
Reusable Dynamic Multi-Party Homomorphic Encryption
Jung Hee Cheon

Seoul National University & CryptoLab Inc.

Seoul, Republic of Korea

jhcheon@snu.ac.kr

Hyeongmin Choe

CryptoLab Inc.

Seoul, Republic of Korea

hyeongmin.choe@cryptolab.co.kr

Seunghong Kim

Samsung SDS

Seoul, Republic of Korea

0815roy@gmail.com

Yongdong Yeo

Seoul National University

Seoul, Republic of Korea

yongdong@snu.ac.kr

ABSTRACT
Homomorphic Encryption (HE) is a promising primitive for eval-

uating arbitrary circuits while keeping the user’s privacy. We in-

vestigate how to use HE in the multi-party setting where data

is encrypted with several distinct keys. One may use the Multi-

Key Homomorphic Encryption (MKHE) in this setting, but it has

space/computation overhead of O(𝑛) for the number of users 𝑛,

which makes it impractical when 𝑛 grows large. On the contrary,

Multi-Party Homomorphic Encryption (MPHE) is the other Ho-

momorphic Encryption primitive in the multi-party setting, where

the space/computation overhead is O(1); however, is limited in

terms of ciphertext reusability and dynamicity, that ciphertexts are

encrypted just for a group of parties and cannot be reused for other

purposes, and that additional parties cannot join the computation

dynamically.

Contrary to MKHE, where the secret key owners engage only in

the decryption phase, we consider a more relaxed situation where

the secret key owners can communicate before the computation. In

that case, we can reduce the size of a ciphertext and the evaluation

complexity from O(𝑛) to O(1) as in a single-key HE setting. We

call this primitive as Reusable Dynamic Multi-Party Homomorphic
Encryption, which is more suitable in real-world scenarios.

We show that 1) the procedures before the computation can

be done in a very few rounds of communications, 2) the evalua-

tion/space complexities are independent of the number of users,

and 3) the functionalities are as efficient as MKHE, with asymptotic

analysis and with implementation.

KEYWORDS
Multi-Party Homomorphic Encryption, Multi-Key Homomorphic

Encryption, Data Lake, Cloud Computing

1 INTRODUCTION
Homomorphic Encryption (HE) [8, 10, 16, 18, 24, 25] enables com-

puting over the encrypted ciphertexts without decryption. Based

on this nature, HE is widely used for delegating computations

to a server while keeping the users’ privacy. One of the possi-

ble applications of HE is Privacy-Preserving Machine Learning

(PPML) [26, 31, 36, 37].

This work was conducted while Hyeongmin Choe and Seunghong Kim were affiliated

with Seoul National University.

Machine Learning (ML) requires data from many sources, possi-

bly including sensitive private data, e.g., face images, medical data,

and various user logs. Hence, a combination of HE and ML may

allow training and inferencing on private data while eliminating

concerns about privacy. In a privacy-preserving manner, providing

an inference result on personal data, sometimes referred to as ML as

a Service (MLaaS), can be securely implemented by using HE–the

data owner encrypts their data and delegates the inference compu-

tation over the encrypted data to the model owner–and is widely

studied from theory [6, 22, 52] to practice [4, 7, 12, 28, 29]. On the

other hand, PPML training requires accumulating and aggregating

lots of data from possibly various users, and thus privacy should

be preserved in a multi-party setting, securely against not only the

party who computes but also other parties who participate in the

computation.

In some scenarios like Federated Learning (FL), a sub-field of

ML focusing on collaborative training scenarios, multiple parties

participate in themodel training but locally with their own data, and

iteratively by a fraction of the whole parties. That is, the training

is divided into several phases, and at every phase, some users are

invited to participate in the global model training by using their

own data. To this end, the users could dynamically join the training,

while the data (including the locally trained result, which is biased

and may leak personal data) from each user should not be revealed

to the computing server or other users, which makes HE in the

multi-party setting to be desirable.

Another realistic requirement for HE in the multi-party setting

can be found in the privacy-preserving Digital Asset Management

(DAM) scenario [38]. In the DAM scenario, each party sends the

encrypted private data to the server, and the server obliviously

uses the data multiple times for computing different circuits. This

scenario is similar to the existing concept of Data Lake [17, 46,

48, 50], where big data from different resources are accumulated.

The multiple calls of data for different purposes do not require the

parties to set up, encrypt, and send to the server multiple times,

but only once. It is natural to extend the data-centric computing

scenario also to the multi-party, privacy-preserving settings for HE,

where the users store their encrypted data in the server, the data

lake, under their own secret keys.

In this work, we specifically consider the homomorphic compu-

tation scenario as follows: 1) the data owners encrypt their data
with a public key encryption scheme where the secret key is owned

by themselves and stores the ciphertexts and their public keys to

the server; 2) when a set of parties agree on a joint computation

Figure 1: Procedures of Reusable Dynamic Multi-Party Ho-
momorphic Encryption.

using their data, a common public key for HE is generated, and the

parties provide public switching keys that can be used to switch

the ciphertexts of individual parties to a HE ciphertext, so that

the homomorphic computation could be possible; 3) when the HE

public keys and the ciphertexts are ready, we do the homomorphic

computation over the encrypted data; 4) then obtain the result by

jointly decrypting the resulting ciphertext.

Currently, there are two different but similar primitives of HE

in the multi-party setting: Multi-Key HE (MKHE) [11, 13, 34, 41]

and Multi-Party HE (MPHE) [3, 42, 44, 45].
1
MPHE has a rigid user

structure that should be pre-determined before the protocol starts.

