
Counter Galois Onion:
Fast Non-Malleable Onion Encryption for Tor

Jean Paul Degabriele1, Alessandro Melloni 2, Jean-Pierre Münch3, and Martijn Stam 2

1 Technology Innovation Institute, Masdar City, Abu Dhabi, U.A.E.
jeanpaul.degabriele@tii.ae
2 Simula UiB, Bergen, Norway.

alessandro.melloni.29@gmail.com,martijn@simula.no
3 Technische Universität Darmstadt, Darmstadt, Germany

jean-pierre.muench@posteo.de

Abstract. In 2012, the Tor project expressed the need to upgrade Tor’s onion encryption scheme
to protect against tagging attacks and thereby strengthen its end-to-end integrity protection. Tor
proposal 261, where each encryption layer is processed by a strongly secure, yet relatively expensive
tweakable wide-block cipher, is the only concrete candidate replacement to be backed by formal,
yet partial, security proofs (Degabriele and Stam, EUROCRYPT 2018, and Rogaway and Zhang,
PoPETS 2018).
We propose an alternative onion encryption scheme, called Counter Galois Onion (CGO), that fol-
lows a minimalistic, modular design and includes several improvements over proposal 261. CGO’s
underlying primitive is an updatable tweakable split-domain cipher accompanied with a new secu-
rity notion, that augments the recently introduced rugged pseudorandom permutation (Degabriele
and Karadžić, CRYPTO 2022). Thus, we relax the security compared to a tweakable wide-block
cipher, allowing for more efficient designs. We suggest a concrete instantiation for the updatable
tweakable split-domain cipher and report on our experiments comparing the performance of CGO
with Tor’s existing onion encryption scheme.
We identify the functionality and security desiderata for Tor’s onion encryption, and show that our
security notion for updatable tweakable split-domain ciphers successfully hybridizes, which allows
us to argue informally that CGO meets the full security requirements.
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1 Introduction

Every day, the Tor network empowers millions of users by circumventing censorship and enabling anony-
mous Internet access. Since its inception, Tor has steadily increased in popularity, exhibiting multiple
spikes in usage during censorship events around the globe [1]. Moreover, it has become an indispensable
resource for whistleblowers, journalists, and activists to protect their identities while sharing sensitive
information. The protocol at the heart of the Tor network evolved through a series of papers that de-
veloped onion routing [21,38,44,45], and it was eventually pinned down by Dingledine, Mathewson, and
Syverson [16]. Since then, the circuit setup (key exchange) component has been replaced, and the Tor
protocol has been augmented with numerous other extensions and protections.

Yet, the symmetric onion encryption responsible for protecting the data traffic over the Tor network,
has remained unchanged, notwithstanding a clear need to replace it [33]: the current scheme’s weaknesses
include its malleability and susceptibility to tagging attacks, the rather short authentication tag, the fact
that authentication tags are computed using a vulnerable MAC construction (albeit seemingly hard to
exploit in Tor), and the fact that the onion encryption follows a MAC-then-encrypt approach—which in
the case of authenticated encryption is known to be generically insecure.

In Tor, prior to sending any data, a sender first needs to establish a circuit typically consisting of
three routers from the pool of available routers in the network. The sender would then share a symmetric
key with every router in the circuit, and data traffic would flow through this circuit in encrypted form
before it reaches its destination. Intuitively, anonymity is achieved because the full circuit is known only
to the sender, whereas the routers in the network are only aware of the preceding and successive parties.
The sender encrypts data as follows: it pads the message to a fixed size, appends a MAC computed over
the full sequence of messages transmitted up to that point, and applies three layers of counter-mode
encryption, a layer for every onion router in the circuit. As the ciphertext travels through the circuit,
each router strips off one layer of encryption and forwards the resulting ciphertext to the next router in
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the circuit. The encryption layers serve to decorrelate the ciphertexts entering a router from those exiting
it, assuming that the traffic flowing through the router is high enough so that incoming and outgoing
ciphertexts cannot be easily correlated through timing.

Now, the sender’s anonymity can be compromised if, for instance, an attacker can determine the first
and last router in a circuit. In a tagging attack, an active adversary flips a bit in the ciphertext when
it is travelling between the sender and the first router and then flips back this same bit just before the
ciphertext reaches the last router. If decryption at the last router succeeds, the adversary has confirmed
that the two routers are indeed on the same circuit. Note that it is the malleability of counter-mode
encryption progressing through multiple layers that makes the scheme susceptible to tagging attacks.
Interestingly, tagging attacks were already known and acknowledged by the Tor designers [16]. However
they were deemed to be less damaging than passive traffic correlation attacks, which are unavoidable for
a low-latency network like Tor. This opinion changed due to two anonymous posts on the Tor mailing
list [36,37] that used the base-rate fallacy to argue that tagging attacks scale better than traffic correlation
attacks and are thus more severe. This highlighted the need for better cryptography for Tor. The other
issues about authentication, raised by Mathewson in Proposal 202 [33], refer to the computation of the
authentication tag, which uses SHA1 by prepending the message with a secret key and truncating the
tag to just 32 bits. This method is problematic both due to the relatively short tag and its use of a
broken hash function in an insecure MAC construction, albeit seemingly unexploitable in Tor.

Designing an onion encryption scheme suitable for Tor presents several unique challenges. In addition
to providing a forward secure channel between sender and receiver that is resistant against tagging
attacks, the new onion encryption scheme should be able to coexist with the old scheme so as to permit
a smooth transition. That is, it should be possible to establish heterogeneous circuits where some of the
onion routers support the new scheme, and others do not. It should also support circuits of arbitrary
length while maintaining a constant ciphertext size that is independent of both the circuit length and
where in the circuit the ciphertext is processed. Another salient feature of the Tor protocol that must be
supported by the onion encryption scheme is leaky pipes. This refers to the ability to send messages to any
router within the circuit and not just the last (exit) router in the circuit. Accordingly, any suitable scheme
must allow a router to determine unambiguously whether it is the intended recipient of a ciphertext, yet
without leaking the intended recipient to any earlier routers on the circuit. Similarly, any router can send
ciphertexts back to the sender, who in turn should be able to determine which router it originated from,
yet intermediate routers should not learn the source router’s identity. Finally, a significant challenge in
replacing Tor’s current onion encryption scheme is performance. The current scheme is rather simple in
that it consists of a single keyed SHA1 evaluation for end-to-end integrity and AES in counter mode
for each layer of encryption. In view of this minimalistic design, satisfying all the above requirements
without incurring a substantial penalty in performance, is challenging.

In Proposal 202, besides expressing the need to update the onion encryption in Tor, Mathewson de-
scribed two high-level ideas for a candidate replacement. The first was based on replacing each layer with
a tweakable wide-block cipher and the latter can be described as a symmetric adaptation of Sphinx [11],
a popular asymmetric scheme used in mix-nets. Eventually, the wide-block-cipher approach was deemed
the more favourable one. Notably, it results in significantly less ciphertext expansion, with a ciphertext
size independent of the circuit length, and it is functionally closer to Tor’s current scheme, which facili-
tates retrofitting in Tor. Subsequently, Mathewson specified a concrete proposal for an onion encryption
scheme based on the wide-block cipher approach [34], where AEZ was named as a potential candidate for
instantiating the wide-block cipher [28]. The security of this scheme was analysed and proven secure in
two concurrent and independent works [15,41]. Shortly before, Ashur, Dunkelman, and Luykx [4] intro-
duced GCM-RUP, a nonce-hiding AEAD scheme that is secure under the release of unverified plaintext
(a.k.a. RUP security). They argued that replacing Tor’s counter-mode encryption with a wide-block ci-
pher would be overkill and proposed using GCM-RUP instead. However, there is a significant conceptual
gap between an AEAD scheme and an onion encryption scheme, where transforming the former into the
latter is not at all straightforward. Indeed, their associated onion encryption scheme [46] had no security
proof, and it did not meet many of the desiderata we mentioned above.

1.1 Contribution

In this work we propose Counter Galois Onion (CGO)—a new onion encryption scheme for Tor that
meets the requirements expressed in Proposal 202, provides forward security, and offers very competitive
performance. Our scheme is inspired by the proposal of Ashur, Dunkelman, and Luykx [4,46], and serves
to confirm their intuition that a wide-block cipher is not necessary to protect against tagging attacks.
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However, as an onion encryption scheme, CGO improves significantly over theirs and our design rationale
still differs considerable. Our contribution can be summarised as follows.

Modular and compact design. CGO is a concrete onion encryption scheme but its design follows a modular
approach where the underlying building blocks can be easily replaced to improve security or performance
if needed. In fact, we reveal the details of CGO in three stages using three different levels of abstraction.
At the highest level of abstraction, CGO can be described in terms of a primitive that we call an updatable
tweakable split-domain cipher, based on earlier work by Degabriele and Karadžić [13]. They introduced
Rugged Pseudorandom Permutations (RPRP), essentially a security notion for split-domain tweakable
ciphers that is weaker than the more common notion of strong tweakable pseudorandom permutations and
can thus be attained by more lightweight constructions. A split-domain cipher is simply a cipher (family
of permutations) operating over pairs of strings rather than strings. We augment these ciphers with
an update mechanism for generating new key material, and introduce a corresponding security notion
URRND, itself an extension of the RRND notion that Degabriele and Karadžić already mentioned as an
alternative to RPRP. Intuitively, the update mechanism serves to make CGO stateful in order to provide
forward security and meet other security requirements. We lay out the main rationale behind the design
of CGO in Section 3.3.

At the second layer of abstraction, we describe how we instantiate the updatable split-domain cipher
through the UIV+ construction, consisting of a tweakable blockcipher and a tweakable pseudorandom
function. In principle, any split-domain cipher that is RPRP secure can be transformed into an updatable
split-domain cipher that is URPRP secure by augmenting it with a separate pseudorandom function.
Several RPRP-secure split-domain ciphers designs have been proposed [13, 14], all of which can thus
be easily adapted for use in CGO via the simple transformation just described. However, the UIV+
construction employed in CGO realises the update functionality compactly without introducing additional
components and key material by simply replacing the underlying pseudorandom function already present
in UIV with a tweakable pseudorandom function. We then present a concrete instantiation of UIV+ that
we call GCM-UIV+, where we realise the tweakable blockcipher and the tweakable pseudorandom function
from AES and the universal hash function POLYVAL [22]. The main aim of GCM-UIV+ is to optimise
CGO’s performance by exploiting the native instruction sets commonly found in most modern CPUs
allowing very fast implementations of AES and POLYVAL.

