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Abstract

Key-exfiltration attacks on cryptographic keys are a significant threat to computer security. One pro-

posed defense against such attacks is big-key cryptography which seeks to make cryptographic secrets so

large that it is infeasible for an adversary to exfiltrate the key (without being detected). However, this also

introduces an inconvenience to the user whomust now store the large key on all of their different devices.

The work of Döttling, Garg, Sekar and Wang (TCC 2022) introduces an elegant solution to this problem

in the form of big-key identity-based encryption (IBE). Here, there is a large master secret key, but very

short identity keys. The user can now store the large master secret key as her long-term key, and can pro-

vision each of her devices with short ephemeral identity keys (say, corresponding to the current date). In

this way, the long-term secret key is protected by conventional big-key cryptography, while the user only

needs to distribute short ephemeral keys to their different devices. Döttling et al. introduce and construct

big-key IBE from standard pairing-based assumptions. However, their scheme only satisfies selective secu-
rity where the adversary has to declare its challenge set of identities at the beginning of the security game.

The more natural notion of security is adaptive security where the user can adaptively choose which

identities it wants to challenge after seeing the public parameters (and part of the master secret key).

In this work, we give the first adaptively-secure construction of big-key IBE from standard crypto-

graphic assumptions. Our first construction relies on indistinguishability obfuscation (and one-way func-

tions), while our second construction relies on witness encryption forNP together with standard pairing-

based assumptions (i.e., the SXDH assumption). To prove adaptive security, we show how to implement

the classic dual-system methodology with indistinguishability obfuscation as well as witness encryption.

1 Introduction

Security breaches are increasingly common today, and one of the highest-value targets in a security breach

are the cryptographic keys residing on a user’s system. Once an adversary successfully recovers a user’s

secret cryptographic key, they gain the ability to decrypt all of the user’s potentially sensitive data and can

even impersonate the user to other clients. This problem is further aggravated when using more advanced

encryption systems such as identity-based encryption (IBE) [BF01, Coc01] where a central authority holds on

to a long-term secret key. Such systems introduce a single point of failure and if the central authority’s single

long-term secret key is compromised, then the adversary breaks security for all of the users in the system.

Cryptography in the bounded retrievalmodel. One proposal tomitigate the threat of a key-exfiltration

attack is to make it difficult or infeasible for the adversary to exfiltrate the secret key. This has motivated

the “bounded-storage model” and the concept of “big-key” cryptography [Dzi06, CLW06, CDD
+
07, ADW09,

ADN
+
10, BKR16, MW20, DGSW22]. Here, the idea is to make the cryptographic keys sufficiently large that

key exfiltration becomes infeasible to an adversary that only has a bounded amount of storage. In practice,

1

mailto:jchampion@utexas.edu
mailto:bwaters@cs.utexas.edu
mailto:dwu4@cs.utexas.edu


the bounded storage might translate to an adversary being able to retrieve a bounded number of bits from

a compromised system before the adversary is detected and its access removed.

A number of works have studied constructions of big-key public-key encryption in the bounded storage

model [ADN
+
10, MW20]. In these settings, the goal is to have a large secret key (which is hard to exfiltrate)

and a short public key. Moreover, the honest user should not incur the penalty of having to manipulate a large

cryptographic key. In particular, encryption and decryption should both be fast; in the case of decryption,

the idea is that the decryption algorithm only needs random access to a few ciphertext-dependent bits of the
secret key to decrypt. The main security requirement is semantic security (for a fresh ciphertext) should hold

even if the adversary gets arbitrary bounded leakage on the large secret key. As discussed in [DGSW22], a

major disadvantage of this model is the fact that the large secret key has to be replicated to each of the user’s

devices. This can impose significant storage burdens for each device that needs a copy of the secret key.

IBE with incompressible master secret key. Döttling, Garg, Sekar, and Wang [DGSW22] propose an

elegant solution to the problem of needing to replicate the large secret key to each device owned by the user.

They introduce the notion of a big-key IBE scheme where there is a long incompressible master secret key,

but short identity keys. Recall first that in an IBE scheme, both secret keys and ciphertexts are associated

with an identity id and decryption succeeds (i.e., recovers the plaintext associated with the ciphertext) if

the identities associated with the ciphertext matches that of the decryption key. In the setting envisioned

by [DGSW22], the long-term key would be the large master secret key for the IBE scheme. Each ciphertext in

the system would be encrypted to an identity that identifies a particular time window (e.g., the current date).

Users would provision each of their devices with the identity keys for the time intervals of interest. These

ephemeral keys are identity keys and thus, are short. Moreover, if an identity key is compromised, it only

compromises the security of messages tagged with that particular time window. In a sense, the individual

identity keys in the system are viewed as short ephemeral keys while the long-term key is the large master

secret key for the IBE scheme. Importantly, in this model, the user only needs to store one copy of the

long-term master secret key; each of the user’s devices would only need to store ephemeral identity keys.

The challenge: adaptive security. In the same work, Döttling et al. [DGSW22] showed how to construct

a big-key IBE scheme from standard assumptions on groups with bilinear maps. One limitation of their

system is it only provides selective security. Namely, the adversary in the IBE security game must pre-declare

the set of identities it wants to target at the beginning of the security game (before it sees the public key

of the scheme or makes key-generation queries). This is in contrast to the more natural notion of adaptive

(or full) security where the adversary can adaptively choose which identities it wants to target after it sees
the public parameters as well as its choice of leakage on the master secret key. Their work leaves open

the question of constructing a big-key IBE scheme with adaptive security.

This work. In this work, we give two constructions of adaptively-secure big-key IBE schemes from

standard assumptions. Our first construction relies on indistinguishability obfuscation [BGI
+
01, GGH

+
13]

(and one-way functions) while our second construction relies on witness encryption [GGSW13] for NP
in conjunction with standard pairing-based assumptions. To prove adaptive security of our scheme, we rely

on a dual-system proof [Wat09, LW10]. The intricacies of carrying out this dual system proof strategy (see

Section 1.1) is a key reason why our approach relies on considerably stronger machinery (either indistin-

guishability obfuscation or witness encryption) compared to the previous selectively-secure construction.

Along the way, we also highlight some issues in the previous definitions and analysis of big-key IBE; we

provide a more detailed discussion of these definitional issues in Section 3.
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1.1 Technical Overview

In this section, we provide a general overview of our main constructions of adaptively-secure big-key IBE

from indistinguishability obfuscation and from witness encryption.

Identity-based encryption. We start by recalling the syntax of a standard identity-based encryption

(IBE) scheme [BF01, Coc01]:

• Setup: The setup algorithm in an IBE scheme generates the public parameters pp and the master

secret key msk for the scheme.

• Key generation: The key-generation algorithm takes the master secret key msk and an identity id,
and outputs a secret key skid for the particular identity.

• Encryption: The encryption algorithm takes the public parameters pp, an identity id, and a message

𝑚, and outputs a ciphertext ct.

• Decryption: The decryption algorithm takes a ciphertext ct (associated with an identity id and

message𝑚) together with a secret key skid′ (associated with an identity id′) and either outputs the

message𝑚 if id = id′ or ⊥ if id ≠ id′.

The semantic security requirement for an IBE scheme states that the adversary should not be able to

distinguish between an encryption of𝑚0 from an encryption of𝑚1 for any challenge identity id for which

it does not have the corresponding secret key.

Big-key IBE. In a big-key IBE scheme [DGSW22], the correctness requirement is the same as for vanilla

IBE. However, the security requirement is modified to give the adversary (bounded) leakage on the master

secret key:

• In the big-key security game, the adversary can specify any efficiently-computable leakage function

𝑓 (with output length at most ℓ) and learn 𝑓 (msk). The output length ℓ ≥ 0 is the leakage parameter

for the scheme.

• Next, instead of a single challenge identity, the adversary specifies a set of 𝑘 challenge identities J .

To win, the adversary must break semantic security for all identities within the challenge set J .

Here, the parameter 𝑘 is a function of the security parameter 𝜆 and the leakage length ℓ . In the

adaptive security game, we allow the adversary to choose the set of identities J after it receives the

public parameters, the leakage on msk, and after it makes key-generation queries on identities of

its choosing (with the stipulation that the adversary does not make a key-generation query on any

identity in the challenge set J ).

The adversary’s task is necessarily harder in the big-key IBE security game compared to the vanilla IBE secu-

rity game because the adversary must break semantic security of 𝑘 identities rather than 1. This is inherent

because the leakage function the adversary chooses can allow it to learn the secret keys for a handful of iden-

tities. The work of [DGSW22] consider the setting where 𝑘 = ℓ+1; namely, if the adversary gets ℓ bits of leak-

age about the master secret key, then it wins only if it breaks semantic security on at least 𝑘 = ℓ +1 identities.
In addition, for big-key IBE, we require that the running times of the key-generation, encryption, and

decryption algorithms to be efficient and run in time that is poly(𝜆, log ℓ) on a RAM machine. Notably,
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while the length of the master secret key msk can (and necessarily) must grow with the leakage parameter

ℓ , the key-generation algorithm should only read a few bits of msk to generate an identity key.

In this work, we will focus on the simpler setting where the length of the public parameters can also

grow with the leakage size ℓ . However, we maintain the requirement that the encryption and decryption

algorithms only need to read poly(𝜆, log ℓ) bits of the long public key. Döttling et al. [DGSW22] showed how

to use a non-interactive secure computation (NISC) scheme to generically transform a big-key IBE scheme

with large public parameters (but fast encryption and decryption) into one with short public parameters. As

we show in Appendix A, this transformation still preserves adaptive security. Thus, for the remainder of this

overview (and throughout this work), we focus on the simpler setting of big-key IBE with long public keys.

The [DGSW22] approach. We begin with a brief description of the approach from [DGSW22]. Their

scheme relies on a puncturable pseudo-entropy function (PEF). A PEF [BHK11] is a functionwhose outputs at

certain inputs are statistically unpredictable even given leakage on the key to the PEF. Thework of [DGSW22]

show how to construct a PEF where the key consists of a large number of blocks 𝑘 = (𝑘1, . . . , 𝑘𝑁 ) and
moreover, the PEF supports local evaluation where the value of the PEF at an input 𝑥 only depends on a

small (and random-looking) subset of blocks of the secret key. Their construction then operates as follows:

• The master secret key consists of the PEF key 𝑘 = (𝑘1, . . . , 𝑘𝑁 ) and the public parameters consist of

commitments pp = (𝑐1, . . . , 𝑐𝑁 ) to the blocks of the secret key.

• The secret key skid for an identity id consists of the evaluation of the 𝑦 = PEF(𝑘, id) together with a

non-interactive zero-knowledge (NIZK) proof that 𝑦 was correctly computed with respect to the com-

mitted key pp = (𝑐1, . . . , 𝑐𝑁 ). For this to be succinct, it is critical that the PEF is locally-computable

(i.e., the output of PEF(𝑘, id) only depend on 𝑘𝑖 for some 𝑖 ∈ 𝐼id ⊂ [𝑁 ], where |𝐼id | ≪ 𝑁 ).

• An encryption of a message to an identity id is essentially a witness encryption
1
of the message𝑚 for

the relation that essentially checks that the decrypter possesses a valid NIZK proof that𝑦 = PEF(𝑘, id)
with respect to the (subset of) committed keys 𝑐𝑖 for 𝑖 ∈ 𝐼id. Here, the work of [DGSW22] shows that

a special witness encryption scheme tailored for NIZK proofs on committed values [BL20] suffices,

which can in turn be instantiated by standard pairing-based assumptions.

The proof of selective security then proceeds along the following lines:

• First, the identity keys consist of zero-knowledge proofs of openings to the commitments 𝑐𝑖 . Thus,

they hide the values of the actual bits 𝑘𝑖 in the master secret key. The only leakage on the PEF key

𝑘 is through the leakage function (applied to the master secret key msk = 𝑘).

• Next, [DGSW22] rely on puncturing. Namely, they show how to puncture the PEF key at a set of

identities J to obtain a punctured key 𝑘J . The property is that the punctured key 𝑘J can be used

to evaluate the PEF on all inputs 𝑖 ∉ J while the values on J retain high statistical min-entropy.

The idea in the selective security proof is that the reduction algorithm will first puncture the PEF key

on the challenge set J . In this case, they can show that for every challenge set J , there will exist

at least one identity id∗ ∈ J such that the value of 𝑦id∗ = PEF(𝑘, id∗) is statistically unpredictable

to the adversary (even given the leakage on the PEF key). In combination with the security of the

1
In a witness encryption scheme [GGSW13], one can encrypt a message 𝑚 to an arbitrary NP statement 𝑥 . To decrypt, one

provides a witness 𝑤 for the statement 𝑥 . If the witness is valid, then decryption recovers the message𝑚. If the statement 𝑥

is false (i.e., no witness exists), then the ciphertext computationally hides the message𝑚.
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witness encryption, they can argue that such an adversary cannot have non-negligible advantage

breaking semantic security with respect to id∗.

The use of puncturing means the reduction algorithm needs to know the challenge identities ahead of time in

order to program them into the scheme parameters. It is unclear how to extend this approach to the adaptive

setting where the reduction algorithm does not know in advance which identities the adversary might query.

While we can envision some type of partitioning strategy [BF01, Wat05] that has been successful for

arguing adaptive security in the setting of plain IBE, it is less clear how to execute such a strategy in this

setting. In plain IBE, there is just a single challenge identity, so the idea in the partitioning proof is to

partition the identity space into two sets 𝑆,𝑇 , with the property that the reduction algorithm is able to

generate secret keys for identities id ∈ 𝑆 but not for identities id ∈ 𝑇 . The hope then is that the adversary’s

key-generation queries fall into set 𝑆 while its challenge query falls into set 𝑇 . If the adversary only makes

a single challenge query, the reduction can choose 𝑆,𝑇 such that with inverse polynomial probability, all

of the key-generation queries land in 𝑆 while the single challenge query lands in 𝑇 . In the big-key setting,

the challenge is that the adversary now specifies a set J of challenge identities. For the adversary to be

useful, we need to set up the reduction so that an adversary that succeeds in breaking semantic security

for any identity id ∈ J in the challenge set can be used to break the computational assumption. In this

setting, we do not see a way to partition the identity space into sets 𝑆,𝑇 such that with good probability,

all of the adversary’s key-generation queries fall into 𝑆 while all of the challenge queries fall into 𝑇 . Thus,

proving adaptive security will require a different proof technique.

Our approach. To prove adaptive security, we take a dual-system approach [Wat09, LW10]. Implement-

ing a dual-system proof strategy will require additional machinery and as a result, our constructions either

rely on indistinguishability obfuscation or general-purpose witness encryption. We begin by describing

our basic template, which is a slimmed-down version of the construction from [DGSW22], where we no

longer have a PEF:

• The master secret key is a random bit-string of length 𝑁 = poly(𝜆, ℓ): msk = (𝑟1, . . . , 𝑟𝑁 ). The public
parameters are commitments to the bits of the master secret key: pp = (𝑐1, . . . , 𝑐𝑁 ).

• A secret key skid for an identity id is a NIZK proof of the openings to the commitments 𝑐𝑖 for 𝑖 ∈ 𝐼id
where the subset 𝐼id is derived from a hash function 𝐼id = H(id) on the identity. Note that the set

of indices 𝐼id is substantially smaller than 𝑁 .

• To encrypt to an identity id, the encrypter prepares a program that takes as input a proof 𝜋 and

checks whether 𝜋 is a NIZK proof of openings to the commitments 𝑐𝑖 for all 𝑖 ∈ 𝐼id = H(id). If so, the
program outputs the message, and otherwise, it outputs ⊥. Decryption just corresponds to evaluating

the obfuscated program on the secret key. As we elaborate more below, the obfuscated program that

checks the NIZK proof can be implemented using either indistinguishability obfuscation or using

witness encryption.

Correctness follows immediately. Moreover, if the size of each set 𝐼id is bounded by poly(𝜆, log ℓ), then the

scheme also supports fast key-generation, encryption, and decryption. The high-level idea underlying secu-

rity is similar to [DGSW22]. First, the identity keys consist of NIZK proofs of openings to the commitments

𝑐𝑖 , so they hide the values of the actual bits 𝑟𝑖 . Second, the only information the adversary gets on the

master secret key then is its ℓ bits of leakage. Next, if the hash functionH that maps identities id to indices

𝐼id is “well-spread,” then we can hope to argue that there is at least one identity id∗ in the challenge set J
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for which the adversary does not know most of the bits of 𝑟𝑖 for 𝑖 ∈ H (id∗). In this case, the adversary will

not be able to construct a NIZK proof that it knows the openings to 𝑐𝑖 for 𝑖 ∈ H (id∗). We can then hope

to rely on security of the obfuscation scheme (or witness encryption scheme) to conclude that the message

is hidden. We now show how to instantiate this basic template from indistinguishability obfuscation as

well as from witness encryption in a way that allows us to prove adaptive security.

Big-key IBE from 𝑖O. We first describe how to instantiate the above template using indistinguishability

obfuscation in conjunction with the following primitives: (1) a plain (adaptively-secure) identity-based

encryption scheme; (2) a NIZK proof system for NP; and (3) a (one-time) dual-mode bit commitment

scheme [Nao89] (i.e., a commitment scheme where the common reference string can be sampled in one

of two computationally indistinguishable modes: one mode is statistically binding while the other is

statistically hiding). We then instantiate our template as follows:

• The master secret key msk = (𝑟1, . . . , 𝑟𝑁 ) is a random bit string: 𝑟𝑖
r← {0, 1} . The public parameters

pp = (crsCom, crsNIZK, ppIBE, 𝑐1, . . . , 𝑐𝑁 ) for the scheme contains the common reference string crsCom
for the bit commitment scheme (in binding mode), the common reference string crsNIZK for the NIZK,

the public parameters ppIBE for the plain IBE scheme, and commitments 𝑐𝑖 to the bits 𝑟𝑖 . The master

secret key msk also contains the openings to the commitments 𝜎1, . . . , 𝜎𝑁 .

• The secret key for an identity id is skid = (ctIBE, 𝜋). Here,

ctIBE = IBE.Encrypt(ppIBE, id, ®𝑟id; 𝜌enc) (1.1)

is an IBE ciphertext that encrypts the tuple of bits ®𝑟id = (𝑟𝑖)𝑖∈𝐼id of the secret key indexed by 𝐼id = H(id),
whereH is a (fixed) hash function that maps identities onto a set of indices. We let 𝜌enc denote the en-

cryption randomness. In addition, the secret key contains a NIZK proof 𝜋 that the commitments ®𝑐id =
(𝑐𝑖)𝑖∈𝐼id in pp is a valid commitment to ®𝑟id and that ct is an encryption of ®𝑟id with randomness 𝜌enc. Here,

the statement in the NIZK proof is (id, ®𝑐id, ctIBE) and the witness is (®𝑟id, 𝜌enc, ®𝜎id), where ®𝜎id = (𝜎𝑖)𝑖∈𝐼id .

• To encrypt a message𝑚 to an identity id∗, the encrypter computes an obfuscation of a program 𝑃 that

has the identity id∗, the message𝑚, the common reference string crsNIZK, and the commitments ®𝑐id∗
hard-wired inside. The program takes as input a secret key skid = (ctIBE, 𝜋) and outputs the message

if 𝜋 is a valid proof for the statement (id∗, ®𝑐id∗, ctIBE). Otherwise, the program outputs ⊥.

Proving adaptive security via a dual-system approach. As mentioned before, we leverage a dual-

system strategy [Wat09, LW10] to prove that the above scheme is adaptively secure. In a dual-system

proof, we define a sequence of hybrid experiments where we gradually replace the normal ciphertexts and

secret keys (given out in the security game) with “semi-functional” analogs. The invariant we enforce is

that normal keys can decrypt semi-functional ciphertexts and semi-functional keys can decrypt normal

ciphertexts. However, semi-functional keys are unable to decrypt semi-functional ciphertexts, and moreover,

the adversary is unable to tell whether a key or ciphertext is normal or semi-functional. In particular, this

means that it should be hard for an adversary to generate semi-functional ciphertexts on its own (if it could,

then it could trivially distinguish semi-functional keys for normal keys). In the final hybrid, all of the keys

and ciphertexts the adversary receives from the challenger are semi-functional. At this point, we can rely

on a simple statistical argument to argue that the adversary’s distinguishing advantage is negligible. We

now describe the structure of the semi-functional ciphertexts and keys in the proof:
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• Semi-functional ciphertexts: The semi-functional ciphertext ct for a message𝑚 and identity id∗

contains an obfuscation of a modified program 𝑃∗. The program 𝑃∗ additionally contains a secret

key skid∗ and a bit string 𝑡 = PRG(ℎ(®𝑟id∗)), where PRG is a length-doubling pseudorandom generator

(PRG) and ℎ is a universal hash function. The program 𝑃∗ takes (ctIBE, 𝜋) as input, but outputs𝑚 only

if 𝜋 is a valid proof (on the statement (id∗, ®𝑐id∗, ctIBE)) and PRG(ℎ(IBE.Decrypt(skid∗, id∗, ctIBE))) = 𝑡 .

• Semi-functional keys: The semi-functional key skid = (ctIBE, 𝜋) has a simulated proof 𝜋 and more-

over, the ciphertext ctIBE is an encryption of the all-zeroes string ctIBE = IBE.Encrypt(ppIBE, id, 0; 𝜌enc).

To show security, we first switch the challenge ciphertexts to be semi-functional. Then we switch each of

the keys to be semi-functional. Once all of the challenge ciphertexts and keys are semi-functional, semantic

security follows by a simple statistical argument together with security of the obfuscation scheme. We give

a sketch below:

• Switching ciphertexts to be semi-functional: To switch ciphertexts into semi-functional mode,

we appeal to 𝑖O security. Specifically, it suffices to show that the original program 𝑃 and the modified

program 𝑃∗ are functionally equivalent. This follows immediately by (statistical) soundness of the

NIZK and correctness of the IBE scheme. Specifically, statistical soundness of the NIZK means that if

the proof 𝜋 verifies, then

ctIBE = IBE.Encrypt(ppIBE, id∗, ®𝑟id∗) .

Correctness of IBE now implies that

IBE.Decrypt(skid∗, id∗, ctIBE) = ®𝑟id∗ .

In this case, the additional PRG check that 𝑃∗ performs always succeeds.

• Switching keys to semi-functional. We now switch the keys skid = (ctIBE, 𝜋) to semi-functional.

To do so, we first appeal to simulation security of the NIZK (to switch from real proofs to simulated

proofs). We then leverage semantic security of the IBE scheme to switch ctIBE from an encryption

of ®𝑟id to an encryption of the all-zeroes string. Note that at this point in the proof, the challenge

ciphertexts are semi-functional, and thus, simulating a challenge ciphertext for an identity id∗ requires
knowledge of skid∗ . However, the reduction algorithm can obtain these keys from the IBE challenger.

Note that this is admissible because the adversary in the big-key IBE game is not allowed to query

for a key for an identity id∗ ∈ J that appears in the challenge set J .

• Completing the proof: To finish the proof, we switch the commitments to hiding mode. This

essentially “erases” the bits 𝑟1, . . . , 𝑟𝑁 from the public parameters. At this point in the proof, the only

information on the bits 𝑟𝑖 is contained in the leakage function onmsk via the ℓ bits of leakage. When

the challenge set J is sufficiently large, there must exist some identity id∗ ∈ J such that ®𝑟id∗ has
high min-entropy given the leakage. For this to work, we require that the mappingH from identities

to the indices of the master secret key has good “spread.” That is, it should be the case that the set

{®𝑟id}id∈J contains many distinct indices of ®𝑟 . Then, there exists some id∗ ∈ J such that ®𝑟id∗ has
high min-entropy. At this point, we can appeal to the leftover hash lemma [HILL99] to argue that

𝑡 = PRG(ℎ(®𝑟id∗)) is statistically close to 𝑡 = PRG(𝑢), where 𝑢 is a random seed. By PRG security, the

string 𝑡 is computationally indistinguishable from a uniform string. Since the PRG is length-doubling,

with overwhelming probability over the choice of 𝑡 , it is no longer in the image of the PRG. At this

point, the additional check that 𝑃∗ performs (i.e., that PRG(ℎ(IBE.Decrypt(skid∗, id∗, ctIBE))) = 𝑡 )
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is unsatisfiable. Correspondingly, the program 𝑃∗ outputs ⊥ on all inputs, so by 𝑖O security, it is

computationally indistinguishable from the program that always outputs ⊥. Since this program is

independent of the message𝑚, semantic security holds trivially.

We provide the full construction and analysis in Section 4. Thus, we obtain a simple construction of an

adaptively-secure big-key IBE scheme from indistinguishability obfuscation and one-way functions; specif-

ically, all of the underlying building blocks can be built from 𝑖O and one-way functions [SW14, ABSV15].

Using witness encryption in place of obfuscation. If we inspect our above template for constructing

big-key IBE, we observe that the ciphertext is essentially an obfuscated program that takes as input a proof

and checks whether the proof is valid or not. Thus, similar to the approach in [DGSW22], it seems plausible

that we could also replace the obfuscated program with a witness encryption scheme [GGSW13]. In this

work, we show that this is indeed possible, but will require a more involved construction. Specifically, in

witness encryption, a user can encrypt a message𝑚 to an NP statement 𝑥 ; the decryption algorithm takes

an NP witness𝑤 for 𝑥 and outputs the statement. The security requirement then says that if 𝑥 is not in the

language, then the ciphertext computationally hides the associated message. Witness encryption provides

no guarantees if the statement 𝑥 is in the language, even if the witness is computationally hard to find. In

our basic template above, the ciphertext always encodes a true instance (since decryption is possible), and

we rely on 𝑖O security to (gradually) replace it with an instance that is unsatisfiable (in the final hybrid

experiment). Such a proof strategy does not work in the setting of witness encryption since it provides

no hiding properties for the underlying NP relation. Thus, substituting witness encryption in place of

indistinguishability obfuscation will require some additional tools.

Specifically, in the 𝑖O construction, the semi-functional ciphertexts introduces an additional check that

the provided secret key skid∗ = (ctIBE, 𝜋) satisfies PRG(ℎ(IBE.Decrypt(skid∗, id∗, ctIBE))) = 𝑡 . Since this

check always passes, security of 𝑖O ensures that the resulting program remains functionally equivalent

to a normal program. In the case of witness encryption, we do not have the flexibility to change the NP
relation associated with a challenge ciphertext, so we will have to augment the NP relation in the normal
ciphertexts to also perform this additional check. We now give an outline of our approach, focusing on

the places that differ from our 𝑖O construction:

• The master secret key still consists of a random string 𝑟1, . . . , 𝑟𝑁
r← {0, 1}. As before, the public

parameters include commitments 𝑐1, . . . , 𝑐𝑁 to 𝑟1, . . . , 𝑟𝑁 , and the master secret key contains the

corresponding openings.

• The secret key for an identity id will contain a testing key skout for ®𝑟id (where ®𝑟id = (𝑟𝑖)𝑖∈𝐼id and
𝐼id = H(id) as before). The testing key skout plays the role of the IBE ciphertext in the 𝑖O construction.

In addition, the secret key also contains a NIZK proof (like in the 𝑖O construction) which affirms

that skout is an encoding of ®𝑟id and that ®𝑟id are the bits associated with the commitment ®𝑐id.

• To encrypt a message𝑚 to an identity id∗, the user first samples a random encoding ctout, and prepares
a witness encryption ciphertext for the statement (id∗, ®𝑐id∗, ctout); for simplicity of exposition, we omit

the common reference strings for the NIZK and the bit commitments in this sketch. The witness for the

witness encryption scheme is a secret key skid = (skout, 𝜋), and the associatedNP relation first checks

the proof 𝜋 is valid, and moreover, that the encoding ctout is valid with respect to the testing key skout.

The additional validity check between skout and ctout is the analog of the additional check that the semi-

functional ciphertexts performs in the earlier 𝑖O construction. Specifically, we require the encodings satisfy

the following properties:
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• There is a public algorithm that allows one to sample a fresh encoding. This is used during encryption

to sample ctout. The first requirement is that the testing key skout always accepts a normal encoding

(this ensures correctness).

• Next, we define the notion of a semi-functional encoding. Using a trapdoor, it is possible to sample

a semi-functional encoding ctout of a vector ®𝑟id. Here, the requirement is that a (normal) testing key

skout for ®𝑟id will always reject a semi-functional encoding of ®𝑟id.
We refer to these encodings as a privately-testable encoding since given a trapdoor, it is possible to generate

a (semi-functional) key to test whether an encoding is of a particular target value or not. In the security

proof, we will switch the encodings in the challenge ciphertexts (for an identity id) from normal encodings

(which can be decrypted normally) into semi-functional encodings of ®𝑟id. Consider now a candidate witness

(skout, 𝜋) for a challenge ciphertext:
• If the NIZK proof 𝜋 verifies, then by statistical binding of the commitment scheme and statistical

soundness of the NIZK proof system, it must be the case that skout is an encoding of ®𝑟id.

• However, if the encoding ctout in the challenge ciphertext is a semi-functional encoding of ®𝑟id, then
skout will always reject ctout.

Thus, for all candidate witnesses for the statement associated with a challenge ciphertext, either the NIZK

proof fails to verify or the encoding check fails. In both cases, the relation is not satisfied, and so the

statement is false. We can now appeal to semantic security of the witness encryption scheme.

Simulating NIZK proofs. The above proof strategy critically requires on statistical soundness of the

NIZK (to ensure that if the adversary produces a valid proof 𝜋 , then the associated testing key is bound

to the vector ®𝑟id). However, in the reduction, we still require a way to simulate proofs without knowledge
of 𝑟1, . . . , 𝑟𝑁 (to ensure that the only leakage on the bits 𝑟1, . . . , 𝑟𝑁 is from the leakage function). Essentially,

the reduction needs a way to simulate secret keys without knowledge of the randomness 𝑟1, . . . , 𝑟𝑁 and

still retain statistical soundness. We achieve this using an or-proof construction. Specifically, we introduce

an additional branch into the NIZK proof system so the proof either asserts validity of the testing key skout
(with respect to the commitments ®𝑐id) as above, or alternatively, the prover knows a trapdoor embedded

within the CRS. In the real scheme, only the first branch will be used while in the security proof, the

reduction algorithm will simulate proofs using the simulation trapdoor.

At this point, we still need to ensure that the simulated proofs do not help the adversary break semantic

security. In particular, by switching to the or-proof, we can no longer argue that a valid proof 𝜋 means

that the testing key ®𝑟id is correctly constructed. To get around this problem, we introduce the concept of

a split encoding. At a very high level, we include an auxiliary encoding skaux and ctaux with each secret key

and ciphertext, respectively. The ciphertext component ctaux would be embedded as part of the statement

in witness encryption while the secret key component skaux would be part of the witness. The NP relation

associated with the witness encryption scheme would then check that ctaux is valid with respect to skaux. To
preserve correctness, we require that for normally-generated encodings, the check always passes. However,

the check rejects when both ctaux and skaux are switched to semi-functional encodings. We now modify

the trapdoor branch of the or-language in the NIZK proof system to also check that the key encoding skaux
is a semi-functional encoding. In the proof, the semi-functional ciphertexts have semi-functional encodings

ctaux. This way, whenever the NIZK proof verifies, one of two properties must hold:

• The provided encoding skout is a testing key for ®𝑟id, which would reject the encoding ctout in the

challenge ciphertext. Thus, the witness encryption relation is not satisfied.
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• The auxiliary encoding skaux is a semi-functional encoding, which would reject the semi-functional

ctaux in the challenge ciphertext. Once again, the witness encryption relation is not satisfied.

With these two encodings, we now have a way for the reduction algorithm to simulate key-generation

queries (without knowledge of 𝑟1, . . . , 𝑟𝑁 ). Moreover, once all of the secret keys and challenge ciphertexts

are semi-functional, the associated relation is false. Semantic security then follows from security of the

witness encryption scheme. We provide the formal description of our privately-testable and split encodings

as well as our construction of big-key IBE from witness encryption in Section 5.

Constructing privately-testable and split encodings. In Section 6, we show how to construct the

encoding schemes we use from standard assumptions over groups. Specifically, privately-testable encodings

follow from the standard decisional Diffie-Hellman (DDH) assumption in pairing-free groups while split

encodings can be built from the symmetric external Diffie-Hellman (SXDH) assumption in asymmetric

pairing groups. Recall that the SXDH assumption essentially amounts to assuming DDH holds in both base

groups G1 and G2 of an asymmetric pairing group.

Reducing public parameter size. As described so far, our big-key IBE scheme has long public parame-

ters. Critically, the encryption algorithm only requires local access to the long public parameters. Previously,

the work of [DGSW22] showed a generic approach based on non-interactive secure computation to compile

any big-key IBE scheme with long public parameters (but where the underlying algorithm only require

local access to the public parameters) into a scheme with short public parameters. This transformation also

applies to our constructions. For completeness, we show that this transformation still preserves adaptive

security in Appendix A.

Comparison with [WW24]. The recent work of Waters and Wichs [WW24] shows how to construct

adaptively-secure attribute-based encryption from witness encryption. As part of their proof strategy, they

introduce the notion of a “functional tag system.” A functional tag system consists of function tags and

input tags, each of which has a semi-functional mode that is indistinguishable from the normal mode. Our

notion of split encoding is conceptually similar to a functional tag system, but specialized to the case of

an equality function (since we aim for IBE rather than ABE). However, for our application, we rely on a

stronger notion of mode indistinguishability (that asserts computational indistinguishability of normal tags

and semi-functional tags). For our applications, we require mode indistinguishability to hold with respect

to multiple functions and multiple input tags. The Waters-Wichs notion considers many functions, but a

single input tag. The need to simulate many input tags comes from the fact that in the big-key IBE security

game, the reduction algorithm needs to simulate multiple challenge ciphertexts (specifically, this is needed

to estimate the adversary’s success probability and determine whether it is successful or not; we refer to

Section 3 for further discussion of the advantage checking requirement). We do not see a way to generically

amplify a functional tag system where security holds against adversaries that can request a single input

tag into one that is secure against adversaries which can request multiple input tags.

2 Preliminaries

Wewrite 𝜆 to denote the security parameter. For an integer𝑛 ∈ N, we write [𝑛] to denote the set {1, 2, . . . , 𝑎}.
For integers 𝑎 < 𝑏, we use [𝑎, 𝑏] to denote the set of integers {𝑎, 𝑎 + 1, . . . , 𝑏}. When ®𝑥 = (𝑥1, . . . , 𝑥𝑁 ) is a
vector of elements and 𝑆 ⊆ [𝑁 ] is a set of indices, we will write ®𝑥𝑆 to denote the ordered sub-vector (𝑥𝑖)𝑖∈𝑆 .
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For a distribution D we write 𝑥 ← D to denote that 𝑥 is a random draw from D. For a finite set 𝑆 , we

write 𝑥
r← 𝑆 to denote a uniform random draw from 𝑆 . When indexing a set 𝑆 , we write 𝑆 [𝑖] to denote

the 𝑖th element of 𝑆 (in lexicographic order). For distributions D0,D1, we denote the statistical distance

between them by Δ(D0,D1). We use boldface letters (e.g., x) to denote vectors. We write poly(𝜆) to denote
a fixed function that is 𝑂 (𝜆𝑐) for some 𝑐 ∈ N and negl(𝜆) to denote a function that is 𝑜 (𝜆−𝑐) for all 𝑐 ∈ N.
We say an event occurs with overwhelming probability if its complement occurs with negligible probability.

