
Defeating AutoLock: From Simulation to
Real-World Cache-Timing Exploits against

TrustZone
Quentin Forcioli1, Sumanta Chaudhuri1 and Jean-Luc Danger1

Telecom Paris, Palaiseau, FRANCE, name.surname@telecom-paris.fr

Abstract.
In this article, we present for the first time a cross-core Prime+Probe attack on ARM
TrustZone, which bypasses the AutoLock mechanism. We introduce our simulation-
driven methodology based on gem5 for vulnerability analysis. We demonstrate its
utility in reverse engineering a SoC platform in order to study its microarchitectural
behavior (caches, etc.), inside a simulator, in spite of hardware protection. We present
a novel vulnerability analysis technique, which takes into account the cache set
occupancy for targeted victim executable. This proves to be essential in identifying
information leakage in presence of AutoLock. The above tool also identifies the cache
lines leaking a maximum amount of information. A cross-core Prime+Probe attack is
then mounted on these max-leakage cache lines both in simulation for fine-tuning,
and in real hardware. We validate our analysis and attack method on OP-TEE, an
open-source trusted execution environment running on RockPi4 a board based on
RK3399 SoC. More specifically we target the RSA subroutine in the MbedTLS library
used inside OP-TEE. Despite the presence of AutoLock, multiplier obfuscation, and
assuming a cross-core attack, we are able to retrieve 30% of the key bits, which can
later be used in Branch-and-Prune methods to recover the full key.

Keywords: SoC, gem5, Security, Virtual Platform, Penetration Testing, Co-Simulation,ARM,
Trusted Execution, Trusted OS, TEE, Cache Timing Attacks, Micro-Architectural
Attacks, Reverse Engineering

1 Introduction
Trusted execution environments (TEEs) have evolved to become the mainstay of security-
related tasks in System-on-Chip (SoC) architectures. More and more security-related
tasks, such as key storage and Digital Rights Management (DRM), are being executed
within special security frameworks such as SGX [CD16] for x86, TrustZone [NMB+16] for
ARMv8, and Keystone [LKS+20] for RISC-V architecture. Trusted execution environments
(TEEs) are a special type of operating system (OS) that manage these security frameworks
and provide cryptographic isolation between the ’Secure’ and ’Non-Secure’ worlds. In
this article, we limit our scope to TrustZone [NMB+16] and ARMv8. Some well-known
TEEs based on TrustZone include QSEE (Qualcomm), Toppers [fERtS], Trusty [And16],
Samsung Knox [Sam15], SierraTEE, QSEE, and OP-TEE [YL20].

In a similar vein, attacks against TEEs have increased, becoming more vicious in
nature. In this article, we focus on cache timing attacks against TEEs, particularly the
RSA implementation within OP-TEE running on ARMv8 architecture, which targets a
large class of devices, especially in the embedded and mobile domain. OP-TEE, being
an open-source TEE, is robust against various attacks compared to obscure TEEs. Our

mailto:name.surname@telecom-paris.fr

2
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

Table 1: State of the Art: Cache Timing Attacks on Trustzone, NA denotes that no
information is found on this subject.

Ref. Attack Attacker Victim Type Cross-
Core/
LLC

Auto-
Lock

Ryan et. al. (2019)
[Rya19]

Kernel TrustZone Interrupt-
driven

NO NO

Lapid et. al.(2018)
[LW18]

Kernel TrustZone Prime- Probe NO NO

Nin Zhang et. al. (2016
TruSpy) [ZSS+16]

App/ Kernel TrustZone Prime-Probe NO NO

Xiaokuan Zhang et.al
(2016) [ZXZ16]

App/ Kernel Kernel Flush-
Reload

YES NA

Kou et. al. (Load-Step
2021) [KHSZ21]

App/ Kernel TrustZone Interrupt-
driven

YES NA

Kou et. al. (2023)
[KSHZ22]

App/ Kernel TrustZone Interrupt-
driven (SF)

YES NO

Lipp. et. al. (Ar-
maGeddon 2016)
[LGS+16]

App Kernel Evict+
Reload

NO NO

Ours Kernel TrustZone Prime-
Probe

YES YES

method is unique in that we develop and fine-tune our attack in an architectural simulator
(gem5 [LPAA+20]) before porting it to real devices.

1.1 Motivation
AutoLock [GRLZ+17] is an undocumented feature in ARM processors that prevents cross-
core eviction of cache lines from Last-Level Caches (LLC), making cache timing attacks
from another core considerably difficult. Particularly in the context of TEEs, where the
secure thread can be forced to run on a different core. In this article, we address the issue
of circumventing AutoLock in a unique manner. We reproduce the ARM architecture
in an open-source architecture simulator gem5 [LPAA+20], along with AutoLock. Based
on this simulator capable of running the same binary as the real board, we devise and
fine-tune our attack to bypass AutoLock. It is worth noting that in the original AutoLock
article [GRLZ+17], the authors used the DSTREAM probe from ARM with ARM DS-5
Debugger. This is not always possible in commercial devices as the JTAG port is password
protected.

1.2 Related Work
Cache-Timing Attacks [Per05] are well-known in the literature and have been used against
various implementations. They are also the backbone of various transient execution attacks
such as Spectre [KHF+19] and Meltdown [LSG+18]. By measuring the access times related
to cache hits and misses, a process can guess the data access patterns or instructions of
a different process running on the same processor or another core that shares the same
cache. Well-known cache timing attack techniques are listed below:

• Flush+Reload [YF14, LYG+15]: The shared caches are flushed by the attacker,
before the victim execution. Then target addresses are reloaded and the time is
measured.

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 3

• Prime+Probe [LYG+15]: The attacker fills all possible slots (prime-set) for the target
address (victim). After the victim’s execution, the attacker probes those slots to see
if one of the slots is missing.

• Flush+Flush [GMWM16]: The target addresses are flushed by the attacker once
before the victim’s execution, and once after. The address usage is guessed from the
timing of the second flush operation.

• Evict+Reload [GSM15]: Similar to Flush+Reload, but the initial flush operation is
replaced by a cache eviction operation. This technique is useful when flush privilege
is not available.

• Evict+Time [OST06]: A three-step process where, first, the victim is executed and
the time required is measured. Next, the attacker evicts a target address and reruns
the victim. If the time taken is longer than the first execution, the target address
was probably used.

Trusted Execution Environments benefit from a smaller attack surface than classical
operating systems, although they are still vulnerable to cache timing attacks. Some
examples of cache timing attacks against TEEs are:

1. Ryan et al. (2019) [Rya19] use cache timing attacks to analyze cache traces from
L1D and BTB in order to attack ECDSA in Qualcomm TEE. This relies on the TEE
and the attack sharing the same CPU at different time slices. Their tool CacheGrab
uses interrupts to halt the secure thread and to transfer execution to the normal
world without any cache flush.
Note: In OP-TEE interrupt driven attacks can be disabled using the config
CFG_CORE_WORKAROUND_NSITR_CACHE_PRIME. It also relies on same core operation
which is difficult to achieve.

2. Lapid et al. (2018) [LW18] use Prime+Probe and Flush+Reload techniques to
attack Samsung TrustZone Keymaster in Trustonic’s Kinibi secure OS. They reverse-
engineered the Galaxy S6 BootROM to study the AES implementation in the
Keymaster truslet.
Note: It relies on the attack running on the same time-sliced CPU and the shared
memory between the normal and the secure world.

3. Ning Zhang et al. (Truspy, 2016) [ZSS+16] present Prime-Probe attacks from the
app or kernel privilege level to a victim (T-table-based AES implementation in
OpenSSL) running inside TrustZone.
Note: It targets L1 cache and works on same core only.

4. Xiaokuan Zhang et al. (2016) [ZXZ16] present a systematic exploration of vectors
for flush-reload attacks. They demonstrate a novel construction of flush-reload
side channels on last-level caches of ARM processors, which particularly exploit
return-oriented programming techniques to reload instructions.
Note: Flush+Reload attacks are not possible on TEEs since the Rich OS and secure
OS do not share memory space.

5. Kou et al. (Load-Step 2021, 2023) [KHSZ21] present an interrupt-driven framework
where the trusted application (TA) is halted, and control returns to the normal world.
Then, a new method Flush+Evict is used to read the cache state.
Note: Although the attacks are on LLC, there is no mention of AutoLock. In
OP-TEE, interrupt-driven attacks like CacheGrab [Rya19] can be disabled using the
configuration:

4
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

CFG_CORE_WORKAROUND_NSITR_CACHE_PRIME.

6. Kou et al. (Attack Directory 2023) [KSHZ22] present an interrupt-driven framework.
The Snoop Function of ARM Cache-Coherent Interconnect CCI 500 is used to read
the cache state of the trusted application (TA) in a halted state.
Note: Same as above, interrupt-driven attacks like CacheGrab are too easy to detect
and can be disabled using an OP-TEE build config. (see above)

7. Armageddon, by Lipp et al. [LGS+16], presents several Prime+Probe attacks in a
cross-core scenario, however, not on TEEs. There is no mention of AutoLock.
Note: According to [GRLZ+17], it seems that the attacks were carried out on ARM
variants without AutoLock, such as the OnePlus One, the Alcatel One Touch Pop 2,
and the Samsung Galaxy S6."

1.3 Contributions
Given the current state of the art, our contributions in this article are as follows:

• We designed a new methodology called PyDevices within the gem5 simulator to
integrate system devices directly using Python configuration scripts. By leveraging
Ghidra [Roh19] alongside this interface, we established a rapid prototyping approach.
(please see section 2). This new method i.e. PyDevices allows us to reverse-engineer
currently unsupported platforms by gem5, and associated binary bootroms. This is
possible regardless of password-protected JTAG ports found in commercial platforms
which can not be probed using DSTREAM and ARM DS-5 (pl see. section 5.3).

• We present a novel vulnerability analysis technique called VictimScan, which takes
into account the cache set occupancy and replacement policies for targeted victim
executables instead of cache lines only. (pl. see subsection 5.5) This proves to be
essential in identifying information leakage in presence of AutoLock. The above tool
also identifies the cache lines leaking a maximum amount of information. Although
multiple cache leakage analysis tools, both static and dynamic [GVR+23] exist, to
our knowledge, none of them take into account the cache set occupancy for target
indices, and thus unsuitable for devices with AutoLock.

• For the first time, we demonstrate a cross-core attack on TrustZone that bypasses
AutoLock. Unlike most attacks in the literature, which utilize mechanisms like
CacheGrab [Rya19] relying on interrupt-driven methods, our approach cannot be
easily disabled in recent versions of OP-TEE using the configuration:
CFG_CORE_WORKAROUND_NSITR_CACHE_PRIME

Additionally, these attacks often assume same-core operation, which is challenging
to achieve in practice and can be disabled by the TEE.
.