Performance benchmarks. Our final contribution is a performance analysis of CGO, benchmarked against
Tor’s existing onion encryption scheme, considering both the forward and backward directions. The
simplicity of Tor’s existing scheme makes it rather hard to outperform, especially at intermediate Onion
Routers, where the cryptographic processing requires only the evaluation of counter-mode AES. At these
nodes, we observe that CGO results in an overhead ranging between 20% − 50%, where the higher
overhead was observed in the backward direction. However, at the Onion Proxy and the Exit/Entry, we
observe a speedup by a factor of three. This is where the SHA-1 processing takes place in Tor’s existing
scheme, which CGO avoids, leading to this more substantial improvement in performance. Arguably,
the performance at the Onion Proxy and Exit/Entry node is more critical since Exit/Entry nodes are
more scarce in the Tor network (due to their legal exposure), and the Onion Proxy could be running
on a phone or some other lightweight device. Thus, when compared to Tor’s existing onion encryption
scheme, CGO provides superior security at the cost of a mild slowdown at the intermediate nodes and
even better performance at the end nodes in the circuit. In view of this, we propose CGO as a practically
viable replacement for Tor’s existing onion encryption scheme that we believe meets all of the security
and functional requirements originally outlined by Mathewson [33].

1.2 Related Works

Rugged pseudorandom permutations (RPRP) were introduced by Degabriele and Karadžić as a generic
primitive that could be easily transformed into a variety of AEAD schemes with differing properties
or compact Nonce-Set AEAD schemes from which order-resilient channels like QUIC and DTLS can
be realised more easily [13]. A central focus of their work was to revisit the encode-then-encipher
paradigm [8, 43] when instantiated with a weaker primitive, i.e., a rugged pseudorandom permutation
instead of strong pseudorandom permutation. In contrast, in this work we consider the rather different
task of building onion encryption from a rugged pseudorandom permutation. Our updatable rugged pseu-
dorandom construction UIV+ is based on the UIV construction by Degabriele and Karadžić [13], which is
itself based on the PIV construction by Shrimpton and Terashima [43]. In follow-up work, Degabriele and
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Karadžić presented three further constructions of rugged pseudorandom permutations, which we believe
could serve as the basis for alternative instantiations of CGO [14].

Ashur, Dunkelman, and Luykx introduced GCM-RUP [4] as an AEAD scheme which retains security
under the release of unverified plaintext [2,6]. The authors suggested using GCM-RUP in Tor. While their
initial idea was very insightful, turning a RUP-secure AEAD scheme into a suitable onion encryption
scheme for Tor is non-trivial, as the latter needs to support leaky pipes and must be stateful in order
to achieve chosen-plaintext security (otherwise the same message would always encrypt to the same
ciphertext). They sketched out a concrete proposal how their AEAD scheme could be integrated into
Tor to thwart tagging attacks [46], but still with several shortcomings as it did not support forward
security and its non-modular structure made it particularly hard to analyse its security: while the AEAD
scheme itself came with a security proof, the Tor proposal did not. Indeed, it did not protect against
all types of tagging attacks, such as the ones described by Degabriele and Stam [15]. Our scheme CGO
addresses all these shortcomings and additionally provides forward security.

Two other prior works [15,41] analysed the security of the scheme proposed by Mathewson in proposal
261 based on a strong pseudorandom permutation [34]. The two use rather different security models.
Degabriele and Stam [15] formulate confidentiality, authenticity, and anonymity as separate security
notions, and the routing mechanism, which affects security, is considered to be part of the scheme. On
the other hand, Rogaway and Zhang [41] use an all-in-one security definition and focus solely on the
onion encryption component rather than the complete onion routing scheme. Arguably, the approach
adopted by Degabriele and Stam is more comprehensive and the security model is closer to the intuitive
security goal, but it is also more complex, whereas the security model by Rogaway and Zhang is easier
to work with. Unfortunately, neither of these prior works model leaky pipes or capture forward security,
thus they are of limited use to analyse CGO.

2 Preliminaries

Notation. We use code-based experiments, where by convention all sets, lists, and lazy functions are
initialized empty. Most security notions in this paper are captured by distinguishing advantages, where
an adversary has to distinguish between the real experiment (b = 1) and some idealized version thereof
(b = 0).

We use Pr[Code : Event |Condition ] to denote the conditional probability of Event occuring when
Code is executed, conditioned on Condition. We omit Code when it is clear from the context and
Condition when it is not needed. In our (pseudo)code, we use the shorthand X ∪←− x for the operation
X ← X ∪ {x}, X ⌢←− x to append the element x to the list X, and the shorthand (B,C) ↞ A to indicate
that A is parsed as the tuple (B,C), where unique parsing should follow easily from the context. For any
string x we denote by ⌊x⌋ℓ the substring consisting of the ℓ rightmost bits.

2.1 Tweakable Split-Domain Ciphers

A cipher is a family of length-preserving permutations over some domain D, where each permutation is
indexed by a key, or a key–tweak pair in the case of a tweakable cipher. We denote blockciphers and
tweakable blockciphers by their respective enciphering algorithms,

E : {0, 1}k × {0, 1}n → {0, 1}n and E : {0, 1}k ×H× {0, 1}n → {0, 1}n ,

where k is the key size, n is the block size, andH is the tweak space. The conceptual building block behind
our construction CGO will be yet another kind of cipher: a tweakable cipher over a split domain. Such
ciphers were recently considered by Degabriele and Karadžić [13], who introduced rugged pseudorandom
permutations (RPRP). An RPRP is a new security notion for ciphers that lies in between pseudorandom
permutations [20] and strong pseudorandom permutations [32]. Intuitively, this intermediate security level
is attained by providing the adversary full access to the enciphering algorithm but only partial access
to the deciphering algorithm. The formal security definition requires that the domain of the cipher to
be split into two sets, so D = DL × DR. We may refer to DL as the left set, and DR as the right set ;
henceforth, we will let DL = {0, 1}n and DR = {0, 1}m for some positive integers n and m such that
n < m. We denote a tweakable split-domain cipher by its enciphering algorithm

EE : {0, 1}k ×H× {0, 1}n × {0, 1}m → {0, 1}n × {0, 1}m ,
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where, for any K ∈ {0, 1}k and any H ∈ H, the function EEH
K identifies a permutation over {0, 1}n ×

{0, 1}m, whose inverse we denote by EDH
K . Thus, classical tweakable blockciphers can be viewed as the

special case where m = 0 or, equivalently, DR = ∅.
In order to make CGO forward secure, we augment tweakable split-domain ciphers to also be updatable

so that their key material can be refreshed. Formally, an updatable tweakable split-domain cipher consists
of a pair of functions (EE,EU) where EE is a tweakable split-domain cipher and the update algorithm
EU takes a key K ∈ {0, 1}k and a left element XL ∈ {0, 1}n, and returns new values for each, i.e.,

EU : {0, 1}k × {0, 1}n → {0, 1}k × {0, 1}n .

In terms of security, we will require that an updatable tweakable split-domain cipher satisfies an
extended security notion called URRND, where the U stands for “updatable” and RRND is the two-
sided random function equivalent of RPRP. Degabriele and Karadžić already introduced RRND, which
turns out a lot more convenient to work with. The formal definition of URRND security is deferred to
Section 4, where we also describe a construction for an updatable tweakable split-domain cipher that
meets this notion (Section 4.2) and that can thus be plugged in directly to instantiate CGO.

3 The Design of CGO

3.1 Context

Tor. The Tor network is an overlay network that allows users, running an onion proxy (OP), to establish
a circuit involving multiple onion routers (ORs), typically three. A Tor circuit allows traffic to flow in
both directions: forward from the proxy to any of the routers, or backward from any of the routers to
the proxy. Traffic is split up in fixed size messages that are individually sent across the circuit using
cells. Each Tor cell consists of a cell header and a cell payload, where only the latter part is encrypted.
Thus onion routing involves cells, whereas the onion encryption we are interested in only deals with the
cell’s payload (which we will refer to as the ciphertext). For all Tor versions so far, the length of these
ciphertexts is fixed at 509 bytes (Tor’s CELL_BODY_LEN).

The cell header indicates the type of cell, of which we are primarily concerned with the types RELAY
and RELAY_EARLY. In turn, the payload of these cells is itself partitioned into 11 bytes of header fields
and a data field of 498 = 509 - 11 bytes, where the actual message is contained, possibly augmented with
padding. Currently, the headers in the payload of a RELAY cell consist of the following: a 1-byte Relay
Command field, a 2-byte Recognised field, a 2-byte Stream Identifier field, a 4-byte Digest field, and a
2-byte Length field. Encryption uses counter mode, with the Recognised and Digest fields simultaneously
providing end-to-end integrity and enabling leaky pipes (the ability for the proxy to communicate with
any of the routers).

Our new scheme, CGO, was explicitly designed to be used in Tor, and in particular, it aims to fit
Tor’s existing infrastructure and facilitate its deployment with only some mild alterations. Indeed, CGO
preserves all of Tor’s currently existing functionality while augmenting it with new features. However, the
exact mechanisms by which it realises Tor’s existing functionality, such as leaky pipes and end-to-end
integrity, is different, which requires changes to the cell payload format. As we will see momentarily,
CGO views a ciphertext as consisting of two parts, C = T ∥ C, where the functionality previously
provided by the Recognised and Digest fields is now provided by T—acting as a 16-byte authentication
tag. Accordingly, in CGO we dispose of these two fields from the payload and relocate the remaining
components of the payload in C. This reduces the typical supported payload length of a relay cell from
498 bytes to 488 = 509 - 5 - 16 bytes while also raising the cell integrity from 32 bits, previously provided
by the Digest field, to 128 bits of security that is now provided by T .

