
A Place for Everyone vs Everyone in its Place:
Measuring and Attacking

the Ethereum Global Network

Chenyu Li1,2, Ren Zhang3[0000−0003−2063−1769], and Xiaorui Gong1,2

1 Institute of Information Engineering, Chinese Academy of Sciences
2 School of Cyber Security, University of Chinese Academy of Sciences

3 Cryptape and Nervos
ren@cryptape.com

Abstract. The Ethereum Global Network (EGN) is the peer-to-peer
(P2P) network underlying Ethereum and thousands of subsequent block-
chain services. Deviating from traditional single-service P2P networks,
EGN’s multi-service architecture has gained widespread acceptance for
supposedly improving node discovery efficiency and security. This paper
challenges this belief by critically examining EGN’s design and its pur-
ported benefits. Our analysis reveals significant shortcomings in EGN’s
node discovery process. EGN nodes struggle to connect with peers offer-
ing the desired service: over three-quarters of connection attempts reach
nodes of other services. In an extreme case, one node spent an aver-
age of 45 908 connection attempts to find each neighbor. Moreover, this
blended architecture compromises EGN’s security. The network demon-
strates high susceptibility to DHT pollution and partition attacks. Even
with only 300 malicious nodes in EGN, an attacker can isolate thou-
sands of nodes, significantly hindering recovery. In contrast, such a small
number of malicious nodes has minimal impact on every single-service
P2P network. We propose solutions to improve EGN’s node discovery
efficiency and strengthen its resilience against attacks.

1 Introduction

Ethereum [4], a prominent blockchain system, operates on a peer-to-peer (P2P)
network composed of individual servers called nodes. These nodes find and con-
nect to each other through node discovery protocols. As of January 2025, the
time of this writing, two versions of these protocols coexist—Discv4 and Discv5.
Both protocols are based on Kademlia [23], a decade-old distributed hash ta-
ble (DHT) protocol. In a DHT protocol, each node has a unique identifier (ID)
and maintains a routing table that stores other nodes’ IDs and routing informa-
tion. The node discovery protocols periodically update the local routing table
and provide candidate nodes for establishing application-layer connections. All
nodes executing these protocols, i.e., the union of their routing tables, thus form
an overlay P2P network called the Ethereum Global Network (EGN) [16].
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In contrast to traditional overlay P2P networks, which typically cater to a
single service, EGN embraces a vibrant ecosystem of applications reaching far be-
yond Ethereum, with a total market capitalization exceeding 500 billion USD [2].
Thousands of blockchain projects, from Ethereum testnets (Ropsten and Sepo-
lia) and legacy Ethereum forks (Ethereum Classic) to other blockchains like
BNB Smart Chain, Gnosis, and Polygon, find a home within EGN. This diverse
spectrum even encompasses infrastructure providers like Bloxroute, Debank, and
Quicknode, enriching the network with high-speed routing, user asset tracking,
and blockchain data API services. Remarkably, despite coexisting on the same
overlay, these services operate autonomously, collaborating only at the network
layer without application-specific interactions.

This “living under the same roof” phenomenon is more of a design choice
rather than the developers’ negligence, as it is well-known and widely accepted.
It is noticed and documented by academia as early as 2018 [15]; technical in-
troductions of the Ethereum network, e.g., [6] and [3], also remind its audience
of this unique feature/phenomenon. It is even introduced in Ethereum’s official
documentation that “there are many independent ‘networks’ that conform to
the protocol without interacting with each other” [1].

The Ethereum community’s acceptance, even enthusiasm, for this choice
prompted us to explore its potential benefits. Through a combination of lit-
erature review and extensive discussions with seasoned developers, we identified
two primary reasons supporting this choice:

– Efficiency. Each node’s information spreads more widely, thus nodes may
find same-service neighbors with fewer queries and shorter latency [24].

– Security. EGN’s sheer size bolsters its resilience against Sybil attacks [16],
where malicious actors swarm the network with their nodes, and their subse-
quent attacks. In other words, a larger pool dilutes the attacker’s influence.

This paper argues that, without any implemented mechanism to prioritize
same-service peers in node discovery, the blended nature of EGN is detrimental
to services, especially smaller ones. Our technical work and contributions include:
Measuring EGN. While extensive research has explored the Ethereum net-
work [5, 9, 10, 17, 18, 21, 28, 30], our understanding of EGN’s multi-service archi-
tecture remains incomplete. The only study examining EGN’s service diversity
dates back to 2018 [15], predating nine out of the ten most prevalent services
currently in use. Existing analyses of the network [8,14,19–22] overlook the com-
position of individual DHTs. Furthermore, the Discv5 network, deployed in late
2023, has yet to be analyzed.

Therefore, to facilitate subsequent analysis, we collect various measurements
with a state-of-the-art crawler Nebula [26]. Our assessment encompasses EGN’s
scale, service distribution, node uptime, and critically, the composition of nodes’
DHTs. We identify over 7000 services and reveal a concerning observation: the
majority of Discv4 nodes maintain less than 5% of same-service peers within
their DHTs. While the specific services of most Discv5 nodes remain unidentified,
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we anticipate similar behavior due to the shared DHT maintenance rules and
workflows between Discv4 and Discv5.
Evaluating the Node Discovery Efficiency. Node discovery efficiency di-
rectly impacts the overall communication cost for EGN nodes. Our measure-
ment reveals that roughly 20% of our Ethereum node’s traffic is dedicated to
node discovery, with this percentage even higher for less busy services.

To assess the impact of the blended architecture on node discovery, we deploy
five nodes in EGN representing diverse services: two exclusively support Discv4
(BSC Mainnet and KCC Mainnet), while the remaining three support both ver-
sions (ETH Mainnet, ETH Holesky and ETH Sepolia). These nodes measure
communication costs and latency associated with establishing connections. The
results reveal substantial inefficiencies. Within a twelve-hour timeout, our nodes
rarely established the desired number of connections, and each successful con-
nection cost at least thousands of attempts. The lowest connection success rate
was one in 45 908, starkly contrasting with Bitcoin’s rate of one in four. Error
messages from 45.6% to 87.3% of connection attempts explicitly indicated at-
tempts to reach nodes of other services. Analysis of incoming connection requests
revealed that 76.2% to 96.9% of these requests were from other services.