On the other hand, MKHE has a structure that grows linearly to

quadratically in the number of parties, leading to a similar magni-

tude of inefficiency. In this regard, most of the currently available

MPHEs are efficient in a static setting where the parties are fixed

but have no dynamicity (in the sense that no new part can join after

the keys are generated) and ciphertext reusability (in the sense

that the ciphertexts can not be reused for a different set of par-

ties). For the MKHEs, they can be used for this scenarios since

they have dynamicity and ciphertext reusability; however they are

inefficient in terms of the computational complexity and the size of

the ciphertexts and the public keys.

1.1 Our Contributions
In this paper, we present the following contributions.

1
As mentioned in [35], still the terminology for HE in the multi-party setting has not

been agreed in the literature, so we follow their classifications with the terms ‘MPHE’

and ‘MKHE’.

• We define a new primitive, Reusable Dynamic MPHE (rdM-

PHE), which allows ciphertext reusability and dynamicity for

homomorphic computation.We formally define the semantic

security of rdMPHE and give its real-world applications.

• We construct a rdMPHE scheme by extending the MPHE

scheme of [35] based on RLWE-based HE. To this end, we

first construct a Dynamic MPHE (dMPHE) scheme as a build-

ing block, then extend it to rdMPHE. We prove its semantic

security based on the decision-RLWE assumption, which

was also the case for the base MPHE scheme. We note that

the construction of dMPHE can be of independent interest.

• We compare the existing HE solutions, including our rdM-

PHE, and study the situations in which each solution may

be beneficial.

• We implemented our rdMPHE scheme in GO language, based

on the code from [35], and benchmarked the latencies and

sizes. To compare with our rdMPHE solution, we also partly

extended the code from [35] to allow their MKHE scheme to

be run in dynamic situations when new parties are joining.

1.2 Technical Overview
We start with the RLWE-based HE scheme with a ciphertext in

a polynomial ring R2
𝑄
, where R = Z[𝑥]/(𝑥𝑁 + 1), where 𝑁 is a

power-of-two integer and 𝑄 is a positive integer modulus, and

R𝑄 = R/𝑄R. We use a polynomial s ∈ R as a secret key, where

the norm of s, defined on a vector representation of polynomial

s, is small. A ciphertext of a plaintext m ∈ R𝑡 is a Ring Learning

With Errors (RLWE) sample added by a plaintext, as (a, b) ∈ R2
𝑄
,

where a is uniformly chosen, and b satisfies as + b = Δ · m + e
in R𝑄 for Δ = ⌊𝑞/𝑡⌉ and a small random error e sampled from a

distribution 𝜒err. From the hardness of the decision-RLWE prob-

lem, it is computationally infeasible to distinguish (a, b) from a

uniform random tuple sampled from R2
𝑄
. All known RLWE-based

HE schemes are based on this structure, which is naturally additive

and can be modified to multiplicative with an additional public key

hiding some information on s.
In RLWE-based Multi-Key HE (MKHE), a ciphertext is a tuple of

polynomial elements (a1, · · · , a𝑛, b) ∈ R (𝑛+1)𝑄
where

∑
𝑖 a𝑖s𝑖 + b =

Δ ·m + e ∈ R𝑄 for 𝑛 the number of parties. Each public key also

consists of 𝑛 + 1 components, sometimes generated with a Com-

mon Reference String (CRS), and thus, the overall computational

complexity of MKHE grows linearly to quadratically in the number

of parties. However, we note that if all of the a𝑖s except one are
zero, it can be seen as a ciphertext with respect to a party’s key.

Thus, a new party can easily join, but with the cost of extending

the ciphertexts and keys length to |𝐼 | + 1.
On the other hand, RLWE-based Multi-Party HE (MPHE) has

exactly the same ciphertext structure as the single-key HE. Thus, it

has an efficient computational complexity that does not depend on

the number of parties. However, as the ciphertexts are encrypted

by a single secret key that no one knows among the parties, the

public keys should be jointly generated using a CRS, and also, it

cannot be extended when a new party wants to join with his keys.

For this reason, Park [45] suggested a conversion betweenMKHE

and MPHE to take advantage of the two. However, the conversion

cannot be composed; a round-trip conversion fromMPHE to MKHE

2

to MPHE was not applicable, since the MKHE after the first conver-

sion is not exactly the MKHE. It can be rather seen as a special-case

MGHE [35], with two groups; one has 𝑛 parties, but the other has

only one. It can be made applicable by generating the switching

keys from a group to the whole parties and a party to the whole

parties but requiring all the parties to be online–they encrypt their

own secret key with the common key for the whole parties.

Our dMPHE scheme can be understood as an efficient round-trip

conversion fromMPHE toMPHE, which can be (almost) unlimitedly

composable:

MPHE𝑛 → MGHE𝑛,1,1,...,1 → MPHE𝑛+𝑘1 → · · · → MPHE𝑛+𝑘1+···+𝑘ℓ ,

where the subscript denotes the number of parties for MPHE and

the number of parties in each group for MGHE. In the following,

let us focus on the first two conversions, and use 𝑘 instead of 𝑘1.

For the second conversion, we are required to switch a ciphertext

encrypted under a party P𝑖 ’s key (𝑖 ∈ [𝑛]) to a ciphertext under a

common key for the 𝑛 + 𝑘 parties. This can be done by using the

key-switching technique in the HE, but requiring a key-switching

key swk[𝑛]→[𝑛+𝑘] , which is basically an encryption of a common

secret key s[𝑛] of the 𝑛 parties, encrypted under the common secret

key s[𝑛+𝑘] of the (𝑛 + 𝑘) parties, i.e. if swk[𝑛]→[𝑛+𝑘] = (a, b), then
it satisfies as[𝑛+𝑘] + b = 𝑃 · s[𝑛] + e in R𝑃𝑄 , where e is a small error

polynomial, and 𝑃 is an auxiliary modulus for keys. We denote

s[𝑛] =
∑
𝑖∈[𝑛] s𝑖 .