Syntax. Although initially the forward and backward directions might appear symmetrical, the key gen-
eration is initiated and coordinated by the proxy, creating an asymmetry. Furthermore, the introduction
of leaky pipes substantially increases the degree of asymmetry between the two directions.

Specifically, in the forward direction a router needs to determine whether an incoming ciphertext is
intended for itself or needs to be forwarded further. Locally stored routing information is insufficient to
make this determination, instead cryptographic processing of the ciphertext at an onion router will be
needed to decide. Conversely, in the backward direction, in addition to processing cells passing through
the circuit, any onion router can send messages to the proxy. Consequently, the onion proxy will need to
determine from which onion router a received message originated.
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OP-Enc OR-Dec OR-Dec

AD

d

M

M ′or Cd+1

σ ϱ1 ϱd

C2 CdC1

Fig. 1. The syntax of onion encryption in the forward direction.

When specifying CGO below, we will slightly simplify our presentation of the circuit initialization.
Whereas Tor uses a telescoping mechanism to use the existing part of the circuit to extend it one
router at a time, we will pretend that all parties’ states are initialized simultaneously without further
communication necessary. This simplification is common when modelling onion encryption or routing [15,
41] and our specification of CGO is of course fully compatible with Tor’s telescoping.

Notation. For a circuit of length ℓ, we assign the router nodes indices 1, . . . , ℓ starting from the node
adjacent to the proxy up to the last node in the circuit. For any node i within a circuit we refer to node i−1
as its predecessor and node i+1 as its successor. Here the proxy can be thought of as a node with index 0.
We assume that the message M to be communicated is in the message spaceM = {0, 1}m, i.e., messages
are padded to a fixed length using some injective padding, and that the ciphertexts communicated
between routers and the proxy are in the ciphertext space C = {0, 1}c. Furthermore, we assume m < c
so that M and C are disjoint and thus messages can be distinguished from ciphertexts through their
length. In the case of Tor, we will use c = 8 · 509 and m = 8 · (509− 16) (treating the 5 bytes of payload
header as part of the message space given they need to be encrypted). Associated data is modelled by
AD ⊆ {0, 1}∗. For Tor, we will assume associated data has a fixed length, typically AD = {0, 1}8 (see
Section 3.3). Ciphertexts between node i − 1 and i may be indexed by i, so in the forward direction
router i will take as input Ci whereas in the backward direction router i will output Ci.

Forward direction. A forward-direction onion encryption scheme OE-Fw consists of three algorithms
(Init-Fw,OP-Enc,OR-Dec). A pictorial representation of their operation and lifecyle of a message in
transit is shown in Fig. 1.

– The circuit initialisation algorithm Init-Fw takes as input the circuit size ℓ and returns the initial
encryption state σ intended for the proxy (which consists of ℓ components σi, one for each router on
the circuit), as well as the initial decryption states ϱ1, . . . , ϱℓ for each router in the circuit.

– The deterministic algorithm OP-Enc is used by the proxy to encrypt messages with associated data
to a specific node within a circuit. Given the current encryption state σ for a circuit, the index d ∈ [ℓ]
of the destination node within that circuit, associated data AD ∈ AD, and a message M ∈ M, the
call C1 ← OP-EncAD

⟨σ⟩(d,Mj) returns the ciphertext C1 ∈ C intended for the first available router; as
a side-effect the algorithm OP-Enc may update its state σ.

– The deterministic algorithm OR-Dec is used by the routers in the circuit to process incoming cipher-
texts. It takes as input the node’s decryption state ϱi, the associated data AD, and a ciphertext
Ci ∈ C to update its state and output Ci+1 ∈ M ∪ C. If Ci+1 ∈ M the output is deemed intended
for the local node, otherwise it is supposed to be forwarded to the next node in the circuit.
(In the more general setting, where possibly M ∩ C ≠ ∅, OR-Dec’s syntax should be adjusted to
output a bit indicating whether the ciphertext has been recognised as destined for the current router
or is supposed to be forwarded.)

We do not explicitly model any ciphertext rejection, as we expect a forged ciphertext to propagate
through the circuit without being recognised by any of its nodes. The last router in the circuit cannot
forward any output Cℓ+1 ∈ C and thus, at its routing level will have to take an appropriate action, such as
initiating a teardown of the circuit. This separation of routing cells versus the cryptographic processing
of their ciphertexts allows for the latter process to be performed by a router agnostic of whether it is the
last node in the circuit.
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Backwards direction. A backward-direction onion encryption scheme OE-Bw consists of four algorithms
(Init-Bw,OR-Enc,OR-Proc,OP-Dec).

– The circuit initialisation algorithm Init-Bw takes as input the circuit size ℓ and returns the initial
decryption state σ intended for the proxy (which consists of ℓ components σi, one for each router
on the circuit), as well as the initial encryption/processing states ϱ1, . . . , ϱℓ for each router in the
circuit.

– On the one hand, the deterministic algorithm OR-Enc is used by a router to encrypt a fresh message,
intended for the proxy. It takes the router’s encryption state ϱi, associated data AD, and a message
M to update its state and output a ciphertext Ci, to be forwarded to its predecessor node in the
circuit.

– On the other hand, the deterministic algorithm OR-Proc is used by a router to process a ciphertext
(on its way to the proxy) that was forwarded by its successor node in the circuit. Given the node’s
encryption state ϱi for the circuit, associated data AD, and an input ciphertext Ci+1 the algorithm
OR-Proc updates its encryption state and returns a new ciphertext Ci (intended for the predecessor
node in the circuit).

– Finally, the algorithm OP-Dec is used by the proxy to decrypt an incoming ciphertext and determine
its origin. It takes as input the decryption state σ, associated data AD ∈ AD, and a ciphertext
C to return a string X, and a symbol s ∈ {0, 1, . . . , ℓ}. If s > 0 then X must be a message in
M and s indicates the node in the circuit from which the ciphertext originated. Alternatively, if
s = 0 the ciphertext has been deemed invalid and X =⊥. Practically, ⊥ may be represented by
any convenient string, e.g. the empty string, and more generally, X could also be a string encoding
protocol information such as a specific error message.

3.2 Specification

We provide high-level pseudocode descriptions of our new scheme Counter Galois Onion (CGO) in the
forward and backward directions in Figs. 2 and 3, respectively. This high-level description is stated in
terms of an updatable tweakable split-domain cipher EE with update function EU. The message space
M = {0, 1}m and each ciphertext consists of two strings T and C of sizes n and m respectively (thus
C = {0, 1}n+m; for completeness, we furthermore require H = {0, 1}n ×AD).

Roughly speaking, each layer of encryption in CGO then corresponds to an enciphering or deciphering
operation of the split-domain cipher. Perhaps counterintuitively, in the forward direction we use decipher-
ing at the OP to encrypt a message (and create an initial ciphertext), which is followed by enciphering
at the ORs to decrypt (peeling off the layers). In contrast, in the backward direction we use enciphering
at the ORs to encrypt a message (or process a ciphertext) and deciphering to decrypt at the OP.

To each encryption layer, CGO associates a state consisting of the updatable tweakable split-domain
cipher’s key K, a nonce N , and a string T ′ initialised to the all-zero string. Thus for both directions,
every OR in the circuit will maintain such a triple as its state. Likewise the state of the OP will consist
of the aggregate of triples for each layer (OR in the circuit) and both directions.

Shortly, we will explain the rationale behind CGO’s design, keeping coverage of its security properties
informal. In Section 4.2 we describe how to create the underlying abstract building block from a tweakable
cipher and a pseudorandom function, and then finish the full specification of CGO by suggesting concrete
instantiations based on AES.

3.3 Design Rationale

Non-malleability only where it is needed. A central goal of CGO is to protect against tagging attacks
that exploit the malleability in Tor’s encryption layers [19]. Naturally, protecting against these attacks
requires that the underlying primitive behind each encryption layer be non-malleable. Authenticated
encryption, is non-malleable (by virtue of its IND-CCA security), yet necessarily introduces redundancy
in its ciphertexts. Unfortunately, ciphertext expansion is detrimental to onion encryption as an adversary
can infer the relative position of a node in a circuit from the size of the ciphertexts flowing in and out
of that node [15, 33]. A better alternative is a tweakable wide-block cipher that is secure as a strong
pseudorandom permutation, as it provides non-malleability without incurring any ciphertext expansion.
Indeed, proposal 261 [34] adopts this approach, which does suffice to prevent tagging attacks [15].

CGO refines this approach by replacing the tweakable wide-block cipher with an updatable tweakable
split-domain cipher that only needs to be URRND secure, a strictly weaker security requirement. As a
result, CGO admits tweakable cipher constructions with better performance characteristics.
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Init-Fw(ℓ)

for i = 1 to ℓ

K ←$ {0, 1}k

N ←$ {0, 1}n

T ′ ← 0n

σi ← (K,N, T ′)

ϱi ← (K,N, T ′)

σ ← (σ1, . . . , σℓ)

return (σ, ϱ1, . . . , ϱℓ)

OP-EncAD
⟨σ⟩(d,M)

if (d > ℓ) return ⊥
for i = d to 1

(K,N, T ′) ↞ σi

H ← T ′ ∥ AD

if i = d // initialize top layer

(T,C)← (N,M)

T ′ ← T

(T,C)← EDH
K(T,C)

if i = d

// update destination’s key

(K,N)← EUK(N)

σi ← (K,N, T ′)

return T ∥ C

OR-DecAD
⟨ϱ⟩ (T ∥ C)

(K,N, T ′) ↞ ϱ

H ← T ′ ∥ AD

(T,C)← EEH
K(T,C)

if T = N

// ciphertext recognised

(K,N)← EUK(N)

X ← C

else

// forwarding ciphertext

X ← T ∥ C
ϱ← (K,N, T )

return X

Fig. 2. CGO in the forward direction.

