
1

Release the Power of Rejected Signatures: An
Efficient Side-Channel Attack on Dilithium
Zheng Liu, An Wang, Congming Wei, Yaoling Ding, Jingqi Zhang, Annyu Liu, Liehuang Zhu

Abstract—The Module-Lattice-Based Digital Signature Stan-
dard (ML-DSA), formerly known as CRYSTALS-Dilithium, is
a lattice-based post-quantum cryptographic scheme. In August
2024, the National Institute of Standards and Technology (NIST)
officially standardized ML-DSA under FIPS 204. Dilithium
generates one valid signature and multiple rejected signatures
during the signing process. Most Side-Channel Attacks targeting
Dilithium have focused solely on the valid signature, while
neglecting the hints contained in rejected signatures. In this
paper, we propose a method for recovering the private key by
simultaneously leveraging side-channel leakages from both valid
signatures and rejected signatures. This approach minimizes the
number of signing attempts required for full key recovery. We
construct a factor graph incorporating all relevant side-channel
leakages and apply the Belief Propagation (BP) algorithm for
private key recovery.

We conducted a proof-of-concept experiment on a Cortex
M4 core chip, where the results demonstrate that utilizing
rejected signatures reduces the required number of traces by
at least 42% for full key recovery. A minimum of a single trace
can recover the private key with a success rate of 30%. Our
findings highlight that protecting rejected signatures is crucial,
as their leakage provides valuable side-channel information. We
strongly recommend implementing countermeasures for rejected
signatures during the signing process to mitigate potential threats.

Index Terms—Dilithium, ML-DSA, Side-Channel Attacks, re-
jected signatures, Belief Propagation.

I. INTRODUCTION

TO address the potential threats posed by large-scale
quantum computers, NIST initiated the Post-Quantum

Cryptography Standardization project in 2016. In 2025, this
project entered its fourth round, and three digital signature
algorithms have been standardized, namely ML-DSA (for-
merly known as CRYSTALS-Dilithium), FN-DSA (formerly
known as FALCON), and SLH-DSA (formerly known as
SPHINCS+). Among them, Dilithium stands out for its ex-
cellent overall performance. During the selection process of
the project, NIST not only focuses on the performance of
the algorithms but also on the minimum overhead required to
defend against Side-Channel Attack (SCA). Therefore, side-
channel attacks and defenses on Dilithium have been a focus
of research in recent years.

SCA extracts secret information stored in cryptographic
devices by analyzing side information leaked during their

Zheng Liu, An Wang, Congming Wei, Yaoling Ding, Jingqi Zhang,
Annyu Liu, Liehuang Zhu are with the School of Cyberspace
Science and Technology, Beijing Institute of Technology, Beijing
100081, China (e-mail: liuzheng98@bit.edu.cn; wangan@bit.edu.cn; we-
icm@bit.edu.cn; dy119@bit.edu.cn; zhangjq@bit.edu.cn; annvliu@bit.edu.cn;
liehuangz@bit.edu.cn).

Corresponding author: Congming Wei.

execution. Since Paul Kocher introduced SCA in [1], it
has been widely applied to various cryptographic devices.
Common types of side information include power traces,
electromagnetic emissions, and timing variations.

SCAs are generally categorized into profiling attacks and
non-profiling attacks. Profiling attacks assume an attacker with
access to a profiling device identical to the victim device.
Therefore, an attacker can train a model on the profiling device
and then apply the model to the victim device. Through this
approach, attackers often achieve relatively good performance
in their attacks. Typical profiling attacks include Template
Attack (TA), Stochastic Model, and Deep Learning (DL) Side-
Channel Attack. Non-profiling attacks do not require attackers
to have a profiling device in advance. Instead, attackers
typically assume a leakage model of the victim device for the
attack. As a result, non-profiling attacks generally offer greater
flexibility but tend to have lower performance. Typical non-
profiling attacks include Correlation Power Analysis (CPA)
and Collision Attacks.

A. Related Work

Many profiling and non-profiling attacks targeting Dilithium
have been proposed. In the non-profiling aspect, the first
Differential Power Analysis (DPA) attack against Dilithium
was proposed by Ravi et al. [2], who targeted the multi-
plication process of the challenge c and private key s1 and
provided simulation results. They also demonstrated that in
the Dilithium algorithm, an attacker does not need to fully
recover the private key, but recovering only s1 is sufficient to
forge signatures.

Subsequent researches [3]–[10] have made various improve-
ments based on Ravi et al.’s work. Among them, a notable
study by Chen et al. [10] conducted a detailed analysis of the
multiplication between c and s1, as well as the subsequent
reduction process, and identified two positions susceptible to
CPA. Qiao et al. [3] aimed to analyze the Number Theoretic
Transform (NTT) result of the private key such as ŝ1 =
NTT(s1), ŝ2 = NTT(s2). They represented the calculation
process of ŝ1 = NTT(s1) as As1 = ŝ1, transforming the NTT
domain recovery problem into a Small Integer Solution (SIS)
problem, which was later resolved by the LLL algorithm or
the BKZ algorithm.

Qiao et al. [11], [12] recovered partial bit information of y,
constructed equations related to s1, and solved for s1 using
the Least Squares Method (LSM). [11] and [12] are relatively
unique in that they belong to non-profiling attacks but utilize
profiling techniques, such as TA, during the attack process.

2

TABLE I
SUMMARY OF EXISTING WORKS AND COMPARISON WITH THIS WORK

Work Attack Target Attack Type Experiment Type Signature Used Main Method

[2] cs1 Non-Profiled Simulation Valid DPA

[3]–[10] cs1 Non-Profiled Practical Valid CPA

[11], [12] y Non-Profiled Practical Valid LSM

[15] w0 Profiled Practical Valid LSM

[13], [14] y, cs1 Profiled Practical Valid ILP

[18]–[20] s1, s2 Profiled Practical Valid DL

[16] z, c Profiled Practical Rejected ILP

[17] y, z, cs1 Profiled Simulation Valid or Rejected BP

This Work y, c, cs1 Profiled Practical Valid and Rejected BP

In the profiling aspect, early attacks focused on directly
targeting operations related to s1 and s2, such as the unpacking
process of s1 and s2, or transformations like NTT(s1) and
NTT(s2). However, in practical deployment scenarios, such
computations may only occur once or not at all, making these
attack methods difficult to apply in real-world settings.

Subsequent researches generally follow the same approach:
leveraging SCA to get hints about the private key, and using
different methods to solve for the private key. [13]–[16] obtain
numerical hints about s1 and solve it using LSM or Integer
Linear Programming (ILP). [17] obtains distributional hints
about s1 and solves it using Belief Propagation (BP).

B. Motivation
Dilithium follows the Fiat-Shamir paradigm, generating one

valid signature along with multiple rejected (invalid) signa-
tures. In our experiments, we analyzed the number of rejected
signatures during Dilithium’s signing process. We found that
approximately 77% of signing attempts generate at least one
rejected signature, as shown in Table II. Relying solely on
valid signatures for key recovery results in a significant waste
of information contained in rejected signatures. Although some
prior works [16], [17] have attempted to exploit rejected sig-
nature information for private key recovery, their approaches
suffer from low efficiency. Therefore, this paper focuses on
how to effectively utilize both valid and rejected signatures to
achieve efficient private key recovery.

