
Heuristic Algorithm for Solving Restricted SVP
and its Applications

Geng Wang1,2, Wenwen Xia1,2, and Dawu Gu1(�)

1 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong
University, Shanghai, 200240, China

{wanggxx, xww summer, dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China

Abstract. In lattice-based cryptography, many attacks are performed
by finding a short enough vector on a specific lattice. However, it is pos-
sible that length is not the only restriction on the vector to be found. A
typical example is SVP with infinity norm: since most SVP solving algo-
rithms only aim to find short vector under Euclidean norm, the infinity
norm is in fact another restriction on the vector. In the literature, such
problems are usually solved by performing exhaustive search on a list
of short vectors generated from lattice sieving. However, the sieving list
might either be too large or too small to pass the additional restriction,
which makes the solving algorithm inefficient in some cases.
Our contribution in this work is as follows: (1) We formally define a
new lattice hard problem called restricted SVP, and show that it can
be used to generalize many lattice hard problems, including SVP with
non-Euclidean norm and Kannan’s embedding on approximate CVP. (2)
We extend the dimension for free technique and the enumerate-then-
slice technique into approximate SVP where the goal is to output a list
of short vectors with a certain size. (3) We give the heuristic algorithm
for solving restricted SVP, and design a hardness estimator for this algo-
rithm, which can be used to estimate the concrete hardness of signature
forgery in Dilithium and other lattice-based signatures. Using this es-
timator, we present a concrete security analysis for Dilithium against
signature forgery under the gate-count model for the first time. Our esti-
mation matches well with the security estimation from core-SVP model
in the document of Dilithium, and we also combine our estimator with
the rescaling technique to generate a tighter estimation.

Keywords: Lattice-based Cryptography · Shortest Vector Problem ·
Dilithium · Post-quantum cryptography

1 Introduction

Due to its ability to resist quantum attacks and other nice properties such as
homomorphism, lattice-based cryptography has received a lot of attention these
years. In the post-quantum standardization proposed by NIST, two lattice-based
algorithms Kyber [11] and Dilithium [13] have been chosen as recommended

2 G. Wang et al.

standards. Since the security of these algorithms relies on the hardness of certain
lattice problems, it becomes important to design more efficient algorithms for
solving these problems.

There are two basic types of lattice problems, namely the shortest vector
problem SVP and the closest vector problem CVP, both of them have many
different variants. For the SVP family, we have exact SVP, which aims to find
the shortest non-zero vector in a lattice, approximate SVP, which aims to find a
short enough (but not necessarily shortest) vector in a lattice, and unique SVP,
which aims to find the shortest non-zero vector in a lattice which satisfies some
specific conditions. Many lattice problems used in constructing post-quantum
cryptosystems, such as SIS [2] or LWE [37], can be solved through one of these
problems.

All these problems consider only the length of vectors, usually in the Eu-
clidean norm. However, there are still some related problems not only aim to
find a short lattice vector, but also require the vector to satisfy some additional
properties, which relate but not totally depend on the length of the vector. Those
existing definitions cannot properly describe such type of problems.

In this paper, we present a new lattice hard problem, called restricted SVP
(Definition 4.2), which can be viewed as a more flexible version of approximate
SVP. Informally, restricted SVP aims to find a lattice vector v which satisfies
a restriction R which is a predicate, such that Pr(R(v) = 1 : v ∈ L ∧ ∥v∥ ≤
len) = 1 increases as len decreases.

Restricted SVP can be used to generalize a large type of lattice problems.
We list two of them:

(1) Kannan’s embedding on approximate CVP.

Kannan’s embedding technique [29] can be used to solve CVP-type lattice
problems as follows: for a d-dimensional lattice basis B and a target vector t,

Kannan’s embedding aims to find a short vector on the lattice L′ = L
(

B t
0T M

)
,

M is called the embedding factor, and if the short vector has the form
(

x
±M

)
,

then x = ±(t− v) where v is a close lattice vector to t.

Kannan’s embedding has proven to be useful in solving gapCVP and related
problems, such as BDD or LWE [6]. However, Kannan’s embedding offers only
a non-tight reduction from approximate CVP to approximate SVP. The main
reason is that, for gapCVP, the shortest vector in L′ must have ±M as its last
element, but for approximate CVP, we only find an approximate shortest vector
for L′, which last element could be c ·M for any |c| small enough. While a short
non-zero vector in L′ may have its last element either 0 or c ·M for |c| ≥ 2, a
correct solution for CVP requires the last element to be ±M , which cannot be
promised for approximate SVP.

Under our new definition, solving approximate CVP by Kannan’s embedding
can be turned into solving restricted SVP with restriction: vd = ±M .

(2) Approximate SVP under infinity norm.

Many lattice-based algorithms, including the NIST standard Dilithium [13]
have their hardness based on lattice problems with infinity norm. However, the

Heuristic Algorithm for Solving Restricted SVP and its Applications 3

most efficient lattice solving algorithms only work on lattice problems with Eu-
clidean norm. Although there are some researchers which discussed on lattice
problems on other norms [1, 18, 34], none of their algorithms are as efficient as
the algorithms on Euclidean norm.

In this paper, we consider the problem of solving approximate SVP under
infinity norm with bound B, which can be viewed as solving restricted SVP with
restriction: ∥v∥∞ ≤ B. Also, by combining the restriction with the restriction on
Kannan’s embedding for approximate CVP, we can see that approximate CVP
under infinity norm can also be turned into an instance for restricted SVP. Since
signature forgery for Dilithium and many other lattice signatures is in fact a
problem for solving approximate CVP under infinity norm, we can use a solving
algorithm for restricted SVP to perform forgery attack on lattice signatures or
estimate their security levels.

Lattice Solving Algorithms for Approximate SVP.

Basic algorithms for solving SVP (sometimes called SVP oracle) include
enumeration [3, 4, 29] and lattice sieving [16, 17, 36], which are highly efficient
for solving exact SVP or approximate SVP with small factors (e.g. γ = 1.05).
These algorithms have their time costs exponential in the lattice dimension d.
The most efficient sieving algorithm BDGL [16] has a theoretical complexity

of
√
3/2

d+o(d)
≈ 20.292(d+o(d)), which has proven to be the theoretical lower

bound for sieving type algorithms [30]. However, the problems used in lattice-
based cryptography usually have larger approximation factors (also with larger
dimensions), which are inefficient to solve using solely SVP oracles.

More commonly used algorithms in cryptanalysis of lattice-based cryptogra-
phy are lattice reduction algorithms, including LLL [32] and BKZ [38] (or their
variants). While LLL algorithm only solves approximate SVP with exponentially
large approximation factors, BKZ is more flexible since it has a tunable param-
eter called blocksize β, where larger β can solve approximate SVP with smaller
approximation factor, but with longer time. BKZ calls the SVP oracle with di-
mension β, hence the time cost of BKZ is exponential in β. There are many
works on improvements for BKZ, including [9, 21, 39], which further improved
its efficiency.

Also in solving lattice challenges (see www.latticechallenge.org), Sun et al.
used a combination method of BKZ and sieving, which we refer as a two-step
mode in this paper (we shall specify it later in Section 3.2).

It is not hard to see that any approximate SVP solving algorithm can be
viewed as a probabilistic algorithm for solving restricted SVP: heuristically as-
sume that an algorithm can find a uniform lattice vector of length ≤ len, then
the algorithm can be used to solve the restricted SVP problem with probability
Pr(R(v) = 1 : v ∈ L ∧ ∥v∥ ≤ len).

At a first glimpse, since we consider general restrictions, the only meaningful
method for finding a lattice vector passing the restriction is through exhaustive
search, so the optimal strategy for solving such a problem should be simply
repeating the (probabilistic) approximate SVP solving algorithm many times.
However, we show that it is in fact not the case: by a careful design on the

4 G. Wang et al.

algorithm, we can reuse most of the intermediate results in an approximate SVP
solving algorithm, and perform the exhaustive search only on the last step. So
by designing an optimized algorithm specifically for restricted SVP, we can solve
the problem faster and get a tighter bound for lattice algorithms which hardness
based on restricted SVP.

1.1 Our Contribution

The main contributions of this work is as follows:
(1) We formally define a new type of lattice hard problem called restricted

SVP in Section 4, which can be used to generalize a large fraction of lattice-
related problems, including Kannan’s embedding on approximate CVP or ap-
proximate SVP with infinity norm. We also show that restricted SVP can be
solved by a two-step lattice solving algorithm for approximate SVP which out-
puts a set of lattice short vectors of a specific size determined by the restriction
in the problem.

(2) We design two variants of two-step algorithms for solving approximate
SVP in Section 5, namely flexible dimension for free (Section 5.1) and sieve-then-
slice (Section 5.2). The first algorithm is used to output a list of short vectors

which size is smaller than
√
4/3

κ
, where κ is the sieving dimension, and the

second algorithm is used to output a list of short vectors which size is larger
than

√
4/3

κ
. Then we combine the two algorithms to get a solving algorithm

for restricted SVP in Section 5.3, and discuss its time complexity.
(3) We give approximations for the probabilities that a lattice vector could

pass the restrictions in the two applications of restricted SVP: Kannan’s em-
bedding on approximate CVP in Section 6.1 and approximate SVP with infinity
norm in Section 6.2. By combining these two results, we can give an estimation
for hardness of approximate CVP with infinity norm and its related problems,
such as the MISIS problem, which is a CVP-type hard problem on module lat-
tices [31] used in Dilithium. We use this new hardness estimator to estimate the
security for unforgeability in Dilithium in Section 6.3, and present its security
bits under the gate-count model, which is absent in the current document of
Dilithium.

2 Preliminaries

We denote vectors by lower-case bold letters, e.g. a,b, c, ..., and matrices by
upper-case bold letters, e.g. A,B,C, For a matrix B = (b0, · · · ,bd−1), we
write bi as its i + 1-th column vector. The Euclidean norm of a vector v =

(v0, ..., vm−1)
T ∈ Rm is denoted by ∥v∥ =

√∑m−1
i=0 v2i , and the infinity norm

of v is denoted by ∥v∥∞ = max |vi|. We define [a, b] = {a, a + 1, ..., b − 1} and
[d] = [0, d].

We use Bd(r) ⊂ Rd to denote a d-dimensional hyperball with radius r, which
means that Bd(r) = {x ∈ Rd : ∥x∥ ≤ r}.

Heuristic Algorithm for Solving Restricted SVP and its Applications 5

Let N (µ, σ) be the Gaussian distribution with mean value µ and standard
deviation σ. N (µ, Σ) stands for the high-dimensional Gaussian with mean value
µ and covariance matrix ΣTΣ. We also write U [a, b] as uniform distribution on
[a, b].

