𝑖−1
𝑗=1 G[ 𝑗] .datas

for 𝑖 = 1 to N. Since this is a linear operation, it can be realised
non-interactively via MPC. However, after the linear scan, the
sum at each edge possesses the data to be propagated from its
source vertex plus the data present on the vertices that appear
before it in the source ordered DAG-list. To remove the latter
part contributing to the sum, the vertex order is used to adjust
the datas component of the vertices such that the cumulative
sum computes the intended data to be propagated. Specifi-
cally, the value to be propagated by a vertex is computed as
G[𝑖] .data′s = G[𝑖] .datas−G[𝑖−1] .datas for 𝑖 = 1 to |V|. Since
this step is also comprised entirely of linear operations, it can
also be performed non-interactively within MPC. Following
this, the G is ordered in the source order, and the propagated
data is computed as G[𝑖] .datar =

∑𝑖−1
𝑗=1 G[ 𝑗] .data′s for 𝑖 = 1 to

N. In the secure realisation of Propagate, the only interactive
operation involved is the transition between vertex order and
source order of DAG-list. This can be realised in rounds inde-
pendent of graph size, akin to the transition between source
and destination order in [1] as elaborated ahead. Propagate is
followed by ApplyE. Similar to ApplyV, this operation is local
to entries of DAG-list and hence does not require any linear
scan or transition between different ordering.

Gather. The formal details of Gather appear in Algorithm 2.
During Gather, each vertex aggregates datar component from
its incoming edges using an aggregation operation denoted

as ⊕. Graphiti observed that many graph applications such
as histogram [13], matrix factorisation [13], BFS [1], Pager-
ank [9], clustering [9], graph neural networks (GNN) [8] etc.
can be represented using a linear aggregation operation and
leveraged this to design an efficient algorithm for Gather. For
example, consider addition as the aggregation operation. Let
G[𝑖] .datag (initialised to 0) denote the data component of
an entry that stores aggregated information. To begin with, a
linear scan of the destination ordered DAG-list is performed.
During the scan, each entry computes a cumulative sum of
the datar component of all entries that precede it and stores
it in the datag

′ component i.e G[𝑖] .datag
′ =

∑𝑖−1
𝑗=1 G[ 𝑗] .datar

for all 𝑖 = 1 to N. Since this only requires linear operations,
it can be realised non-interactively within MPC. The datag

′

component of a vertex aggregates not only the datar com-
ponent from its incoming edges but also the datar compo-
nent accumulated by the preceding entries in DAG-list. How-
ever, this additional information aggregated by the vertex
is indeed the data aggregated by the preceding vertex in
the DAG-list. This additional information that is gathered
by each vertex is removed by transitioning to the vertex or-
der of the DAG-list where datag component is computed
as G[𝑖] .datag = G[𝑖] .datag

′ −G[𝑖 − 1] .datag
′ for 𝑖 = 1 to N.

This also comprises entirely of linear operations and is non-
interactive. The transition from destination ordering to ver-
tex ordering can be realised in rounds independent of graph
size [1]. Note that the above approach works only for a linear
aggregation operation. For algorithms requiring non-linear
aggregation, Graphiti falls back to the approach of [1]. We
refer an interested reader to [1, 10] for further details. Finally,
Gather is followed by ApplyV. Observe that at the end of
Gather, the DAG-list is sorted in the vertex order where all
the vertices appear together. Thus, the function 𝑓AV is applied
in parallel only to the first |V| entries of the DAG-list that
corresponds to the vertices.

Algorithm 1: Propagate
Input: DAG-list G in vertex order

1 for 𝑖 = |V| to 2 do
2 G[𝑖] .datar = G[𝑖] .datas −G[𝑖−1] .datas ;
3 end
4 Transition to the source order of the DAG-list ;
5 for 𝑖 = N to 1 do
6 G[𝑖] .datar =

∑𝑖
𝑗=1 G[ 𝑗] .datar −G[𝑖] .datas ;

7 end

Initialisation phase of Graphiti. In a naive approach, transi-
tioning between different orderings of the DAG-list would re-
quire secure sorting, which incurs significant overhead. How-
ever, [1] observed that the required transitions remain con-
sistent across multiple message-passing rounds. Hence, the
secret shares of mappings that allow transitioning between
different orderings of the DAG-list can be generated in a one-
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Figure 5: Steps in one iteration of message-passing round in Graphiti.