Despite BP being widely applied in the field of post-
quantum cryptography, its application to Dilithium has not
been fully exploited. In BP, the flexibility of the factor graph
makes BP particularly well-suited for scenarios where multiple
hints from different sources are combined to recover the pri-
vate key. Additionally, BP’s probabilistic inference mechanism
provides high error tolerance, making it ideal for recovering
the private key from a large number of noisy hints. This is
especially beneficial in our case, where hints extracted from
rejected signatures may contain more noise compared to those
from valid signatures.

Given these motivations, this paper proposes a BP-based
method to efficiently utilize both valid and rejected signatures
to recover the private key and provides practical experimental
results to demonstrate its effectiveness.

TABLE II
STATISTICS ON THE NUMBER OF REJECTED SIGNATURES IN DILITHIUM

Rejection 0 1 2 3 4 5 >5

Ratio(%) 23.0 17.8 13.7 10.7 8.0 6.3 20.5

C. Contribution

The contributions of this paper are as follows.

• To the best of our knowledge, we are the first work that
efficiently leverages both valid and rejected signatures
for private key recovery in Dilithium. Since each valid
signature is accompanied by approximately three rejected
signatures on average, our method can theoretically re-
duce the required number of signing attempts by up to
75% compared to approaches that utilize only hints from
valid signatures. Our experimental results show that our
method reduces the number of signing attempts by at
least 42%. Our approach requires a minimum of a single
signing attempt and a maximum of 4 signing attempts to
fully recover the private key.

• We propose a generalized factor graph structure for
Dilithium, designed to maximize the utilization of all
available hints generated during a single signing attempt
for private key recovery. With this factor graph structure,
an attacker can simultaneously leverage hints extracted
from both valid and rejected signatures to recover the
private key, thereby minimizing the number of signing
attempts required for full key recovery. Additionally, the
proposed factor graph offers high flexibility—the attacker
can choose to use all hints obtained from SCA for key
recovery or selectively utilize only the most accurate hints
to maximize the success rate of full key recovery.

• We provide the missing details from previous studies
on applying BP to Dilithium, offering a detailed and
complete account of the entire attack process—from side-
channel leakage extraction to the construction of private
key hints. In addition, we introduce a series of compu-
tational optimizations, including an improved message
propagation strategy and a carefully constrained message
size, to enhance the efficiency and practicality of BP.

3

To validate our approach, we performed experiments on
a practical dataset, thoroughly evaluating both the time
and memory overhead. The results demonstrate that our
method is not only effective but also efficient: it achieves
successful private key recovery within 300 seconds, with
memory consumption remaining under 250 MB.

All code and datasets used in this paper are publicly
available at

https://github.com/AIGIUS/BP-On-Dilithium

II. BACKGROUND

A. Notations

First, we define some notations. We adopt the notation from
[21]. Let Z denote the ring of integers, Zq denote the ring
of integers modulo q, Zq[X] denote the ring of polynomials
modulo q, Rq = Zq[X]/(Xn + 1) denote the quotient ring
of polynomials modulo Xn + 1. We use [i, j] to represent
the set {m | i ≤ m ≤ j,m ∈ Z}. We use boldface letters to
represent vectors or matrices, and superscripts to indicate their
dimensions. We use subscripts to represent the coefficients
of a polynomial or an element of a vector. We use square
brackets in subscripts to represent certain bits of an integer
in its binary representation. For ∀r ∈ Z, r

′
= r mod± q

represents r
′ ≡ r mod q where r

′ ∈ (−q/2, q/2]. For w ∈
Z, let ||w||∞ = |w mod± q|. For w ∈ Rq , let ||w||∞ =
max||w[i]||∞. For w ∈ Rk

q , let ||w||∞ = max||wi||∞. Sη

denotes the set {w | w ∈ Rq, ||w||∞ ≤ η}. Bτ denotes the set
of all elements in Rq that have exactly τ coefficients equal to
1 or -1, with the remaining coefficients being 0. The NTT
representation of a polynomial w ∈ Rq is ŵ = NTT(w).
The NTT representation of a vector or matrix is obtained by
applying the NTT to each of its elements. We use · to denote
the vector dot product, and ◦ to denote convolution. We use z
and c to represent the rejected signatures, while z and c denote
the valid signatures in Dilithium.

B. DILITHIUM

Dilithium is one of the three digital signature algorithms
standardized by NIST. Its security is primarily based on the
lattice-based Module Learning with Errors (M-LWE) problem
and the Module Short Integer Solution (M-SIS) problem.
Dilithium consists of three parts: key generation, signing,
and verification. In this paper, we mainly explain the key
generation and signing parts. The verification part is generally
not targeted for SCA, so it is not covered. For the sake
of brevity, we present only the algorithm templates and the
necessary details.

Algorithm 1 Dilithium key generation algorithm
1: A← Rk×l

q

2: (s1, s2)← Sl
η × Sk

η

3: t = As1 + s2
4: return (pk = (A, t), sk = (A, t, s1, s2))

Algorithm 2 Dilithium signing algorithm
1: z =⊥
2: while z =⊥ do
3: y← Sl

γ1−1

4: w = NTT−1(Â · NTT(y))
5: w1 = HighBits(w, 2γ2)
6: c ∈ Bτ = H(M ||w1)
7: z = y + NTT−1(NTT(c) · ŝ1)
8: if ||z||∞ ≥ γ1 − β or ||LowBits(Ay − cs2, 2γ2)||∞ ≥

γ2 − β then
9: z =⊥

10: end if
11: end while
12: return σ = (z, c)

C. Template Attack

Template attack [22] is one of the most commonly used
methods for profiling Side-Channel Attacks. TA consists of
two phases: the profiling phase and the attack phase. In the
profiling phase, the profiling device runs n times, recording
the input pi, the corresponding output σi, and the associated
power trace ti, where i ∈ [0, n − 1]. Using the key, inputs,
and corresponding output, the intermediate values vi that the
attacker aims to attack can be computed. The power traces are
then categorized based on vi.

Assuming vi can be divided into d different categories. Let
the power trace belonging to the j-th category be denoted as
tj,i, where i ∈ [0,dj − 1], dj represents the number of traces
in the j-th category. The mean vector mj and the covariance
matrix Cj for the j-th category can be calculated using the
following formulas:

mj =
1

dj

dj−1∑
i=0

tj,i,

Cj =
1

dj

dj−1∑
i=0

(tj,i −mj)
T (tj,i −mj).

In the attacking phase, the attacker collects n
′

power traces
t
′

i when running the victim device, where i ∈ [0, n
′ − 1].

The probability that t
′

i belongs to the j-th template can be
calculated using the following formula:

Pi,j(t
′

i; (mj ,Cj)) =
exp(− 1

2 (t
′

i −mj)C
−1
j (t

′

i −mj)
T)√

(2π)o · det(Cj)
,

where o is the dimension of ti and t
′

i.

D. Number Theoretic Transform

The Number Theoretic Transform (NTT) is a discrete
Fourier transform (DFT) variant that operates over finite fields
[23], making it particularly useful in cryptographic applica-
tions, such as lattice-based cryptography.

4

Given a polynomial a ∈ Rq , its NTT transformation is
defined as â = NTT(a), as shown in Equation 1, where ω
is the primitive n-th root of unity modulo q.

âj =
n−1∑
i=0

ωijai mod q (1)

The inverse NTT (INTT) is similarly defined as a =
INTT(â), as shown in Equation 2, where n−1 is called the
scaling factor.

ai = n−1
n−1∑
j=0

ω−ij âj mod q (2)

In practice, the Cooley-Tukey (CT) algorithm is commonly
used for efficient computation of the NTT. The fundamental
computational unit in the CT algorithm is the CT butterfly
unit. As shown in Figure 1, a CT butterfly unit performs
the computation described by Equation 3. By configuring
multiple such units in a structured manner, a complete NTT
computation can be efficiently executed.