1.4 Organization
The rest of the article is organized as follows: In section 2, we introduce our simulation
platform based on gem5 and discuss the associated GDB instrumentation, booting TEEs,
and the PyDevices method. In section 3, we illustrate a simulation-driven method of
vulnerability analysis which takes into account the cache set occupancy and replacement
policies. In section 4 we show how the vulnerabilities detected in section 3 can be exploited
in presence of AutoLock. Section 5 presents the experimental setup, the attacker model,
the real hardware platform RockPi4 and attack results. Finally, Section 6 concludes the
article with an emphasis on future works.

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 5

Bo
otR

OM

Secure
Workload

GDB

attack_output.log
security_report.txt

attack_labels.log

victim_scan.py
attack_monitor.py

*.py

GDB STUB

Read/write

Monitor

Breakpoint

Analyze

Configure

Supervise

config.py

gem5
python

primitive

User-defined
Python implementation

 for system devices

Platform
dynamic

instrumentation
&

User-defined
GDB monitor

functions

Configurable
ARMv8-A

 CPU
& Cache
model

On-chip memory bus
architecture modeling

Map
into

Produce

Figure 1: Overview of the Archisec platform, instrumentation tools and simulation capabil-
ities. We added functionalities in gem5 compiled binary to be then used in run-time loaded
configuration files, in addition to gem5 primitives, in order to simulate and instrument
real ARMv8 hardware with their unmodified secure workloads.

2 Our Simulation Platform and Toolbox
Our platform is based on gem5 [LPAA+20], an open-source computer architecture sim-
ulator widely used in the computer architecture community. Various uses of gem5 for
security evaluation can be found in the literature, categorized into hardware and software
domains. Firstly, gem5 has been employed to identify software vulnerabilities related to
microarchitecture, such as cache timing. Reference [WGSW18] presents such an approach.
CacheD [WWL+17] is another static analysis tool for detecting software cache information
leakage, which employs gem5 simulation to validate the results.

Table 2 shows simulation capabilities of gem5. As we can see all popular ISA/CPU
families are supported, with advanced out-of-order cores, and all the elements of the memory
hierarchy. Through its Python-based scripting interface, a SoC model can be described
using its unique component model primitives called SimObjects (currently supporting
over 300 parameterized models). All SimObjects are compiler c++ binary, python is used

Table 2: gem5 capabilities (version 20.0)
Feature Options
System Modes SysCall, Full-System
ISA ARM, x86, RISC-V, SPARC, POWER, MIPS
CPU Models Simple, In-order Pipeline, Out-of-order Pipeline, KVM
Cache Models Classic, Ruby
DRAM Models DDR3, DDR4, Wide-IO
I/0 Disk, NIC, PCI
External API SST, SystemC TLM 2.0
Accelerator Models GPU

6
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

only for configuration. It is possible to run unmodified binaries from a working SoC in
full-system mode. It is also possible to use a faster simulation method where operating
system routines (system-call) are emulated, called syscall mode.

Figure 1 depicts gem5 capabilities and an overview of our platform. Apart from
traditional gem5 capabilities, which supports armv8 cores, on-chip bus and memory
hierarchy, we have added the capability to boot Secure Workloads such as GlobalPlatform-
compatible TEEs. We have also added a method to model various I/O devices in a SoC
quickly with the help of a Python script. This is used later to model real-life SoCs in gem5
easily.

On the left of the figure 1, we show a toolbox for vulnerability analysis based on gdb.
This toolbox helps the attacker to stop the execution flow of a secure workload at will and
carry out a detailed inspection of its micro-architectural states. This toolbox is later used
to do dynamic cache analysis of secure workloads (TEEs).

2.1 gdb Instrumentation
It is already possible to configure gem5 to closely follow all the execution states during
binary execution. Indeed, with the appropriate debug flag activated, all executed instruc-
tions can be traced, and micro-architectural states at each cycle can be dumped. However,
the amount of data required to trace all the cache states rapidly increases as the binary
becomes more complex. In full system mode, it can easily take 1 Terabyte of data just to
follow all the instructions executed during the booting of Linux.

To mitigate this problem in gem5, it is possible to add specific gem5 instructions to
isolate key parts of the workload. However, it requires modifying the binary to integrate the
instructions. This is not suitable in our case because we want to use the same unmodified
binary both in simulation and real hardware.

We propose a method based on gdb monitor implementation. With our modifications
to gem5, it is possible to halt an executable, inspect micro-architectural states, and resume
simulation. This method drastically reduces the amount of data produced(few megabytes),
as we can focus more closely on the key parts of our program without sacrificing accuracy.

System

Memory

StubBreakpoint

GDB_MONITOR:checkpoint

GDB

CPU

GDB
Stub System

Memory

Breakpoint

GDB_MONITOR:memFast=True

GDB
Stub System

CPU

printToGdb(branch_data)

GDB_MONITOR:extractBranch1

Breakpoint

Figure 2: Typical use case for the interactive debug session between gdb and gem5 : using
gem5 native functionality from gdb to control, configure, and analyze the simulation

Figure 2 describes our method in detail. There are two elements in the interactive
session:

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 7

• gem5 simulation comprising of various SimObjects corresponding to SoC components
described in the configuration file.

• gdb with a real user or with gdb-python running a specific script file, which can fully
automate a monitoring process

We modified gem5 to provide access to the internal state of all SimObjects. With the help
of gdb-monitor calls, we can control and modify the SimObject states from a gdb-python
script. Notably:

• Change the precision and the speed of the simulation.(e.g by switching to simpler
CPU models)

• Modify simulation parameters without having to change the disk images.

• Access to performance counters (normally requiring a specific CPU instruction)

• Flush caches.

• Synchronize information between gdb and the simulator.

• Automatically connect to a terminal for text I/O.

As we can see in figure 2, on the top left we are saving a checkpoint, in top right, we are
switching to fast simulation for memory SimObjects, and in the bottom we are extracting
branch predictor states corresponding to a particular branch in the simulated binary.

2.2 TrustZone and OP-TEE support in gem5
TrustZone is the commercial name for ARM’s security framework needed to implement
a secure enclave in ARM architecture. It mainly relies on specific execution modes. On
ARMv8-A, these modes are called Exception Levels (EL).

There are multiple TEEs developed for ARMv7-A and ARMv8-A architectures. They
leverage the TrustZone framework to deploy a secure execution environment. For our
project, we chose OP-TEE [YL20], an open-source TEE that follows the GlobalPlatform
API [lea21]. It is currently maintained directly by Arm as part of the TrustedFirmware-A
Project [Lin23].

2.2.1 TEE Internals

As described in figure 3, TEEs is deployed in secure memory, using TrustZone hardware
isolation. As the rich OS (e.. Linux) can not access secure memory, secure OS and rich OS
exchange through the secure monitor running in EL3. For that, they use secure monitor
calls(SMC) to switch CPU exception level between EL1 (OS) and EL3 (secure monitor).
Through this mechanism, the OP-TEE kernel module can exchange with a TEE running
in TrustZone protected EL1S. This TEE kernel module allows linux client applications
to launch and communicate with trusted applications running inside TEE. For that, they
use the Global Platform TEE client API following GlobalPlatform[lea21] specifications.
In our examples, trusted applications are loaded from the rich OS filesystem, using the
tee daemon which undergoes an integrity check using a stored key. trusted applications
also have access to services provided through TEE internal core API implemented with
service calls (SVC). They gave access to libraries directly implemented inside TEEs such
as mbedTLS [Lin24] for OP-TEE.

8
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

EL1S
EL0S

EL1
EL0

Secure Monitor
TrustedFirmware-A BL31

EL3

Linux
Kernel

OP-TEE
OS

Trusted
Applications

optee daemon
TEE Internal

Core APITEE Client API
OP-TEE
Module

Secure OS

S
M
C

S
M
C

User
Kernel

Client Linux
Applications

Normal World Secure World

S
V
C

S
V
C

Internal Library
(mbedTLS, ...)

Key Manager

Figure 3: Typical OP-TEE scenario on ARMv8-A: A client application running in Linux,
uses the TEE client API to interact with a Trusted Application (TA) running in OP-TEE
OS. While SVC represents classical service calls used by Rich and secure OS, SMC
represents Secure Monitor Calls. SMCs are used by the two OS to communicate via the
Secure Monitor.

2.2.2 Booting TEEs in gem5

Current gem5 ARM models support the EL3 firmware level associated with TrustZone
support and EL0S and EL1S necessary to run TEEs and trusted applications. Moreover,
gem5 ’s ARM MMU supports secure labeling, and it can use the NS bit to access unsecured
regions from the secure exception Level.

We did the following modifications to gem5 to correctly boot a TEE. We fixed some
small bugs in the ARM ISA implementation in gem5 that arose when trying to boot
OP-TEE for the first time:

• The deactivation of EL2S was not correctly handled

• The generic ARM interrupt controller was not correctly synchronized when switching
between secure and unsecure.

These modifications have been committed to gem5 stable branch 21.1.
However, the secure labeling in gem5 creates difficulties when operating it with gdb.

When bootstrapping a TA, OP-TEE randomly places the TA into the address space. So we
need gdb to grab from OP-TEE the offset to be able to debug the TA. For that purpose, we
fixed the packet protocol inside gem5 and allowed igdb memory translation to be considered
as both secure and unsecure.

2.3 PyDevices: fast system devices prototyping in gem5
ARMv8-A has a wide variety of platforms with different devices, different memory maps
and different boot methods. On gem5, Only the Versatile Express-type platform (Vexpress)
was implemented. This type of platform is mainly represented as a demonstration board
from ARM and also virtual models like the ARM FastModels. The Vexpress platform in
gem5 is implemented through specific devices provided as SimObjects (UART, WatchDog,
etc..) and in direct assumptions in the ISA (ArmSystem and Vexpress PowerControler are

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 9

PyPio
<BasicPioDevice>

Me
mb
us

ReadPacket
-addr
-secure

WritePacket
-addr
-secure

ResponsePacket

/
ResponsePacket

RK_PioDevice:PyPio

data filled
in Python

Compiled in Run-time loaded config files

Figure 4: Integration of PyDevices in gem5 : RK_PioDevices is memory-mapped devices
implemented in Python thanks to the PyDevice API. Config files are responsible for
describing the platform memory layout by specifying memory address for each device
instance.

directly linked) and in generic ARM devices (GICs). Implementing a different Platform
would require writing a SimObject for each device and each modification would require
a lengthy compilation. This is why we designed a faster method: PyDevices. With
PyDevices, system device implementation such as UART, WatchDogs, Timer, etc. can
be directly implemented in Python configuration script files for gem5 (see figure 4). To
implement a new device using PyDevices, only implementations of the read and write
methods corresponding to memory accesses to the devices are needed. This method implies
that device implementations no longer need to be compiled directly in gem5. Instead,
they can be modified at run time as you can see on figure 4. gem5 at run times transfer
packets the device received through its memory interface, to the read and write which
are delegated to their PyDevice implementations in Python. To implement the read and
write methods, PyDevices have access to:

• Specific PyDevices tools for DMA and interrupts activation and deactivation.

• Python tools provided by gem5 : SimObjects Python methods, gdb-python API,
Python simulation Events, etc.