We say an algorithm is efficient if it runs in probabilistic polynomial time (in the length of its input).

Hoeffding’s inequality. We will use Hoeffding’s inequality to bound the sum of independent random

variables [Hoe63]:

Fact 2.1 (Hoeffding’s Inequality [Hoe63]). Let 𝑋1, . . . , 𝑋𝑇 be independent random variables where 0 ≤
𝑋𝑖 ≤ 1 for all 𝑖 ∈ [𝑇 ]. Let 𝑆 =

∑
𝑖∈[𝑇 ] 𝑋𝑖 and let E[𝑆] denote the expected value of 𝑆 . Then, for any 𝑘 ≥ 0,

Pr[|𝑆 − E[𝑆] | ≥ 𝑇𝑘] ≤ 2
−Ω (𝑇𝑘2 ) .

Min-entropy. We recall some basic definitions on min-entropy. Our definitions are adapted from those

in [DORS08]. For a (discrete) random variable 𝑋 , we write H∞(𝑋 ) = − log(max𝑥 Pr[𝑋 = 𝑥]) to denote

its min-entropy. For two (possibly correlated) discrete random variables 𝑋 and 𝑌 , we define the average

min-entropy of𝑋 given𝑌 to beH∞(𝑋 | 𝑌 ) = − log(E𝑦←𝑌 max𝑥 Pr[𝑋 = 𝑥 | 𝑌 = 𝑦]). The optimal probability

of an unbounded adversary guessing 𝑋 given the correlated value 𝑌 is 2
−H∞ (𝑋 |𝑌 )

. We now state some

useful properties on the conditional min-entropy:

Lemma 2.2 (Conditional Min-Entropy [DORS08, Lemma 2.2]). Let 𝐴, 𝐵,𝐶 be random variables and suppose
there are at most 2𝜆 elements in the support of 𝐵. Then

H∞(𝐴 | (𝐵,𝐶)) ≥ H∞(𝐴, 𝐵 | 𝐶) − 𝜆 ≥ H∞(𝐴 | 𝐶) − 𝜆.

Additionally, for any 𝛿 > 0, with probability at least 1 − 𝛿 over the choice of 𝑏 ← 𝐵, we have

H∞(𝐴 | 𝐵 = 𝑏) ≥ H∞(𝐴 | 𝐵) − log(1/𝛿) .

Lemma 2.3 (Min-Entropy Splitting Lemma [DFR
+
07, DGSW22]). Let 𝑋1, . . . , 𝑋ℓ be a sequence of ran-

dom variables such that H∞(𝑋1, . . . 𝑋ℓ ) ≥ 𝛼 . Then there exists a random variable 𝐶 over [ℓ] such that
H∞(𝑋𝐶 | 𝐶) ≥ 𝛼/ℓ − log ℓ .

Dispersers. Our construction will rely on a disperser (also known as a “one-sided extractor”). At a high

level, a disperser can be modeled as a bipartite graph with the property that that every subset of nodes of a

certain (minimal) size on the left is guaranteed to have a large number of neighbors on the right. We recall

the formal definition from [TUZ07]. First, a bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸) consists of two sets of vertices

𝐿 and 𝑅 together with a set of edges 𝐸, where each edge 𝑒 ∈ 𝐸 is a pair of nodes (𝑢, 𝑣) ∈ 𝐿 × 𝑅. For a set
𝑆 ⊆ 𝐿, we write 𝑁 (𝑆) ⊆ 𝑅 to denote the neighborhood of 𝑆 : 𝑁 (𝑆) = {𝑣 ∈ 𝑅 : ∃(𝑢, 𝑣) ∈ 𝐸 ∧ 𝑢 ∈ 𝑆}. We say

𝐺 is 𝐷-left-regular if every node 𝑢 ∈ 𝐿 has exactly 𝐷 neighbors: |𝑁 ({𝑢}) | = 𝑑 for all 𝑢 ∈ 𝐿.

Definition 2.4 (Disperser [TUZ07, Definition 1.3]). Let 𝐺 = (𝐿, 𝑅, 𝐸) be a bipartite graph. Then, 𝐺 is a

degree-𝐷 (𝑇, 𝜀)-disperser if𝐺 is 𝐷-left-regular and for all subsets 𝑆 ⊆ 𝐿 of size at least𝑇 , the neighborhood

𝑁 (𝑆) has size at least (1 − 𝜀) · |𝑅 |. A disperser is explicit if the index of the 𝑖th neighbor of a vertex 𝑣 ∈ 𝐿
can be computed in poly(log𝑁, log𝐷) time.
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Fact 2.5 (Disperser [Par19, Theorem 3]). Let 𝑐 be a universal constant, 𝜀 > 0 be any constant, and 𝑛 be

a set size parameter. Let 𝑘 = 𝑘 (𝑛), 𝐷 = 𝐷 (𝑛), 𝑘1 = 𝑘1(𝑛) be polynomials such that 𝑐 log(𝑛/𝜀) < 𝑘 < 𝑛

and 𝑘1 ≥ 𝑘 +𝑂 (log3(𝑘/𝜀)). Then, there exists an explicit degree-𝐷 (2𝑘1, 𝜀)-disperser 𝐺 = (𝐿, 𝑅, 𝐸) where
𝐷 = poly(𝑛/𝜀), |𝐿 | = 2

𝑛
, and |𝑅 | = 2

𝑘1+Ω (log(𝑛/𝜀 ) )
.

Randomness extractors. We now recall the definition of randomness extractors (from the leftover hash

lemma).

Definition 2.6 (Strong Randomness Extractor). A function Ext : {0, 1}𝑛×{0, 1}𝑑 → {0, 1}𝑚 is a (𝑘, 𝜀)-strong
randomness extractor if for all distributions 𝑋 over {0, 1}𝑛 such that H∞(𝑋 ) ≥ 𝑘 , it holds that

Δ
(
(𝑠, Ext(𝑋, 𝑠)), (𝑈𝑑 ,𝑈𝑚)

)
≤ 𝜀,

where 𝑠
r← {0, 1}𝑑 , and 𝑈𝑑 ,𝑈𝑠 are the uniform distributions on {0, 1}𝑑 , and {0, 1}𝑚 , respectively. An

extractor is explicit if it is efficiently-computable.

Lemma 2.7 (Leftover Hash Lemma [ILL89, HILL99]). Let𝑋 be a random variable with support𝑈 and suppose
H∞(𝑋 ) ≥ 𝑘 . Take any 𝜀 > 0 and letH be a universal hash family of size 2𝑑 and output length𝑚 = 𝑘−2 log(1/𝜀).
Define Ext(𝑥, ℎ) := ℎ(𝑥). Then Ext is a (𝑘, 𝜀/2)-strong extractor with seed length 𝑑 and output length𝑚.

Corollary 2.8 (Explicit Strong Extractor). Take any 𝜆 ∈ N. Then, there exists an explicit (𝜆+𝜔 (log 𝜆), negl(𝜆))-
strong randomness extractor Ext : {0, 1}poly(𝜆) × {0, 1}poly(𝜆) → {0, 1}𝜆 .

Corollary 2.9 (Inner Product Extractor). Let F be a finite field and let 𝑋 be a random variable with support
𝑈 = F𝑛 . Take any 𝜀 > 0 and suppose H∞(𝑋 ) ≥ 𝑘 = 2 log(1/𝜀) + log |F|. Let 𝑆 = F𝑛 be a seed space and define
Ext(x, s) := sTx. Then Ext is a (𝑘, 𝜀/2)-strong extractor with seed length 𝑛 log |F| and output length log |F|.

2.1 Cryptographic Primitives

In this section, we recall the main cryptographic notions we use in this work.

Definition 2.10 (Pseudorandom Generator). Let 𝜆 be a security parameter. A pseudorandom generator

with output length 𝑚 = 𝑚(𝜆) is an efficiently-computable function family PRG = {PRG𝜆}𝜆∈N where

PRG𝜆 : {0, 1}𝜆 → {0, 1}𝑚 (𝜆) . We say that PRG is secure if for all efficient adversaries A there exists a

negligible function negl(·) such that for all 𝜆 ∈ N:���Pr[A(1𝜆, PRG𝜆 (𝑥)) = 1 : 𝑥
r← {0, 1}𝜆] − Pr[A(1𝜆, 𝑦) = 1 : 𝑦

r← {0, 1}𝑚 (𝜆) ]
��� = negl(𝜆) .

Definition 2.11 (Pseudorandom Function). Let K = {K𝜆}𝜆∈N, X = {X𝜆}𝜆∈N, and Y = {Y𝜆}𝜆∈N be ensem-

bles of finite sets indexed by a security parameter 𝜆. Let PRF = {PRF𝜆}𝜆∈N be an efficiently-computable

collection of functions PRF𝜆 : K𝜆 × X𝜆 → Y𝜆 . We say that PRF is secure if for all efficient adversaries A
there exists a negligible function negl(·) such that for all 𝜆 ∈ N:���Pr[APRF𝜆 (𝑘,· ) (1𝜆) = 1 : 𝑘

r← K𝜆] − Pr[A 𝑓𝜆 ( ·) (1𝜆) = 1 : 𝑓𝜆
r← Funs[X𝜆,Y𝜆]]

��� = negl(𝜆),

where Funs[X𝜆,Y𝜆] is the set of all functions from X𝜆 to Y𝜆 .

Definition 2.12 (Identity-Based Encryption [Sha84, BF01, Coc01]). An identity-based encryption (IBE)

scheme with identity space ID = {ID𝜆}𝜆∈N and message spaceM = {M𝜆}𝜆∈N is a tuple of efficient

algorithms ΠIBE = (Setup,KeyGen, Encrypt,Decrypt) with the following syntax:
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• Setup(1𝜆) → (pp,msk): On input the security parameter 𝜆, the setup algorithm outputs the set of

public parameters pp and a master secret key msk. We assume that pp and msk include the security

parameter 1
𝜆
.

• KeyGen(msk, id) → skid: On input the master secret key msk and an identity id ∈ ID𝜆 , the key-

generation algorithm outputs an identity key skid. We assume the secret key skid contains the security
parameter 1

𝜆
(from msk).

• Encrypt(pp, id,𝑚) → ct: On input the public parameters pp, an identity id ∈ ID𝜆 , and a message

𝑚 ∈ M𝜆 , the encryption algorithm outputs a ciphertext ct.

• Decrypt(skid, id, ct) →𝑚: On input an identity secret key skid, an identity id ∈ ID𝜆 , and a ciphertext

ct, the decryption algorithm outputs a message𝑚 ∈ M𝜆 .

Moreover, ΠIBE should satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all identities id ∈ ID𝜆 , all (pp,msk) in the support

of Setup(1𝜆), and all messages𝑚 ∈ M𝜆 ,

Pr

[
Decrypt(skid, ct) =𝑚 :

skid ← KeyGen(msk, id)
ct← Encrypt(pp, id,𝑚)

]
= 1.

• Semantic security: For a security parameter 𝜆 and a bit 𝑏 ∈ {0, 1}, we define the (adaptive) semantic

security game between an adversary A and a challenger as follows:

– Setup: The challenger starts by sampling (pp,msk) ← Setup(1𝜆) and gives pp to A.

– Pre-challenge queries: Algorithm A can now issue key-generation queries to the challenger.

On each key-generation query, adversary A specifies an identity id ∈ ID𝜆 , and the challenger

replies with skid ← KeyGen(msk, id).
– Challenge: AlgorithmA outputs a challenge identity id∗ and two messages𝑚0,𝑚1 ∈ M𝜆 . The

challenger replies with ct𝑏 ← Encrypt(pp, id∗,𝑚𝑏).
– Post-challenge queries: Algorithm A can continue to make key-generation queries as in the

pre-challenge phase.

– Output: At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of

the experiment.

An adversary A is admissible for the semantic security game if it does not issue a key-generation

query on the challenge identity id∗. We say ΠIBE satisfies adaptive security if for all efficient and

admissible adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1 | 𝑏 = 1] − Pr[𝑏′ = 1 | 𝑏 = 0] | = negl(𝜆)

in the semantic security game.

Definition 2.13 (Indistinguishability Obfuscation [BGI
+
12, GGH

+
13]). Let C = {C𝜆}𝜆∈N be a family of

polynomial-size circuits and ℓC (𝜆) be a size parameter, such that every circuit𝐶 ∈ C𝜆 has size exactly ℓC (𝜆).
An indistinguishability obfuscator 𝑖O is an efficient algorithm that takes as input the security parameter

1
𝜆
, a circuit 𝐶 ∈ C𝜆 , and outputs a circuit 𝐶′. An 𝑖O scheme should satisfy the following properties:
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• Functionality-preserving: For all security parameters 𝜆 ∈ N, all 𝐶 ∈ C𝜆 , and all inputs 𝑥 , we have

that 𝐶′(𝑥) = 𝐶 (𝑥) where 𝐶′ ← 𝑖O(1𝜆,𝐶).

• Security: For all efficient adversaries A = (Samp,A′), there exists a negligible function negl(·)
such that the following holds: if for all security parameters 𝜆 ∈ N,

Pr[∀𝑥,𝐶0(𝑥) = 𝐶1(𝑥) : (𝐶0,𝐶1, st) ← Samp(1𝜆)] = 1 − negl(𝜆)

then ���Pr[A′(st, 𝑖O(1𝜆,𝐶0)) = 1] − Pr[A′(st, 𝑖O(1𝜆,𝐶1)) = 1]
��� = negl(𝜆),

where (𝐶0,𝐶1, st) ← Samp(1𝜆).

Definition 2.14 (Witness Encryption [GGSW13, adapted]). LetM = {M𝜆}𝜆∈N be a message space. A

witness encryption scheme for an NP language L with witness relation RL is a tuple of efficient algorithms

ΠWE = (Encrypt,Decrypt) with the following syntax:

• Encrypt(1𝜆,𝑚, 𝑥) → ct: On input the security parameter 𝜆, a message𝑚 ∈ M𝜆 , and an instance 𝑥 for

the language L, the encryption algorithm outputs a ciphertext ct. We assume ct includes 1𝜆 and 𝑥 .

• Decrypt(ct,𝑤) → 𝑚: On input a ciphertext ct and a witness 𝑤 , the decryption algorithm outputs

a message𝑚 ∈ M𝜆 .

Moreover, ΠWE should satisfy the following properties:

• Correctness: For all 𝜆 ∈ N, messages𝑚 ∈ M𝜆 , and tuples (𝑥,𝑤) ∈ RL , it holds that

Pr[Decrypt(ct,𝑤) =𝑚 : ct← Encrypt(1𝜆,𝑚, 𝑥)] = 1.

• Semantic security: For a security parameter 𝜆 and a bit 𝑏 ∈ {0, 1} , we define the semantic security

game between an adversary A and a challenger as follows:

– On input the security parameter 1
𝜆
, algorithm A outputs a statement 𝑥 and two messages

𝑚0,𝑚1 ∈ M𝜆 .

– The challenger replies with ct← Encrypt(1𝜆,𝑚𝑏, 𝑥).
– Algorithm A outputs a bit 𝑏′ ∈ {0, 1} , which is the output of the experiment.

The scheme ΠWE satisfies semantic security if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1 ∧ 𝑥 ∉ L | 𝑏 = 1] − Pr[𝑏′ = 1 ∧ 𝑥 ∉ L | 𝑏 = 0] | = negl(𝜆)

in the semantic security game.
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One-time dual-mode commitment. We recall the notion of a one-time dual-mode commitment, which

can be constructed from one-way functions [Nao89].

Definition 2.15 (One-Time Dual-Mode Commitment [DN02]). A one-time dual-mode commitment scheme

with input space X = {X𝜆}𝜆∈N is a tuple of efficient algorithms ΠCom = (Setup,Commit,Verify) with the

following syntax:

• Setup(1𝜆,mode) → (crs, td, 𝑐): On input the security parameter 𝜆 and mode ∈ {bind, hide}, the
setup algorithm outputs a common reference string crs. Whenmode = hide, it also outputs a trapdoor
td and commitment 𝑐 . We assume crs and td (implicitly) contain the security parameter 1

𝜆
.

• Commit(crs, 𝑥) → (𝑐, 𝜎): On input the common reference string crs and an input 𝑥 ∈ X𝜆 , the commit

algorithm outputs a commitment 𝑐 and an opening 𝜎 .

• Verify(crs, 𝑐, 𝑥, 𝜎) → {0, 1}: On input the common reference string crs, a commitment 𝑐 , a value

𝑥 ∈ X𝜆 , and an opening 𝜎 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, ΠCom should satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all inputs 𝑥 ∈ X𝜆 , all modes mode ∈ {bind, hide},

Pr

[
Verify(crs, 𝑐, 𝑥, 𝜎) = 1 :

(crs, td, 𝑐′) ← Setup(1𝜆,mode);
(𝑐, 𝜎) ← Commit(crs, 𝑥)

]
= 1.

• Statistically binding in binding mode: For all adversaries A, there exists a negligible function

negl(·) such that for all 𝜆 ∈ N,

Pr

[
Verify(crs, 𝑐, 𝑥0, 𝜎0) = Verify(crs, 𝑐, 𝑥1, 𝜎1) = 1 ∧ 𝑥0 ≠ 𝑥1 :

crs← Setup(1𝜆, bind);
(𝑐, 𝑥0, 𝑥1, 𝜎0, 𝜎1) ← A(crs)

]
= negl(𝜆).

• Mode indistinguishability: For a security parameter 𝜆, a bit 𝑏 ∈ {0, 1}, and a simulator Sopen, we
define the mode indistinguishability game between an adversary A and a challenger as follows:

1. The challenger samples crs← Setup(1𝜆, bind) if 𝑏 = 0 or (crs, td, 𝑐1) ← Setup(1𝜆, hide) if 𝑏 = 1

and gives crs to A.

2. Algorithm A outputs a value 𝑥 ∈ X𝜆 .
3. If 𝑏 = 0 the challenger computes (𝑐0, 𝜎0) ← Commit(crs, 𝑥). If 𝑏 = 1, the challenger computes

a simulated opening 𝜎1 ← Sopen(td, 𝑥). The challenger sends (𝑐𝑏, 𝜎𝑏) to A.

4. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

The scheme ΠCom satisfies mode indistinguishability if there exists an efficient simulator Sopen such
that for all efficient adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1 | 𝛽 = 0] − Pr[𝑏′ = 1 | 𝛽 = 1] | = negl(𝜆)

in the mode indistinguishability game.

15



Non-interactive zero-knowledge. Next, we recall the notion of a non-interactive zero-knowledge (NIZK)

proof forNP [GMR85, BFM88]. Specifically, we consider NIZKs for the language of Boolean circuit satisfiabil-

ity whichwe define below. We also recall theweaker notion ofwitness indistinguishability, which is more con-

venient to use in some of our proofs. It is easy to see that zero-knowledge implies witness indistinguishability.

Definition 2.16 (Boolean Circuit Satisfiability). The language L of Boolean circuit satisfiability consists of

pairs (𝐶, 𝑥) of circuits𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and inputs 𝑥 ∈ {0, 1}𝑛 such that there exists𝑤 ∈ {0, 1}ℎ
where 𝐶 (𝑥,𝑤) = 1:

L =

(𝐶, 𝑥) :
𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}

𝑥 ∈ {0, 1}𝑛
∃𝑤 ∈ {0, 1}ℎ : 𝐶 (𝑥,𝑤) = 1

 .
Definition 2.17 (NIZK for NP [GMR85, BFM88]). A non-interactive zero-knowledge (NIZK) proof for

Boolean circuit satisfiability is a tuple of efficient algorithms ΠNIZK = (Setup, Prove,Verify) with the

following syntax:

• Setup(1𝜆) → crs: On input the security parameter 𝜆 ∈ N, the setup algorithm outputs a common

reference string crs. We assume crs implicitly contains a description of the security parameter 1
𝜆
.

• Prove(crs,𝐶, 𝑥,𝑤) → 𝜋 : On input the common reference string crs, a Boolean circuit 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}, a statement 𝑥 ∈ {0, 1}𝑛 , and a witness 𝑤 ∈ {0, 1}ℎ , the prove algorithm outputs a

proof 𝜋 .

• Verify(crs,𝐶, 𝑥, 𝜋) → 𝑏: On input the common reference string crs, the Boolean circuit 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}, a statement 𝑥 ∈ {0, 1}𝑛 , and a proof 𝜋 , the verification algorithm outputs a bit

𝑏 ∈ {0, 1}.

Moreover, ΠNIZK should satisfy the following properties:

• Completeness: For all 𝜆 ∈ N, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, all statements

𝑥 ∈ {0, 1}𝑛 , and all witnesses𝑤 ∈ {0, 1}ℎ where 𝐶 (𝑥,𝑤) = 1,

Pr

[
Verify(crs,𝐶, 𝑥, 𝜋) = 1 :

crs← Setup(1𝜆)
𝜋 ← Prove(crs,𝐶, 𝑥,𝑤)

]
= 1.

• Statistical soundness: For all adversaries A, there exists a negligible function negl(·) such that

for all 𝜆 ∈ N,

Pr

[
(𝐶, 𝑥) ∉ L ∧ Verify(crs,𝐶, 𝑥, 𝜋) = 1 :

crs← Setup(1𝜆)
(𝐶, 𝑥, 𝜋) ← A(crs)

]
= negl(𝜆) .

• Computational zero-knowledge: For every efficient adversaryA, there exists an efficient simulator

S = (S1,S2) and a negligible function negl(·) such that for all 𝜆 ∈ N,���Pr [AO0 (crs,·,·,· ) (1𝜆, crs) = 1

]
− Pr

[
AO1 (stS,·,·,· ) (1𝜆, c̃rs) = 1

] ��� = negl(𝜆),

where crs← Setup(1𝜆), (c̃rs, stS) ← S1(1𝜆), and the oracles O0 and O1 are defined as follows:
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– O0(crs,𝐶, 𝑥,𝑤): On input crs, a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a statement 𝑥 ∈ {0, 1}𝑛 ,
and a witness 𝑤 ∈ {0, 1}ℎ , the oracle outputs ⊥ if 𝐶 (𝑥,𝑤) = 0. If 𝐶 (𝑥,𝑤) = 1, it outputs

Prove(crs,𝐶, 𝑥,𝑤).
– O1(stS,𝐶, 𝑥,𝑤): On input the simulator state stS , a circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a state-

ment 𝑥 ∈ {0, 1}𝑛 , and a witness𝑤 ∈ {0, 1}ℎ , the oracle outputs ⊥ if 𝐶 (𝑥,𝑤) = 0. If 𝐶 (𝑥,𝑤) = 1,

it outputs S2(stS,𝐶, 𝑥).

Definition 2.18 (Computational Witness Indistinguishability). Let ΠNIZK = (Setup, Prove,Verify) be a
NIZK proof for Boolean circuit satisfiability. We say that ΠNIZK satisfies computational witness indistin-

guishability if for every efficient adversaryA, there exists a negligible function negl such that for all 𝜆 ∈ N,���Pr [AO0 (crs,·,·,·,· ) (1𝜆, crs) = 1

]
− Pr

[
AO1 (crs,·,·,·,· ) (1𝜆, crs) = 1

] ��� = negl(𝜆),

where crs← Setup(1𝜆) and for 𝑏 ∈ {0, 1}, the oracle O𝑏 is defined as follows:

• O𝑏 (crs,𝐶, 𝑥,𝑤0,𝑤1): On input crs, a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a statement 𝑥 ∈ {0, 1}𝑛 ,
and witnesses 𝑤0,𝑤1 ∈ {0, 1}ℎ , the oracle outputs Prove(crs,𝐶, 𝑥,𝑤𝑏) if 𝐶 (𝑥,𝑤0) = 1 = 𝐶 (𝑥,𝑤1).
Otherwise, it outputs ⊥.

3 Big-Key Identity-Based Encryption

In this section, we give a formal definition of big-key IBE. Our definition is based on the corresponding

definition from [DGSW22], but has an important difference where we only consider inverse-polynomial

advantage thresholds rather than all non-negligible advantage thresholds. This is an important distinction

as the previous notion from [DGSW22] is unsatisfiable (see Remark 3.2). We begin by highlighting the

main difference between big-key IBE and vanilla IBE (Definition 2.12):

• In big-key IBE, we allow the adversary to specify any efficiently-computable leakage function 𝑓 that

outputs at most ℓ bits, where ℓ is a leakage parameter. The challenger then replies with 𝑓 (msk). In
the adaptive security experiment, the adversary chooses the challenge identities after it observes

the (arbitrary) leakage on the master secret key.

• Since the adversary is given arbitrary leakage on the master secret key, its leakage may simply encode

a secret key for the challenge identity. Thus, the usual notion of semantic security is not meaningful

in this model. Instead, the adversary must declare a set of challenge identities J . To win the game,

the adversary must be able to break semantic security for all identities id ∈ J with advantage greater

than some threshold 𝜀.

We now provide the formal definition and then discuss how it compares with the previous definition

from [DGSW22].

Definition 3.1 (Big-Key Identity-Based Encryption [DGSW22, adapted]). A big-key identity-based encryp-

tion scheme with identity space ID = {ID𝜆}𝜆∈N and message spaceM = {M𝜆}𝜆∈N is a tuple of efficient

algorithms ΠbkIBE = (Setup,KeyGen, Encrypt,Decrypt) with the following syntax:

• Setup(1𝜆, 1ℓ ) → (pp,msk): On input the security parameter 𝜆 and the leakage parameter ℓ , the setup

algorithm outputs public parameters pp and a master secret key msk. We assume that pp and msk
include the security parameter 1

𝜆
.
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• KeyGen(msk, id) → skid: On input the master secret key msk and an identity id ∈ ID𝜆 , the key-

generation algorithm outputs an identity secret key skid. We assume the secret key skid contains the
security parameter 1

𝜆
(from msk).

• Encrypt(pp, id,𝑚) → ct: On input the public parameters pp, an identity id ∈ ID𝜆 , and a message

𝑚 ∈ M𝜆 , the encryption algorithm outputs a ciphertext ct.

• Decrypt(skid, id, ct) →𝑚: On input an identity secret key skid, an identity id ∈ ID𝜆 , and a ciphertext

ct, the decryption algorithm outputs a message𝑚 ∈ M𝜆 .

Moreover, ΠbkIBE should satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all leakage parameters ℓ ∈ N, all identities id ∈ ID𝜆 ,

all (pp,msk) in the support of Setup(1𝜆, 1ℓ ), and all messages𝑚 ∈ M𝜆 ,

Pr

[
Decrypt(skid, id, ct) =𝑚 :

skid ← KeyGen(msk, id)
ct← Encrypt(pp, id,𝑚)

]
= 1.

• Efficiency: We impose the following efficiency requirements on the scheme parameters:

– Public key size: We say that a big-key IBE scheme has short public parameters if the public

parameters pp output by Setup(1𝜆, 1ℓ ) satisfies |pp| = poly(𝜆, log ℓ). We say the scheme has

long public parameters if |pp| = poly(𝜆, ℓ).
– Secret key size: We require that the identity secret keys skid output by KeyGen to satisfy

|skid | = poly(𝜆, log ℓ).
– Key-generation and encryption time: We require that KeyGen and Encrypt run in time

poly(𝜆, log ℓ) given random access to the master secret key msk and the public parameters pp,
respectively. In other words, KeyGen only needs to read poly(𝜆, log ℓ) bits of msk and Encrypt
only needs to read poly(𝜆, log ℓ) bits of pp. Note that if the scheme has short public parameters

(i.e., if |pp| = poly(𝜆, log ℓ)), then the encryption requirement is trivially satisfied.

• Adaptive security under bounded leakage: For a security parameter 𝜆, a challenge parameter

𝑘 = 𝑘 (𝜆, ℓ), and an advantage function 𝜀 = 𝜀 (𝜆), we define the adaptive security game between an

adversary A = (A1,A2) and a challenger as follows:

– Setup: On input the security parameter, algorithmA1 starts by outputting a leakage parameter

1
ℓ
, which it gives to the challenger. The challenger samples (pp,msk) ← Setup(1𝜆, 1ℓ ) and

gives pp to A1.

– Pre-leakage queries: Algorithm A1 can now issue key-generation queries to the challenger.

On each key-generation query, algorithm A1 specifies an identity id ∈ ID𝜆 and the challenger

replies with skid ← KeyGen(msk, id).
– Leakage: Algorithm A1 outputs the description of an efficiently-computable function 𝑓 with

output length at most ℓ . The challenger replies with leak B 𝑓 (msk).
– Post-leakage queries: Algorithm A1 can continue to make key-generation queries to the

challenger.

– Challenge: Algorithm A1 outputs a set J ⊆ ID𝜆 of size at least 𝑘 = 𝑘 (𝜆, ℓ), two messages

𝑚0,𝑚1 ∈ M𝜆 , and a state st.
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– Output: The output of the adaptive security game is 𝑏′ = 1 if

∀id ∈ J : Advid(msk, pp, st, leak) ≥ 𝜀 (𝜆) (3.1)

and𝑏′ = 0 otherwise. The distinguishing advantage Advid(msk, pp, st, leak) is defined as follows:

For an identity id ∈ ID𝜆 , define the experiment Expid(msk, pp, st, leak) as follows:

∗ The challenger samples 𝑏
r← {0, 1}, ct← Encrypt(pp, id,𝑚𝑏) and gives (st, id, ct) to

A2.

∗ Algorithm A2 can now issue key-generation queries to the challenger. On each

key-generation query, algorithm A2 specifies an identity id ∈ ID𝜆 and the

challenger replies with skid ← KeyGen(msk, id).

∗ After A2 has finished making key-generation queries, it outputs a bit 𝛽 ∈ {0, 1},
which is used to compute the output of the experiment as 1 if 𝑏 = 𝛽 and 0 otherwise.

The advantage Advid(msk, pp, st, leak) is then defined as

Advid(msk, pp, st, leak) =
��
Pr[Expid(msk, pp, st, leak) = 𝑏] − 1/2

�� .
We say that an algorithm A = (A1,A2) is admissible for the adaptive security game if neither A1

nor A2 makes a key-generation query on any identity id ∈ J . We say ΠbkIBE satisfies adaptive

security under bounded leakage with challenge parameter 𝑘 = 𝑘 (𝜆, ℓ) if for all efficient adversaries

A = (A1,A2) and every inverse polynomial advantage function 𝜀 = 1/poly(𝜆), there exists a

negligible function negl(·) such that for all 𝜆 ∈ N, Pr[𝑏′ = 1] = negl(𝜆) in the adaptive security game.

Remark 3.2 (Comparison with [DGSW22]). Beyond the extension from selective security to adaptive

security, Definition 3.1 differs from the notion in [DGSW22, Definition 3] in an important manner. The

definition in [DGSW22] says that a big-key IBE scheme satisfies (selective) security under bounded leakage

if for all efficient adversaries A = (A1,A2) and all non-negligible functions 𝜀, there exists a negligible
function negl(·) such that for all 𝜆 ∈ N,

Pr[∀id ∈ J : Advid(msk, pp, st, leak) ≥ 𝜀 (𝜆)] = negl(𝜆). (3.2)

In contrast, our definition (Definition 3.1) requires the advantage threshold 𝜀 to be inverse polynomial.
While “non-negligible” and “inverse-polynomial” may seem like a small distinction, it is an important one.

Indeed, we can show that the definition is unsatisfiable if we require Eq. (3.2) to hold for all non-negligible

functions 𝜀. To wit, suppose 𝜀 is the following piecewise function:

𝜀 (𝜆) =
{
1 𝜆 is odd

0 𝜆 is even.

Observe that 𝜀 (𝜆) is non-negligible by construction. However, Eq. (3.2) cannot hold for any scheme with

respect to 𝜀. This is because for every adversary A, and every even value of 𝜆 ∈ N, it holds that

Advid(msk, pp, st, leak) ≥ 0 = 𝜀 (𝜆).
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This means that whenever 𝜆 is even, it follows that

Pr[∀id ∈ J : Advid(msk, pp, st, leak) ≥ 𝜀 (𝜆)] = 1.

As such, we cannot bound the probability in Eq. (3.2) by a negligible function, and Eq. (3.2) does not hold.

For this reason, the original definition from [DGSW22] is unsatisfiable. In this work, we require 𝜀 to

be an inverse polynomial function 1/poly(𝜆), where poly(𝜆) is a fixed polynomial. This rules out such

pathological functions.

Advantage checking. In Definition 3.1, the output of the experiment requires checking whether Eq. (3.1)

holds or not:

∀id ∈ J : Advid(msk, pp, st, leak) ≥ 𝜀 (𝜆),

where 𝜀 (𝜆) is some advantage threshold. We note that in general, the exact advantage of an adversary

is not efficiently-computable. As such, the challenger in Definition 3.1 cannot necessarily efficiently de-

termine whether the adversary A is successful or not. While having an inefficient challenger is perfectly

acceptable from a definitional standpoint, it introduces new challenges in the security analysis. Namely,

given a candidate adversary A, a reduction algorithm that uses A to solve some computational problem

may not be able to determine whether A was successful or not. To address this problem, we define an

alternative version of the adaptive security game where we replace the win condition (Eq. (3.1)) with an

efficiently-checkable variant based on estimating the success probability of the adversary (Definition 3.3).
2

We then show in Theorem 3.4 that a scheme satisfying our alternative security game implies a scheme that

is secure under our main definition (Definition 3.1). Then, in the remainder of this paper, we only consider

Definition 3.3 where the output of the game is efficiently-computable.

Definition 3.3 (Adaptive Advantage-Checker Security). Let ΠbkIBE be a big-key IBE scheme as in Defi-

nition 3.1. We define the following property:

• Adaptive advantage-checker security under bounded leakage: This security game is identical

to the adaptive security game in Definition 3.1 except the output of the game is 𝑏′ = 1 if

∀id ∈ J : AdvCheckA2

(
1
𝜆, 11/𝜀, id,msk, pp, st, leak

)
= 1

and 𝑏′ = 0 otherwise. The algorithm AdvCheck is defined as follows:

2
We note here that this issue appears to have been glossed over in the previous work of [DGSW22] as their security proofs do

not describe how the reduction algorithm uses the adversary’s output to solve the underlying computational problem. We believe

that their analysis can be repaired by formally defining a similar intermediary game with an efficiently-computable challenger.
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Inputs: security parameter 𝜆, advantage threshold 𝜀 ∈ (0, 1), identity id ∈ ID𝜆 , master secret

key msk, public parameters pp, state st, string leak, and (oracle) access to an algorithm A

– Let 𝑇 = 𝜆/𝜀2 and initialize a counterWINS← 0.

– The advantage-checker algorithm now simulates 𝑇 independent executions of experiment

Expid(msk, pp, st, leak) for algorithm A.

1. Sample 𝛽
r← {0, 1}.

2. Compute ct ← Encrypt(pp, id,𝑚𝛽 ), and start running algorithm A on input

(st, id, ct).
3. Whenever algorithm A makes a key-generation query on an identity id ∈ ID𝜆 ,

compute skid ← KeyGen(msk, id) and reply to A with the identity key skid.

4. After A has finished making key-generation queries, it outputs a bit 𝛽 ′ ∈ {0, 1}.
5. If 𝛽 = 𝛽 ′, then incrementWINS←WINS + 1.

– Output 1 if

��WINS − 𝑇
2

�� ≥ 𝜀𝑇
2
and 0 otherwise.