Discv5 exhibits significantly poorer performance compared to Discv4. Within
twelve hours, a node established at most three connections with nodes discovered
via Discv5. A notable factor contributing to Discv5’s inefficiency is the absence
of the topic discovery mechanism. This mechanism, designed to enable nodes to
advertise their services and prioritize same-service connection attempts, remains
unimplemented in all client programs we examined.
Comparing the DHT Pollution Attack Resistance in Blended and Sep-
arate Overlay Networks. To assess EGN’s security, we simulate a DHT pol-
lution attack, where malicious nodes inject their information into other nodes’
DHTs. Regarded as a weaker version of Sybil attacks, this attack also serves as
a foundation for more sophisticated attacks. Even with only a few hundred ma-
licious nodes (0.3% of the EGN), the attack reduced connection success rates to
below 1% for all services except ETH Mainnet and Polygon. Additionally, after
a 24-hour attack duration, the attacker successfully isolated thousands of nodes.
Our analysis reveals that the vulnerability does not stem from implementation
or protocol flaws but rather from the blended nature of the overlay network.
The same attack proved largely ineffective in simulations of separate overlay
networks.
Fixing EGN. We conclude by proposing solutions to increase the percentage of
same-service nodes in nodes’ DHTs while maintaining future interoperability and
decentralization. Additionally, we suggest strategies to bolster EGN’s resilience
against DHT pollution and partitioning attacks.

This study challenges the commonly held assumption that a larger P2P net-
work inherently translates to better data availability and security. A larger net-
work does not guarantee improved data availability unless the data itself—in our
case, nodes’ routing information—becomes more accessible. Similarly, a larger
network dilutes attacker resources only if it maintains robust internal connec-
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tivity. When network size outpaces the ability of nodes to locate reliable and
honest neighbors, it can become a vulnerability.

2 Ethereum Global Network: a Hodgepodge

We begin by outlining the technical details of the node discovery protocols. We
then explore the formation and visionary goals of EGN itself.

2.1 Discv4: Messages and Key Data Structures

ENR. Ethereum Node Records (ENRs) are the basic data units propagated via
Discv4. An ENR encapsulates the routing information of the node that gener-
ates it. Key ENR entries include: (1) secp256k1, the compressed representation
of the node’s secp256k1 public key; (2) signature, a cryptographic signature of
the record content, verifiable with secp256k1; (3) seq, a sequence number that
increases when the node updates and republishes its record; (4) ip, the node’s
IPv4 address; (5) tcp and (6) udp, the ports for incoming TCP and UDP con-
nections, respectively. EGN identifies nodes using the hash of their public keys,
known as the node ID. An ENR does not reveal the node’s service. An ENR
is sometimes stored or processed as an enode, which is an alternative format
representing the same information. We use node to denote the server, and peer
to denote the corresponding DHT entry.
Message Types. Discv4 relies on two key pairs of request-reply messages.
(1) Ping/Pong: this pair serves basic liveness check—reachability checks and
latency measurement. The initiator sends a Ping to check the recipient’s live-
ness, who responds with a Pong. (2) FindNode(targetID)/Neighbors: this pair
is used to discover nodes to construct the routing table. The initiator sends a
FindNode(targetID) to request information about nodes whose IDs are closest to
targetID; the recipient responds with a Neighbors message containing up to 16
closest nodes from its DHT buckets (see the next paragraph). In most requests,
targetID is chosen randomly, as ID locality in EGN does not imply service or
geographic proximity. Unsolicited replies (Pong and Neighbors) are discarded to
prevent nodes from manipulating their liveness or injecting batches of ENRs into
other nodes’ routing tables.
DHT Buckets. The core of the DHT routing table is 17 buckets, each can
accommodate up to 16 peers’ enodes. Peers in bucket i (1 ≤ i ≤ 16) share
the same first 16− i most significant bits with the local node in their IDs, with
bucket 0 containing peers whose common prefix exceeds 15 bits. Within a bucket,
enodes are ordered from the latest liveness-checked one to the earliest. When the
context is clear, we use DHT instead of “DHT routing table” or “DHT buckets”.
ENR Insertion and Deletion. When a new ENR is received, it is converted
into an enode and inserted into its corresponding bucket as the latest one if
space is available. Otherwise, it becomes a replacement peer, with a maximum
of ten replacements stored per bucket. The oldest replacement peer is discarded
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to make room for a new one when the limit is reached. Peers are removed from
buckets only after they fail a liveness check. In such cases, the latest replacement
peer (if any) is promoted to fill the vacancy.
The discmix Queue. This queue determines the order in which the node at-
tempts to initiate application-layer connections. The pushing and popping strat-
egy of discmix is discussed as “Outgoing Connection Maintenance” in Sec. 2.2.

2.2 Discv4: Key Workflows

Bootstrap. Upon first launch, a node adds pre-configured bootnodes into its
buckets, sends Ping to confirm their liveness, and sends Findnode messages to
acquire an initial set of peers from them.
Active DHT Maintenance. Throughout the node’s lifetime, it continuously
performs the following two tasks. (1) Liveness check: a random bucket is selected,
and a Ping message is sent to its oldest peer, i.e., the one that resides at the
end. If the peer replies timely, it is considered alive and moved to the bucket’s
front as the latest. Otherwise, it is deleted, and the newest replacement peer is
promoted. This process is repeated after a random period, usually within ten
seconds. (2) Refresh: a random node is picked, which has not been queried via
Findnode by the current process, to receive a Ping message, and if it responds
timely, a Findnode is sent to it. The replied ENRs are inserted as previously
described. This process repeats immediately after receiving the reply.
Passive DHT Maintenance. Receiving a Ping message triggers the node to
include the sender in its DHT. This, as we will explore, allows a malicious node
to infiltrate a victim’s buckets, either directly or as a replacement peer. In the
former case, the malicious node remains within a bucket as long as it survives
liveness checks; in the latter case, the malicious node has an opportunity to enter
a bucket when a bucket peer is evicted. This chance increases with frequent Ping
messages, ensuring it is often the latest replacement peer.
Outgoing Connection Maintenance. This process activates when outgoing
connection slots remain available. Upon reaching the defined limit (16 by de-
fault), the process pauses. When discmix is empty, all enodes from the 17 buck-
ets are sorted by distance to a random target and added to the queue. All these
peers who have not been queried by a Findnode message by the current thread
are then sent a Ping message and, if they respond timely, a Findnode message.
The received ENRs update the local DHT.