• Any classical Python module: numpy, opencv, etc.

PyDevices are completed by PyPowerState to implement power-domain and CPU sleep/wake-
up process. This easily accessible and modifiable implementation can be compared with
QEMU’S[Bel05] which uses C to implement new system devices and components, which
then need to be compiled directly in QEMU.

2.4 AutoLock integration in gem5
AutoLock, as described by [GRLZ+17], is an ARM-specific replacement policy designed
to enforce inclusivity by preventing the eviction of L2 cache entries if they are present in
a connected L1 cache (see figure 5). This policy ensures that L2 entries remain locked
until they are evicted from the L1 caches. Only after their eviction from the L1 caches
can they be considered for eviction from the L2 cache. Consequently, up to one entry per
associativity of L1 caches can be locked in the L2 cache (illustrated in figure 5). For a
complete eviction of an L2 cache set (i.e., all ways not locked), the L1 entries corresponding
to the current L2 entries must have been evicted by lines that share the same L1 index but
not the same L2 index. This scenario is much less likely to occur with AutoLock, resulting
in L2 sets rarely being fully evictable.

Using gem5 ’s classical interface for cache replacement policies, we integrated an
AutoLock implementation into our platform.

10
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

L2 Unified Cache

L1ICore
0

Core
1

At most, 1 lock per L1 way
can be on the same L2 set

L1D L1D

L1I

Each L1 cache line can
lock a L2 entry

A entry is locked as long as
its L1 entry is not evicted

Figure 5: AutoLock: This cache replacement policy prevents eviction of L2 lines that are
still present in a cache L1. This lock is set up when a cache L1 receive a miss response
from the L2. This lock on the L2 line is opened when all the L1 lines that lock an L2 line
are evicted.

3 Vulnerability analysis with a simulation platform
We use our simulation platform to study micro-architectural states during TEE execution
which is not always possible in real hardware due to hardware protection. However, to
efficiently use a simulator, which is slower compared to a real environment, we created
methodologies that automatically analyze cache states. For this methodology, we need to
define the points-of-interest in the algorithm in advance, called Key Execution Point
(KEP). Our tool will then automatically highlight key cache states, called Key Detectable
States (KDS), associated with each KEP to detect them using cache timing attacks.

3.1 Overview of our simulation-based security analysis

+ GDB

VictimScanChoosing
KEPs

+ GDB

Attack
Monitoring

IIIIII

poor KDS found
for KEPs

poor correlation
between KEP

and attack traces

VictimScan
policy

Configurable
Attack

Real Hardware

KDSesKEPs

Figure 6: Overview of the simulation-based analysis: with this process we use our simulation
platform (gem5+gdb) to craft an attack that we can test on real hardware.

To perform a vulnerability analysis, we use a three-step methodology (see figure 6) to
propose a reasonable attack that can be run on our real platform:

I : Choosing KEPs: Based on the knowledge of the underlying algorithm, we
propose points of interest in the algorithm called Key Execution Point (KEP)
which potentially leaks information about the key. These points are regrouped in
KEP classes that denote similar operations.

II : VictimScan: During an automatic/interactive debug session, the victim running
in gem5 is analyzed to extract key features associated with each class of KEPs, with
respect to an attack information model. We call this information model a VictimScan

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 11

policy. These key features are called Key Detectable States (KDS), and can be
used to configure a cache timing attack.

III : Attack Monitoring: During an automatic interactive debug session, the attack
scenario (victim + attack) running in gem5 is monitored to supplement the traces of
an attack with victim KEP execution. These data can then be processed to confirm
the correlation between KEPs and attack results.

To use this process, we have to provide settings specific to the type of attack we want to
analyze.

3.2 Choosing Key Execution Points
In our analysis process which relies on a precise simulation model, we can not statistically
produce traces and then deduce point-of-interest as it is often done for side-channel analysis,
for the following reason. As we consider our secure workload not modifiable on our real
platform, we can only gather alternative traces in simulation. However, as our simulation
model is vastly slower than the real hardware, studying diverse enough traces to construct
points of interest would take a huge amount of time. Therefore, our methodology proposes
to set the points-of-interest directly in the code instead. We call them Key Execution
Point (KEPs). These KEPs symbolize potential cache timing weaknesses associated
with an execution path and/or a specific variable value. In this article, we denote KEPs
as ♠,♥, [S] or [M]. KEPs sharing the same label are considered in the same class. KEPs
in the same class represent similar information at the algorithm level: e.g. which S-box
is used for AES, which operation is performed by the square and multiply algorithm, etc.
As we are using gdb to track execution in our simulations, KEPs are implemented as gdb
breakpoints, covering from single instructions to code segments.

We propose the following function which is reminiscent of the Square and Multiply
Algorithm as an example to show how our methodology works. It is placed inside a trusted
application and launched from Linux.

17 void crypto_f(big_int_t* A, big_int_t* B,big_int_t* E){
18 for(size_t i=0;i<BIG_N_B;i++){
19 if(bit(E,i)){
20 add(A,B,A);//♠
21 }
22 add(B,B,B);//♥
23 }}

KEP pos
♥ demo_fun.c:22
♠ demo_fun.c:20

Figure 7: Demo Function: This function is placed in TA. It is studied using VictimScan
and the 2 KEPs (♥ & ♠) described in the table.

The KEPs in this function, based on typical square and multiply algorithm weaknesses
are represented as ♥ and ♠. Because we use the gdb format, we can generate them from
typical IDEs (like VsCode). They are stored and provided to the following steps as a CSV
file.

3.3 VictimScan
Traditional attacks mark target addresses as the branch addresses for the square and
multiply sections. We use a different approach since we have reproduced the exact execution
scenario in gem5. We use gem5 simulation to find addresses which are susceptible to leak
a maximum of information. It could be the branch address, or it would be a heap variable,
page-table entry or something else related to that branch. We find out these addresses
through our dynamic cache analysis tool VictimScan (Step II on figure 6).

12
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

VictimScan is a dynamic cache analyzer that identifies weaknesses in an unmodified
binary which might lead to a possible cache-timing attack. VictimScan runs as Python
script in gdb. It interacts with gem5 simulation platform through an interactive debug
session in order to configure the attack scenarios and access SoC internal cache states.

3.3.1 Classifying cache states

VictimScan takes the KEPs as inputs. It automatically dumps cache states associated
with a KEP code segment when encountered by the simulation. From these cache dumps,
VictimScan isolates and organizes cache states in order to detect correlation between them
and KEPs. VictimScan can also use random KEPs, denoted with , which are associated
with cache dumps randomly taken during the studied function.

At the end of the studied function, VictimScan outputs a set of Key Detectable
States (KDSes) which corresponds to cache states which are the most correlated with
each KEPs. KDSes are also used to select and configure an attack to detect them. We
formalize KDS definition and their relation with attacks in section 3.5.

The correlation between KEP and KDSes is evaluated using a score based on accu-
mulated cache data which compares with other KEPs (including random KEPs). These
results are archived in a report as a key detectable state ranking for each key execution
point using the aforementioned score.

By examining the maximum score value for each KEP, this report indicates if a KEP
is easily identifiable through an attack that could detect a specific KDS w.r.t a random
execution point or other KEPs.

3.3.2 Ranking methodology

Our goal is to identify KDSes that are more likely to be triggered around a KEP and that
are less likely to be triggered by other KEPs or randomly. If no such KDS can be found
we can safely declare the associated KEP is not detectable by an attack. For that, we use
a simple scoring system, that is computed along the execution, i.e. each time a new cache
dump is collected on a KEP. A KDS may be triggered by other KEPs, therefore we have
to account for other cache lines that might produce the same KDS. For this purpose, we
use the score function (equation 1) to find the best KDS to detect a KEP class. Given S
is the set of all KEPs: S = {♠,♥}

Given hx(k) which is the number of times a KDS k is a key feature of cache dump
corresponding to a KEP class x.

Given wx which is the number of times a KEP of class x has been found and thus a
cache dump has been made.

This score function presented in Eq. 1 has three components:

• hx(k)
wx

: The KDS k present in cache dump during the KEP gets a positive score,
normalized by the number of times the associated KEP has been triggered.

• h (k)
w

: the KDS k present in random dumps negative score, normalized by the number
of times this random dump has been done.

• ∑
s∈S,s≠x

hs(k)
wx × card(S) : is the conflict contribution: The KDS k found in other KEPs

dump get a negative score and are normalized by their related KEP’s trigger count
and by the number of KEPs’ classes.

Overall the score function for a KDS k is given by:

scorex(k) =
hx(k)

wx
−

h (k)
w −∑

s∈S,s≠x

hs(k)
wx × card(S) (1)

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 13

This score value is also generally indicative of how much a class of KEPs is identifiable
using a cache timing attack. A negative score indicates that the class of KEP cannot be
identified.

3.3.3 Example: Demo TA

We run VictimScan on the function in figure 7. Using, the two KEP defined. In this
example, we have two classes of KEPs: ♥ and ♠, with each only containing one KEP.
With this configuration, VictimScan produces the report in figure 8.

♥->max_hit:('0x212', 64)
(1):0x210

score:0.6666666666666667
hit_count:64
top_addr:
1@128=S#0x40093400[S#0x30218400]:add + 76 in section .text

(2):0x211
score:0.6666666666666667
hit_count:64
top_addr:
1@128=S#0x40093440[S#0x30218440]:add + 140 in section .text

♠->max_hit:('0x20e', 35)
(1):0x58

score:1.0
hit_count:35
top_addr:
1@70=S#0x400fc600[S#0x30281600]:__ta_no_share_heap + 130992 in section .bss

(2):0x210
score:0.6666666666666667
hit_count:35
top_addr:
1@70=S#0x40093400[S#0x30218400]:add + 76 in section .text

Figure 8: Typical report from VictimScan, showing the KEPs classes, and the associated KDS
with their scores; ranked in decreasing order. Each KDS also specifies the corresponding address
in the binary .e.g instructions from .text section, or variables in the heap.

VictimScan suggests the best KDS to attack. Here, we only displayed the top two
for the two classes of KEPs. Thanks to gem5 integration, we are able to trace the main
source for KDS : attributing it to an address (virtual and physical) and, if possible, a code
line. We added this information to gem5 packets and stored it in the cache model in their
associated cache line. In most situations, VictimScan also finds KDS that have hidden
causes, like:

• Automatic translation table walking: Address sources are table addresses

• Prefetching: Sources are instructions outside the function

• Heap and stack addresses: Sources are typically in the function accesses around the
KEP.

In the report in figure 8, KDSes correspond to cache lines present in cache dumps that we
define in section 3.5 as 1hit KDS.

14
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

3.4 Attack Monitoring
Using the same KEP descriptions, our simulation platform can be used with gdb to perform
a cache timing attack and add the KEP trigger to the produced traces. This is produced
by completely monitoring the attack scenario to fuse information from the victim, KEPs,
and attack traces. This step is called attack monitoring which corresponds to step III
shown in figure 6. The traces thus produced contain cache timing results and KEP labels
which help in assessing if an attack can produce the intended results.