Algorithm 2: Gather
Input: DAG-list G in destination order

1 for 𝑖 = 1 to N do
2 G[𝑖] .datag =

∑𝑖
𝑗=1 G[ 𝑗] .datar ;

3 end
4 Transition to the vertex order of the DAG-list;
5 for 𝑖 = N to 2 do
6 G[𝑖] .datag = G[𝑖] .datag −G[𝑖−1] .datag ;
7 end

time initialisation phase. The initialisation phase begins with
the DAG-list in vertex order. Using a secure shuffle proto-
col, the parties apply a random permutation 𝜋𝐴 to produce a
randomised ordering, denoted as Shuffle-A. Next, another ran-
dom permutation 𝜋𝐵 is applied to Shuffle-A, resulting in a new
randomised ordering, Shuffle-B. The parties then compute
mappings from these randomised orderings to the source and
destination orders. Specifically, the mapping from Shuffle-A
to the source order is computed using a secure sort proto-
col. Since this mapping only links a random ordering to a
sorted list, it does not reveal any sensitive information and
can be made public, denoted as 𝜋𝑆 . Similarly, the public map-
ping 𝜋𝐷 from Shuffle-B to the destination order is computed.
These precomputed secret-shared permutations (𝜋𝐴, 𝜋𝐵) and
public mappings (𝜋𝑆 , 𝜋𝐷) facilitate efficient transitions dur-
ing the message-passing phase. Using these precomputed
mappings, transitions between DAG-list orderings can be ef-
ficiently performed. For transitioning from vertex order to
source order, the secret permutation 𝜋𝐴 is applied via a secure
shuffle to reorder the DAG-list into Shuffle-A, followed by lo-
cally applying the public permutation 𝜋𝑆 to obtain the source
order. Transitioning from source order to destination order in-
volves reversing 𝜋𝑆 via a secure shuffle to return to Shuffle-A,
applying 𝜋𝐵 to reorder into Shuffle-B, and finally applying
𝜋𝐷 locally to reach the destination order. Transitioning from
destination order to source order involves reversing 𝜋𝑆 via
a secure shuffle to return to Shuffle-A, applying 𝜋𝐵 to re-

Vertex order Shuffle-A

Shuffle-B
Destination sort

source sort
Source order

Destination
order

Secure Shuffle

Secure Shuffle

Public mapping

Public mapping

Secure Shuffle

Figure 6: Initialisation in Graphiti.

order into Shuffle-B, and finally applying 𝜋𝐷 locally to reach
the destination order. This approach ensures that transitions
during message-passing are secure and efficient, with round
complexity independent of the graph size. An illustration of
the initialisation phase appears in Fig. 6.

B emGraph

B.1 DCC approach for message passing

An illustration of the traditional approach for message-passing
appears in Fig. 7. In contrast the DCC approach realises
message passing by (i) decomposing G into 𝑛 subgraphs
G𝑖 for 𝑖 = 1 to 𝑛, where G𝑖’s topology is known to a distinct
party 𝑃𝑖 , (ii) computing message-passing algorithm on the
subgraphs G𝑖 in parallel, instead of doing the same on the
global graph G, (iii) combining the results on these subgraphs
to realise message-passing on the global graph G as illustrated
in Fig. 1.

B.2 PageRank computation

Here, we discuss how PageRank computation can be realised
as a message passing. Given a graph G = (V,E), the PageR-
ank algorithm is used to rank the nodes in V by importance.
The algorithm involves multiple iterations where the rank
(state) of every node u is updated as follows:
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Figure 7: Operations involved in the traditional approach for message passing on global graph G

𝑃𝑅(u) = 1−𝛼

|V| +𝛼
∑︁

e(v,u) ∈E

𝑃𝑅(v)
deg(v)

where 𝛼 is the damping factor, which is usually set to 0.85
and deg(v) is the out degree of the vertex v.