𝐴

𝐵

𝐶

𝐷 ω𝑘

+

−

𝐴

𝐵

𝐶

𝐷 ω𝑘

+

−

Fig. 1. The Cooley-Tukey butterfly unit.

C =A+B × ωk

D =A−B × ωk
(3)

E. Belief Propagation

BP is a probabilistic inference algorithm widely used in
graphical models, particularly in factor graphs, to compute
marginal distributions of variables. A factor graph consists of
factor nodes and variable nodes. Variable nodes represent the
variables, while factor nodes represent the constraints imposed
on these variables. BP operates by iteratively passing messages
between variable nodes and factor nodes in a factor graph.
These messages represent probability distributions, allowing
the algorithm to update its belief about each variable until
convergence is achieved.

The message sent from a factor node a to a variable node
i is computed as the product of all incoming messages from
a’s neighboring nodes (excluding i), multiplied by the factor
function of a, and then marginalized over i. This is formally
expressed in Equation 4, where N(a) denotes the set of
neighboring nodes of a.

ma→i(xi) =
∑

xN(a)\{i}

fa(xi, xN(a)\{i})
∏

j∈N(a)\{i}

mj→a(xj) (4)

The message sent from a variable node i to a factor node a
is computed as the product of all incoming messages from i’s
neighboring nodes (excluding a). This process is illustrated in
Equation 5.

4 traces for full key recovery 1 trace for full key recovery

Existing Works This Work

Trace 1

Trace 2

Trace 3

Rejected Signatures Valid Signature

4 traces for full key recovery 1 trace for full key recovery

Existing Works This Work

Trace 1

Trace 2

Trace 3

Rejected Signatures Valid Signature

Fig. 2. Main idea of the attack.

mi→a(xi) =
∏

b∈N(i)\{a}

mb→i(xi) (5)

BP was introduced into SCA in [24]. In this context, the
results of SCA are typically referred to as hints. These hints
are used to initialize the factor nodes in the factor graph, after
which the BP algorithm is executed to solve for the private
key.

III. GENERAL ATTACK FRAMEWORK

The core idea of this paper is to maximize the utilization
of all side-channel leakages within a single signing attempt
to recover the private key as efficiently as possible. For each
Dilithium signing attempt, we can capture a corresponding
side-channel trace. Each trace contains leakages from one
valid signature and multiple rejected signatures, as illustrated
in Figure 2. Assuming that four signatures are sufficient to
recover the private key, an attacker using only valid signatures
would require four traces for key recovery. However, by
leveraging both valid and rejected signatures, the attacker has
the opportunity to recover the private key using fewer traces,
and in some cases, may even achieve full key recovery from
a single trace, as illustrated in Figure 2.

A. Overview of the Attack Strategy

This section outlines the overall attack framework proposed
in this paper. The framework consists of four main processes,
as illustrated in Figure 3. Typically, profiled SCA consists
of two phases, which are the profiling phase and the attack
phase. For the sake of clarity, we only present the attack phase,
omitting the profiling phase. We describe the four stages as
follows:
• Side-Channel Leakage Collection: The attacker collects

side-channel information from the victim’s device. Com-
mon types of side-channel information include power

5

Side-Channel

Leakage Collection

Side-Channel

Attacks

Belief

Propagation

Private Key

Retrieval

Leakage Model

Maximum Likelihood Estimation

Side-Channel

Leakage Collection

Side-Channel

Attacks

Belief

Propagation

Private Key

Retrieval

Leakage Model

Maximum Likelihood Estimation

Fig. 3. General attack framework.

traces, EM traces. In this work, we choose to collect EM
traces and specifically measure the EM emissions near
the voltage regulator pin of the victim device to achieve
a higher signal-to-noise ratio (SNR).

• Side-Channel Attacks: The attacker identifies the posi-
tions of rejected signatures and valid signatures within
EM traces, and classifies them using the leakage model
obtained from the profiling device. The classification
process yields hints of the target variables. Specifically,
these variables are as follows:
– Valid Signatures: y, cs1
– Rejected Signatures: c, cs1

• Belief Propagation: The attacker constructs a factor
graph, initializing it with hints obtained from the leakage
model. The BP algorithm is then executed iteratively until
the messages in the factor graph converge.

• Private Key Retrieval: Once the BP algorithm con-
verges, the attacker can recover the private key from
variable nodes. A common method for this is maximum
likelihood estimation.

The following subsections will discuss specific details and
issues related to the general attack framework.

B. Choices in Side-Channel Attacks

Common techniques for constructing leakage models in-
clude TA, stochastic models, and DL. In this work, we employ
TA. While DL may potentially yield more accurate leakage
models, TA is chosen for its advantages, including parameter-
free implementation and consistently reliable performance.
This makes TA well-suited for proof-of-concept validation.

This work targets cs1 instead of z, for existing research
has shown that the hint from z is too limited [16], [17].

s1 s1

c ∘ s1 c ∘ s1

c c c s1 c s1

P(c) P(c) P(c s1) P(c s1)

c ∘ s1

c c s1

P(c) P(c s1)

c ∘ s1 c ∘ s1

c c c s1 c s1

P(c) P(c) P(c s1) P(c s1)

c ∘ s1

c c s1

P(c) P(c s1)

c ∘ s1 c ∘ s1

cs1 cs1

𝑦 𝑦

P(y) P(y)

z = y + cs1 z = y + cs1

z z

P(z) P(z)

c c

P(c) P(c)

c ∘ s1

cs1

𝑦

P(y)

z = y + cs1

z

P(z)

c

P(c)

s1

c ∘ s1

c c s1

P(c) P(c s1)

c ∘ s1

c c s1

P(c) P(c s1)

c ∘ s1

cs1

𝑦

P(y)

z = y + cs1

z

P(z)

c

P(c)

Initialization

Main Loop

Side-Channel Attacks

s1

c ∘ s1

c c s1

P(c) P(c s1)

c ∘ s1

c c s1

P(c) P(c s1)

c ∘ s1

cs1

𝑦

P(y)

z = y + cs1

z

P(z)

c

P(c)

Initialization

Main Loop

Side-Channel Attacks

Fig. 4. The factor graph used in this paper. c denotes rejected signature
and c denotes valid signature. Different colors represent different signature
instances. P(c), P(cs1), and P(y) represent hints obtained through SCA.

Incorporating z might introduce additional noise, degrading
performance. In addition, SCA on z is not the primary focus
of this paper. Nevertheless, we demonstrate that z can be easily
integrated into the proposed attack framework in Section III-C.
The details of the SCA on y, cs1 (or cs1), and c will be
described in Section IV.

C. Factor Graph Construction

As shown in Figure 4, the factor graph used in this paper
is illustrated. Since c and z (as part of the valid signature)
are known to the attacker, they could be integrated into the
factor node z = y+ cs1. However, we still represent P(c) and
P(z) as independent factor nodes in the factor graph, where
only one value has a probability of 1, and all others have a
probability of 0. This enhances the generality of the proposed
factor graph. If an attacker can obtain a sufficiently accurate
hint about the rejected z, it can be incorporated into our factor
graph simply by replacing z with z.

The factor graph includes two types of constraints in factor
nodes: polynomial multiplication (c◦s1, c◦s1) and polynomial
addition (z = y + cs1). Constraints c ◦ s1 and c ◦ s1 follow
the Equation 6, where ζ = 0 when j ≤ i, ζ = 1 when j > i,
i ∈ [0, 255]. Constraint z = y + cs1 follows the Equation 7,
where i ∈ [0, 255].