Figure 1: Function AdvCheckA
(
1
𝜆, 11/𝜀, id,msk, pp, st, leak

)
We say that an algorithm A = (A1,A2) is admissible for the 𝑘-adaptive advantage-checker se-

curity game if neither A1 nor A2 makes a key-generation query on any identity id ∈ J . The

scheme ΠbkIBE satisfies adaptive advantage-checker security under bounded leakage with challenge

parameter 𝑘 = 𝑘 (𝜆, ℓ) if for all efficient adversaries A = (A1,A2) and every inverse polynomial

advantage function 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that for all 𝜆 ∈ N,
Pr[𝑏′ = 1] = negl(𝜆) in the adaptive advantage-checker security game.

Theorem 3.4 (Adaptive Security from Adaptive Advantage-Checker Security). Suppose ΠbkIBE is a big-key
IBE scheme that satisfies adaptive advantage-checker security under bounded leakage with challenge parameter
𝑘 = 𝑘 (𝜆, ℓ). Then, ΠbkIBE satisfies adaptive security under bounded leakage with the same challenge parameter𝑘 .

Proof. LetHyb
0
be the adaptive security experiment from Definition 3.1 andHyb

1
be the advantage checker

security experiment from Definition 3.3. For an adversary A = (A1,A2) and an advantage function 𝜀, we

write Hyb𝑖 (A, 𝜀) to denote the output of Hyb𝑖 with adversary A and advantage function 𝜀. We now show

that for all efficient adversaries A and all inverse polynomial advantage functions 𝜀 = 1/poly(𝜆), there
exists a negligible function negl such that for all 𝜆 ∈ N,

Pr[Hyb
0
(A, 𝜀) = 1] ≤ Pr[Hyb

1
(A, 𝜀) = 1] + negl(𝜆),

which proves the claim. By construction, the only difference between Hyb
0
and Hyb

1
is how the output

bit 𝑏′ ∈ {0, 1} is computed. Suppose in an execution of Hyb
0
that the output bit is 1. This means that for

all id ∈ J ,

Advid(msk, pp, st, leak) ≥ 𝜀. (3.3)

Consider the output computed according to the specification of Hyb
1
. The AdvCheck algorithm perfectly

simulates 𝑇 executions of Expid. For each 𝑖 ∈ [𝑇 ], let 𝑋𝑖 ∈ {0, 1} be the random variable for whether
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algorithm A2’s output is correct (i.e., if 𝛽
′ = 𝛽) on the 𝑖th iteration. If Eq. (3.3) holds, then

|E[𝑋𝑖] − 1/2| = | Pr[𝑋𝑖 = 1] − 1/2| ≥ 𝜀

In Hyb
1
, we have WINS =

∑
𝑖∈[𝑇 ] 𝑋𝑖 and since each 𝑋𝑖 is identically distributed, it follows that

|E[WINS] −𝑇 /2| ≥ 𝜀𝑇 .

By Hoeffding’s inequality (Fact 2.1),

Pr[|WINS −𝑇 /2| < 𝜀𝑇 /2] ≤ Pr[|WINS − E[WINS] | > 𝜀𝑇 /2] ≤ 2
−Ω (𝑇𝜀2/4) = negl(𝜆),

since 𝑇 = 𝜆/𝜀2. Thus, if Eq. (3.3) holds, then with probability 1 − negl(𝜆), |WINS − 𝑇 /2| ≥ 𝜀𝑇 /2 in an

execution of AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak). In this case, AdvCheck outputs 1. By a union bound,

if Eq. (3.3) holds for all id ∈ J , then AdvCheck also outputs 1 for all id ∈ J with probability 1−|J | ·negl(𝜆).
IfA is efficient, then the size of the challenge set J is polynomially-bounded, so we conclude that whenever

experiment Hyb
0
(A, 𝜀) outputs 1, then with probability 1 − negl(𝜆), experiment Hyb

1
(A, 𝜀) also outputs

1, and the claim follows. □

Remark 3.5 (Challenge Parameter 𝑘). The challenge parameter 𝑘 in Definitions 3.1 and 3.3 determines the

minimum size of the challenge set J as a function of the security parameter 𝜆 and the leakage parameter ℓ .

A larger value of 𝑘 increases the difficulty for the adversary while a small value of 𝑘 makes the adversary’s

job simpler. In [DGSW22], the parameter 𝑘 was set to be ℓ + 1; namely, given ℓ bits of leakage, the adversary

has to compromise at least ℓ + 1 identities. In this work, we show multiple bits of leakage are necessary to

compromise any single identity key. Namely, we show how to achieve challenge parameter 𝑘 = ℓ/poly(𝜆).

4 Adaptively-Secure Big-Key IBE from Indistinguishability Obfuscation

In this section, we describe how to construct an adaptively-secure big-key IBE scheme using indistinguisha-

bility obfuscation (Definition 2.13), an adaptively-secure IBE scheme (Definition 2.12), a NIZK proof for

NP (Definition 2.17), a one-time dual-mode commitment scheme (Definition 2.15), and a pseudorandom

generator (Definition 2.10).

Expanding hash function. First, we define the notion of an “expanding” hash function, which will be

a useful building block in our constructions. At a high-level, an expanding hashing functionH : {0, 1}𝜆 →
[𝑁 ]𝑑 maps a string 𝑥 ∈ {0, 1}𝜆 onto a set of elements 𝑆 ⊆ [𝑁 ] of size |𝑆 | = 𝑑 with the property that for

every collection of inputs 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝜆 , the set
⋃

𝑖∈[𝑘 ]H(𝑥𝑖) covers almost 𝑑𝑘 indices of the set [𝑁 ].
In the context of our big-key IBE schemes, we will subdivide the master secret key into 𝑁 blocks, and the

secret key for an identity id will contain the blocks indexed byH(id). The security analysis will rely on

the fact that for any set of 𝑘 identities that the adversary can possibly corrupt, there will always exist at

least one block of the master secret key that the adversary does not know. Namely, the number of blocks

of the master secret key covered by every set of 𝑘 identities is always greater than the amount of leakage

the adversary is allowed on the master secret key. We now define the property formally, and show that

such a hash function can be built from a disperser (Definition 2.4 and Fact 2.5).

Definition 4.1 (Expanding Hash Function). We say a hash functionH : {0, 1}𝜆 → [𝑁 ]𝑑 is (𝑘, 𝛼)-expanding
if there exists an explicit and efficient algorithm for computingH(𝑥) in poly(𝜆, 𝑑, log𝑁 ) time, and moreover,

for every collection of exactly 𝑘 inputs 𝑥1, . . . 𝑥𝑘 ∈ {0, 1}𝜆 , it holds that |
⋃

𝑖∈[𝑘 ]H(𝑥𝑖) | ≥ 𝛼𝑘 .
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Lemma 4.2 (Expanding Hash Function). There exists a constant 𝑐 ∈ N such that for every 𝜆 ∈ N, every
constant 𝛿 ∈ (0, 1), and every polynomially-bounded function 𝑡 (𝜆) > 𝜆𝑐 where 𝑡 (𝜆) is a power of 4, there
exists functions 𝛼 = 𝜔 (log 𝜆), 𝑑 = poly(𝜆), and a (𝑡, 𝛼)-expanding hash functionH : {0, 1}𝜆 → [𝑁 ]𝑑 , where
𝛼𝑡 = (1 − 𝛿)𝑁 .

Proof. This follows immediately from Fact 2.5. Specifically, let 𝐺 = (𝐿, 𝑅, 𝐸) be the construction from

Fact 2.5 instantiated with parameters 𝑛 = 𝜆, 𝜀 = 𝛿 , 𝑘 = (log 𝑡)/2, and 𝑘1 = 2𝑘 = log 𝑡 . Then, 𝐺 is a degree-𝐷

(𝑡, 𝜀)-disperser where 𝐷 = poly(𝜆), |𝐿 | = 2
𝜆
and |𝑅 | = 𝑡 · 2Ω (log𝜆) . We now construct the expanding hash

functionH : {0, 1}𝜆 → [𝑁 ]𝑑 as follows:

• Set 𝑁 = |𝑅 | = 𝑡 · 2Ω (log𝜆) , 𝛼 = (1 − 𝛿) · 2Ω (log𝜆) , and 𝑑 = 𝐷 = poly(𝜆).

• For an input 𝑥 ∈ {0, 1}𝜆 , define H(𝑥) to be the indices of the nodes in the neighborhood of node

𝑥 ∈ 𝐺 (here, we index the 2
𝜆
nodes in 𝐿 with a bit-string in {0, 1}𝜆). Note that computing H(𝑥)

requires time poly(𝜆, 𝑑, log𝑁 ) since the disperser is explicit. Thus,H is efficiently-computable.

We now show the expanding property. This follows immediately from the fact that𝐺 is a disperser. Consider

any set of 𝑡 inputs 𝑥1, . . . , 𝑥𝑡 . Let 𝑆 = {𝑥1, . . . , 𝑥𝑡 }. Since 𝐺 is a (𝑡, 𝜀)-disperser, and by construction ofH ,

it follows that �� ⋃
𝑖∈[𝑡 ]H(𝑥𝑖)

�� = |𝑁 (𝑆) | ≥ (1 − 𝜀) · |𝑅 | = (1 − 𝛿)𝑁 = 𝛼𝑡,

where 𝑁 (𝑆) denotes the neighborhood of 𝑆 in 𝐺 . To finish the proof we show the constraint on 𝛼 and

that 𝑡 is a valid choice in Fact 2.5. Clearly 𝛼 = (1 − 𝛿) · 2Ω (log𝜆) = 𝜔 (log 𝜆) holds. It is also immediate that

choosing 𝑘1 = 2𝑘 ≥ 𝑘 +𝑂 (log3 𝑘) is sufficient. □

Big-key IBE construction. We now give our first construction of an adaptively-secure big-key IBE

scheme.

Construction 4.3 (Big-Key IBE from 𝑖O). Let 𝜆 ∈ N be a security parameter, ID = {ID𝜆}𝜆∈N be the

identity space,M = {M𝜆}𝜆∈N be the message space, ℓ be the leakage parameter, 𝑁 = 𝑁 (𝜆, ℓ) be a key-size
parameter, and 𝑑 = 𝑑 (𝜆) be an output-size parameter. Our construction relies on the following primitives:

• Let 𝑖O be an indistinguishability obfuscation scheme. We will assume that all programs described here

(and in the proof of Theorem 4.6) are padded to the size ℓ𝐶 (𝜆) of the largest program among them.

• Let PRG : {0, 1}𝜆 → {0, 1}2𝜆 be a pseudorandom generator. Note that the PRG is only used in the

security analysis and does not appear in the main construction.

• LetH : ID𝜆 → [𝑁 ]𝑑 be a hash function. We interpret the output elements [𝑁 ]𝑑 as an ordered list

of 𝑑 indices in [𝑁 ].

• Let ΠNIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be a NIZK proof for NP.

• Let ΠCom = (Com.Setup,Com.Commit,Com.Verify) be a one-time dual-mode commitment scheme

(Definition 2.15) with input space X = {X𝜆}𝜆∈N, and let ℓ𝑥 = ℓ𝑥 (𝜆) be the bit-length of an input.

• Let ΠIBE = (IBE.Setup, IBE.KeyGen, IBE.Encrypt, IBE.Decrypt) be an IBE scheme with identity space

ID and message space X𝑑
.
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• For public parameters ppIBE, define the NP relation R[ppIBE] as follows:

Hard-wired: public parameters ppIBE
Statement: a vector of common reference strings crs(𝐼 )Com indexed by a set 𝐼 ⊂ N, a tuple of

commitments ®𝑐𝐼 , ciphertext ct, identity id
Witness: strings ®𝑟𝐼 , randomness 𝜌enc, openings ®𝜎𝐼
Output 1 if all of the following conditions hold:

– For each 𝑖 ∈ 𝐼 , Com.Verify(crs(𝑖 )Com, 𝑐𝑖 , 𝑟𝑖 , 𝜎𝑖) = 1;

– IBE.Encrypt(ppIBE, id, ®𝑟𝐼 ; 𝜌enc) = ct

Otherwise, output 0.

Figure 2: Relation R[ppIBE].

Let 𝐶R [ppIBE] be the circuit computing the NP relation R[ppIBE].

We now construct our big-key IBE scheme ΠbkIBE = (Setup,KeyGen, Encrypt,Decrypt) as follows:

• Setup(1𝜆, 1ℓ ): On input the security parameter 𝜆 and the leakage parameter ℓ , the setup algorithm

proceeds as follows:

1. Sample (ppIBE,mskIBE) ← IBE.Setup(1𝜆) and crsNIZK ← NIZK.Setup(1𝜆).
2. For each 𝑖 ∈ [𝑁 ], sample a random string 𝑟𝑖

r← {0, 1}ℓ𝑥 . Then, sample a common reference

string crs(𝑖 )Com ← Com.Setup(1𝜆, bind) and compute (𝑐𝑖 , 𝜎𝑖) ← Com.Commit(crs(𝑖 )Com, 𝑟𝑖).

Let ®𝑐 = (𝑐1, . . . , 𝑐𝑁 ), ®𝑟 = (𝑟1, . . . , 𝑟𝑁 ), and ®𝜎 = (𝜎1, . . . , 𝜎𝑁 ). For a set 𝐼 ⊆ [𝑁 ], we write ®𝑐𝐼 , ®𝑟𝐼 , and ®𝜎𝐼
to be the respective sub-vector of indices in 𝐼 . Similarly, we define crs(𝐼 )Com :=

(
crs(𝑖 )Com

)
𝑖∈𝐼 . Output

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ], ®𝑐, crsNIZK, ppIBE

)
and msk = (pp, ®𝑟, ®𝜎). (4.1)

• KeyGen(msk, id): On input the master secret key msk (with components as in Eq. (4.1)) and an

identity id ∈ ID𝜆 , the key generation algorithm proceeds as follows:

1. Compute 𝐼 ←H(id).
2. Compute ct← IBE.Encrypt(ppIBE, id, ®𝑟𝐼 ; 𝜌enc) where 𝜌enc is the encryption randomness and ®𝑟𝐼

is as defined in Eq. (4.1).

3. Compute 𝜋 ← NIZK.Prove(crsNIZK,𝐶R [ppIBE], (crs
(𝐼 )
Com, ®𝑐𝐼 , ct, id), (®𝑟𝐼 , 𝜌enc, ®𝜎𝐼 )), where crs(𝐼 )Com,

®𝑐𝐼 , ®𝑟𝐼 , and ®𝜎𝐼 are as defined in Eq. (4.1).

Output the identity secret key skid = (ct, 𝜋).

• Encrypt(pp, id,𝑚): On input the public parameters pp, an identity id ∈ ID𝜆 and a message𝑚 ∈ M𝜆 ,

the encryption algorithm defines the following program:
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Hard-wired: common reference string crsNIZK, a vector of common reference strings crs(𝐼 )Com
indexed by a set 𝐼 ⊂ N, a circuit 𝐶 , a tuple of commitments ®𝑐𝐼 , message𝑚, identity id
Inputs: ciphertext ct, proof 𝜋

1. If NIZK.Verify
(
crsNIZK,𝐶,

(
crs(𝐼 )Com, ®𝑐𝐼 , ct, id

)
, 𝜋

)
= 1, output𝑚.

2. Otherwise, output ⊥.

Figure 3: Program Check-Bits
[
crsNIZK,𝐶, crs

(𝐼 )
Com, ®𝑐𝐼 ,𝑚, id

]
.

The encryption algorithm then computes 𝐼 ←H(id) and the obfuscated program

𝐶 ← 𝑖O(Check-Bits[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚, id]) .

It outputs the ciphertext ct = 𝐶 .

• Decrypt(skid, id, ct): On input an identity secret key skid, an identity id ∈ ID𝜆 , and a ciphertext

ct = 𝐶 , the decryption algorithm outputs 𝐶 (skid).

Theorem 4.4 (Correctness). Suppose ΠCom is correct, 𝑖O is correct, and ΠNIZK is complete. Then, Construc-
tion 4.3 is correct.

Proof. Take any security parameter 𝜆, identity id ∈ ID𝜆 , and message𝑚. Let (pp,msk) ← Setup(1𝜆, 1ℓ ),
where pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ], ®𝑐, crsNIZK, ppIBE

)
,msk = (pp, ®𝑟, ®𝜎). Let skid = (ct, 𝜋) ← KeyGen(msk, id) and

𝐶 ← Encrypt(pp, id,𝑚). Consider the output of Decrypt(skid, id,𝐶):

• By construction of KeyGen and correctness of ΠCom, we have ((crs(𝐼 )Com, ®𝑐𝐼 , ct, id), (®𝑟𝐼 , 𝜌enc, 𝜎𝐼 )) ∈
R[ppIBE] and 𝜋 ← NIZK.Prove(crsNIZK,𝐶R [ppIBE], (crs

(𝐼 )
Com, ®𝑐𝐼 , ct, id), (®𝑟𝐼 , 𝜌enc, ®𝜎𝐼 )).

• By construction of Encrypt and 𝑖O correctness, 𝐶 is a program which outputs the message𝑚 when

the NIZK proof verifies on statement (crs(𝐼 )Com, ®𝑐𝐼 , ct, id) where ct is an input.

• By completeness of ΠNIZK, the proof 𝜋 from KeyGen verifies and thus 𝐶 (skid) =𝑚, as required. □

Theorem 4.5 (Efficiency). IfH runs in poly(𝜆, log𝑁 )-time, then Construction 4.3 is efficient.

Proof. This holds by inspection and assumption onH , since our other primitives run in poly(𝜆)-time by

definition. Furthermore, the KeyGen and Encrypt algorithms only needs to read poly(𝜆) · 𝑑 (𝜆) bits of the
master secret key msk and/or the public parameters pp. The size of these quantities are independent of
the leakage parameter ℓ . □

Theorem 4.6 (Adaptive Advantage-Checker Security under Bounded Leakage). Suppose the following
conditions hold:

• The obfuscator 𝑖O is secure.

• The hash function H is (𝑘, 𝛼)-expanding, where (1 − 𝜂)𝛼 (𝜆)ℓ𝑥 (𝜆) ≥ 𝜆 + 𝜔 (log 𝜆) for some constant
𝜂 ∈ (0, 1).
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• The IBE scheme ΠIBE satisfies correctness and adaptive semantic security.

• The NIZK ΠNIZK satisfies statistical soundness and computational zero-knowledge.

• The one-time dual-mode commitment scheme ΠCom satisfies mode indistinguishability and statistical
binding in binding mode.

• The pseudorandom generator PRG is secure.

• There exists an explicit universal hash family Hfam of size at most 2poly(𝜆) , where each function
ℎ : X𝑑

𝜆
→ {0, 1}𝜆 has domain X𝑑

𝜆
and range {0, 1}𝜆 . Moreover, the extractor Ext(𝑥, ℎ) = ℎ(𝑥) is a

(𝜆 + 𝜔 (log 𝜆), negl(𝜆))-strong randomness extractor.

Then for all polynomially-bounded and sufficiently large ℓ = ℓ (𝜆), Construction 4.3 is adaptively advantage-
checker secure under bounded leakage with challenge parameter 𝑘 ≥ ℓ

𝜂𝛼ℓ𝑥
.

Proof. We define a sequence of hybrid experiments, each parameterized (implicitly) by an adversary

A = (A0,A1) and an advantage threshold function 𝜀 = 𝜀 (𝜆):

• Hyb
0
: This is the adaptive advantage-checker security game from Definition 3.1, which we recall

in full below:

– Setup: The challenger starts by sampling (ppIBE,mskIBE) ← IBE.Setup(1𝜆), and crsNIZK ←
NIZK.Setup(1𝜆). For all 𝑖 ∈ [𝑁 ], it samples a random string 𝑟𝑖

r← {0, 1}ℓ𝑥 , a CRS crs(𝑖 )Com ←
Com.Setup(1𝜆, bind), and computes (𝑐𝑖 , 𝜎𝑖) ← Com.Commit(crs(𝑖 )Com, 𝑟𝑖). For ®𝑐 = (𝑐1, . . . , 𝑐𝑁 ),
®𝑟 = (𝑟1, . . . , 𝑟𝑁 ), and ®𝜎 = (𝜎1, . . . , 𝜎𝑁 ), the challenger sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ], ®𝑐, crsNIZK, ppIBE

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A.

– Pre-leakage queries: When algorithm A1 makes a query on id ∈ ID𝜆 , the challenger com-

putes 𝐼 ←H(id), ct← IBE.Encrypt(ppIBE, id, ®𝑟𝐼 ; 𝜌enc), and

𝜋 ← NIZK.Prove(crsNIZK,𝐶R [ppIBE], (crs
(𝐼 )
Com, ®𝑐𝐼 , ct, id), (®𝑟𝐼 , 𝜌enc, ®𝜎𝐼 )),

where 𝜌enc is (fresh) encryption randomness. The challenger replies with skid = (ct, 𝜋).
– Leakage: After A1 outputs the description of an efficiently-computable leakage function 𝑓 ,

the challenger replies with leak← 𝑓 (msk).
– Post-leakage queries: The challenger responds to post-leakage key queries exactly as in the

pre-leakage phase.

– Challenge: AlgorithmA1 outputs a set J ⊆ ID𝜆 of size 𝑘 , two messages𝑚0,𝑚1, and a state st.

– Output: The output of Hyb
0
is 𝑏′ = 1 if A is admissible and

∀id ∈ J : AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak) = 1, (4.2)

and 𝑏′ = 0 otherwise. The advantage-checker algorithm AdvCheck is defined as follows:
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Inputs: security parameter 𝜆, threshold 𝜀 ∈ (0, 1), identity id ∈ ID𝜆 , master secret key

msk = (pp, ®𝑟, ®𝜎), public parameters pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ], ®𝑐, crsNIZK, ppIBE

)
, state st, string

leak, and (oracle) access to an algorithm A

∗ Let 𝑇 = 𝜆/𝜀2 and initialize a counter 𝐾 ← 0.

∗ The advantage-checker algorithm now simulates 𝑇 independent executions of

experiment Expid(msk, pp, st, leak) for algorithm A.

1. Sample 𝛽
r← {0, 1}.

2. Compute 𝐶 ← 𝑖O(Check-Bits[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , id]), where

𝐼 ←H(id). Set ct = 𝐶 and start running algorithm A on input (st, id, ct).
3. Whenever algorithm A makes a key-generation query on an identity

id ∈ ID𝜆 , compute 𝐼 ←H(id), ct← IBE.Encrypt(ppIBE, id, ®𝑟𝐼 ; 𝜌enc), and 𝜋 ←
NIZK.Prove(crsNIZK,𝐶R [ppIBE], (crs

(𝐼 )
Com, ®𝑐𝐼 , ct, id), (®𝑟𝐼 , 𝜌enc, ®𝜎𝐼 )), where 𝜌enc is

(fresh) encryption randomness. Reply to A with the identity key skid = (ct, 𝜋).
4. AfterA has finished making key-generation queries, it outputs a bit 𝛽 ′ ∈ {0, 1}.
5. If 𝛽 = 𝛽 ′, then increment 𝐾 ← 𝐾 + 1.

∗ Output 1 if 𝐾 ≥ 𝑇
2
+ 𝜀𝑇

2
and 0 otherwise.

Figure 4: Function AdvCheckA (1𝜆, 11/𝜀, id,msk, pp, st, leak) in Construction 4.3

• Hyb
1
: Same as Hyb

0
except the challenger now samples ℎ

r←Hfam at setup time and for each id ∈ J ,

the challenger constructs the challenge ciphertext 𝐶 in AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak)
using the following modified procedure:

1. The challenger samples 𝛽
r← {0, 1} , computes 𝐼 ← H(id), and computes the components

skid ← IBE.KeyGen(msk, id), 𝑢 ← ℎ(®𝑟𝐼 ), 𝑡 ← PRG(𝑢).
2. The challenger defines the program Check-CT as follows:

Hard-wired: common reference string crsNIZK, a vector of common reference strings

crs(𝐼 )Com indexed by a set 𝐼 ⊂ N, a circuit 𝐶 , a tuple of commitments ®𝑐𝐼 , message𝑚, identity

secret key skid, identity id, seed ℎ, bit-string 𝑡
Inputs: ciphertext ct, proof 𝜋
Output𝑚 if the following hold and ⊥ otherwise:

– NIZK.Verify(crsNIZK,𝐶, (crs(𝐼 )Com, ®𝑐𝐼 , ct, id), 𝜋) = 1; and

– PRG(ℎ(IBE.Decrypt(skid, id, ct))) = 𝑡 .

Figure 5: Program Check-CT[crsNIZK,𝐶, crs(𝐼 )Com, ®𝑐𝐼 ,𝑚, skid, id, ℎ, 𝑡].
Finally, it sets 𝐶 ← 𝑖O(Check-CT[crsNIZK,𝐶R [ppIBE], crs

(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , skid, id, ℎ, 𝑡]).

The remainder of AdvCheck proceeds as in Hyb
0
. We refer to these ciphertexts as semi-functional
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ciphertexts.

• Hyb
2
: Same asHyb

1
except the challenger simulates the NIZK proofs when answering key-generation

queries. Specifically, let S = (S1,S2) be the zero-knowledge simulator associated with ΠNIZK. The

experiment now proceeds as follows:

– Setup: The challenger now samples (crsNIZK, stS) ← S1(1𝜆).
– Key-generation queries: Whenever A1 makes a key-generation query (in the pre-leakage

or the post-leakage phase) orA2 makes a key-generation query (in AdvCheckA2
) on id ∈ ID𝜆 ,

the challenger now constructs the NIZK proof 𝜋 as 𝜋 ← S2(stS,𝐶R [ppIBE], (crs
(𝐼 )
Com, ®𝑐𝐼 , ct, id)).

• Hyb
3
: Same asHyb

2
except the challenger samples the commitment CRS in hidingmode and simulates

the commitments and openings:

– Setup: For all 𝑖 ∈ [𝑁 ], the challenger now samples the commitment components (crs(𝑖 )Com, 𝑐𝑖 , 𝜎𝑖)
as

(
crs(𝑖 )Com, td

(𝑖 )
Com, 𝑐𝑖

)
← Com.Setup(1𝜆, hide), 𝜎𝑖 ← Sopen(td(𝑖 )Com, 𝑟𝑖).

• Hyb
4
: Same as Hyb

3
except the challenger changes the distribution of secret keys when answering

key-generation queries:

– Key-generation queries: Whenever A1 makes a key-generation query (in the pre-leakage

or the post-leakage phase) orA2 makes a key-generation query (in AdvCheckA2
) on id ∈ ID𝜆 ,

the challenger now computes ct as ct← IBE.Encrypt(ppIBE, id, 0𝑑ℓ𝑥 ; 𝜌enc).

We refer to these keys as semi-functional keys.

• Hyb
5
: Same as Hyb

4
except for all id ∈ J , the challenger samples 𝑢

r← {0, 1}𝜆 at the counter

initialization step in the procedure AdvCheck(id) and uses it to construct all challenge ciphertexts

in AdvCheck(id). Moreover, the output of this experiment is 𝑏′ = 1 if A is admissible and

∃id ∈ J : AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak) = 1, (4.3)

and 𝑏′ = 0 otherwise. In other words, Eq. (4.3) replaces Eq. (4.2) as the condition that determines the

output of experiment.

• Hyb
6
: Same as Hyb

5
except for all id ∈ J the challenger samples 𝑡

r← {0, 1}2𝜆 at the counter

initialization step in the procedure AdvCheck(id).

• Hyb
7
: Same as Hyb

6
except for all id ∈ J the challenger constructs the challenge ciphertext 𝐶 as

𝐶 ← 𝑖O(Bot) in the procedure AdvCheck(id), where Bot is a program that outputs ⊥ on all inputs.

For convenience, we will refer to AdvCheckA (1𝜆, 11/𝜀, id,msk, pp, st, leak) as AdvCheck(id) when the non-

id parameters are fixed in a given context. For an adversary A = (A1,A2), we write Hyb𝑖 (A, 𝜀) to denote

the output ofHyb𝑖 with adversaryA and inner threshold function 𝜀. Our goal is to show that for all efficient

adversaries A and all inverse polynomial functions 𝜀 = 1/poly(𝜆), Pr[Hyb
0
(A, 𝜀) = 1] = negl(𝜆). We now

analyze each pair of adjacent experiments:

Lemma 4.7. Suppose 𝑖O satisfies indistinguishability obfuscation security, ΠNIZK satisfies statistical soundness,
ΠCom satisfies statistical binding in binding mode, and ΠIBE satisfies correctness. Then, for all efficient and
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admissible adversaries A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function
negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
1
(A, 𝜀) = 1] ≥ Pr[Hyb

0
(A, 𝜀) = 1] − negl(𝜆) .

Proof. We define a sequence of intermediate hybrids:

• Hyb
0,1,0: Same as Hyb

0
. In particular, the challenge ciphertexts in the procedure AdvCheck(id) are

sampled as 𝐶 ← 𝑖O(Check-Bits[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , id]), where 𝐼 ←H(id).

• Hyb
0,𝑖, 𝑗 : Same as Hyb

0
except for all (𝑖′, 𝑗 ′) such that 𝑖′ < 𝑖 or 𝑖′ = 𝑖, 𝑗 ′ ≤ 𝑗 , the challenger sets

id = J [𝑖′], and samples the challenge ciphertext in the 𝑗 ′th execution of Expid in AdvCheck as

𝐶 ← 𝑖O(Check-CT[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , skid, id, ℎ, 𝑡]),

where 𝛽
r← {0, 1}, 𝐼 ← H(id), skid ← IBE.KeyGen(msk, id), 𝑢 ← ℎ(®𝑟𝐼 ), 𝑡 ← PRG(𝑢) as in Hyb

1
.

Note that Hyb
0,𝑘,𝑇 is the same as Hyb

1
and that Hyb

0,𝑖,𝑇 is the same as Hyb
0,𝑖+1,0 for 𝑖 ∈ [𝑘 − 1].

We now appeal to the conditions in Lemma 4.7 to show that for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑇 ] we show that Hyb
0,𝑖, 𝑗

and Hyb
0,𝑖, 𝑗−1 are computationally indistinguishable.

Claim 4.8. Suppose the conditions in Lemma 4.7 hold. Then for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑇 ], all efficient and admissible
adversaries A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such
that for all 𝜆 ∈ N,

Pr[Hyb
0,𝑖, 𝑗 (A, 𝜀) = 1] ≥ Pr[Hyb

0,𝑖, 𝑗−1(A, 𝜀) = 1] − negl(𝜆).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb
0,𝑖, 𝑗 and Hyb

0,𝑖, 𝑗−1 with non-

negligible probability 𝛿 . We use A to construct an algorithm B that breaks 𝑖O security:

1. Algorithm B runs the setup, leakage, challenge, key-generation phases as in Hyb
0
with A. In

particular:

(a) Algorithm B starts by sampling ℎ
r← Hfam, (ppIBE,mskIBE) ← IBE.Setup(1𝜆), and crsNIZK ←

NIZK.Setup(1𝜆). For all 𝑖 ∈ [𝑁 ], algorithm B samples the components 𝑟𝑖
r← {0, 1}ℓ𝑥 , crs(𝑖 )Com ←

Com.Setup(1𝜆, bind), and computes (𝑐𝑖 , 𝜎𝑖) ← Com.Commit(crsCom, 𝑟𝑖). Algorithm B sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ], ®𝑐, crsNIZK, ppIBE

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A. The components ®𝑐, ®𝑟 , and ®𝜎 are derived as in Eq. (4.1).

(b) When algorithm A makes a key-generation query on id ∈ ID𝜆 , algorithm B computes the

plain IBE ciphertext ct← IBE.Encrypt(ppIBE, id, 𝑟𝐼 ; 𝜌enc) and the proof

𝜋 ← NIZK.Prove(crsNIZK,𝐶R [ppIBE], (crs
(𝐼 )
Com, 𝑐𝐼 , ct, id), (𝑟𝐼 , 𝜌enc, 𝜎𝐼 )),

where 𝜌enc is (fresh) encryption randomness and 𝐼 ← H(id). Algorithm B replies with

skid = (ct, 𝜋).
(c) When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies

with leak← 𝑓 (msk). In the challenge phase, algorithmA outputsJ ⊆ ID𝜆 of size𝑘 , messages

𝑚0,𝑚1, and a state st.
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2. For all (𝑖′, 𝑗 ′) such that 𝑖′ < 𝑖 or 𝑖′ = 𝑖, 𝑗 ′ < 𝑗 , algorithm B computes 𝐼 ←H(J [𝑖′]), 𝑢 ← ℎ(®𝑟𝐼 ), 𝑡 ←
PRG(𝑢) and samples 𝛽

r← {0, 1}, skJ[𝑖′ ] ← IBE.KeyGen(msk,J [𝑖′]). Algorithm B computes the

challenge ciphertext in the 𝑗 ′th execution of ExpJ[𝑖
′ ]
in AdvCheck(J [𝑖′]) as

𝐶 ← 𝑖O(Check-CT[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, 𝑐𝐼 ,𝑚𝛽 , skJ[𝑖′ ],J [𝑖′], 𝑠, 𝑡]) .

3. For the 𝑗 th execution of ExpJ[𝑖 ] in AdvCheck(J [𝑖]), algorithm B samples the components 𝛽
r←

{0, 1}, 𝐼 ←H(J [𝑖]), skJ[𝑖 ] ← IBE.KeyGen(msk,J [𝑖]), 𝑢 ← ℎ(®𝑟𝐼 ), 𝑡 ← PRG(𝑢). Algorithm B sets

𝐶0 = Check-Bits[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 ,J [𝑖]]

and

𝐶1 = Check-CT[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , skJ[𝑖 ],J [𝑖], 𝑠, 𝑡] .

Algorithm B submits (𝐶0,𝐶1) to the 𝑖O challenger, gets back program 𝑃 , and uses 𝑃 as the challenge

ciphertext in this execution.

4. In the remaining executions of Expid in procedure AdvCheck(id), algorithm B samples challenge

ciphertexts as𝐶 ← 𝑖O(Check-Bits[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , id]) for 𝛽 r← {0, 1}, 𝐼 ←H(id).

Algorithm B outputs whatever the experiment outputs.

If 𝑃 ← 𝑖O(𝐶0), algorithmB simulatesHyb
0,𝑖, 𝑗−1(A, 𝜀). If 𝑃 ← 𝑖O(𝐶1), algorithmB simulatesHyb

0,𝑖, 𝑗 (A, 𝜀).
All that remains is to show that (𝐶0,𝐶1) are functionally equivalent with overwhelming probability. In

particular, it suffices to show that

NIZK.Verify(crsNIZK,𝐶R [ppIBE], (crs
(𝐼 )
Com, ®𝑐𝐼 , ct, id), 𝜋) = 1 =⇒ IBE.Decrypt(skid, id, ct) = 𝑟𝐼

with 1 − negl(𝜆) probability over the choice of pp, where 𝐼 ←H(id), skid ← IBE.KeyGen(msk, id). This
is sufficient since PRG and Ext are deterministic. By NIZK verification and statistical soundness, it must be

that the statement (crs(𝐼 )Com, ®𝑐𝐼 , ct, id) is true with overwhelming probability over the choice of crsNIZK. By
statistical binding, it also must be the case that ®𝑐𝐼 opens to only ®𝑟𝐼 except with negligible probability over

the choice of crs(𝐼 )Com since R[ppIBE] checks that the commitments verify. Since ®𝑟𝐼 must be the corresponding

component of the witness for the statement to be true, ct must be an encryption of ®𝑟𝐼 . By plain IBE

correctness, we have IBE.Decrypt(skid, id, ct) = ®𝑟𝐼 , as desired. Since functional equivalence is satisfied,
algorithm B breaks 𝑖O security with advantage 𝛿 . □

Since Hyb
0,𝑖,𝑇 is identical to Hyb

0,𝑖+1,0 for 𝑖 ∈ [𝑘 − 1], the lemma follows from Claim 4.8 and a standard

hybrid argument. □

Lemma 4.9. Suppose ΠNIZK satisfies computational zero-knowledge. Then, for all efficient and admissible
adversaries A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such
that for all 𝜆 ∈ N,

Pr[Hyb
2
(A, 𝜀) = 1] ≥ Pr[Hyb

1
(A, 𝜀) = 1] − negl(𝜆) .

Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb
1
and Hyb

2
with non-negligible

probability 𝛿 . We use A to construct an algorithm B that breaks computational zero-knowledge:
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1. At the beginning of the game, algorithm B gets (1𝜆, crsNIZK) from the ZK challenger. Algorithm

B samples ℎ
r← Hfam and (ppIBE,mskIBE) ← IBE.Setup(1𝜆). For all 𝑖 ∈ [𝑁 ], algorithm B samples

𝑟𝑖
r← {0, 1}ℓ𝑥 , crs(𝑖 )Com ← Com.Setup(1𝜆, bind), and computes (𝑐𝑖 , 𝜎𝑖) ← Com.Commit(crsCom, 𝑟𝑖).

Algorithm B sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ], ®𝑐, crsNIZK, ppIBE

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A. The components ®𝑐, ®𝑟 , and ®𝜎 are derived as in Eq. (4.1).

2. When algorithmA makes a key-generation query on id ∈ ID𝜆 , algorithm B computes the plain IBE

ciphertext ct ← IBE.Encrypt(ppIBE, id, ®𝑟𝐼 ; 𝜌enc) for 𝐼 ← H(id) and randomness 𝜌enc. Algorithm B
then queries the proof oracle in the ZK game with input (𝐶R [ppIBE], (crs

(𝐼 )
Com, ®𝑐𝐼 , ct, id), (®𝑟𝐼 , 𝜌enc, ®𝜎𝐼 ))

and gets back 𝜋 . Algorithm B gives (ct, 𝜋) to algorithm A.

3. Algorithm B runs the remainder of the experiment as in Hyb
1
with algorithm A:

(a) When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies

with leak = 𝑓 (msk). In the challenge phase, algorithm A outputs J ⊆ ID𝜆 of size at least 𝑘 ,

messages𝑚0,𝑚1, and a state st.

(b) For all id ∈ J , the algorithm B constructs the challenge ciphertext 𝐶 in the procedure

AdvCheck(id) as

𝐶 ← 𝑖O(Check-CT[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , skid, id, ℎ, 𝑡])

where 𝛽
r← {0, 1}, 𝐼 ← H(id), skid ← IBE.KeyGen(msk, id), 𝑢 ← ℎ(®𝑟𝐼 ), 𝑡 ← PRG(𝑢). Algo-

rithm B outputs the output of the experiment.

If the CRS is generated using NIZK.Setup and the proofs are sampled according to NIZK.Prove, then algo-

rithm B simulates Hyb
1
(A, 𝜀). On the other hand, if the CRS and proofs are generated using the simulator

S, then algorithm B simulates the Hyb
2
(A, 𝜀). Thus, algorithm B breaks computational zero-knowledge

with advantage 𝛿 . □

Lemma 4.10. Suppose ΠCom satisfies mode indistinguishability. Then, for all admissible adversaries A and
inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
3
(A, 𝜀) = 1] ≥ Pr[Hyb

2
(A, 𝜀) = 1] − negl(𝜆) .

Proof. We start by defining a sequence of intermediate hybrid experiments:

• Hyb
2,0: Same as Hyb

2
. In particular, the components (crs(𝑖 )Com, td

(𝑖 )
Com, 𝑐𝑖 , 𝜎𝑖)𝑖∈[𝑁 ] in the setup phase

are sampled as

crs(𝑖 )Com ← Com.Setup(1𝜆, bind), (𝑐𝑖 , 𝜎𝑖) ← Com.Commit(crs(𝑖 )Com, 𝑟𝑖).

• Hyb
2,𝑖 : Same asHyb

2,0 except for all 𝑗 ≤ 𝑖 the challenger samples the components (crs( 𝑗 )Com, td
( 𝑗 )
Com, 𝑐 𝑗 , 𝜎 𝑗 )

as

(
crs( 𝑗 )Com, td

( 𝑗 )
Com, 𝑐 𝑗

)
← Com.Setup(1𝜆, hide) and 𝜎 𝑗 ← Sopen(td( 𝑗 )Com, 𝑟 𝑗 ). The commitments and

openings for 𝑗 > 𝑖 are sampled as in Hyb
2,0. Note that Hyb2,𝑁 is the same as Hyb

3
.
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We now appeal to equivocation of ΠCom to show that for all 𝑖 ∈ [𝑁 ], the statistical distance between

Hyb
2,𝑖−1 and Hyb

2,𝑖 is negligible.

Claim 4.11. Suppose ΠCom satisfies mode indistinguishability. Then, for all 𝑖 ∈ [𝑁 ], admissible adversariesA,
and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
2,𝑖 (A, 𝜀) = 1] ≥ Pr[Hyb

2,𝑖−1(A, 𝜀) = 1] − negl(𝜆) .

Proof. Suppose there exists an adversary A that distinguishes Hyb
2,𝑖−1 and Hyb

2,𝑖 with non-negligible

probability 𝛿 . We use A to construct an algorithm B that breaks mode indistinguishability:

1. At the beginning of the game, algorithm B gets crs(𝑖 )Com from the mode indistinguishability challenger.

Algorithm B samples ℎ
r← Hfam, (ppIBE,mskIBE) ← IBE.Setup(1𝜆), and (crsNIZK, stS) ← S1(1𝜆).

For all 𝑗 ∈ [𝑁 ], algorithm B samples 𝑟 𝑗
r← {0, 1}ℓ𝑥 . For 𝑗 < 𝑖 , algorithm B computes(

crs( 𝑗 )Com, td
( 𝑗 )
Com, 𝑐 𝑗

)
← Com.Setup(1𝜆, hide), 𝜎 𝑗 ← Sopen(td( 𝑗 )Com, 𝑟 𝑗 ) .

Algorithm B submits 𝑟𝑖 to the mode indistinguishability challenger to get (𝑐𝑖 , 𝜎𝑖). For 𝑗 > 𝑖 , algorithm
B computes crs( 𝑗 )Com ← Com.Setup(1𝜆, bind), (𝑐 𝑗 , 𝜎 𝑗 ) ← Com.Commit(crs( 𝑗 )Com, 𝑟 𝑗 ). Algorithm B sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ], ®𝑐, crsNIZK, ppIBE

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A. The components ®𝑐, ®𝑟 , and ®𝜎 are derived as in Eq. (4.1).

2. Algorithm B runs the remainder of the experiment as in Hyb
2
with algorithm A:

(a) When algorithm A makes a key-generation query on id ∈ ID𝜆 , algorithm B computes

ct← IBE.Encrypt(ppIBE, id, ®𝑟𝐼 ; 𝜌enc) and 𝜋 ← S2(stS,𝐶R [ppIBE], (crs
(𝐼 )
Com, ®𝑐𝐼 , ct, id)),

where 𝜌enc is (fresh) encryption randomness and 𝐼 ← H(id). Algorithm B gives (ct, 𝜋) to
algorithm A.

(b) When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies

with leak = 𝑓 (msk). In the challenge phase, algorithm A outputs J ⊆ ID𝜆 of size at least 𝑘 ,

messages𝑚0,𝑚1, and a state st.

(c) For all id ∈ J , the algorithm B constructs the challenge ciphertext 𝐶 in the procedure

AdvCheck(id) as

𝐶 ← 𝑖O(Check-CT[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , skid, id, ℎ, 𝑡])

where 𝛽
r← {0, 1}, 𝐼 ← H(id), skid ← IBE.KeyGen(msk, id), 𝑢 ← ℎ(®𝑟𝐼 ), 𝑡 ← PRG(𝑢). Algo-

rithm B outputs the output of the experiment.

If components are in hiding mode and simulated, algorithm B simulates the Hyb
2,𝑖−1(A, 𝜀). If components

are in binding mode and computed normally, algorithm B simulates the Hyb
2,𝑖 (A, 𝜀). Thus, algorithm B

breaks mode indistinguishability with advantage 𝛿 . □

The lemma now follows from Claim 4.11 and a standard hybrid argument. □
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Lemma 4.12. Suppose ΠIBE satisfies adaptive semantic security. Then, for all efficient and admissible adver-
saries A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that
for all 𝜆 ∈ N,

Pr[Hyb
4
(A, 𝜀) = 1] ≥ Pr[Hyb

3
(A, 𝜀) = 1] − negl(𝜆) .

Proof. Suppose A distinguishes the hybrids and makes at most 𝑄 total key queries in an experiment. We

start by defining a sequence of intermediate hybrid experiments:

• Hyb
3,0: Same as Hyb

3
. In particular, the ct component for all key-generation queries is computed

as ct← IBE.Encrypt(ppIBE, id, 𝑟𝐼 ; 𝜌enc), where 𝐼 ←H(id).

• Hyb
3,𝑖 : Same as Hyb

3,0 except for all 𝑗 ≤ 𝑖 the ct component for the 𝑗 th key-generation query is

computed as ct ← IBE.Encrypt(ppIBE, id, 0𝑑ℓ𝑥 ; 𝜌enc), where 𝐼 ← H(id). For queries 𝑗 > 𝑖 , the ct
component is computed as in Hyb

3,0. Note that Hyb3,𝑄 is the same as Hyb
4
.

We now appeal to adaptive semantic security of ΠIBE to show that for all 𝑖 ∈ [𝑄], Hyb
3,𝑖−1 and Hyb

3,𝑖 are

computationally indistinguishable.

Claim 4.13. Suppose ΠIBE satisfies adaptive semantic security. Then, for all 𝑖 ∈ [𝑄], efficient and admissible
adversaries A, and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such
that for all 𝜆 ∈ N,

Pr[Hyb
3,𝑖 (A, 𝜀) = 1] ≥ Pr[Hyb

3,𝑖−1(A, 𝜀) = 1] − negl(𝜆) .

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb
3,𝑖−1 and Hyb

3,𝑖 with non-

negligible advantage 𝛿 . We useA to construct an algorithmB that breaks adaptive semantic security ofΠIBE:

1. At the beginning of the game, B gets ppIBE from the plain IBE challenger. Algorithm B samples

ℎ
r←Hfam and (crsNIZK, stS) ← S1(1𝜆). For all 𝑖 ∈ [𝑁 ], algorithm B samples a random string 𝑟𝑖

r←
{0, 1}ℓ𝑥 , a tuple

(
crs(𝑖 )Com, td

(𝑖 )
Com, 𝑐𝑖

)
← Com.Setup(1𝜆, hide), and computes 𝜎𝑖 ← Sopen(td(𝑖 )Com, 𝑟𝑖).

Algorithm B sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ], ®𝑐, crsNIZK, ppIBE

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A. The components ®𝑐, ®𝑟 , and ®𝜎 are derived as in Eq. (4.1).

2. On the 𝑗 th key-generation query to id𝑗 when 𝑗 ≠ 𝑖 , algorithmB computes the ciphertext component as

ct ← IBE.Encrypt(ppIBE, id𝑗 , 0
𝑑ℓ𝑥

; 𝜌enc) when 𝑗 < 𝑖 and ct ← IBE.Encrypt(ppIBE, id𝑗 , ®𝑟𝐼 ; 𝜌enc) when
𝑗 > 𝑖 . On the 𝑖th key-generation query, algorithm B gives (id∗ = id𝑖 ,𝑚0 = ®𝑟𝐼 ,𝑚1 = 0

𝑑ℓ𝑥 ) to the plain

IBE challenger and gets back ct∗ which it uses as the ciphertext component of the response to the

query. Algorithm B computes all proof components as 𝜋 ← S2(stS,𝐶R [ppIBE], (crs
(𝐼 )
Com, ®𝑐𝐼 , ct, id)),

and answers all queries by giving (ct, 𝜋) to A.

3. When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies with

leak = 𝑓 (msk). In the challenge phase, algorithm A outputs J ⊆ ID𝜆 of size at least 𝑘 , messages

𝑚0,𝑚1, and a state st.

4. For all id ∈ J , the algorithm B constructs the challenge ciphertext𝐶 in the procedure AdvCheck(id)
as

𝐶 ← 𝑖O(Check-CT[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , skid, id, ℎ, 𝑡])

where 𝛽
r← {0, 1}, 𝐼 ←H(id), 𝑢 ← ℎ(®𝑟𝐼 ), 𝑡 ← PRG(𝑢), and skid is the response to a key-generation

query to the plain IBE challenger on id. Algorithm B outputs the output of the experiment.
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Note that algorithm B is an admissible IBE adversary if algorithm A is admissible, since the challenge set

J is disjoint from the set of identities queried for key-generation. If ct∗ ← IBE.Encrypt(ppIBE, id𝑖 , ®𝑟𝐼 ; 𝜌enc),
algorithm B simulates the challenger for Hyb

3,𝑖−1. If ct
∗ ← IBE.Encrypt(ppIBE, id𝑖 , 0𝑑ℓ𝑥 ; 𝜌enc), algorithm B

simulates the challenger for Hyb
3,𝑖 . Thus, algorithm B breaks adaptive semantic security with advantage

𝛿 . □

The lemma now follows from Claim 4.13 and a standard hybrid argument. □

Lemma 4.14. Suppose the extractor Ext is a (𝜆 + 𝜔 (log 𝜆), negl(𝜆))-strong extractor and the hash function
H is (𝑘, 𝛼)-expanding, where (1 − 𝜂)𝛼ℓ𝑥 ≥ 𝜆 + 𝜔 (log 𝜆) for some constant 𝜂 ∈ (0, 1). Suppose also that
the challenge parameter 𝑘 satisfies 𝑘 ≥ ℓ

𝜂𝛼ℓ𝑥
. Then, for all admissible adversaries A and inverse polynomial

functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
5
(A, 𝜀) = 1] ≥ Pr[Hyb

4
(A, 𝜀) = 1] − negl(𝜆) .

Proof. Note that the new condition for outputting 1 can only increase the probability that 1 is output. Other

than this condition, the only difference between Hyb
4
,Hyb

5
is the distribution of the challenge ciphertexts

in executions of AdvCheck. In particular, in for both hybrids, the challenger proceeds as follows:

• In setup, the challenger samples ℎ
r←Hfam, (ppIBE,mskIBE) ← IBE.Setup(1𝜆), and (crsNIZK, stS) ←

S1(1𝜆). For 𝑖 ∈ [𝑁 ], algorithm B samples 𝑟𝑖
r← {0, 1}ℓ𝑥 ,

(
crs(𝑖 )Com, td

(𝑖 )
Com, 𝑐𝑖

)
← Com.Setup(1𝜆, hide),

and computes 𝜎𝑖 ← Sopen(td(𝑖 )Com, 𝑟𝑖). Algorithm B sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ], ®𝑐, crsNIZK, ppIBE

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A. The components ®𝑐, ®𝑟 , and ®𝜎 are derived as in Eq. (4.1).

• When algorithm A makes a key-generation query on id ∈ ID𝜆 , the challenger computes

ct← IBE.Encrypt(ppIBE, id, 0𝑑ℓ𝑥 ; 𝜌enc) and 𝜋 ← S2(stS,𝐶R [ppIBE], (crs
(𝐼 )
Com, ®𝑐𝐼 , ct, id)),

where 𝜌enc is (fresh) encryption randomness and 𝐼 ←H(id). The challenger gives (ct, 𝜋) to algorithm
A.

For id ∈ J , the challenger constructs the challenge ciphertext in AdvCheck(id) as

ct = 𝐶 ← 𝑖O(Check-CT[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , skid, id, ℎ, 𝑡]),

where 𝛽
r← {0, 1} , 𝐼 ← H(id), skid ← IBE.KeyGen(msk, id), and 𝑡 ← PRG(𝑢). The distribution of the 𝑢

component differs between the two hybrids:

• In Hyb
4
, the challenger samples 𝑢 ← ℎ(®𝑟𝐼 ) = Ext(®𝑟𝐼 , ℎ).

• In Hyb
5
, the challenger samples a single value 𝑢 ← {0, 1}𝜆 which is reused across all of the

AdvCheck(id) iterations.

We now define the following events

• Let 𝐸idExt be the event that AdvCheck(id) = 1 for 𝑢 = ℎ(®𝑟𝐼 ).
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• Let 𝐸id be the event that AdvCheck(id) = 1 for 𝑢
r← {0, 1}𝜆 .

We will appeal to security of the extractor to show that there exists id ∈ J such that

Pr[𝐸id] ≥ Pr[𝐸idExt] − negl(𝜆) .

To do this, we lower bound the entropy of some or all of the bits {®𝑟H(id) }id∈J conditioned on the tu-

ple (pp,Q, leak,J), where Q denotes the list of outputs of key-generation queries. Fix any 𝑘 identities

id1, . . . , id𝑘 which belong to J . By assumption, H(id1), . . . ,H(id𝑘 ) contains at least 𝛼𝑘 distinct indices

of [𝑁 ], which correspond to 𝛼𝑘 · ℓ𝑥 total bits of msk. Since 𝑟 is independent of (pp,Q) in Hyb
4
and 𝜂 < 1,

we can appeal to Lemma 2.2 to get the following:

H∞({®𝑟H(id𝑖 ) }𝑖∈[𝑘 ] | pp,Q, leak) ≥ H∞({®𝑟H(id𝑖 ) }𝑖∈[𝑘 ] | pp,Q) − |leak|
≥ H∞({®𝑟H(id𝑖 ) }𝑖∈[𝑘 ]) − |leak|
= 𝛼𝑘ℓ𝑥 − 𝜂𝛼𝑘ℓ𝑥
= (1 − 𝜂)𝛼𝑘ℓ𝑥 .

By Lemma 2.2, with probability 1 − 2−𝜔 (log𝜆) = 1 − negl(𝜆) over the fixed choice of (pp,Q, leak), we have

H∞({®𝑟H(id𝑖 ) }𝑖∈[𝑘 ]) ≥ (1 − 𝜂)𝛼𝑘ℓ𝑥 − 𝜔 (log 𝜆) .

Moreover, by Lemma 2.3, there exists a random variable D[𝑘 ] over [𝑘] such that

H∞(®𝑟 𝐽 | D[𝑘 ]) ≥
(1 − 𝜂)𝛼𝑘ℓ𝑥 − 𝜔 (log 𝜆)

𝑘
− log(𝑘),

where 𝐽 = H(idD[𝑘 ] ). By Lemma 2.2, we have with probability 1 − 2𝜔 (log𝜆) = 1 − negl(𝜆) over the choice
of 𝑖 ← D[𝑘 ] ,

H∞(®𝑟H(id𝑖 ) | D[𝑘 ] = 𝑖) ≥ H∞(®𝑟 𝐽 | D[𝑘 ]) − 𝜔 (log 𝜆)

Define id∗ = id𝑖 where 𝑖 ← D[𝑘 ] . With overwhelming probability over the choice of id∗ (alternatively, over
the choice of 𝑖), we have

H∞(®𝑟H(id∗ ) ) = (1 − 𝜂)𝛼ℓ𝑥 − 𝜔 (log 𝜆)

for fixed (pp,Q,J , leak). Here, we have used the fact that 𝑘 = poly(𝜆), so log𝑘 = 𝑂 (log 𝜆). Since

(1 − 𝜂)𝛼ℓ𝑥 ≥ 𝜆 + 𝜔 (log 𝜆) by assumption, we can appeal to extractor security with overwhelming proba-

bility in the (id∗)th copy of the game. This means ℎ(®𝑟H(id∗ ) ) is statistically close to uniform with negligible

statistical distance, so we must have

Pr[𝐸id∗] ≥ Pr[𝐸id∗Ext] − negl(𝜆) .

By definition, Pr[𝐸id∗Ext] ≥ Pr[Hyb
4
(A, 𝜀) = 1] and Pr[Hyb

5
(A, 𝜀) = 1] ≥ Pr[𝐸id∗], so the lemma follows. □

Lemma 4.15. Suppose PRG satisfies PRG security. Then, for all efficient and admissible adversaries A and
inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
6
(A, 𝜀) = 1] ≥ Pr[Hyb

5
(A, 𝜀) = 1] − negl(𝜆) .

Proof. We define a sequence of intermediate hybrids:
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• Hyb
5,0: Same as Hyb

5
. Notably, for each id ∈ J , the 𝑡 component of the challenge ciphertext is

sampled as PRG(𝑢) where 𝑢 r← {0, 1}𝜆 at the start of AdvCheck(id) and fixed for all ciphertexts.

• Hyb
5,𝑖 : Same as Hyb

5
except for 𝑖′ ≤ 𝑖 , we sample 𝑡 as 𝑡 ← {0, 1}2𝜆 at the start of AdvCheck on

id = J [𝑖′]. Note that Hyb
5,𝑘 is the same as Hyb

6
.

We now appeal to PRG security to show that for all 𝑖 ∈ [𝑘] we show that Hyb
5,𝑖 and Hyb

5,𝑖−1 are compu-

tationally indistinguishable.

Claim 4.16. Suppose PRG satisfies PRG security. Then for all 𝑖 ∈ [𝑘], all efficient and admissible adversariesA
and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
5,𝑖 (A, 𝜀) = 1] ≥ Pr[Hyb

5,𝑖−1(A, 𝜀) = 1] − negl(𝜆) .

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb
5,𝑖 and Hyb

5,𝑖−1 with non-

negligible probability 𝛿 . We use A to construct an algorithm B that breaks PRG security:

1. Algorithm B gets a PRG challenge 𝑡∗ ∈ {0, 1}2𝜆 and runs the setup through challenge phases as in

Hyb
5
with A:

(a) Algorithm B samples ℎ
r← Hfam, (ppIBE,mskIBE) ← IBE.Setup(1𝜆), and (crsNIZK, stS) ←

S1(1𝜆). For all 𝑖 ∈ [𝑁 ], algorithm B samples a string 𝑟𝑖
r← {0, 1}ℓ𝑥 , a tuple

(
crs(𝑖 )Com, td

(𝑖 )
Com, 𝑐𝑖

)
←

Com.Setup(1𝜆, hide), and computes 𝜎𝑖 ← Sopen(td(𝑖 )Com, 𝑟𝑖). Algorithm B sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ], ®𝑐, crsNIZK, ppIBE

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A. The components ®𝑐, ®𝑟 , and ®𝜎 are derived as in Eq. (4.1).

(b) When algorithm A makes a key-generation query on id ∈ ID𝜆 , the challenger computes

ct← IBE.Encrypt(ppIBE, id, 0𝑑ℓ𝑥 ; 𝜌enc) and 𝜋 ← S2(stS,𝐶R [ppIBE], (crs
(𝐼 )
Com, ®𝑐𝐼 , ct, id)),

where 𝜌enc is (fresh) encryption randomness and 𝐼 ← H(id). Algorithm B gives (ct, 𝜋) to
algorithm A.

(c) When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies

with leak = 𝑓 (msk). In the challenge phase, algorithm A outputs J ⊆ ID𝜆 of size at least 𝑘 ,

messages𝑚0,𝑚1, and a state st.

2. For id ∈ J , the challenger constructs the challenge ciphertext in AdvCheck(id) as

ct = 𝐶 ← 𝑖O(Check-CT[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , skid, id, ℎ, 𝑡]),

where 𝛽
r← {0, 1}, 𝐼 ←H(id), skid ← IBE.KeyGen(msk, id). For all 𝑖′ such that 𝑖′ < 𝑖 , algorithm B

samples 𝑡 at the start of AdvCheck(J [𝑖′]) as 𝑡 r← {0, 1}2𝜆 . For AdvCheck(J [𝑖]), algorithm B uses

its PRG challenge 𝑡∗ as the 𝑡 component. Algorithm B uses 𝑡 ← PRG(𝑢) where 𝑢 r← {0, 1}𝜆 for the 𝑡

components at the start of AdvCheck(id) for the remaining id ∈ J . Algorithm B outputs whatever

the experiment outputs.

If 𝑡 = PRG(𝑈𝜆), algorithm B simulates Hyb
5,𝑖−1(A, 𝜀). If 𝑡

r← {0, 1}2𝜆 , algorithm B simulates Hyb
5,𝑖 (A, 𝜀).

Thus, algorithm B breaks PRG security with advantage 𝛿 . □
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The lemma now follows from Claim 4.16 and a standard hybrid argument. □

Lemma 4.17. Suppose 𝑖O satisfies indistinguishability obfuscation security. Then, for all efficient and admis-
sible adversaries A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·)
such that for all 𝜆 ∈ N,

Pr[Hyb
7
(A, 𝜀) = 1] ≥ Pr[Hyb

6
(A, 𝜀) = 1] − negl(𝜆) .

Proof. We define a sequence of intermediate hybrids:

• Hyb
6,1,0: Same as Hyb

6
. Notably, for all id ∈ J the challenge ciphertext is sampled as

𝐶 ← 𝑖O(Check-CT[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , skid, id, ℎ, 𝑡]),

where 𝛽
r← {0, 1}, 𝐼 ←H(id), skid ← IBE.KeyGen(msk, id).

• Hyb
6,𝑖, 𝑗 : Same as Hyb

6
except for all (𝑖′, 𝑗 ′) such that 𝑖′ < 𝑖 or 𝑖′ = 𝑖, 𝑗 ′ ≤ 𝑗 , the challenge ciphertext

in the 𝑗 ′th execution of ExpJ[𝑖
′ ]
in AdvCheck(J [𝑖′]) is sampled as𝐶 ← 𝑖O(Bot). Note that Hyb

6,𝑘,𝑇

is the same as Hyb
7
and that Hyb

6,𝑖,𝑇 is the same as Hyb
6,𝑖+1,0 for 𝑖 ∈ [𝑘 − 1].

We now appeal to 𝑖O security to show that for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑇 ] we show that Hyb
6,𝑖, 𝑗 and Hyb

6,𝑖, 𝑗−1 are
computationally indistinguishable.

Claim 4.18. Suppose the conditions in Lemma 4.17 hold. Then for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑇 ], all efficient and
admissible adversaries A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function
negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
6,𝑖, 𝑗 (A, 𝜀) = 1] ≥ Pr[Hyb

6,𝑖, 𝑗−1(A, 𝜀) = 1] − negl(𝜆).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb
6,𝑖, 𝑗 and Hyb

6,𝑖, 𝑗−1 with non-

negligible probability 𝛿 . We use A to construct an algorithm B that breaks 𝑖O security:

1. Algorithm B runs the setup through challenge phases as in Hyb
5
with A:

(a) Algorithm B samples ℎ
r← Hfam, (ppIBE,mskIBE) ← IBE.Setup(1𝜆), and (crsNIZK, stS) ←

S1(1𝜆). For all 𝑖 ∈ [𝑁 ], algorithm B samples a string 𝑟𝑖
r← {0, 1}ℓ𝑥 , a tuple

(
crs(𝑖 )Com, td

(𝑖 )
Com, 𝑐𝑖

)
←

Com.Setup(1𝜆, hide), and computes 𝜎𝑖 ← Sopen(td(𝑖 )Com, 𝑟𝑖). Algorithm B sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ], ®𝑐, crsNIZK, ppIBE

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A. The components ®𝑐, ®𝑟 , and ®𝜎 are derived as in Eq. (4.1).

(b) When algorithm A makes a key-generation query on id ∈ ID𝜆 , the challenger computes

ct← IBE.Encrypt(ppIBE, id, 0𝑑ℓ𝑥 ; 𝜌enc) and 𝜋 ← S2(stS,𝐶R [ppIBE], (crs
(𝐼 )
Com, ®𝑐𝐼 , ct, id)),

where 𝜌enc is (fresh) encryption randomness and 𝐼 ← H(id). Algorithm B gives (ct, 𝜋) to
algorithm A.

(c) When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies

with leak = 𝑓 (msk). In the challenge phase, algorithm A outputs J ⊆ ID𝜆 of size at least 𝑘 ,

messages𝑚0,𝑚1, and a state st.
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2. For all (𝑖′, 𝑗 ′) such that 𝑖′ < 𝑖 or 𝑖′ = 𝑖, 𝑗 ′ < 𝑗 , algorithm B samples the challenge ciphertext in the

𝑗 ′th execution of ExpJ[𝑖
′ ]
in AdvCheck as 𝐶 ← 𝑖O(Bot).

3. For the 𝑗 th execution of ExpJ[𝑖 ] , algorithm B samples components 𝛽
r← {0, 1}, 𝑡 r← {0, 1}2𝜆, 𝐼 ←

H(J [𝑖]), skJ[𝑖 ] ← IBE.KeyGen(msk,J [𝑖]) and sets

𝐶0 = Check-CT[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , skJ[𝑖 ],J [𝑖], ℎ, 𝑡] and 𝐶1 = Bot.

Algorithm B submits (𝐶0,𝐶1) to the 𝑖O challenger and gets back program 𝑃 , which is used as the

challenge ciphertext in this execution.

4. In the remaining executions of ExpJ[𝑖
′ ]
, algorithm B samples 𝛽

r← {0, 1}, 𝑡 r← {0, 1}2𝜆, 𝐼 ←
H(J [𝑖′]), skJ[𝑖′ ] ← IBE.KeyGen(msk,J [𝑖′]) and computes the challenge ciphertext as

𝐶 ← 𝑖O(Check-CT[crsNIZK,𝐶R [ppIBE], crs
(𝐼 )
Com, ®𝑐𝐼 ,𝑚𝛽 , skJ[𝑖′ ],J [𝑖′], ℎ, 𝑡]) .

Algorithm B outputs the output of the experiment.

If 𝑃 ← 𝑖O(𝐶0), algorithmB simulatesHyb
6,𝑖, 𝑗−1(A, 𝜀). If 𝑃 ← 𝑖O(𝐶1), algorithmB simulatesHyb

6,𝑖, 𝑗 (A, 𝜀).
Moreover, (𝐶0,𝐶1) are functionally-equivalent circuits with overwhelming probability over the choice of

𝑡 . Namely, the string 𝑡
r← {0, 1}2𝜆 is contained in the image of PRG with probability at most 2

𝜆/22𝜆 = 2
−𝜆

probability. When 𝑡 is not in the image of PRG, the program Check-CT outputs ⊥ on all inputs, which

coincides with the behavior of Bot. Thus, algorithm B breaks 𝑖O security with advantage that is negligibly

close to 𝛿 . □

SinceHyb
6,𝑖,𝑇 is identical toHyb

6,𝑖+1,0 for 𝑖 ∈ [𝑘−1], the lemma now follows from Claim 4.18 and a standard

hybrid argument. □

Lemma 4.19. For all efficient and admissible adversaries A and inverse polynomial functions 𝜀 = 1/poly(𝜆),
there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
7
(A, 𝜀) = 1] = negl(𝜆) .

Proof. Since the bit 𝑏 has been erased from the challenge ciphertexts, for all id ∈ J ,

Advid(msk, pp, st, leak) = 0. (4.4)

For each 𝑖 ∈ [𝑇 ], let 𝑋𝑖 ∈ {0, 1} be the random variable for whether algorithm A2’s output is correct (i.e.,

if 𝛽 ′ = 𝛽 on the 𝑖th iteration). Since Eq. (4.4) holds, E[𝑋𝑖] = Pr[𝑋𝑖 = 1] = 1/2. Moreover, 𝐾 =
∑

𝑖∈[𝑇 ] 𝑋𝑖 and

E[𝐾] = 𝑇 /2. By Hoeffding’s inequality (Fact 2.1),

Pr[𝐾 −𝑇 /2 < 𝜀𝑇 /2] ≤ Pr[|𝐾 −𝑇 /2| > 𝜀𝑇 /2] ≤ 2
−Ω (𝑇𝜀2/4) = negl(𝜆),

since 𝑇 = 𝜆/𝜀2. Thus, in an execution of AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak), 𝐾 ≥ 𝑇 /2 + 𝜀𝑇 /2 with
probability negl(𝜆). Since Eq. (4.4) holds for all id ∈ J , AdvCheck also outputs 1 for any id ∈ J with

probability at most |J | · negl(𝜆) = negl(𝜆), as desired. □

Combining Lemmas 4.9, 4.10, 4.12, 4.14, 4.15, 4.17 and 4.19 yields the statement by a hybrid argument. □

Combined with Theorem 3.4, this yields the following corollary:
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Corollary 4.20 (Adaptive Security under Bounded Leakage). Suppose the conditions in Theorem 4.6 hold.
Then, Construction 4.3 is adaptively secure under bounded leakage for the same 𝑘 as in Theorem 4.6.

Remark 4.21 (Leakage Rate). By the condition on 𝑘 in Theorem 4.6, we have 𝜂 · 𝑘𝛼ℓ𝑥 ≥ ℓ for 𝜂 ∈ (0, 1). By
construction, the number of bits in ®𝑟 = (𝑟1, . . . , 𝑟𝑁 ) is ℓ𝑥 · 𝑁 . By using the hash function from Lemma 4.2,

we have that 𝛼𝑘 = (1 − 𝛿)𝑁 for any 𝛿 ∈ (0, 1). Thus, 𝜂 · (1 − 𝛿)𝑁ℓ𝑥 = 𝜂′ · 𝑁ℓ𝑥 ≥ ℓ for any 𝜂′ ∈ (0, 1). Since
the only private components in msk are ®𝑟 and ®𝜎 , the leakage rate is then dependent on the number of bits

in ®𝜎 compared to ®𝑟 . With the Naor commitment scheme based on one-way functions [Nao89], we obtain

leakage rate 1/𝑂 (𝜆) since an opening to a single bit is 𝑂 (𝜆) bits. However, by substituting an algebraic

dual-mode commitment where the size of the opening is at most 2× the bit-length of the underlying message

(e.g., [GS08, BL20]), we can achieve leakage rate approaching 1/3, matching [DGSW22].

5 Adaptively-Secure Big-Key IBE fromWitness Encryption

In this section, we describe how to construct a big-key IBE scheme from a witness encryption scheme

(Definition 2.14), a NIZK (Definition 2.17), a dual-mode commitment scheme (Definition 2.15), and two

additional building blocks which we define below.

5.1 Split Encodings and Privately-Testable Encodings

As outlined in Section 1.1, the core building blocks for our second big-key IBE construction are split

encodings and privately-testable encodings. The main difference between these primitives is whether the

encodings can be tested publicly or privately. We formalize these notions below. Additionally, we show

how to construct these primitives from group-based assumptions in Section 6.

Definition 5.1 (Split Encoding). A split encoding scheme with tag space T = {T𝜆}𝜆∈N is a tuple of efficient

algorithms ΠSE = (Setup, SetupSF, Encode, EncodeSF, Test) with the following syntax:

• Setup(1𝜆) → crs: On input the security parameter 𝜆, the setup algorithm outputs a common reference

string crs.

• SetupSF(1𝜆) → (crs, td): On input the security parameter 𝜆, the semi-functional setup algorithm

outputs a common reference string crs and a trapdoor td.

• Encode(crs, type) → enc: On input the common reference string crs and type ∈ {0, 1} , the encode
algorithm outputs an encoding enc.

• EncodeSF(crs, td, tag, type) → enc: On input the common reference string crs, a trapdoor td, tag ∈ T𝜆
and type ∈ {0, 1} , the semi-functional encode algorithm outputs an encoding enc.