3.4.1 Example: Demo TA

We run attack monitoring (Step III) on the example function in figure 7 using the report
in figure 8 to configure a Prime+Probe attack. As the KDS reported in the ranking
corresponds to a cache line index, we can use them to configure a Prime+Probe attack to
probe for victim access to this index. This attack produces traces that we can plot and
annotate them with KEPs, as shown in figure 9. On the zoomed version below (figure 9),

Figure 9: Cache timing traces for the simple example on figure 7, the bottom figure being
the top zoomed. The X-axis is the time. The moments when execution reaches a KEP, are
indicated with vertical lines. Cache-line timings are shown with colored dots, with their
Y-value corresponding to the total access time of the prime set.

we can better see that KEPs are correlated with cache timings. We can thus isolate a
signal pattern to re-identify KEPs using only the cache timings.

3.5 VictimScan policy: Detectable state definition
Given a set of KEPs corresponding to code segments, we need to find attack configurations
capable of identifying such segments. To do so, we have to isolate key features in these
cache dumps gathered around the KEPs. We call these key features, Key Detectable States
(KDS). If the score (equation 1) of a KDS is high enough for a specific KEP, detecting this
KDS is equivalent to detecting the KEP. These KDS definitions are therefore closely linked
to attack types (like Prime+Probe or Flush+Reload) and describe the cache information
observable by attacks of this type.

These KDS definitions are implemented in our VictimScan model as a component called
VictimScan policies, visible on figure 10. As our VictimScan script running in gdb accesses

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 15

victim_scan.py

VictimScan
RankingVictimScan

Report

Acquire

CacheData

FormatedDump

GDB

VictimScan Policy
KDS=(index, way)

KEP
Breakpoints

Figure 10: From cache Dump on KEPs to VictimScan ranking algorithm: VictimScan
policies formats the cache dumps to highlight what states are observable in the cache using
a Prime+Probe Attack.

raw cache data from gem5, these dumps are formatted to be exploitable by the ranking
algorithm. These policies define how cache dumps taken on a KEP, are formatted to only
present observable state to the ranking algorithm. The ranking algorithm is completely
oblivious to the KDS definitions and ranks them with no regard to any relation between
two KDSes besides equality.

As mentioned in section 3.3.2, it tries to rank the set of KDSes. For each class of KEP,
the highest ranked KDS can be used to detect it reliably.

3.5.1 Key Detectable States model

Let D be the cache dump set. An element d of the cache dump set D which represents
the state of a specific way w from an cache set with index i occupied by a line which
corresponds to the address a is a 3-tuple as follows:

d = (i, w, a) ∈ D (2)

Each dump produced, Du, is a set of d ∈ D which we call U, the set of cache dumps, such
that Du ∈ U. Therefore:

∀Du ∈ U, Du = {d1, d2, d3, ..., dn} with (d1, d2, d3, ..., dn) ∈ Dn (3)

16
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

A VictimScan policy x is thus a function fx of U to a set of elements from a simpler set
called Kx, the key detectable state set.

fx ∶ Du ∈ U ↦ {k1, k2, ..., kn} with (k1, k2, ..., km) ∈ Km
x (4)

Each element of k ∈ Kx can be distinguished using an attack Ak ∈ Ax, with Ax being the
set of attacks that can be configured to detect an element of Kx. This attack Ak produces
traces along the execution of the victim, influenced by the shared cache state. For a given
point of execution p, we can define the result of the attack:

Ak ∶ p ↦ TA (5)

TA is the A attack output space, such as Ak(p) ∈ TA is the output of the attack for a
point p. An attack trace is therefore a list of execution points {p1, p2, ...}, and attack result
{Ak(p1), Ak(p2), ...}. In that regard, key execution points (p♠1) are specific points in the
execution that can be organized into classes that the attacker wants to distinguish using
the output of the attack (Ak(p♠1)).

KDS Property: Given two KEPs, p♠ from KEP class ♠ and p♥ from KEP class ♥
that each produced a dump, Du♠ and Du♥, Ak ∈ Ax is equivalent to the following:

∀k
′
∈ Kx, k

′
∈ fx(Du♠) and k

′
∉ fx(Du♥) ⇒ Ak′(p♠) ≠ Ak′(p♥). (6)

if the property 6 is true for an attack Ak, and therefore Ak ∈ Ax, it means that it can be
used to detect KEPs using KDSes k from the image of their dump through the policy x.

In this configuration, the VictimScan ranking proposes a set of attack configuration
(Ak), one for each KEP class which can be used in tandem to detect and distinguish KEPs.
To represent our cache timing attacks, we define the following VictimScan policies.

3.5.2 VictimScan policy: 1hit

1hit is the simplest VictimScan policy that we used in figure 8 and figure 9. With this
policy, KDSes are only made of non-empty cache indices (0x1, 0x23, ...) with no regard
for the number of occupied ways or set occupancy. Their associated f1hit function is as
follows:

f1hit ∶ Du ∈ U ↦ {k, ...}
f1hit(Du) = {(i)∣∃(w, a), (i, w, a) ∈ Du}

(7)

The attacks A
1hit
(i) for this policy are attacks which can distinguish between hit and miss

for a specific set with index i.

3.5.3 VictimScan policy: nhit

nhit is the second VictimScan policy which takes into account set occupancy. For each cache
dump, the KDSes, that it produces are composed of: a cache index and the number of
occupied ways for this index ((0x1,1),(0x23,4), ...). Given Oi(Du) = {w∣∃a, (i, w, a) ∈ Du},
their associated fnhit function is as follows:

fnhit ∶ Du ∈ U ↦ {k, ...}
fnhit(Du) = {(i, card(Oi(Du)))∣card(Oi(Du)) > 1} (8)

The attacks A
nhit
(i,o) for this policy are attacks which can distinguish between different

occupancies o (the number of ways filled) for a set of index i.

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 17

3.5.4 VictimScan policy: nhit_inclusive

This is a derived VictimScan policy from the nhit policy. For each cache dump, its KDSes
have the same definition as nhit. However, for each nhit KDSes, additional KDSes are
added for included occupancies: For (0x23,4), (0x23,3), (0x23,2), and(0x23,1) are also
emitted. Their associated fnhit_inclusive function is as follows:

fnhit_inclusive ∶ Du ∈ U ↦ {k, ...}
fnhit_inclusive(Du) = {(i, oth)∣(i, w) ∈ fnhit(Du), oth ∈ [1, w]} (9)

The attacks A
nhit_inclusive
(i,oth) can be seen as a variation on A

nhit
(i,o). This means that an attack

A
nhit_inclusive
(i,oth) which has a number of filled ways for set index i of at least an occupancy

threshold oth, can be defined using a sum of A
nhit
(i,w), with assoc the cache associativity:

A
nhit_inclusive
(i,oth) =

assoc−1

∑
w=oth

A
nhit
(i,w) (10)

3.5.5 Additional consideration for secure line labeling

VictimScan policies can also be configured to exclude unsecure lines when monitoring a
secure OS operation. In that case, they produce a new noise KEP dump entry (that we
noted). This is called REJECT_UNSECURE. This means that for each dump produced
on KEP, the produced KDSes are separated between the real KEP (♠,♥, ...) contribution
(secure cache lines), and the noise () contribution (unsecure cache lines). This setting
improves VictimScan KDS detection performance by depreciating KDS that are linked
with unsecure access.

4 Vulnerability model for AutoLock
To attack a system with an AutoLock cache, we must select an attack capable of detecting
changes in cache states despite the presence of AutoLock. Given our focus on an appli-
cation running in a secure enclave, we have opted for Prime+Probe attacks. However,
since AutoLock hinders the effectiveness of Prime+Probe attacks [GRLZ+17], we need to
thoroughly examine the cache states that can still be detected by such attacks to determine
the appropriate KDS definition. Indeed, with the correct attack and VictimScan policy,
we can apply the methodology described in section 3 to AutoLock.

4.1 Prime+Probe model and implementation
For Prime+Probe: the attacker targets a specific cache index which corresponds to specific
information about the cryptographic process. The attack proceeds as follows:

1 Allocating: We allocate our prime set. A prime set is composed of data for which
the address has been chosen to have the same cache index as the victim address.
There is an entry in the prime set for each associative way in the cache. (i.e. if
the cache is 16-way associative, we need 16-entries prime set). If there are multiple
victim addresses, each needs its own prime set.

2 Priming We access our prime set for the victim address we want to attack. This
way our prime set will fill each possible alias for this victim address in the cache.
Thus the victim address will be forced to evict one of the entries to be cached.

18
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

3 Probing Measuring access time to all the lines in our prime set to check if one was
evicted by our victim. If an entry is evicted, probing it causes a miss resulting in a
longer access time. On the contrary, if an entry is still in the cache, it is a cache hit.

Since Probing also fills the cache with the prime set like Priming would do. We do not
need to prime after probing as long as we are only doing that. We need to be especially
careful with our Prime+Probe implementation due to AutoLock. Therefore, we closely
studied the implementation mentioned in [TOS10] and [LYG+15].

Entry@0xaaaadec0
head: Entry*(8)

startT: time_t(8)
endT: time_t(8)
props: enums(8)

next: Entry*(8)
prev: Entry*(8)

phyaddr: int64(8)

vic_addr: int64(8)

Entry[1]
head
next
prev

Entry[2]
head
next
prev

Entry[15]
head
next
prev

cache set: 0x38
way 0 1 2 33 4 5 6 7 8 9 a b c d e f

1 cache line
64 bytes

Figure 11: Our prime set uses a doubly-linked list. Its elements are allocated in such a
way that they have all the same cache index (0x38). If enough are allocated they fill all
the possible ways for their index.

This leads us to use a doubly-linked list data structure for our prime set (see figure 11).
From each entry, we can automatically go to the previous or the next. With that, we can
go through the set in any direction. We can use the head entry as our signal that we have
reached the end. We can also easily swap entries to randomize the prime-set order. With
this structure, we can probe and prime the set as we are going through it. After the first
priming, we only probe the set, each probing serving as priming for the following one.
Each entry of the prime set fully uses its line of cache to store all the necessary properties.
Each result point is stored in a single cache line, to ensure minimum noise.

4.2 Prime set self-eviction
Already mention in [LYG+15], under the name thrashing, self-eviction happens when
probing a prime-set entry evicts another prime-set entry. It can cause an entry to be
wrongfully considered as been evicted by the victim. Figure 12 presents a situation in
which Prime+Probe causes self-eviction. After priming, a victim evicts some element from
the prime set (0 and 1). The figure then presents how the different ways of probing interact
with self-eviction:

• Forward: Probing is always done in the same direction. If a miss is encountered, the
following element will be bumped out of the cache due to self-eviction, and therefore
all the following entries will be misses. On figure 12, the V-lines from the victim are
not evicted by the prime set because they were accessed the most recently. Instead,
the prime set evicts all its lines until it reaches the end to finally evict the V-lines.