In this work, we use the plus 1 trick to generate the switching

keys, while keeping the original n parties offline and requiring the

joining parties to operate independently:

(1) we first encrypt 0 with a common public key pk[𝑛] to get

a ciphertext (a, b) ∈ R2
𝑃𝑄

, but in a higher modulus for the

keys,

(2) we then add 𝑃 to the first component to get a ciphertext

(a′ = a + 𝑃, b), encrypting 𝑃 · s[𝑛] under a common secret

s[𝑛] : a′s[𝑛] + b = as[𝑛] + b + 𝑃 · s[𝑛] = 𝑃 · s[𝑛] + e.
(3) we are now able to add the RLWE samples a′s𝑗 + e𝑗 ∈ R𝑄

for 𝑗 ∈ [𝑛 + 1, 𝑛 + 𝑘] to the second component b, to have

a′s[𝑛] + b′ = 𝑃 · s[𝑛+𝑘] + e′ ,

in R𝑃𝑄 , as desired.
We note that the plus 1 trick moves the secret key to the plaintext

domain, hence was used for IND-CCA or IND-CPA
𝐷
attacks against

HE, where the decryption oracle was given. However, it can be used

for the keys in the semi-honest setting, which can be obviously

obtained by anyone.

The light of this construction is that the original parties do not

need to work, and only the joining parties work. The new joining

parties are, in general, required to be registered to the server, and

thus, it is reasonable to work for the joining in addition, and the

communication round will be fused.

Such a dMPHE scheme enjoys the dynamicity and the compact-

ness at the same time; however, it is somewhat limited compared

to MKHE: there is no ciphertext reusability. Thus, we again ex-

tend the composed conversion in the opposite direction, by one:

MKHE𝑛 MPHE𝑛 MGHE𝑛,1,1,...,1 MPHE𝑛+𝑘 · · · .

Switch ct

For this extension, one should also consider the third conversion,

since it is unlikely that if one wants to (re)use a ciphertext, he/she

has to do the conversion from the beginning, which becomes infea-

sible when many parties are joined. Thus we are required to update

the switching keys swk𝑖→[𝑛] into swk𝑖→[𝑛+𝑘] for 𝑖 ∈ [𝑛]. They are
both encrypting s𝑖 , but with different keys s[𝑛] , and s[𝑛+𝑘] , thus
it can be switched via a double-key-switching key (a switching

key for a switching key). However, this requires another auxiliary

modulus, say 𝑅, to have the double-key-switching key over the ring

R𝑃𝑄𝑅 . Having a limited modulus margin for 𝜆-bit secure RLWE

instance, this wastes an amount ofavailable modulus.

We, instead, use key-switching with sk𝑖 technique: updating the

switching key by adding the as𝑖 +e𝑖 to the b part, which is an RLWE

sample with respect to a random element a.
Finally, our rdMPHE scheme enables us to take both the advan-

tages of MKHE and MPHE over the entire evaluation procedures

by converting between them efficiently.

Code Avaiability. Our Go implementation code of rdMPHE is

publicly available at an anonymous GitHub repository: https://

github.com/Anonymous-rdmphe/rdMPHE.git.

1.3 Related Works
Multi-KeyHomomorphic Encryption (MKHE). Lopez-Alt et al. [41]

came up with the first MKHE scheme based on NTRU HE scheme. It

was followed by multiple multi-key variants of GSW scheme. Brak-

ersi and Perlman et al. [11] proposed LWE-based MKHE which has

shorter ciphertexts than previous works. Chen et al. [13] designed

the multi-key version of TFHE.

The main advantage of MKHE lies in its flexibility of the par-

ticipating parties. Despite its strong dynamicity, MKHE has been

considered to be far from practical: the ciphertext size grows lin-

early or quadratically to the number of parties, which causes the

communication and computation complexity to grow as well. There

have been lines of work to improve the efficiency of MKHE, includ-

ing [11, 13], but by far, MKHE is considered to be less efficient than

MPHE in general.

Multi-Party Homomorphic Encryption (MPHE). Asharov et al. [3]

suggested the first MPHE scheme from BGV. Mouchet et al. [44] pro-

posed the simplified construction from BFV and recently improved

the work by applying 𝑡-out of 𝑛 threshold structure [42]. Park [45]

modified the key generation algorithm to reduce the interaction in

the SetUp phase and additionally suggested the conversion between

MPHE and MKHE.

Mouchet et al. [44] has several advantages in terms of low com-

munication cost and no interaction required between parties in

circuit computation. Kwak et al. [34] made further improvements

by rendering the relinearization to be implemented in a single round

and the key generation to be conducted without communication

between parties. To the best of our knowledge, however, the dy-

namicity of the participating parties remains an open problem of

MPHE so the reuse of encrypted ciphertexts for various circuits is

hard with MPHE.

Multi-Group Homomorphic Encryption (MGHE). To compute a

ciphertext under two different keys, Aloufi et al. [2] merged MKHE

and MPHE ciphertexts into a ciphertext, each is for the model

3

https://github.com/Anonymous-rdmphe/rdMPHE.git
https://github.com/Anonymous-rdmphe/rdMPHE.git

Reusability Dynamicity Ctxt Cpct. PubKey Cpct. Round-optimal Security

MPHE [35, 42] ✗ ✗ ✓ ✓ ✓ ✓

MKHE [32] ✓ ✓ ✗ ✓ ✓ ✓

MGHE [35] ▲ (limited) ✓ ✗ ✓ ✗ ✓

Liu et al. [40] ✓ ▲ (bounded) ✓ ✗ ✓ ✓

rdMPHE (Ours) ✓ ✓ ✓ ✓ ✗ ✓

Table 1: Comparison of the existing HE in the multi-party setting. The ciphertext reusability, dynamicity, ciphertext and public
key compactness, round-optimality, and security against semi-honest adversaries are shown.

owners and clients, respectively. Such merge can also be obtained

from Park’s conversion from MPHE to MKHE [45], which is later

extended by Kwak et al. [34] to a more general notion called MGHE.