(cs1)i =
255∑
j=0

(−1)ζc(i−j) mod 256 × (s1)j (6)

zi = yi + (cs1)i (7)

Compared to the factor graph in existing work [17], the
factor graph proposed in this paper represents c (as well as
c) and z as probability distributions, enabling the utilization
of both valid and rejected signatures. Additionally, the factor
graph in this paper explicitly represents the constraint z =
y+cs1, allowing s1 to be directly recovered from SCA results.
In contrast, existing work needs to derive the distribution of
cs1 from y before incorporating it into the factor graph. Our
work is more automated, reducing manual processing steps.

6

s1 s1

c ∘ s1 c ∘ s1

c c c s1 c s1

P(c) P(c) P(c s1) P(c s1)

c ∘ s1 c ∘ s1

c c c s1 c s1

P(c) P(c) P(c s1) P(c s1)

c ∘ s1 c ∘ s1

cs1 cs1

𝑦 𝑦

P(y) P(y)

z = y + cs1 z = y + cs1

z z

P(z) P(z)

c c

P(c) P(c)

Initialization

Main Loop

1

2

1

2
1

2

s1

c ∘ s1

c c s1

P(c) P(c s1)

c ∘ s1

c c s1

P(c) P(c s1)

c ∘ s1

cs1

𝑦

P(y)

z = y + cs1

z

P(z)

c

P(c)

Initialization

Main Loop

1

2

1

2
1

2

Fig. 5. Message passing path in the factor graph.

D. Efficient BP computation

In the factor graph used in this paper, the BP computational
overhead mainly comes from three sources: the iterative mes-
sage passing process, the message size, and the computation
process of the constraints. The following content will discuss
these three parts separately.

In a standard BP algorithm, each iteration requires bidirec-
tional message passing along every edge in the factor graph.
However, in the factor graph proposed in this paper, this
process can be pruned to reduce computational complexity.
This paper adopts the message passing path as shown in Figure
5.

As shown in Figure 5, the initialization part only consists
of values obtained from SCA results or known values. Con-
sequently, messages in this part remain unchanged throughout
the BP process, propagating only upward and requiring com-
putation only once during the first iteration of BP.

In the main loop part, only the edges directly connected
to s1 require bidirectional message passing, while all other
edges propagate messages upward only. At a higher level,
the factor graph of the main loop forms a tree-like structure,
thus, the edges directly connected to s1 do not require parallel
bidirectional updates. Instead, the message passing follows a
top-down and bottom-up iterative process [25].

Considering message size, the main loop contains three
types of messages: s1, c (or c), and cs1 (or cs1). Since these
variables have relatively small value ranges, their impact on
BP computational complexity is minimal. In contrast, in the
initialization phase, y has a much larger value range of 217

(or 219 for Dilithium3 and Dilithium5). This results in a larger
message size, which not only increases memory overhead but
also prolongs constraint computations in factor nodes.

To control the message size of y, we analyze the z = y +
cs1 process and limit the bits used for y, thereby reducing
computational complexity. The details of this optimization are
provided in Section IV-A.

Regarding the computational cost of the constraints, Equa-
tion 6 and Equation 7 involve two fundamental distribution
operations: the sum of two distributions P(A + B) and the
product of two distributions P(A × B). Since P(A + B) =
P(A)◦P(B) when A and B are independent, the computation
can be accelerated using the NTT. Additionally, since the

bits used for y have been optimized, Equation 7 can also be
further refined. The details are provided in Section IV-A. For
P(A×B), since the coefficients of c are restricted to {–1, 0, 1},
P(A × B) equals P(B), P(–B), or 0, which can be obtained
by simply flipping the distribution of B.

IV. SIDE-CHANNEL ATTACKS ON DILITHIUM

This section will describe how to perform SCA on the
target variables y, cs1 (or cs1), and c, respectively. For y,
we primarily limit the number of bits recovered through SCA
to reduce the message size in the initialization part of the
factor graph, thereby lowering the computational overhead of
BP. For c and cs1 (or cs1), we describe their leakage and
the corresponding SCA, ensuring the effective utilization of
rejected signatures.

A. Side-Channel Attack on y

In this section, we present how to perform SCA on y. We
directly attack the generation process of y, which corresponds
to line 3 of Algorithm 2. Since each coefficient of y is
bounded by γ1 (217 for Dilithium2 and 219 for Dilithium3
and Dilithium5), modeling all bits of y’s coefficients not
only complicates the profiling process but also significantly
increases the overhead of message passing in BP and the
computation cost of the constraints. Therefore, minimizing the
number of bits of y to be modeled is a primary consideration.
Although some studies have discussed this issue [11]–[14],
the question of ”what is the minimum number of bits of y
that must be modeled to accurately recover the distribution of
cs1” has not yet been fully answered. To address this issue, we
propose and prove the following proposition in this section.

Proposition 1. Given |cs1| < 2τ , at least τ + 2 bits of y
are required to accurately reconstruct the distribution of cs1,
where z = y + cs1, and z, y, c, s1 refer to the coefficients of
the corresponding polynomial.

Proof. On a typical 32-bit processor, z, y, and cs1 are stored
and computed in the form of 32-bit two’s complement integers.
We can express y, z, and cs1 as the sum of their higher 32−τ
bits and lower τ bits, as shown in Equation 8.

z[31:τ] × 2τ + z[τ−1:0] = y[31:τ] × 2τ + y[τ−1:0]

+(cs1)[31:τ] × 2τ + (cs1)[τ−1:0]

(8)

Given |cs1| < 2τ , (cs1)[31:τ] can only take the value 0
or −1, depending on the sign of cs1. Then the relationship
between z[31:τ] and y[31:τ] has only three possible forms:
z[31:τ] = y[31:τ], z[31:τ] = y[31:τ]−1, or z[31:τ] = y[31:τ]+1, de-
pending on whether a carry occurring in y[τ−1:0]+(cs1)[τ−1:0].

Combing Equation 8, four scenarios about (cs1)[31:0] can
arise:

1) With carry, cs ≥ 0:

z[31:τ] = y[31:τ] +1, (cs1)[31:0] = z[τ−1:0] − y[τ−1:0] +2τ

2) Without carry, cs ≥ 0:

z[31:τ] = y[31:τ], (cs1)[31:0] = z[τ−1:0] − y[τ−1:0]

7

𝑧𝜏+1 = 𝑦𝜏+1𝑧𝜏+1 = 𝑦𝜏+1 𝑧𝜏+1 = 𝑦𝜏+1𝑧𝜏+1 = 𝑦𝜏+1

T F

𝑛𝑜𝑛𝑒𝑛𝑜𝑛𝑒 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑦𝜏 = 0𝑦𝜏 = 0

+2𝜏+2𝜏

𝑦𝜏 = 0

−2𝜏 +2𝜏

T F T F

T F T F

𝑐𝑠1 = 𝑧[𝜏−1:0] − 𝑦[𝜏−1:0] + ?