A separate thread continuously processes the queue, attempting to estab-
lish outgoing connections—described next—with each popped enode until all
connection slots are filled.
Application-Layer Handshake. This workflow is defined in Discv4’s broader
protocol stack Devp2p. The handshake commences with two nodes negotiating a
session key derived from each other’s secp256k1 public keys. Upon successful key
negotiation, they share their supported upper-layer protocols’ protocolStrings.
For instance, “ETH68” signifies the version of the Wire protocol, used for block
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and transaction synchronization. As different services often use the same protocol
set for application-layer data exchange, service identification via the protocolString
set is not possible. If the nodes find at least one common protocolString, they
proceed to exchange a four-tuple of the protocolVersion, networkID, genesisHash,
and forkID to check whether they operate on the same service and the same
chain. The protocolVersion is the version corresponding to protocolString. The
networkID distinguishes between different services and networks. For example,
the networkIDs of the ETH Mainnet and the BNB Smart Chain (BSC) Mainnet
are 1 and 56, respectively. The genesisHash is the hash of the very first block,
i.e., genesis block, in the chain. When a service family possesses multiple chains
with the same network ID, their genesis blocks must differ. Finally, the forkID
pinpoints the hard fork the node considers valid. A hard fork occurs when some
participants adopt some new consensus rules opposed by others. This splits the
blockchain nodes into two groups with distinct forkIDs.

A successful handshake enables communication via upper-layer protocols,
which maintain application-layer connections over TCP rather than the UDP-
based node discovery protocol. Conversely, any mismatch in the four-tuple results
in the handshake’s termination with an error. Importantly, this error does not
lead to the removal of the corresponding bucket entry.

2.3 Discv5: Key Differences

Discv5 is intended to provide increased confidentiality and improved node dis-
covery efficiency. It offers a number of enhancements compared to its prede-
cessor. First, it encrypts communications. Second, a new liveness check data
format enables nodes to detect whether a peer resides behind a Network Ad-
dress Translator (NAT). Third, Findnode now supports requests for peers at a
specific distance from the receiver, facilitating targeted queries of specific buck-
ets. Other messages, data structures, and the first four workflows remain largely
unchanged from Discv4.

Determining a node’s service in Discv5 presents a greater challenge. The
aforementioned handshake workflow, which exchanges service information via
the four-tuple, is embedded within the Devp2p protocol stack. However, Discv5
integrates with another protocol stack Libp2p. Consequently, each Discv5 service
defines its own handshake protocol, typically requiring a successful handshake
with a client of the same service to ascertain a node’s service. This case-by-case
approach lacks scalability given the multitude of services.

Although Discv5’s design incorporates two mechanisms to facilitate efficient
service identification, our investigation in Sec. 3.2 and experiments in Sec. 4.1
reveals that no EGN clients currently implement these mechanisms: First, the
enhanced flexibility of the ENR format allows for the optional inclusion of service
information. Second, a topic discovery mechanism enables nodes to broadcast
an arbitrary topic string, conveying service information or other relevant data,
across the network, thereby accelerating the discovery of same-service peers.

Consequently, the only straightforward approach to determine a node’s ser-
vice relies on an alternative mechanism within the Libp2p protocol stack. If
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set by the client developer, two strings—agentVersion and protocols—are replied
to each incoming connection attempt. These strings convey client information,
enabling service identification. However, no current clients leverage this infor-
mation to accelerate same-service node discovery.

2.4 EGN: Emergence
Standing apart in the realm of P2P networks, EGN accommodates a remark-
able range of hundreds of diverse services. This unique phenomenon naturally
piques our curiosity about the protocol designers’ motivations and the process
of service integration. While reconstructing the exact thought process behind
EGN’s emergence is impossible, we can examine some key design choices that
likely facilitated its development.
Discv4’s Design Foreshadowed Expansion. The Discv4 protocol’s use of
three identifiers (networkID, genesisHash, and forkID) for service-chain identifica-
tion appears unnecessary for Ethereum’s mainnet and testnets. This inclusion of
networkID suggests the designers’ foresight for a multi-service network from the
outset.
Leveraging Geth’s Foundation. Forking Geth, the official Ethereum client,
is a common practice for new blockchain projects due to its comprehensive func-
tionality and security advantages. Specifically, Geth offers a complete suite of
modules, including consensus protocol, smart contract support, and P2P net-
work organization. Forking allows developers to focus on their core innovation
while inheriting established functionalities. Moreover, as a battle-tested client,
Geth provides a solid security baseline; future security improvements can also
be adopted by merging Geth updates.
Early Projects’ Choice and the Network Effect. Early and influential
projects like BSC and Gnosis chose to join EGN with separate networkIDs and
genesisHashes, rather than creating their own P2P networks. This established
EGN as the default choice for new Geth-based services, strengthening its domi-
nance in the landscape.

2.5 EGN: Potential Benefits
EGN’s open and inclusive nature has been widely embraced by the blockchain
community. This is evident in the numerous academic studies [8,9,14,15,20–22]
and technical articles [1, 3, 6] introducing and measuring the flourishing ecosys-
tem. While most research accepts EGN’s hospitality as a given, we examine its
potential implications. We tentatively explore these potential benefits through a
two-step approach. First, we scrutinize the existing literature and discuss with
experienced developers to compile a comprehensive list of seemingly advanta-
geous aspects. Second, we critically analyze these benefits and identify two key
areas for further technical investigation: efficiency and security.
Listing the Potential Benefits. Complementing the existing literature, we
discuss with experienced developers to compile a comprehensive list of seemingly
advantageous aspects of the phenomenon.
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1. Maximized Code Reuse. Most EGN services leverage Geth’s P2P module
as their foundation, reducing development complexity. Joining EGN further
amplifies this benefit by allowing nearly identical network components with
those of Geth, requiring only adjustments to service-chain identifiers and,
optionally, bootnodes.

2. Reduced Deployment Cost. Smaller services can piggyback on the bootnodes
of larger ones, saving resources on maintaining their own P2P infrastructure.

3. Higher Node Discovery Efficiency. Introduced as “Efficiency” in Sec. 1, a
larger network may accelerate node discovery. Specifically, [24] indicates that
gossiping ENRs across services, rather than partitioning the network by ser-
vices, could decrease the latency of establishing connections.