Init-Bw(ℓ)

for i = 1 to ℓ

K ←$ {0, 1}k

N ←$ {0, 1}n

T ′ ← 0n

σi ← (K,N, T ′)

ϱi ← (K,N, T ′)

σ ← (σ1, . . . , σℓ)

return (σ, ϱ1, . . . , ϱℓ)

OP-DecAD
⟨σ⟩(T ∥ C)

i← 1, s← 0

while i ≤ ℓ ∧ s = 0

(K,N, T ′) ↞ σi

H ← T ′ ∥ AD

(T ′, C)← EDH
K(T,C)

if T ′ = N

// ciphertext recognised

(K,N)← EUK(T )

s← i;M ← C

σi ← (K,N, T )

i← i+ 1, T ← T ′

if s = 0

M ←⊥
return (M, s)

OR-EncAD
⟨ϱ⟩ (M)

(K,N, T ′) ↞ ϱ

H ← T ′ ∥ AD

(T,C)← EEH
K(N,M)

(K,N)← EUK(T )

ϱ← (K,N, T )

return T ∥ C

OR-ProcAD
⟨ϱ⟩ (T ∥ C)

(K,N, T ′) ↞ ϱ

H ← T ′ ∥ AD

(T,C)← EEH
K(T ∥ C)

ϱ← (K,N, T )

return T ∥ C

Fig. 3. CGO in the backward direction.
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Informally, the main observation supporting that URRND security suffices to thwart tagging attacks
is as follows: only the processing at the ORs needs to be non-malleable, whereas that at the OP does not.
Inherited from Degabriele and Karadžić’s RPRP security notion, URRND security involves asymmetric
properties of the enciphering and deciphering algorithms of the tweakable split-domain cipher. Loosely
speaking, the enciphering algorithm is fully non-malleable, whereas the deciphering algorithm only offers
a very restricted form of non-malleability (see Definition 1 in Section 4.1 for details). Accordingly, CGO
always uses the enciphering algorithm at the ORs, irrespective of the direction of the traffic flow, as
there the processing of ciphertexts needs to be non-malleable. The weaker deciphering algorithm offers
sufficient security for processing at the OP, both for encryption and decryption.

The role of the nonce. CGO encrypts messages together with a nonce N that is selected at random.
Normally, the nonce serves to diversify ciphertexts (ensuring that repeating messages results in distinct
and random-looking ciphertexts) and, when transforming a conventional tweakable cipher into an AEAD
scheme, the nonce can be included in the tweak without causing any expansion. However, for CGO we
employ a variant of the encode-then-encipher paradigm [8,13,43] where the nonce is included as part of
the ‘plaintext’ input of the cipher and simultaneously provides ciphertext diversification and integrity.

As URRND security is only effective as long as the left input to the deciphering algorithm does not
repeat, that left input should include the nonce. At first sight, CGO’s handling of the nonce may seem
sub-optimal due to the resulting ciphertext expansion. CGO compensates for this expansion by using
the nonce’s redundancy to provide end-to-end plaintext integrity (in the operations comparing T or T ′

to N during decryption), thereby resulting in no additional net overhead. Intuitively, this dual use of
the nonce is possible because URRND security ensures that the left output of both the deciphering and
enciphering algorithms is unpredictable for unused inputs.

Supporting leaky pipes. In Tor, the OP can send messages to any OR in the circuit, and conversely,
any OR can send messages to the OP. This functionality, informally called leaky pipes within the Tor
ecosystem, poses a further design challenge that CGO needs to support. Indeed, another reason for
using the nonce to achieve end-to-end integrity is that it accommodates leaky pipes. Namely, in CGO, a
distinct nonce is associated with each encryption layer, which is shared and maintained synchronously
by the OP and the corresponding OR. In the forward direction, during encryption, the OP will embed
the nonce corresponding to the OR for which the message is intended, apply the appropriate layers of
encryption, and update the nonce. Then, as the resulting ciphertext travels through the circuit, each OR
will decrypt the ciphertext and check whether the left part of the output matches the locally stored copy
of the nonce. If this check succeeds, the ciphertext is understood to be intended for that OR, the right
output is returned as the authenticated message, and the nonce is updated. Alternatively, if the check
fails, the complete decryption output (both the left and right parts) is returned as the output ciphertext
and forwarded to the next OR in the circuit. In the backward direction, an analogous process occurs
whereby the source OR encrypts the message together with the nonce, and each subsequent OR adds
another layer of encryption. Then the OP decrypts the ciphertext iteratively, layer by layer, each time
comparing the left part of the decrypted output to the nonce for that layer. Decryption halts either when
there is a match whereby the message and the source OR are recovered and the corresponding nonce is
subsequently updated, or all layers are exhausted, in which case decryption has failed and none of the
nonces is updated.

Ciphertext chaining. By itself, requiring the encryption layers to be non-malleable does not exclude
all types of tagging attacks [15]. An adversary can always carry out a rudimentary form of tagging attack,
where the adversary tests whether two ORs, which it has access to, lie on the same circuit or not. Namely,
the adversary can tamper a cell as the first OR sends it out and then observe whether decryption fails
at the receiver OR. Any scheme that provides integrity only across its endpoints succumbs to this attack
making it impossible to prevent without incurring further ciphertext expansion. However, a good scheme
ensures that this attack cannot be repeated across different cells on the same circuit, as that would
effectively enable the adversary to carry out the equivalent of a full-fledged tagging attack by encoding
the tag over a sequence of cells. CGO protects against this by ensuring that any tampered cell entering
an OR drives its state out-of-sync from the OP in an irreversible manner. As a result, all subsequent
cells output by that OR will be randomised, and as they propagate further down the circuit, they will
irreversibly drive subsequent ORs out-of-sync as well. Thus, as long as there is a single OR that is not
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under adversarial control, the circuit cannot recover from a decryption failure even if the adversary can
rewind the recipient’s state.

CGO achieves this domino effect by chaining the processing of consecutive ciphertexts at every node
in the circuit. Specifically, at every OR, the left part of the prior output (the tag) is included in the
tweak when processing the subsequent input pair of strings. A matching stateful operation is performed
at the OP. This mechanism is similar in spirit to that used in proposal 261, which included the XOR
of the (full) prior input and output in the tweak. However, CGO’s approach is more efficient as it only
needs to process an extra 16 bytes of tag in the tweak instead of 512 bytes. To achieve the desired effect,
it is crucial to chain the tag output by the OR, which depends on all input bits, including the associated
data.

Another novel feature of CGO is its support for associated data. In Tor, the cell header, which is the
only part of the cell that is unencrypted, consists of a one-byte command field and a two-byte circuit
identifier. However the latter is a mutable field and thus only the command field can be included in
the associated data. Nevertheless this still serves to mitigate against tagging attacks that tamper with
cell headers, such as changing the command field from RELAY to RELAY_EARLY, which has been
exploited in the past [27,42].

Forward security. The chaining of ciphertexts is not the only stateful mechanism in CGO. To achieve
forward security, CGO includes a rekeying mechanism to refresh the key material of the end nodes every
time a message is transmitted. In contrast, the key material of the intermediate nodes is not updated.
Instead of introducing a separate primitive to provide this rekeying, CGO assumes that the tweakable
split-domain cipher includes this functionality, which is precisely what the update functionality described
in Section 2.1 is intended for. Additionally, CGO uses the update functionality to generate unpredictable
nonces in a stateful way. The full CGO specification instantiates the updatable split-domain tweakable
cipher with a variant of the UIV construction [13], see Section 4.2.

Supporting heterogeneity. As Tor is a distributed protocol, upgrading its relay cryptography poses
additional challenges. In particular, some degree of compatibility is required between the new crypto-
graphic protocol and the existing one to facilitate gradual migration, as upgrading all of the nodes in
the Tor network simulaneously is infeasible. Thus, for a transition to be tenable, operating a heteroge-
neous network, where only a fraction of the nodes run CGO, is inevitable. Fortunately, even though the
supported payload sizes do not match, operating such a heterogeneous network, where only a subset of
the ORs run CGO is possible, provided the OP knows which ORs in the circuit support CGO (this in-
formation could be obtained during circuit establishment or even before, when gathering data about the
available Onion Routers). Any heterogeneous circuit with at least one (honest) router running CGO will
already offer increased protection against tagging attacks. Of course, if the OP itself does not support
CGO, then the circuit must necessarily be (old-school) homogeneous.

4 Updatable Tweakable Split-Domain Ciphers

For added generality and ease of exposition, we presented CGO in a top-down, modular fashion, describing
CGO’s working in terms of an updatable tweakable split-domain cipher as the main underlying primitive.
Our security analysis of CGO follows a similar approach, thereby allowing us to instantiate the cipher with
a different one while retaining the same security guarantees. In the first part of this section we develop
and link together a sequence of security notions of increasing complexity, for an updatable tweakable
split-domain cipher. We then go on to present the UIV+ construction and its concrete instantiation
GCM-UIV+ we suggest as the updatable tweakable split-domain cipher in the concrete specification of
CGO.

4.1 Security Notions

Degabriele and Karadžić introduced the notion of a rugged pseudorandom permutation (RPRP) [13]
as a weakening of the strong pseudorandom permutation notion for wide-block ciphers. The security
definition itself requires that the domain of the wide-block cipher be split into two parts, and their use
of the term RPRP refers both to the security notion itself as well as any split-domain cipher meeting
this notion. Informally, RPRP security requires that access to the tweakable split-domain cipher be
indistinguishable from access to a family of ideal permutations Π over the same split domain, where the
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Experiment ExpURRND-b
EE,EU (A)

K ←$ {0, 1}k

b̂← AEn,De,Gu,Up

return b̂

En(H,XL, XR)

if b = 1

(YL, YR)← EEH
K(XL, XR)

else

(YL, YR)←$ DL ×DR

F ∪←− YL, U
∪←− (H,YL, YR)

return (YL, YR)

Gu(H,YL, YR, X
′
L)

if (H,YL, YR) ∈ U
return �

if b = 1

(XL, XR)← EDH
K(YL, YR)

return XL = X ′
L

else

return false

Experiment ExpRRND-b
EE,EU (A)

K ←$ {0, 1}k

b̂← AEn,De,Gu

return b̂

De(H,YL, YR)

if YL ∈ F
return �

if b = 1

(XL, XR)← EDH
K(YL, YR)

else

(XL, XR)←$ DL ×DR

F ∪←− YL, U
∪←− (H,YL, YR)

return (XL, XR)

Up(T )

if b = 1

(K,T )← EUK(T )

else

(K,T )←$ {0, 1}k ×DL

return (K,T )

Fig. 4. The ExpURRND-b
EE,EU (A) and ExpRRND-b

EE (A) experiments used to define URRND and RRND security for an
(updatable) tweakable split-domain cipher.

tweak is used to access different permutations. However, while the adversary has unfettered access to the
encipher functionality, its interaction with the decipher functionality is severely restricted: the adversary
can access the decipher functionality via two separate oracles which offer distinct interfaces and impose
different restrictions (details follow).