• Test(crs, enc0, enc1) → {0, 1}: On input the common reference string crs and a pair of encodings

(enc0, enc1), the testing algorithm outputs a bit 𝑏 ∈ {0, 1} .

Moreover, ΠSE should satisfy the following properties:

• Tester correctness: For all 𝜆 ∈ N and tag ∈ T𝜆 , all (crs, td) in the support of SetupSF(1𝜆), all enc0
in the support of EncodeSF(crs, td, tag, 0) and all enc1 in the support of EncodeSF(crs, td, tag, 1),

Pr[Test(crs, enc0, enc1) = 1] = 1.
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Additionally, there exists a negligible function negl(·) such that

Pr

Test(crs, enc0, enc1) = 1 :

crs← Setup(1𝜆)
enc0 ← Encode(crs, 0)
enc1 ← Encode(crs, 1)

 = negl(𝜆).

• Mode indistinguishability: For a security parameter 𝜆 and a bit 𝑏 ∈ {0, 1} , we define the mode

indistinguishability game between an adversary A and a challenger as follows:

1. The challenger samples crs ← Setup(1𝜆) if 𝑏 = 0 and (crs, td) ← SetupSF(1𝜆) if 𝑏 = 1. The

challenger gives crs to A.

2. Algorithm A can now issue encoding queries to the challenger. On each such query, adversary

A specifies tag ∈ T𝜆 and type ∈ {0, 1} . If 𝑏 = 0, the challenger replies with Encode(crs, type).
If 𝑏 = 1, the challenger replies with EncodeSF(crs, td, tag, type).

3. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1} , which is the output of the

experiment.

An adversaryA is admissible for the mode indistinguishability game if it does not issue two encoding

queries on the same tag with different types. We say ΠSE satisfies mode indistinguishability if for all

efficient and admissible adversariesA, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1|𝑏 = 1] − Pr[𝑏′ = 1|𝑏 = 0] | = negl(𝜆)

in the mode indistinguishability security game.

Definition 5.2 (Privately-Testable Encoding). A privately testable encoding with input space X = {X𝜆}𝜆∈N
is a tuple of efficient algorithms ΠPTE = (Setup, SetupSF, SampSF, Encode, EncodeSF, Test) with the follow-

ing syntax:

• Setup(1𝜆) → crs: On input the security parameter 𝜆, the setup algorithm outputs a common reference

string crs.

• SetupSF(1𝜆) → (crs, td): On input the security parameter 𝜆, the semi-functional setup algorithm

outputs a common reference string crs and a trapdoor td.

• Samp(1𝜆) → 𝑢: On input the security parameter 𝜆, the sample algorithm outputs a string 𝑢.

• SampSF(td, 𝑥) → td𝑥 : On input a trapdoor td and an input 𝑥 ∈ X𝜆 , the semi-functional sampling

algorithm outputs a trapdoor td𝑥 .

• Encode(crs, 𝑥) → enc: On input the common reference string crs and an input𝑥 ∈ X𝜆 , the encode
algorithm outputs an encoding enc.

• EncodeSF(crs) → enc: On input the common reference string crs, the semi-functional encode

algorithm outputs an encoding enc.

• Test(crs, enc, 𝑠) → {0, 1}: On input the common reference string crs, an encoding enc, and a string

𝑠 , the testing algorithm outputs a bit 𝑏 ∈ {0, 1} .

Moreover, ΠPTE should satisfy the following properties:

40



• Tester correctness: For all 𝜆 ∈ N, all (crs, td) in the support of SetupSF(1𝜆), all inputs 𝑥 ∈ X𝜆 , and
all encodings enc in the support of Encode(crs, 𝑥),

Pr

[
Test(crs, enc, td𝑥 ) = 1 : td𝑥 ← SampSF(td, 𝑥)

]
= 1.

In addition, there exists a negligible function negl(·) such that

Pr

Test(crs, enc, 𝑢) = 1 :

crs← Setup(1𝜆);
enc← Encode(crs, 𝑥);

𝑢 ← Samp(1𝜆)

 = negl(𝜆) .

• Mode indistinguishability: For a security parameter 𝜆 and a bit 𝑏 ∈ {0, 1} , we define the mode

indistinguishability game between an adversary A and a challenger as follows:

1. The challenger samples crs ← Setup(1𝜆) if 𝑏 = 0 and (crs, td) ← SetupSF(1𝜆) if 𝑏 = 1. The

challenger gives crs to A.

2. Algorithm A can now issue encoding queries to the challenger. On each query, the adversary

A specifies an input 𝑥 ∈ X𝜆 . If 𝑏 = 0, the challenger replies with Encode(crs, 𝑥). If 𝑏 = 1, the

challenger replies with EncodeSF(crs).
3. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1} , which is the output of the

experiment.

We say ΠPTE satisfies mode indistinguishability if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1|𝑏 = 1] − Pr[𝑏′ = 1|𝑏 = 0] | = negl(𝜆)

in the mode indistinguishability security game.

• 𝑘-Trapdoor indistinguishability: Let 𝑋 be a random variable taking on values in X𝜆 . Suppose
H∞(𝑋 ) ≥ 𝑘 . Then, the following distributions are statistically indistinguishable:{
(crs, td𝑥 ) :

(crs, td) ← SetupSF(1𝜆)
𝑥 ← 𝑋, td𝑥 ← SampSF(td, 𝑥)

}
and

{
(crs, 𝑢) : (crs, td) ← SetupSF(1𝜆)

𝑢 ← Samp(1𝜆)

}
5.2 Constructing Big-Key IBE fromWitness Encryption

We now describe our big-key IBE scheme based on (plain) witness encryption:

Construction 5.3 (Big-Key IBE from Witness Encryption). Let 𝜆 ∈ N be a security parameter, ID =

{ID𝜆}𝜆∈N be the identity space,M = {M𝜆}𝜆∈N be the message space, ℓ be a fixed leakage parameter,

𝑁 = 𝑁 (𝜆, ℓ) be a key-size parameter, and 𝑑 = 𝑑 (𝜆) be an output size parameter. Our construction relies

on the following primitives:

• Let ΠWE = (WE.Encrypt,WE.Decrypt) be a witness encryption scheme with message spaceM and

relation RWE (with corresponding language LWE), which is defined as follows:
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Statement: common reference strings crsNIZK, crsSE, crsPTE, a vector of common reference strings

crs(𝐼 )Com indexed by a set 𝐼 ⊂ N, circuit 𝐶 , a tuple of commitments ®𝑐𝐼 , a trapdoor commitment 𝑐𝜏 ,

an identity id, a split encoding ctout, and a privately-testable encoding ctaux
Witness: a split encoding skout, a privately-testable encoding skaux, and a proof 𝜋

Output 1 if all of the following conditions hold:

– NIZK.Verify
(
crsNIZK,𝐶,

(
crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id

)
, 𝜋

)
= 1.

– PTE.Test(crsPTE, skout, ctout) = 0.

– SE.Test(crsSE, skaux, ctaux) = 0.

Otherwise, output 0.

Figure 6: Relation RWE.

• Let H : ID𝜆 → [𝑁 ]𝑑 be a hash function that can be computed in time poly(𝜆, log𝑁 ) and let the

output in [𝑁 ]𝑑 be interpreted as a set of 𝑑 indices of [𝑁 ].

• Let ΠCom = (Com.Setup,Com.Commit,Com.Verify) be a one-time dual-mode commitment scheme

(Definition 2.15) with input space X = {X𝜆}𝜆∈N, and let ℓ𝑥 = ℓ𝑥 (𝜆) be the bit-length of an input. Let(
Scom,Sopen

)
be the simulator associated with the commitment scheme.

• Let ΠSE = (SE.Setup, SE.SetupSF, SE.Encode, SE.EncodeSF, SE.Test) be a split encoding scheme with

tag space ID.

• Let ΠPTE = PTE.(Setup, SetupSF, Samp, SampSF, Encode, EncodeSF, Test) be a privately-testable en-
coding scheme with input space XPTE = {X𝑑

𝜆
}𝜆∈N.

• Let ΠNIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be a NIZK for NP.

• For common reference strings crsSE, crsPTE, define the NP relation R[crsSE, crsPTE] as follows:

Hard-wired: common reference strings crsSE, crsPTE, crs
(𝜏 )
Com

Statement: a vector of common reference string crs(𝐼 )Com indexed by a set 𝐼 ⊂ N, commitments ®𝑐𝐼 ,
𝑐𝜏 , encoding skout, encoding skaux, identity id
Witness: ®𝑟𝐼 , randomness 𝑠out, 𝑠aux, openings ®𝜎𝐼 , 𝜎𝜏 , trapdoor tdSE
Output 1 if either of the following conditions hold:

– skout = PTE.Encode(crsPTE, ®𝑟𝐼 ; 𝑠out) and for each 𝑖 ∈ 𝐼 , Com.Verify(crs(𝑖 )Com, 𝑐𝑖 , 𝑟𝑖 , 𝜎𝑖) = 1.

– skaux = SE.EncodeSF(crsSE, tdSE, id, 0; 𝑠aux) and Com.Verify
(
crs(𝜏 )Com, 𝑐𝜏 , tdSE, 𝜎𝜏

)
= 1.

Otherwise, output 0.

Figure 7: Relation R[crsSE, crsPTE, crs(𝜏 )Com] .

We now construct our big-key IBE scheme ΠbkIBE = (Setup,KeyGen, Encrypt,Decrypt) as follows:
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• Setup(1𝜆, 1ℓ ): On input the security parameter 𝜆, the setup algorithm proceeds as follows:

1. Sample crsSE ← SE.Setup(1𝜆), crsPTE ← PTE.Setup(1𝜆), crsNIZK ← NIZK.Setup(1𝜆).
2. For all 𝑖 ∈ [𝑁 ], sample

𝑟𝑖
r← X𝜆(

crs(𝑖 )Com, td
(𝑖 )
Com, 𝑐𝑖

)
← Com.Setup(1𝜆, hide)

𝜎𝑖 ← Sopen
(
td(𝑖 )Com, 𝑟𝑖

)
.

3. Finally, sample

(
crs(𝜏 )Com, td

(𝜏 )
Com, 𝑐𝜏

)
← Com.Setup(1𝜆, hide).

Let ®𝑐 = (𝑐1, . . . , 𝑐𝑁 ), ®𝑟 = (𝑟1, . . . , 𝑟𝑁 ) and ®𝜎 = (𝜎1, . . . , 𝜎𝑁 ). Output the public parameters

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ] , ®𝑐 , crsNIZK , crsSE , crsPTE , crs

(𝜏 )
Com , 𝑐𝜏

)
(5.1)

and the master secret key msk = (pp, ®𝑟, ®𝜎). For a set 𝐼 ⊆ [𝑁 ], we write ®𝑐𝐼 , ®𝑟𝐼 , and ®𝜎𝐼 to denote the

respective sub-vector of indices in 𝐼 . Similarly, we define crs(𝐼 )Com :=
(
crs(𝑖 )Com

)
𝑖∈𝐼 .

• KeyGen(msk, id): On input the master secret key msk = (pp, ®𝑟, ®𝜎) (with pp parsed according to

Eq. (5.1)) and an identity id ∈ ID𝜆 , the key generation algorithm proceeds as follows:

1. Compute 𝐼 ←H(id).
2. Compute skout ← PTE.Encode(crsPTE, ®𝑟𝐼 ; 𝑠out), where 𝑠out is the encoding randomness.

3. Sample skaux ← SE.Encode(crsSE, 0).
4. Compute𝜋 ← NIZK.Prove

(
crsNIZK,𝐶,

(
crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id

)
,
(
®𝑟𝐼 , 𝑠out,⊥, ®𝜎𝐼 ,⊥,⊥

) )
, where

𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] from Fig. 7.

Output the identity secret key skid = (skout, skaux, 𝜋).

• Encrypt(pp, id,𝑚): On input the public parameters pp (parsed as in Eq. (5.1)), an identity id ∈ ID𝜆

and a message𝑚, the encryption algorithm does the following:

1. Compute 𝐼 ←H(id), sample ctout ← PTE.Samp(1𝜆), ctaux ← SE.Encode(crsSE, 1).
2. Compute ct ← WE.Encrypt(1𝜆,𝑚, ( ®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , id, ctout, ctaux)), where 𝐶 is the circuit

that computes R[crsSE, crsPTE, crs(𝜏 )Com] from Fig. 7 and ®crs = (crsNIZK, crsSE, crsPTE).

Output the ciphertext ct.

• Decrypt(skid, id, ct): On input an identity secret key skid, an identity id ∈ ID𝜆 , and a ciphertext ct,
the decryption algorithm outputsWE.Decrypt(ct, skid).

Theorem 5.4 (Correctness). Suppose ΠSE satisfies tester correctness, ΠPTE satisfies tester correctness, ΠNIZK

satisfies completeness, ΠWE satisfies correctness, and ΠCom satisfies correctness. Then, Construction 5.3 is correct.

Proof. Take any security parameter 𝜆, identity id ∈ ID𝜆 , and message𝑚. Let (pp,msk) ← Setup(1𝜆, 1ℓ ),
where

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ] , ®𝑐 , crsNIZK , crsSE , crsPTE , crs

(𝜏 )
Com , 𝑐𝜏

)
and msk = (pp, ®𝑟, ®𝜎). Let skid = (skout, skaux, 𝜋) ← KeyGen(msk, id) and ct ← Encrypt(pp, id,𝑚). Con-
sider the output of the algorithm Decrypt(skid, id, ct):
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• By construction of KeyGen and correctness of ΠCom, we have

((crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id), (®𝑟𝐼 , 𝑠out,⊥, ®𝜎𝐼 ,⊥,⊥)) ∈ R[crsSE, crsPTE, crs
(𝜏 )
Com],

and 𝜋 ← NIZK.Prove(crsNIZK,𝐶, (crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id), (®𝑟𝐼 , 𝑠out,⊥, ®𝜎𝐼 ,⊥,⊥)).

• By construction of Encrypt and correctness of ΠWE,WE.Decrypt(ct, skid) =𝑚 if

(( ®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , id, ctout, ctaux), (skid)) ∈ RWE,

where 𝐼 ← H(id), ctout ← PTE.Samp(1𝜆), ctaux ← SE.Encode(crsSE, 1), 𝐶 is the circuit that com-

putes R[crsSE, crsPTE, crs(𝜏 )Com] from Fig. 7, and ®crs = (crsNIZK, crsSE, crsPTE).

• By completeness of ΠNIZK, the proof 𝜋 verifies, and by tester correctness for ΠSE and ΠPTE, with

overwhelming probability over the choice of crsPTE and crsSE,

PTE.Test(crsPTE, skout, ctout) = 0

SE.Test(crsSE, skaux, ctaux) = 0.

Thus WE.Decrypt(ct, skid) =𝑚 with overwhelming probability, as required. □

Theorem 5.5 (Efficiency). IfH runs in poly(𝜆, log𝑁 )-time, then Construction 5.3 is efficient.

Proof. This holds by inspection and assumption on H , since the other primitives are all efficient, and

thus, run in poly(𝜆)-time by definition. Furthermore, the KeyGen and Encrypt algorithms only require

poly(𝜆) · 𝑑 (𝜆) bits of msk or pp, which is independent of the leakage parameter ℓ . □

Theorem 5.6 (Adaptive Advantage-Checker Security under Bounded Leakage). Suppose the following
conditions hold:

• The witness encryption scheme ΠWE satisfies semantic security.

• The hash functionH is (𝑘, 𝛼)-expanding where 𝛼 (𝜆) = 𝜔 (log 𝜆).

• The split encoding ΠSE satisfies mode indistinguishability and tester correctness.

• The privately testable encoding ΠPTE satisfies tester correctness, (𝜔 (log 𝜆) · ℓ𝑥 )-trapdoor indistinguisha-
bility, and mode indistinguishability.

• The NIZK ΠNIZK satisfies statistical soundness and computational witness indistinguishability.

• The one-time dual-mode commitment scheme ΠCom satisfies mode indistinguishability and statistical
binding in binding mode.

Then for all polynomially-bounded ℓ = ℓ (𝜆), Construction 5.3 is adaptively advantage-checker secure under
bounded leakage for challenge parameter 𝑘 ≥ ℓ

𝜂𝛼ℓ𝑥
, where 𝜂 ∈ (0, 1) is a constant.

Proof. We define a sequence of hybrid experiments, each parameterized (implicitly) by an (admissible)

adversary A = (A1,A2) and an advantage threshold function 𝜀 = 𝜀 (𝜆):

• Hyb
0
: This is the adaptive advantage-checker security game from Definition 3.1, which we recall

in full below:
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– Setup: The challenger runs crsSE ← SE.Setup(1𝜆), crsPTE ← PTE.Setup(1𝜆), crsNIZK ←
NIZK.Setup(1𝜆). For all 𝑖 ∈ [𝑁 ], it samples 𝑟𝑖

r← X𝜆,
(
crs(𝑖 )Com, td

(𝑖 )
Com, 𝑐𝑖

)
← Com.Setup(1𝜆, hide)

and computes𝜎𝑖 ← Sopen
(
td(𝑖 )Com, 𝑟𝑖

)
. It also samples

(
crs(𝜏 )Com, td

(𝜏 )
Com, 𝑐𝜏

)
← Com.Setup(1𝜆, hide),

and sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ] , ®𝑐 , crsNIZK , crsSE , crsPTE , crs

(𝜏 )
Com , 𝑐𝜏

)
and msk = (pp, ®𝑟, ®𝜎). The challenger gives pp to A1.

– Pre-leakage queries: When A1 makes a query on an identity id ∈ ID𝜆 , the challenger

proceeds as follows:

∗ It computes 𝐼 ← H(id) and encoding keys skout ← PTE.Encode(crsPTE, ®𝑟𝐼 ; 𝑠out) and
skaux ← SE.Encode(crsSE, 0).

∗ Next, it construct the NIZK proof

𝜋 ← NIZK.Prove(crsNIZK,𝐶, (crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id), (®𝑟𝐼 , 𝑠out,⊥, ®𝜎𝐼 ,⊥,⊥)),

where 𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] from Fig. 7.

The challenger replies with skid = (skout, skaux, 𝜋).
– Leakage: After A1 outputs the description of an efficiently-computable leakage function 𝑓 ,

the challenger replies with leak← 𝑓 (msk).
– Post-leakage queries: The challenger responds to post-leakage key queries exactly as in the

pre-leakage phase.

– Challenge: Algorithm A1 outputs a set J ⊆ ID𝜆 of size ≥ 𝑘 , two messages𝑚0,𝑚1, and a

state st.

– Output: The output of Hyb
0
is 𝑏′ = 1 if

∀id ∈ J : AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak) = 1, (5.2)

and 𝑏′ = 0 otherwise. The advantage-checker algorithm AdvCheck is defined as follows:
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Inputs: security parameter 𝜆, threshold 𝜀 ∈ (0, 1), identity id ∈ ID𝜆 , master secret key

msk = (𝑟, 𝜎1, . . . 𝜎𝑁 ), public parameters pp (parsed as in Eq. (5.1)), state st, string leak, and
(oracle) access to an algorithm A

∗ Let 𝑇 = 𝜆/𝜀2 and initialize a counterWINS← 0.

∗ The advantage-checker algorithm now simulates𝑇 independent executions of experiment

Expid(msk, pp, st, leak) for algorithm A.

1. Sample 𝛽
r← {0, 1}.

2. Compute 𝐼 ←H(id), ctout ← PTE.Samp(1𝜆), ctaux ← SE.Encode(crsSE, 1).
3. Compute ct ← WE.Encrypt

(
1
𝜆,𝑚𝛽 ,

(
®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , id, ctout, ctaux

) )
, where

𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] from Fig. 7, and

®crs = (crsNIZK, crsSE, crsPTE).
4. Whenever algorithmAmakes a key-generation query on an identity id ∈ ID𝜆 , com-

pute 𝐼 ←H(id), skout ← PTE.Encode(crsPTE, ®𝑟𝐼 ; 𝑠out), skaux ← SE.Encode(crsSE, 0),
and

𝜋 ← NIZK.Prove
(
crsNIZK,𝐶,

(
crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id

)
,
(
®𝑟𝐼 , 𝑠out,⊥, ®𝜎𝐼 ,⊥,⊥

) )
,

where 𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] from Fig. 7. The

challenger replies to A with identity key skid = (skout, skaux, 𝜋).
5. After A has finished making key-generation queries, it outputs a bit 𝛽 ′ ∈ {0, 1}.
6. If 𝛽 = 𝛽 ′, then incrementWINS←WINS + 1.

∗ Output 1 if WINS ≥ 𝑇
2
+ 𝜀𝑇

2
and 0 otherwise.

Figure 8: Function AdvCheckA (1𝜆, 11/𝜀, id,msk, pp, st, leak) for Construction 5.3.

• Hyb
1
: Same as Hyb

0
, except the challenger changes the split encoding to semi-functional mode:

– Setup: The challenger now samples (crsSE, tdSE) ← SE.SetupSF(1𝜆).
– Key-generation queries: Whenever A1 makes a key-generation query (in the pre-leakage or

the post-leakage phase) orA2 makes a key-generation query (in AdvCheckA2
) on id ∈ ID𝜆 , the

challenger computes skaux ← SE.EncodeSF(crsSE, tdSE, id, 0; 𝑠aux), where 𝑠aux is the encoding
randomness.

– Output: In the AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak) procedure, the challenger now com-

putes ctaux ← SE.EncodeSF(crsSE, tdSE, id, 1) when constructing the challenge ciphertext ct.

• Hyb
2
: Same asHyb

1
except the challenger answers key-generation querieswith thewitness (𝑠aux, 𝜎𝜏 , td):

– Setup: The challenger now computes 𝜎𝜏 ← Sopen
(
td(𝜏 )Com, tdSE

)
.
3

3
Here, we assume that we can interpret tdSE as elements of the input space X𝜆 . Note that this is without loss of generality since

we can always take the binary representation of tdSE and commit bit-by-bit.
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– Key-generation queries: Whenever A1 makes a key-generation query (in the pre-leakage

or the post-leakage phase) orA2 makes a key-generation query (in AdvCheckA2
) on id ∈ ID𝜆 ,

the challenger now constructs the NIZK proof 𝜋 as

𝜋 ← NIZK.Prove
(
crsNIZK,𝐶,

(
crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id), (⊥,⊥, 𝑠aux,⊥, 𝜎𝜏 , tdSE

) )
.

• Hyb
3
: Same as Hyb

2
except the challenger changes the privately-testable encoding to semi-functional

mode:

– Setup: The challenger now samples (crsPTE, tdPTE) ← PTE.SetupSF(1𝜆).
– Key-generation queries: Whenever A1 makes a key-generation query (in the pre-leakage

or the post-leakage phase) orA2 makes a key-generation query (in AdvCheckA2
) on id ∈ ID𝜆 ,

the challenger samples skout ← PTE.EncodeSF(crsPTE).

• Hyb
4
: Same asHyb

3
except during the output phase, for each challenge identity id ∈ J , the challenger

computes

ct(id)out ← PTE.SampSF
(
tdPTE, ®𝑟H(id)

)
.

When computing the advantage-checker algorithm AdvCheck for the identity id ∈ J , the challenger

uses ct(id)out in place of ctout in all 𝑇 iterations. In other words, for each identity id ∈ J , the chal-

lenger now uses the same ctout := ct(id)out in the 𝑇 executions of AdvCheck for id. In addition, in this

experiment, AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak) outputs 1 if

WINS ≥ 𝑇
2

+ 𝜀𝑇
16

and 0 otherwise. Finally, the output of this experiment is 𝑏′ = 1 only if

∃id ∈ J : AdvCheckA2

(
1
𝜆, 11/𝜀, id,msk, pp, st, leak

)
= 1. (5.3)

• Hyb
5
: Same as Hyb

4
except the challenger samples the commitment CRS in binding mode and

constructs the commitments and openings without the simulation algorithms:

– Setup: The challenge now computes the quantities

(
crs(𝑖 )Com, 𝑐𝑖 , 𝜎𝑖

)
as

crs(𝑖 )Com ← Com.Setup(1𝜆, bind) and (𝑐𝑖 , 𝜎𝑖) ← Com.Commit(crsCom, 𝑟𝑖)

for all 𝑖 ∈ [𝑁 ] and
(
crs(𝜏 )Com, 𝑐𝜏 , 𝜎𝜏

)
as

crs(𝜏 )Com ← Com.Setup(1𝜆, bind) and (𝑐𝜏 , 𝜎𝜏 ) ← Com.Commit(crsCom, tdSE) .

• Hyb
6
: Same as Hyb

5
except the challenge constructs the challenge ciphertext ct in the procedure

AdvCheckA2
as ct←WE.Encrypt

(
1
𝜆, 0,

(
®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , id, ctout, ctaux

) )
.

For convenience, we will refer to AdvCheckA (1𝜆, 11/𝜀, id,msk, pp, st, leak) as AdvCheck(id) when the non-

id parameters are fixed in a given context. For an adversary A = (A1,A2), we write Hyb𝑖 (A, 𝜀) to denote

the output ofHyb𝑖 with adversaryA and inner threshold function 𝜀. Our goal is to show that for all efficient

adversaries A and all inverse polynomial functions 𝜀 = 1/poly(𝜆), Pr[Hyb
0
(A, 𝜀) = 1] = negl(𝜆). We now

analyze each pair of adjacent experiments:
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Lemma 5.7. Suppose ΠSE satisfies mode indistinguishability. Then, for all efficient and admissible adversaries
A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that for all
𝜆 ∈ N,

Pr[Hyb
1
(A, 𝜀) = 1] ≥ Pr[Hyb

0
(A, 𝜀) = 1] − negl(𝜆) .

Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb
0
and Hyb

1
with non-negligible

advantage 𝛿 . We use A to construct an algorithm B that breaks mode indistinguishability:

1. At the beginning of the game, algorithm B gets crsSE from the mode indistinguishability chal-

lenger. Algorithm B samples crsPTE ← PTE.Setup(1𝜆) and crsNIZK ← NIZK.Setup(1𝜆). For all

𝑖 ∈ [𝑁 ], algorithm B samples 𝑟𝑖
r← X𝜆,

(
crs(𝑖 )Com, td

(𝑖 )
Com, 𝑐𝑖

)
← Com.Setup(1𝜆, hide) and computes

𝜎𝑖 ← Sopen(td(𝑖 )Com, 𝑟𝑖). AlgorithmB also samples

(
crs(𝜏 )Com, td

(𝜏 )
Com, 𝑐𝜏

)
← Com.Setup(1𝜆, hide) and sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ] , ®𝑐 , crsNIZK , crsSE , crsPTE , crs

(𝜏 )
Com , 𝑐𝜏

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A.

2. When algorithm A makes a key-generation query on id ∈ ID𝜆 , algorithm B computes skaux by
sending an encoding query (id, 0) to the mode indistinguishability challenger, and setting skaux as the
output of the query. Algorithm B computes 𝐼 ←H(id), skout ← PTE.Encode(crsPTE, ®𝑟𝐼 ; 𝑠out), and

𝜋 ← NIZK.Prove(crsNIZK,𝐶, (crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id), (®𝑟𝐼 , 𝑠out,⊥, ®𝜎𝐼 ,⊥,⊥)),

where 𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7). Algorithm B gives the key

skid = (skout, skaux, 𝜋) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies with

leak = 𝑓 (msk). In the challenge phase, algorithm A outputs J ⊆ ID𝜆 of size at least 𝑘 , messages

𝑚0,𝑚1, and a state st.

4. For all id ∈ J and 𝑖 ∈ [𝑇 ], algorithm B computes ctaux by sending an encoding query (id, 1) to
the mode indistinguishability challenger, and setting ctaux as the output of the query. Algorithm
B computes 𝐼 ←H(id), samples 𝛽

r← {0, 1}, ctout ← PTE.Samp(1𝜆), and constructs the challenge

ciphertext ct in iteration 𝑖 of the procedure AdvCheck(id) as

ct←WE.Encrypt
(
1
𝜆,𝑚𝛽 ,

(
®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , id, ctout, ctaux

) )
,

where𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).
Algorithm B outputs the output of the experiment.

If algorithm A is admissible, then so is algorithm B since the identities correspond to the tags in ΠSE

(namely, the identities in the challenge set J are disjoint from the ones that algorithm A queried to the

key-generation oracle). If the setup and encodings are in normal mode, algorithm B simulates Hyb
0
(A, 𝜀).

If the setup and encodings are in semi-functional mode, algorithm B simulatesHyb
1
(A, 𝜀). Thus, algorithm

B has advantage 𝛿 in the mode indistinguishability game. □

Lemma 5.8. Suppose ΠNIZK satisfies computational witness indistinguishability. Then, for all efficient and
admissible adversaries A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function
negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
2
(A, 𝜀) = 1] ≥ Pr[Hyb

1
(A, 𝜀) = 1] − negl(𝜆) .
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Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb
1
and Hyb

2
with non-negligible

advantage 𝛿 . We useA to construct an algorithm B that breaks computational witness-indistinguishability:

1. At the beginning of the game, algorithm B gets (1𝜆, crsNIZK) from the witness indistinguishability

challenger. Algorithm B samples crsPTE ← PTE.Setup(1𝜆) and (crsSE, tdSE) ← SE.SetupSF(1𝜆). For
all 𝑖 ∈ [𝑁 ], algorithm B samples 𝑟𝑖

r← X𝜆,
(
crs(𝑖 )Com, td

(𝑖 )
Com, 𝑐𝑖

)
← Com.Setup(1𝜆, hide) and com-

putes 𝜎𝑖 ← Sopen(td(𝑖 )Com, 𝑟𝑖). Algorithm B samples

(
crs(𝜏 )Com, td

(𝜏 )
Com, 𝑐𝜏

)
← Com.Setup(1𝜆, hide) and

computes 𝜎𝜏 ← Sopen(td(𝜏 )Com, tdSE), which is possible by assumption. Algorithm B sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ] , ®𝑐 , crsNIZK , crsSE , crsPTE , crs

(𝜏 )
Com , 𝑐𝜏

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A.

2. When algorithm A makes a key-generation query on id ∈ ID𝜆 , algorithm B computes 𝐼 ←H(id),
skout ← PTE.Encode(crsPTE, ®𝑟𝐼 ; 𝑠out) and skaux ← SE.EncodeSF(crsSE, tdSE, id, 0; 𝑠aux), where 𝑠aux is
the encoding randomness. Algorithm B computes 𝜋 by querying the proof oracle in the witness

indistinguishability game with input (𝐶, 𝑥,𝑤0,𝑤1) where

𝑥 = (crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id)
𝑤0 = (®𝑟𝐼 , 𝑠out,⊥, ®𝜎𝐼 ,⊥,⊥)
𝑤1 = (⊥,⊥, 𝑠aux,⊥, 𝜎𝜏 , tdSE)),

where 𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7). Algorithm B gives the identity

secret key skid = (skout, skaux, 𝜋) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies with

leak = 𝑓 (msk). In the challenge phase, algorithm A outputs J ⊆ ID𝜆 of size at least 𝑘 , messages

𝑚0,𝑚1, and a state st.

4. For all id ∈ J and 𝑖 ∈ [𝑇 ], algorithm B computes 𝐼 ← H(id), samples 𝛽
r← {0, 1}, ctout ←

PTE.Samp(1𝜆), ctaux ← SE.EncodeSF(crsSE, tdSE, id, 1), and constructs the challenge ciphertext ct in
iteration 𝑖 of the procedure AdvCheck(id) as

ct←WE.Encrypt
(
1
𝜆,𝑚𝛽 ,

(
®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , id, ctout, ctaux

) )
,

where𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).
Algorithm B outputs the output of the experiment.

If the challenger constructs the proofs 𝜋 using witness𝑤0, then algorithm B perfectly simulates Hyb
1
. If

the challenger constructs 𝜋 using witness𝑤1, then algorithm B perfectly simulates Hyb
2
. Thus, algorithm

B breaks computational witness-indistinguishability with advantage 𝛿 . □

Lemma 5.9. Suppose ΠPTE satisfies mode indistinguishability. Then, for all efficient and admissible adversaries
A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that for all
𝜆 ∈ N,

Pr[Hyb
3
(A, 𝜀) = 1] ≥ Pr[Hyb

2
(A, 𝜀) = 1] − negl(𝜆) .
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Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb
2
and Hyb

3
with non-negligible

probability 𝛿 . We use A to construct an algorithm B that breaks mode indistinguishability:

1. At the beginning of the game, algorithm B gets crsPTE from the mode indistinguishability chal-

lenger. Algorithm B samples (crsSE, tdSE) ← SE.SetupSF(1𝜆) and crsNIZK ← NIZK.Setup(1𝜆). For
all 𝑖 ∈ [𝑁 ], algorithm B samples 𝑟𝑖

r← X𝜆,
(
crs(𝑖 )Com, td

(𝑖 )
Com, 𝑐𝑖

)
← Com.Setup(1𝜆, hide) and computes

𝜎𝑖 ← Sopen(td(𝑖 )Com, 𝑟𝑖). Algorithm B also samples

(
crs(𝜏 )Com, td

(𝜏 )
Com, 𝑐𝜏

)
← Com.Setup(1𝜆, hide) and

computes 𝜎𝜏 ← Sopen(td(𝜏 )Com, tdSE). Algorithm B sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ] , ®𝑐 , crsNIZK , crsSE , crsPTE , crs

(𝜏 )
Com , 𝑐𝜏

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A.

2. When algorithm A makes a key-generation query on id ∈ ID𝜆 , algorithm B computes 𝐼 ←H(id)
and makes an encoding query on ®𝑟𝐼 to the mode indistinguishability challenger to get skout. Algorithm
B computes skaux ← SE.EncodeSF(crsSE, tdSE, id, 0; 𝑠aux), where 𝑠aux is the encoding randomness, and

𝜋 ← NIZK.Prove(crsNIZK,𝐶, (crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id), (⊥,⊥, 𝑠aux,⊥, 𝜎𝜏 , td)),

where 𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7). Algorithm B gives the identity

secret key skid = (skout, skaux, 𝜋) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies with

leak = 𝑓 (msk). In the challenge phase, algorithm A outputs J ⊆ ID𝜆 of size at least 𝑘 , messages

𝑚0,𝑚1, and a state st.

4. For all id ∈ J and 𝑖 ∈ [𝑇 ], algorithm B computes 𝐼 ← H(id), samples 𝛽
r← {0, 1}, ctout ←

PTE.Samp(1𝜆), ctaux ← SE.EncodeSF(crsSE, tdSE, id, 1), and constructs the challenge ciphertext ct in
iteration 𝑖 of the procedure AdvCheck(id) as

ct←WE.Encrypt
(
1
𝜆,𝑚𝛽 ,

(
®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , id, ctout, ctaux

) )
,

where𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).
Algorithm B outputs the output of the experiment.

If the setup and encodings are in normal mode, algorithm B simulates Hyb
2
(A, 𝜀). If the setup and encod-

ings are in semi-functional mode, algorithm B simulates Hyb
3
(A, 𝜀). Thus, algorithm B has advantage

𝛿 in the mode indistinguishability game. □

Lemma 5.10. SupposeH is (𝑘, 𝛼)-expanding, where 𝛼 (𝜆) = 𝜔 (log 𝜆) and 𝑘 ≥ ℓ
𝜂𝛼ℓ𝑥

Suppose also that ΠPTE

satisfies (𝜔 (log 𝜆) · ℓ𝑥 )-trapdoor indistinguishability. Then, for all admissible adversaries A and inverse
polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
4
(A, 𝜀) = 1] ≥ 𝜀

4

· Pr[Hyb
3
(A, 𝜀) = 1] − negl(𝜆) .