2.1 Basic Definition on Lattice

Definition 2.1 (Lattice). Let B ∈ Rd×k, d ≥ k be a matrix of rank k. The
lattice L = L(B) is defined as {B · c : c ∈ Zk}. If k = d, we call L a full-rank
lattice.

For a full-rank lattice, we define its volume by: vol(L) = |B|.

Next, we give the definitions on basic lattice hard problems: SVP and CVP.

Definition 2.2 (Shortest Vector Problem (SVP)). Given a lattice L, the
shortest vector problem finds a vector x ∈ L such that ∥x∥ = λ1(L), where
λ1(L) = min{∥v∥ : v ∈ L − {0}}.

Definition 2.3 (Closest Vector Problem (CVP)). Given a lattice L and
t ∈ Rd, the closest vector problem finds a vector x ∈ L such that ∥t−x∥ ≤ ∥t−v∥
for any v ∈ L.

We usually consider their approximated version, called approximate SVP
(γ-SVP) and approximate CVP (γ-CVP). Their definitions are as follows:

Definition 2.4 (Approximate SVP). Given a lattice L and the approxima-
tion factor γ, approximate SVP finds a vector x ∈ L such that ∥x∥ ≤ γ · λ1(L).

Definition 2.5 (Approximate CVP). Given a lattice L and t ∈ Rd, approx-
imate CVP finds a vector x ∈ L such that ∥t− x∥ ≤ γ · λ1(L).

However, determining λ1(L) means that we have already found the short-
est vector, which is infeasible in most cases. In lattice solving algorithms, the
following Gaussian Heuristic is used to give an approximation of λ1(L):

Definition 2.6 (Gaussian Heuristic).
The Gaussian Heuristic claims that for any convex shape C ⊂ Rd where

vol(C) ≥ vol(L), there is approximately vol(C)
vol(L) lattice points in C.

Specifically, a hyperball with radius λ1(L) contains exactly 1 lattice point,
thus the Gaussian Heuristic predicts:

λ1(L) ≈ gh(L) =
√

d

2πe
|B|1/d

from the approximation of the volume of a hyberball: vol(Bd(r)) ≈ 1√
2π

(
√

2πe
d ·

r)d.

Gaussian Heuristic is the most important heuristic assumption in lattice-
based cryptanalysis, which correctness has been verified in some existing works
[19].

6 G. Wang et al.

2.2 Lattice Reduction

Next, we introduce lattice reduction, which is an important type of lattice solving
algorithms. We first give the definition of projected sub-lattice.

Definition 2.7 (Projected Sub-Lattice). Let B be a lattice basis of the full
rank lattice L. For i ∈ [d], we denote by πi the orthogonal projection over
(b0, ...,bi−1)

⊥, which means that for any v ∈ Rd, πi(v)
Tbj = 0 for any j < i

and v − πi(v) ∈ span(b0, ...,bi−1).
For 0 ≤ j ≤ k ≤ d − 1, we denote by B[j, k] the local projected block

(πj(bj), πj(bj+1), ..., πj(bk−1)), and by L[j, k] the lattice spanned by B[j, k].
L[j, k] is called a projected sub-lattice of L.

Projected sub-lattice can be more easily expressed from the Gram-Schmidt
orthogonalized basis B∗ = (b∗

0, ...,b
∗
d−1) as follows:

b∗
i = bi −

i−1∑
j=0

µi,jb
∗
j ,

µi,j = ⟨bi,b
∗
j ⟩
/
∥b∗

j∥2, i < j < d.

It directly follows that b∗
j , ...,b

∗
k−1 is the Gram-Schmidt orthogonalized basis of

L[j, k].
The volume of a lattice Vol(L) can be calculated from B∗ as:

Vol(L) = |B| =
d−1∏
i=0

∥b∗
i ∥.

Definition 2.8 (Size-reduced). A basis B is size-reduced if the following holds:
For 1 ≤ j < i ≤ d : |µi,j | ≤ 1/2.

Definition 2.9 (HKZ and BKZ reductions [35]). The basis B of a d-
dimensional lattice L is HKZ reduced if B is size-reduced and ∥b∗

i ∥=λ1(L[i : d]),
for all i < d. A d-dimensional L is BKZ-β reduced if B is size-reduced and ∥b∗

i ∥
=λ1(L[i : min{i+ β, d}]), for all i < d.

The BKZ algorithm [21,38] with blocksize β can generate a BKZ-β reduced
lattice basis after running a sufficient number of tours. But even the number of
tours is not enough, it may still output a BKZ-β′ reduced basis for some β′ < β.
We do not go into details here.

Definition 2.10 (Root Hermite Factor). For a basis B of d-dimensional
lattice, the root Hermite factor is defined as

δ(B) =
(
∥b0∥/|B|1/d

)1/d
.

Heuristic Algorithm for Solving Restricted SVP and its Applications 7

For larger blocksize of BKZ, root Hermite factor of a BKZ-β reduced basis follows
the asymptotic formula [20]:

δ(β)2(β−1) =
β

2πe
(βπ)1/β .

δ(B) can be used to measure current lattice basis quality of the lattice basis
B. A better lattice basis quality of B corresponds to a smaller δ(B).

Definition 2.11 (Geometric Series Assumption [5]). Let B be a BKZ-β
reduced basis with sufficiently large β, then ∥b∗

i ∥ ≈ α · ∥b∗
i−1∥, 0 < α < 1.

The geometric series assumption (briefly GSA) is another widely used heuris-
tic assumption in lattice-based cryptanalysis. Combining GSA with root-Hermite

factor (Definition 2.10) and Vol(L) =
∏d−1

i=0 ∥b∗
i ∥, it infers that α = δ−

2d
d−1 ≈ δ−2.

2.3 Basic Lattice Algorithms

Babai’s Lifting. Babai’s nearest plane algorithm, also called Babai’s lifting, can
be used to solve approximate CVP either the approximation factor is exponen-
tially large or the target vector is extremely close to a lattice vector. Babai’s
lifting is a basic component of many lattice solving algorithms. We describe the
algorithm as follows:

input : A target vector t ∈ Rd, lattice basis B
output: The close vector w ∈ L s.t. ∥t−w∥ ≤ 2d/2dist(t,L);

1 Function Babai-Lift(t,B):
2 B∗ ← Gram-Schmidt basis of B;
3 for j from d− 1 to 0 do

4 cj ← ⌈
⟨t,b∗

j ⟩
⟨b∗

j ,b
∗
j
⟩⌋, t′ ← t− cjbj ;

5 return t− t′;

Algorithm 1: Babai’s Nearest Plane Algorithm [12]

Babai’s lifting is usually used to find a lattice vector v on the full lattice
L which is close to a certain vector v′ in a projected sub-lattice L[j : k]. This
operation is called “lift”, which is exactly the algorithm named after.

Lattice Sieving and Dimension for Free. A lattice sieving algorithm proceeds
as follows: first sample a relatively large set L of lattice vectors, for each two
vectors u,v ∈ L, if ∥u± v∥ < ∥u∥ or ∥v∥, use u± v to replace u or v, repeat
this procedure until no vector pair in L can be reduced. If the size of L satisfies

|L| ≥
√

4/3
d+o(d)

, lattice sieving can output a set of shortest lattice vectors.

8 G. Wang et al.

There are different types of lattice sieving which find vector pairs in different
methods. The most efficient sieving algorithm is BDGL sieve [16] which costs√
3/2

d+o(d)
using the nearest neighbor searching techniques.

Dimension for free (d4f for short) technology [25] can bring sub-exponential
time speedup and memory decrease for sieving algorithms. D4f is based on the
following fact:

For the shortest non-zero vector v ∈ L, πf (v) ∈ L[f : d]. Since ∥πf (v)∥ ≤
∥v∥, if the following condition is satisfied:

∥v∥ ≈ gh(L) ≤
√
4/3gh(L[f : d]),

then πf (v) must be inside the sieving output of lattice L[f : d] which contains√
4/3

d−f
shortest vectors of L[f : d] (ensured by the Gaussian Heuristic). So it

is possible to recover v by performing Babai’s lifting on each vector in the sieving
list L[f : d] of the projected sub-lattice L[f : d]. We can solve the equation to
find f .

Furthermore, if we heuristically assume that for v =
∑d−1

i=0 v∗i b
∗
i , every v∗i

has similar norm, then we can assume that ∥πf (v)∥ ≈
√

d−f
d ∥v∥ to get a larger

number of free dimensions f with the following equation:√
d− f

d
gh(L) ≤

√
4/3gh(L[f : d])

.
The Block Korkine-Zolotarev (BKZ) Algorithm. BKZ is a lattice reduction

algorithm introduced by Schnorr and Euchner [38].
The main idea of BKZ algorithm is using β dimensional SVP oracle such as

lattice sieving to find a lattice vector vi ∈ L[i : i + β] for each i, s.t. ∥vi∥ =
gh(L[i : i + β]), lift it into a lattice vector, then insert it in i-th position of
lattice basis. After each insertion, it will improve the quality of the lattice basis.
Besides, it calls an LLL algorithm before lattice reduction to vanish the linear
dependence and make a rough reduction after the insertion. We give a simplified
decription for the basic version of BKZ.

input : B , β;
output: B;

1 Function BKZ(B, β):
2 B = LLL(B);
3 for i ← 0 to d− 1 do
4 β′ = min{β, d− i};
5 Find the shortest vector v∗

i in the projected sub-lattice L[i : β′ + i];
6 vi ←Babai-Lift(v∗

i);
7 B = LLL((b0, ...,bi−1,vi,bi, ...,bd−1));

Algorithm 2: BKZ

Heuristic Algorithm for Solving Restricted SVP and its Applications 9

The algorithm above defines a tour of BKZ with blocksize β. To achieve
a basis which is BKZ-β reduced, we should run the BKZ-β tour many times.
Progressive BKZ can be used to speed up this procedure, where the blocksize β
is increased after each tour. In this work, we use the trivial progressive strategy
as in [22], where β is increased by 1 after each tour. We note that more flexible
strategy can be used to further accelerate the reduction procedure, as shown
in [10,39].

3 Some New Lattice Solving Algorithms

In this section, we present two new lattice solving algorithms we shall use
throughout this work, which are modification or combination of some existing
algorithms.