In MGHE, participants are divided into multiple groups. Within a

group, MPHE is used with a single key per group; on the other hand,

between the groups, MKHE is used, treating each MPHE ciphertext

as a component of the MKHE ciphertext.

Paper Organization. In Section 2, we define the notations and

the formalisms of HE and recap the necessary related techniques.

Then, we describe our homomorphic computation scenario with

the threat model, and define the Reusable Dynamic MPHE and its

formalisms with real-world applications in Section 3. We introduce

our Dynamic MPHE scheme in Section 4 and use it as a building

block for the Reusable Dynamic MPHE scheme in Section 5 with

correctness and security analysis. In Section 6, we compare our

Reusable Dynamic MPHE with other HE in the multi-party setting

and give the GO implementation results for our scheme with bench-

marks, which are available in the public domain. We also compare

the benchmark result with the prior works.

2 PRELIMINARIES
2.1 Notations
We denote a set of positive integers from 1 to 𝑁 as [𝑁]. Vectors
and polynomials are denoted in bold fonts. For ad index set 𝐼 and a

set of polynomials {s𝑖 }𝑖∈𝐼 , we denote s𝐼 to be there sum

∑
𝑖∈𝐼 s𝑖

Throughout the paper, we will interchangeably use the two no-

tations sk and s for the same secret key, for better readability. The

secret and error distributions are denoted as 𝜒sk and 𝜒err, respec-

tively. We denoteM as a plaintext space and C as a ciphertext space.

We let R𝑄 refers to a quotient ring Z𝑄 [𝑥]/Φ𝑀 (𝑥), where Φ𝑀 (𝑥) is
a𝑀-th cyclotomic polynomial and 𝑄 is a positive integer modulus.

If𝑀 = 2𝑁 is a power-of-two integer, then Φ𝑀 (𝑥) = 𝑥𝑁 + 1, which
is the most popularly used case.

We denote 𝑛 to be the number of parties participating in a com-

putation unless new parties are joined at some point. Each party

is denoted as P𝑖 for 𝑖 ∈ [𝑛], where an index set 𝐼 ⊂ [𝑛] is more

generally used.

2.2 Ring Learning with Errors (RLWE)
Let 𝜒 be a distribution defined over R = Z[𝑋]/(𝑋𝑁 + 1) and R𝑄
be a ring Z𝑄 [𝑋]/(𝑋𝑁 + 1), where 𝑄 is a positive integer. Let DG𝜎

be a discrete gaussian distribution of variance 𝜎 over R𝑄 and DG𝜎

samples 𝑁 polynomial coefficients independently. Throughout this

paper, we use DG𝜎 for the error distribution 𝜒err. The Ring Learning

with Errors (RLWE) associated with the parameter (𝑁,𝑄, 𝜒sk, 𝜒err)
is that for given polynomially many samples of either (a, b) or
(a,−as+e) are computationally indistinguishable, where a, b← R𝑄 ,

s← 𝜒sk, and 𝑒 ← 𝜒err.

2.3 Homomorphic Encryptions in the
Multi-Party Setting

Below, we recap the formalisms of (Fully) Homomorphic Encryption

((F)HE), Multi-Party Homomorphic Encryption (MPHE), and Multi-

Key Homomorphic Encryption (MKHE). Since they share most of

the structures, we first give a definition for MKHE, which is most

generally defined among the three, and then study the remaining.

Multi-Key Homomorphic Encryption. MKHE is defined as

follows.

Definition 2.1 (Multi-Key Homomorphic Encryption [41]). AMulti-

Key Homomorphic Encryption (MKHE) is a tuple of efficient algo-

rithms (KeyGen, Enc, Eval, Dec) run by (possibly) multiple parties

{P𝑖 }𝑖∈𝐼 with the following specifications:

• KeyGen takes as inputs a security parameter 1
𝜆
, run by P𝑖 ,

outputs a secret key sk𝑖 and a public key pk𝑖 ;
• Enc takes as inputs a common public key pk𝐼 and a plain-

text𝑚 ∈ M, and outputs a ciphertext ct𝐼 (or ct in short);

• Eval takes as inputs a common public key pk𝐼 , a circuit 𝐶 ,
and a tuple of ciphertexts ct𝐼 1, . . . , ct𝐼 𝑘 where 𝑘 is the num-

ber of input wires of 𝐶 , and outputs a ciphertext ct𝐼 ;
• Dec takes as inputs a set of secret keys {sk𝑖 }𝑖∈𝐼 and a cipher-
text ct𝐼 , and outputs a plaintext m.

Correctness (informal, [44]). We require that for a negligibly small

𝜖 > 0, for any random coin used for KeyGen, for any arithmetic

circuit 𝐶 , and for any plaintexts𝑚1, . . .,𝑚𝑘 ∈ M where 𝑘 is the

number of input wires of 𝐶 , the following holds with probability ≥
1 − 𝜀 over ct𝐼 ℓ := Encpk𝐼 (𝑚

ℓ) for each ℓ ≤ 𝑘 :

Dec{sk𝑖 }𝑖∈𝐼

(
Evalpk𝐼 (𝐶, (ct𝐼

1, . . . , ct𝐼
𝑘))

)
= 𝐶 (𝑚1, . . . ,𝑚𝑘) .