4. Better Attack Resilience. Introduced as “Security” in Sec. 1, a larger network
dilutes the attacker’s damage. Specifically, Michał et al. mentioned in [16]
that the blended architecture “offers good resilience to malicious behaviors”.

5. Potential for Interoperability. Sharing a common overlay network lays the
groundwork for future interoperability between services, potentially fostering
collaboration and innovation within the ecosystem.

Initial Analysis. We critically analyze these benefits and identify two key areas
worthy of further technical investigation. While code reuse (item 1 above) of-
fers convenience for developers, it is primarily an internal benefit with no direct
external impact. Piggybacking bootnodes (2) offers a clear economic advantage
for smaller services, but comes with high security costs. The smaller services
are susceptible to censorship attacks, and these bootnodes become more attrac-
tive targets for attackers. While the shared overlay network opens doors for
future interoperability (5), this remains speculative without concrete plans or
implementation efforts, rendering it infeasible to evaluate its potential impact.
Therefore, we prioritize further technical investigation into EGN’s efficiency (3)
and security (4).

3 Measuring EGN

While prior measurement studies on EGN exist [8,9,14,15,20–22], we find it nec-
essary to conduct a new one for two reasons. First, existing results are outdated.
As of 2025, the most recent measurement is over three years old, and the only
study involving EGN’s service distribution (by Kim et al. in 2018 [15]) predates
the launch of most current services. Second, these studies lack an analysis of the
composition of nodes’ DHTs, which is indispensable for our investigation. Our
measured data are used to simulate our attacks in Sec. 5.

3.1 Crawler Setup and Deployment

This study uses Nebula [26], a state-of-the-art crawler previously employed in
research such as [27]. The crawler was deployed on a US-based commercial VPS
equipped with a 32-core CPU, 128 GB of RAM, and 4 TB of NVMe SSD storage.
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Each crawling iteration was limited to a duration of thirty minutes. Extending
this duration would not yield a more accurate snapshot, as the rate of newly
discovered nodes diminishes to approximately one per second, which is indicative
of typical network churn. The crawling process was conducted between December
12th and 27th, 2024, resulting in 720 snapshots.

In each iteration, the crawler simultaneously collected information from both
Discv4 and Discv5 networks. Each discovered Discv4 node was queried with
15 Findnode messages, each targeting a randomly selected targetID as bucket-
specific queries are not supported. Meanwhile, each discovered Discv5 node was
queried with 17 Findnode messages, each targeting a specific bucket. The crawler
recorded the DHTs of all discovered nodes for subsequent analysis. Newly dis-
covered peers underwent a liveness check, and upon successful verification, were
added to the processing queue. For each node, the crawler attempted to initiate
a handshake and recorded the extracted four-tuple, agentVersion and protocols
strings, or any error messages.

3.2 Network Scale, Service and Node Uptime Distribution

Network Scale. The Discv4 network size fluctuated between 94 180 and 113 524,
averaging 103 432 nodes. This represents a threefold increase from 33 000 mea-
sured between February and March, 2022 [8]. The Discv5 network size fluc-
tuated between 208 268 and 238 219, averaging 223 132 nodes. Approximately
8,000 nodes in each snapshot operated both Discv4 and Discv5 protocols using
the same public key. We further analyze the distribution of unique identifiers.
We observe 2 047 673 unique public keys and 197 449 unique IP addresses.
Node Uptime Distribution. We observe that 32 804 Discv4 nodes and 162 286
Discv5 nodes remained active throughout the measurement period, while 1 274 461
Discv4 nodes and 99 687 031 Discv5 nodes were only active for a single snapshot.
Not surprisingly, the uptime patterns exhibit consistency across different services
in Discv4, suggesting a general trend rather than service-specific behavior.

Observation 1. Over two-thirds of active Discv5 nodes in any given snapshot
remain online consistently throughout our measurement period.
Investigating the Source Code of Discv5 Clients. Despite the inclusion of
service information in Discv5’s updated ENR format and topic discovery mecha-
nism, we do not observe any ENRs containing this information. This leads us to
investigate the implementation status of these claimed updates. We examine the
source code of: (1) all five Ethereum execution clients (Geth, Nethermind, Besu,
Erigon, and Reth), which propagate transactions and blocks; (2) all six Ethereum
consensus clients (Prysm, Lighthouse, Teku, Nimbus, Lodestar, and Grandine),
which participate in the consensus protocol; and (3) three other popular Discv5
clients providing the agentVersion or protocols string (Optimism, SSV-Base, and
Base). Our analysis reveals that none of these clients incorporate service informa-
tion in their ENRs or implement the topic discovery mechanism. To the best of
our knowledge, most other clients are forked from those we inspected. Therefore,
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ETH Mainnet#9f3d

Polygon#f097

Story Odyssey Testnet#cef5 ETH Mainnet#be46

102125#9c42 BSC Mainnet#60ad

ETH Holesky#9b19

Xdai#1384

(a) Service distribution of 39 795 Discv4 nodes. The
fifth largest service “102125” lacks public information.

Optimism

Lighthouse

Prysm

Teku

SSV-Node Geth

Nimbus

(b) Client distribution of
18 042 Discv5 nodes.

Fig. 1: EGN on December 17, 2024, at 8:12 UTC. In each figure, the service’s
area is proportional to its node count. Around 65% of Discv4 nodes and 91% of
Discv5 nodes have no service/client information.

we believe these updates are not implemented in any Discv5 client. Furthermore,
considering that over a year has passed since Discv5’s initial deployment, we are
skeptical about the imminent implementation of these updates.

Observation 2. As of January 2025, no Discv5 client has implemented any
mechanism to prioritize same-service node discovery and connection.

Service Distribution. We analyzed the distribution of 7 134 services across
nodes identified by unique public keys, which serve as persistent identifiers
in EGN. In Discv4, two nodes provide the same service if they share identi-
cal protocolVersion, networkID, genesisHash, and forkID. As detailed in Sec. 2.3,
Discv5 does not provide a universal mechanism for determining a node’s service.
We thus extract client information using the agentVersion and protocols strings.