The PageRank computation is expressed as a message-
passing algorithm as follows. Every vertex v ∈ V (V with the
corresponding data components) comprises two data compo-
nents, one for the PageRank (𝑃𝑅) of the vertex and the other
storing the precomputed value 𝜌 = 1

deg(v) . Every edge e(u,v)
comprises a single data component datar to store the data
propagated by vertices. The initial PageRank value of each
vertex is set to 𝑃𝑅(v) = 1

|V | ·deg(v) The algorithm proceeds iter-
atively, with each iteration comprising Propagate,Gather and
ApplyV. An explicit call for ApplyE is not required. Propagate
is defined to propagate the 𝑃𝑅 component of a vertex onto
its outgoing edges i.e. e.datas = u.𝑃𝑅 for every e(u,v) ∈ E.
Gather is defined to compute a cumulative sum of the datar

values of all incoming edges and is stored in the 𝑃𝑅 com-
ponent of the node. This ensures that each vertex receives
and accumulates PageRank contributions from its neighbours.
ApplyV updates the 𝑃𝑅 component of each vertex based on its
aggregated value and the damping factor 𝛼. For all iterations
except the last, 𝑃𝑅 component that has to be propagated is
computed as:

v.𝑃𝑅 = v.𝜌×
(

1−𝛼

|V| +𝛼 · v.𝑃𝑅
)
.

In the final iteration, ApplyV simplifies to directly updating
the PageRank value as:

v.𝑃𝑅 =
1−𝛼

|V| +𝛼 · v.𝑃𝑅.

C Security Proofs

We rely on the standard real-world/ideal-world simulation
paradigm to prove the security of our protocols. Let A denote

the real-world adversary corrupting at most 𝑛−1 parties and
S denote the ideal-world adversary. We prove the security
of the protocol in the Fsetup-hybrid model where there exists
an ideal functionality Fsetup to establish common PRF keys
among parties in P. This allows the parties to sample common
random values among themselves non-interactively. Note that
the simulation begins with the simulator S emulating Fsetup

to establish the common keys with the adversary. Since S has
access to the inputs and randomness of A, it can simulate
the steps in the real protocol. Without loss of generality, we
assume that 𝑃1, ..., 𝑃𝑡 for any 𝑡 < 𝑛 are the parties corrupted
by the adversary. In what follows, we first prove the security
of our Amortised Permute+Share protocol, followed by the
security of emGraph.

The ideal functionality for Amortised Permute+Share ap-
pears in Fig. 8, and the secure protocol that realises it, ΠAPS,
appears in Fig. 9.

Without loss of generality, let C ⊂ P denote the parties corrupted
by adversary S. FAPS interacts with parties in P and S. It
receives as input ⟨T⟩𝑖-𝑃𝑖’s share of the input list T and 𝜋𝑖 from
party 𝑃𝑖 for 𝑖 = 1 to 𝑛.
FAPS proceeds as follows.
• Reconstruct input T using ⟨·⟩-shares of parties in P.
• Generate T 𝑗 = 𝜋 𝑗 (T) for 𝑗 = 𝑖 to 𝑛.
• Generate random ⟨·⟩-shares of T 𝑗 for 𝑗 = 1 to 𝑛.
• Send (Output,

〈
T 𝑗

〉
𝑖
) to 𝑃𝑖 for 𝑖 = 1 to 𝑛 and 𝑗 = 1 to 𝑛.

Functionality FAPS

Figure 8: Ideal functionality for Amortised Permute+Share.

Lemma C.1: The protocol, ΠAPS (Fig. 9) securely realises the
functionality FAPS (Fig. 8) against a semi-honest adversary
that corrupts at most 𝑛−1 parties in P.

Proof. Observe that the protocol relies on invoking
FShare Translation. Hence, the security follows from the security
of the underlying protocols for FShare Translation. Apart from
this, the only communication is in the online phase during
reconstruction. Here, observe that T′ and the honest parties
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share of T′ are both lists of random values. Thus, if 𝑃king is one
of the corrupt parties, then the simulator also sends random
values as the shares of honest parties to 𝑃king. If 𝑃king ∉ C,
then the simulator picks a random list T′ and sends it to all
parties in the C. □

Inputs: Each party 𝑃𝑖 inputs ⟨T⟩𝑖 share of the list T with N entries
and permutation 𝜋𝑖 .
Outputs: Additive shares of 𝑛 lists

〈
T 𝑗

〉
for 𝑗 = 1 to 𝑛, such that

T 𝑗 = 𝜋 𝑗 (T) shared between parties in P.

Preprocessing:

– Parties generate ⟨·⟩-shares of a random value R (see §A.1).