Semantic Security (informal, [44]). When assuming the KeyGen is
done following the specifications, we require that for any adversar-

ial subset 𝑃 ⊂ {P𝑖 }𝑖∈𝐼 of parties of size less or equal to |𝐼 |−1, and for
any two messages𝑚1,𝑚2 ∈ M, the advantage of the adversary in

distinguishing between distributions Encpk𝐼 (𝑚
1) and Encpk𝐼 (𝑚

2)
should be smaller than 2

−𝜆
, where 𝜆 is a security parameter.

We note that the Dec algorithm should be run in a distributed

way, as the secret key owners will not hand over their secret keys.

4

Thus, Dec is commonly instantiated via partial decryptions, each

run by a party P𝑖 , outputting partially decrypted ciphertexts 𝜇𝑖 ,

and are combined by any (possibly third-party) receiver.

(Fully) Homomorphic Encryption. We call an MKHE scheme

a single-key HE scheme if the index set 𝐼 is a fixed set of size 1.

Single-key HE is generally constructed based on lattices, using

the RLWE-based encryption [9, 16, 24] or the LWE-based encryp-

tion [19, 23]. As a result, each ciphertext has a modulus 𝑄 , which

is set corresponding to the parameters for the single-key HE to

ensure semantic security. Throughout the paper, we focus on the

constructions based on RLWE, which is much more practical when

the amount of data is huge so that it can be batched in the RLWE

ciphertexts.

The homomorphic multiplication consumes a modulus in all of

the state-of-the-art implementations of RLWE-based HE [5, 21, 49].

Thus, to ensure the correctness of a homomorphic computation

of a certain depth of a circuit, the modulus should be set large

enough. However, if the modulus is too big, the HE scheme be-

comes not semantically secure. So, in practice, we use the largest

possible modulus and can homomorphically compute circuits hav-

ing a depth less than a fixed bound. To enable a longer computation,

the bootstrapping technique is used. Depending on the possibility

of the bootstrapping, the single-key HE can be categorized into

two: Somewhat HE (SHE) and Fully HE (FHE).

One of the properties of HE, the composability of the unit homo-

morphic operations, guarantees that homomorphic addition and

multiplication are possible; then, any circuit can be computed over

the homomorphic encryption, regardless of its practicality and

efficiency.

Multi-Party Homomorphic Encryption. MPHE is identi-

cally defined with MKHE but with an additional algorithms called

CombKey:

• CombKey takes as inputs a set of public keys {pk𝑖 }𝑖∈𝐼 , and
outputs a common public key pk𝐼 (or pk in short),

and use the common public key instead of the set of individual

public keys, everywhere. We note that the evaluation process is

also defined equivalently to a single-key HE. Hence, the ciphertext

size may reach the same size (if we use the same parameters) as the

single-key HE independent of the number of parties. The state-of-

the-art constructions indeed have a constant ciphertext size, which

does not depend on the number of parties.

As the MPHE algorithm can also be instantiated with {pk𝑖 }𝑖∈𝐼
rather than a common public key pk, MPHE is sometimes called

compact MKHE, meaning that it has a constant ciphertext size. As

in [35], we use the terms ‘MPHE’ and ‘MKHE’ to classify the MKHE

schemes based on ciphertext sizes, distinguishing between constant

and linear in the number of parties.

In the below, we recap the dynamic MPHE with additional prop-

erty, which originated from the dynamic MKHE of [14].

Definition 2.2 (DynamicMulti-Party Homomorphic Encryption [14]).
ADynamicMulti-PartyHomomorphic Encryption (DynamicMPHE)

is an MPHE additionally with efficient algorithms ExtKeyGen and
Extend with the following specifications:

• ExtKeyGen, run by {P𝑖 }𝑖∈𝐼 ′ , takes as inputs a set of public
keys {pk𝑖 }𝑖∈𝐼 ′ , and a set of secret keys {sk𝑖 }𝑖∈𝐼 ′ , and outputs
a public extension key extk𝐼→𝐼 ′ , where 𝐼 ⊊ 𝐼 ′;
• Extend takes as inputs a public extension key extk𝐼→𝐼 ′ and a

(fresh, extended, or evaluated) ciphertext ct𝐼 (encrypted un-

der {sk𝑖 }𝑖∈𝐼), and a set of public keys {pk𝑖 }𝑖∈𝐼 ′ , and outputs
a ciphertext ct𝐼 ′ (encrypted under {sk𝑖 }𝑖∈𝐼 ′).

Correctness and Semantic Security (informal). The correctness
and semantic security of Dynamic MPHE are identical to that of

MPHE, except that the ciphertexts ctℓ
𝐼
can be fresh, extended, or

evaluated ciphertexts encrypted under {sk𝑖 }𝑖∈𝐼 .
We again note that Dynamic MKHE is also similarly defined

without the CombKey algorithm.

2.4 Key Switching
We briefly introduce the key switching technique in the RLWE-

based (fully) homomorphic encryptions, which will be heavily uti-

lized in our constructions.

Key switching is a homomorphic operation that transforms a

ciphertext encrypting a plaintext𝑚 under a secret key into a cipher-

text encrypting the same plaintext but under a different secret key.

To key-switch a ciphertext ct = (a, b) ∈ R2
𝑄
, without decrypting

it, one requires a public key-switching key swk = (𝛼, 𝛽) ∈ R2
𝑃𝑄

.

The additional modulus 𝑃 is called the auxiliary modulus, which

enables us to reduce the error added during the key-switching.