3.1 Modified Randomized Slicer

Randomized iterative slicer [23,26] is an algorithm for solving CVP with prepro-
cessing (CVPP for short). It relies on enumeration or lattice sieving to generate a
list of shortest lattice vectors which is the preprocessing step, and the algorithm
itself uses the list to solve CVP for a target vector t. Randomized slicer is the

most efficient algorithm in solving CVPP, which costs approximately
√

18
13

d+o(d)

for a single CVP instance.
Here we do not introduce the original randomized slicer algorithm in [23],

but a modified version which will be used later in our paper.

input : The lattice L, a list of target vectors T ⊂ Rd, a list of short lattice
vectors Lin ⊂ L, size of the output list S;

output: A list of short vectors Lout ⊂ L ∪ (T + L) ;
1 Function RandomizedSlicer(L, T, Lin, S):
2 Lout ← Lin;
3 repeat
4 t′ ← Sample(T + L);
5 for each r ∈ Lin do
6 if ∥t′ − r∥ < ∥t′∥ then
7 Replace t′ ← t′ − r and restart the for-loop;

8 Lout ← Lout ∪ {t′};
9 until |Lout| = S;

10 return Lout;

Algorithm 3: Modified Randomized Slicer

The algorithm is modified from the two aspects: (1) instead of returning
lattice vectors, we return a list of short vectors in L∪ (T +L); (2) the vector t′

10 G. Wang et al.

is added into the list after each iteration, instead of only returning one shortest
t′ for each t ∈ T (where t− t′ is the closest lattice vector of t). We can see that
none of these modifications has effect on the time complexity of randomized
slicer.

For a lattice with dimension d, let Lin be the sieving list which contains√
4/3

d
short lattice vectors, which lengths heuristically ≤

√
4/3 · λ1(L). By the

discussion in [23], we can also heuristically assume that all vectors in Lout have
lengths ≤

√
4/3 · λ1(L).

3.2 Two-step Algorithm for Solving Approx-SVP

Instead of solving lattice problems by using only lattice reduction algorithms
such as BKZ, a more efficient approach is combining lattice reduction with a
SVP solver: first reduce the lattice basis, then find the target vector by a single
call to the SVP solver (either enumeration or lattice sieving), which is sometimes
called a two-step algorithm in the literature.

Although two-step algorithms are usually considered as folklore approaches
for solving lattice problems, there are only few works for theoretically analyzing
such algorithms. A recent work by Xia et al. [40] presented a two-step estimator
for LWE (or uSVP) hardness, but similar analysis for approximate SVP is still
missing.

Since our restricted SVP is in fact a variant of approximate SVP, we first
give a formal description for two-step algorithm when solving approximate SVP
before we go into any further details.

input : Lattice L with basis B, target RHF δ, sieving dimension κ;
output: A list of short lattice vectors S;

1 Function TwoStepSolver(L, δ, κ):
2 Perform BKZ reduction on L until its basis has RHF δ;
3 S ← Sieve(L[0 : κ]);
4 return S;

Algorithm 4: Two-step Solver

Note that in this algorithm, we take the root Hermite factor δ as its input
parameter instead of the blocksize β, since we do not specify which type of BKZ
algorithm to be used. Other than BKZ with fixed blocksize β, which will generate
a lattice with RHF δ(β), we can also use progressive BKZ as in [10] or the pump-
and-jump BKZ in G6K [5], and in the latter cases, we do not necessarily have
δ = δ(β). However, given the BKZ parameters, the RHF δ after BKZ reduction
can be calculated from a BKZ simulator as in [21,39].

Unlike what has been proven for solving uSVP or LWE [40], two-step mode
does not always lead to an increase in efficiency compared with using BKZ only.
However, a nice thing about the two-step solver, is that it always returns a set
of short lattice vectors instead of only a lattice basis. This property is useful in
our further discussion of restricted SVP solver.

We can see that the two core parameters for a two-step algorithm is the basis
quality after lattice reduction, as well as the dimension of the final call to SVP

Heuristic Algorithm for Solving Restricted SVP and its Applications 11

oracle. So in order to optimize the algorithm for an approximation factor γ, we
must find (β, κ) such that gh(L[0 : κ])/gh(L) ≤ γ and the total time cost for
BKZ-β and sieving with dimension κ is minimal (we suppose that the lattice
basis has RHF δ after a BKZ reduction of blocksize β). Note that sometimes we
have κ ≤ β in the optimal choice, which means that using BKZ only is more
efficient than a two-step mode under this case.

4 Definition of Restricted SVP

4.1 Preparation: Restricted SVP with Fixed Length

We first give a simplified case for restricted SVP, and consider its solving algo-
rithm. Although it is only a special case for our more generalized definition of
restricted SVP, it makes good intuition for this new hard problem and how to
solve it.

Intuitively, a solution for restricted SVP should satisfy two conditions: (1) it
is a short vector in the lattice; (2) it can pass the restriction. This leads to our
definition below:

Definition 4.1. Given len ∈ R+, R : Rd 7→ {0, 1} (called restriction), L is a
d-dimensional lattice, the fixed-length restricted SVP (RSVP∗(L, len,R)) aims
to find a vector v ∈ L ∩ Bd(len) such that R(v) = 1.

Let p = Pr(R(v) = 1|v ∈ L ∩ Bd(len)). (We note that for a normal pred-
icate R with certain level of “uniformity”, we can heuristically assume that
Pr(R(v)|∥v∥ ≤ len ∧ v ∈ L) ≈ Pr(R(v)|∥v∥ ≤ len), which can be used to sim-
plify the calculation of p.) Following the two-step solving algorithm, we directly
get a trivial algorithm for solving fixed-length restricted SVP as follows:

input : Lattice L with basis B, target RHF δ, sieving dimension κ;
output: A list of short lattice vectors S;

1 Function TrivialSolver(L,R, δ, κ):
2 V ←TwoStepSolver(L,R, δ, κ);
3 for each v ∈ V do
4 if R(v) = 1 then
5 return v;

6 return “fail”;

Algorithm 5: Trivial Restricted SVP Solver.

However, the success rate of this algorithm, which is 1 − (1 − p)
√

4
3

κ

might
be too large or too small for different values of p, which makes the algorithm
inefficient in most cases. So how to solve a fixed-length restricted SVP with any
given success rate?

In order to solve the problem with success rate r, we only need to find a set

of vector which contains S = log(1−r)
log(1−p) vectors in L ∩ Bd(len). If S ≤

√
4/3

κ
,

then the two-step mode alone is enough to solve the problem. However, if S <<√
4/3

κ
, the generation of the large vector list seems to be wasteful. Is there a

12 G. Wang et al.

more efficient algorithm which generates a list of less vectors than sieving with
dimension κ? This is the first problem we wish to answer.

The other possibility is that, S >
√
4/3

κ
, thus we cannot achieve the success

rate r from the list of sieving vectors. Of course, since BKZ and sieving are ran-
domized algorithms, we can run the algorithm with different seeds many times,
until the success rate achieves r. However, such an algorithm is also wasteful,
since we totally discard any intermediate results, including the reduced lattice
basis from BKZ and the sieving list from the final sieve of dimension κ.

Another method suggested in the literature [33] is as follows: Let B =
(b0, ...,bd−1) be the reduced lattice basis after BKZ. Then each time we choose κ
different vectors fromB, say (bi0 , ...,biκ−1

), run lattice sieving on this sub-lattice

to generate
√

4/3
κ
short vectors, repeat the procedure until we get enough short

vectors, so the reduced basis from BKZ can be reused to generate more vectors.
The main problem of this method is that, since the lengths of b0, ...,bd−1 are
usually increasing, the shortest vector in (bi0 , ...,biκ−1) is also longer than the
shortest vector in (b0, ...,bκ−1), which means the length of vectors generated
using this method could be much longer than the length of vectors in the sieving
list of lattice L[0 : κ].

So the second problem we wish to solve is, how to find a method for generating
a larger list of short vectors using only κ-dimensional sieve, while the length of
vectors in this list is the same or with only slight increase than the length of
vectors in the sieving list? We shall discuss the two problems in Section 5.

4.2 Restricted SVP with Related Probability

In our discussion above, we implicitly assume that the probability for a vector
to pass the restriction is unrelated with its length. However, it is usually not the
case. For example, if we let the restriction be ∥v∥∞ ≤ B, then the shorter v is,
the higher probability it passes the restriction. Under this case, the restricted
probability is related to the length of the lattice vector, which we consider it as
a more general case.

Next, we formally define the problem.

Definition 4.2. Given R : Rd 7→ {0, 1} (called restriction), L is a d-dimensional
lattice, let P(len) = Pr(R(v) = 1|v ∈ L ∧ ∥v∥ ≤ len), we require that P(len) ≥
P(len′) for any len < len′. The restricted SVP (RSVP(L,R)) aims to find a
vector v ∈ L such that R(v) = 1.

We call P(len) the related probability function, which describes the relation
between the restriction and the length of lattice vectors. Note that since we use
a more general definition of R, the bound of vector length is no longer taken as
an input of the problem. If we require that the output vector length must below
a certain value l, we only need to set P(len) = 0 for len > l. But even there is
no bound on the length of solution, since the shorter the vector is, the higher
probability it passes the restriction, its solution is also a short lattice vector with

Heuristic Algorithm for Solving Restricted SVP and its Applications 13

high probability, so our restricted SVP can still be considered as a variant of the
standard (approximate) SVP.

Solving generalized restricted SVP is similar to solving the fixed-length ver-
sion: we need to generate a set of short lattice vectors and check whether any
vector in it can pass the restriction. However, since the probability that a vector
passes the restriction increases as its length decreases, generating shorter vectors
may increase the success probability. But since generating shorter vectors also
takes more time, we should carefully choose the target length to minimize the
time complexity of the solving algorithm.

Similar to Section 4.1 above, in most cases, we can heuristically assume that
Pr(R(v)|∥v∥ ≤ len ∧ v ∈ L) ≈ Pr(R(v)|∥v∥ ≤ len) for any possible len, to
simplify the calculation of P(len). However, in some cases (such as Kannan’s
embedding for approximate CVP, which we shall discuss in Section 6.1), the
probability is defined and calculated only on lattice vectors.

5 Heuristic Algorithm for Restricted SVP

We already pointed out that restricted SVP can be solved by a two-step lattice
solving algorithm which outputs a set of lattice vector. While sieving on κ-
dimensional sub-lattice can output a set of size

√
4/3

κ
, we need to construct

more efficient algorithms for outputting a list of less or more short lattice vectors.
We give two algorithms, called flexible-d4f and sieve-then-slice which output
lists of vectors less/more than

√
4/3

κ
respectively. Then we combine the two

algorithms to get a solving algorithm for restricted SVP with any parameters.

5.1 Flexible Dimensions for Free

For a lattice L of dimension d, we can perform lattice sieving either with or
without dimension for free. If we perform sieving with f dimensions for free,

the time cost is
√

3/2
d−f

which outputs one shortest lattice vector, and if we

perform sieving with no dimension for free, the time cost is
√
3/2

d
which outputs√

4/3
d
shortest lattice vectors.