– Parties generate ⟨·⟩-shares of 𝜋𝑖 (R) for 𝑖 = 1 to 𝑛 by invoking
pairwise share translation functionality FShare Translation [7].

Online:

– Parties reconstruct T′ = T+R using th 𝑃𝑘𝑖𝑛𝑔 approach. For
this, each party 𝑃𝑖 for 𝑖 ∈ [𝑛] locally computes ⟨T⟩𝑖 + ⟨r⟩𝑖
and sends to the designated king party 𝑃king the party 𝑃king
reconstructs T′ and sends it back to all the parties.

– Party 𝑃𝑖 for 𝑖 = 1 to 𝑛 sets ⟨T𝑖⟩𝑖 = 𝜋𝑖 (T′) − ⟨𝜋𝑖 (R)⟩𝑖 and〈
T 𝑗

〉
𝑖
= −

〈
𝜋 𝑗 (R)

〉
𝑖

for 𝑗 = 1 to 𝑛 and 𝑗 ≠ 𝑖.

Protocol ΠAPS

Figure 9: Amortised Permute+Share protocol.

SΠAPS proceeds as follows.

Preprocessing:

– Using the keys commonly held with A (generated as part of
Fsetup ), sample the common randomness.
– Simulator emulates the FShare Translation on behalf of the hon-

est parties.

Online:

– If 𝑃king ∈ C, then the simulator sends random values as the
shares of honest parties to 𝑃king. It receives T′ from 𝑃king and
forwards it to other parties in C.
• If 𝑃king ∉ C, then the simulator picks a random list T′ and

sends it to all parties in the C.

Simulator SΠAPS

Figure 10: Simulator for Amortised Permute+Share protocol.

The ideal functionality for computing any message-passing
graph algorithm appears in Fig. 11, and the secure protocol
that realises it, ΠMPA, appears in Fig. 12.

Lemma C.2: The protocol, ΠMPA (Fig. 12) securely realises
the functionality FMPA (Fig. 11) against a semi-honest adver-
sary that corrupts at most 𝑛−1 parties in P.
Proof. Observe that the protocol relies on invoking
FPermute+Share, FAPS and FMPC. Hence, the security follows

from the security of the underlying protocols for the same.
Apart from this, the only communication is in the online phase
during reconstruction, which the simulator perfectly simulates
by adjusting the shares of honest parties. □

Without loss of generality, let C ⊂ P denote the set of parties
corrupted by adversary S. FMPA interacts with parties in P and S.
It receives as input V𝑖 ,E𝑖 from party 𝑃𝑖 for 𝑖 ∈ [𝑛]. All parties in
P agree on the message-passing algorithm alg, which defines the
computation details such as the number of iterations for message
passing (𝑘), data to be propagated/aggregated, the functions
𝑓AE, 𝑓AV etc. They send alg to FMPA. FMPA proceeds as follows.
• Construct the graph G = (V,E) where V = V1 | |...| |V𝑛 and

E = E1 | |...| |E𝑛.
• For 𝑖 = 1 to 𝑘

• Perform 𝑘 iterations of message passing algorithm alg in G.

• Decompose the V as V𝑖 for 𝑖 ∈ [𝑛].
• Send (Output,V𝑖) to the party 𝑃𝑖 for 𝑖 = 1 to 𝑛.

Functionality FMPA

Figure 11: Ideal functionality for computing message passing algo-
rithm.

Inputs: Party 𝑃𝑖 holds as input its local view of the graph V𝑖 ,E𝑖

for 𝑖 ∈ [𝑛]. All parties in P agree on the message-passing al-
gorithm alg, which defines the computation details such as the
number of iterations for message passing (𝑘), data to be propa-
gated/aggregated, the functions 𝑓AE, 𝑓AV etc.
Outputs: Party 𝑃𝑖 receives V𝑖 , where the data components in V𝑖

are updated according to the algorithm alg.

Setup:

• Parties invoke the Fsetup for key distribution (see Fig. 4).

Input Sharing:

• Each party 𝑃𝑖 secret-shares the inputs V𝑖 and E𝑖 (see §A.1).