Specifically, for a polynomial 𝛼 ∈ R𝑄 , we let 𝛽 + 𝛼s′ = 𝑃 · s +
𝜖 ∈ R𝑃𝑄 , for some error 𝜖 ∈ R. A ciphertext ct = (a, b) also has

a similar structure, having b + as = Δ · 𝑚 + e ∈ R𝑄 for some

error e ∈ R. The key-switching procedure outputs a ciphertext

ct′ = (a′, b′) := (0, b) +
⌊
𝑃−1 · a · (𝛼, 𝛽)

⌉
∈ R2

𝑄
, which satisfies

b′ + a′s′ = b +
⌊
𝑃−1 · a · 𝛽

⌉
+
⌊
𝑃−1 · a · 𝛼

⌉
s′

= b + 𝑃−1 · a · (𝛽 + 𝛼s′) + e
rnd

= b + as + 𝑃−1 · a · 𝜖 + e
rnd

= Δ ·m + e′,

where e′ = e+𝑃−1·a·𝜖+e
rnd

for some rounding error e
rnd

= e𝛼+e𝛽 s′
and e𝛼 , e𝛽 having their coefficients in [−0.5, 0.5]. If the Hamming

weight of s′ is set small enough, and 𝑃 is set large enough, then

we have a small bound for the error e′, and thus ct′ becomes a

ciphertext encrypting the same message under s′.
Since the switching keys and the ciphertexts have a similar for-

mat, the RLWE encryption structure, one can use a ciphertext

encrypting 𝑃 · s for the switching keys, but with larger error and

larger modulus, say 𝑃𝑄 , to key-switch a ciphertext modulo 𝑄 .

The result can be extended to the case when using the gadget

decompositions, which dramatically decreases 𝑃 and increases the

possible maximum 𝑄 ,2 allowing a longer depth of computations

before bootstrappings. The high-level idea is to encrypt 𝑃 ·𝐺 𝑗 · s′
instead of 𝑃 · s for some gadget vector ®𝐺 = (𝐺1, · · · ,𝐺𝑑), which
satisfies ⟨ ®𝐺,ℎ(a)⟩ = a for some function ℎ : R𝑄 → R𝑑𝑄 and a ∈ R𝑄 .

2
the maximum possible 𝑃𝑄 depends on the choice of 𝑁 and the secret key and error

distributions for a fixed security level.

5

3 HOMOMORPHIC COMPUTATION
SCENARIO WITH REUSABLE CIPHERTEXTS

In this section, we consider a real-world-aware Multi-Party Com-

putation (MPC) scenario with reusable ciphertexts stored in a

semi-honest cloud server. Then, we define a new primitive named

Reusable Dynamic Multi-Party Homomorphic Encryption (rdM-
PHE), which can be seen as an extension of the existing homomor-

phic encryption in the multi-party setting to the real-world-aware

scenario. We also define their correctness and semantic security.

Lastly, we show that the semantic security of rdMPHE implies the

security of the real-world-aware scenario using rdMPHE.

3.1 MPHE with KeySwitch
In real applications, we consider that multiple parties want to run

a computation on their own private data jointly and do not want

to leak any information other than the computed result. It is de-

manded that the ciphertexts are reusable and compact, and the

homomorphic computation is efficient, and new parties can dynam-

ically join at any time. In this setting, we define Reusable Dynamic

Multi-Party Homomorphic Encryption (rdMPHE) as follows.

Definition 3.1 (Reusable Dynamic Multi-Party Homomorphic En-
cryption). A Reusable Dynamic Multi-Party Homomorphic Encryp-

tion (rdMPHE) is a tuple of efficient algorithms (KeyGen, CombKey,
Enc, SwKeyGen, Switch, Eval, Dec, ExtKeyGen, Extend) run by (pos-
sibly) multiple parties {P𝑖 }𝑖∈𝐼 with the following specifications:

• KeyGen, run by P𝑖 , outputs a secret key sk𝑖 and a public

key pk𝑖 ;
• CombKey takes as inputs a set of public keys {pk𝑖 }𝑖∈𝐼 , and
outputs a common public key pk𝐼 ;
• Enc takes as inputs a public key pk𝑖 (or pk𝐼) and a plain-

text𝑚 ∈ M, and outputs a ciphertext ct𝑖 (or ct𝐼);
• SwKeyGen, run by P𝑖 , takes as inputs a public key pk𝐼 and a

secret key sk𝑖 where 𝑖 ∈ 𝐼 , and outputs a public switching

key swk𝑖→𝐼 ;

• Switch takes as inputs a public switching key swk𝑖→𝐼 and

a ciphertext ct𝑖 encrypted under sk𝑖 , and outputs ct𝐼 ;
• Eval takes as inputs a common public key pk𝐼 , a circuit 𝐶 ,
and a tuple of ciphertexts ct𝐼 1, . . . , ct𝐼 𝑘 where 𝑘 is the num-

ber of input wires of 𝐶 , and outputs a ciphertext ct𝐼 ;
• Dec takes as inputs a set of secret keys {sk𝑖 }𝑖∈𝐼 and a cipher-
text ct𝐼 , and outputs a plaintext m.

• ExtKeyGen, run by {P𝑖 }𝑖∈𝐼 ′\𝐼 , takes as inputs a set of public
keys {pk𝑖 }𝑖∈𝐼 ′ , a set of switching keys swk𝑖→𝐼 and a set

of secret keys {sk𝑖 }𝑖∈𝐼 ′\𝐼 , and outputs a public extension

key extk𝐼→𝐼 ′ and updated public switching keys swk𝑖→𝐼 ′ ,

where 𝐼 ⊊ 𝐼 ′ and 𝑖 ∈ 𝐼 ;
• Extend takes as inputs a public extension key extk𝐼→𝐼 ′ and a

(fresh, extended, or evaluated) ciphertext ct𝐼 (encrypted un-

der {sk𝑖 }𝑖∈𝐼), and a set of public keys {pk𝑖 }𝑖∈𝐼 ′ , and outputs
a ciphertext ct𝐼 ′ (encrypted under {sk𝑖 }𝑖∈𝐼 ′).