Proof. Let 𝛿 = Pr[Hyb
3
(A, 𝜀) = 1]. First, note that lowering the threshold forWINS to 𝑇

2
+ 𝜀𝑇

16
and changing

the condition for the experiment to output 1 from Eq. (5.2) to Eq. (5.3) only increases the probability that

the experiment outputs 1. Other than these changes, the only difference between Hyb
3
and Hyb

4
is the

distribution of ctout:
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• In Hyb
3
, the challenger samples a fresh ctout ← PTE.Samp(1𝜆) on each of the 𝑇 iterations of the

advantage checker.

• In Hyb
4
, the challenger samples ctout ← PTE.SampSF(tdPTE, ®𝑟H(id) ) and reuses it across the 𝑇 iter-

ations of the advantage checker.

We now proceed via an averaging argument. Specifically, for each 𝑖 ∈ [𝑇 ], let 𝑋 id
𝑖 ∈ {0, 1} be the indicator

random variable for whether algorithm A2’s output is correct on the 𝑖th iteration of the advantage checker

(i.e., 𝑋 id
𝑖 = 1 if 𝛽 ′ = 𝛽 in the 𝑖th iteration of AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak)) in Hyb

3
(when

ctout ← PTE.Samp(1𝜆)). Since the 𝑇 iterations of the advantage-checker algorithm are independent, the
random variables 𝑋 id

1
, . . . , 𝑋 id

𝑇
are identically distributed. Let 𝑋 id

be the distribution of each 𝑋 id
𝑖 . We now

show the following claims:

Claim 5.11. Let A be any admissible adversary and (msk, pp, st, leak,J) be sampled as in Hyb
3
(A, 𝜀). We

have:
Pr

(msk,pp,st,leak,J)

[
∀id ∈ J : Pr[𝑋 id = 1] ≥ 1/2 + 𝜀/4

]
≥ 𝛿 − negl(𝜆),

where the inner probability is over the randomness of an iteration of AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak).

Proof. Suppose Pr[𝑋 id = 1] < 1/2 + 𝜀/4 for some id ∈ J . Since 𝑋 id
is an indicator random variable, this

means E[𝑋 id] < 1/2 + 𝜀/4. LetWINS =
∑

𝑖∈[𝑇 ] 𝑋
id
𝑖 . By linearity of expectation, this means

E[WINS] =
∑︁
𝑖∈[𝑇 ]

E[𝑋 id] ≤ 𝑇
2

+ 𝜀𝑇
4

.

By Hoeffding’s inequality (Fact 2.1),

Pr[WINS −𝑇 /2 − 𝜀𝑇 /2 > 0] ≤ Pr[|WINS −𝑇 /2 − 𝜀𝑇 /4| > 𝜀𝑇 /4] ≤ 2
−Ω (𝑇𝜀2/16) = 𝜈 (𝜆),

where 𝜈 is some negligible function. This means that when E[𝑋 id] < 1/2 + 𝜀/4 for some id ∈ J , the

probability thatHyb
3
(A, 𝜀) = 1 is atmost𝜈 (𝜆). Thus, if Pr[Hyb

3
(A, 𝜀) = 1] = 𝛿 , then it must be the case that

Pr[∀id ∈ J : E[𝑋 id] ≥ 1/2 + 𝜀/4] ≥ 𝛿 − 𝜈,

as required. □

Claim 5.12. Let 𝐸idavg be the event that fixing ctout = ct(id)out where ct(id)out ← PTE.Samp(1𝜆) across all 𝑇
iterations of AdvCheck(id) results in an output of 1 for AdvCheck(id) when the WINS threshold is 𝑇

2
+ 𝜀𝑇

16
.

Then, for all id ∈ J ,

Pr

[
𝐸idavg

]
≥ 𝜀𝛿

4

− negl(𝜆),

where the probability is taken over the randomness of (msk, pp, st, leak,J) in Hyb
4
.

Proof. Take any id ∈ J . First, we say that a ciphertext ctout in the support of PTE.Samp(1𝜆) is “good”
if Pr[𝑋 id = 1] ≥ 1/2 + 𝜀/8, where the probability is conditioned on the fixed choice of ctout. Suppose
Pr[𝑋 id = 1] ≥ 1/2 + 𝜀/4. Then, by an averaging argument,

Pr[ctout is good : ctout ← PTE.Samp(1𝜆)] > 𝜀

4

.
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We now show that AdvCheck(id) outputs 1 with probability 1 − negl(𝜆) whenever ctout is good and the

WINS threshold is 𝑇 /2 + 𝜀𝑇 /16. When ctout is good,

E[WINS] =
∑︁
𝑖∈[𝑇 ]

E[𝑋 id] = 𝑇
2

+ 𝜀𝑇
8

.

By Hoeffding’s inequality (Fact 2.1),

Pr[WINS −𝑇 /2 < 𝜀𝑇 /16] ≤ Pr[|WINS −𝑇 /2 − 𝜀𝑇 /8| > 𝜀𝑇 /16] ≤ 2
−Ω (𝑇𝜀2/256) = negl(𝜆) . (5.4)

Thus, whenever ctout is good and the WINS threshold is 𝑇 /2 + 𝜀𝑇 /16, we conclude that AdvCheck(id)
outputs 1 with overwhelming probability. Next, by Claim 5.11, with probability at least 𝛿 − negl(𝜆), we
have that for all id ∈ J , Pr[𝑋 id = 1] ≥ 1/2 + 𝜀/4. Thus, for every id ∈ J , with probability 𝜀𝛿/4 − negl(𝜆),
it will be the case that Pr[𝑋 id = 1] ≥ 1/2 + 𝜀/4 and ctout ← PTE.Samp(1𝜆) is good. When this is the case,

Eq. (5.4) says that the probability AdvCheck(id) outputting 0 is negligible. Thus, we conclude that

Pr

[
𝐸idavg

]
≥ Pr

[
WINS ≥ 𝑇

2

+ 𝜀𝑇
16

:

Pr[𝑋 id = 1] ≥ 1/2 + 𝜀/4
ctout ← PTE.Samp(1𝜆) is good

]
− negl(𝜆)

≥ 𝜀𝛿
4

− negl(𝜆).

The claim follows. □

Proof of Lemma 5.10. We now return to the proof of Lemma 5.10. Let 𝐸idtd be the event that 𝐸
id
avg occurs

when ctout ← PTE.SampSF(tdPTE, ®𝑟H(id) ); namely, when ctout is sampled according to the specification of

Hyb
4
. Note that when 𝐸idtd occurs for any id ∈ J , then Hyb

4
(A, 𝜀) outputs 1. To argue this, we first appeal

to trapdoor indistinguishability to show that there exists an identity id ∈ J such that

Pr[𝐸idtd] ≥ Pr[𝐸idavg] − negl(𝜆) .

To do so, we lower bound the entropy of the bits {®𝑟H(id) }id∈J conditioned on the tuple (pp,Q, leak,J),
where Q is the adversary’s view from the key-generation queries. Fix any 𝑘 identities id1, . . . , id𝑘 ∈ J .

SinceH is expanding,H(id1), . . . ,H(id𝑘 ) contains at least 𝛼𝑘 distinct indices of [𝑁 ], which correspond

to 𝛼𝑘 · ℓ𝑥 total bits of msk. By construction, the bits ®𝑟 are independent of (pp,Q) in Hyb
4
and 𝜂 < 1. Thus,

we can appeal to Lemma 2.2 to get the following:

H∞({®𝑟H(id𝑖 ) }𝑖∈[𝑘 ] | pp,Q, leak) ≥ H∞({®𝑟H(id𝑖 ) }𝑖∈[𝑘 ] | pp,Q) − |leak|
≥ H∞({®𝑟H(id𝑖 ) }𝑖∈[𝑘 ]) − |leak|
= 𝛼𝑘ℓ𝑥 − 𝜂𝛼𝑘ℓ𝑥
= (1 − 𝜂)𝛼𝑘ℓ𝑥 .

By Lemma 2.2, with probability 1 − 2−𝜔 (log𝜆) = 1 − negl(𝜆) over the fixed choice of (pp,Q, leak), we have

H∞({®𝑟H(id𝑖 ) }𝑖∈[𝑘 ]) ≥ (1 − 𝜂)𝛼𝑘ℓ𝑥 − 𝜔 (log 𝜆) .

Moreover, by Lemma 2.3, there exists random variable D[𝑘 ] over [𝑘] such that

H∞(®𝑟 𝐽 | D[𝑘 ]) ≥
(1 − 𝜂)𝛼𝑘ℓ𝑥 − 𝜔 (log 𝜆)

𝑘
− log(𝑘),
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where 𝐽 = H(idD[𝑘 ] ). By Lemma 2.2, we have with probability 1 − 2−𝜔 (log𝜆) = 1 − negl(𝜆) over the choice
of 𝑖 ← D[𝑘 ] ,

H∞(®𝑟H(id𝑖 ) | D[𝑘 ] = 𝑖) ≥ H∞(𝑟 𝐽 | D[𝑘 ]) − 𝜔 (log 𝜆) .

Thus, with overwhelming probability over id∗ ← idD[𝑘 ] , we have H∞(®𝑟H(id∗ ) ) = (1 − 𝜂)𝛼ℓ𝑥 − 𝜔 (log 𝜆) for
fixed (pp,Q,J , leak). Since 𝛼ℓ𝑥 = 𝜔 (log 𝜆) · ℓ𝑥 by assumption, we can appeal to (𝜔 (log 𝜆) · ℓ𝑥 )-trapdoor
indistinguishability with overwhelming probability in the id∗ copy of the game. This means the distribution

of ctout ← PTE.SampSF(tdPTE, ®𝑟H(id∗ ) ) is statistically close to the distribution of ctout ← PTE.Samp(1𝜆).
Correspondingly, this means

Pr[𝐸id∗td ] ≥ Pr[𝐸id∗avg] − negl(𝜆) .

By Claim 5.12, Pr[𝐸id∗avg] ≥ 𝜀𝛿/4 − negl(𝜆). Finally, by definition of 𝛿 ,

Pr[Hyb
4
(A, 𝜀) = 1] ≥ Pr[𝐸id∗td ] ≥

𝜀𝛿

4

− negl(𝜆) = 𝜀

4

· Pr[Hyb
3
(A, 𝜀) = 1] − negl(𝜆) . □

Lemma 5.13. Suppose ΠCom satisfies mode indistinguishability. Then, for all efficient and admissible adver-
saries A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that
for all 𝜆 ∈ N,

Pr[Hyb
5
(A, 𝜀) = 1] ≥ Pr[Hyb

4
(A, 𝜀) = 1] − negl(𝜆) .

Proof. We start by defining a sequence of intermediate hybrid experiments:

• Hyb
4,0: Same as Hyb

4
. In particular, the components (crs(𝑖 )Com, 𝑐𝑖 , 𝜎𝑖)𝑖∈[𝑁 ] in the setup phase are

sampled as (
crs(𝑖 )Com, td

(𝑖 )
Com, 𝑐𝑖

)
← Com.Setup(1𝜆, hide), 𝜎𝑖 ← Sopen(td(𝑖 )Com, 𝑟𝑖) .

Additionally,

(
crs(𝜏 )Com, td

(𝜏 )
Com, 𝑐𝜏

)
← Com.Setup(1𝜆, hide), 𝜎𝜏 ← Sopen(td(𝜏 )Com, tdSE).

• Hyb
4,𝑖 : Same as Hyb

4,0, except for all 𝑗 ≤ 𝑖 the challenger samples the components (crs( 𝑗 )Com, 𝑐 𝑗 , 𝜎 𝑗 ) as

crs( 𝑗 )Com ← Com.Setup(1𝜆, bind), (𝑐 𝑗 , 𝜎 𝑗 ) ← Com.Commit(crs( 𝑗 )Com, 𝑟 𝑗 )

• Hyb
4,𝑁+1: Same as Hyb

4,𝑁 except the challenger samples (crs(𝜏 )Com, 𝑐𝜏 , 𝜎𝜏 ) as

crs(𝜏 )Com ← Com.Setup(1𝜆, bind), (𝑐𝜏 , 𝜎𝜏 ) ← Com.Commit(crsCom, tdSE) .

This is the same as Hyb
5
.

We now appeal to mode indistinguishability of ΠCom to show that for all 𝑖 ∈ [𝑁 + 1], Hyb
4,𝑖−1 and Hyb

4,𝑖

are statistically indistinguishable. We omit the proof of indistinguishability for Hyb
4,𝑁 and Hyb

4,𝑁+1 since
it is analogous.

Claim 5.14. Suppose the conditions in Lemma 5.13 hold. Then, for all 𝑖 ∈ [𝑁 +1], admissible adversariesA, and
inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
4,𝑖 (A, 𝜀) = 1] ≥ Pr[Hyb

4,𝑖−1(A, 𝜀) = 1] − negl(𝜆) .

Proof. Suppose there exists an adversary A that distinguishes Hyb
4,𝑖−1 and Hyb

4,𝑖 for some 𝑖 ∈ [𝑁 ] with
non-negligible probability 𝛿 . We use A to construct an algorithm B that breaks mode indistinguishability:
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1. At the beginning of the game, algorithm B gets crs(𝑖 )Com from the mode indistinguishability chal-

lenger. Algorithm B samples (crsSE, tdSE) ← SE.SetupSF(1𝜆), (crsPTE, tdPTE) ← PTE.SetupSF(1𝜆),
and crsNIZK ← NIZK.Setup(1𝜆). For all 𝑗 ∈ [𝑁 ], algorithm B samples 𝑟 𝑗

r← X𝜆 . For 𝑗 < 𝑖 , algorithm
B computes regular commitments and openings

crs( 𝑗 )Com ← Com.Setup(1𝜆, bind), (𝑐 𝑗 , 𝜎 𝑗 ) ← Com.Commit(crs( 𝑗 )Com, 𝑟 𝑗 ) .

Algorithm B submits 𝑟𝑖 to the mode indistinguishability challenger to get (𝑐𝑖 , 𝜎𝑖). For 𝑗 > 𝑖 , algorithm
B computes simulated commitments and openings(

crs( 𝑗 )Com, td
( 𝑗 )
Com, 𝑐 𝑗

)
← Com.Setup(1𝜆, hide), 𝜎 𝑗 ← Sopen(td( 𝑗 )Com, 𝑟 𝑗 ) .

Algorithm B also samples

(
crs(𝜏 )Com, td

(𝜏 )
Com, 𝑐𝜏

)
← Com.Setup(1𝜆, hide) and computes the simulated

opening 𝜎𝜏 ← Sopen(td(𝜏 )Com, tdSE). Algorithm B sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ] , ®𝑐 , crsNIZK , crsSE , crsPTE , crs

(𝜏 )
Com , 𝑐𝜏

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A.

2. When algorithm A makes a key-generation query on id ∈ ID𝜆 , algorithm B computes 𝐼 ←H(id),
skout ← PTE.EncodeSF(crsPTE), skaux ← SE.EncodeSF(crsSE, tdSE, id, 0; 𝑠aux), where 𝑠aux is the encod-
ing randomness, and

𝜋 ← NIZK.Prove(crsNIZK,𝐶, (crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id), (⊥,⊥, 𝑠aux,⊥, 𝜎𝜏 , td)),

where 𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7). Algorithm B gives the identity

secret key skid = (skout, skaux, 𝜋) to algorithm A.

3. When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies with

leak = 𝑓 (msk). In the challenge phase, algorithm A outputs J ⊆ ID𝜆 of size at least 𝑘 , messages

𝑚0,𝑚1, and a state st.

4. For all id ∈ J , algorithm B computes 𝐼 ←H(id) and ctout ← PTE.SampSF(tdPTE, ®𝑟𝐼 ). Then, for each
𝑖 ∈ [𝑇 ], algorithm B samples 𝛽

r← {0, 1} , ctaux ← SE.EncodeSF(crsSE, tdSE, id, 1), and constructs the

challenge ciphertext ct according to the specification of iteration 𝑖 of the procedure AdvCheck(id)
in Hyb

4
and Hyb

5
:

ct←WE.Encrypt
(
1
𝜆,𝑚𝛽 ,

(
®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , id, ctout, ctaux

) )
,

where𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).
Algorithm B outputs the output of the experiment.

If the challenger samples the CRS and the commitments in hiding mode, then algorithm B simulates

an execution of Hyb
4,𝑖−1(A, 𝜀). Conversely, if the challenger samples the CRS and the commitments

in binding mode, algorithm B simulates an execution of Hyb
4,𝑖 (A, 𝜀). Thus, algorithm B breaks mode

indistinguishability with advantage 𝛿 . □

The lemma now follows from Claim 5.14 and a standard hybrid argument. □
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Lemma 5.15. Suppose ΠWE satisfies semantic security, ΠSE and ΠPTE satisfy tester correctness, ΠNIZK satis-
fies statistical soundness, and ΠCom satisfies statistical binding in binding mode. Then, for all efficient and
admissible adversaries A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function
negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
6
(A, 𝜀) = 1] ≥ Pr[Hyb

5
(A, 𝜀) = 1] − negl(𝜆) .

Proof. We define a sequence of intermediate hybrids:

• Hyb
5,1,0: Same as Hyb

5
. Notably, for id ∈ J and 𝑖 ∈ [𝑇 ], the challenger samples 𝛽

r← {0, 1}, 𝐼 ←
H(id), ctout ← PTE.SampSF(tdPTE, ®𝑟𝐼 ), ctaux ← SE.EncodeSF(crsSE, tdSE, id, 1), and computes the

challenge ciphertext in iteration 𝑖 of AdvCheck(id) as

ct←WE.Encrypt
(
1
𝜆,𝑚𝛽 ,

(
®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , id, ctout, ctaux

) )
,

where𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).

• Hyb
5,𝑖, 𝑗 : Same as Hyb

5
except for all (𝑖′, 𝑗 ′) such that 𝑖′ < 𝑖 or 𝑖′ = 𝑖, 𝑗 ′ ≤ 𝑗 , the challenger sam-

ples 𝐼 ←H(J [𝑖′]), ctout ← PTE.SampSF(tdPTE, ®𝑟𝐼 ), ctaux ← SE.EncodeSF(crsSE, tdSE,J [𝑖′], 1), and
computes the challenge ciphertext in the ( 𝑗 ′)th execution of ExpJ[𝑖

′ ]
in AdvCheck as

ct←WE.Encrypt(1𝜆, 0, ( ®crs,𝐶, crs(𝐼 )Com, 𝑐𝐼 , 𝑐𝜏 ,J [𝑖
′], ctout, ctaux)),

where𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).
Note that Hyb

5,𝑘,𝑇 is the same as Hyb
6
and that Hyb

5,𝑖,𝑇 is the same as Hyb
5,𝑖+1,0 for 𝑖 ∈ [𝑘 − 1].

We now appeal to semantic security of ΠWE to show that Hyb
5,𝑖, 𝑗 and Hyb

5,𝑖, 𝑗−1 are computationally

indistinguishable for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑇 ].

Claim 5.16. Suppose the conditions in Lemma 5.15 hold. Then for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑇 ], efficient and admissible
adversaries A, and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl(·) such
that for all 𝜆 ∈ N,

Pr[Hyb
5,𝑖, 𝑗 (A, 𝜀) = 1] ≥ Pr[Hyb

5,𝑖, 𝑗−1(A, 𝜀) = 1] − negl(𝜆).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb
5,𝑖, 𝑗 and Hyb

5,𝑖, 𝑗−1 with non-

negligible advantage 𝛿 . We use A to construct an algorithm B that breaks semantic security of ΠWE:

1. Algorithm B runs the setup through challenge phases as in Hyb
5
with A:

(a) Algorithm B samples (crsSE, tdSE) ← SE.SetupSF(1𝜆), (crsPTE, tdPTE) ← PTE.SetupSF(1𝜆), and
crsNIZK ← NIZK.Setup(1𝜆). For all 𝑖 ∈ [𝑁 ], algorithm B samples components 𝑟𝑖

r← X𝜆 ,
crs(𝑖 )Com ← Com.Setup(1𝜆, bind) and (𝑐𝑖 , 𝜎𝑖) ← Com.Commit(crs(𝑖 )Com, 𝑟𝑖). Algorithm B also

samples crs(𝜏 )Com ← Com.Setup(1𝜆, bind) and (𝑐𝜏 , 𝜎𝜏 ) ← Com.Commit(crsCom, tdSE). Algo-

rithm B sets

pp =

({
crs(𝑖 )Com

}
𝑖∈[𝑁 ] , ®𝑐 , crsNIZK , crsSE , crsPTE , crs

(𝜏 )
Com , 𝑐𝜏

)
and msk = (pp, ®𝑟, ®𝜎)

and gives pp to A.
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(b) When algorithm A makes a key-generation query on id ∈ ID𝜆 , algorithm B computes

𝐼 ← H(id), skout ← PTE.EncodeSF(crsPTE), skaux ← SE.EncodeSF(crsSE, tdSE, id, 0; 𝑠aux),
where 𝑠aux is the encoding randomness, and

𝜋 ← NIZK.Prove(crsNIZK,𝐶, (crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id), (⊥,⊥, 𝑠aux,⊥, 𝜎𝜏 , td)),

where 𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7). Algorithm B gives the

identity secret key skid = (skout, skaux, 𝜋) to algorithm A.

(c) When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies

with leak = 𝑓 (msk). In the challenge phase, algorithm A outputs J ⊆ ID𝜆 of size at least 𝑘 ,

messages𝑚0,𝑚1, and a state st.

2. For all (𝑖′, 𝑗 ′) such that 𝑖′ < 𝑖 or 𝑖′ = 𝑖, 𝑗 ′ < 𝑗 , algorithm B computes 𝐼 ← H(J [𝑖′]), ctout ←
PTE.SampSF(tdPTE, ®𝑟𝐼 ), ctaux ← SE.EncodeSF(crsSE, tdSE,J [𝑖′], 1), and constructs the challenge ci-

phertext in the 𝑗 ′th execution of ExpJ[𝑖
′ ]
in AdvCheck as

ct←WE.Encrypt(1𝜆, 0, ( ®crs,𝐶, crs(𝐼 )Com, 𝑐𝐼 , 𝑐𝜏 ,J [𝑖
′], ctout, ctaux)),

where𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).

3. For the 𝑗 th execution of ExpJ[𝑖 ] , algorithmB computes 𝐼 ←H(J [𝑖]), ctout ← PTE.SampSF(tdPTE, ®𝑟𝐼 ),
ctaux ← SE.EncodeSF(crsSE, tdSE,J [𝑖], 1), and sets

𝑥 = ( ®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 ,J [𝑖], ctout, ctaux),

where𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).
Algorithm B samples 𝛽

r← {0, 1} , sends (𝑥,𝑚𝛽 , 0) to the WE challenger, and uses the response ct
from the WE challenger as the challenge ciphertext in this execution.

4. In the remaining executions of ExpJ[𝑖
′ ]
for 𝑖′ ≥ 𝑖 , algorithm B samples components 𝛽

r← {0, 1}, 𝐼 ←
H(J [𝑖′]), ctout ← PTE.SampSF(tdPTE, ®𝑟𝐼 ), ctaux ← SE.EncodeSF(crsSE, tdSE,J [𝑖′], 1), and constructs
the challenge ciphertext as

ct←WE.Encrypt(1𝜆,𝑚𝛽 , ( ®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 ,J [𝑖
′], ctout, ctaux)),

where𝐶 is the circuit that computes R[crsSE, crsPTE, crs(𝜏 )Com] (Fig. 7), and ®crs = (crsNIZK, crsSE, crsPTE).
Algorithm B outputs the output of the experiment.

If ct from the WE challenger is constructed using𝑚𝛽 , algorithm B simulates Hyb
5,𝑖, 𝑗−1(A, 𝜀). If ct from

the WE challenger is constructed using 0, algorithm B simulates Hyb
5,𝑖, 𝑗 (A, 𝜀). We now show that for

id = J [𝑖] the statement

𝑥 = ( ®crs,𝐶, crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , id, ctout, ctaux)
sampled in Step 3 of the above reduction is a false statement with overwhelming probability. In particular,

we show that for candidate witness𝑤 = (skout, skaux, 𝜋)

NIZK.Verify(crsNIZK,𝐶, (crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id), 𝜋) = 1 =⇒
PTE.Test(crsPTE, skout, ctout) = 1

or
SE.Test(crsSE, skaux, ctaux) = 1.

with 1 − negl(𝜆) probability over the choice of pp, where 𝐼 = H(id):
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• First, ®𝑐 is an honestly-generated commitment to ®𝑟 and 𝑐𝜏 is an honestly-generated commitment to

tdSE. Since ΠCom is statistically binding, with overwhelming probability over the choice of crs(𝐼 )Com

and crs(𝜏 )Com, the only valid openings for ®𝑐𝐼 is to ®𝑟𝐼 = ®𝑟H(id) and 𝑐𝜏 opens only to tdSE except with

negligible probability over the choice of crs(𝐼 )Com and crs(𝜏 )Com.

• SinceNIZK.Verify(crsNIZK,𝐶, (crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id), 𝜋) andΠNIZK is statistically sound, it must

be the case that (crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id) is a true statement with overwhelming probability over

the choice of crsNIZK. This means that either skout = PTE.Encode(crsPTE, ®𝑟H(id) ; 𝑠out) or skaux =

SE.EncodeSF(crsSE, tdSE, id, 0; 𝑠aux) for some randomness 𝑠out, 𝑠aux. We consider the two possibilities:

– Suppose skout = PTE.Encode(crsPTE, ®𝑟H(id) ; 𝑠out) for some 𝑠out. Now, the reduction algorithm

samples ctout ← SampSF(tdPTE, ®𝑟H(id) ). By tester correctness of ΠPTE, this means

PTE.Test(crsPTE, skout, ctout) = 1.

– Suppose skaux = SE.EncodeSF(crsSE, tdSE, id, 0; 𝑠aux) for some 𝑠aux. Since ctaux is a Type-1 semi-

functional encoding with identity id, if skaux is a Type-0 semi-functional encoding of the same

id, we have SE.Test(crsSE, skaux, ctaux) = 1 by tester correctness of ΠSE.

We conclude that with overwhelming probability over the choice of pp, for every candidate witness

𝑤 = (skout, skaux, 𝜋) at least one of the following conditions hold:

• NIZK.Verify(crsNIZK,𝐶, (crs(𝐼 )Com, ®𝑐𝐼 , 𝑐𝜏 , skout, skaux, id), 𝜋) = 0;

• PTE.Test(crsPTE, skout, ctout) = 1; or

• SE.Test(crsSE, skaux, ctaux) = 1.

In particular, this means that RWE(𝑥,𝑤) = 0. We conclude that algorithm B breaks semantic security of

ΠWE with advantage at least 𝛿 − negl(𝜆), which is still non-negligible. □

Since Hyb
5,𝑖,𝑇 is identical to Hyb

5,𝑖+1,0 for 𝑖 ∈ [𝑘 − 1], the lemma follows from Claim 5.16 and a standard

hybrid argument. □

Lemma 5.17. For all efficient and admissible adversaries A and inverse polynomial functions 𝜀 = 1/poly(𝜆),
there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[Hyb
6
(A, 𝜀) = 1] = negl(𝜆) .

Proof. Take any id ∈ J . For each 𝑖 ∈ [𝑇 ], let𝑋 id
𝑖 ∈ {0, 1} be the random variable for whether algorithmA2’s

output is correct (i.e., if 𝛽 ′ = 𝛽 on the 𝑖th iteration of AdvCheck with identity id). By construction, in Hyb
6
,

the adversary’s view is independent of the bit 𝛽 ∈ {0, 1}. Since the challenger samples 𝛽
r← {0, 1} on each

iteration, the probability that the adversary’s guess 𝛽 ′ = 𝛽 is exactly 1/2. This means E[𝑋 id
𝑖 ] = 1/2 for all 𝑖 ∈

[𝑇 ] and all id ∈ J . Moreover,WINS =
∑

𝑖∈[𝑇 ] 𝑋
id
𝑖 and E[WINS] = 𝑇 /2. By Hoeffding’s inequality (Fact 2.1),

Pr[WINS −𝑇 /2 > 𝜀𝑇 /16] ≤ Pr[|WINS −𝑇 /2| > 𝜀𝑇 /16] ≤ 2
−Ω (𝑇𝜀2/256) = negl(𝜆),

since 𝑇 = 𝜆/𝜀2. Thus, in an execution of AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak), WINS ≥ 𝑇 /2 + 𝜀𝑇 /16
with negligible probability. By a union bound, AdvCheck outputs 1 for any id ∈ J with probability at most

|J | · negl(𝜆) = negl(𝜆) since |J | = poly(𝜆). □
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Security now follows by combining Lemmas 5.7 to 5.10, 5.13, 5.15 and 5.17. □

Combined with Theorem 3.4, this yields the following corollary:

Corollary 5.18 (Adaptive Security under Bounded Leakage). Suppose the conditions in Theorem 5.6 hold.
Then, Construction 5.3 is adaptively secure under bounded leakage for the same 𝑘 as in Theorem 5.6.

6 Constructing Split Encodings and Privately-Testable Encodings

In this section, we construct split encodings and privately-testable encodings from SXDH in pairing groups

and DDH in pairing-free groups, respectively. We start by recalling the necessary notions for these

constructions.

Definition 6.1 (Prime-Order Group). A prime-order group generator GroupGen is an efficient algorithm

that takes as input the security parameter 1
𝜆
and outputs a description G = (G, 𝑝, 𝑔) of a group G with

prime order 𝑝 = 2
Θ(𝜆)

and generator 𝑔. We require the group operation in G to be efficiently computable.

We assume that the order of the group output by GroupGen is a fixed function of the security parameter 𝜆.

Definition 6.2 (Prime-Order Bilinear Group). A prime-order (asymmetric) bilinear group generator

BilinearGroupGen is an efficient algorithm that takes as input the security parameter 1
𝜆
and outputs a de-

scription G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) of two base groups G1 and G2 with generators 𝑔1 and 𝑔2, respectively,

a target group G𝑇 , all of prime order 𝑝 = 2
Θ(𝜆)

, and a non-degenerate bilinear map 𝑒 : G1 × G2 → G𝑇 . We

require that the group operation inG1,G2,G𝑇 and the pairing operations to be efficiently computable. We as-

sume that the order of the group output by BilinearGroupGen is a fixed function of the security parameter 𝜆.

Notation. Throughout this section, we will use the implicit representation of group elements [EHK
+
13].

Specifically, if G = (G, 𝑝, 𝑔) is a prime-order group, and M is a matrix over Z𝑝 , we write [M] to denote 𝑔M,

where exponentiation is defined component-wise. For a scalar 𝑠 ∈ Z𝑝 , we write 𝑠 [M] B [𝑠 ·M]. When

working with an asymmetric prime-order pairing group G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒), we write [M]1 B 𝑔M
1
,

[M]2 B 𝑔M
2
, and [M]𝑇 B 𝑔M

𝑇
, whereM is a matrix over Z𝑝 and 𝑔𝑇 = 𝑒 (𝑔1, 𝑔2).

Definition 6.3 (Decisional Diffie-Hellman). Let GroupGen be a prime-order group generator. The deci-

sional Diffie-Hellman assumption DDH holds with respect to GroupGen if for all efficient adversaries A,

there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

|Pr[A(G, [𝑥], [𝑦], [𝑥𝑦]) = 1] − Pr[A(G, [𝑥], [𝑦], [𝑟 ]) = 1] | = negl(𝜆),

where G ← GroupGen(1𝜆), and 𝑥,𝑦, 𝑟 r← Z𝑝 .

Definition 6.4 (Symmetric External Diffie-Hellman). Let BilinearGroupGen be a prime-order asymmetric

bilinear group generator. The symmetric external Diffie-Hellman assumption SXDH holds with respect

to BilinearGroupGen if for all efficient adversaries A, there exists a negligible function negl(·) such that

for all 𝜆 ∈ N and all 𝑖 ∈ {1, 2},

|Pr[A(G, [𝑥]𝑖 , [𝑦]𝑖 , [𝑥𝑦]𝑖) = 1] − Pr[A(G, [𝑥]𝑖 , [𝑦]𝑖 , [𝑟 ]𝑖) = 1] | = negl(𝜆),

where G ← BilinearGroupGen(1𝜆), and 𝑥,𝑦, 𝑟 r← Z𝑝 . In other words, the SXDH assumption corresponds

to DDH holding in both G1 and G2.
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Tensor decisional Diffie-Hellman. When analyzing our constructions, it will be convenient to use the

following variant of the DDH assumption. We show in Theorem 6.6 that the assumption follows generically

from plain DDH.

Definition 6.5 (Tensor Diffie-Hellman Assumption). Let GroupGen be a prime-order group generator and

let 𝑛1,𝑚1, 𝑛2,𝑚2 ∈ N be dimensions. The tensor Diffie-Hellman assumption TDDH𝑛1,𝑚1,𝑛2,𝑚2
holds with

respect to GroupGen if for all efficient adversaries A, there exists a negligible function negl(·) such that

for all 𝜆 ∈ N:

|Pr[A(G, [A], [B], [A ⊗ B]) = 1] − Pr[A(G, [A], [B], [C]) = 1] | = negl(𝜆),

whereG ← GroupGen(1𝜆),A r← Z𝑛1×𝑚1

𝑝 , B r← Z𝑛2×𝑚2

𝑝 , andC r← Z𝑛1𝑛2×𝑚1𝑚2

𝑝 . We define the TDDH𝑛1,𝑚1,𝑛2,𝑚2

assumption inG1,G2 with respect to a prime-order asymmetric bilinear group generator BilinearGroupGen
in an analogous manner (to the SXDH assumption in Definition 6.4).

Theorem 6.6 (DDH implies TDDH). Let 𝜆 ∈ N, and suppose 𝑛1,𝑚1, 𝑛2,𝑚2 = poly(𝜆). Suppose that
DDH holds with respect to a prime-order group generator GroupGen. Then TDDH𝑛1,𝑚1,𝑛2,𝑚2

holds with re-
spect to GroupGen. Analogously, if SXDH holds with respect to a prime-order asymmetric group generator
BilinearGroupGen, then TDDH𝑛1,𝑚1,𝑛2,𝑚2

also holds with respect to BilinearGroupGen.

Proof. We prove the claim for GroupGen. The claim for BilinearGroupGen follows analogously (using

the fact that the SXDH assumption corresponds to the DDH assumption in G1 and G2). We now define a

sequence of hybrid distributions.

• Hyb
0
: (G, [A], [B], [C]) where A r← Z𝑛1×𝑚1

𝑝 , B r← Z𝑛2×𝑚2

𝑝 , and C = A ⊗ B. We index the components

of A by a single index 𝑖 ∈ [𝑛1𝑚1] (e.g., in row-major order). Specifically, we can write

A =


𝑎1 · · · 𝑎𝑚1

...
. . .

...

𝑎 (𝑛1−1) ·𝑚1+1 · · · 𝑎𝑛1𝑚1

 and C =


𝑎1 · B · · · 𝑎𝑚1

· B
...

. . .
...

𝑎 (𝑛1−1) ·𝑚1+1 · B · · · 𝑎𝑛1𝑚1
· B

 .
For 𝑖 ∈ [𝑛1𝑚1], we write C𝑖 := 𝑎𝑖B.