So it is intuitive that if we perform the lattice sieving with f ′ dimensions
for free for 0 < f ′ < f , we can further balance between the time cost and the
output size of shortest lattice vectors. Next, we present the algorithm with a
more flexible dimensions for free in the searching step of a two-step approximate
SVP solver, and give a theorem on the size of its output list.

Theorem 5.1. Algorithm 6 returns a list of size approximately γκ.

Proof. Let L = {v : v ∈ L ∧ ∥v∥ ≤ γ · gh(L[0 : κ])} for γ =
√
4/3 · δ−

f′d
d−1 . From

Gaussian Heuristic, we can see that there is |L| ≈ γκ as γ ≥ 1.
Next, we show that for each vector v ∈ L[0 : κ] with ∥v∥ ≤ γ · gh(L[0 : κ]),

its projection πf ′(v) is heuristically contained in the vector list generated from
sieving on L[f ′ : κ].

14 G. Wang et al.

input : Lattice L with BKZ-reduced basis and RHF δ, sieving dimension κ,
number of free dimensions f ′;

output: A list of short vectors L ⊂ L ;
1 Function FlexibleD4F(L, f ′):
2 Lsieve ← Sieve(L[f ′ : κ]); L← ∅;

3 γ ←
√

4/3 · δ−
f′d
d−1 ;

4 for each v ∈ Lsieve do
5 if ∥Babai-Lift(v)∥ ≤ γ · gh(L[0 : κ]) then
6 L← L ∪ {Babai-Lift(v)};

7 return L;

Algorithm 6: Flexible Dimension for Free

We take the same heuristic assumption as in [25], such that

πf ′(v) ≈
√

κ− f ′

κ
γ · gh(L[0 : κ]),

so we only need to show that
√

κ−f ′

κ γ · gh(L[0 : κ]) ≤
√

4/3 · gh(L[f ′ : κ]).

Since the input lattice basis is BKZ-reduced, from Geometric Series Assump-
tion:

gh(L[0 : κ]) ≈
√

κ

2πe

(
κ−1∏
i=0

δdαi

)1/κ

=

√
κ

2πe
δdα

κ−1
2 .

Similarly, we have:

gh(L[f ′ : κ]) ≈
√

κ− f ′

2πe
δdα

f′+κ−1
2 .

Thus we only need to show that γ ≤
√
4/3 · αf ′/2, which is promised by

γ =
√
4/3 · δ−

f′d
d−1 since α = δ−

2d
d−1 from Geometric Series Assumption. ⊓⊔

Note. (1) In the algorithm above, we heuristically assume that every vector

v =
∑d−1

i=0 v∗i b
∗
i of length γ · gh(L[0 : κ]) can be recovered from Babai’s lifting,

which means that we should have 1
2∥b

∗
i ∥ ≥ v∗i for i = 0, ..., f ′−1. This condition

can be satisfied for most vectors, as v∗i has a high probability around:

1√
κ
γ · gh(L[0 : κ]) =

√
2

3πe
δdα

κ−1+f′
2 < 0.28α

κ−f′
2 ∥b∗

f ′−1∥ ≤ 0.28α
κ−f′

2 ∥b∗
i ∥,

which is much smaller than 0.5∥b∗
i ∥, since α < 1 and κ > f ′.

(2) In Algorithm 6, we only output a list of vector which lengths ≤ len.
However, for our generalized version of restricted SVP defined in Section 4.2, we
can see that even if the lifted vector has length > len, there is still a probability
that it could pass the restriction. So we in fact overestimated the hardness of

Heuristic Algorithm for Solving Restricted SVP and its Applications 15

restricted SVP if we use Algorithm 6 for its complexity. But since our work
only aims to give an heuristic solving algorithm for restricted SVP, we leave the
problem of presenting a tighter hardness bound of this problem into our future
work.

We tested the algorithm with sieving dimension κ = 70 and number of free
dimensions f ′ = 0, ..., 15, using the implementation of lattice sieving in G6K [5].
The size of the output list is shown in the figure below:

Fig. 1. Number of vectors in the output of flexible d4f with κ = 70.

5.2 The Sieve-then-Slice Technique

In [23], the authors suggested that the randomized slicer algorithm can be used
to accelerate the solving of (exact) SVP, and further discussed in [24]. Their
method, we abbreviate it as the enumeration-then-slice technique, is as follows:

For a lattice with dimension d, divide the lattice into two sub-lattices, say
L⊥ = L(b0, ...,bκ−1) and L⊤ = L(bκ, ...,bd−1). To solve SVP on L, first enu-
merate a set of lattice vectors T on L⊤, then for each t ∈ T , find its closest
vector w in L⊥, until w − t is the shortest vector in L.

However, this method does not behave well enough in practice. The reason is
not hard to understand: for any lattice basis B = (b0, ...,bd−1) and the shortest

vector v ∈ L(B), if we write v =
∑d−1

i=0 cibi, there is no promise that any “part”

of it, say v⊤ =
∑d−1

i=κ cibi is also short. In fact, there is a high probability that
v⊤ is outside the enumeration range of L⊤, so the success rate of this algorithm
should be rather small, especially for large dimension d.

However, for solving restricted SVP, our goal is only to generate a list of
short enough lattice vectors, instead of finding a specific shortest vector. It is
not hard to see that the enumerate-then-slice technique fits well for such case.

To simplify our further discussion, we let L⊤ = L[κ : d] be the projected
sub-lattice, instead of the sub-lattice in [24]. Also, we replace enumeration by
sieving to get a more accurate size for the output vector list. We note that

16 G. Wang et al.

enumeration may be faster than sieving for small dimensions, but since the time
cost for generating short vectors on L⊤ is only a small fraction of the total time
cost, changing the sub-procedure here has its impact small enough that could
be ignored. We call our algorithm the sieve-then-slice algorithm.

Before presenting the algorithm, we define the following Lift operation: For
each v =

∑d−1
i=κ ciπκ(bi) ∈ L[κ : d], Lift(v) =

∑d−1
i=κ cibi ∈ L.

We give the detailed algorithm of our sieve-then-slice approach for generating
a list of short lattice vectors.

input : Lattice L with RHF δ, sieving dimension κ, size of output list
S >

√
4/3

κ
;

output: A list of short vectors L ⊂ L with |L| ≈ S;
1 Function Sieve-Then-Slice(L, κ, S):
2 Lsieve ← Sieve(L([0 : κ]));

3 φ← ⌈log(S−
√

4/3
κ

√
16/13

κ)/ log
√

4/3⌉+ C; // C = ω(1)

4 T ′ ← Sieve(L[κ : κ+ φ]); T ← ∅;
5 for each t′ ∈ T ′ do
6 T ← T ∪ {Lift(t′)};
7 return ModifiedRandomizedSlicer (T,Lsieve, S);

Algorithm 7: Sieve-Then-Slice

Theorem 5.2. Each vector in the output list of Algorithm 7 has its length

heuristically ≤
√

4
3 (gh(L[0 : κ])2 + ∥b∗

κ∥2).

Proof. Before we go into further details, we first point out that, the analysis
for randomized slicer [23, 26] cannot be directly applied to T in our algorithm.
In [23, 26], only full-rank lattices are considered, which means that for a d-
dimensional lattice, the target vector should be in a same d-dimensional vector
space with all lattice vectors.

To handle such case, we use a method similar to the co-lattice algorithm [28]
as follows: For each vector t ∈ Rd, we break it into two orthogonal vectors:
t = t⊥ + t⊤, where t⊥ is in the same κ-dimensional subspace with L[0 : κ], and
t⊤ is orthogonal with L[0 : κ]. By the definition of orthogonal basis B∗ and the
projection operator πκ, we can see that t⊤ = πκ(t) ∈ L[κ : d]. For each t ∈ T ,
t is generated from t′ by performing Lift, we can see that t⊤ = t′ is a vector
generated from lattice sieving on L[κ : κ+φ]. Suppose that φ ≤ β with δ = δ(β),
we can see that b∗

κ is the shortest non-zero vector in L[κ : κ+φ] by the property
of BKZ-β reduced basis, so ∥t′∥ ≤

√
4/3∥b∗

κ∥.
It directly follows that performing randomized slicer on t does not change

t⊤, only t⊥. So for each vector v ∈ S generated from randomized slicing on t,
we have that v⊤ = t⊤, which has length ≤

√
4/3∥b∗

κ∥.
For the length of v⊥, which follows the actual output of the iterative slicer,

we refer to Lemma 10 in [23], which claims that if the slicer uses a list of size

Heuristic Algorithm for Solving Restricted SVP and its Applications 17

αd+o(d), the output of the slicer after each iteration has its length ≤ β · L with
β = α2/2

√
α2 − 1. For α =

√
4/3 which corresponds with lattice sieving, we

have that β =
√

4/3, which means that ∥v⊥∥ ≤
√
4/3gh(L[0 : κ]).

So the length of the output vector v satisfies:

∥v∥ =
√
∥v⊥∥2 + ∥v⊤∥2 ≤

√
4

3
(gh(L[0 : κ])2 + ∥b∗

κ∥2).

⊓⊔

Our experiment shows that almost all (> 99.5%) output vectors have their
length inside this bound. In the sieve-then-slice approach, the sieving dimension
κ might be smaller than the BKZ dimension β for δ = δ(β), but it cannot occur
in the flexible d4f algorithm.

Note. (1) There is a small probability that the output of randomized slicer
collides with each other: a same vector is outputted after different iterations.
This does affect the efficiency for solving CVP, but in our algorithm, it causes
the size of output list |L| smaller than the number of iterations S. To avoid this

problem, we increase φ by C = ω(1), so the size of T becomes
√
4/3

C
times

larger than the batch size as in [26].
For each vector t ∈ T , it is heuristically assumed in [26] that each iteration

randomly outputs a vector from a list size of S′ =
√

16/13
κ+o(κ)

. By increasing

the size of T , the number of iterations for each t ∈ T also becomes S′/
√
4/3

C
,

thus we can bound the collision probability by
∑S′/

√
4/3

C

i=0
i
S′ ≈ 1

2
√

4/3
C . So by

letting C = ω(1), we have that the collision probability could be asymptotically
ignored.

We note that by choosing a larger list T , the number of iterations for each
t ∈ T becomes insufficient to output the CVP solution for every t. But it does
not really matter, since our aim is only to output a list of short vectors in T +L,
not the closest vectors.