• Reverse We change direction each time we finish probing. Thus elements, are
never bumped and we can observe the sensibility of each element. On figure 12, no
additional entries are evicted because the entry accessed is always the next one that
would be evicted. And thus the V-lines are accessed last.

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 19

CPU Cache

0 1
2 3 4 5 6 7 8 9 a b c d e f

Replacement Policy: Least Recenlty Use(LRU)
evicting: min()=

 Victim accesses
 2 cache lines
 with a 0x38 index

V
V

Prime

V V

evicted: non longer in cache

Probe

0 1

0 1

0 1 2 3 4 5 6 7 8 9 a b c d e f0x38

start

Reverse

Forward

0 1
2 3 4 5 6 7 8 9 a b c d e f

2 3 4 5 6 7 8 a b dc9V V
0 1

1
start

0

Victim lines causes
the prime set to evict itself

0 1
2 3 4 5 6 7 8 9 a b c d e fV V

0 1 start

111119 113 113 107 110 112 106105 103 102 108 113 111 204203
access
time

access
time 209213 195 206 205203 206201208205 198 200 199204203 203

Prime set is accessed
and completly fills the

cache set

Cache state
before probing

Figure 12: How direction of probing control self-eviction: after a victim accessed two lines,
different probe directions produce different results.

Depending on the victim we want to observe, we can choose between the two directions of
probing.

4.3 Link between VictimScan policies and Prime+Probe direction
Since the direction of probing reacts differently to the victim evicting elements of the prime
set, they are represented by different VictimScan policies. Prime+Probe is configured using
a prime set index i, which corresponds to a 1hit KDS (ki) or the first element of nhit KDS
(k(i,o)). Indeed, the output of Prime+Probe for each execution point p is the access time
for each element of the prime set. Given assoc the last-level cache associativity, we have:

A
Prime+Probe
ki

(p) = {t0, t1, .., tassoc−1}ÍÒÒÒÑ ÒÒÏ
assoc

(11)

Making abstraction of noise, we can propose a model for these expected timing results
depending on the probing direction.

When probing forward, due to self-eviction, all the access timing for the prime set will
have the same value, either thit or tmiss. Thus Prime+Probe forward can output only two
possible value Tmiss or Thit

Tmiss = {tmiss, tmiss, .., tmiss}ÍÒÒÑ ÒÒ Ï
assoc

Thit = {thit, thit, .., thit}ÍÒÒÑÒÒÒÏ
assoc

(12)

This means that when probing forward the Prime+Probe attack can only reliably detect
between a set being empty and being filled with one or more entries. This behavior links
the Prime+Probe attack to the 1hit VictimScan policy. In that context, KDSes are made
of only a single index. And if we take two points of execution p1 and p2 whose dumps
only differ by a single cache line in an otherwise empty cache set with index i. We have
ki ∈ f1hit(Dumpp1

) and ki ∉ f1hit(Dumpp2
) and our attack A

Prime+Probe-forward
ki

produce
the following results:

A
Prime+Probe-forward
ki

(p1) = Tmiss

A
Prime+Probe-forward
ki

(p2) = Thit
(13)

Therefore, we have A
Prime+Probe-forward
k ∈ A1hit. This property is still valid when using

the sum of timing over the prime set. In that, case we have ∑Tmiss = assoc × tmiss and
∑Thit = assoc × thit. Therefore, we can plot only the sum of the timing without losing
information.

On the other hand, for Prime+Probe in reverse, timing values can differ between entries
in the set. Each entry can be a hit or a miss. However, due to the LRU (Least Recently

20
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

Used) cache replacement policy and the direction of probing, the victim program evicts
elements of the prime set in order, from the least recently probed to the most recently
probed. This results in all entries after the first miss being misses because the prime set
is evicted from the extremity where the last probe started. Consequently, the number of
prime entries evicted is directly linked to the number of occupied cache ways o by the
victim for their associated index. Thus we can define:

Thit-miss(o) = {thit, .., thitÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
assoc−o

, tmiss, .., tmissÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
o

} (14)

For o ∈ [0, assoc − 1[, Thit-miss(o) represents all possible outputs for the Prime+Probe
reverse attack (APrime+Probe-reverse

ki
). Each of these outputs is linked with a number of

occupied way o for the cache index i which was used to allocate the prime set. The attack
has therefore a different output for each occupancy of the cache set. This behavior links
the Prime+Probe reverse attack to the nhit VictimScan policy. In that context, KDS
made of index i and occupancy o correspond to the attack A

Prime+Probe-reverse
ki

outputting
Thit-miss(o).

Given two execution points, p1 and p2, whose dumps differ by only a single cache line in
cache set i. In p2, this cache line occupies an additional way o, assuming that all ways from 0
to o−1 are already filled. We have: k(i,o) ∈ fnhit(Dump(p1)) and k(i,o) ∉ fnhit(Dump(p2))
and our attack A

Prime+Probe-reverse
k(i,o)

= A
Prime+Probe-reverse
ki

produces the following results:

A
Prime+Probe-reverse
k(i,o) (p1) = A

Prime+Probe-reverse
ki

(p1) = Thit-miss(o)
A

Prime+Probe-reverse
k(i,o) (p2) = A

Prime+Probe-reverse
ki

(p2) = Thit-miss(o − 1)
(15)

Therefore, we have A
Prime+Probe-reverse
k ∈ Anhit. This property is still valid when using the

sum of timing over the prime set. In that, case we have:

∑Thit-miss(o) = o × tmiss + (assoc − o) × thit

= (tmiss − thit) × o + (assoc × thit)
(16)

Therefore, if we use as an attack trace the sum of the prime set timing values, there will
be a distinct trace point value for each Thit-miss(o).

The nhit_inclusive policy, is similar and shares the same KDS definitions than the nhit
policy. Indeed we have Anhit ⊂ Anhit_inclusive. In that regard, nhit_inclusive mostly differs
on what attack from Anhit_inclusive is searching for. Whereas attacks from Anhit search
for exact Thit-miss(o) values associated with the KDS (i, o), attacks from Anhit_inclusive
search for Thit-miss(w) higher with w higher than a certain oth associated with the KDS
(i, oth). For Prime+Probe reverse, this can be computed as a ∑Thit-miss(oth) threshold
value for the acquired ∑Thit-miss(w). In that case a ∑Thit-miss(w) ≥ ∑Thit-miss(oth) is
our signal for the KDS (i, oth).

We sum up the link between, policies, and Prime+Probe direction in the table 3. It
also contains the trace points we use and how it is linked with the KDS we want to detect.
In this table, we also give the signal we are searching for to detect a KDS, although in real
measures, we would have to account for the noise.

4.4 Prime+Probe interaction with AutoLock
As explained in section 2.4, AutoLock prevents the eviction of lines already present in
L1. This mechanism will prevent some elements of the prime set from being hit because
they can never evict the victim cache lines. This means that certain attack output values
become less likely because some element of the prime set entry may be forced to be misses.

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 21

Table 3: Correspondence between attack policy and Prime+Probe
Policy KDS Attack Output Trace (Σ) Signal

1hit (i) Prime+Probe Thit or ∑Thit or ∑T =

forward Tmiss ∑Tmiss ∑Tmiss
nhit (i, o) Prime+Probe Thit-miss(w) ∑Thit-miss(w) ∑Thit-miss(w) =

reverse w ∈ [0, assoc[w ∈ [0, assoc[∑Thit-miss(o)
nhit_inclusive (i, oth) Prime+Probe Thit-miss(w) ∑Thit-miss(w) ∑Thit-miss(w) ≥

reverse w ∈ [0, assoc[w ∈ [0, assoc[∑Thit-miss(oth)

Figure 13: How Prime+Probe interacts with AutoLock: above are Prime+Probe forward
and below are Prime+Probe reverse. On the left, without AutoLock, and on the right,
with AutoLock. The victim uses cache occupancy, indicated as colored rectangles, to send
a stair signal clearly visible on pp-reverse.

We propose the figure 13 to visualize, the different output values for Prime+Probe forward
and reverse. On the bottom left, which corresponds to Prime+Probe reverse traces, each
stair level corresponds to a ∑Thit-miss(o) (with o from 0 to 7) associated with a cache
occupancy o. The same victim behavior produces the trace on the top left when using
Prime+Probe forward, with only two value ∑Thit, the lowest, and ∑Tmiss, the highest.

When we enable AutoLock, we have the two plots on the right of figure 13. On them,
because of AutoLock, the Thit output and Thit-miss(o) for o ≤ 2 are no longer distinguishable.
This is caused by the 2-way cache L1. Consequently, AutoLock hides some Thit outputs
from Prime+Probe forward. For this reason, to still be able to use Prime+Probe despite
AutoLock, we have to use Prime+Probe reverse.

4.5 Interaction with pseudo-LRU implementation

Real hardware platforms implement variations of the LRU cache replacement policy, called
pseudo-LRU. They approximate LRU behavior without having to rely on exact time stamps
to choose the Least Recently Used cache set entry. These variations still statistically
behave like LRU. However, they do impact Prime+Probe by unexpectedly evicting prime
set entries. This is visible in outputs, with entries being swapped and no longer being split

22
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

between miss and hit (like in equation 14).

{thit, .., thitÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
assoc−o

, tmiss, .., tmissÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
o

} → {thit, tmiss, tmiss, thit, tmiss, thit, ..., thit}

This effect can be mitigated by using the sum of individual traces because it does not
change with set entries permutations.

On figure 13, we see that ∑Thit-miss(o) acts as a minimum threshold for real mea-
sures. This minimum threshold is not affected by pseudo-LRU cache replacement policies.
However, pseudo replacement policy can also sometimes evict more entries than expected,
due to entry permutation causing self-eviction. In that case, the measured timing is
higher. This means that, in this situation, the lower threshold is statistically more accurate
than searching for an exact value (w.r.t noise). For this reason, we prefer nhit_inclusive,
VictimScan policy, which uses a minimum threshold as a signal.

With these and our gem5 model for ARM-secure platform, including the AutoLock
cache replacement policy, we are able to analyze the security of sensitive applications, in a
way that could be then used on real hardware.

5 Attacking mbedTLS on OPTEE
To sign a hash, OP-TEE uses the function rsa_exptmod in Libtomcrypt. To sign,
rsa_exptmod will use the private exponent which should be kept secret. A key can
be provided to rsa_exptmod without specifying RSA-CRT parameters. In that case
rsa_exptmod uses a simple bignum exponentiation provided by libmbedtls after blinding
the base. In this context, rsa_exptmod computes:

sign = hashD
mod N (17)

With D the private exponent, and N the modulus (with N = p×q, p and q are two primes).

5.1 RSA with OP-TEE: mbedTLS exponentiation
The exponentiation function in mbedtls, mbedtls_mpi_exp_mod, uses the sliding-window

to compute the bignum exponentiation [MvOV01]. In our case, the exponent is the private
exponent (D).