Correctness and Semantic Security (informal). Correctness
and semantic security of Reusable rdMPHE are defined exactly the

same as Dynamic MPHE, except that the ciphertexts ctℓ
𝐼
can be

fresh, key-switched, extended, or evaluated ciphertexts encrypted

under {sk𝑖 }𝑖∈𝐼 .

The rdMPHE can be seen as a variant of MPHE in the sense that

the public keys are combined; however, the ciphertexts are first

encrypted with each party’s keys, as in MKHE. The ciphertexts are

key-switched into a common key corresponding to a combination

of parties, specific to the applications. Thus, the ciphertexts can be

re-used for different homomorphic computations with other sets

of participating parties, which saves huge communication costs for

transmission of the ciphertexts.

3.2 Real-World Scenarios
Our rdMPHE can be utilized for privacy-preserving arbitrary cir-

cuit evaluation scenarios that require adding extra inputs during

computation or high-efficiency computation. The following proto-

col outline presents how it can be effectively applied in real-world

scenarios.

• Data Accumulation: Data providers generate their own

secret key and corresponding public key set (KeyGen) and
encrypt their data with their own secret key (Enc). The en-
crypted data is uploaded to a cloud with the public keys. This

process can be done once, but data and the public keys can

be used repeatedly for various computations.

• Setup: The server determines who will participate in the

protocol, and generates a common public key set with the up-

loaded data in the cloud (CombKey). The generated common

public key is broadcast to the participants. Each participant

generates its own partial switching key as permission for

utilizing their encrypted data in the cloud (SwKeyGen).
• Computation: The server switches the input ciphertexts to
be encrypted under the common key (Switch) and performs

the desired homomorphic evaluations (Eval). Depending on

demands, a new data provider with its data can be added

during the evaluation at any time by extending the rdMPHE

structure by the new data provider (ExtKeyGen) and by the

server (Extend).
• Decryption: When the evaluation ends, the output cipher-

texts are sent to participants, and each participant performs

partial decryption and outputs the result to a receiver (Dec).

3.3 Security Model
The security model using rdMPHE can achieve semantic security

in the semi-honest adversary model, where the majority of parties

and the server can be honest-but-curious adversaries. This means

that correctness and security may not be obtained if the partici-

pating parties or the server do not follow the protocol. However,

data privacy is still preserved even if some of the participating

parties collude. We define the semantic security of rdMPHE to have

computational indistinguishability against semi-honest adversaries.

3.4 Applications
In this section, we discuss the applications of rdMPHE. The strength

of rdMPHE lies in its data-centric structure for the reusability of

the encrypted data. In addition, rdmPHE advantages in both the

lightness of a single-key HE and the flexibility of MKHE, with small

communication before the evaluation.

6

Privacy-Preserving Machine Learning. When the proposed rdM-

PHE can be adopted for Privacy-Preserving Machine Learning

(PPML) training, the above scenario is applied as follows.

The server wants to train a model with some part of the en-

crypted data accumulated in the cloud as input training data. The

training data are encrypted by various data providers’ keys, and

the corresponding data providers may permit for using the data.

The server computes the model training homomorphically, and

new data with a new data provider can easily be added to improve

the model knowledge without degradation of performances of the

underlying HE during the training.

For privacy-preserving federated learning, each user trains its

own data by itself, and each trained result is collected into the

cloud. The locally trained pieces of information are aggregated

to train a global model by the server, but the information may

cause privacy issues unless they are encrypted. The locally trained

information may be added to enhance the global model quality. The

only difference to the aforementioned scenario is that the encrypted

data collected to the cloud consists of locally trained results by each

user.

Privacy-Preserving Digital Asset Management. One application
of rdMPHE is privacy-preserving Data Lake [17, 46, 48, 50], where

each user accumulates its encrypted raw data to the Data Lake

without pre-processing, and the computing server can utilize the

raw data stored in the Data Lake in future. For Data Lake protocol,

Data Lake becomes the server in our case and a server may create

synergy, including concepts of brand/product management, and

Media Asset Management (MAM).

Remark 1. For the PPML training and Data Lake, one of our
protocol’s key features is the cloud data’s re-usability. In particular,
considering the fact that famous public training datasets (e.g. MNIST,
CIFAR-10, etc.) are used a huge number of times, our protocol enables
us to utilize them even for private data.

Previous PPML works [30, 33, 37, 51] restricted the data providers
from the beginning of the task or suffered from the low homomorphic
evaluation efficiency. Our proposed scheme can handle the issues of
maintaining the communication cost which does not depend on the
number of parties.

4 DYNAMIC MPHE SCHEME
In this section, we introduce a DynamicMPHE scheme that becomes

a building block of the rdMPHE. We first recap the state-of-the-art

MPHE scheme, which is used as a basic structure for our Dynamic

MPHE, then construct a DynamicMPHEwith a ciphertext extension

algorithm as an ad-hoc, based on the key-switching technique.

Lastly, we give the correctness and the security proof.

4.1 Base MPHE Scheme
Our dynamic MPHE is constructed based on the MPHE scheme

from [43] with a non-interactive relinearization key generation

technique from [35] based on BFV [9] and CKKS [16] schemes.