Degabriele and Karadžić considered a second security notion, called RRND security, where the family
of ideal permutations in RPRP is replaced by a tweakable two-sided random function, and showed that
it implies RPRP security by leveraging an earlier result of Halevi and Rogaway [26, Lemma 6]. More
concretely, RRND and RPRP security are equivalent up to a birthday bound and it turns out that RRND
is actually the easier notion to work with, both to prove that a smaller construction is RRND secure, and
that a higher level construction building on a tweakable split-domain cipher inherits its security (using
RPRP security instead would simply incur the birthday-style loss twice, moving to and fro).

Our first step is to extend the RRND security notion for the case of an updatable tweakable split-
domain cipher, resulting in the extended notion URRND. We show that any tweakable split-domain
cipher satisfying RPRP security can be turned into an updatable tweakable split-domain cipher satisfying
URRND security by augmenting it with a pseudorandom update functionality. In the URRND game,
however, the tweakable split-domain cipher does not get queried on the updated keys, as is the case in
CGO. Accordingly, our second and more elaborate variant of RRND security, called CRNDℓ, captures the
security of an updatable tweakable split-domain cipher under continuous key updates, where ℓ indicates
the number of initial keys that can all be updated independently. We next present the formal definitions
of these two security notions.

The URRND notion. The URRND experiment for an updatable tweakable split-domain cipher
(EE,EU) is described in Fig. 4, where the adversary is given access to an encipher oracle En, a de-
cipher oracle De, a guess oracle Gu, and an update oracle Up. The encipher oracle is queried on an input
pair (XL, XR) and a tweak H, and depending on the value of the bit b, it either evaluates this input
using the updatable tweakable split-domain cipher EE or a lazily sampled two-sided random function to
return an output pair (YL, YR). The decipher oracle De works analogously, but it can only be queried
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on inputs (H,YL, YR) with a fresh left-component YL. If YL has either been returned by En or been
input to De before, the new De-query will simply refuse. Notably, freshness is not bound to the tweaks,
thus the query De(H,YL, YR) cannot be followed by De (H ′, YL, Y

′
R) for any values of H ′ and Y ′

R. The
freshness requirement on YL is enforced via the set F . Additionally, the adversary can interact with the
decipher functionality via the oracle Gu to guess whether deciphering a chosen input would result in a
specific guessed left value. However, when b = 0 this oracle will always return false. Accordingly, queries
to the guess queries must be unused, i.e., the query must not contain a triple (H,YL, YR) that was either
returned by En or previously queried to De. This requirement is enforced through the set U . Finally the
adversay has access to an update oracle that either returns the output of the real update algorithm Up,
when b = 1, or a randomly sampled output if b = 0.

Without loss of generality, we consider adversaries that do not make pointless queries, thus they
never repeat a query to any of their oracles and, if the query (YL, YR)← En(H,XL, XR) was made, the
query De(H,YL, YR) is never made, and vice versa. (If pointless queries were to be allowed, extra game
administration would be needed to ensure consistent answers in the ideal setting.)

The RRND experiment with respect to a tweakable split-domain cipher EE is defined in the exact
same way, except that the adversary does not have access to the update oracle. Compared to the original
RRND definition [13], we assume that the tweakable split-domain cipher has a fixed-size domain, and
we have restricted guess queries to include only a single guess.

Definition 1 (URRND and RRND Advantages). For any tweakable split-domain cipher EE over
DL×DR and any update function EU, the corresponding URRND and RRND advantages of an adversary
A are given by:

AdvURRND
EE,EU (A) = Pr

[
ExpURRND-0

EE,EU (A) = 1
]
− Pr

[
ExpURRND-1

EE,EU (A) = 1
]

AdvRRND
EE (A) = Pr

[
ExpRRND-0

EE (A) = 1
]
− Pr

[
ExpRRND-1

EE (A) = 1
]
,

where ExpURRND-b
EE,EU (A) and ExpRRND-b

EE (A) are defined in Fig. 4.

The continuous-key-updates CRNDℓ notion. We now consider a variant of the URRND game,
denoted CRNDℓ, where we extend the URRND game to a multi-instance setting. Firstly, the adversary
can interact with ℓ independent instances of the updatable split-domain tweakable cipher. Secondly, for
every cipher instance, its key Kh can be updated via the Up oracle, and only the updated T is returned
to the adversary. For each cipher instance h, the index ih keeps track of the latest version of its key.
Thus, every query to the oracles En,De,Gu will now include both an instance handle h and an index j
indicating which version of the key for that instance the oracle should use. Finally, we allow the adversary
to corrupt cipher instances. Namely, the adversary can use the oracle Co to obtain the latest key version
Kh[ih ] of any cipher instance h. However, an instance can only be corrupted if its latest key is fresh,
meaning it has not been used in a prior query to the oracles En,De,Gu, and once corrupted, its key can
no longer be updated.

Definition 2 (CRNDℓ Advantage). For any tweakable split-domain cipher EE,EU over DL×DR and
any update function EU, the corresponding CRNDℓ advantage of an adversary A is given by:

AdvCRNDℓ

EE,EU (A) = Pr
[
ExpCRNDℓ-0

EE,EU (A) = 1
]
− Pr

[
ExpCRNDℓ-1

EE,EU (A) = 1
]
,

where ExpCRNDℓ-b
EE,EU (A) is defined in Fig. 5.

We analyse the relation between the RRND, URRND, and CRNDℓ security notions in Appendix A.

4.2 The UIV+ Construction Used in CGO

In CGO, the updatable tweakable split-domain cipher is instantiated by UIV+ (see Fig. 6). Its encipher
and decipher algorithms are inherited from UIV [13], whereas the update functionality is novel, reusing
UIV’s components. UIV+ is composed of a tweakable blockcipher E with inverse D, and a tweakable
pseudorandom function F. The header H and the right input XR are injectively mapped to form E’s
tweak. If the size of H is fixed, as is the case in Tor, concatenation of H and XR yields an injective
mapping to the tweak. Besides its key, the tweakable pseudorandom function F takes two inputs, a tag



13

Experiment ExpCRNDℓ-b
EE,EU (A)

for h = 1 to ℓ

Kh[0] ←$ {0, 1}k

freshh ← true

ih ← 0

b̂← AEn,De,Gu,Up,Co

return b̂

En(h, j,H,XL, XR)

if (j > ih) ∨ (j = ih ∧ h ∈ Z)
return �

if j = ih

freshh ← false

if b = 1

(YL, YR)← EEH
Kh[j]

(XL, XR)

else

(YL, YR)←$ DL ×DR

Fj
h

∪←− YL, Uj
h

∪←− (H,YL, YR)

return (YL, YR)

Gu(h, j,H, YL, YR, X
′
L)

if (j > ih) ∨ (j = ih ∧ h ∈ Z) ∨ (H,YL, YR) ∈ Uj
h

return �

if j = ih

freshh ← false

if b = 1

(XL, XR)← EDH
Kh[j]

(YL, YR)

return XL = X ′
L

else

return false

De(h, j,H, YL, YR)

if (j > ih) ∨ (j = ih ∧ h ∈ Z) ∨ (YL ∈ Fj
h)

return �

if j = ih

freshh ← false

if b = 1

(XL, XR)← EDH
Kh[j]

(YL, YR)

else

(XL, XR)←$ DL ×DR

Fj
h

∪←− YL, Uj
h

∪←− (H,YL, YR)

return (XL, XR)

Up(h, T )

if h ∈ Z
return �

if b = 1

(Kh[ih+1], T )← EUKh[ih ]
(T )

else

Kh[ih+1] × T ←$ {0, 1}k ×DL

ih ← ih + 1, freshh ← true

return T

Co(h)

if (h ∈ Z) ∨ (freshh = false)

return �

Z ∪←− h

return Kh[ih ]

Fig. 5. The ExpCRNDℓ-b
EE,EU (A) experiment used to define CRNDℓ security instances for ℓ independent instances of

an updatable tweakable split-domain cipher with continuous key updates.
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XL XR

H

EJ

F
0/1
S

T +
J, S, T

YL YR

Fig. 6. The UIV+ construction used to instantiate the URRND-secure updatable tweakable split-domain cipher
in CGO. Inputs and outputs to the encipher algorithm are shown in yellow, whereas the values shown in light
brown correspond to the update functionality.

EUK(T )

(J, S) ↞ K

(K,T )← F1
S(T )

return (K,T )

EEH
K(XL, XR)

(J, S) ↞ K

YL ← E
H∥XR
J (XL)

YR ← F0
S(YL)⊕XR

return (YL, YR)

EDH
K(YL, YR)

(J, S) ↞ K

XR ← F0
S(YL)⊕ YR

XL ← D
H∥XR
J (YL)

return (XL, XR)

Fig. 7. The encipher and decipher algorithms EE and ED comprising the UIV construction, augmented with an
update functionality EU to form UIV+.

T and a single bit tweak. If the bit value is 0, then F returns a random string of size |XR|, whereas if the
input bit is 1, it returns a new state. Thus the input bit to F is set to 1 only when invoking the update
functionality and is otherwise set to 0.

Again, the two subcomponents E and F can be instantiated in various ways, which will affect both the
performance and concrete security of CGO. We will propose a concrete instantion for CGO shortly, and
see Section 5 for fully instantiated CGO benchmarked against Tor’s current onion encryption scheme.