(2) We note that like in Section 5.1, we also overestimated the time com-
plexity of restricted SVP from Algorithm 7. The reason is that the output list

L cannot be considered as uniform in Bκ(r) for r =
√

4
3 (gh(L[0 : κ])2 + ∥b∗

κ∥2):
for the sieving list, the vectors has lengths ≤ 4

3gh(L[0 : κ]) < r, and for the
slicer list, the first part v⊥ of v is chosen from an approximate Voronoi cell V
which contains

√
16/13

d
possible vectors. Since V is a convex shape contained in

Bd
(√

4
3gh(L[0 : κ])

)
, v⊥ is not uniform in Bd

(√
4
3gh(L[0 : κ])

)
, but the pos-

sibility for v⊥ ≤
√

16
13gh(L[0 : κ]) is higher than v⊥ >

√
16
13gh(L[0 : κ]). So we

also overestimated the length of v⊥, hence the whole vector v.
By the discussion above, the list is denser for smaller vector lengths, which

means that |L ∩ Bκ(r′)| > |L| · (r
′

r)
κ for some r′ < r. Since we assume that the

related probability R(r′) > R(r), the probability that L passes the restriction

18 G. Wang et al.

is also higher than our estimation. As in Section 5.1, we leave the problem of
presenting a tighter bound to our future work.

(3) If we combine the sieve on L[κ : κ+φ] with flexible dimension for free in
Section 5.1, we can get a list of shorter vectors T with larger sieving cost. It is
unclear whether such modification will increase or decrease the time complexity
for restricted SVP. But since both lengths of vectors in T and the sieving cost
on L[κ : κ + φ] are small compared with the lengths of vectors in L and the
total time cost of Algorithm 7, we can see that such modification has only small
affect on the time complexity, so we simply ignore the possible use of dimension
for free on L[κ : κ+ φ].

(4) We already mentioned that the sieve-then-slice approach should be used
when the probability P(len) is smaller than the inverse of the size of sieving list√
4/3

−κ
. However, if P(len) is exponentially smaller than

√
4/3

−κ
, the sieve-

then-slice approach also becomes inefficient. Under such case, we can first gen-
erate a lattice basis with lengths O(len/

√
d), then use Gaussian sampling to

generate enough short vectors, as Gaussian samplers can be done in polynomial
time. However, such cases are outside the range of this paper.

5.3 Algorithm for Solving Restricted SVP

Finally, we combine the two approaches together, to give our solving algorithm
for restricted SVP in Algorithm 8.

input : Lattice L, target RHF δ, sieving dimension κ, restriction R with
related probability function P, success rate p;

output: A vector v ∈ L such that R(v) = 1 with success rate p;
1 Function RestrictedSVPSolver(L, δ, κ,R, p):
2 B← BKZ(L, δ);
3 len←

√
4/3 ·

√
gh(L(B[0 : κ]))2 + ∥b∗

κ∥2;
4 size← log(1−p)

log(1−P(len))
;

5 if size > (
√

4/3)κ then
6 L← Sieve-Then-Slice(L, κ, size)
7 else

8 len←
√

4/3 · gh(L(B([0 : κ]));

9 size←
√

4/3
κ
; f ′ = 0;

10 while size ≥ log(1−p)
log(1−P(len))

do

11 f ′ ← f ′ + 1; γ =
√

4/3 · δ−
f′d
d−1 ;

12 len← γ · gh(L[0 : κ]);
13 size← γκ;

14 L←FlexibleD4F(L, κ, f ′ − 1);

15 Search through L to find v ∈ L such that R(v) = 1;
16 return v;

Algorithm 8: Solving Restricted SVP

Heuristic Algorithm for Solving Restricted SVP and its Applications 19

Time cost model and optimal parameter choices. We note that in Algorithm
8, we take δ, κ as input parameters. To actually solve a restricted SVP sample,
we need to find the optimal δ, κ which minimize the time cost. This requires a
concrete time cost model for BKZ, lattice sieving and randomized slicer.

We assume that the calculation of the predicate R(v) costs only polynomial
time. Since generating each vector v costs exponential time in average (see our
discussion below), we can ignore the time cost of R, only consider the time cost
of lattice algorithms.

Next, we give a discussion on which time-cost model we should use. There
are different ways to determine the time cost model in the literature:

(1) Asymptotic complexity. It is well known that the most efficient lattice

sieve BDGL [16] costs
√
3/2

n+o(n)
for lattice dimension n, where n = κ for the

sieve-then-slice approach, and n = κ−f ′ in the flexible-d4f approach. For the cost
of randomized slicer in the sieve-then-slice approach, we use the result in [23,26],
which claims that after each iteration, a vector is generated by traversing through

the nearest neighbor search (NNS) data structure which costs
√
9/8

κ+o(κ)
. In our

modified version of randomized slicer, we add every vector from each iteration
into the output list Lout, instead of only finding the closest vector as in the
original version. So the time cost of output a list of size S is approximately S ·√
9/8

κ+o(κ)
. Under this approximation, outputting a list of

√
4/3

κ+o(κ)
vectors

through randomized slicer has time cost
√
3/2

κ+o(κ)
, which is exactly the same

as lattice sieving. So for generating S >
√
4/3

κ+o(κ)
lattice vectors in the sieve-

then-slice approach, the total cost of lattice sieving and randomized slicer is

asymptotically S ·
√
9/8

κ+o(κ)
.

By the discussion in [8], the cost of BKZ can be considered as a sum of
the costs of polynomial number of calls to lattice sieving with dimension β for
δ = δ(β). Ignoring the polynomial factors, we simply let the cost of BKZ to

be
√

3/2
β+o(β)

, which is called the core-SVP model for BKZ time cost. Let

α = max{κ, β}, the total time cost is asymptotically
√
3/2

α+o(α)
. However,

since asymptotic complexity ignores constant factors (also polynomial factors in
BKZ), it cannot be used to optimize the choice of δ and κ. We must use other
methods.

(2) Gate-count model. In [7], the authors estimated the gate count of the
BDGL sieve [16], which are further used to estimate a concrete hardness for
LWE [22]. The hardness of LWE from gate-count model is generated from sum-
ming up all costs of lattice sieving in a progressive BKZ, while considering both
progressive sieve and dimension for free.

A main obstacle for presenting a gate-count for our algorithm, is that there
is currently no gate-count model for randomized slicer. But since both lattice
sieving and randomized slicer use the same data structure NNS, and the gate-
count for lattice sieving is calculated from the average number of visits to the
data structure, we can heuristically assume that visiting NNS in both sieving

and slicer cost a same number of gates, thus generating
√

4/3
d
vectors from

20 G. Wang et al.

randomized slicer has a same gate count as generating
√

4/3
d
vectors from lattice

sieving, which is the gate count of a d-dimensional sieve.

(3) Practical time cost. Here practical time cost means the time cost of
the algorithm on a certain computer, recorded in CPU cycles, seconds, etc. To
generate a practical time cost model, the solving algorithm is first tested through
experiments with different parameters, then use statistical methods such as least
square fits to find a relation between the time cost and the problem size, as shown
in [5,27]. Below is the experimental result for the average time cost of both lattice
sieving and (modified) randomized slicer using G6K for outputting one vector
with different κ.

Fig. 2. Comparison between the average time of outputting one vector using sieve and
slicer. Times are in milliseconds.

We can see that the two costs are quite close with each other. However, we
observe an interesting crossover, which suggests that the time cost of slicer may
grow faster than sieving. We leave a more detailed analysis in our future work.

Practical time cost model should be used if we aim to actually solve an in-
stance of restricted SVP. However, if our goal is to estimate the security level of a
lattice-based cryptosystem based on restricted SVP, we should use the gate-count
model instead, since we cannot run experiments on parameters of cryptographic
level (2128 or more). Since practical time cost is highly related with the imple-
mentation of algorithms, sometimes even the hardware of the system, we do not
give a more detailed discussion here.

We note that after given the time cost model, Algorithm 8 implies an esti-
mator for the time complexity of solving restricted SVP with parameter δ, κ. So
we only need to search through all possible δ, κ to find the optimal parameter
choices, and get the heuristic hardness estimation of restricted SVP without ac-
tually running the solving algorithm on the lattice L (the length of vectors in
B∗ can be estimated from GSA).

Why not combine the two? There is a natural question that why we do not
combine the two techniques instead of using only one at a time. To explain the

Heuristic Algorithm for Solving Restricted SVP and its Applications 21

reason, we change our point of view on Algorithm 8: we consider the parameter
choice as a dynamic procedure. The starting point is performing lattice sieve
on L([0 : κ]) with full dimension for free f without using sieve-then-slice, which
returns a list of O(1) lattice vectors.

To get a list of S vectors, we use two methods in changing the parameters
to increase the size of output list: the first one is decreasing the number of free
dimensions f ; the second one is increasing the number of vectors in T , so the
sieve-then-slice approach can generate more vectors before dimension for free,
thus resulting in a larger output list.

We can see that the first approach is more efficient than the second: decreas-
ing f by 1 results in a constant (

√
3/2) times increase in the time cost and

δ
κd
d−1 = Ω(

√
β) times increase in the output size for δ = δ(β) if κ > β, while

the growth speed in time complexity and output size are the same in the second
approach. The only cost for the first approach, is that the lengths of output

vectors are also increased by δ
d

d−1 times, but it cannot cancel out the time cost,
unless the related probability function P(len) decreases exponentially in κ as
len increases, which is quite uncommon that could be ignored.

By our discussion, we claim that using one technique at a time is always
better than combining the two, and this is why we design Algorithm 8 as above.

6 Application of Restricted SVP

6.1 Restriction Probability for Kannan’s Embedding

Let L be a d-dimensional lattice with basis B. To solve CVP with target vector

t on lattice L, we can construct a new lattice L′ = L
(

B t
0T M

)
which embeds

both L and t, then solve SVP on the embedded lattice.
We have already shown that Kannan’s embedding turns approximate CVP

into the problem of restricted SVP: R(v′) = 1 if and only if the last element
in v′ (say, v′d) is ±M . To further apply our heuristic algorithm in Section 5.3
for solving approximate CVP, we only need to calculate the related probability
function P.

The embedding parameter M is important in solving approximate CVP. If
we choose an M too large, then the probability that v′d = 0 might be too high,
but if we choose an M too small, then the probability that |v′d| > 1 might be
too high. So to maximize the probability P(len′ =

√
len2 +M2) for the target

length len we require, we should also find a way to optimize M .
Next, we give a result on the value of P, as well as an heuristic choice for M

related to len.

Theorem 6.1. P(len) > 6− 4
√
2 ≈ 0.343 for appropriately chosen M .

Proof. Each vector in L′ must has its last element of the form cM by its con-
struction. For each c ∈ Z, suppose that v′ =

(
v

cM

)
∈ L′ and ∥v′∥ ≤ len′, then

∥v∥ ≤
√
len′2 − c2M2.