𝑧𝜏 = 𝑦𝜏𝑧𝜏 = 𝑦𝜏

𝑧𝑧𝑧𝜏𝜏𝜏𝑧𝜏𝑧𝑧𝑧𝜏𝑧𝜏𝑧𝜏𝑧𝑧𝑧𝜏𝑧 +1+1+1 === 𝑦𝑦𝑦𝜏𝜏𝜏𝑦𝜏𝑦𝑦𝑦𝜏𝑦𝜏𝑦𝜏𝑦𝑦𝑦𝜏𝑦 +1+1+1𝑧𝜏+1 = 𝑦𝜏+1 𝑧𝑧𝑧𝜏𝜏𝜏𝑧𝜏𝑧𝑧𝑧𝜏𝑧𝜏𝑧𝜏𝑧𝑧𝑧𝜏𝑧 +1+1+1 === 𝑦𝑦𝑦𝜏𝜏𝜏𝑦𝜏𝑦𝑦𝑦𝜏𝑦𝜏𝑦𝜏𝑦𝑦𝑦𝜏𝑦 +1+1+1𝑧𝜏+1 = 𝑦𝜏+1

T F

𝑛𝑜𝑛𝑒𝑛𝑜𝑛𝑒𝑛𝑜𝑛𝑒𝑛𝑜𝑛𝑒 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑦𝑦𝑦𝜏𝜏𝜏𝑦𝜏𝑦𝑦𝑦𝜏𝑦𝜏𝑦𝜏𝑦𝑦𝑦𝜏𝑦 === 000𝑦𝜏 = 0 𝑦𝜏𝑦𝜏𝑦 = 0

−2𝜏+2+2+2𝜏𝜏𝜏+2𝜏 +2𝜏

𝑦𝜏 = 0

−2𝜏 +2𝜏

T F T F

T F T F

𝑐𝑠1 = 𝑧[𝜏−1:0] − 𝑦[𝜏−1:0] + ?

𝑧𝑧𝑧𝜏𝜏𝜏𝑧𝜏𝑧𝑧𝑧𝜏𝑧𝜏𝑧𝜏𝑧𝑧𝑧𝜏𝑧 === 𝑦𝑦𝑦𝜏𝜏𝜏𝑦𝜏𝑦𝑦𝑦𝜏𝑦𝜏𝑦𝜏𝑦𝑦𝑦𝜏𝑦𝑧𝜏 = 𝑦𝜏

Fig. 6. The decision tree used for the relationship construction between cs1,
z[τ+1:0], and y[τ+1:0].

Listing 1 The C code corresponding to the final step of INTT.
1 for(j = 0; j < N; ++j) {
2 a[j] = montgomery_reduce((int64_t)f * a[j]);
3 }

3) With carry, cs < 0:

z[31:τ] = y[31:τ], (cs1)[31:0] = z[τ−1:0] − y[τ−1:0]

4) Without carry, cs < 0:

z[31:τ] = y[31:τ] − 1, (cs1)[31:0] = z[τ−1:0] − y[τ−1:0] − 2τ

Summarizing the four possible cases, it can be observed
that (cs1)[31:0] depends only on z[τ−1:0] − y[τ−1:0] and the
relationship between z[31:τ] and y[31:τ]. Since the relationship
between z[31:τ] and y[31:τ] only has three possible cases,
recovering the lower 2 bits of y[31:τ] is sufficient to capture
this relationship. Therefore, recovering the lower τ +2 bits of
each y is sufficient to accurately reconstruct the distribution
of cs1.

Furthermore, we present a method for computing cs1 from
Equation 7 when only y[τ+1:0] is recovered, as illustrated in
Figure 6. Specifically, the relationship between z[τ+1:τ] and
y[τ+1:τ] is used to determine the relationship between cs1 and
z[τ−1:0]−y[τ−1:0], which then enables the computation of cs1.

B. Side-Channel Attack on cs1

In this section, we present how to perform SCA on cs1 (as
well as cs1). We focus on the final step of INTT(ĉŝ1) as shown
in Listing 1, which corresponds to the multiplication by n−1

in Equation 2. Since this operation involves a multiplication
combined with Montgomery reduction, it naturally exhibits a
high SNR in SCA. We directly model the lower 7 bits of the
coefficients of cs1, for ||cs1||∞ is less than 26 with nearly
100% probability according to a previous study [13].

C. Side-Channel Attack on c

In this section, we present how to perform SCA to recover
the rejected signature c. We recover c by analyzing the process
of NTT(c). SCA on the NTT process has been extensively

ω4

c 00 +

−

ω4

ω4

ω4

+

+

+

−

−

−

+

+

−

−

+

+

−

−

+

−

+

−

+

−

+

−

c 10

c 20

c 30

c 40

c 50

c 60

c 70

ω2

ω2

ω6

ω6

ω

ω5

ω3

ω7

c 01 c 02 c 03

c 11 c 12 c 13

c 21 c 22 c 23

c 31 c 32 c 33

c 41 c 42 c 43

c 51 c 52 c 53

c 61 c 62 c 63

c 71 c 72 c 73

Layer1 Layer2 Layer3

ω4

c 00 +

−

ω4

ω4

ω4

+

+

+

−

−

−

+

+

−

−

+

+

−

−

+

−

+

−

+

−

+

−

c 10

c 20

c 30

c 40

c 50

c 60

c 70

ω2

ω2

ω6

ω6

ω

ω5

ω3

ω7

c 01 c 02 c 03

c 11 c 12 c 13

c 21 c 22 c 23

c 31 c 32 c 33

c 41 c 42 c 43

c 51 c 52 c 53

c 61 c 62 c 63

c 71 c 72 c 73

Layer1 Layer2 Layer3

Fig. 7. Simplified NTT process.

discussed in several studies [16], [26], [27]. In this work, we
apply a layer-by-layer recovery method that neither relies on
BP nor requires a full analysis of the NTT process.

Rather than analyzing the entire NTT process, we focus on
attacking the first few layers of NTT. First, we analyze the
first layer of the NTT. A simplified illustration of the NTT(c)
process is shown in Figure 7. Since c0i ∈ {−1, 0, 1}, there
are only 9 possible input combinations for each butterfly unit
in the first layer. Therefore, 9 templates are required for the
attack. Considering each butterfly unit in the figure, the values
of {c0i |i ∈ [4, 7]} significantly influence the hamming weight
(HW) of the butterfly unit’s output. Specifically, when c0i
takes values in {−1, 0, 1}, the hamming weight of the output
corresponds to HW(c0i−4−ω4), HW(c0i−4), or HW(c0i−4+ω4)
separately. Through similar analysis, it can be observed that
the values of {c0i |i ∈ [0, 3]} have a smaller impact on the
hamming weight of the butterfly unit’s output. Consequently,
the recovery accuracy for {c0i |i ∈ [4, 7]} is high, while
{c0i |i ∈ [0, 3]} may contain errors.

To correct these errors, the attacker can proceed to attack
the second layer. Leveraging the fact that {c0i |i ∈ [4, 7]}
has already been recovered, this constrains c1i to only three
possible values. Similar to the first layer, in each butterfly unit,
the second input value is easier to recover, while the first input
value is more error-prone. By iteratively attacking subsequent
layers, the attacker can progressively refine and correct errors
from previous layers, ultimately improving the overall attack
accuracy.

An attacker can always target more layers to achieve higher
accuracy for c0i ; however, the number of templates required
per layer increases. For example, the first layer requires
9 templates, while the second layer requires 81 templates
(although only 9 of them may be used). This represents a
trade-off between cost and performance. In this work, thanks
to the high error tolerance of BP, our experiments show that
attacking only the first layer is sufficient for the private key
recovery.

8

(a) The original trace

(b) The trace of single signature generation process

Rejected Signature1 Rejected Signature2 Valid Signature

y Generation NTT(y) w=A*y INTT(w) w1 SHAKE256 NTT(c) INTT(cs1)

(a) The original trace

(b) The trace of single signature generation process

Rejected Signature1 Rejected Signature2 Valid Signature

y Generation NTT(y) w=A*y INTT(w) w1 SHAKE256 NTT(c) INTT(cs1)

Fig. 8. EM traces of the reference implementation of Dilithium on STM32F407 with optimization O3.

Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Layer7 Layer8

Single
Iteration

Layer1Layer2Layer3Layer4Layer5Layer6Layer7Layer8
Scaling
Factor

(a) The zoomed-in trace of y generation

(b) The zoomed-in trace of NTT(c)

(c) The zoomed-in trace of INTT(cs1)

Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Layer7 Layer8

Single
Iteration

Layer1Layer2Layer3Layer4Layer5Layer6Layer7Layer8
Scaling
Factor

(a) The zoomed-in trace of y generation

(b) The zoomed-in trace of NTT(c)

(c) The zoomed-in trace of INTT(cs1)

Fig. 9. Zoomed-in traces of y generation, NTT(c), and INTT(cs1).

V. EXPERIMENT RESULTS

A. Experimental Setup

The experimental setup is shown in Figure 10. We down-
loaded the reference implementation of Dilithium into an
STM32F407 Discovery development board. EM traces were
collected using a Langer LF-U 2.5 probe, amplified by a
Langer PA 303 amplifier, and then captured by a PICO 3203D

Fig. 10. Experimental environment.

oscilloscope. The traces were then transferred to a laptop
equipped with an Intel i9-14900HX processor and 64GB RAM
for further analysis. We conducted a proof-of-concept experi-
ment on the reference implementation of Dilithium under both
O0 and O3 optimizations.

B. Side-Channel Attacks Results

Figure 8 shows the EM traces of the reference implementa-
tion of Dilithium on STM32F407 with optimization O3. Figure
8a presents the complete trace of a single signing process,
which includes two rejected signatures and one valid signature.
Figure 8b shows a zoomed-in view of the single signature
generation process from Figure 8a. For ease of description,
we do not distinguish between c and c, nor between cs1 and
cs1 here. We have marked the main operations during a single
signature generation in the Figure 8b, corresponding to lines
3 to 7 of Algorithm 2. In this trace, the generation of y, the
NTT(c) process, and the INTT(cs1) process are the primary
targets. As clearly shown in Figure 8b, both the y generation

9

process and the INTT(cs1) process contain four major loops,
since both y and cs1 are elements of Rk

q , and the operations on
them are performed separately on each polynomial component.

(a) Train set (b) Test set(a) Train set (b) Test set

Fig. 11. Side-Channel Attack Results of y.

(a) Train set (b) Test set(a) Train set (b) Test set

Fig. 12. Side-Channel Attack Results of NTT(c).

(a) Train set (b) Test set(a) Train set (b) Test set

Fig. 13. Side-Channel Attack Results of INTT(cs1).

Figure 9a provides a further zoomed-in view of y. With
further zooming, we can observe the trace corresponding to
a single iteration of the y generation. Figure 9b presents a
zoomed-in view of the NTT(c) process, where the 8 layers
of the NTT can be identified. In the figure, the distinct
downward peaks correspond to butterfly units with different
twiddle factors. The peaks become denser in the later layers,
as these layers involve a greater number of twiddle factors,
as illustrated in Figure 7. We apply SCA on the first layer of
NTT(c). Figure 9c shows a zoomed-in view of the INTT(cs1)
process, which is roughly the reverse of the process shown
in Figure 9b. The main difference is that, following the first
layer, there is an additional multiplication by the scaling factor,
corresponding to Listing 1. This multiplication step is also the
target of SCA.

TABLE III
TIME AND MEMORY OVERHEAD OF THE BP ALGORITHM

Number of Signatures 10 100 1000 5000 10000

Time Per Iteration (s) 1.5 14.6 148 743 1495

Memory (MB) 231 339 1440 6323 12426

We collected traces from 10, 000 signing attempts, using
9, 000 traces as the training set and 1, 000 traces as the test
set. We use TA combined with Linear Discriminant Analysis
(LDA) as the SCA method. The results for y, c, and cs1 are
shown in Figures 11, 12, and 13, respectively. In these figures,
the horizontal axis represents the polynomial coefficient index,
and the vertical axis represents the accuracy. We perform TA
separately on the different coefficients of the polynomials, as
the attack accuracy varies across coefficients, as shown in
Figures 11, 12, and 13. Using the training set, we identify
the coefficients with higher accuracy, and in the test phase,
we prioritize the use of these high-accuracy coefficients to
improve the overall effectiveness of the attack.

C. BP Results

As shown in Figures 16 and 17, the results of the BP
algorithm under different number of traces and optimization
levels are presented. The horizontal axis represents the number
of traces required for the attack, while the vertical axis repre-
sents either the success rate or the number of recovered key
coefficients. For each trace count, we repeated the experiment
10 times and reported the average results.

The results indicate that under O0 optimization, using all
signatures (both valid and rejected), we require a minimum
of 1 and a maximum of 3 traces for full key recovery. In
contrast, using only valid signatures, it takes a minimum of 3
and a maximum of 7 traces for full key recovery. The use of
all signatures decreases the number of traces by approximately
57% compared to using only valid signatures.

Under O3 optimization, using all signatures, the attack
requires a minimum of 2 and a maximum of 4 traces for full
key recovery. When using only valid signatures, the attack
requires a minimum of 2 and a maximum of 7 traces. In this
case, leveraging all signatures decreases the number of traces
by approximately 42% over using only valid signatures.

As shown in Figures 14 and 15, the variation in the
number of recovered key coefficients during the BP iteration
is depicted for different trace counts and optimization levels,
where the color represents the average number of recovered
key coefficients.

It can be observed that the BP algorithm converges around
the 10-th iteration. If the key coefficients can be fully recov-
ered, this typically occurs within a maximum of 3 iterations.
However, BP does not always converge in a favorable direc-
tion. When fewer signing attempts are used in the attack, the
number of recovered key coefficients may initially increase but
then decrease and converge to a very low value, as illustrated
in the case where only a single trace is used.

As shown in Table III, the time and memory overhead of
the BP algorithm vary with the number of signatures used.

10

(a) All signatures (b) Valid signatures(a) All signatures (b) Valid signatures

Fig. 14. Recovered Coefficients Number In BP Iteration With Optimization
O0.

(a) All signatures (b) Valid signatures(a) All signatures (b) Valid signatures

Fig. 15. Recovered Coefficients Number In BP Iteration With Optimization
O3.

On average, each signature requires approximately 1.5 seconds
per BP iteration. Additionally, each additional signature incurs
an extra memory overhead of approximately 1.2 MB. These
data were collected under a single-core setup. With multi-core
optimization, the time required per iteration can be further
reduced. Considering that each signing attempt typically pro-
duces around four signatures, to fully recover the coefficients
of s1, the average BP iteration time required is approximately
216s for O0 and 288s for O3. The corresponding memory
overhead is 234 MB for O0 and 240 MB for O3.

(a) Success rate (b) Coefficient recovery number(a) Success rate (b) Coefficient recovery number

Fig. 16. BP Results With Optimization O0.

D. Comparison With Existing Works

As shown in Table IV, a comparison is provided between
this work and existing studies. Existing research can be

(a) Success rate (b) Coefficient recovery number(a) Success rate (b) Coefficient recovery number

Fig. 17. BP Results With Optimization O3.

broadly classified into three categories. [18]–[20] target oper-
ations directly involving the private key, such as its unpacking
process or NTT transformations. Benefiting from the high
classification accuracy provided by DL, these approaches have
achieved single-trace key recovery. However, in real-world
deployment scenarios, these private key operations may occur
only once at device startup or may never be executed at all
(e.g., if the private key is stored directly in the NTT domain).
This makes such methods difficult to apply in practical set-
tings.