This algorithm exploits a window (wbits) to accumulate multiple bits of the key (ni)
together and then uses them to do the exponentiation using a pre-computed value (Awbits).
When a leading 1 is found, the following wsize bits are accumulated in wbits. The
associated precomputed value is then multiplied with X: X ← X × A

wbits. Zeros outside
of the accumulation phase are skipped by just squaring X. This algorithm implementation
(taken from OP-TEE 3.21) is presented in figure 14. The following function is from the
implementation in figure 14:

mpi_select(&WW, W, (size_t) 1 << wsize, wbits);

This is the multiplier obfuscation mentioned by [KSHZ23]. It ensures that accessing the
precomputed window using the accumulated window bits is time-constant. However, this
algorithm is known to leak some information about the key. Refs. [UH23] and [BBG+17]
suggest to detect Montgomery multiplication call and categorizing them: square([S]) or
multiply ([M]). These are the KEPs that we will use to extract the partial keys, which can
be then used to reconstruct the key as mentioned by [UH23]. The series of square([S])
and multiply([M]) can then be used to extract a partial key (figure 15).

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 23

1 int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
2 const mbedtls_mpi *E, const mbedtls_mpi *N){
3 /* Preparing W :
4 W[I]= X^I */
5 state=1;wsize=6 nbits=0;
6 int i=Skip_leading_zeros(E,X);
7 while(1){
8 if(is_Finished(i))
9 break;

10 ei = (E[i]) & 1;//E[i] is i-th bit of E
11 if(ei == 0 && state == 1) {
12 /*X=X * X*/
13 mbedtls_mpi_montmul(X, X, N, mm, &T);
14 continue;
15 }
16 state = 2; nbits++;
17 wbits |= (ei << (wsize - nbits));//
18 //
19 if(nbits == wsize){
20 /* X = X^wsize R^-1 mod N*/
21 for(i = 0; i < wsize; i++)//
22 mbedtls_mpi_montmul(X, X, N, mm, &T);
23 /* X = X * W[wbits] R^-1 mod N */
24 mpi_select(&WW, W, (size_t) 1 << wsize, wbits);
25 mbedtls_mpi_montmul(X,&WW,N,mm,&T);
26 state=1; nbits = 0; wbits = 0;//
27 }
28 }
29 /* process the remaining bits */
30 return(ret);
31 }

Window section

Square[S]

Square

Multiply[M]

Figure 14: Implementation of the sliding window algorithm. We call the section in red the
window section. [S] and [M] corresponds to the two KEPs used to analyze this function.

5.2 Attacker Model
Our attacker model assumes kernel-level privilege. This attacker needs kernel privilege for
two reasons:

• To use the PMCCNTR counter for timing measurement, which requires kernel
privilege.

• To deduce physical addresses from virtual addresses.

The victim is a trusted application(TA) running within the secure world. We make no
assumptions about core affinity but we can control the Linux applications’ affinity using
taskset (both client and attack). Other cache-related parameters are deduced through
simulation.

5.3 Experimental Platform
To represent, a more practical scenario, we chose the RockPi4 [rad20] board based on
RK3399 [Roc21] SoC. The RK3399 has been utilized in consumer devices like Chromebooks

24
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

Accumulate Accumulate

Computation

0x3A27...

bits

Code Segment (KEP)
extractable bits XXXXX XXXXX

Figure 15: S are square operation and M are multiply operation.

and tablets, with its variants continuing to be used today. OP-TEE is compatible with
RK3399 and proposes a build configuration to build an OP-TEE-compatible workload.
The RockPi4 variant we use is the RockPi4 C plus which uses the RK3399 -T which are
identical except for CPU clock and voltages.

5.3.1 RK3399 Software Environment

The key practical issue in reproducing the software environment lies in the extraction of
the RK3399 bootrom. The RK3399 contains a simple bootrom integrated in the SoC and
map at address 0xffff0000. This integrated bootrom can load, the next booting step from
multiple sources (SPI,eMMC, SD-Card,etc.). Using the integrated eFUSE, it is possible to
force the loaded bootrom to be signed with a key contained in the same fuse. We used a
standard boot scenario for the RK3399, with all the bootloader steps loaded in the same
SD-Card.

This integrated bootrom was extracted using a modified U-boot TPL [Eng23] from real
hardware, and the eFUSE device is modeled with our PyDevices method (pl. see sec. 2.3).
More detailed description of the standard embedded Linux software stack with trusted
firmware and optee can be found in Annexe A.

5.3.2 RK3399 Hardware Environment

The key practical issues are to use the exact same security features in simulation, and
modeling peripheral devices. The standard components can be modeled using already
existing SimObject (RAM, CPU, GIC, etc.) in gem5.

Peripheral Devices: Thanks to our PyDevices method, and the rather complete TRM [Roc21]
manual for the RK3399, it is possible to model the peripheral devices. This is essential to
boot our Rockpi4 workload in gem5. We use the RK3399 memory map described in the
TRM, to instantiate all the memory-mapped devices. We then use their register definitions
when they are described in the TRM (cf. figure 16). As device registers are presented
in tables, we can automatically generate dummy devices that report to gdb any register
modification using our gdb API.

When this definition is not available, we can use a dummy device to fill the memory
space and notifies gdb when it is accessed. This workload is made of two elements: our SD-
card image that we created and the integrated bootrom included in the RK3399. We then
designed new config files, to start reproducing the RK3399 platform in gem5 by integrating
both already existing SimObjects (RAM, CPU, GIC, etc.) and new PyDevices-implemented
objects(UART, fuse, etc.).

These incomplete descriptions integrate perfectly in a reverse-engineering software like
Ghidra[Roh19]. In Ghidra, our gdb messages based on dummy device implementation guide
us on device usage throughout the undocumented bootrom. We can then only implement

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 25

Name Offset Size
Reset

Value
Description

EFUSE_CTRL 0x0000 W 0x00000000 efuse control register

EFUSE_DOUT 0x0004 W 0x00000000 efuse data out register

EFUSE_RF 0x0008 W 0x00000000 efuse redundancy bit used indicator register

EFUSE_ J TAG_PASS 0x0010 W 0x0cf7680a J tag password

EFUSE_STROBE

_FINISH_CTRL
0x0014 W 0x00009003 efuse strobe finish control register

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W- WORD (32 bits) access

Figure 16: Extract from the RK3399 TRM: register description for the efuse

the device and functionalities we need based on bootrom disassembly and TRM manual.
This is how, with PyDevices, we are able to reverse engineer the RK3399 bootrom and
implement only the necessary devices used in our scenarios.

Security Features: The RK3399 has multiple devices reserved for a secure OS running
in TrustZone. As mentioned before it contains, a secure eFUSE (efuse1). They are used
by the integrated bootrom to verify the first boot-loaded stage, in our scenario from the
SD-Card. The RK3399 also features a programmable access controller that can protect
memory and devices to ensure that they are only accessible from the secure world (EL1S
or EL3). It is also configured by OP-TEE to create a secure 32MB partition in the DRAM
memory. OP-TEE secure OS and TAs reside in this memory region which can not be
accessed from the Rich OS.

Considering, the RK3399-T we decided to run our attack and victim in the A72 core
complex. Each program is running in a different CPU and sharing an AutoLock-enabled
([GRLZ+17]) 1MB 16-way set-associative L2 cache with 64-byte cache lines.

5.4 Experimental Setup
Our attack scenarios have to integrate with VictimScan and still be able to run on the real
platform. Indeed, we want the same script and disk image to describe an attack scenario
which:

• Runs an attack on the RockPi4 without any intervention.

• Can be configured in the simulated environment through the gdb interface, changing
attack and victim arguments and potentially disabling them.

To instrument and configure our attack scenario when it is run in the simulation, an
additional dummy device is added to the simulated RK3399 model. This device, absent
from the real platform, is checked to enable m5: the gem5 in-simulation command line
utility. To it, we added a m5_env function to export environment variables to a shell
environment in the simulation. Through m5, command-line arguments can be passed from
gdb to the attack running in the simulation. m5 also transfers the attack output directly
to the host machine, outside the simulation. With this method, we can configure the
simulation without modifying our disk image. If m5 is not enabled, default parameters are
used to configure the attack scenario and the attack traces are written to the disk.

5.5 Using VictimScan to search for weaknesses
With our instrumented scenario, we can use VictimScan (see section 3) to search for
potential weaknesses that we can leverage for an attack against the RSA TA. To prepare for
specific Pseudo-LRU in the RK3399 about which we have no details, we use nhit_inclusive
as our VictimScan policy.

26
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

5.5.1 Finding good KEPs against AutoLock

Score ranking:
>>>>M->max_hit:(('0x38', 1), 146)
(1):('0x38', 1)

score:0.9944598337950139
hit_count:146
top_addr:
1@146=S#0x300d0e00:data + 39160 in section .bss
2@0=0x53a60e00:UKN

>>>>S->max_hit:(('0x346', 1), 66)
(1):('0x346', 1)

score:0.4925373134328358
hit_count:66
top_addr:
1@66=S#0x300cd180:data + 23672 in section .bss
2@66=NoMMU;:maybe_tag_buf + 40 in section .text
3@66=S#0x300dd180:__heap1_start + 41112 in section .heap1

Figure 17: First VictimScan report for the RSA TA with KEPs from figure 14, using the
nhit_inclusive policy.

We use the [S] and [M] on figure 14 as our KEPs. They produce the following
VictimScan result on figure 17. It proposes the following nhit_inclusive KDSes:

• for [M]: (0x38, 1) with score 0.994459.

• for [S]: (0x346, 1) with score 0.49253731.

From the report on figure 17, we see that the [S]KEP can not be accurately detected
using these KEPs: with a score of less than 0.5, [S] can not be distinguished from [M], (pl.
see section 3.3.2) or is obscured by other sources of cache activity.

Despite the low score, we can use attack monitoring (pl.see sec. 3.4) to generate traces
to have a better understanding of what the attacker sees. Attack monitoring uses our two
KDS to configure the Prime+Probe reverse attack. We expect it to detect [M], but not
[S]. The results of attack monitoring are in figure 18. It shows how the cache timings

Figure 18: Zoomed in timing traces plotted relatively to KEPs. Two lines are used in
order to distinguish between the two KEPs ([S] and [M]). We see a clear pattern around
[M] but not around [S]. Thus we cannot detect [S].

behave in the vicinity of each KEP. On figure 18, we see that the timing associated with

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 27

[S]-KDS (0x346) does not stay low when leaving its associated section. It seems because
of AutoLock an attacker cannot detect a single squaring operation and can only detect the
start of a series of [S]KEPs.

We propose to use different KEPs to better account for how the victim behaves, and
thus have better scores if our assumptions are correct:

• We place the [M] KEP as a code section around lines 24 to 25 of the function (see
figure 14).

• We set up the [S] KEP such that only the first squaring section in a row is registered.

With these KEPs, we can detect:

• When we enter the multiply phase and leave the multiply phase.

• When we are in a squaring phase.