22 G. Wang et al.

Moreover, we can express v′ =
∑d−1

i=0 cib
′
i + c ·

(
t
M

)
, and b′

i =
(
bi

0

)
, so v

combined by the first d elements of v′ has: v − ct =
∑d−1

i=0 cibi ∈ L.
So v − ct is a lattice vector contained in a d-dimensional ball with radius√

len′2 − c2M2 and center ct, which heuristically contains

(√
len′2−c2M2

gh(L)

)d

el-

ements assuming Gaussian Heuristic, which means that the set S′
c = {v′ ∈ L′ :

∥v′∥ ≤ len′∧v′d = cM} has size |S′
c| ≈

(√
len′2−c2M2

gh(L)

)d

. Since limx→∞(1− 1
x)

x =

1/e, we heuristically replace (len′2 − c2M2) by len′2e−
c2M2

len′2 , then:(√
len′2 − c2M2

gh(L)

)d

≈ (len′ · gh(L))d · e−
dc2M2

2len′2 .

Write x = e−
dM2

2len′2 , we have |S′
c| ≈ (len′ · gh(L))d · xc2 .

We can represent: P(len′) =
|S′

1|+|S′
−1|∑

c∈Z |S′
c|
, thus we have:

P(len′) ≈ 2x

1 + 2
∑∞

i=1 x
i2

>
2x

1 + 2
∑∞

i=1 x
i
=

2x
2

1−x − 1
=

2x(1− x)

1 + x
.

The function
(

2x(1−x)
1+x

)′
= 0 has only one solution in (0, 1), which is x =

√
2−1, we can check that the maximal value of 2x(1−x)

1+x is 6−4
√
2 ≈ 0.343 where

x =
√
2− 1. We can further calculate that

M = len′ ·
√

2

d
ln(
√
2 + 1) ≈ 1.24

len′
√
d
.

⊓⊔

Next, we test the probability that a short vector in the embedded lattice
passes the restriction. We do the following experiment: first construct a random
d-dimensional lattice L and a random target vector, use Kannan’s embedding
to generate a lattice L′ with dimension d + 1, then perform sieving on lattice
L′. We show the probability that an output vectors in the sieving list has its
last element ±M for d from 60 to 70, which can be considered as the success
probability of approximate CVP with γ =

√
4/3 ≈ 1.15.

We can see from Figure 3 that the probability has large deviation from our
theoretical result, which is ≈ 0.343. This is because that in the proof of Theorem

6.1, we replace (len′2− c2M2) by len′2e−
c2M2

len′2 , which is only valid when c2M2

len′2 =
O(1/d) is small, but we cannot say so for d from 60 to 70. We claim that for
larger dimension d, the probability will finally converges to our theoretical result.

However, our experiment fails when we use the two-step solving algorithm
on a lattice with larger dimension. Due to some reason that we failed to explain
at the time, the LLL reduction tends to move the basis vector with last element

Heuristic Algorithm for Solving Restricted SVP and its Applications 23

Fig. 3. The success probability of Kannan’s embedding.

non-zero into the last few places in the basis, so these vectors rarely take part in
the BKZ reduction, which results in the following phenomena: the first κ basis
elements have their last elements all zero, which means that we shall never get
a lattice vector with last element non-zero from sieving in L[0 : κ]. We are still
working to find out the reason and fix the experiment.

6.2 Restriction Probability for SVP with Infinity Norm

Let B be the bound of the infinity norm,RB(v) = 1 if and only if ∥v∥∞ ≤ B. We
write PB(len) be the related probability function. We assume that PB(len) =
Pr(∥v∥∞ ≤ B|v ∈ L ∧ ∥v∥ ≤ len) ≈ Pr(∥v∥∞ ≤ B|∥v∥ ≤ len).

We give the following estimation, which is also used in the security estimation
of Dilithium [13], Section C.3, but without formal proof:

Theorem 6.2. (1) Uniform distribution on Bd(len) is close to a d-dimensional

spherical Gaussian N
(
0, len√

d
· I
)
.

(2) The probability of ∥v∥∞ ≤ B for v uniform in L ∩ Bd(len) is approxi-

mately
(
1− 2Φ

(
−

√
d·B
len

))d
, where Φ is the cumulated distribution function for

the standard Gaussian N (0, 1).

Proof. (1) We first show that each element in a vector uniform in Bd(len) is
close to the distribution N (0, len/

√
d), then show that these elements are ap-

proximately independent with each other.
We can see that, {v : v ∈ Bd(len)∧vi = x} for x ≤ len is a d−1-dimensional

ball with radius
√
len2 − x2. Use the approximate function for volume of high

dimensional balls:

vol(Bd(len)) ≈ 1√
2π

(√
2πe

d
len

)d

,

24 G. Wang et al.

we can write the probability function of vi as:

vol(Bd−1(
√
len2 − x2))

vol(Bd(len))
≈
√

d

2πe

(
d

d− 1

)(d−1)/2

·
√
len2 − x2

d−1

lend
.

Use the approximation: (1 + 1
x)

x ≈ e for large enough x, we have that:(
d

d− 1

)(d−1)/2

=

√(
1 +

1

d− 1

)d−1

≈
√
e,

also:(√
len2 − x2

len

)d−1

=

(
len2 − x2

len2

) d−1
2

=

(1− x2

len2

)− len2

x2

− (d−1)x2

2len2

≈ e−
d·x2

2len2 .

Set σ = len/
√
d, the probability function of vi approximately equals to:

√
d

len

1√
2π

e−
d·x2

2len2 =
1√

2π · σ
e−

x2

2σ2 ,

which is exactly the distribution of N (0, σ).
Now, we calculate the probability function for (vi = xi, vj = xj), We can see

that {v : v ∈ Bd(len)∧vi = xi∧vj = xj} is a d−2-dimensional ball with radius√
len2 − x2

i − x2
j . Using a discussion similar to above, the probability function

vol
(
Bd−2

(√
len2 − x2

i − x2
j

))
/vol(Bd(len)) can be approximately calculated as

1
2πσ2 e

− x2
i+y2

i
2σ2 which is the product of the probability vi = xi and vj = xj . So vi

and vj are approximately independent, which means that the distribution can

be approximated by the Gaussian distribution N
(
0, len√

d
· I
)
.

(2) Since N (0, σ)(x) = N (0, 1)(x/σ), the probability that |vi| ≤ B can be
approximated by:∫ B/σ

−B/σ

N (0, 1)(x)dx = Φ(B/σ)− Φ(−B/σ) = 1− 2Φ(−B/σ).

⊓⊔

The approximation is only valid when vi is small compared with len, since
B is the bound of vi, it also means that B must be small compared with len.
We note that this requirement can be easily satisfied, since in order to optimize
the time cost in the restricted SVP solver, the output length of the set of lattice
vectors cannot be too large. We omit the detailed discussion here, but shall give
an example later in Section 6.3.

We show that this approximation is accurate by experiments as follows: sam-
ple k uniform random vectors on the ball Bd(len), return l/k where l is the
number of vectors which infinity norm ≤ B.

Heuristic Algorithm for Solving Restricted SVP and its Applications 25

We further explain how to sample a random vector on Bd(len): we make
use of the fact that a high-dimensional Gaussian is a spherical distribution. We
first sample a0, ..., ad−1 ∼ N (0, 1), b ∼ U [0, 1], let a = (a0, ..., ad−1)

T , return
v = len · b1/da/∥a∥.

The factor len · b1/d is used to make the length of v follows the same distri-
bution from the length of a uniform vector in Bd(len): note that the probability
for a uniform point in Bd(len) has length ≤ len · b1/d = x has probability:
xd/lend = b.

The experiment result is shown in the figure below, where the estimated
probability is close to the real distribution as the two curves almost overlap.

Fig. 4. Comparison between estimated and simulated probability for PB(len). The X-
axis is the ratio B/len.

6.3 Security Level for MISIS in Dilithium

In the NIST post-quantum standard Dilithium, the signature forgery can be
turned into an MISIS problem, which can be solved as CVP with infinity norm.
Thus we can combine our discussion in Section 6.1 and Section 6.2 to estimate
the hardness of MISIS in Dilithium.

We give the definition of MISIS, then describe the construction of a lattice
basis which turns MISIS into approximate CVP under infinity norm.

Definition 6.1 (MISIS and ISIS). Let Rq = Zq[X]/(Xn+1) be a polynomial
ring, A ←$ Rm×k

q (resp. Zm×k
q), t ←$ Rm

q (resp. Zm
q), the goal of solving

MISISm,k,B (resp. ISISm,k,B) is to find short vectors z ∈ Rk
q (resp. Zk

q), u ∈ Rm
q

(resp. Zm
q), ∥z∥∞ ≤ Bz, ∥u∥∞ ≤ Bu, such that Az+ u = t mod q.

We note that in the document of Dilithium, Section 6.1, similar hard problems
are defined with a single bound B = max{Bu, Bz}, instead of different bounds
for u, z. To compare with the security results in the document of Dilithium,

26 G. Wang et al.

we first give an estimation using only the single bound B. Then we will show
that considering separate bounds for u, z can lead to a tighter estimation for the
unforgeability of Dilithium.

The problem MISIS is defined on module lattices. However, there is currently
no better algorithm for hard problems on module lattices compared with general
lattices. To solve the MISIS problem, we should first expand A, t into a matrix
and a vector over Zq through the following conversion:

For A =

 a0,0 . . . a0,k−1

...
. . .

...
am−1,0 . . . am−1,k−1

, suppose that ai,j = b
(i,j)
0 + b

(i,j)
1 X +

... + b
(i,j)
n−1X

n−1. We write Ai,j =


b
(i,j)
0 −b(i,j)n−1 . . . −b(i,j)1

b
(i,j)
1 b

(i,j)
0 . . . −b(i,j)2

...
...

. . .
...

b
(i,j)
n−1 b

(i,j)
n−2 . . . b

(i,j)
0

, which is a ma-

trix in Zn×n
q . Then A is expanded into

 A0,0 . . . A0,k−1

...
. . .

...
Am−1,0 . . . Am−1,k−1

 ∈ Znm×nk
q .

For the vector t, let ti = c
(i)
0 + c

(i)
1 X + ... + c

(i)
n−1X

n−1, t is expanded into

(c
(0)
0 , ..., c

(0)
n−1, c

(1)
0 , ..., c

(1)
n−1, ..., c

(m−1)
0 , ..., c

(m−1)
n−1)T by simply putting all coeffi-

cients together.

In our discussion below, for simplicity, we let A, t be those converted matrix
and vector over Zq rather than original matrix and vector over Rq. By the choice
of the polynomial ring Rq = Zq[X]/(Xn+1), we can see that the MISIS problem
can be solved from first solving the ISIS problem for A, t ∈ Znm×nk

q × Znm
q to

get a solution u, z ∈ Znm
q × Znk

q , then recovering the polynomial vectors from
u, z in a similar way.