The service distribution remains relatively stable across snapshots. We present
the results from December 17, 2024, at 8:12 UTC, which has the highest num-
ber of Discv4 nodes. Of the 113 524 active Discv4 nodes, 73 279 refused our
handshake requests, primarily due to no available connection slots. Figure 1a
illustrates the distribution of the remaining 39 795 responsive nodes across dif-
ferent services. The mapping between public keys and services is consistent: no
public key was associated with multiple services. The most prevalent services are
displayed in Table 1. ETH Mainnet is the only service among the ten most preva-
lent services in 2018 [15] that persists in 2024, albeit with a declining dominance
from 54% in 2018 to 31%. Of the 215 202 active Discv5 nodes, 197 160 provide
no service information—their agentVersion or protocols strings are empty, and
they refused our handshake. Figure 1b illustrates the client distribution of the
remaining 18 042 nodes. The most popular clients (Table 2) include Ethereum
consensus and execution clients, and clients of other services, such as Optimism,
SSV-Node, and Base. Discv4 and Discv5 networks share 8 047 public keys, en-
compassing both Ethereum forks and some other services, such as LUKSO and
Taiko.
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Table 1: Top 10 Discv4 services.
Service Fork ID Node Count

ETH Mainnet 9f3d 12404
Polygon f097 4947
Story Odyssey Testnet cef5 3179
ETH Mainnet be46 2970
102125 9c42 2219
BSC Mainnet 60ad 1934
ETH Holesky 9b19 1554
Xdai 1384 1033
Syscoin 10d4 702
ETH Sepolia 88cf 643

ETH Mainnet#be46 is an older fork
of the Ethereum blockchain; "102125"
corresponds to an unidentified service.

Table 2: Top 10 Discv5 clients.
Client Node Count

optimism 8092
Lighthouse 4313
Prysm 1679
teku 1549
SSV-Node 869
nimbus 549
base 521
lodestar 236
conduit 85
rust-libp2p 53

3.3 Service Distribution in the Nodes’ DHTs

We investigate the composition of Discv4 nodes’ DHT buckets, focusing on the
proportion of peers offering the same service. Using the December 17, 2024 snap-
shot, we remove the 73 279 nodes with unknown services from all nodes’ routing
tables and analyze the remaining 39 795 nodes’ presence in each other’s routing
tables. Due to the lack of service information in Discv5, a similar analysis is not
feasible. Nevertheless, Observation 2 suggests that Discv5 would not perform
better than Discv4 in this regard.
Public Nodes. Table 3 presents the results for services of varying popularity.
The percentage of same-service peers is low, even for the top two services (less
than 20%). This proportion further decreases to below 5% for all other services.
Bootnodes. Bootnodes play a crucial role in a service by serving as entry points
for all new nodes. Nodes within a bootnode’s DHT are more likely to be con-
nected to by newly-joined nodes. As shown in Table 3, bootnodes also exhibit a
low percentage of same-service peers.

Observation 3. The majority of Discv4 public nodes (52.9%) have less than 5%
of same-service peers in their DHTs; the investigated bootnodes do not prioritize
same-service peers in their DHTs.

4 Efficiency Evaluation

We now investigate whether sharing a single overlay network improves EGN’s
node discovery efficiency. We evaluate this by measuring the communication
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Table 3: Average proportion of same-service peers in the nodes’ DHTs. The
number preceding the service name is the service prevalence ranking in EGN.

rank. service % nodes % same-service peers
in public nodes

% same-service peers
in bootnodes

1. ETH Mainnet 31.18% 18.36% 33.91%

2. Polygon 12.43% 17.59% 19.60%

6. BSC Mainnet 4.69% 3.52% 10.30%

7. ETH Holesky 3.91% 2.94% 2.43%

10. ETH Sepolia 1.61% 1.73% 0.59%

43. KCC Mainnet 0.04% 4.19% 1.70%

overhead associated with establishing outgoing connections. We then compare
these costs to the estimated overhead incurred if each service maintained its own
separate overlay. We do not consider any adversarial behavior in this section.

4.1 Node Discovery Efficiency in EGN

Experimental Setup. We focus on establishing a predetermined number of
outgoing connections. Intuitively, popular services find same-service neighbors
more easily. To ensure a comprehensive evaluation, we select six services with
varying prevalence rankings: ETH Mainnet (1st), Polygon (2nd), BSC Mainnet
(6th), ETH Holesky (7th), ETH Sepolia (10th), and KCC Mainnet (43th).

For each service, we modify its official client to log all Findnode messages and
handshake requests. Additionally, we log the type of error encountered in case a
handshake fails. The number of sent messages directly translates to communi-
cation costs, reflecting both bandwidth consumption and processing time.

Each client is deployed as a public node with server configurations identi-
cal to those of our crawler. The execution terminates upon reaching either the
predefined outgoing connection limit (66 for BSC Mainnet and Polygon, and 16
for other services) or a twelve-hour timeout. Data collection was conducted in
January 2025.
Results. Each client was tested three times to mitigate potential diurnal vari-
ations, and we report the results of the execution with the median number of
established connections in Table 4. The number of Findnode messages and hand-
shake requests exhibited consistent order-of-magnitude across executions, with
a maximum variation of 47%.

In Discv4, all involved services established outgoing connections slowly and
costly. None of the clients achieved the target number of outgoing connections
within 12 hours. The three most prevalent services’ clients nearly reach the target
number of outgoing connections, while other services fall far short. The number
of Findnode messages per successful connection ranged from 30 535 (Polygon)
to 243 694 (ETH Holesky), and the handshake success rate varied from 1/3842
(Polygon) to 1/45908 (KCC Mainnet). In contrast, we estimate the handshake
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Table 4: Communication costs and effectiveness of node discovery in Discv4 (the
first five lines) and Discv5 (the last three lines).

rank. service neighbors
(out+in) Findnode handshake TCP

error
enc.
error

mismatched
protocolStr.

wrong
service

no
slot

1. ETH Mainnet 15 + 25 1367077 191571 1809 4881 449 82118 821

2. Polygon Mainnet 64 + 129 1954232 245912 18382 44337 8148 151427 21921

6. BSC Mainnet 62 + 74 2120671 332135 14156 16013 2 163477 16477

7. ETH Holesky 6 + 17 1462161 189323 38953 79541 2376 83471 3511

10. ETH Sepolia 11 + 19 1412537 202533 21916 39143 16 96113 5051

43. KCC Mainnet 6 + 5 1319616 275446 24997 49669 4 146477 16477

v5. ETH Mainnet 0 + 3 1182935 191929 14174 323 525 71142 113

v5. ETH Holesky 0 + 0 1151383 192635 10551 31211 1908 93170 903

v5. ETH Sepolia 0 + 1 1102496 193127 19676 477 237 92115 2017

“Neighbors”: outgoing and incoming connections upon termination after 12 hours;
“Findnode” and “handshake”: numbers of “Findnode” messages and handshake requests
initiated by our node; the rightmost five columns are five types of handshake failures:
TCP connection error, session key negotiation error, mismatched protocolString, wrong
service, and no incoming connection slot.

success rate in the Bitcoin network to be 1/4. The reasoning behind this estimate
is founded on [7] and is explained in Appendix A.