Score ranking:
>>>>M->max_hit:(('0x38', 1), 148)
(1):('0x38', 1)

score:1.0
hit_count:148
top_addr:

1@148=S#0x300d0e00[S#0x300d0e00]:data + 39160 in section .bss
>>>>S->max_hit:(('0x346', 1), 66)
(1):('0x346', 3)

score:1.0
hit_count:66
top_addr:

1@66=NoMMU;[S#0x3008d180]:maybe_tag_buf + 40 in section .text
2@66=S#0x300cd180[S#0x300cd180]:data + 23672 in section .bss
3@66=S#0x300dd180[S#0x300dd180]:__heap1_start + 41112 in section .heap1

Figure 19: VictimScan report for the RSA TA with KEPs from figure 14 redefined, using
the nhit_inclusive policy.

These improved KEPs produce the report on figure 19. It proposes the following
nhit_inclusive, KDSes:

• for [M]: (0x38, 1) with score 1.0.

• for [S]: (0x346, 3) with score 1.0.

Both have a 1.0 score which guarantees that they can be detected and distinguished.
However, with these points, we can only detect the end of windows. If we are out of a
window section we must be in a squaring section of the exponentiation function. We can
still try to reconstruct the [S] information by using the fact that the multiply window
contains seven (wsize + 1) (pl. see fig. 14) mbedtls_mpi_montmul which all take the same
time as they are done with the same modulo. We call this window measurement: we
compare the time difference between two of our [M]-points, points that we detected using
the [M]-KDS and our [S]-KDS. We know that among these time differences, there is at
least one which contains the window section and no extra squaring phase ([S]). We know
that because the first operation cannot be a [S] and is necessarily a window.

28
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

Figure 20: Window measurement: we can measure the time between peaks in 0x38 or
0x346. With this measurement by comparing them with the minimum difference between
2 of these peaks, we can design a system of units to reconstruct the series of [S]and [M].

Figure 21: comparison between simulation and real hardware: centered around a similar
pattern.

5.5.2 Attack monitoring and real hardware results

We ran the same attack scenario on the RockPi4 and on the simulated platform. This
scenario is run multiple times on the real hardware to compare different runs. We observe
that the real platform attack results are similar to the simulation in certain instances
(see figure 21) and different in others(comparing top traces and bottom traces from
figure 22) inside a single trace. When we compared different traces acquired from the real
platform, we saw that different parts of the traces were identical to the simulation while
the others were just noise. This difference is likely due to the simulation using perfect
LRU while the real platform likely uses Tree-Pseudo LRU. We confirmed this assumption

Figure 22: We compared traces between (from top to bottom): Simulation using LRU,
Simulation using Tree-Pseudo LRU and the real platform. We can see that there is the
same behavior during which a prime set gets "stuck" in an occupied state between simulated
Tree LRU and the real platform.

by configuring our simulation to use Tree-LRU with AutoLock (middle trace on figure 22).

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 29

The transient "stuck" timings appear in both simulation with Tree-LRU traces (middle
trace in figure 22) and real platform traces (bottom trace in figure 22). However, in detail,
simulation Tree-LRU and real platform Pseudo-LRU still behave differently either because
of randomness or small differences between model and reality. We can remedy this issue
by cumulating multiple real traces to reproduce the information contained in simulation
traces. However, if we choose to do that the short burst caused by set 0x38 which used
to detect [M] will likely be lost by the averaging. For this reason, we solely rely on the
0x346 set to recover the window start points that correspond to our [M] KEPs. This is
possible because the [S] KDS was chosen to distinguish [S] from [M]. We call these points
associated with the [M] code segment: [M]-points. With them, we can perform the window
measurement on the real traces.

5.6 Simulation performances for RockChip platform
Table 4 shows the software versions used and the run-times for the different steps of the
analysis process for our demo TA (figure 7) and the RSA TA (figure 14). We also included
the boot time which is only done once to generate a checkpoint used for subsequent runs.
Table 4 also contains real performances of our RSA TA scenario on the real platform.

Table 4: Simulation Configuration and Run-time. Times measured by gem5. When using gdb,
simpler CPU models are used outside of the region of interest. We run our examples on a Intel(R)
Xeon(R) Gold 6128 with 256GB of DDR4. Runtimes are in second

Configurations
gem5 version 21.2
Software Stack optee-3.21.0 (based on Linux v6.2-rc3)

U-boot : v2020.07-rc3
ARM Trusted Firmware-A v2.7

Runtimes
Simulation on gem5

Boot (only needed once) 2360.58s
Demo TA 1212.52s
Demo TA + Attack 2359.49s
Step II: Demo TA VictimScan (gdb) 1809.89s
Step III: Demo TA Attack monitoring (gdb) 2680.65s
Step II: RSA TA VictimScan (gdb) 10603.99s
Step III: RSA TA Attack monitoring (gdb) 10006.69s

Real platform (RK3399 -T on RockPi4)
Attack+RSA TA 1.080240s
Export to SD-card 5.394986s

5.7 Extracting a key from real traces
After accumulating 50 traces, we fused them and then filtered them using a gaussian
filter. To recover our [M]-points, from this traces we used a peak detection algorithm, each

Figure 23: Accumulation of 50 real traces. They have been fused and filtered with a
Gaussian filter

30
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

[M]-points corresponding to a peak in the 0x346 filtered trace. We automatically tune this
algorithm knowing roughly the number of peaks in a trace: For a 1024 bits-private key,
as our mbedtls_mpi_exp_mod function uses a 6 bit window, they cannot be more than
1024/6 ≊ 171 peaks. We facilitate this process using the 0x38 to determine a region of
interest when it has a lower value.

Using this algorithm on the traces on figure 23: we have the result on figure 24. From
the peaks in this figure, we can retrieve the [M]-points. With the [M]-Points retrieved, we
can now carry on window measurement:

Figure 24: Peaks detected from figure 23

• We determine the time length of a single window using the smallest difference between
[M]-points.

• With this single window, we find the length of a single Montgomery multiplication
(mbedtls_mpi_montmul).

• We then try filling each time difference between [M]-points with one window and
then as much multiplication([S]) as needed.

• We also treat specifically the difference between the last [M]-point and the end of
the region-of-interest to find the trailing multiplication.

• For each multiplication, we count a "[S]"(possibly none) that will then be followed
by a [M].

• This makes our [S][M]-series which we showed can be used to recover a partial key
(figure 15). [M] indicates 1 followed by 5 Xs (window_size − 1), [S] each indicates
single 0 and trailing [S]s (at the end of the exponent) each indicates single a X
(either a 1 or a 0)

As the sliding window exponentiation skipped zeros at the start of the exponent, we know
that all missing bits are leading zeros. We also know that D, the private exponent, cannot
be even, therefore the last bit is necessary a 1 (ED = 1 mod(p − 1)(q − 1) implies that D
is necessary odd because E is odd.). We can overlay all this process on the traces which
gives us the full figure: figure 25. In this figure, we can see the partially reconstructed key
overlaid above its trace. We performed the same operation for other keys, and compared
how many bits we recovered using our window measurement method (see table 5).

keys [S] [M] total bits in [S][M] known bits
key 1 145 146 1021 294
key 2 164 143 1022 310
key 3 134 148 1022 284

Table 5: Example of D reconstruction using [S][M]-series

With our partial key recovered, [UH23, HS09, MH20] and [KSHZ23] suggest that we
could use Branch and Prune to go further and reconstruct the key.

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 31

Figure 25: Attack on the real platform against the RSA TA: 1 and 0 are bits from the
private key that we identified using the [S][M]-series, the X corresponds to bits that we do
not know and that can be either a 1 or a 0

6 Conclusion & Future Work
AutoLock is a great feature in ARM processors, which with a simple trick enhances the
performance and makes cache timing attacks considerably difficult. However, we show
that it is still possible to attack TrustZone applications albeit with more complex attacks.
Furthermore, we have made very few assumptions about the attacker. It can run from
any core, and it requires kernel privilege only to use precise timers. In the future, it could
be possible to implement a timer in a parallel thread and let go of these privileges. Thus
trusted application designs need to be more cautious in the future.

We presented a vulnerability analysis method taking into account cache set occupancy
and replacement policies. This is necessary to detect information leakage in presence of
AutoLock. The existing cache analysis tools do not take into account such level of detail
and thus are not suitable for bypassing AutoLock. We also introduce a new methodology of
attack where a large part of the attack development happens inside the simulator, thanks
to gem5. The key is to use the same unmodified binary in both cases and model the
peripheral devices correctly in the simulator. This simulation platform can then be used
for hypothesis testing about the real board. It is a real boon for reverse engineering. In
the future, we can also devise counter-measures that can be tested on the simulator itself.

Last but not least, these simulation-based attacks really improve the platform-independent
reputability of attacks which is often lacking within the hardware security community.

References
[And16] Android. https://source.android.com/docs/security/features/

trusty/, 2016.

[Ass24] Buildroot Association. Buildroot making embedded linux easy, 2024.

[BBG+17] Daniel J Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruinderink,
Nadia Heninger, Tanja Lange, Christine van Vredendaal, and Yuval Yarom.
Sliding right into disaster: Left-to-right sliding windows leak. In International
Conference on Cryptographic Hardware and Embedded Systems, pages 555–576.
Springer, 2017.

https://source.android.com/docs/security/features/trusty/
https://source.android.com/docs/security/features/trusty/

32
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

[Bel05] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX
annual technical conference, FREENIX Track, volume 41, page 46. Califor-nia,
USA, 2005.

[CD16] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint
Archive, 2016.

[Eng23] DENX Software Engineering. U-boot. https://www.denx.de/wiki/U-Boot,
2023. Accessed: 2023-16-01.

[fERtS] Toyohashi OPen Platform for Embedded Real-time Systems. Toppers tee.
http://www.toppers.jp/en/safeg.html.

[GMWM16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+ flush: a fast and stealthy cache attack. In Detection of Intrusions
and Malware, and Vulnerability Assessment: 13th International Conference,
DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Proceedings 13, pages
279–299. Springer, 2016.

[GRLZ+17] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui, Jo-
hann Heyszl, and Thomas Eisenbarth. AutoLock: Why cache attacks on ARM
are harder than you think. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1075–1091, Vancouver, BC, August 2017. USENIX Asso-
ciation.

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive Last-Level caches. In 24th USENIX
Security Symposium (USENIX Security 15), pages 897–912, Washington,
D.C., August 2015. USENIX Association.

[GVR+23] Antoine Geimer, Mathéo Vergnolle, Frédéric Recoules, Lesly-Ann Daniel,
Sébastien Bardin, and Clémentine Maurice. A systematic evaluation of
automated tools for side-channel vulnerabilities detection in cryptographic
libraries. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and
Engin Kirda, editors, Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023, pages 1690–1704. ACM, 2023.

[HS09] Nadia Heninger and Hovav Shacham. Reconstructing rsa private keys from
random key bits. In Annual International Cryptology Conference, pages 1–17.
Springer, 2009.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. In 2019 IEEE Symposium on Security and Privacy (SP), pages
1–19, 2019.