The CRNDℓ Security of UIV+. Degabriele and Karadžić already showed that their new construction
UIV is RRND secure even though it fails as strong PRP. We leverage their result and prove that our
augmented UIV+ construction is URRND and hence CRNDℓ secure, stated in terms of the STPRP
security of E and PRF security of F.

Theorem 1 (CRNDℓ Security of UIV+). Let E,F be a tweakable block cipher and a pseudorandom
function, respectively, and let UIV+ be the updatable tweakable split-domain cipher given in Fig. 7. Then,
for any ℓ > 0 there exist simple fully black box reductions B and C such that for all CRNDℓ adversaries
A against UIV+

AdvCRNDℓ

UIV+ (A) ≤ ℓ · qUp

(
AdvstprpE (BA) + 2 · AdvPRF

F (CA)

+
v · qGu

2n−1
+

q1(q1 − 1)

2n+1
+

qEn(qEn − 1)

2n+1

)
,

where B and C’s overheads are essentially linear in the number of queries by A and qUp is the number
of queries by the adversary A to the oracle Up.

Proof (Sketch). Degabriele and Karadžić [13] prove that the UIV construction is RRND secure:

AdvRRND
UIV (A) ≤ AdvstprpE (BA) + AdvPRF

F (CA) +
v · qGu

2n−1
+

q1(q1 − 1)

2n+1
+

qEn(qEn − 1)

2n+1
,
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where v > 0, A makes qO queries ∀O ∈ {En,De,Gu}, v · qGu ≤ 2n−1 and q1 = qEn + qDe + qGu.
We show that combining security for the update and RRND security grants URRND security and, in

turn, that URRND implies CRNDℓ security. The detailed proof is presented in Appendix A. We obtain
the following chain of inequalities:

AdvCRNDℓ

UIV+ (A) ≤ ℓ · qUp · AdvURRND
UIV+ (BA)

≤ ℓ · qUp

(
AdvRRND

UIV (BA) + AdvUPDT
UIV+ (CA)

)
≤ ℓ · qUp

(
AdvstprpE (BA) + 2 · AdvPRF

F (CA) +
v · qGu

2n−1

+
q1(q1 − 1)

2n+1
+

qEn(qEn − 1)

2n+1

)
.

GCM-UIV+: An Efficient Instantiation. In CGO, we instantiate UIV+ using GCM components
[22, 35] in order to take advantage of x86 native instruction sets; accordingly, we call this concrete
instantiation GCM-UIV+. Specifically, we realize the tweakable blockcipher E and the expanding F shown
in Fig. 6 using separate instances of AES and POLYVAL. For AES, we concentrate below on the 128-bit
key version, though we will address 256-bit keys later on. For POLYVAL [23], we recall that it has a
128-bit key and hashes any sequence of 128-bit strings to a single 128-bit string.

The tweakable blockcipher is instantiated through the LRW2 [31] construction with POLYVAL as the
almost-XOR-universal hash function and AES for the blockcipher (see Fig. 8). The size of the left domain
n = |XL| in GCM-UIV+ is fixed to 128 bits, namely the block size of the tweakable blockcipher inherited
from AES, while the size of the right domain is fixed to m = 493 · 8, where 493 = 509 − 16 (the fixed
Tor ciphertext length minus the bytes needed for the left domain). The overall key size (of J) is 256
bits. Although, without additional length encoding applied to the input, POLYVAL is only secure as an
almost-XOR-universal hash function over strings of some fixed size, in Tor the sizes of ciphertexts and
headers are luckily fixed. In GCM-UIV+ specifically, the sizes of XR and H are fixed to 493 and 17 bytes
(16 for the tag T and 1 for the associated data), respectively.

We realise the tweakable pseudorandom function F via a Hash-then-PRF composition using AES in
counter mode and POLYVAL (see Fig. 8). For b = 0, F needs to output a string of size equal to |XR|,
which is fixed to 493 bytes. Thus, 31 ‘counts’ suffice, as they produce 31 · 128 bits (equal to 496 bytes).
For b = 1, the output consists of 128 bits to refresh the tag T (the size of |XL|), a fresh key for the
tweakable blockcipher (256 bits) and a fresh key for F itself (also 256 bits, namely 128 for AES and 128
for POLYVAL). Thus 5 ‘counts’ suffice. To ensure domain separation between b = 0 and b = 1, we need
36 counts in total, which can be achieved with a 6-bit counter.

Using AES in counter mode, we could easily create a pseudorandom function mapping 122 bits to
36 ·128 bits, by appending the 122-bit input with a 6-bit counter. However, in the UIV+ construction, the
input size of F must match the block size of E, namely 128 bits. By composing the above counter-mode
PRF with a universal hash mapping 128 bits to 122 bits, we obtain a pseudorandom function with the
required input size. For the universal hash we use POLYVAL and truncate the most significant 6 bits of
its output.

Alternative instantiations. The description above immediately reveals an alternative based on AES with
256-bit keys. In that case, both the tweakable blockcipher and the tweakable pseudorandom function
will instead use a 256-bit key and a (still) 128-bit POLYVAL key. For the b = 1 branch of the tweakable
pseudorandom function, it means 7 ‘counts’ are needed instead of 5 to refresh the key material. Luckily,
with our 6-bit counter this increased count is not an issue.

Furthermore, we designed CGO and UIV+ such that an evaluation of F1
S(T ) is always preceded by a

corresponding call to F0
S(YL) with T = YL. We could exploit this clever circumstance by treating FS as

an extendable output function that can first output its bits for the 0-tweak branch, followed by whatever
is needed for the 1-tweak branch (cf. the amortization for forkciphers [3]). Thus, replacing FS with for
instance SHAKE [18] is relatively straightforward.

Security of GCM-UIV+. The exact security of the above instantiations of E and F in GCM-UIV+
follows easily from known results in the literature. For the security of E, we exploit that it fits the LRW2
construction [31], so to obtain an exact bound, we only have to determine the universality parameter ϵ
for our specific use of POLYVAL. In general, ϵ = ℓ

2128 , where ℓ is the message size in 128-bit blocks [22].
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Fb
S(T )

(L,B) ↞ S, Z = ε

if b = 0

for i = 0 to 30

Z ← Z ∥ AESL(⌊POLYVAL(B, T )⌋122 ∥ i)
else

for i = 31 to 35

Z ← Z ∥ AESL(⌊POLYVAL(B, T )⌋122 ∥ i)
return Z

E
H∥XR
J (XL)

(L,B) ↞ J

Z ← POLYVAL(B,H ∥ XR)

YL ← Z ⊕ AESL(Z ⊕XL)

return YL

D
H∥XR
J (YL)

(L,B) ↞ J

Z ← POLYVAL(B,H ∥ XR)

XL ← Z ⊕ AES−1

L
(Z ⊕ YL)

return XL

Fig. 8. Concrete instantiation of the UIV+ components using AES and POLYVAL, thereby giving rise to the
GCM-UIV+ updatable split-domain cipher construction.

In our case, ℓ amounts to 493 + 3 bytes, resulting in ϵ being roughly equal to 2−123. The security of E is
stated formally in Proposition 1.

Proposition 1 (Security of E (LRW2 cf. Theorem 2 [31])).
Let E be the tweakable blockcipher construction described in Fig. 8 composed from 128-bit AES and

an 2−123-AXU hash function. Then for any STPRP adversary Astprp making q queries, there exists an
SPRP adversary Asprp making an equal number of queries, such that:

AdvSTPRP
E (A) ≤ AdvSPRP

AES (A) +
3q2

2124
.

As noted above, F follows the well-known Hash-then-PRF paradigm, where the underlying PRF
consists of AES in counter mode and the universal hash is truncated POLYVAL. A security analysis of
this composition in terms of the security of the underlying pseudorandom function and universal hash
is known [29], reproduced in adapted form in Proposition 2. Here we assume, without loss of generality,
that for every query the adversary receives outputs for both tweaks b = 0 and b = 1.

Proposition 2 (Security of F (Hash-then-PRF cf. Lemma 5.1 [29])). Let F be the tweakable
pseudorandom function construction described in Fig. 8 composed from counter-mode AES and an ϵ-AU
hash function mapping 128-bit strings to 122-bit strings. Then for any PRF adversary Aprf against F
making q queries, there exists a PRF adversary Actr against AES-CTR making q queries, such that:

AdvPRF
F (AF) ≤ AdvPRF

AES-CTR(Actr) +
q2

2
ϵ .

As any ϵ-AXU hash is automatically an ϵ-AU hash and the effect of truncation on these functions is well
understood [12, Proposition 1], the quantitative security of truncated POLYVAL over 128-bit inputs works
out to be ϵ = 27

2128 . On the other hand, the security of counter mode AES as a pseudorandom function
follows easily from the PRP security of AES and the switching lemma [7, 40], restated in adapted form
in the following proposition.

Proposition 3 (Security of AES-CTR). For any PRF adversary Aprf against AES-CTR making q
queries, there exists a PRP adversary Aprp against AES making 36q queries, such that:

AdvPRF
AES-CTR(Aprf ) ≤ AdvPRP

AES (Aprp) +
(36q)2

2128+1
.

Combining Proposition 2 and Proposition 3, and substituting for ϵ = 2−121 yields the exact security of
F.

5 Implementation and Benchmarking

We report on our experimental results, where we measured the performance of our CGO implementation
and compare it to the scheme currently deployed by Tor, which henceforth we refer to as Classic Tor.
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C implementation. The Classic Tor implementation for our benchmarks uses the Crypto++ library [10]
version 8.2 for SHA-1 processing due to its availability within SUPERCOP [9] and an intrinsic-driven
C++ implementation for the CTR-mode and plain C++ for the remaining driver code. The benchmarked
CGO implementation also uses Crypto++ though primarily for its storage and comparison facilities, the
core functions are all implemented using AES-NI and PCLMUL intrinsics. These implementations use
the optimized techniques by Gueron et al. [24,25] for fast AES re-keying and fast POLYVAL reductions.
Due to the intrinsic driven nature of the code, we had to decide on a primary target platform, for which
we chose Intel’s Skylake. We have not made use of AVX or AVX-512, but we expect performance to
improve from the use of these additional instruction set extensions, potentially using the techniques
from Gueron et al. [17]. Finally, while Crypto++ does internally use the SHA-NI hardware acceleration
extension to accelerate SHA-1, support for this instruction set is relatively less common (especially for
legacy systems) and accordingly we did not use it in the Classic Tor implementation.