The lattice is then constructed as follows: L = L(B) where B =

(
qI A
0 I

)
,

and
(
t
0

)
is its target vector. The lattice has its dimension d = n(m+ k).

We note that we may only choose a few columns in the matrix A to form
this lattice. Although this increases the length of shortest vector of the lattice,
it also decreases the dimension of the lattice, so there is a possibility that such
method may accelerate the solving of the problem. However, for the parameters
in Dilithium, the number of columns is rather small, and discarding columns of
A only makes the algorithm slower.

As in the document of Dilithium [13] Section C.3, we also use a pre-processing
step, which samples a random unimodular matrix U, and use the basis BU in-
stead of B. By pre-processing, the q-vectors (those vectors with only one element
q and other elements 0) do not occur in the new lattice basis BU. This simpli-
fies our discussion below, since it was pointed out in [15] that Geometric Series
Assumption does not work well for a lattice basis with q-vectors.

Heuristic Algorithm for Solving Restricted SVP and its Applications 27

We follow the document of Dilithium [13], Section 6.2.1 and Section C.3, that
our goal is to find a close enough lattice vector v to

(
t
0

)
, such that

(
t
0

)
−v =

(−u
z

)
,

satisfying ∥u, z∥∞ ≤ B. By the construction of lattice L, it is not hard to see
that u, z is a short solution to Az+ u = t mod q.

This means that we should find a short vector x in
(
t
0

)
+L with the restriction

R(x) = 1↔ ∥x∥∞ ≤ B, with the related probability function PB(len) as defined
in Section 6.2. This can be viewed as a restricted CVP instance.

The next thing is to choose the embedding parameter M in Kannan’s em-
bedding to turn this restricted CVP into restricted SVP. As discussed in Section

6.1, we can fix M to be
√

2
d ln(
√
2+1) · len to simplify our discussion here, thus

we can set
PSVP∞(len′) = PCVP∞(len) · (6− 4

√
2),

where len′ =
√
len2 +M2.

However, a new problem arises: since len′ is chosen in Algorithm 8, which
should be first given the description of the lattice L′ which contains M , we
cannot predetermine M or len′ without having the other. We take an alternative
approach:

Instead of calculating len′, we calculate the fraction lenfac = len′

vol(L′)1/(d+1) ,

which can be estimated solely from d, δ, κ using GSA, and is unrelated to M .

Then we use lenfac to determine bothM and len′. SinceM =
√

2
d ln(
√
2+1)·len,

we have that

len′ =
√
len2 +M2 =

√
1 + (

d

2 ln2(
√
2 + 1)

)2 ·M.

So given lenfac, we have that:√
1 +

(
d

2 ln2(
√
2 + 1)

)2

·M = lenfac·vol(L′)1/(d+1) = lenfac·vol(L)1/(d+1)·M1/(d+1),

so

Md/(d+1) =
lenfac · vol(L)1/(d+1)√
1 +

(
d

2 ln2(
√
2+1)

)2 ,
which means that

M =

 lenfac · vol(L)1/(d+1)√
1 + (d

2 ln2(
√
2+1)

)2

(d+1)/d

.

We can further calculate len′ and len from M .
By determining M , we have the description of the lattice L′ from len′, which

can further be used to determine the related probability PSVP∞(len′). Then, we
can run the estimation version of Algorithm 8 with proper time cost model. Here
we use the gate-count model in [7], as discussed in Section 5.3.

28 G. Wang et al.

Removing “Conservativeness” in Dilithium Forgery. The designers of Dilithium
mentioned in [13], Section 6.2.1 that forging a signature is still harder than solv-
ing the MISIS problem from two aspects: first, u has only ω ∈ {80, 55, 75} ele-
ments larger than τ · 2d−1 + γ2 (which is 254976 for Dilithium lv2), and second,
z has its norm ≤ γ1 − β (which is 130994 for Dilithium lv2). But a solution for
MISIS only requires that all its elements below τ ·2d−1+2γ2+1 (which is 350209
for Dilithium lv 2), which makes the problem more conservative compared with
real forgery.

We can see that the first aspect does not really affect the security of Dilithium:
since we solve the MISIS problem first by finding a set of short vectors of length
≤ len, the probability that it has more than ω elements larger than τ · 2d−1+ γ2
is small and can be ignored. However, the second aspect may have large impact
on the security of unforgeability in Dilithium.

To remove the conservativeness from the unforgeability in Dilithium, we
consider different bounds Bu, Bz for u, z, instead of a single maximal bound.
Suppose that u, z have dimensions m, k respectively with d = m + k, simi-
lar to Theorem 6.2, we can see that related probability can be expressed by(
1− 2Φ

(
−

√
d·Bu

len

))m (
1− 2Φ

(
−

√
d·Bz

len

))k
.

However, we cannot directly use this related probability to estimate the
unforgeability of Dilithium. Like what have been shown in the hardness of
LWE [14,22], we should use the rescaling method to balance between the lengths
of z,u, in order to optimize the efficiency in solving the (M)ISIS problem.

Let δ be a rescaling factor, we can rewrite the CVP lattice with the following
basis:

Bδ =

(
δqI δA
0 I

)
,

and
(−δu

z

)
is one of its short vectors. After rescaling, the related probability in

the new lattice turns out to be
(
1− 2Φ

(
−

√
d·δBu

len

))m (
1− 2Φ

(
−

√
d·Bz

len

))k
.

We give the following result for the choice of δ:

Theorem 6.3. For solving the (M)ISIS problem through restricted SVP, the
optimal rescaling factor is δ = Bz/Bu.

Proof. We heuristically assume that generating a random vector with length
≤ len has the same hardness for different lattices with the same volume. For
the lattice Lδ = L(Bδ), let cδ = (δq)−m/d, we have that vol(Lδ) = (δq)m, thus
vol(cδL) = 1, and the required vectors become cδ ·δu and cδz with bounds cδδBu

and cδBz. Thus to optimize δ, we only need to maximize the related probability

function, which is P =
(
1− 2Φ

(
−

√
d·cδδBu

len

))m (
1− 2Φ

(
−

√
d·cδBz

len

))k
. Next,

we prove that the function reaches the upper bound only when δ = Bz/Bu.

We write the function p(x) = ln
(
1− 2Φ

(
−

√
d·exp(x)
len

))
, and let aδ = ln(cδδBu),

bδ = ln(cδBz). We can further check that m
d aδ+

k
d bδ = m

d (lnBu−ln q)+ k
d lnBz =

aBz/Bu
= bBz/Bu

is unrelated with δ.

Heuristic Algorithm for Solving Restricted SVP and its Applications 29

It seems that there is no analytical expression for p(x). To show that p(x) is
a concave function, we draw the graph of p′′(x) with the help of Wolfram Alpha

(in fact, we draw the graph of p′′(x + C) where C = ln
(√

2d
len

)
instead, so that

the function does not contain undetermined variables):

Fig. 5. Function graph of p′′(x+ C).

From Figure 5, we have confidence that p′′(x) < 0, so by the property of con-
cave functions, m

d p(aδ)+
k
dp(bδ) ≤ p

(
m
d aδ +

k
d bδ
)
= p

(
m
d (lnBu − ln q) + k

d lnBz

)
,

where the equality holds only when δ = Bz/Bu.

Since the related probability P = exp
(
d
(
m
d p(aδ) +

k
dp(bδ)

))
, we have that P

also takes its maximal value only when δ = Bz/Bu. Thus we finish the proof. ⊓⊔

We note that rescaling should not be applied to the lattice L′ after Kannan’s
embedding.

We reestimate the hardness of Dilithium after rescaling to give a non-conservative
estimation, and find out that the result is much higher than the conservative es-
timation. We summarize our estimation results in Table 1. The code of our
estimator can be found in https://github.com/Summwer/inf-cvp-estimator.

Table 1. Estimation Result for MISIS in Dilithium

Estimation in [13]
Our Estimation
(conservative)

Our Estimation
(non-conservative)

β bits β κ/f ′ log(S) bits β κ/f ′ log(S) bits

Lv2 423 123 436 447/11 - 159.9 478 485/10 - 171.5
Lv3 638 186 661 - 150.2 223.0 677 - 159.5 227.7
Lv5 909 265 936 - 229.6 300.3 963 - 236.9 307.9

Here, the conservative estimation means the hardness of solving the MISIS
problem Az+ u = t mod q with ∥z,u∥∞ ≤ max{Bu, Bz} as in the document
of Dilithium, which is insufficient for a signature forgery. The non-conservative
estimation means the hardness of solving the same MISIS problem with ∥u∥∞ ≤
Bu, ∥z∥∞ ≤ Bz (using the rescaling factor Bz/Bu) that can be turned into a

https://github.com/Summwer/inf-cvp-estimator

30 G. Wang et al.

signature forgery. Compared with the conservative estimation, we can use the
non-conservative estimation to get a tighter security result for Dilithium.

From Table 1 above, we can see that our first estimation fits well with the es-
timation in the document of Dilithium [13], considering the differences between
gate-count and core-SVP model. However, our second estimation which makes
use of rescaling is much higher than the first one, so we claim that using one max-
imal bound instead of different bounds for u, z does bring much conservativeness
in Dilithium.

In Dilithium lv2, the optimal choice of solving MISIS is through the flexible-
d4f approach, while in Dilithium lv3 and lv5, the optimal choice is through the
sieve-then-slice approach.

We note that we do not specify the value of κ in Dilithium lv3 and lv5, since
the optimal value of κ is in fact smaller than β, and different values of κ lead
to very close estimation results as long as κ << β. The reason is that under
the parameters of Dilithium v3 and v5, solving SVP from two-step mode is less
efficient than using only BKZ, so the time cost is in fact dominated by the cost
of BKZ, while the κ-dimensional sieve only has its effect in generating enough
lattice vectors. Thus changing the value of κ only affects the estimation result
by little.

Discussion: Enhancing the Unforgeability of Dilithium. In our algorithm, ei-
ther from the flexible-d4f or the sieve-then-slice approach, we both need to find
a set of relatively short lattice vectors with lengths ≤ len, then find a vector
among them within the bound B. However, vol(Bd(len)) is in fact much smaller
than vol([−B : B]d), so it should be easy for a dectector to detect whether a sig-
nature is forged from these approaches. So if we add one more rejection condition
into Dilithium, that the signature is rejected if ∥u, z∥ < len for a small len, we
can totally ban both approaches for forging the signature, while the additional
rejection probability is small. It might still be possible that we use Gaussian
sampling (discussed in Section 5.2) to solve the problem, but it should be much
slower than the two approaches used in our restricted SVP solver, which means
that the signature may have better unforgeability.