[KHSZ21] Zili Kou, Wenjian He, Sharad Sinha, and Wei Zhang. Load-step: A precise
trustzone execution control framework for exploring new side-channel attacks
like flush+evict. In 2021 58th ACM/IEEE Design Automation Conference
(DAC), pages 979–984, 2021.

[KSHZ22] Zili Kou, Sharad Sinha, Wenjian He, and Wei Zhang. Attack directories
on ARM big.little processors. In Tulika Mitra, Evangeline F. Y. Young,
and Jinjun Xiong, editors, Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 2022, San Diego, California,
USA, 30 October 2022 - 3 November 2022, pages 62:1–62:9. ACM, 2022.

https://www.denx.de/wiki/U-Boot

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 33

[KSHZ23] Zili KOU, Sharad Sinha, Wenjian HE, and Wei ZHANG. Cache side-channel
attacks and defenses of the sliding window algorithm in tees. In 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1–6,
2023.

[lea21] GlobalPlatform leadership. Global platform. https://globalplatform.org/,
2021.

[LGS+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. ARMageddon: Cache attacks on mobile devices. In 25th
USENIX Security Symposium (USENIX Security 16), pages 549–564, Austin,
TX, August 2016. USENIX Association.

[Lin23] Linaro. Trusted-firmware a. https://www.trustedfirmware.org/
projects/tf-a/, 2023. Accessed: 2023-16-01.

[Lin24] Linaro. Mbed tls, 2024.

[LKS+20] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. Keystone: An open framework for architecting trusted execution
environments. In Proceedings of the, EuroSys ’20, New York, NY, USA, 2020.
ACM.

[LPAA+20] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian,
Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad
Beckmann, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce,
Daniel Rodrigues Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Deru-
migny, Stephan Diestelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz,
Amin Farmahini-Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi,
Dibakar Gope, Thomas Grass, Anthony Gutierrez, Bagus Hanindhito, An-
dreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian Herrera,
Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley
Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza
Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Chris-
tian Menard, Andrea Mondelli, Miquel Moreto, Tiago Mück, Omar Naji,
Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson, Marc Orr,
Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani,
Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair,
Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish,
Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian
Weis, David A. Wood, Hongil Yoon, and Éder F. Zulian. The gem5 simulator:
Version 20.0+, 2020.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown. In USENIX Security, 2018.

[LW18] Ben Lapid and Avishai Wool. Navigating the samsung trustzone and cache-
attacks on the keymaster trustlet. In European Symposium on Research in
Computer Security, pages 175–196. Springer, 2018.

[LYG+15] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-
channel attacks are practical. In 2015 IEEE Symposium on Security and
Privacy, pages 605–622, May 2015.

https://www.trustedfirmware.org/projects/tf-a/
https://www.trustedfirmware.org/projects/tf-a/

34
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

[MH20] Gabrielle De Micheli and Nadia Heninger. Recovering cryptographic keys
from partial information, by example. Cryptology ePrint Archive, Paper
2020/1506, 2020. https://eprint.iacr.org/2020/1506.

[MvOV01] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 2001.

[NMB+16] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and Sarah
Martin. Trustzone explained: Architectural features and use cases. In 2016
IEEE 2nd International Conference on Collaboration and Internet Computing
(CIC), pages 445–451. IEEE, 2016.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: the case of aes. In Proceedings of the 2006 The Cryptographers’
Track at the RSA Conference on Topics in Cryptology, CT-RSA’06, page
1–20, Berlin, Heidelberg, 2006. Springer-Verlag.

[Per05] Colin Percival. Cache missing for fun and profit. In Proc. of BSDCan 2005,
2005.

[rad20] radxa. Rock pi 4 - the next generation rpi, 2020.

[Roc21] Rockchip. Rockchip rk3399 technical reference manual, 2021.

[Roh19] Roman Rohleder. Hands-on ghidra - a tutorial about the software reverse
engineering framework. In Proceedings of the 3rd ACM Workshop on Software
Protection, SPRO’19, page 77–78, New York, NY, USA, 2019. Association
for Computing Machinery.

[Rya19] Keegan Ryan. Hardware-backed heist: Extracting ecdsa keys from qualcomm’s
trustzone. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’19, page 181–194, New York, NY, USA,
2019. Association for Computing Machinery.

[Sam15] Samsung. https://docs.samsungknox.com/admin/whitepaper/kpe/
samsung-knox.htm, 2015.

[TOS10] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on
aes, and countermeasures. Journal of Cryptology, 23:37–71, 2010.

[UH23] Rei Ueno and Naofumi Homma. How secure is exponent-blinded rsa–crt
with sliding window exponentiation? IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 241–269, 2023.

[WGSW18] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Eliminating
timing side-channel leaks using program repair. In Frank Tip and Eric Bodden,
editors, Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands,
July 16-21, 2018, pages 15–26. ACM, 2018.

[WWL+17] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu.
{CacheD}: Identifying {Cache-Based} timing channels in production software.
In 26th USENIX security symposium (USENIX security 17), pages 235–252,
2017.

[YF14] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution, low
noise, l3 cache side-channel attack. In Proceedings of the 23rd USENIX
Conference on Security Symposium, SEC’14, pages 719–732, Berkeley, CA,
USA, 2014. USENIX Association.

https://eprint.iacr.org/2020/1506
https://docs.samsungknox.com/admin/whitepaper/kpe/samsung-knox.htm
https://docs.samsungknox.com/admin/whitepaper/kpe/samsung-knox.htm

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 35

[YL20] Heedong Yang and Manhee Lee. Demystifying arm trustzone tee client
api using op-tee. In The 9th International Conference on Smart Media
and Applications, SMA 2020, page 325–328, New York, NY, USA, 2020.
Association for Computing Machinery.

[ZSS+16] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y. Thomas Hou.
Truspy: Cache side-channel information leakage from the secure world on
ARM devices. IACR Cryptol. ePrint Arch., page 980, 2016.

[ZXZ16] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. Return-oriented flush-
reload side channels on ARM and their implications for android devices. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 858–870. ACM, 2016.

36
Defeating AutoLock: From Simulation to Real-World Cache-Timing Exploits against

TrustZone

A Reproducing RK3399 environment in simulation
The RK3399 contains a simple BootROM integrated in the SoC and map at address
0xffff0000. This integrated BOOTROM can load, the next booting step from multiple
sources (SPI,eMMC, SD-Card,etc.). Using the integrated eFUSE, it is possible to force the
loaded Bootrom to be signed with a key contained in the same fuse. We used a standard
boot scenario for the RK3399, with all the bootloader steps loaded in the same SD-Card.
They are in order of execution (see figure 26):

1 A two stages U-boot bootloader (TPL, SPL): in charge of initializing the DRAM and
loading more complex bootloader stages from the SD-card. The RK3399 features a
simple SRAM used when the DRAM is not configured.

2 A three stages OP-TEE Bootrom which contains: A secure monitor based on
TrustedFirmware-A BL31, OP-TEE secure OS and a U-Boot bootloader to deploy
the Linux kernel.

BootROM

0x40 0x2000 0x4000 0x10000

U-Boot TPL

U-Boot SPL

TFA-BL31

OP-TEE OS

U-BOOT

0x48000
binbin EXT2EXT2

Linux Kernel

/boot

Device Tree Blob

U-Boot script
/example

Linux Root

OP-TEE tools

EXT2

/

Victim TA

Victim Client

Attack tools

off-chip DDR RAM
Pass

execution

Load/run
stage

Configure

Set up and remain
in secure memory

Figure 26: U-Boot assembled RK3399 boot process.

The last U-Boot stage finds an OP-TEE-enabled Linux kernel in an EXT2 /boot partition
directly in the SD-Card. In the /boot partition, U-Boot also finds a Device Tree Blob
(DTB) which it provides to the Linux kernel. This device tree blob has been modded to
remove unused devices to simplify the platform and accelerate boot times.

On the same SD-Card, are also featured a /root partition and a /example partition.
The /root contains a buildroot-made Busybox distribution [Ass24]. It features the necessary
OP-TEE library, tools, and daemon to load and run Trusted Applications. Because this
partition is set to read-only, we use an /example partition to store our Trusted applications
and demonstration software (Client application and attack tools).

All of these elements are built into a single disk image which is then written to an
SD-card. Loaded in the SD-card slot of the RockPi4 Board, all the communication with
the RK3399 is done using UART2 accessible through GPIO pins on the board.

To reproduce the workload in a simulation environment, we relied on the original
disk image used for the SD-card and an extracted RK3399 BOOTROM. This integrated
BOOTROM was extracted using a modified U-boot TPL.

A.1 RK3399 Architecture
The RK3399 uses the ARM BIG.little architecture (see Table 6) By combining the TRM
manual and ARM documentation of the Cortex-A53 and Cortex-A72 CPU clusters, we
are able to reconstruct the RK3399-T CPU and cache topology in gem5.

Quentin Forcioli , Sumanta Chaudhuri and Jean-Luc Danger 37

Table 6: RK3399-T: CPU and cache information gathered from ARM and Rockchip TRM
documentation.

RK3399-T
Cortex-A53 4 CPUs at 1GHz

In-order CPUs:
-Armv8-A ISA including NEON and Crypto ext.

Split L1 cache:
-instruction: 32kB L1(4-way)
-data: 32kB L1(4-way)
-Replacement policy: pseudo-random

L2 cache:
-512kB (16-way)
-Cache coherency: exclusive
-Replacement policy: pseudo-least-recently-used

Cortex-A72 2 CPUs at 1.5 GHz
Out-of-order:

-Armv8-A ISA including NEON and Crypto ext.
-Variable-length pipeline & Dynamic Branch Prediction

Split L1 cache:
-Instruction: 48kB (3-way)
-Data: 32kB (2-way)

L2 cache:
-1MB (16-way)
-Cache coherency: inclusive (AutoLock)
-Replacement policy: pseudo-least-recently-used

	Introduction
	Motivation
	Related Work
	Contributions
	Organization

	Our Simulation Platform and Toolbox
	gdb Instrumentation
	TrustZone and OP-TEE support in gem5
	PyDevices: fast system devices prototyping in gem5
	AutoLock integration in gem5

	Vulnerability analysis with a simulation platform
	Overview of our simulation-based security analysis
	Choosing Key Execution Points
	VictimScan
	Attack Monitoring
	VictimScan policy: Detectable state definition

	Vulnerability model for AutoLock
	Prime+Probe model and implementation
	Prime set self-eviction
	Link between VictimScan policies and Prime+Probe direction
	Prime+Probe interaction with AutoLock
	Interaction with pseudo-LRU implementation

	Attacking mbedTLS on OPTEE
	RSA with OP-TEE: mbedTLS exponentiation
	Attacker Model
	Experimental Platform
	Experimental Setup
	Using VictimScan to search for weaknesses
	Simulation performances for RockChip platform
	Extracting a key from real traces

	Conclusion & Future Work
	Reproducing RK3399 environment in simulation
	RK3399 Architecture