• Hyb𝑖 for 𝑖 ∈ [𝑛1𝑚1]: Same as Hyb
0
except for all 𝑗 ≤ 𝑖 , the challenger now samples C𝑗

r← Z𝑛2×𝑚2

𝑝 .

By definition, in Hyb𝑛1𝑚1

, the challenger samples C𝑖
r← Z𝑛2×𝑚2

𝑞 for all 𝑖 ∈ [𝑛1𝑚1], which corresponds to

the uniform case in the TDDH𝑛1,𝑚1,𝑛2,𝑚2
assumption. To complete the proof, we use DDH to argue that for

all 𝑖 ∈ [𝑛1𝑚1], Hyb𝑖 and Hyb𝑖−1 are computationally indistinguishable.

Lemma 6.7. Suppose DDH holds with respect to GroupGen. Then, for all 𝑖 ∈ [𝑛1𝑚1] and all efficient
adversaries A, there exists a negligible function negl such that for all 𝜆 ∈ N,��

Pr[Hyb𝑖−1(A) = 1] − Pr[Hyb𝑖 (A) = 1]
�� = negl(𝜆) .

Proof. We use the random self-reduction of DDH. Suppose there exists an efficient adversary A that

distinguishes Hyb𝑖 and Hyb𝑖−1 with non-negligible advantage 𝛿 . We construct B that breaks DDH:

1. At the beginning of the game, algorithm B receives the DDH challenge (G, [𝑥], [𝑦], [𝑧]) from its

challenger.
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2. For all 𝑗 ∈ [𝑛2𝑚2], algorithm B samples 𝛼 𝑗 , 𝛽 𝑗
r← Z𝑝 . Algorithm B then defines [B] ∈ G𝑛2×𝑚2

to be

the matrix with components [𝑏 𝑗 ] = 𝛼 𝑗 [𝑦] + 𝛽 𝑗 for all 𝑗 ∈ [𝑛2𝑚2] (where 𝑗 indexes the components

of [B] in row-major order). Let [C𝑖] be the matrix with components 𝛼 𝑗 [𝑧] + 𝛽 𝑗 [𝑥]. Finally, algorithm
B sets [𝑎𝑖] = [𝑥].

3. For 𝑘 ∈ [𝑛1𝑚1] where 𝑘 ≠ 𝑖 , algorithm B samples 𝑎𝑘
r← Z𝑝 itself. It defines the matrix A to be the

matrix with components [𝑎1], . . . , [𝑎𝑛1𝑚1
].

4. Next, for 𝑘 > 𝑖 , algorithm B sets [C𝑘 ] = 𝑎𝑘 [B]. For 𝑘 < 𝑖 , algorithm B samples C𝑘
r← Z𝑛2𝑚2

𝑝 .

5. Finally, algorithm B gives (G, [A], [B], [C]) to A and outputs whatever A outputs.

Clearly B is efficient if A is since 𝑛1,𝑚1, 𝑛2,𝑚2 = poly(𝜆). If 𝑧 = 𝑥𝑦, then B perfectly simulates Hyb𝑖−1
for A. If 𝑧

r← Z𝑝 , then algorithm B perfectly simulates Hyb𝑖 for A since 𝛼 𝑗 , 𝛽 𝑗
r← Z𝑝 . Thus B that breaks

DDH with the same advantage 𝛿 . □

The theorem follows from Lemma 6.7 and a standard hybrid argument, since 𝑛1,𝑚1 = poly(𝜆). □

6.1 Split Encoding from SXDH

In this section, we describe how to construct a split encoding from prime-order asymmetric bilinear groups

and a pseudorandom function (Definition 2.11).

Construction 6.8 (Split Encoding from SXDH). Let 𝜆 ∈ N be a security parameter and T = {T𝜆}𝜆∈N be

the tag space. Our construction relies on the following primitives:

• Let BilinearGroupGen be a prime-order asymmetric bilinear group generator. Let 𝑝 = 𝑝 (𝜆) be the
order of the group output by BilinearGroupGen.

• Let PRF : K𝜆 × T𝜆 → (Z∗𝑝)3 be a pseudorandom function with key space K = {K𝜆}𝜆∈N.

We now construct our split encoding scheme ΠSE = (Setup, SetupSF, Encode, EncodeSF, Test) as follows:

• Setup(1𝜆): On input the security parameter 𝜆, the setup algorithm outputs the common reference

string crs = G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) ← BilinearGroupGen(1𝜆).

• SetupSF(1𝜆): On input the security parameter 𝜆, the semi-functional setup algorithm outputs

crs = G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) ← BilinearGroupGen(1𝜆) and td = 𝐾
r← K𝜆 .

• Encode(crs, type): On input the common reference string crs = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) and type ∈
{0, 1} , the encode algorithm samples x r← (Z∗𝑝)2. It then outputs enctype where enc0 = [xT]1 and
enc1 = [x]2.

• EncodeSF(crs, td, tag, type): On input the common reference string crs = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒),
a trapdoor td = 𝐾 ∈ K𝜆 , tag ∈ T𝜆 and type ∈ {0, 1} , the semi-functional encode algorithm first

computes (𝑥1, 𝑥2, 𝑦1) = PRF(𝐾, tag), 𝑦2 = 𝑥−12
(−𝑥1𝑦1). Let x =

[
𝑥1
𝑥2

]
and y =

[ 𝑦1
𝑦2

]
. Let enc0 = [xT]1,

and enc1 = [y]2. Then, it samples 𝑠
r← Z∗𝑝 and outputs 𝑠 · enctype.

• Test(crs, enc0, enc1): On input the common reference string crs = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) and a pair

of encodings enc0 = [xT]1 and enc1 = [y]2, the testing algorithm outputs 1 if [xT]1 · [y]2 = [0]𝑇 .

Theorem 6.9 (Tester Correctness). Construction 6.8 satisfies tester correctness.
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Proof. We show each property separately:

• Take any 𝜆 ∈ N, tag ∈ T𝜆 , and (crs, td = 𝐾) in the support of SetupSF(1𝜆). Then crs = G =

(G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) ← BilinearGroupGen(1𝜆) and td = 𝐾
r← K𝜆 . Suppose enc0 is in the sup-

port of EncodeSF(crs, 𝐾, tag, 0) and enc1 is in the support of EncodeSF(crs, 𝐾, tag, 1). In this case

enc0 = [𝑠0xT]1 and enc1 = [𝑠1y]2 where xTy = 0. This means [𝑠0xT]1 · [𝑠1y]2 = [𝑠0𝑠1xTy]𝑇 = [0]𝑇 , so
Test(crs, enc0, enc1) outputs 1.

• Now suppose crs ← Setup(1𝜆), enc0 ← Encode(crs, 0), enc1 ← Encode(crs, 1). In this case enc0 =
[xT]1 and enc1 = [y]2 where x, y r← (Z∗𝑝)2. In this case, [xT]1 · [y]2 = [0]𝑇 if and only if xTy = 0,

which happens with probability at most 1/(𝑝 − 1) = negl(𝜆). □

Theorem 6.10 (Mode Indistinguishability). Suppose SXDH holds with respect to BilinearGroupGen and
PRF is a secure pseudorandom function. Then, Construction 6.8 satisfies mode indistinguishability.

Proof. LetA be an efficient adversary for the mode indistinguishability game, and let𝑄 = 𝑄 (𝜆) be a bound
on the number of encoding queries algorithm A makes in the security game. We define a sequence of

hybrid experiments:

• Hyb
0
: This is the mode indistinguishability gamewith normal setup and encodings fromDefinition 5.1,

which we recall in full below:

1. The challenger samples crs = G ← BilinearGroupGen(1𝜆) and gives crs to A.

2. When algorithm A makes an encoding query (tag, type), the challenger samples x r← (Z∗𝑝)2
and replies with enctype, where enc0 = [xT]1 and enc1 = [x]2.

3. At the end of the game, A outputs 𝑏′ ∈ {0, 1} , which is the output of the experiment.

• Hyb
1
: Same as Hyb

0
except at the beginning of the game, the challenger initializes an empty table

𝑇 to keep track of the tags that the adversary has queried. Then, when the adversary makes an

encoding query (tag, type), the challenger now responds as follows:

– First, it checks if tag is present in the table 𝑇 . If so, it sets (x, y) = 𝑇 [tag]. Otherwise, the
challenger samples x, y r← (Z∗𝑝)2 and adds 𝑇 [tag] = (x, y).

– Then the challenger samples 𝑠
r← Z∗𝑝 and sets enc0 ← 𝑠 [xT]1, enc1 ← 𝑠 [y]2. It responds with

enctype.

• Hyb
2
: Same as Hyb

1
except whenever the challenger samples y r← (Z∗𝑝)2 in respond to an encoding

query, it now samples x r← (Z∗𝑝)2, 𝑦1
r← Z∗𝑝 , and sets 𝑦2 = 𝑥

−1
2
(−𝑥1𝑦1).

• Hyb
3
: Same as Hyb

2
except at the beginning of the experiment, the challenger samples td = 𝐾

r← K𝜆 .

Then, when answering encoding queries (tag, type), instead of sampling 𝑥1, 𝑥2, 𝑦1
r← Z∗𝑝 , the chal-

lenger instead computes (𝑥1, 𝑥2, 𝑦1) = PRF(𝐾, tag). This is the mode indistinguishability game with

semi-functional setup and encodings.

We write Hyb𝑖 (A) to denote the output of Hyb𝑖 with adversary A.

Lemma 6.11. Suppose the SXDH holds with respect to BilinearGroupGen. Then, for all efficient adversaries
A, there exists a negligible function negl such that for all 𝜆 ∈ N,��

Pr[Hyb
0
(A) = 1] − Pr[Hyb

1
(A) = 1]

�� = negl(𝜆) .
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Proof. We define an intermediate hybrid Hyb′
0
to be the same as Hyb

1
except only the Type-0 encoding

queries are changed. We appeal to SXDH to show that both pairs (Hyb
0
,Hyb′

0
) and (Hyb′

0
,Hyb

1
) are

computationally indistinguishable. Specifically, we use the tensor decisional Diffie-Hellman assumption

(Definition 6.5), which is implied by SXDH (Theorem 6.6).

Claim 6.12. Suppose the TDDH𝑄,1,𝑄,2 assumption holds in G1 with respect to BilinearGroupGen. Then, for
all efficient adversaries A, there exists a negligible function negl such that for all 𝜆 ∈ N,��

Pr[Hyb
0
(A) = 1] − Pr[Hyb′

0
(A) = 1]

�� = negl(𝜆) .

Proof. Suppose there exists an efficient adversary A that makes 𝑄 Type-0 encoding queries and distin-

guishes Hyb
0
and Hyb′

0
with non-negligible probability 𝛿 . We use A to construct an algorithm B that

breaks TDDH𝑄,1,𝑄,2 in G1:

1. At the beginning of the game, algorithm B gets a tuple (G, [A]1, [B]1, [C]1) from the TDDH chal-

lenger, where G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) and A ∈ Z𝑄×1𝑝 , B ∈ Z𝑄×2𝑝 , and C ∈ Z𝑄
2×2

𝑝 .

2. Algorithm B sets crs = G and sends crs to A. In addition, it sets 𝑖 = 1, 𝑗 = 1 and initializes a table 𝑇 .

3. When algorithm A makes a Type-0 encoding query on tag, algorithm B does the following:

• If tag ∉ 𝑇 , algorithm algorithm B computes enc← [cT𝑖, 𝑗 ]1, where c𝑖, 𝑗 is the (𝑖 (𝑄 − 1) + 𝑗)
th

row

of C. Algorithm B then sets 𝑇 [tag] := 𝑗 and 𝑖 = 𝑖 + 1, 𝑗 = 𝑗 + 1.
• If tag ∈ 𝑇 , algorithm B computes enc← [cT

𝑖,𝑇 [tag]]1. Algorithm B then sets 𝑖 = 𝑖 + 1.

Algorithm B responds with enc.

4. Algorithm B answers all Type-1 queries with [x]2 where x r← (Z∗𝑝)2. At the end of the game,

algorithm B outputs what algorithm A outputs.

Let 𝑎1, . . . , 𝑎𝑄 ∈ Z𝑝 be the entries of A and bT
1
, . . . , bT

𝑄
∈ Z2𝑝 be the rows of B. If C = A ⊗ B, then cT𝑖, 𝑗 = 𝑎𝑖b

T
𝑗 .

Since 𝑝 = 2
Θ(𝜆)

, with overwhelming probability over the choice of B, it holds that A ∈ (Z∗𝑝)𝑄×1 and B ∈
(Z∗𝑝)𝑄×2. Now, if C = A ⊗ B, algorithm B simulates the Hyb′

0
challenger (where 𝑎𝑖 is encoding randomness

on the 𝑖th query, and bT
𝑗 is the vector x associated with tag). If C is uniform, then algorithm B simulates the

Hyb
0
challenger. Thus, algorithm B breaks TDDH𝑄,1,𝑄,2 with advantage that is negligibly close to 𝛿 . □

Claim 6.13. Suppose the TDDH𝑄,1,𝑄,2 assumption holds in G2 with respect to BilinearGroupGen. Then, for
all efficient adversaries A, there exists a negligible function negl such that for all 𝜆 ∈ N,��

Pr[Hyb′
0
(A) = 1] − Pr[Hyb

1
(A) = 1]

�� = negl(𝜆) .

Proof. Suppose there exists an efficient adversary A that makes 𝑄 Type-1 encoding queries and distin-

guishes Hyb′
0
and Hyb

1
with non-negligible probability 𝛿 . We use A to construct an algorithm B that

breaks TDDH𝑄,1,𝑄,2:

1. At the beginning of the game, algorithm B gets a tuple (G, [A]2, [B]2, [C]2) from the TDDH chal-

lenger, where G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) and and A ∈ Z𝑄×1𝑝 , B ∈ Z𝑄×2𝑝 , and C ∈ Z𝑄
2×2

𝑝 .

2. Algorithm B sets crs = G and sends crs toA. In addition, it sets 𝑖 = 1, 𝑗 = 1 and initializes tables𝑇0,𝑇1.
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3. When algorithm A makes a Type-1 encoding query on tag, algorithm B does the following:

• If tag ∉ 𝑇1, algorithm algorithm B computes enc ← [cT𝑖, 𝑗 ]2, where c𝑖, 𝑗 is the (𝑖 (𝑄 − 1) + 𝑗)
th

row of C. Algorithm B then sets 𝑇1 [tag] := 𝑗 and 𝑖 = 𝑖 + 1, 𝑗 = 𝑗 + 1.
• If tag is in the table, algorithm B computes enc← [cT

𝑖,𝑇 [tag]]2. Algorithm B then sets 𝑖 = 𝑖 + 1.

Algorithm B responds with enc.

4. When algorithm A makes a Type-0 encoding query on tag, algorithm B does the following:

• If tag ∉ 𝑇0, algorithm B samples x r← (Z∗𝑝)2, 𝑠
r← Z∗𝑝 , sets 𝑇0 [tag] := [xT]1, and responds with

enc← 𝑠 [xT]1.
• If tag is in the table, algorithm B samples 𝑠

r← Z∗𝑝 and outputs enc← 𝑠 ·𝑇0 [tag].

5. At the end of the game, algorithm B outputs whatever algorithm A outputs.

Let 𝑎1, . . . , 𝑎𝑄 ∈ Z𝑝 be the entries of A and bT
1
, . . . , bT

𝑄
∈ Z2𝑝 be the rows of B. If C = A ⊗ B, then cT𝑖, 𝑗 = 𝑎𝑖b

T
𝑗 .

Since 𝑝 = 2
Θ(𝜆)

, with overwhelming probability over the choice of B, it holds that A ∈ (Z∗𝑝)𝑄×1 and B ∈
(Z∗𝑝)𝑄×2. Now, ifC = A⊗B, algorithmB simulates theHyb

1
challenger and ifC is uniform, algorithmB sim-

ulates the Hyb′
0
challenger. Thus, algorithm B breaks TDDH𝑄,1,𝑄,2 with advantage negligibly close to 𝛿 . □

The lemma follows from Claims 6.12 and 6.13 and a standard hybrid argument. □

Lemma 6.14. For all admissible adversaries A, Pr[Hyb
1
(A) = 1] = Pr[Hyb

2
(A) = 1].

Proof. SinceA is admissible, it does not make a Type-0 and a Type-1 encoding query on the same tag. Thus,
for any tag, algorithmA either observes a function of x only or a function of y only (but never both), where

xTy = 0. It remains to show that the marginal distribution of x and y individually is uniform over (Z∗𝑝)2:

• By construction x r← (Z∗𝑝)2, so the marginal distribution of x is uniform.

• Consider the marginal distribution of y. First, 𝑦1
r← Z∗𝑝 . Next, 𝑦2 = 𝑥−1

2
(−𝑥1𝑦1), where 𝑥2 r← Z∗𝑝 .

Since 𝑥1, 𝑦1 ∈ Z∗𝑝 , this means 𝑥1𝑦1 ≠ 0, and so 𝑦2 is uniform over Z∗𝑝 and independent of 𝑦1.

We conclude that Hyb
1
and Hyb

2
are identical distributions, as required. □

Lemma 6.15. Suppose PRF is a secure pseudorandom function. Then, for all efficient adversaries A, there
exists a negligible function negl such that for all 𝜆 ∈ N,��

Pr[Hyb
2
(A) = 1] − Pr[Hyb

3
(A) = 1]

�� = negl(𝜆) .

Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb
2
and Hyb

3
with non-negligible

probability 𝛿 . We use A to construct B that breaks PRF security of PRF:

1. At the beginning of the game, algorithm B gets 1
𝜆
from the PRF challenger. B samples crs ←

Setup(1𝜆) and gives crs to A.

2. When A makes an encoding query on (tag, type), B queries the PRF challenger on tag to get

(𝑥1, 𝑥2, 𝑦1) ∈ (Z∗𝑝)3. Algorithm B sets 𝑦2 = 𝑥−1
2
(−𝑥1𝑦1), x =

[
𝑥1
𝑥2

]
, and y =

[ 𝑦1
𝑦2

]
. Finally, it sets

enc0 = [xT]1, and enc1 = [y]2. Finally, it samples 𝑠
r← Z∗𝑝 and outputs 𝑠 · enctype.
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3. At the end of the experiment, B outputs whatever A outputs.

If the challenger computes (𝑥1, 𝑥2, 𝑦1) = 𝑓 (tag) where 𝑓 is a uniform random function from T𝜆 → (Z∗𝑝)3,
then algorithm B simulates an execution of Hyb

2
. If the challenger derives (𝑥1, 𝑥2, 𝑦1) = PRF(𝐾, tag), then

B simulates an execution of Hyb
3
. Thus, B breaks security of PRF with advantage 𝛿 . □

Combining Lemmas 6.11, 6.14 and 6.15 yields the statement by a hybrid argument. □

6.2 Privately Testable Encoding from DDH

In this section, we describe how to construct a privately-testable encoding from prime-order pairing-free

groups.

Construction 6.16 (Privately Testable Encoding from DDH). Let 𝜆 ∈ N be a security parameter, 𝑑 = 𝑑 (𝜆)
be a dimension parameter, GroupGen be a prime-order group generator. Let 𝑝 = 𝑝 (𝜆) be the order of the
group output by GroupGen and let X = {(Z∗

𝑝 (𝜆) )
𝑑 }𝜆∈N be the input space. We construct our privately

testable encoding scheme ΠPTE = (Setup, SetupSF, Samp, SampSF, Encode, EncodeSF, Test) as follows:

• Setup(1𝜆): On input the security parameter 𝜆, the setup algorithm samples G = (G, 𝑝, 𝑔) ←
GroupGen(1𝜆) and H r← (Z∗𝑝)𝑑×𝑑 . It outputs crs = (G, [H]).

• SetupSF(1𝜆): On input the security parameter 𝜆, the semi-functional setup algorithm samples

G = (G, 𝑝, 𝑔) ← GroupGen(1𝜆) and H r← (Z∗𝑝)𝑑×𝑑 . Then it outputs crs = (G, [H]) and td = H.

• Samp(1𝜆): On input the security parameter 𝜆, the sampling algorithm outputs u r← (Z∗𝑝)𝑑 .

• SampSF(td, v): On input a trapdoor td and a vector v ∈ (Z∗𝑝)𝑑 , the trapdoor sampling algorithm

outputs tdv
r←V⊥Hv, whereV⊥Hv is the space of vectors orthogonal to Hv.

• Encode(crs, v): On input the common reference string crs and a vector v ∈ (Z∗𝑝)𝑑 , the encode

algorithm samples 𝑠
r← Z∗𝑝 and outputs 𝑠 [Hv].

• EncodeSF(crs): On input the common reference string crs, the semi-functional encode algorithm

outputs [x] where x r← (Z∗𝑝)𝑑 .

• Test(crs, enc, tdv) → {0, 1}: On input the common reference string crs, an encoding enc = [u], and
a vector trapdoor tdv ∈ (Z∗𝑝)𝑑 , the testing algorithm outputs 1 if [tdT

vu] = [0] and 0 otherwise.

Theorem 6.17 (Tester Correctness). Construction 6.16 satisfies tester correctness.

Proof. We show each property separately:

• Take any 𝜆 ∈ N and any (crs, td) in the support of SetupSF(1𝜆). Then crs = (G, [H]) where
G = (G, 𝑝, 𝑔). Take any input v ∈ (Z∗𝑝)𝑑 and any encoding enc in the support of Encode(crs, v). This
means enc = 𝑠 [Hv] for some 𝑠 ∈ Z∗𝑝 . Let tdv ← SampSF(td, v). By definition, tdv is orthogonal to
Hv. This means tdv ·Hv = 0, and correspondingly, that tdv · (𝑠Hv) = 0. This means Test(crs, enc, tdv)
outputs 1, as required.

• For the second property, suppose crs ← Setup(1𝜆), enc ← Encode(crs, v), and u ← Samp(1𝜆). In
this case, crs = (G, [H]) and enc = 𝑠 [Hv] where H r← (Z∗𝑝)𝑑×𝑑 , 𝑠

r← Z∗𝑝 , and u r← (Z∗𝑝)𝑑 . Over the
random choice of u, the probability that uTHv = 0 is at most 1/(𝑝 − 1) = negl(𝜆). Correspondingly,
Test(crs, enc, u) = 1 with negligible probability. □
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Theorem 6.18 (Mode Indistinguishability). Suppose DDH holds with respect to GroupGen. Then, Construc-
tion 6.16 satisfies mode indistinguishability.

Proof. Suppose there exists an efficient adversary A that makes 𝑄 encoding queries and wins the mode

indistinguishability game with non-negligible advantage 𝛿 . We use A to construct an algorithm B that

breaks TDDH𝑄,1,𝑑,𝑑 :

1. At the beginning of the game, algorithm B gets a tuple (G, [A], [B], [C]) from the TDDH challenger,

where G = (G, 𝑝, 𝑔) and A ∈ Z𝑄×1𝑝 , B ∈ Z𝑑×𝑑𝑝 , and C ∈ Z𝑑𝑄×𝑑𝑝 . Parse C as the vertical concatenation

of C1, . . . ,C𝑄 where C𝑖 ∈ Z𝑑×𝑑𝑝 .

2. Algorithm B gives crs = (G, [B]) to A.

3. When A makes its 𝑖th encoding query on a vector v, algorithm B replies with enc = [C𝑖] · v.

4. At the end of the game, algorithm B outputs whatever algorithm A outputs.

First, since 𝑝 = 2
Θ(𝜆)

, the uniform distribution over Z∗𝑝 is statistically indistinguishable from the uniform

distribution over Z𝑝 . Thus, the components of the CRS are correctly distributed with overwhelming prob-

ability. Let 𝑎1, . . . , 𝑎𝑄 be the entries of A. If C = A ⊗ B, then C𝑖 = 𝑎𝑖B. In this case, algorithm B responds to

the encoding queries according to Encode(crs, v), where 𝑎𝑖 is the encoding randomness. If C r← Z𝑑𝑄×𝑑𝑝 is

uniform, then the encoding queries are implemented according to SetupSF(crs). Thus, algorithm B breaks

TDDH𝑄,1,𝑑,𝑑 with the same advantage 𝛿 . □

Theorem 6.19 (𝑘-Trapdoor Indistinguishability). Let 𝜆 ∈ N be the security parameter and 𝑑 = 𝑑 (𝜆) > 2

for all 𝜆. Then, Construction 6.16 satisfies (𝜔 (log 𝜆) + 2 log𝑝)-trapdoor uniformity.

Proof. We start by showing the following consequence of the leftover hash lemma (Corollary 2.9):

Lemma 6.20. Let F be a finite field, 𝑛 > 2 be an integer, 𝜀 > 0 be fixed, and 𝑆 ⊆ F \ {0} be a set. Suppose
𝑋 is a random variable over 𝑆𝑛 such that H∞(𝑋 ) ≥ 𝑘 ≥ 2 log |F| + 2 log(1/𝜀). Then, the statistical distance
between the following distributions is at most 𝜀/2:{

y r← F𝑛
}

and
{
y⊥ r←V⊥x : x← 𝑋

}
,

whereV⊥x is the set of vectors that are orthogonal to x.

Proof. For any x ∈ 𝑆𝑛 , we can sample y⊥ r←V⊥x by sampling 𝑦⊥
1
, . . . , 𝑦⊥𝑛−1

r← F and setting

𝑦⊥𝑛 = −𝑥−1𝑛

∑︁
𝑖∈[𝑛−1]

𝑥𝑖𝑦
⊥
𝑖 .

It suffices to show that

∑𝑛−1
𝑖=1 𝑥𝑖𝑦

⊥
𝑖 is statistically close to uniform over F. This follows by Corollary 2.9,

with 𝑛′ = 𝑛 − 1 and min-entropy 𝑘 − log |F| ≥ log |F| + 2 log(1/𝜀) (specifically, we treat 𝑦1, . . . , 𝑦𝑛−1 as the
seed for the extractor and 𝑥1, . . . , 𝑥𝑛 as the randomness source). □

Theorem 6.19 follows directly from Lemma 6.20 by taking log(1/𝜀) = 𝜔 (log 𝜆) and 𝑛 = 𝑑 . Specifically, in

Construction 5.3, the matrix H r← (Z∗𝑝)𝑑×𝑑 sampled by Setup and SetupSF is full-rank with overwhelming

probability. In this case, if a random vector v ∈ (Z∗𝑝)𝑑 has 𝑘-bits of min-entropy, the vector Hv also has

𝑘-bits of min-entropy (over Z𝑑𝑝). □

65



Acknowledgments

BrentWaters is supported by NSF CNS-1908611, CNS-2318701, and a Simons Investigator award. David J.Wu

is supported by NSF CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google

Research Scholar award.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective

to adaptive security in functional encryption. In CRYPTO, pages 657–677, 2015.

[ADN
+
10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel Wichs.

Public-key encryption in the bounded-retrieval model. In EUROCRYPT, pages 113–134, 2010.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography

in the bounded-retrieval model. In CRYPTO, pages 36–54, 2009.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In

CRYPTO, pages 213–229, 2001.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its

applications (extended abstract). In STOC, pages 103–112, 1988.

[BGI
+
01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,

and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGI
+
12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,

and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1–6:48, 2012.

[BHK11] Mark Braverman, Avinatan Hassidim, and Yael Tauman Kalai. Leaky pseudo-entropy functions.

In Innovations in Computer Science, pages 353–366, 2011.

[BKR16] Mihir Bellare, Daniel Kane, and Phillip Rogaway. Big-key symmetric encryption: Resisting

key exfiltration. In CRYPTO, pages 373–402, 2016.

[BL20] Fabrice Benhamouda and Huijia Lin. Mr NISC: multiparty reusable non-interactive secure

computation. In TCC, pages 349–378, 2020.

[CDD
+
07] David Cash, Yan Zong Ding, Yevgeniy Dodis, Wenke Lee, Richard J. Lipton, and Shabsi Walfish.

Intrusion-resilient key exchange in the bounded retrieval model. In TCC, pages 479–498, 2007.

[CDG
+
17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni

Polychroniadou. Laconic oblivious transfer and its applications. In CRYPTO, pages 33–65, 2017.

[CLW06] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly secure password

protocols in the bounded retrieval model. In TCC, pages 225–244, 2006.

[Coc01] Clifford C. Cocks. An identity based encryption scheme based on quadratic residues. In

Cryptography and Coding, pages 360–363, 2001.

66



[DFR
+
07] Ivan Damgård, Serge Fehr, Renato Renner, Louis Salvail, and Christian Schaffner. A tight high-

order entropic quantum uncertainty relation with applications. In CRYPTO, pages 360–378, 2007.

[DGSW22] Nico Döttling, Sanjam Garg, Sruthi Sekar, and Mingyuan Wang. IBE with incompressible

master secret and small identity secrets. In TCC, pages 588–617, 2022.

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally compos-

able commitment schemes with constant expansion factor. In CRYPTO, pages 581–596, 2002.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to

generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[Dzi06] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In TCC, pages
207–224, 2006.

[EHK
+
13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge L. Villar. An algebraic

framework for diffie-hellman assumptions. In CRYPTO, pages 129–147, 2013.

[GGH
+
13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.

Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
pages 40–49, 2013.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its

applications. In STOC, pages 467–476, 2013.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive

proof-systems (extended abstract). In STOC, pages 291–304, 1985.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In

EUROCRYPT, pages 415–432, 2008.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom

generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301), 1963.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from

one-way functions (extended abstracts). In STOC, pages 12–24, 1989.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party

computation. J. Cryptol., 22(2):161–188, 2009.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully

secure HIBE with short ciphertexts. In TCC, pages 455–479, 2010.

[MW20] Tal Moran and Daniel Wichs. Incompressible encodings. In CRYPTO, pages 494–523, 2020.

[Nao89] Moni Naor. Bit commitment using pseudo-randomness. In CRYPTO, pages 128–136, 1989.

[Par19] Noam Parzanchevski. Dispersers with logarithmic entropy loss. Msc thesis, Tel-Aviv University,

2019.

67



[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications.

In FOCS, pages 859–870, 2018.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53,
1984.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,

and more. In STOC, pages 475–484, 2014.

[TUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless condensers, unbalanced

expanders, and extractors. Comb., 27(2):213–240, 2007.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT,
pages 114–127, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple

assumptions. In CRYPTO, pages 619–636, 2009.

[WW24] Brent Waters and Daniel Wichs. Adaptively secure attribute-based encryption from witness

encryption. In TCC, pages 65–90, 2024.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages
160–164, 1982.

A Transforming Adaptive Big-Key IBE to have Short Public Parameters

The work of [DGSW22] provide a generic transformation that takes any big-key IBE scheme with long public
parameters (that scale with the leakage bound), but where encryption and decryption only requires local

access to the public parameters, and transforms it into a big-key IBE scheme with short public parameters.

Their approach relies on a non-interactive secure computation (NISC) scheme. In this section, we show that

the same transformation preserves adaptive security. To do so, we first modify the NISC privacy definition

to a somewhat adaptive version. Then, in Appendix B, we show that the NISC construction of [CDG
+
17]

indeed satisfies the stronger variant (in fact, this fact is implicit in their existing analysis).

Definition A.1 (Non-Interactive Secure Computation in the RAM Model [CDG
+
17, adapted]). A non-

interactive secure computation scheme in the RAM model is a tuple of efficient algorithms ΠNISC =

(Setup, EncData, EncProg,Decrypt) with the following syntax:

• Setup(1𝜆) → crs: On input the security parameter 𝜆, the setup algorithm outputs a common reference

string crs.

• EncData(crs, 𝐷) → (dig, 𝐷): On input the common reference string crs and the database 𝐷 , the data

encryption algorithm outputs a digest dig and a database state 𝐷 .

• EncProg(crs, dig, (𝑃, 𝑥, 𝑡)) → ct: On input the common reference string crs, a digest dig, and a

program 𝑃 with input 𝑥 and maximum run-time 𝑡 , the program encryption algorithm outputs a

ciphertext ct.

68



• Decrypt𝐷 (crs, ct) → 𝑦: On input the common reference string crs and a ciphertext ct, the decryption
algorithm outputs a string 𝑦. Additionally, the decryption algorithm has RAM access to a database

state 𝐷 .

Moreover, ΠNISC should satisfy the following properties:

• Correctness: For all polynomials𝑀 = 𝑀 (𝜆), all security parameters 𝜆 ∈ N, all databases𝐷 ∈ {0, 1}𝑀 ,

and all RAM program tuples (𝑃, 𝑥, 𝑡), it holds that

Pr[Decrypt𝐷 (crs, ct) = 𝑃𝐷 (𝑥)] = 1,

where crs← Setup(1𝜆), (dig, 𝐷) ← EncData(crs, 𝐷), and ct← EncProg(crs, dig, (𝑃, 𝑥, 𝑡)).

• Privacy: There exists an efficient algorithm SimEnc that takes as input a common reference string

crs, a digest dig, a database 𝐷 , an output string 𝑦, and a memory access pattern MemAccess, and
outputs a ciphertext ct. For a security parameter 𝜆 ∈ N and a bit 𝑏 ∈ {0, 1} , we define the privacy
game between an adversary A and a challenger as follows:

1. On input the security parameter 1
𝜆
, algorithmA chooses a database 𝐷 ∈ {0, 1}𝑀 and a program

𝑃 and a bound on the running time 1
𝑡
to the challenger.

2. The challenger samples crs← Setup(1𝜆) and (dig, 𝐷) ← EncData(crs, 𝐷). It gives (crs, dig, 𝐷)
to A.

3. A sends an input 𝑥 to the challenger.

4. If 𝑏 = 0, the challenger computes ct ← EncProg(crs, dig, (𝑃, 𝑥, 𝑡)). If 𝑏 = 1 the challenger

computes ct ← SimEnc(crs, dig, 𝐷,𝑦,MemAccess), where 𝑦 = 𝑃𝐷 (𝑥) and MemAccess is the
memory-access pattern of 𝑃𝐷 (𝑥). The challenger sends ct to A.

5. Algorithm A outputs a bit 𝑏′ ∈ {0, 1} , which is the output of the experiment.

We say ΠNISC satisfies privacy if there exists a negligible function negl(·) such that for all efficient

adversaries A in the above privacy game,

|Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆) .

In this definition, the database 𝐷 , the program 𝑃 , and the running time 𝑡 are committed to ahead of

time. However, the input 𝑥 is chosen adaptively.

• Efficiency: The length of dig output by EncData(crs, 𝐷) is a fixed polynomial in 𝜆 (independent of

|𝐷 |). The algorithm EncData runs in time𝑀 · poly(𝜆, log𝑀). The algorithms EncProg,Decrypt run
in time 𝑡 · poly(𝜆, log𝑀).

The [DGSW22] transformation. We now recall the the transformation from [DGSW22], which takes

as input a big-key IBE scheme ΠbkIBE = (Setup,KeyGen, Encrypt,Decrypt) with large public parameters

pp ∈ {0, 1}𝑁 and compiles it into one with short public parameters:

Construction A.2 (Big-Key IBE with Small Public Parameters [DGSW22]). Let 𝜆 ∈ N be a security pa-

rameter, ℓ be a fixed leakage parameter, and 𝑁 = 𝑁 (𝜆, ℓ) be a key size parameter. Let ID = {ID𝜆}𝜆∈N
be the identity space. The construction relies on the following primitives:
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• Let ΠIBE = (IBE.Setup, IBE.KeyGen, IBE.Encrypt, IBE.Decrypt) be a big-key IBE scheme.

• Let ΠNISC = (NISC.Setup,NISC.EncData,NISC.EncProg,NISC.Decrypt) be a NISC scheme in the

RAM model.