[13]–[15] obtain numerical hints about the private key
and use ILP for key recovery. The best implementation has
also achieved single trace key recovery. However, due to their
limited error tolerance, they lose useful probabilistic hints
when the correct classification does not have the highest prob-
ability. As a result, their effectiveness is also heavily dependent
on the classification accuracy of DL models. Furthermore,
their ability to simultaneously utilize both valid and rejected
signatures for key recovery remains to be fully validated.

[16], [17] attempt to exploit rejected signatures to recover
the private key. However, their methods of leveraging rejected
signatures are inefficient, resulting in worse performance than
attacks that use only valid signatures. This inefficiency limits
their ability to effectively integrate hints from both valid and
rejected signatures for key recovery.

This paper proposes a method for private key recovery
that fully leverages side-channel leakages from both valid
and rejected signatures. Unlike prior works such as [18]–[20],
which are limited to specific scenarios, our approach targets
the signature and corresponding computations, making it more
broadly applicable across different scenarios. Benefiting from
the high error tolerance of BP, our method does not rely on the
high classification accuracy offered by DL, yet still achieves
single-trace key recovery. Compared to existing studies [16],
[17], which also attempt to utilize rejected signatures, our
method extracts higher-quality hints from rejected signatures.
This leads to a significant reduction in the number of traces
required for key recovery when rejected signatures are used.
Furthermore, our work addresses several missing details in
applying BP to Dilithium [17] and provides practical BP exper-
imental results. Additionally, we propose a more generalized
factor graph structure to maximize the utilization of all side-
channel leakages within a single signing attempt, and optimize
BP computation to enhance practical applicability. To facilitate

11

TABLE IV
COMPARISON WITH EXISTING WORKS

Work Applicable
Scenarios

Experimental
Type

Main
Method

Utilizing
Rejected Signatures

Error
Tolerance

Number of
Traces Required*

[17] General Simulation TA, BP Inefficient High 105

[16] General Practical DL, ILP Inefficient Medium 106

[13] General Practical DL, ILP No Medium 1(2)

[14] General Practical DL, ILP No Medium 105

[15] General Practical TA, LSM No Medium 106

[18] Constrained Practical DL No Low 1(100)

[19] Constrained Practical DL No Low 1(1)

[20] Constrained Practical DL No Low 1(1)

This Work General Practical TA, BP Efficient High 1(4)

* The value outside the parentheses represents the minimum required traces, while the value inside the parentheses
indicates the number of traces required for a 100% success rate. For larger results, we only present their approximate
order of magnitude.

further research, we open-source our experimental code and
dataset, allowing future studies to build upon our findings.

VI. DISCUSSION ON MASKED IMPLEMENTATION

To the best of our knowledge, the state-of-the-art masking
countermeasures for Dilithium do not protect rejected signa-
tures [28], [29], meaning that the rejected signature c remains
recoverable. Although some studies have proposed masked
implementations of the NTT [30], the rejected signature c can
still be recovered by analyzing the signature generation process
[31], specifically Line 6 of Algorithm 2.

While y and s1 are masked, the attacker can perform SCA
separately on each share of y and cs1. By summing the
recovered shares, the attacker can eliminate the masking effect
and continue utilizing the factor graph attack proposed in
this paper. However, under masked implementations, the bit-
length reduction strategy for y and cs1 proposed in this work
would no longer be sensible during the SCA phase. Instead,
the attacker must recover all bits of each share of y and cs1,
significantly increasing the overhead of the SCA phase.

Despite this, in the BP phase, the attacker can still leverage
the bit-length reduction strategy proposed in this paper. The
BP algorithm can be executed using only a small portion
of the recovered bits of y and cs1, reducing computational
complexity.

Overall, masking countermeasures increase the difficulty
of SCA, but the BP-based key recovery process remains
unchanged.

VII. CONCLUSION AND COUNTERMEASURE

This paper proposes an attack method against Dilithium,
which simultaneously leverages hints from both valid and
rejected signatures to recover the private key. We conducted
experiments on a Cortex-M4 core chip, and the results demon-
strate that utilizing rejected signature information can reduce
the required number of traces by at least 42% for a full key
recovery.

Our study highlights the necessity of protecting rejected
signatures, particularly c, as their leakage significantly aids
key recovery. We strongly recommend implementing masking
for rejected signatures or introducing shuffle-based counter-
measures during the signature generation process to mitigate
this attack.

REFERENCES

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, ser. Lecture Notes in Computer Science, M. J.
Wiener, Ed., vol. 1666. Springer, 1999, pp. 388–397. [Online].
Available: https://doi.org/10.1007/3-540-48405-1\ 25

[2] P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin,
“Side-channel assisted existential forgery attack on dilithium - A NIST
PQC candidate,” IACR Cryptol. ePrint Arch., p. 821, 2018. [Online].
Available: https://eprint.iacr.org/2018/821

[3] Z. Qiao, Y. Liu, Y. Zhou, M. Shao, and S. Sun, “When NTT
meets SIS: efficient side-channel attacks on dilithium and kyber,”
IACR Cryptol. ePrint Arch., p. 1866, 2023. [Online]. Available:
https://eprint.iacr.org/2023/1866

[4] H. M. Steffen, G. Land, L. J. Kogelheide, and T. Güneysu, “Breaking and
protecting the crystal: Side-channel analysis of dilithium in hardware,” in
Post-Quantum Cryptography - 14th International Workshop, PQCrypto
2023, College Park, MD, USA, August 16-18, 2023, Proceedings, ser.
Lecture Notes in Computer Science, T. Johansson and D. Smith-Tone,
Eds., vol. 14154. Springer, 2023, pp. 688–711. [Online]. Available:
https://doi.org/10.1007/978-3-031-40003-2\ 25

[5] H. Wang, Y. Gao, Y. Liu, Q. Zhang, and Y. Zhou, “In-depth
correlation power analysis attacks on a hardware implementation of
crystals-dilithium,” Cybersecur., vol. 7, no. 1, p. 21, 2024. [Online].
Available: https://doi.org/10.1186/s42400-024-00209-9

[6] Y. Liu, Y. Liu, Y. Zhou, Y. Gao, Z. Qiao, and H. Wang, “A novel
power analysis attack against crystals-dilithium implementation,” in
IEEE European Test Symposium, ETS 2024, The Hague, Netherlands,
May 20-24, 2024. IEEE, 2024, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/ETS61313.2024.10567325

[7] T. Tosun and E. Savas, “Zero-value filtering for accelerating non-
profiled side-channel attack on incomplete ntt-based implementations of
lattice-based cryptography,” IEEE Trans. Inf. Forensics Secur., vol. 19,
pp. 3353–3365, 2024. [Online]. Available: https://doi.org/10.1109/TIFS.
2024.3359890

[8] T. Tosun, A. Moradi, and E. Savas, “Exploiting the central reduction
in lattice-based cryptography,” IEEE Access, vol. 12, pp. 166 814–
166 833, 2024. [Online]. Available: https://doi.org/10.1109/ACCESS.
2024.3494593

12

[9] A. P. Fournaris, C. Dimopoulos, and O. G. Koufopavlou, “Profiling
dilithium digital signature traces for correlation differential side
channel attacks,” in Embedded Computer Systems: Architectures,
Modeling, and Simulation - 20th International Conference, SAMOS
2020, Samos, Greece, July 5-9, 2020, Proceedings, ser. Lecture Notes
in Computer Science, A. Orailoglu, M. Jung, and M. Reichenbach,
Eds., vol. 12471. Springer, 2020, pp. 281–294. [Online]. Available:
https://doi.org/10.1007/978-3-030-60939-9\ 19