In Discv5, our ETH execution clients failed to establish any outgoing con-
nections within 12 hours. This can be attributed to the presence of a substantial
number of consistently online nodes (Observation 1). These nodes, likely consen-
sus nodes of Ethereum and other proof-of-stake blockchains, occupy a significant
portion of all Discv5 nodes’ DHTs and persistently reject handshake requests.

Observation 4. In Discv5, the two-thirds consistently online nodes occupy 81%
of the nodes’ DHTs, degrading the node discovery efficiency for other services.

4.2 Node Discovery Efficiency in Dedicated Networks

We analyze potential efficiency gains from service-specific overlay networks using
two approaches. First, we establish a lower bound by excluding three types of
handshake failures clearly targeting wrong services and Findnode messages sent
to other services. Appendix B provides a detailed explanation of these five error
types. This results in 45.6% (ETH Mainnet) to 87.3% (ETH Holesky) efficiency
gains in both bandwidth and execution time across all services. This approach
underestimates the true benefits. Our next analysis suggests a large portion of
miscellaneous failures—those not listed in the table—are likely due to EGN’s
blended architecture.

Our second approach, based on statistics of incoming handshake requests,
bypasses this limitation and thus provides a more accurate estimate. As shown
in Table 4, handshake failures due to “TCP connection error” and “no incoming
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connection slot” range from 1.3% (ETH Mainchain) to 22.4% (ETH Holesky).
This implies that all other handshake attempts, including the aforementioned
miscellaneous failures, are normal: they reach their intended targets and, if the
target is of the same service, find available slots. Our incoming handshake re-
quests are a random sample of these normal attempts. During our ETH Main-
net client executions, before its incoming slots were full, only 1.83% of these
requests resulted in successful connections. This data suggests that between
(1−22.4%)×98.17% = 76.2% and (1−1.3%)×98.17% = 96.9% of all handshake
attempts ultimately targeted a different service.

Observation 5. In EGN, over three-quarters of handshake requests are directed
towards nodes of other services.

5 Security Evaluation

To assess the security benefits offered by EGN, we evaluate its resilience against
a common P2P network threat: the DHT pollution attack. Since a robust DHT
is the first line of defense against many network- and application-layer attacks,
compromising EGN’s resistance to this foundational attack would indicate a
broader vulnerability. In other words, if EGN is more vulnerable to this weakest
attack than dedicated overlay networks, we can conclude that EGN downgrades
the attack resistance to all network-layer attacks.

Our approach differs from prior Ethereum network attacks in two key as-
pects. First, we focus on displacing honest peers in the nodes’ DHT routing
tables, contrasting with previous works that targeted application-layer connec-
tions. In fact, prior studies assume homogeneous routing tables populated exclu-
sively by same-service peers before being attacked. Second, unlike prior studies
that exploit protocol or implementation flaws, our attack leverages the inher-
ent characteristic of EGN’s shared overlay. The attack becomes ineffective when
each service uses a dedicated overlay network.

5.1 EGN Pollution Attack

Threat Model. Our resource-constrained attacker controls a few hundred IP
addresses, representing a small fraction (less than 0.3%) of the network. These
resources are insufficient for a Sybil attack. A single server can manage their
message traffic due to the low bandwidth and computational requirements of
our attack. We still refer to these controlled entities as attacker nodes for clarity.

Our attacker operates independently of any service-specific logic and exploits
no protocol or implementation flaws. All honest nodes function as intended,
following the DHT maintenance workflows described in Sec. 2.2. Notably, our
attack remains effective even though previously identified DHT vulnerabilities [8,
11–13] are already addressed.
Attacker’s Goal. The attacker aims to pollute the DHT buckets of EGN nodes
with the attacker nodes’ ENRs. This manipulation further lowers the success rate
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of application-layer handshakes. In the most extreme case, a group of nodes have
no honest peer from the rest of the network in their DHTs, forming a partition.

Complete isolation is more challenging than removing all same-service peers.
We consider a partition attempt unsuccessful if even one node within the group
has an active and honest public peer outside the group in its DHT. This is
because before the node initiates a handshake to the peer, it would, with high
probability, send a Findnode message to the peer, which may reply to the node
with some same-service peers, breaking the partition. Additionally, newly joining
nodes with peers in both the isolated group and the broader network can bridge
the partition. Therefore, a group of nodes is partitioned only if the union of their
DHTs includes only inactive peers, attacker nodes, and other nodes of the group.

We highlight two capability limitations caused by our weak threat model.
First, the attacker cannot remove long-term active honest peers from nodes’
DHTs. These peers undergo liveness checks before eviction (“ENR Insertion and
Deletion” in Sec. 2.1), ensuring their persistence within the DHT. As long as a
node retains some long-term peers, it cannot be completely isolated unless all
such peers are in the same partition. Second, partitioned nodes may continue
to receive new blocks and transactions until their existing TCP connections
terminate. A public node could be partitioned in our definition but still maintain
synchronization through an application-layer connection traversing a NAT.
Attack Strategy. Our attack leverages two components: a crawler and a pol-
luter. The crawler, as described in Sec. 3.1, continuously scans the network to
maintain an up-to-date list of active nodes and their DHTs. The polluter, run-
ning on each attacker node, sends Ping message every second to all discovered
active nodes. This interval is shorter than the liveness check’s ten-second inter-
val, granting attacker nodes an advantage over honest ones. Due to the “Passive
DHT Maintenance” mechanism (Sec. 2.2), these messages insert the attacker
node’s ENR either in the target node’s corresponding DHT bucket, or in the
latest replacement slot. In the latter case, it would be promoted into the DHT
bucket as long as a peer in the bucket fails the liveness check. To avoid being
evicted, attacker nodes always respond promptly to Ping messages. Addition-
ally, they reply to all Findnode requests with Neighbors messages containing only
attacker node ENRs, passively propagating them throughout the network.
Cost Estimation. The primary cost lies in the infrastructure: each attacker
node involves one IP address, no more than 1 GB of memory, and minimum
bandwidth. These requirements are modest: the Standard DS1 v2 instance of
Microsoft Azure can fulfill these needs, costing around 50 USD per node per
month [29]. Therefore, for a deployment of up to 300 attacker nodes, the esti-
mated monthly cost of continuously attacking EGN remains under 15 000 USD.
Simulation Environment. To avoid disrupting real-world services, we evalu-
ate the attack in a simulated environment (detailed in Appendix C). We reuse
Geth’s source code where possible and faithfully implement its network com-
munication to overcome our resource limitations. Network characteristics are
derived from our measurements in Sec. 3.2 and 3.3. We experimentally verify
that our simulated environment accurately models EGN’s dynamics. We use the
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Fig. 2: Percentage of same-service
peers in nodes’ DHTs in EGN.
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Fig. 3: Percentage of same-service
peers in nodes’ DHTs in dedicated
networks
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Fig. 4: Handshake success rate in
EGN.
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Fig. 5: Handshake success rate in
dedicated networks.