Benchmarking methodology. In our benchmarks we made use of SUPERCOP [9] version 20200525
where we added a new primitive type for onion encryption in Tor that we called crypto_tor. We chose
SUPERCOP for its flexibility and its ability to measure performance in CPU cycles accurately. We
benchmark CGO both in the the forward and backward directions. For each direction we evaluate the
performance of the cryptographic computation at the proxy, an intermediate router operating as a relay,
and an end-point router either sending or receiving messages. Although the forward processing by a router
is in theory modelled as a single algorithm (OR-Dec), the actual cryptographic processing performed by
a router differs depending on whether it serves as a relay or exit node. This dichotomy is a consequence
of Tor’s ‘leaky pipes’ functionality and end-to-end integrity protection, and thus affects both CGO and
Classic Tor.

One discrepancy between Classic Tor and CGO is the reduced payload for the latter (498 bytes versus
488 bytes, respectively). We account for this discrepancy by reporting cycles per byte of message. For
each direction, we process a message of some given length and measure the CPU cycles needed for each
operation. We conducted this benchmark for message lengths ranging from 200 to 5,000 bytes at 10-byte
increments and recorded the median measurement over 100 iterations for each message length.

We obtained our benchmarks on an Intel Cascade Lake processor on Amazon’s AWS cloud: c5.metal.
We used Amazon’s Linux distribution along with SUPERCOP version 20200525, GCC 7.3.1 and clang
11.1.0, with simultaneous multi-threading and Intel Turbo Boost turned off.

Results. The plots from our benchmarks are displayed in Fig. 9. In both directions, we observe that CGO
yields a significant performance improvement over Classic Tor, roughly by a factor of three, in the cell
processing done at the proxy and at an exit or entry router. In contrast, we observe a milder slowdown
of around 20% to 50% in the processing done at the intermediate routers. Interestingly, this slowdown
appears to be more pronounced in the backward direction. This slowdown at the intermediate routers is
expected as here Classic Tor simply performs counter-mode encryption, which is hard to outperform.

Overall, the mild performance penalty in the intermediate routers is offset by considerably larger
performance improvements at exit and entry routerr. These performance improvements are significant
since exit and entry routers are a scarce resource in the Tor network due to their increased exposure
and liability; moreover, performance at the proxy is particularly critical when running a Tor client on a
mobile phone or another lightweight device. Furthermore, CGO attains much better overall security than
Classic Tor.
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Fig. 9. Performance comparison between Classic Tor and CGO on an Intel Cascade Lake processor, showing
the median CPU cycles per byte for varying message lengths. The plots on the left correspond to the forward
direction and on the right side is the backward direction.
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A The Proof of Theorem 1

The main goal is to bound the advantage AdvCRNDℓ

UIV+ (A) in terms of AdvRRND
UIV (A) and the PRF security

of F. This, combined with results by Degabriele and Karadžić, completes the proof of Theorem 1. In the
first section, we analyse the relations between the security notions RRND and URRND; the second part
shows how URRND and CRNDℓ relate. Finally, we bound the security of the update functionality in
terms of the PRF security of F.

A.1 Decomposing URRND Security into RRND and UPDT

We prove that the URRND security of an updatable tweakable split-domain cipher (EE,EU) is equivalent
to the RRND security of EE together with the UPDT security of EU. To do so, we redefine the experiment
ExpURRND-b

EE,EU (A) to use two separate bits instead of one, namely bUp and bRRND , as shown in Fig. 10.
This way we implicitly define two hybrid experiments yielding two additional security notions: one which
corresponds to the RRND game and the other we call UPDT. Bit bUp controls the behaviour of the Up
oracle, while bit bRRND controls the behaviour of the En, De and Gu oracles. In particular:
– when bUp = bRRND we recover the experiments corresponding to the URRND security of (EE,EU);
– when bRRND = 1 and bUp is either 0 or 1, the two experiments define UPDT security for (EE,EU);
– when bUp = 0 and bRRND is either 0 or 1, we recover an analogue of RRND security with respect to

an updatable tweakable split-domain cipher.

This is stated more formally below, where we state the advantages in terms of the two-bit experiments.

Definition 3 (URRND, UPDT, RRND advantages). For any split-domain tweakable cipher EE over
DL × DR and any associated update function EU, the corresponding URRND, UPDT, and RRND ad-
vantages of an adversary A are given by:

AdvURRND
EE,EU (A) = Pr

[
ExpURRND-0,0

EE,EU (A) = 1
]
− Pr

[
ExpURRND-1,1

EE,EU (A) = 1
]
.

AdvUPDT
EE,EU (A) = Pr

[
ExpURRND-0,1

EE,EU (A) = 1
]
− Pr

[
ExpURRND-1,1

EE,EU (A) = 1
]
.

AdvRRND
EE,EU (A) = Pr

[
ExpURRND-0,0

EE,EU (A) = 1
]
− Pr

[
ExpURRND-0,1

EE,EU (A) = 1
]
.

where Exp
URRND-bUp,bRRND

EE,EU (A) is defined in Fig. 10.

By inspection, the new definition of AdvURRND
EE,EU (A) is equivalent to its previous definition, whereas

AdvRRND
EE,EU (A) is effectively a reformulation of Definition 1, where the adversary additionally has access

to a random update oracle that conveys no additional capabilities. For convenience, whenever A is an
adversary without access to an update oracle, A+ denotes the adversary that has access to an update
oracle but simply does not call it. Conversely, whenever A is an adversary with access to an update
oracle, A− denotes an adversary without such access but instead internally answers all update queries
with fresh randomness. Technically, both A+ and A− are simple, fully black-box reductions [5, 30, 39]
that, aside from A−’s randomness generation, are as efficient and effective as their respective adversary
A.

The main result of this section is Lemma 1, bounding URRND security in terms of RRND and
UPDT security. On the other hand, Lemma 2 and Proposition 4 are secondary results, included solely
for completeness.

Lemma 1 (RRND ∧ UPDT security =⇒ URRND security). Let (EE,EU) be an updatable tweakable
split-domain cipher and A an URRND adversary A against (EE,EU). Then

AdvURRND
EE,EU (A) ≤ AdvUPDT

EE,EU (A) + AdvRRND
EE (A−) .

Proof. The result comes straightforward from the definition:

AdvURRND
EE,EU (A) = Pr

[
ExpURRND-0,0

EE,EU (A) = 1
]
− Pr

[
ExpURRND-1,1

EE,EU (A) = 1
]

= Pr
[
ExpURRND-0,0

EE,EU (A) = 1
]
− Pr

[
ExpURRND-0,1

EE,EU (A) = 1
]

+ Pr
[
ExpURRND-0,1

EE,EU (A) = 1
]
− Pr

[
ExpURRND-1,1

EE,EU (A) = 1
]

= AdvUPDT
EE,EU (A) + AdvRRND

EE,EU (A)

≤ AdvUPDT
EE,EU (A) + AdvRRND

EE (A−) .
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Experiment Exp
URRND-bUp,bRRND

EE,EU (A)

K ←$ {0, 1}k

b̂← AEn,De,Gu,Up

return b̂

En(H,XL, XR)

if bRRND = 1

(YL, YR)← EEH
K(XL, XR)

else

(YL, YR)←$ DL ×DR

F ∪←− YL, U
∪←− (H,YL, YR)

return (YL, YR)

Gu(H,YL, YR, X
′
L)

if (H,YL, YR) ∈ U
return �

if bRRND = 1

(XL, XR)← EDH
K(YL, YR)

return XL = X ′
L

else

return false

De(H,YL, YR)

if YL ∈ F
return �

if bRRND = 1

(XL, XR)← EDH
K(YL, YR)

else

(XL, XR)←$ DL ×DR

F ∪←− YL, U
∪←− H,YL, YR)

return (XL, XR)

Up(T )

if bUp = 1

(K,T )← EUK(T )

else

(K,T )←$ {0, 1}k ×DL

return (K,T )

Fig. 10. The Exp
URRND-bUp,bRRND

EE,EU (A) experiments used to define UPDT and equivalent formulations of URRND
and RRND security for an updatable tweakable split-domain cipher.

⊓⊔

Lemma 2 (URRND security =⇒ RRND security). Let (EE,EU) be an updatable tweakable split-
domain cipher and adv an RRND adversaries A against EE, then

AdvRRND
EE (A) ≤ AdvURRND

(EE,EU) (A
+) .

Proof. Since bUp = 0 in the RRND game, the oracle Up is completely independent from the other
oracles, any secret, and the RPRP bit bRRND , so A+’s simulation of its behaviour is perfect. For the
other oracles A+, effectively forwards all queries from A to its oracles En,De, and Gu, returning the
output bit obtained from A, hence AdvRRND

EU (A) ≤ AdvURRND
(EE,EU) (A

+). ⊓⊔

Proposition 4 (URRND security =⇒ UPDT security). Let (EE,EU) be an updatable tweakable
split-domain cipher and A an UPDT adversary against EE. Then

AdvUPDT
(EE,EU)(A) ≤ 2 · AdvURRND

(EE,EU) (A) .

Proof. Again, by definition,

AdvUPDT
EE (A) = Pr

[
ExpURRND-0,1

EE,EU (A) = 1
]
− Pr

[
ExpURRND-1,1

EE,EU (A) = 1
]

= Pr
[
ExpURRND-0,1

EE,EU (A) = 1
]
− Pr

[
ExpURRND-0,0

EE,EU (A) = 1
]

+ Pr
[
ExpURRND-0,0

EE,EU (A) = 1
]
− Pr

[
ExpURRND-1,1

EE,sdu (A) = 1
]

= AdvRRND
EE,EU (A) + AdvURRND

EE,EU (A) ≤ 2 · AdvURRND
EE,EU (A),

where the last inequality follows along the lines of Lemma 2. ⊓⊔
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A.2 Introducing Corruption and Real Key Updates

In the security experiment ExpURRND-bUp,1
EE , the adversary can query the oracle Up and, depending on the

challenge bit bUp , obtain either the output of EUK(T ) or an element of {0, 1}k ×DL sampled uniformly
at random. We can interpret this approach as a single key experiment in which the adversary can obtain
what would become the next key and continue to query the oracles En,De, and Gu on the original key.