We construct the big-key IBE scheme ΠbkIBE = (Setup,KeyGen, Encrypt,Decrypt) as follows:

• Setup(1𝜆, 1ℓ ): On input the security parameter 𝜆, the setup algorithm proceeds as follows:

1. Sample (ppIBE,mskIBE) ← IBE.Setup(1𝜆, 1ℓ ) and crsNISC ← NISC.Setup(1𝜆).
2. Compute (dig, p̃p) ← NISC.EncData(crsNISC, ppIBE).

Output pp = (crsNISC, dig) and msk = (mskIBE, p̃p).

• KeyGen(msk, id): On input the master secret key msk and an identity id ∈ ID𝜆 , the key generation

algorithm computes skid ← IBE.KeyGen(mskIBE, id) and outputs (skid, p̃pid), where p̃pid is the part
of p̃p accessed by NISC.Decrypt, which depends on id.

• Encrypt(pp, id,𝑚): On input the public parameters pp, an identity id ∈ ID𝜆 , and a message𝑚, the en-

cryption algorithm outputs NISC.EncProg(crsNISC, dig, (IBE.Encrypt, (id,𝑚), 𝑡)), where IBE.Encrypt
is considered a RAM program that accesses 𝐷 = ppIBE and 𝑡 is a bound on its run-time.

• Decrypt(skid, id, ct): On input an identity secret key skid = (sk′id, p̃pid), an identity id ∈ ID𝜆 , and a

ciphertext ct, the decryption algorithm outputs IBE.Decrypt(sk′id, id,NISC.Decrypt(crsNISC, p̃pid, ct)),
where the extra input p̃pid replaces the RAM access to p̃p.

Theorem A.3 (Correctness). Suppose ΠIBE,ΠNISC are correct. Then, Construction A.2 is correct.

Proof. Take any security parameter 𝜆, identity id ∈ ID𝜆 , and message𝑚. Let (pp,msk) ← Setup(1𝜆, 1ℓ ),
where pp = (crsNISC, dig),msk = (mskIBE, p̃p), (skid, p̃pid) ← KeyGen(msk, id), ct ← Encrypt(pp, id,𝑚).
Consider the output of Decrypt(skid, id, ct):

• By construction of KeyGen, skid is an honestly generated identity key and p̃pid can replace RAM

access to p̃p.

• By construction of Encrypt, ct is an honest encryption of IBE.Encrypt on message𝑚.

• By correctness of ΠNISC, NISC.Decrypt(crsNISC, p̃pid, ct) yields the output of IBE.Encrypt(pp, id,𝑚),
and by correctness of ΠIBE, IBE.Decrypt(skid, id, IBE.Encrypt(pp, id,𝑚)) = 𝑚 with overwhelming

probability, as desired. □

TheoremA.4 (Adaptive Advantage-Checker Security under Bounded Leakage). Suppose for all polynomially-
bounded ℓ = ℓ (𝜆),ΠIBE is adaptively advantage-checker secure under bounded leakage with challenge parameter
𝑘 . Suppose also that ΠNISC satisfies privacy. Then, Construction A.2 is adaptively advantage-checker secure
under bounded leakage with challenge parameter 𝑘 .

Proof. We define a sequence of hybrid experiments, each parameterized (implicitly) by an adversary

A = (A0,A1) and an advantage threshold function 𝜀 = 𝜀 (𝜆):

• Hyb
0
: This is the adaptive advantage-checker security game from Definition 3.1, which we recall

in full below:
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– Setup: The challenger samples the components (ppIBE,mskIBE) ← IBE.Setup(1𝜆, 1ℓ ), crsNISC ←
NISC.Setup(1𝜆), and It then computes (dig, p̃p) ← NISC.EncData(crs, ppIBE). It sets

pp = (crsNISC, dig) and msk = (mskIBE, p̃p)

and gives pp to A.

– Pre-leakage queries: When algorithm A1 makes a query on id ∈ ID𝜆 , the challenger com-

putes skid ← IBE.KeyGen(mskIBE, id) and replies with (skid, p̃pid).
– Leakage: After A1 outputs the description of an efficiently-computable leakage function 𝑓 ,

the challenger replies with leak← 𝑓 (msk).
– Post-leakage queries: The challenger responds to post-leakage key queries exactly as in the

pre-leakage phase.

– Challenge: Algorithm A1 outputs a set J ⊆ ID𝜆 of size ≥ 𝑘 , two messages𝑚0,𝑚1, and a

state st.

– Output: The output of Hyb
0
is 𝑏′ = 1 if A is admissible and

∀id ∈ J : AdvCheckA2 (1𝜆, 11/𝜀, id,msk, pp, st, leak) = 1, (A.1)

and 𝑏′ = 0 otherwise. The advantage-checker algorithm AdvCheck is defined as follows:

Inputs: security parameter 𝜆, threshold 𝜀 ∈ (0, 1), identity id ∈ ID𝜆 , master secret key

msk = (mskIBE, p̃p), public parameters pp = (crsNISC, dig), state st, string leak, and (oracle)

access to an algorithm A

∗ Let 𝑇 = 𝜆/𝜀2 and initialize a counterWINS← 0.

∗ The advantage-checker algorithm now simulates 𝑇 independent executions of

experiment Expid(msk, pp, st, leak) for algorithm A.

1. Sample 𝛽
r← {0, 1}.

2. The challenger computes

ct← NISC.EncProg(crsNISC, dig, (IBE.Encrypt, (id,𝑚𝛽 ), 𝑡)).

Run A on input (st, id, ct).
3. Whenever algorithmA makes a key-generation query on an identity id ∈ ID𝜆 ,

the challenger computes skid ← IBE.KeyGen(mskIBE, id) and replies toA with

(skid, p̃pid).
4. AfterA has finished making key-generation queries, it outputs a bit 𝛽 ′ ∈ {0, 1}.
5. If 𝛽 = 𝛽 ′, then incrementWINS←WINS + 1.

∗ Output 1 ifWINS ≥ 𝑇
2
+ 𝜀𝑇

2
and 0 otherwise.

Figure 9: Function AdvCheckA (1𝜆, 11/𝜀, id,msk, pp, st, leak) in Construction A.2
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• Hyb
1
: Same as Hyb

0
, except the challenger constructs the challenge ciphertext ct in the procedure

AdvCheckA2
as ct← SimEnc(crsNISC, dig, ppIBE, 𝑦,MemAccess), where the output 𝑦 is computed as

𝑦 ← IBE.Encrypt(ppIBE, id,𝑚𝛽 ) andMemAccess is the memory access pattern for IBE.Encrypt.

For an adversary A = (A1,A2), we write Hyb𝑖 (A, 𝜀) to denote the output of Hyb𝑖 with adversary A and

inner threshold function 𝜀. Our goal is to show that for all efficient adversariesA and all inverse polynomial

functions 𝜀 = 1/poly(𝜆), Pr[Hyb
0
(A, 𝜀) = 1] = negl(𝜆). We proceed via a hybrid argument.

Lemma A.5. Suppose that ΠNISC satisfies privacy. Then, for all efficient and admissible adversaries A and
inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl such that for all 𝜆 ∈ N,

Pr[Hyb
1
(A, 𝜀) = 1] ≥ Pr[Hyb

0
(A, 𝜀) = 1] − negl(𝜆) .

Proof. We define a sequence of intermediate hybrids:

• Hyb
0,1,0: Same as Hyb

0
. Notably, the challenge ciphertext is sampled as

ct← NISC.EncProg(crsNISC, dig, (IBE.Encrypt, (id,𝑚), 𝑡)),

where components are defined as in Hyb
0
in AdvCheck.

• Hyb
0,𝑖, 𝑗 : Same as Hyb

0
except for all (𝑖′, 𝑗 ′) such that 𝑖′ < 𝑖 or 𝑖′ = 𝑖, 𝑗 ′ ≤ 𝑗 , we sample the challenge

ciphertext in the 𝑗 ′th execution of Expid=J[𝑖
′ ]
in AdvCheck as

ct← SimEnc(crsNISC, dig, ppIBE, 𝑦,MemAccess),

where𝑦 ← IBE.Encrypt(ppIBE, id,𝑚𝛽 ) andMemAccess is the memory access pattern for the program

IBE.Encryptwhich can be computed given id. Note thatHyb
0,𝑘,𝑇 is the same asHyb

1
and thatHyb

0,𝑖,𝑇

is the same as Hyb
0,𝑖+1,0 for 𝑖 ∈ [𝑘 − 1].

We now appeal to privacy ofΠNISC to show thatHyb
0,𝑖, 𝑗 andHyb0,𝑖, 𝑗−1 are computationally indistinguishable

for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑇 ].

ClaimA.6. Suppose the conditions in Lemma A.5 hold. Then for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑇 ], all efficient and admissible
adversaries A and inverse polynomial functions 𝜀 = 1/poly(𝜆), there exists a negligible function negl such
that for all 𝜆 ∈ N,

Pr[Hyb
0,𝑖, 𝑗 (A, 𝜀) = 1] ≥ Pr[Hyb

0,𝑖, 𝑗−1(A, 𝜀) = 1] − negl(𝜆).

Proof. Suppose there exists an efficient adversaryA that distinguishes Hyb
0
and Hyb

1
with non-negligible

probability 𝛿 . We use A to construct algorithm B that breaks privacy of ΠNISC:

1. Algorithm B samples (ppIBE,mskIBE) ← IBE.Setup(1𝜆, 1ℓ ) and gives (ppIBE, IBE.Encrypt, 𝑡) to the

privacy challenger, where 𝑡 is a bound on the run-time of IBE.Encrypt. The challenger replies with
a tuple (crsNISC, dig, p̃p).

2. Algorithm B sets pp = (crsNISC, dig) and msk = (mskIBE, p̃p) and gives pp to A.

3. When algorithmA issues a key-generation query on an identity id, algorithm B queries its challenger

to get skid ← IBE.KeyGen(mskIBE, id). Algorithm B replies to A with (skid, p̃pid), where p̃pid is

defined as in Construction A.2.
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4. When algorithm A outputs an efficiently-computable leakage function 𝑓 , algorithm B replies with

leak = 𝑓 (msk). In the challenge phase, algorithm A outputs J ⊆ ID𝜆 of size at least 𝑘 , messages

𝑚0,𝑚1, and a state st.

5. For all (𝑖′, 𝑗 ′) such that 𝑖′ < 𝑖 or 𝑖′ = 𝑖, 𝑗 ′ < 𝑗 , algorithm B samples the challenge ciphertext in the

𝑗 ′th execution of ExpJ[𝑖
′ ]
in AdvCheck as ct ← SimEnc(crsNISC, dig, ppIBE, 𝑦,MemAccess), where

𝛽
r← {0, 1} , 𝑦 ← IBE.Encrypt(ppIBE,J [𝑖′],𝑚𝛽 ), and MemAccess is the memory access pattern for

the program IBE.Encrypt.

6. For the 𝑗 th execution of ExpJ[𝑖 ] , algorithm B samples 𝛽
r← {0, 1} and sends 𝑥 = (J [𝑖],𝑚𝛽 ) to the

privacy challenger. Algorithm B uses the response ct from the privacy challenger as the challenge

ciphertext in this execution.

7. In the remaining executions of ExpJ[𝑖
′ ]
in iterations of AdvCheck, algorithm B computes challenge

ciphertexts as ct ← NISC.EncProg(crsNISC, dig, (IBE.Encrypt, (J [𝑖′],𝑚𝛽 ), 𝑡)), where 𝛽 r← {0, 1} .
Algorithm B outputs the output of the experiment.

If ct from the privacy challenger is constructed using NISC.EncProg, algorithm B simulates Hyb
0,𝑖, 𝑗−1 for

A. If ct from the privacy challenger is constructed using SimEnc, algorithm B simulates Hyb
0,𝑖, 𝑗 for A.

Thus, algorithm B breaks privacy of ΠNISC with advantage 𝛿 , as desired. □

The lemma now follows from Claim A.6 and a standard hybrid argument. □

Lemma A.7. Suppose for all polynomially-bounded ℓ = ℓ (𝜆), ΠIBE is 𝑘-adaptively advantage-checker secure
under bounded leakage. Then, for all efficient and admissible adversaries A and inverse polynomial functions
𝜀 = 1/poly(𝜆), there exists a negligible function negl such that for all 𝜆 ∈ N,

Pr[Hyb
1
(A, 𝜀) = 1] = negl(𝜆) .

Proof. Suppose there exists an efficient and admissible adversary A such that Pr[Hyb
1
(A, 𝜀) = 1] = 𝛿 for

some non-negligible 𝛿 . We use A to construct algorithm B that breaks the 𝑘-adaptive advantage-checker

security under bounded leakage of ΠIBE:

• Setup: The challenger for ΠIBE starts by sampling (ppIBE,mskIBE) ← IBE.Setup(1𝜆, 1ℓ ) and gives

ppIBE to algorithm B. Algorithm B samples crsNISC ← NISC.Setup(1𝜆) and computes (dig, p̃p) ←
NISC.EncData(crsNISC, ppIBE). Algorithm B gives pp = (crsNISC, dig) to A.

• Key-generation queries: When algorithm A issues a key-generation query on an identity id,
algorithm B queries its challenger to get skid ← IBE.KeyGen(mskIBE, id). Algorithm B replies to A
with (skid, p̃pid), where p̃pid is defined as in Construction A.2.

• Leakage: When algorithm A outputs the description of an efficiently-computable function 𝑓 with

output length at most ℓ , algorithm B gives the same function to its challenger to get leak B 𝑓 (msk).
Algorithm B gives leak to A.

• Challenge: Algorithm B outputs the same set J ⊆ ID𝜆 and messages (𝑚0,𝑚1) that A outputs.

• Output: When constructing a challenge ciphertext for identity id ∈ J in some iteration of AdvCheck,
algorithm B takes the challenge ciphertext ct from its challenger and computes

ct′ ← SimEnc(crsNISC, dig, ppIBE, ct,MemAccess),
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where MemAccess can be computed given id. Algorithm B gives ct′ to A and outputs the same bit

𝛽 ′ as A.

Since algorithm B perfectly simulates the experiment for A and answers the same way, the probability

of the 𝑘-adaptive advantage-checker experiment outputting 1 is 𝛿 , as desired. □

Combining Lemmas A.5 and A.7 yields the statement by a hybrid argument. □

Corollary A.8 (Adaptive Security under Bounded Leakage). Suppose the conditions in Theorem A.4 hold.
Then, Construction A.2 is adaptively secure under bounded leakage for the same 𝑘 as in Theorem A.4.

Proof. Follows immediately from Theorem 3.4. □

NISC instantiations. As seen in Appendix B, the core primitive needed to build a NISC for our pur-

poses is a laconic oblivious transfer scheme. We remark that such a primitive can be constructed from

DDH [CDG
+
17] or LWE [QWW18], so this transform retains our instantiation statements from Section 6.

B NISC in the RAMModel with Adaptive Privacy

We show how to achieve Definition A.1 via the NISC construction of [CDG
+
17]. To do so, we define laconic

oblivious transfer and garbled circuits for convenience below.

Definition B.1 (Laconic Oblivious-Transfer [CDG
+
17]). A laconic oblivious transfer scheme is a tuple of

efficient algorithms ΠOT = (Setup,Hash, Send,Receive) with the following syntax:

• Setup(1𝜆) → crs: On input the security parameter 𝜆, the setup algorithm outputs a common reference

string crs.

• Hash(crs, 𝐷) → (dig, 𝐷): On input the common reference string crs and a database 𝐷 ∈ {0, 1}∗, the
hashing algorithm outputs a digest dig and a database state 𝐷 .

• Send(crs, dig, 𝐿,𝑚0,𝑚1) → ct: On input the common reference string crs, a digest dig, a database loca-
tion 𝐿 ∈ N, and a pair of messages (𝑚0,𝑚1) each of length 𝜆, the send algorithm outputs a ciphertext ct.

• Receive𝐷 (crs, ct, 𝐿) →𝑚: On input the common reference string crs, a ciphertext ct, and a database

location 𝐿 ∈ N, the receive algorithm outputs a message𝑚. Additionally, the receive algorithm has

RAM access to a database state 𝐷 .

Moreover, ΠOT should satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all databases 𝐷 ∈ {0, 1}𝑀 (where 𝑀 = poly(𝜆)
for any polynomial poly(·)), any memory location 𝐿 ∈ [𝑀], and any pair of messages (𝑚0,𝑚1) ∈
{0, 1}𝜆 × {0, 1}𝜆 , it holds that

Pr[Receive𝐷 (crs, Send(crs, dig, 𝐿,𝑚0,𝑚1), 𝐿) =𝑚𝐷 [𝐿]] = 1,

where crs← Setup(1𝜆) and (dig, 𝐷) ← Hash(crs, 𝐷).

74



• Sender privacy against semi-honest receivers: There exists an efficient algorithm OTSim that

takes as input a common reference string crs, a database 𝐷 , a location 𝐿, and a message 𝑚, and

outputs a ciphertext ct. A laconic OT scheme satisfies sender privacy if for all security parameters

𝜆 ∈ N, all databases 𝐷 ∈ {0, 1}𝑀 with𝑀 = poly(𝜆), all locations 𝐿 ∈ [𝑀], and any pair of messages

(𝑚0,𝑚1) ∈ {0, 1}𝜆 × {0, 1}𝜆 , it holds that the distributions

(crs, Send(crs, dig, 𝐿,𝑚0,𝑚1)) and (crs,OTSim(crs, 𝐷, 𝐿,𝑚𝐷 [𝐿]))

are computationally indistinguishable, where crs← Setup(1𝜆) and (dig, 𝐷) ← Hash(crs, 𝐷).

• Efficiency: The length of dig output by Hash(crs, 𝐷) is a fixed polynomial in 𝜆, independent of |𝐷 |.

Definition B.2 (Garbled Circuits [Yao82, LP09]). A circuit garbling scheme is a tuple of efficient algorithms

ΠGC = (Garble, Eval) with the following syntax:

• Garble(1𝜆,𝐶, {key𝑤,𝑏}𝑤∈inp(𝐶 ),𝑏∈{0,1} ) → 𝐶 : On input the security parameter 𝜆, a circuit 𝐶 , and a set

of labels key𝑤,𝑏 for all the input wires𝑤 ∈ inp(𝐶) and 𝑏 ∈ {0, 1} , the garbling algorithm outputs a

garbled circuit 𝐶 . Here, inp(𝐶) denotes the indices corresponding to the input wires of 𝐶 .

• Eval(𝐶, {key𝑤,𝑥𝑤
}𝑤∈inp(𝐶 ) ) → 𝑦: On input a garbled circuit𝐶 and a garbled input {key𝑤,𝑥𝑤

}𝑤∈inp(𝐶 ) ) ,
the evaluation algorithm outputs a string 𝑦.

Moreover, ΠGC should satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all circuits 𝐶 with input length𝑚 = poly(𝜆), all
inputs 𝑥 ∈ {0, 1}𝑚 , it holds that

Pr[𝐶 (𝑥) = Eval(𝐶, {key𝑤,𝑥𝑤
}𝑤∈inp(𝐶 ) )] = 1,

where 𝐶 ← Garble(1𝜆,𝐶, {key𝑤,𝑏}𝑤∈inp(𝐶 ),𝑏∈{0,1} ).

• Security: There exists an efficient algorithm GCSim such that for all circuits 𝐶 with input length

𝑚 = poly(𝜆), all inputs 𝑥 ∈ {0, 1}𝑚 , and uniformly-random keys {key𝑤,𝑏}𝑤∈inp(𝐶 ),𝑏∈{0,1} , it holds
that the distributions

(𝐶, {key𝑤,𝑥𝑤
}𝑤∈inp(𝐶 ) ) ) and GCSim(1𝜆,𝐶,𝑦)

are computationally indistinguishable, where 𝐶 ← Garble(1𝜆,𝐶, {key𝑤,𝑏}𝑤∈inp(𝐶 ),𝑏∈{0,1} ) and 𝑦 =

𝐶 (𝑥).

Simplified garbled circuit notation. For simplicity in the following construction, we will write Keys to
denote the list of all input labels {key𝑤,𝑏}𝑤∈inp(𝐶 ),𝑏∈{0,1} and Keys𝑥 to denote the labels {key𝑤,𝑥𝑤

}𝑤∈inp(𝐶 ) )
associated with the input 𝑥 .

B.1 RAMModel of Computation

We briefly define the RAM model of computation. Parts of this subsection are taken from [CDG
+
17]. For

our purposes, we only need to support read operations.
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Notation. The RAM model consists of a CPU and a memory storage of size 𝑀 . The CPU executes a

program that can access the memory by using read operations. In particular, for a program 𝑃 with memory

of size 𝑀 we denote the contents of the memory data by 𝐷 ∈ {0, 1}𝑀 . Additionally, the program gets a

“short” input 𝑥 ∈ {0, 1}𝑚 , which is also considered the initial state of the program. We use 𝑃𝐷 (𝑥) to denote

the execution of 𝑃 with memory contents 𝐷 and input 𝑥 . The program 𝑃 can read from various locations

in 𝐷 throughout its execution.

CPU-step circuit. We represent a RAM program 𝑃 via 𝑡 CPU-step circuits, each of which executes a

single CPU step. Each CPU step is denoted by:

𝐶𝑃
CPU(st, rData) → (st

′, 𝐿)

The circuit takes as input the current CPU state st and a bit rData. The bit rData will be read from the

memory location that was requested by the previous CPU step. The circuit outputs an updated state st′

and the next location to read from 𝐿 ∈ [𝑀]. The sequence of locations form the memory access pattern

MemAccess = {𝐿1, . . . , 𝐿𝑡 }.

Representing RAM computation by CPU-step circuits. The computation 𝑃𝐷 (𝑥) starts with an initial

state st1 = 𝑥 . In each step 𝜏 ∈ {1, . . . , 𝑡}, the computation proceeds as follows: If 𝜏 = 1, then rData𝜏 B 0;

otherwise rData𝜏 B 𝐷 [𝐿𝜏−1]. Next it executes the CPU-step circuit 𝐶𝑃
CPU(st

𝜏 , rData𝜏 ) = (st𝜏+1, 𝐿𝜏 ). When

𝜏 = 𝑡 , st𝜏+1 is the output of the program.

B.2 Construction of NISC in the RAMModel

In this section, we now recall the NISC construction from [CDG
+
17]. As noted above, we only need to

support read-only RAM machines.

Construction B.3 (NISC in the RAM Model [CDG
+
17, adapted]). The construction relies on the following

primitives:

• Let ΠOT = (OT.Setup,OT.Hash,OT.Send,OT.Receive) be a laconic OT scheme.

• Let ΠGC = (Garble, Eval) be a circuit garbling scheme with key length 𝑘 = 𝑘 (𝜆).

We construct the NISC scheme ΠNISC = (Setup, EncData, EncProg,Decrypt) as follows:

• Setup(1𝜆): On input the security parameter 𝜆, the setup algorithm samples crs← OT.Setup(1𝜆) and
outputs crs.

• EncData(crs, 𝐷): On input the common reference string crs and a database 𝐷 , the data encryption

algorithm computes (dig, 𝐷) ← OT.Hash(crs, 𝐷) and outputs (dig, 𝐷).

• EncProg(crs, dig, (𝑃, 𝑥, 𝑡)): On input the common reference string crs, a digest dig, and a program

𝑃 with input 𝑥 ∈ {0, 1}𝑚 and maximum run-time 𝑡 , the program encryption algorithm does the

following:

1. For all 𝜏 ∈ [𝑡 + 1], sample (stKeys𝜏 , dataKeys𝜏 , digKeys𝜏 ) r← {0, 1} (2𝑚+2+2 |dig | )𝑘 .
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2. For all 𝜏 ∈ [𝑡], compute 𝐶𝜏
step ← Garble(1𝜆,𝐶step [crs, 𝑃,Keys𝜏+1],Keys𝜏 ), where we have

Keys𝜏 = (stKeys𝜏 , dataKeys𝜏 , digKeys𝜏 ) and 𝐶step [crs, 𝑃, nextKeys] is defined as follows:

Hard-wired: CRS crs, program 𝑃 , keys nextKeys = (stKeys, dataKeys, digKeys)
Input: state st, data rData, digest dig

(a) Compute (st′, 𝐿) ← 𝐶𝑃
CPU(st, rData).

(b) Compute ct𝐿 ← OT.Send(crs, dig, 𝐿, dataKeys).

Output ((stKeysst′, ct𝐿, digKeysdig), 𝐿)

Figure 10: Description of step circuit 𝐶step [crs, 𝑃, nextKeys].
For 𝜏 = 1, embed labels digKeys1dig ,dataKeys

1

0
, and stKeys1𝑥 in 𝐶1

step.

Output ct = ({𝐶𝜏
step}𝜏∈[𝑡 ], stKeys𝑡+1).

• Decrypt𝐷 (crs, ct): On input the CRS crs and a ciphertext ct = ({𝐶𝜏
step}𝜏∈[𝑡 ], stKeys𝑡+1), the decryption

algorithm does the following:

1. Parse 𝐶1

step = (𝐶1

step, digLabels
1, dataLabels1, stLabels1).

2. For each 𝜏 ∈ [𝑡] in ascending order do the following:

(a) Compute (𝑋, 𝐿) ← Eval(𝐶𝜏
step, (stLabels𝜏 , dataLabels𝜏 , digLabels𝜏 )).

(b) Parse 𝑋 = (stLabels𝜏+1, ct𝐿, digLabels𝜏+1) and compute

dataLabels𝜏+1 ← OT.Receive𝐷 (crs, ct𝐿, 𝐿).

Output 𝑦 by using stKeys𝑡+1 to decode stLabels𝑡+1.

Theorem B.4 (Correctness). Suppose ΠGC and ΠOT satisfy correctness. Then, Construction B.3 is correct.

Proof. Take any security parameter 𝜆 ∈ N, database 𝐷 ∈ {0, 1}𝑀 , and RAM program tuple (𝑃, 𝑥, 𝑡). Let
crs ← Setup(1𝜆), (dig, 𝐷) ← EncData(crs, 𝐷), and ct ← EncProg(crs, dig, (𝑃, 𝑥, 𝑡)). When evaluating

Decrypt𝐷 (crs, ct), ΠGC correctness ensures that each step outputs the correct labels for the next step, while

ΠOT correctness ensures that the correct data labels are retrieved. At the end of this evaluation process,

the keys given in ct can decode the final state of the CPU-step circuit, which is 𝑦 = 𝑃𝐷 (𝑥). □

Theorem B.5 (Privacy). Suppose ΠOT satisfies sender privacy and ΠGC is secure. Then, Construction B.3 is
private.

Proof. We first define the simulator SimEnc. On input the common reference string crs, a digest dig, a
database 𝐷 , an output string 𝑦, and a memory access patternMemAccess = {𝐿1, . . . , 𝐿𝑡 }, the simulator does

the following:

1. Sample hard-wired keys (stKeys𝑡+1, dataKeys𝑡+1, digKeys𝑡+1) r← {0, 1} (2𝑚+2+2 |dig | )𝑘 for 𝐶step and

set output labels to stLabels𝑡+1 ← stKeys𝑡+1𝑦 , dataLabels𝑡+1 ← dataKeys𝑡+1
𝐷 [𝐿𝑡 ] , digLabels

𝑡+1 ←
digKeys𝑡+1dig .
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2. For 𝜏 = 𝑡, 𝑡 − 1, . . . , 1, proceed as follows:

(a) Compute ct𝐿𝜏 ← OTSim(crs, 𝐷, 𝐿𝜏 , dataLabels𝜏+1) and set𝑋 ← (stLabels𝜏+1, ct𝐿𝜏 , digLabels𝜏+1).
(b) Compute (𝐶𝜏

step, stLabels
𝜏 , dataLabels𝜏 , digLabels𝜏 ) ← GCSim(1𝜆,𝐶step, (𝑋, 𝐿𝜏 )).

Output ct = ({𝐶𝜏
step}𝜏∈[𝑡 ], stKeys𝑡+1).

To show SimEnc indeed satisfies privacy, we define a sequence of hybrid experiments:

• Hyb
2𝑖 : This is the privacy game from Definition A.1, with the following modified ct generation

procedure in Step 4:

1. Execute 𝑃𝐷 (𝑥) to obtainMemAccess = {𝐿1, . . . , 𝐿𝑡 } and set 𝑦 ← st𝑡+1. Additionally, compute

rData𝜏 at the beginning of step 𝜏 for 𝜏 ∈ [𝑡 + 1].
2. For 𝜏 = 𝑡 + 1 down to 𝑖 + 1, sample (stKeys𝜏 , dataKeys𝜏 , digKeys𝜏 ) r← {0, 1} (2𝑚+2+2 |dig | )𝑘 .
3. For 𝜏 = 𝑡 down to 𝑖 + 1, compute 𝐶𝜏

step ← Garble(1𝜆,𝐶step [crs, 𝑃,Keys𝜏+1],Keys𝜏 ), where we
have Keys𝜏 = (stKeys𝜏 , dataKeys𝜏 , digKeys𝜏 ) and𝐶step is defined as in Fig. 10. Set stLabels𝑖+1 ←
stKeys𝑖+1st𝑖+1 , dataLabels

𝑖+1 ← dataKeys𝑖+1
rData𝑖+1

, and digLabels𝑖+1 ← digKeys𝑖+1dig .

4. For 𝜏 = 𝑖 down to 1, proceed as follows:

(a) Compute the ciphertext ct𝐿𝜏 ← OTSim(crs, 𝐷, 𝐿𝜏 , dataLabels𝜏+1) and set the tuple 𝑋 ←
(stLabels𝜏+1, ct𝐿𝜏 , digLabels𝜏+1).

(b) Compute (𝐶𝜏
step, stLabels

𝜏 , dataLabels𝜏 , digLabels𝜏 ) ← GCSim(1𝜆,𝐶step, (𝑋, 𝐿𝜏 )).

Embed digLabels1, dataLabels1, stLabels1 in 𝐶1

step.

Output ct = ({𝐶𝜏
step}𝜏∈[𝑡 ], stKeys𝑡+1).

• Hyb
2𝑖+1: Same as Hyb

2𝑖 except

(𝐶𝑖+1
step, stLabels

𝑖+1, dataLabels𝑖+1, digLabels𝑖+1) ← GCSim(1𝜆,𝐶step, ((stKeys𝑖+2st𝑖+2 , ct𝐿𝑖+1 , digKeys
𝑖+2
dig ), 𝐿

𝑖+1)),

where ct𝐿𝑖+1 ← OT.Send(crs, dig, 𝐿𝑖+1, dataKeys𝑖+2) and (stKeys𝑖+2, dataKeys𝑖+2, digKeys𝑖+2) are the
input keys to 𝐶𝑖+2

step.

Note that Hyb
0
is the privacy game with EncProg used to generate the challenge ciphertext, and Hyb

2𝑡 is

the privacy game with SimEnc used to generate the challenge ciphertext. We will appeal to security of ΠGC

to show that Hyb
2𝑖 and Hyb

2𝑖+1 are computationally indistinguishable for all 𝑖 ∈ [0, 𝑡 − 1]. We will then

appeal to sender privacy of ΠOT to show that Hyb
2𝑖+1 and Hyb

2𝑖+2 are computationally indistinguishable

for all 𝑖 ∈ [0, 𝑡 − 1].

Lemma B.6. Suppose ΠGC satisfies security. Then, for all 𝑖 ∈ [0, 𝑡 −1],Hyb
2𝑖 andHyb2𝑖+1 are computationally

indistinguishable.

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb
2𝑖 and Hyb

2𝑖+1 with non-

negligible probability 𝛿 . We use A to construct B that breaks security of ΠGC:

1. At the beginning of the game, B gets 𝐷 ∈ {0, 1}𝑀 and (𝑃, 𝑡) from A. Algorithm B samples

crs← Setup(1𝜆), computes (dig, 𝐷) ← EncData(crs, 𝐷), and gives (crs, dig, 𝐷) to A.
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2. Given input 𝑥 from A, algorithm B runs the ct generation procedure as in Hyb
2𝑖 , except the compo-

nents (𝐶𝑖+1
step, stLabels

𝑖+1, dataLabels𝑖+1, digLabels𝑖+1) are generated by sending 𝐶step [crs, 𝑃,Keys𝑖+2]
and input (st𝑖+1, rData𝑖+1, dig) to the garbled circuit challenger and using the response.

3. Algorithm B gives ct to A and outputs whatever A outputs.

If (𝐶𝑖+1
step, stLabels

𝑖+1, dataLabels𝑖+1, digLabels𝑖+1) from the garbled circuit challenger are generated honestly,

B simulates Hyb
2𝑖 for A. If the components from the garbled circuit challenger are generated via GCSim,

B simulates Hyb
2𝑖+1 for A. Thus, B breaks security of ΠGC with advantage 𝛿 , as desired. □

Lemma B.7. Suppose ΠOT satisfies sender privacy. Then, for all 𝑖 ∈ [0, 𝑡 − 1], Hyb
2𝑖+1 and Hyb

2𝑖+2 are
computationally indistinguishable.

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb
2𝑖+1 and Hyb

2𝑖+2 with non-

negligible probability 𝛿 . We use A to construct B that breaks sender privacy of ΠOT:

1. At the beginning of the game, algorithm B gets 𝐷 ∈ {0, 1}𝑀 and (𝑃, 𝑡) from A.

2. For 𝜏 = 𝑡 +1 down to 𝑖 +2, algorithm B samples (stKeys𝜏 , dataKeys𝜏 , digKeys𝜏 ) r← {0, 1} (2𝑚+2+2 |dig | )𝑘 .
Algorithm B also samples 𝐿𝑖+1 r← [𝑀] and sends (𝐷, 𝐿𝑖+1, (𝑚0,𝑚1) = dataKeys𝑖+2) to the sender

privacy challenger to get back (crs, ct𝐿𝑖+1). Algorithm B computes (dig, 𝐷) ← EncData(crs, 𝐷) and
sends (crs, dig, 𝐷) to A.

3. Given input 𝑥 from algorithm A, algorithm B executes 𝑃𝐷 (𝑥) to obtain MemAccess and check if

𝐿𝑖+1 matches the 𝑖 + 1th entry ofMemAccess. If the entries do not match, B outputs ⊥. Otherwise, B
runs the ct generation as in Hyb

2𝑖+2 with the crs, ct𝐿𝑖+1 , and (stKeys𝜏 , dataKeys𝜏 , digKeys𝜏 )𝜏∈[𝑖+2,𝑡+1]
components as above.

4. B gives ct to A and outputs whatever A outputs.

If the tuple (crs, ct𝐿𝑖+1) from the sender privacy challenger is generated honestly, B simulates Hyb
2𝑖+1 for

A when it does not abort. If (crs, ct𝐿𝑖+1) is generated with OTSim, B simulates Hyb
2𝑖+2 for A when it does

not abort. Thus, B breaks sender privacy of ΠOT with advantage 𝛿 conditioned on the guess for 𝐿𝑖+1 being
correct. Since 𝐿𝑖+1 is sampled uniformly and is independent of A’s view, B breaks sender privacy with

advantage at least 𝛿/𝑀 , which is still non-negligible since𝑀 = poly(𝜆). □

Combining Lemmas B.6 and B.7 yields the statement by a hybrid argument. □

Theorem B.8 (Efficiency). Suppose ΠOT satisfies efficiency. Then, Construction B.3 is efficient.

Proof. Follows immediately from the efficiency of ΠOT. □
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