service distribution of Discv4 as such information is not available in Discv5. For
comparison, we also simulate a “dedicated networks” setting.

5.2 Same-Service Peers in DHTs and Handshake Success Rates

Impact on DHTs. We simulate one to 330 attacker nodes; each data point is
averaged over ten runs. Figure 2 reveals a substantial decrease in the average
percentage of same-service peers within nodes’ DHTs across six services. Despite
the attack’s simplicity, the percentage plummets to near or below 1% for four
services with 300 attacker nodes. ETH Mainnet and Polygon benefit from larger
pools of long-term same-service nodes. EGN’s vulnerability stems from its high
percentage of different-service peers before the attack. Our attack exacerbates
the issue by removing all temporarily inactive peers—same or different service.

Figure 3 demonstrates the contrasting behavior in dedicated networks. Here,
the percentage of same-service peers remains consistently above 48% for five
services. This resilience stems from a more favorable initial state—nodes only
have same-service peers in their DHTs; they will not be washed out as long as
they remain active. KCC Mainnet exhibits lower performance—15% with 300
attacker nodes—due to its smaller public node count.
Impact on Handshake Success Rates. For four out of six services, the success
rates in EGN rapidly decline to below 1% (Fig. 4). These success rates are higher
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Table 5: Network partitions with 300 attacker nodes.
EGN dedicated networks

rank. service # connected
components

#, % partitioned
nodes

# connected
components

# , % partitioned
nodes

1. ETH Mainnet 7.0 4124, 33.35% 5.3 155, 1.26%

2. Polygon 7.2 1389, 28.15% 5.3 49, 0.99%

6. BSC Mainnet 7.6 616, 33.05% 5.0 18, 0.97%

7. ETH Holesky 7.2 576, 37.20% 5.0 15, 0.96%

10. ETH Sepolia 7.1 147, 23.09% 5.2 6, 0.93%

43. KCC Mainnet 5.3 9, 21.20% 5.0 11, 25.50%

than in Sec. 4.1, probably because real-world Discv4 DHTs also contain private
nodes—those behind firewalls or NATs—that are inaccessible.

Dedicated networks exhibit higher success rates. A decreasing trend is ex-
pected as public nodes cannot distinguish attacker nodes before initiating hand-
shakes. Naturally, more attacker nodes lead to lower success rates; yet still above
30% for five services. KCC Mainnet performs the worst—8% with 300 attacker
nodes—due to its small node pool.

5.3 Network Partitioning

We now analyze the attack’s most severe consequence: network partitioning.
We run ten simulations with 300 attacker nodes in each. Table 5 displays the
average number and size of the partitions. EGN experiences severe partition-
ing, with 21% to 33% of nodes partitioned for each service. In contrast, few
nodes are partitioned in dedicated networks. Our analysis reveals two key rea-
sons for their resilience. (1) More application-layer connections: nodes maintain
more connections due to their high handshake success rates. These connections
result in the corresponding nodes’ ENRs entering the DHTs through “Passive
DHT Maintenance”. (2) Bootnode coverage: dedicated networks, being smaller,
allow bootnode DHTs to cover a larger portion of honest nodes. When parti-
tioned, newly joined nodes and active nodes reconnecting to the bootnodes have
a higher chance of bridging the gaps. In contrast, EGN’s bootnodes cover a
smaller fraction, leaving newly joined nodes with no way to rejoin partitions if
bootnode DHTs only contained peers from the same connected component.

Observation 6. The scarcity of same-service peers in EGN nodes’ DHTs com-
promises its robustness against DHT pollution attacks.

6 Fixing EGN

Service-Specific DHT. EGN’s low node discovery efficiency and vulnerability
to pollution attacks stem from its blended architecture, where nodes store peers
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from various services in their limited DHT buckets. This can be addressed by
extending the ENR format to include all supported services of the node, in line
with Discv5’s original design. We believe the service information should not be
optional. This approach offers two advantages. (1) Efficiency: other nodes can
discover a node’s services without direct interaction. (2) Potential interoperabil-
ity: nodes can still receive ENRs of different services, preserving the potential for
interaction. Each service can then decide how to manage its DHTs—storing only
same-service peers or accommodating specific other services—potentially with a
separate routing table as suggested in [16]. This allows EGN to enjoy higher node
discovery efficiency and stronger security without sacrificing decentralization.
Reliable Bootnodes. Our simulations also highlight the crucial role of bootn-
odes as a last defense against network partitioning. However, as shown in Ta-
ble 3, most services have bootnodes covering only a small fraction of their public
nodes. If a partition includes no nodes represented in the bootnode DHTs, net-
work recovery becomes highly improbable. Therefore, we recommend that most
services: (1) increase the number and reliability of their bootnodes, and (2) con-
figure bootnodes to prioritize storing same-service nodes and increase the size of
their routing tables.