• Parties generate the secret-shared list representa-
tion of the graph as ⟨G⟩ = ⟨V⟩ , {

〈
E 𝑗

〉
} 𝑗∈[𝑛] where

⟨V⟩ = ⟨V1⟩ | | . . . | | ⟨V𝑛⟩. Here, each entry in V and E𝑖 for
𝑖 ∈ [𝑛] consists of two component isV and data as described
in §4.1.

Initialisation: Each party 𝑃𝑖 ∈ P does the following.

• Defines the following permutations: 𝜋𝐺
𝑖

- that rearranges the
V such that all the vertices in V𝑖 and its immediate neighbours
appear together, 𝜋𝑆

𝑖
- that rearranges the DAG-list of subgraph

G𝑖 in vertex order to source order, 𝜋𝐷
𝑖

- that rearranges the
DAG-list of subgraph G𝑖 in source order to destination order,
𝜋𝑉
𝑖

- that rearranges the DAG-list of subgraph G𝑖 in destina-
tion order to vertex order.

• Samples the following random permutations: �̂�𝐺
𝑖

, �̂�𝑆
𝑖

, �̂�𝐷
𝑖

,
�̂�𝑉
𝑖

.

Protocol ΠMPA
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• Computes and sends the public mapping 𝜎𝐺
𝑖

= 𝜋𝐺
𝑖
◦ �̂�𝐺−1

𝑖
,

𝜎𝑆
𝑖
= 𝜋𝑆

𝑖
◦ �̂�𝑆−1

𝑖
, 𝜋𝐷

𝑖
= 𝜋𝐷

𝑖
◦ �̂�𝐷−1

𝑖
, 𝜎𝑉

𝑖
= 𝜋𝑉

𝑖
◦ �̂�𝑉−1

𝑖
to every

other party

Message Passing: For 𝑘 iterations do the following.

Decompose:

– The parties invoke FAPS with inputs ⟨V⟩𝑖 and permutation �̂�𝐺
𝑖

from party 𝑃𝑖 for 𝑖 = 1 to 𝑛 to generate 𝑛 secret shared lists〈
V 𝑗

〉
for 𝑗 ∈ [𝑛].

– The parties locally apply the public permutation 𝜎𝐺
𝑗

on
〈
V 𝑗

〉
and extract the first 𝑚𝑖𝑛(V,2|Ei |) entries to generate

〈
V̄ 𝑗

〉
for

𝑗 ∈ [𝑛].
– Parties generate the ⟨·⟩-shares of DAG-list G 𝑗 in vertex order

as
〈
V̄ 𝑗

〉
| |
〈
E 𝑗

〉
for 𝑗 ∈ [𝑛].

Compute:

– For 𝑖 = 1 to 𝑛 in parallel:

◦ Propagate: The parties invoke FMPC to evaluate steps
1-3 of Propagate as described in algorithm 1 on ⟨·⟩ shares
of G𝑖 . Following this, the parties invoke FPermute+Share to
apply �̂�𝑆

𝑖
followed by applying the public permutation 𝜎𝑆

𝑖
on their local shares of DAG-list G𝑖 to generate the source
order. Finally, the parties invoke FMPC to evaluate steps
5-7 of algorithm 1 on ⟨·⟩-shares of G𝑖 .

◦ Apply-Edges: Parties invoke FMPC to compute 𝑓𝐸 on the
shares of the data component at each entry in the DAG-list
G𝑖 .

◦ source order to destination order: The parties invoke
one instance of FPermute+Share which applies �̂�𝐷

𝑖
on shares

of DAG-list G𝑖 followed by applying the public permuta-
tion 𝜎𝐷

𝑖
to get the destination order.

◦ Gather: The parties invoke FMPC to evaluate steps 1-3
of Gather as described in algorithm 2 on ⟨·⟩ shares of G𝑖 .
Following this, the parties invoke FPermute+Share to apply
�̂�𝑉
𝑖

followed by applying the public permutation 𝜎𝑉
𝑖

on
their local shares of DAG-list G𝑖 to generate the vertex
order. Finally, the parties invoke FMPC to evaluate steps
5-7 of algorithm 2 on ⟨·⟩-shares of G𝑖 .

◦ Apply-Vertices: Parties invoke FMPC to compute 𝑓𝑉
on the shares of the data component at each entry in the
DAG-list G𝑖 .