7 Conclusion and Future Work

In this paper, we define a new lattice hard problem, called restricted SVP, which
can be viewed as a variant of approximate SVP, and present an heuristic solver
for this problem with two novel techniques, called flexible dimension for free
and sieve-then-slice. We show that restricted SVP can be a generalization for
may types of lattice problems, including Kannan’s embedding on approximate
CVP and SVP with infinity norm, by formally define their restriction predicate
as well as the probability for a lattice vector to pass the restrictions. Then
we combine the two problems together to get an estimator for the security of
signature unforgeability in Dilithium, as signature forgery in Dilithium can be
turned into the MISIS problem, which can be solved by CVP with infinity norm.

Heuristic Algorithm for Solving Restricted SVP and its Applications 31

We show that our estimator can give a more accurate estimation for Dilithium
under gate-count model.

There are still many problems left to be solved, we list a few of them: (1)
Since we only present an heuristic algorithm, is there a more efficient algorithm
for solving restricted SVP, or can we give a strict lower bound for the hardness
of this algorithm? (2) Are there more lattice problems which can be turned into
restricted SVP to get a more efficient solving algorithm? (3) Can we present an
algorithm for solving the restricted uSVP (or LWE) problem? We leave these
problems as our future work.

Acknowledgments

The authors thank the reviewers of PQCrypto 2025 for their helpful comments
to improve the contents of this paper. This work is supported by the National
Natural Science Foundation of China No. U2336210.

References

1. Divesh Aggarwal and Priyanka Mukhopadhyay. Improved algorithms for the short-
est vector problem and the closest vector problem in the infinity norm. In Wen-Lian
Hsu, Der-Tsai Lee, and Chung-Shou Liao, editors, 29th International Symposium
on Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yi-
lan, Taiwan, volume 123 of LIPIcs, pages 35:1–35:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

2. Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In Frank Thomson Leighton and Peter W. Shor,
editors, Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 284–293. ACM, 1997.

3. Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien Stehlé,
and Weiqiang Wen. Faster enumeration-based lattice reduction: Root hermite fac-

tor k1/(2k) time kk/8+o(k). In Daniele Micciancio and Thomas Ristenpart, edi-
tors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryp-
tology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020,
Proceedings, Part II, volume 12171 of Lecture Notes in Computer Science, pages
186–212. Springer, 2020.

4. Martin R. Albrecht, Shi Bai, Jianwei Li, and Joe Rowell. Lattice reduction with
approximate enumeration oracles - practical algorithms and concrete performance.
In Tal Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021
- 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part II, volume 12826 of Lecture Notes in Com-
puter Science, pages 732–759. Springer, 2021.

5. Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W.
Postlethwaite, and Marc Stevens. The general sieve kernel and new records in lat-
tice reduction. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology
- EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part II, volume 11477 of Lecture Notes in Computer Science, pages
717–746. Springer, 2019.

32 G. Wang et al.

6. Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of
solving LWE by reduction to unique-svp. In Hyang-Sook Lee and Dong-Guk Han,
editors, Information Security and Cryptology - ICISC 2013 - 16th International
Conference, Seoul, Korea, November 27-29, 2013, Revised Selected Papers, volume
8565 of Lecture Notes in Computer Science, pages 293–310. Springer, 2013.

7. Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and John M.
Schanck. Estimating quantum speedups for lattice sieves. In Shiho Moriai and
Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th In-
ternational Conference on the Theory and Application of Cryptology and Infor-
mation Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part
II, volume 12492 of Lecture Notes in Computer Science, pages 583–613. Springer,
2020.

8. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Thorsten Holz and Stefan Savage, editors,
25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, Au-
gust 10-12, 2016, pages 327–343. USENIX Association, 2016.

9. Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with
rounding, revisited - new reduction, properties and applications. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, volume 8042 of Lecture Notes in Computer Science, pages 57–74. Springer,
2013.

10. Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi. Improved
progressive BKZ algorithms and their precise cost estimation by sharp simula-
tor. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
- EUROCRYPT 2016 - 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Pro-
ceedings, Part I, volume 9665 of Lecture Notes in Computer Science, pages 789–819.
Springer, 2016.

11. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
Crystals-kyber algorithm specifications and supporting documentation (version
3.0). NIST PQC Round 3 submissions, 2020.

12. L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, March 1986.

13. Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehl’e. Crystals-dilithium algorithm specifi-
cations and supporting documentation. NIST PQC Round 3 submissions, 2020.

14. Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary LWE. In
Willy Susilo and Yi Mu, editors, Information Security and Privacy - 19th Aus-
tralasian Conference, ACISP 2014, Wollongong, NSW, Australia, July 7-9, 2014.
Proceedings, volume 8544 of Lecture Notes in Computer Science, pages 322–337.
Springer, 2014.

15. Shi Bai, Damien Stehlé, and Weiqiang Wen. Measuring, simulating and exploiting
the head concavity phenomenon in BKZ. In Thomas Peyrin and Steven D. Gal-
braith, editors, Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information Security,
Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part I, volume 11272
of Lecture Notes in Computer Science, pages 369–404. Springer, 2018.

Heuristic Algorithm for Solving Restricted SVP and its Applications 33

16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 10–24. SIAM, 2016.

17. Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving with-
out increasing the memory, using sub-quadratic nearest neighbor search. IACR
Cryptol. ePrint Arch., page 522, 2015.

18. Huck Bennett, Mahdi Cheraghchi, Venkatesan Guruswami, and João Ribeiro. Pa-
rameterized inapproximability of the minimum distance problem over all fields and
the shortest vector problem in all lp norms. In Barna Saha and Rocco A. Servedio,
editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 553–566. ACM, 2023.

19. Hao Chen. A measure version of gaussian heuristic. IACR Cryptol. ePrint Arch.,
page 439, 2016.

20. Yuanmi Chen. Réduction de réseau et sécurité concrète du chiffrement
complètement homomorphe. PhD Thesis, 2013.

21. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security esti-
mates. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology
- ASIACRYPT 2011 - 17th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Seoul, South Korea, December 4-8,
2011. Proceedings, volume 7073 of Lecture Notes in Computer Science, pages 1–20.
Springer, 2011.

22. Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with
side information: Attacks and concrete security estimation. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th
Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part II, volume 12171 of Lecture Notes in
Computer Science, pages 329–358. Springer, 2020.

23. Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. Finding clos-
est lattice vectors using approximate voronoi cells. In Jintai Ding and Rainer
Steinwandt, editors, Post-Quantum Cryptography - 10th International Conference,
PQCrypto 2019, Chongqing, China, May 8-10, 2019 Revised Selected Papers, vol-
ume 11505 of Lecture Notes in Computer Science, pages 3–22. Springer, 2019.

24. Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. Sieve, enumerate,
slice, and lift: - hybrid lattice algorithms for SVP via CVPP. In Abderrahmane
Nitaj and Amr M. Youssef, editors, Progress in Cryptology - AFRICACRYPT 2020
- 12th International Conference on Cryptology in Africa, Cairo, Egypt, July 20-
22, 2020, Proceedings, volume 12174 of Lecture Notes in Computer Science, pages
301–320. Springer, 2020.

25. Léo Ducas. Shortest vector from lattice sieving: A few dimensions for free. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EU-
ROCRYPT 2018 - 37th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part I, volume 10820 of Lecture Notes in Computer Science, pages
125–145. Springer, 2018.

26. Léo Ducas, Thijs Laarhoven, and Wessel P. J. van Woerden. The randomized
slicer for CVPP: sharper, faster, smaller, batchier. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, Public-Key Cryptography
- PKC 2020 - 23rd IACR International Conference on Practice and Theory of

34 G. Wang et al.

Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part II,
volume 12111 of Lecture Notes in Computer Science, pages 3–36. Springer, 2020.

27. Léo Ducas, Marc Stevens, and Wessel P. J. van Woerden. Advanced lattice sieving
on gpus, with tensor cores. In Anne Canteaut and François-Xavier Standaert,
editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17-21, 2021, Proceedings, Part II, volume 12697 of Lecture Notes
in Computer Science, pages 249–279. Springer, 2021.

28. Thomas Espitau and Paul Kirchner. The nearest-colattice algorithm: Time-
approximation tradeoff for approx-CVP. Open Book Series, 4(1):251–266, De-
cember 2020.

29. Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math.
Oper. Res., 12(3):415–440, 1987.

30. Elena Kirshanova and Thijs Laarhoven. Lower bounds on lattice sieving and in-
formation set decoding. In Tal Malkin and Chris Peikert, editors, Advances in
Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,
CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part II, volume
12826 of Lecture Notes in Computer Science, pages 791–820. Springer, 2021.

31. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for
module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

32. A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, December 1982.

33. MATZOV. Report on the Security of LWE: Improved Dual Lattice Attack. https:
//doi.org/10.5281/zenodo.6412487, April 2022.

34. Priyanka Mukhopadhyay. Faster provable sieving algorithms for the shortest vec-
tor problem and the closest vector problem on lattices in lp norm. Algorithms,
14(12):362, 2021.

35. Phong Q. Nguyen. Hermite’s constant and lattice algorithms. In Phong Q. Nguyen
and Brigitte Vallée, editors, The LLL Algorithm - Survey and Applications, Infor-
mation Security and Cryptography, pages 19–69. Springer, 2010.

36. Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector
problem are practical. J. Math. Cryptol., 2(2):181–207, 2008.

37. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May
22-24, 2005, pages 84–93. ACM, 2005.

38. Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. In Lothar Budach, editor, Funda-
mentals of Computation Theory, 8th International Symposium, FCT ’91, Gosen,
Germany, September 9-13, 1991, Proceedings, volume 529 of Lecture Notes in Com-
puter Science, pages 68–85. Springer, 1991.

39. Wenwen Xia, Leizhang Wang, Geng Wang, Dawu Gu, and Baocang Wang. Im-
proved progressive BKZ with lattice sieving. IACR Cryptol. ePrint Arch., page
1343, 2022.

40. Wenwen Xia, Leizhang Wang, Geng Wang, Dawu Gu, and Baocang Wang. A
refined hardness estimation of LWE in two-step mode. In Qiang Tang and Vanessa
Teague, editors, Public-Key Cryptography - PKC 2024 - 27th IACR International
Conference on Practice and Theory of Public-Key Cryptography, Sydney, NSW,
Australia, April 15-17, 2024, Proceedings, Part III, volume 14603 of Lecture Notes
in Computer Science, pages 3–35. Springer, 2024.

https://doi.org/10.5281/zenodo.6412487
https://doi.org/10.5281/zenodo.6412487

	Heuristic Algorithm for Solving Restricted SVP and its Applications