7 Related Works

Design. In a parallel study, DISC-NG was proposed to address the inefficien-
cies of Discv5 [16]. While the authors recognized EGN’s low node discovery
efficiency as a problem, they did not identify the underlying cause. Our research
reveals that EGN’s blended architecture is the root of this issue. Furthermore, we
demonstrate that this architecture also compromises EGN’s security, and quan-
titatively analyze its negative impact on both security and efficiency through
comparisons with dedicated networks. These analyses are not present in [16].
Security. Prior security research primarily focuses on individual services within
the network. These studies measure a service’s resilience against Sybil attacks [8],
network partitioning [13], eclipse attacks [11,12], and Denial-of-Service attacks [25].
Notably, all these studies assume a specific scenario where honest nodes’ DHTs
(if used) contain only same-service nodes and attacker nodes. None of them has
examined the security of the EGN ecosystem as we do.
Measurement. Existing measurements focus on EGN’s node statistics [8, 15,
20], protocol messages [14], and topology [18, 21]. None of these studies explore
the individual DHT composition as we do.
Remark. We contacted the Ethereum Foundation via their official support email
address several months ago, but have not yet received a response. We have
recently included the Discv5 measurement data and plan to contact them again.

8 Conclusion

Since its inception in 2015, EGN’s blended architecture has aimed to provide
“a place for everyone,” where all services, encompassing over 500 billion USD in
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market capitalization, share a single overlay network. This architecture has been
largely unchallenged, and some consider it beneficial for node discovery and at-
tack resistance. However, our research reveals no measurable advantages to this
approach. Compared to dedicated overlay networks, services within EGN expe-
rience: (1) a 50% to 99% increase in bandwidth waste during node discovery due
to irrelevant service entries, and (2) increased susceptibility to DHT pollution
attacks and network partitioning, which leaves them vulnerable to further ex-
ploitation. These drawbacks are particularly detrimental to small services, whose
nodes nowadays only connect to their services’ official bootnodes and servers.
Consequently, these bootnodes and servers become single points of failure, eas-
ily compromised by inexpensive attacks. In essence, the node discovery protocol
wastes significant bandwidth without achieving its intended purpose. We urge
the community to adopt a preference for organizing as “everyone in its place,”
that is, to prioritize same-service peers in node DHTs, especially those of bootn-
odes, which contribute more to network security than previously recognized.
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A Handshake Success Rate in the Bitcoin Network

Due to the lack of directly comparable studies, we derived this estimate through
an approximation based on data from Joan et al. [7]. They measured the Bitcoin
P2P network and found routing information for 16 000 nodes in the routing tables
of all nodes at a given time. Among these, roughly 6,000 nodes were constantly
active, and 70% of those can accept connection requests. Assuming a conservative
estimate that a Bitcoin node’s routing table contains only 37.5% (6,000 out of
16,000) of these stable public nodes—this is conservative because Bitcoin clients
prioritize stable nodes, then 37.5%× 70% = 26.25% of the routing table entries
represent active and available nodes, resulting in a handshake success rate of
1/4.

B Explaining Five Types of Errors

Session key negotiation error (denoted as “enc. error” in Table 4) occurs when
two nodes cannot agree on a common key negotiation algorithm, which only
happens between nodes from different services. Mismatched protocolString indi-
cates that two nodes could not find a compatible protocolString. This scenario
only arises when the target node belongs to a different service, as our client sup-
ports all protocols within its own service. Wrong service signifies that at least
one of the three service identifiers (networkID, genesisHash, and forkID) does not
match. We explain the remaining two types for completeness. TCP connection
error (“TCP error” in Table 4) signifies our client’s inability to establish a TCP
connection with the target node. No incoming connection slot (“no slot” in Ta-
ble 4) indicates that the target node has reached its connection capacity, which
occurs between nodes of the same service.

C Simulation Environment

Ideally, emulating EGN would involve running unmodified clients in an isolated
network. However, this approach demands computational resources exceeding
our capacity. Existing studies using this approach, such as [16], can only maintain
thousands of nodes, which falls short of EGN’s scale by two orders of magnitude.

Therefore, we adopt an alternative approach: we reuse Geth’s source code
where possible, while simulating time-consuming and resource-intensive opera-
tions through a faithful implementation of their logic. To ensure our simulated
system’s fidelity, we emulate a smaller-scale EGN of 900 nodes using actual
clients within a Kubernetes environment4. We then compare the experimental
results obtained from our simulated system and the Kubernetes system under
identical network conditions and initial configurations. Next, we first detail our
simulated environment, and then present our verification results.
4 https://kubernetes.io/
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In our simulated environment, we represent each node as a data structure
on disk rather than as a continuously running thread, minimizing memory and
CPU consumption. Consequently, all node operations are modeled as events—
either periodically triggered (e.g., liveness checks) or initiated by other events
(e.g., receiving a Ping message). Furthermore, application-layer data exchange
(e.g., transactions) is excluded as it is outside the scope of this study.

Despite these simplifications, our simulation accurately reflects EGN’s dy-
namics. Simulated nodes replicate the routing table maintenance and handshake
initiation logic of the actual client. We reimplement Geth’s network communi-
cation line-by-line in Python, replicating the behavior. The initial network size,
service distribution, and distribution of services and active peers within bootn-
odes’ and public nodes’ DHT buckets are directly derived from our measurements
in Sec. 3.2 and 3.3. Node churn is simulated based on our measured node uptime
distribution, with new nodes joining through their services’ bootnodes.

For comparison, we also simulate a “dedicated networks” setting. Here, a
service has the same number of nodes as in EGN, but their initial DHTs only
contain same-service peers. An attacker node joins all networks and disseminates
its ENRs using Ping and Neighbors as in EGN.

A simulation runs for a simulated 24-hour period, with zero to 400 attacker
nodes. We log the results of each handshake request and the final state of nodes’
DHT buckets at the simulation’s conclusion. The simulation and data processing
modules comprise roughly 2.2 thousand lines of code.
Verification Results. Both the Kubernetes system and our simulated environ-
ment consist of 600 honest nodes operating the same service and 300 attacker
nodes (the Kubernetes system has a capacity limit of 900 nodes). Network churn
is not considered, and all nodes are assumed to remain active throughout the
execution. Other network conditions and initial configurations adhere to the
previously described setting.

Following a 24-hour attack, honest nodes in both systems fragment into four
partitions. The largest partition comprises 590 nodes in the Kubernetes system
and 584 nodes in the simulated environment. The average percentage of same-
service peers within DHTs declines to 10.9% in the Kubernetes system and 8.9%
in the simulated environment. These comparable results provide strong evidence
that our simulated environment accurately reflects the network’s dynamics.
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