[10] Z. Chen, E. Karabulut, A. Aysu, Y. Ma, and J. Jing, “An
efficient non-profiled side-channel attack on the crystals-dilithium
post-quantum signature,” in 39th IEEE International Conference
on Computer Design, ICCD 2021, Storrs, CT, USA, October
24-27, 2021. IEEE, 2021, pp. 583–590. [Online]. Available:
https://doi.org/10.1109/ICCD53106.2021.00094

[11] Z. Qiao, Y. Liu, Y. Zhou, J. Ming, C. Jin, and H. Li, “Practical
public template attack attacks on crystals-dilithium with randomness
leakages,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp. 1–14, 2023.
[Online]. Available: https://doi.org/10.1109/TIFS.2022.3215913

[12] Y. Liu, Y. Zhou, S. Sun, T. Wang, R. Zhang, and J. Ming,
“On the security of lattice-based fiat-shamir signatures in the
presence of randomness leakage,” IEEE Trans. Inf. Forensics
Secur., vol. 16, pp. 1868–1879, 2021. [Online]. Available: https:
//doi.org/10.1109/TIFS.2020.3045904

[13] Z. Qiao, Y. Liu, Y. Zhou, Y. Zhao, and S. Chen, “Single trace is all it
takes: Efficient side-channel attack on dilithium,” IACR Cryptol. ePrint
Arch., p. 512, 2024. [Online]. Available: https://eprint.iacr.org/2024/512

[14] S. Marzougui, V. Ulitzsch, M. Tibouchi, and J. Seifert, “Profiling
side-channel attacks on dilithium: A small bit-fiddling leak breaks it
all,” IACR Cryptol. ePrint Arch., p. 106, 2022. [Online]. Available:
https://eprint.iacr.org/2022/106

[15] A. Berzati, A. C. Viera, M. Chartouny, S. Madec, D. Vergnaud,
and D. Vigilant, “Exploiting intermediate value leakage in dilithium:
A template-based approach,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2023, no. 4, pp. 188–210, 2023. [Online]. Available:
https://doi.org/10.46586/tches.v2023.i4.188-210

[16] Y. Zhou, W. Wang, Y. Sun, and Y. Yu, “Rejected challenges pose new
challenges: Key recovery of CRYSTALS-dilithium via side-channel
attacks,” Cryptology ePrint Archive, Paper 2025/214, 2025. [Online].
Available: https://eprint.iacr.org/2025/214

[17] O. Bronchain, M. Azouaoui, M. ElGhamrawy, J. Renes, and
T. Schneider, “Exploiting small-norm polynomial multiplication with
physical attacks application to crystals-dilithium,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2024, no. 2, pp. 359–383, 2024. [Online].
Available: https://doi.org/10.46586/tches.v2024.i2.359-383

[18] R. Wang, K. Ngo, J. Gärtner, and E. Dubrova, “Single-trace
side-channel attacks on crystals-dilithium: Myth or reality?” IACR
Cryptol. ePrint Arch., p. 1931, 2023. [Online]. Available: https:
//eprint.iacr.org/2023/1931

[19] J. Han, T. Lee, J. Kwon, J. Lee, I. Kim, J. Cho, D. Han,
and B. Sim, “Single-trace attack on NIST round 3 candidate
dilithium using machine learning-based profiling,” IEEE Access,
vol. 9, pp. 166 283–166 292, 2021. [Online]. Available: https:
//doi.org/10.1109/ACCESS.2021.3135600

[20] I. Kim, T. Lee, J. Han, B. Sim, and D. Han, “Novel single-
trace ML profiling attacks on NIST 3 round candidate dilithium,”
IACR Cryptol. ePrint Arch., p. 1383, 2020. [Online]. Available:
https://eprint.iacr.org/2020/1383

[21] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler,
D. Stehlé, and S. Bai, “Crystals-dilithium,” Algorithm Specifications and
Supporting Documentation, 2020.

[22] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers, ser. Lecture Notes in Computer Science, B. S. K. Jr., Ç. K.
Koç, and C. Paar, Eds., vol. 2523. Springer, 2002, pp. 13–28. [Online].
Available: https://doi.org/10.1007/3-540-36400-5\ 3

[23] A. Satriawan and R. Mareta, “A complete beginner guide to the number
theoretic transform (NTT),” IACR Cryptol. ePrint Arch., p. 585, 2024.
[Online]. Available: https://eprint.iacr.org/2024/585

[24] N. Veyrat-Charvillon, B. Gérard, and F. Standaert, “Soft analytical side-
channel attacks,” in Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014. Proceedings, Part I, ser. Lecture Notes in Computer Science,
P. Sarkar and T. Iwata, Eds., vol. 8873. Springer, 2014, pp. 282–296.
[Online]. Available: https://doi.org/10.1007/978-3-662-45611-8\ 15

[25] C. Knoll, “Understanding the behavior of belief propagation,” CoRR,
vol. abs/2209.05464, 2022. [Online]. Available: https://doi.org/10.
48550/arXiv.2209.05464

[26] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel attacks
on masked lattice-based encryption,” in Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, ser. Lecture
Notes in Computer Science, W. Fischer and N. Homma, Eds.,
vol. 10529. Springer, 2017, pp. 513–533. [Online]. Available:
https://doi.org/10.1007/978-3-319-66787-4\ 25

[27] P. Pessl and R. Primas, “More practical single-trace attacks on the
number theoretic transform,” in Progress in Cryptology - LATINCRYPT
2019 - 6th International Conference on Cryptology and Information
Security in Latin America, Santiago de Chile, Chile, October 2-4, 2019,
Proceedings, ser. Lecture Notes in Computer Science, P. Schwabe and
N. Thériault, Eds., vol. 11774. Springer, 2019, pp. 130–149. [Online].
Available: https://doi.org/10.1007/978-3-030-30530-7\ 7

[28] M. Azouaoui, O. Bronchain, G. Cassiers, C. Hoffmann, Y. Kuzovkova,
J. Renes, T. Schneider, M. Schönauer, F. Standaert, and C. van
Vredendaal, “Protecting dilithium against leakage revisited sensitivity
analysis and improved implementations,” IACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2023, no. 4, pp. 58–79, 2023. [Online]. Available:
https://doi.org/10.46586/tches.v2023.i4.58-79

[29] J. Coron, F. Gérard, M. Trannoy, and R. Zeitoun, “Improved gadgets
for the high-order masking of dilithium,” IACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2023, no. 4, pp. 110–145, 2023. [Online]. Available:
https://doi.org/10.46586/tches.v2023.i4.110-145

[30] R. C. Rodriguez, E. Valea, F. Bruguier, and P. Benoit, “Hardware
implementation and security analysis of local-masked NTT for crystals-
kyber,” IACR Cryptol. ePrint Arch., p. 1194, 2024. [Online]. Available:
https://eprint.iacr.org/2024/1194

[31] E. Karabulut, E. Alkim, and A. Aysu, “Single-trace side-channel
attacks on ω-small polynomial sampling: With applications to ntru,
NTRU prime, and CRYSTALS-DILITHIUM,” in IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2021,
Tysons Corner, VA, USA, December 12-15, 2021. IEEE, 2021, pp.
35–45. [Online]. Available: https://doi.org/10.1109/HOST49136.2021.
9702284