In Fig. 11, we extend the experiment to include real key updates by the oracle Up and corruption
of the key material by the adversary. Essentially, the experiment is a cleaned up version of the CRNDℓ

game (Fig. 5) when ℓ = 1. Thus, we allow the adversary to query the oracles En and De on previous
keys after they have already been updated. The adversary queries oracles En and De on the jth key, and
the experiment makes sure that enough keys have already been generated by verifying whether j > i,
where the latter is used as counter of the queries to the oracle Up and, hence, represents the number of
available keys.

The flag fresh is used to verify whether the key is fresh and can be disclosed to the adversary: the
key update by the oracle Up sets the flag to true, while the other oracles En, De, and Gu set it to false
when queried on the most recent key. The set Z is initially empty, but contains the corrupted key handle
1 inherited from Fig. 5. Effectively, the adversary can obtain only the most recent key and corrupting it
terminates useful access to all oracles.

Definition 4 (CRND Advantage). For any tweakable split-domain cipher EE,EU over DL ×DR and
any update function EU, the corresponding CRND advantage of an adversary A is given by:

AdvCRND
EE,EU (A) = Pr

[
ExpCRND-1

EE,EU (A) = 1
]
− Pr

[
ExpCRND-0

EE,EU (A) = 1
]
,

where ExpCRND-b
EE,EU (A) is defined in Fig. 11.

Hybrid Argument for CRND Security. We prove the construction secure even in case the real
key update is performed, by hybrid argument over the number qUp of queries to the oracle Up by the
adversary. In each step of the hybrid argument we swap out the output of a single EU call for a random
key. UPDT security is defined in terms of the original experiment Exp

URRND-bUp,bRRND

EE,EU from Fig. 10,
where the Up oracle returns the key to the adversary: this behaviour corresponds to a single Up query
followed by a corruption, i.e., a query to the oracle Co. On the other hand, CRND security is defined in
terms of the experiment ExpCRND-b

EE,EU (Fig. 11), assuming the adversary performs qUp queries to the oracle
Up before querying the oracle Co.

Lemma 3 (URRND security =⇒ CRND security). Let (EE,EU) be an updatable split-domain
tweakable cipher. Then there exists a simple fully black box reduction B such that, for all CRND adver-
saries A against (EE,EU) performing qUp queries to the oracle Up,

AdvCRND
EE,EU (A) ≤ qUp · AdvURRND

EE,EU (BA).

Proof. We prove the statement by a standard hybrid argument, and we define experiments ExpkEE,EU
(Fig. 12), where 0 ≤ k ≤ qUp is the index of the last random key in experiment ExpkEE,EU (the initial key
K0 ←$ {0, 1}k is always random). These experiments emulate the previous experiment ExpCRND-b

EE,EU , but
they control the Up oracle according to the number of queries i instead of the challenge bit.

The original experiment ExpCRND-b
EE,EU can be expressed in terms of ExpkEE,EU : the “random” experiment

ExpCRND-0
EE,EU corresponds to Exp

qUp

EE,EU , since it is always true that i ≤ qUp, and the “real” experiment
ExpCRND-1

EE,EU corresponds to Exp0EE,EU , since i ≥ 0. We express the adversarial advantage AdvURRND
EE,EU (A) in

terms of the experiments ExpkEE,EU :

AdvCRND
EE,EU (A) = Pr

[
ExpCRND-1

EE,EU (A) = 1
]
− Pr

[
ExpCRND-0

EE,EU (A) = 1
]

= Pr
[
Exp0EE,EU(A) = 1

]
− Pr

[
Exp

qUp

EE,EU(A) = 1
]
=

qUp∑
k=1

(
Pr

[
Expk−1

EE,EU(A) = 1
]
− Pr

[
ExpkEE,EU(A) = 1

])
≤ qUp · max

k=1,...,qUp

(
Pr

[
Expk−1

EE,EU(A) = 1
]
− Pr

[
ExpkEE,EU(A) = 1

])
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Experiment ExpCRND-b
EE,sdu (A)

K ←$ {0, 1}k

fresh ← true

i ← 0

b̂← AEn,De,Gu,Up,Co

return b̂

En(j,H,XL, XR)

if (j > i) ∨ (j = i ∧ Z ≠ ∅)
return �

if j = i

fresh ← false

if b = 1

(YL, YR)← EEH
Kj

(XL, XR)

else

(YL, YR)←$ DL ×DR

Fj ∪←− YL, Uj ∪←− (H,YL, YR)

return (YL, YR)

Gu(j,H, YL, YR, X
′
L)

if (j > i) ∨ (j = i ∧ Z ≠ ∅) ∨ (H,YL, YR) ∈ Uj

return �

if j = i

fresh ← false

if b = 1

(XL, XR)← EDH
Kj

(YL, YR)

return XL = X ′
L

else

return false

De(j,H, YL, YR)

if (j > i) ∨ (j = i ∧ Z ≠ ∅) ∨ (YL ∈ Fj)

return �

if j = i

fresh ← false

if b = 1

(XL, XR)← EDH
Kj

(YL, YR)

else

(XL, XR)←$ DL ×DR

Fj ∪←− YL, Uj ∪←− (H,YL, YR)

return (XL, XR)

Up(T )

if Z ̸= ∅
return �

if b = 1

(Ki+1, T )← EUKi (T )

else

Ki+1 × T ←$ {0, 1}k ×DL

i ← i + 1, fresh ← true

return T

Co()

if (Z ̸= ∅) ∨ (fresh = false)

return �

Z ← {1}
return Ki

Fig. 11. The simplified experiment ExpCRND-b
EE,EU (A), where we introduce key corruption and real key updates. The

oracle Co verifies whether a key has been used or not before revealing it to the adversary.
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Experiment ExpkEE,EU(A)

K0 ←$ {0, 1}k

fresh ← true

i ← 0

b̂← AEn,De,Gu,Up,Co

return b̂

Up(T )

if Z ̸= ∅ ∨ i = qUp then return �

if i ≥ k then (Ki+1, T )← EUKi (T )

else (Ki+1, T )←$ {0, 1}k ×DL

i ← i + 1

fresh ← true

return T

Gu(j,H, YL, YR, X
′
L)

if j > i then return �

if Z ̸= ∅ ∧ j = i then return �

(XL, XR)← EDH
Kj

(YL, YR)

fresh ← false

return XL = X ′
L

En(j,H,XL, XR)

if j > i then return �

if Z ̸= ∅ ∧ j = i then return �

(YL, YR)← EEH
Kj

(XL, XR)

Fj ∪←− YL

fresh ← false

return (YL, YR)

De(j,H, YL, YR)

if j > i then return �

if Z ̸= ∅ ∧ j = i then return �

if YL ∈ Fj then return �

(XL, XR)← EDH
Kj

(YL, YR)

Fj ∪←− YL

fresh ← false

return (XL, XR)

Co

if Z ̸= ∅ then return �

if fresh = false then return �

Z ← i

return Ki

Fig. 12. The experiment ExpkEE,EU(A) used for the hybrid argument in Lemma 3.

Note that a single step from k − 1 to k in ExpkEE,EU corresponds to Exp
URRND-bUp,bRRND

EE , hence

Pr
[
Expk−1

EE,EU(A) = 1
]
− Pr

[
ExpkEE,EU(A) = 1

]
= AdvURRND

EE,EU (A) ≤ AdvURRND
EE,EU (BA)

and we obtain
AdvCRND

EE,EU (A) ≤ qUp · AdvURRND
EE,EU (BA).

⊓⊔

A.3 Introducing Multiple Key Sequences (CRNDℓ Security)

We extend the experiment ExpCRND-b
EE by allowing multiple sequences of keys: in addition to the key

index j, we introduce also the sequence index h. Each sequence represents a router in an onion circuit,
and we denote the proxy with index h = 0. The quantities ih denote how many queries have been made
for router h to the oracle Up. The resulting experiment ExpCRNDℓ-b

EE corresponds to Fig. 5 and, by a
standard hybrid argument, we obtain Lemma 4.

Lemma 4 (CRND security =⇒ CRNDℓ security). Let (EE,EU) be an updatable tweakable split-
domain cipher. Then there exists a simple fully black box reductions B such that, for all CRNDℓ adver-
saries A against (EE,EU),

AdvCRNDℓ

EE,EU (A) ≤ ℓ · AdvCRND
EE,EU (BA).

A.4 UIV+’s UPDT Security in Terms of PRF Security of F

The last missing piece is bounding the security of the update mechanism (Definition 3) based on the
PRF Security of F.
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Lemma 5 (PRF Security of F =⇒ UPDT security). Consider UIV+ as updatable tweakable
split-domain cipher. Then there exists a simple fully black box reductions B such that, for all UPDT
adversaries A against UIV+,

AdvUPDT
UIV+ (A) ≤ AdvPRF

F (BA).

Proof (sketch). Recall that, by definition,

AdvUPDT
EE,EU (A) = Pr

[
ExpURRND-0,1

EE,EU (A) = 1
]
− Pr

[
ExpURRND-1,1

EE,EU (A) = 1
]
,

so A always has direct access to EDH
K() and EEH

K(), whereas access to EUK() might be replaced by
randomness (depending on the “update” challenge bit). All three algorithms share the same key, but in
the case of UIV+ the underlying tweakable blockcipher and tweakable pseudorandom function FS() keys
are independent of each other, so reduction B can simply sample the key of the tweakable blockcipher on
its own. The reduction then uses the real FS()-oracle to answer EDH

K() and EEH
K() queries (always with

tweak 0) and the challenge FS()-oracle to answer EUK() queries (always with tweak 1). The different
tweaks force domain separation, ensuring that there will be no overlap between the real and challenge
oracle queries, proving the statement. ⊓⊔
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