Combine:

– Parties non-interactively extract the shares of V𝑖 from the
DAG-list G𝑖 i.e ⟨V𝑖⟩ = ⟨G𝑖⟩ [1 : |V𝑖 |] for 𝑖 = 1 to 𝑛. Parties set
⟨V⟩ = ⟨V1⟩ | |.. ⟨V𝑛⟩.

– Parties non-interactively extract the shares of E𝑖 from the
DAG-list G𝑖 i.e ⟨E𝑖⟩ = ⟨G𝑖⟩ [|V̄𝑖 | +1 :] for 𝑖 = 1 to 𝑛.

– Parties set ⟨G⟩ = (⟨V⟩ , {E𝑖}𝑖∈[𝑛] ) as the updated list represen-
tation of the graph.

Reconstruction:

• Parties reconstruct ⟨V𝑖⟩ towards party 𝑃𝑖 for 𝑖 ∈ [𝑛]. This
entails every party communicating its share of V𝑖 to party 𝑃𝑖 .

Figure 12: Secure protocol of emGraph for message passing algo-
rithm.

SΠAPS proceeds as follows.

Setup:

– The simulator emulates Fsetup on behalf of the honest parties.
– Using the keys commonly held with A (generated as part of
Fsetup ), sample the common randomness.
Input Sharing:

– There is nothing to simulate as this step is non-interactive.

Initialisation:

• On behalf of each honest party 𝑃𝑖 ∈ P the simulator picks and
sends random permutations 𝜎𝐺

𝑖
,𝜎𝑆

𝑖
,𝜎𝐷

𝑖
and 𝜎𝑉

𝑖
.

Message Passing: For 𝑘 iterations do the following.

Subgraph Generation:

– The simulator emulates FAPS on behalf of the honest parties.

Subgraph Message Passing:

– For each subgraph G𝑖 for 𝑖 = 1 to 𝑛:

◦ Propagate: The simulator emulates FPermute+Share on
behalf of honest parties. Note that steps 1-3 and 5-7 of
Propagate (Algorithm 1) are non-interactive in MPC.
Hence, there is nothing to simulate for these steps.

◦ Apply-Edges: The simulator emulates FMPC on behalf of
honest parties.

◦ source order to destination order: The simulator emu-
lates FPermute+Share on behalf of honest parties.

◦ Gather: The simulator emulates FPermute+Share on behalf
of honest parties. Note that steps 1-3 and 5-7 of Gather
(Algorithm 2) are non-interactive in MPC. Hence, there is
nothing to simulate for these steps.

◦ Apply-Vertices: The simulator emulates FMPC on behalf
of honest parties.

Combine:

– There is nothing to simulate as this step is non-interactive.

Reconstruction:

• For every party 𝑃𝑖 ∈ C, the simulator simulates the recon-
struction phase by adjusting the shares of honest parties
with respect to the output V𝑖 . Specifically, it sends random
shares on behalf of honest parties 𝑃𝑘+1, ..., 𝑃𝑛−1 and sends
V𝑖 −

∑𝑛−1
𝑗=1 ⟨V𝑖⟩ 𝑗 on behalf of 𝑃𝑛.

Simulator SΠMPA

Figure 13: Simulator for message passing algorithm.
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D Additional Benchmarks

Preprocessing cost. For completeness we report the pre-
processing cost of emGraph. For simplicity, we instantiate
the preprocessing in the presence of a trusted helper. We note
that the cost of the preprocessing phase consists of the trusted
helper generating the necessary correlated randomness and
sending it to the computing parties in one round of interaction.
In the absence of a trusted helper, the correlated randomness
can be generated using generic MPC protocols in [3, 5]. Ta-
ble 6 reports the preprocessing cost of the emGraph for the
10 iterations of PageRank computation.

Graph size #Parties Runtime (s) Comm.(MB)

104

2 0.18 1.40
5 0.33 1.88
10 0.76 2.68
15 1.38 3.48
20 2.03 4.04
25 2.52 4.24

105

2 1.21 14.00
5 3.07 18.80
10 7.51 26.80
15 13.39 34.80
20 19.62 40.40
25 24.34 42.40

106

2 18.57 280.00
5 30.73 188.00
10 75.35 268.00
15 135.06 348.00
20 200.51 404.00
25 259.05 424.00

Table 6: End-to-end runtime for 10 iterations of PageRank
computation using emGraph for varying number of parties
and graph of size |V| + |E| = 105.
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