• MPHE.KeyGen: For a party P𝑖 , a secret key sk𝑖 is a small

polynomial s← 𝜒sk (∈ R), and a public key pk𝑖 consists of
– encryption key enck𝑖 = −aencks𝑖 + eenck,𝑖 ∈ R𝑄 ,

– rotation keys autk𝜎,𝑖 = −a𝜎 s𝑖 + 𝑃 · 𝜎 (s𝑖) + e𝜎,𝑖 ∈ R𝑃𝑄
with respect to automorphisms 𝜎 ,

– relinearization key rlk𝑖 = (rlk𝑖,0, rlk𝑖,1, rlk𝑖,2) ∈ R3𝑃𝑄 for

∗ rlk𝑖,0 = −arlk,0s𝑖 + erlk,𝑖,0,
∗ rlk𝑖,1 = −arlk,0r𝑖 + 𝑃 · s𝑖 + erlk,𝑖,1,
∗ rlk𝑖,2 = −brlk,1s𝑖 − 𝑃 · r𝑖 + erlk,𝑖,2,

where all the common polynomials a(·) ∈ R are induced

from common reference strings, and all the errors e(·) ∈ R
are sampled from 𝜒err;

• MPHE.CombKey: A common public key pk𝐼 consisting of
– common encryption key enck𝐼 =

∑
𝑖∈𝐼 enck𝑖 ∈ R𝑄 ,

– common rotation keys autk𝜎,𝐼 =
∑
𝑖∈𝐼 autk𝜎,𝑖 ∈ R𝑃𝑄 ,

– common relinearization key rlk𝐼 = (rlk𝐼 ,0, rlk𝐼 ,1, rlk𝐼 ,2)
=
∑
𝑖∈𝐼 rlk𝑖 ∈ R3𝑃𝑄 ;

• MPHE.Enc: A RLWE public key encryption outputs ct =

u · (aenck, enck𝐼) + (e0,Δm + e1) ∈ R2𝑄 , where u← R and

e0, e1 ← 𝜒err;

• MPHE.Dec: A decryption of a ciphertext ct = (c0, c1) ∈ R2𝑄
is done in a distributed way:

(1) each party P𝑖 generates partial decryption 𝜇𝑖 = c0s𝑖 + e𝑖
of ct, where e𝑖 ← 𝜒

smudge
,

(2) aggregate the partial decyptions and outputs a plaintext

∑
𝑖∈𝐼 𝜇𝑖+

c1 ∈ R𝑄 .

We note that 𝜒
smudge

be an error distribution for a secure dis-

tributed decryption [20, 39], where the standard deviation is set

𝜆/2 bit larger than that of the ciphertext error c0 ·
∑
𝑖∈𝐼 s𝑖 + c1, to

smudge the error not to reveal the secret, even when |𝐼 | − 1 parties
collude.

The list of automorphisms 𝜎 varies depending on the applica-

tions, but in general, tens of automorphisms are included for faster

linear operations. We also note that the automorphism and relin-

earization keys are also applicable in the RNS setting with gadget

decompositions, i.e., constructions based on RNS-BFV [27] or RNS-

CKKS [15]. For the sake of simplicity, we sometimes denote the

keys as swks𝐼→0 := (aenck, enck𝐼) or swks𝐼→𝜎 (s𝐼) := (a𝜎 , autk𝜎,𝐼)
and so on, each having a format of (a,−as𝐼 + 𝑃s′ + e) ∈ R2𝑃𝑄 for

some s′ ∈ R, where s𝐼 =
∑
𝑖∈𝐼 s𝑖 .

For homomorphic evaluation, we recall homomorphic addition,

multiplication, and automorphisms, which can be composed. One

can then evaluate arbitrary arithmetic circuits of longer depth by

composing them. We note that the multiplication algorithm is a bit

more costly than that in RLWE-based (F)HE schemes in order to

generate the relinearization key non-interactively. For ciphertexts

ct = (a, b) ∈ R2
𝑄
and ct′ = (a′, b′) ∈ R2

𝑄
encrypting plaintexts m0

andm1 in R under {sk𝑖 }𝑖∈𝐼 , homomorphic addition, multiplication,

key switching, and automorphisms can be done as follows.

• MPHE.Add(ct𝐼 , ct𝐼 ′): Outputs (a+ a′, b+ b′) ∈ R2𝑄 , a cipher-

text encrypting m0 +m1;

• MPHE.Multrlk𝐼 (ct𝐼 , ct′𝐼):
(1) It tensor products the two ciphertexts and obtain d =

(d0, d1, d2) = (bb′, ab′ + a′b, aa′),
(2) Relinearizes by

(a) compute d′
2
=
⌊
𝑃−1 · (d2 · rlk0)

⌉
∈ R𝑄 ,

7

(b) compute (d′
1
, d′

0
) =

⌊
𝑃−1 · (d′

2
· (brlk, rlk2) + d2· (rlk1, 0))⌉+

(d1, d0) ∈ R2𝑄 , which is a ciphertext encrypting Δm0 ·
m1,

(c) outputs

⌊
Δ−1 · (d′

1
, d′

0
)
⌉
∈ R2

𝑄/Δ;

• MPHE.KS(swks→s′ , ct): It outputs (0, b)+
⌊
𝑃−1 · a · swks→s′

⌉
∈ R2

𝑄
.

• MPHE.Autautk𝜎,𝐼 (ct):
(1) It computes 𝜎 (ct) = (𝜎 (a), 𝜎 (b)) ∈ R2

𝑄
,

(2) outputs MPHE.KS(swks𝐼→𝜎 (s𝐼) = (a𝜎 , autk𝜎,𝐼), 𝜎 (ct)) ∈
R2
𝑄
.

Correctness and Semantic Security. For the correctness and the

semantic security of the above base MPHE scheme, please refer

to [35][Sections 4.3-5], the correctness and the semantic security

proofs for MGHE. They directly apply to our base MPHE when

the number of groups of the MGHE is 1. In a high-level view, the

correctness proof is basically based on the correctness of each

homomorphic arithmetic operation and its composability.

4.2 Dynamic MPHE Construction
Our Dynamic MPHE shares the main structures with the above

algorithms but is modified a bit to introduce dynamicity. We give

the two algorithms ExtKeyGen and Extend as an ad-hoc to the

above MPHE as follows, defined for index sets 𝐼 ⊊ 𝐼 ′.

• dMPHE.KeyGen: Identical toMPHE.KeyGen, except that enck𝑖
is generated in R𝑃𝑄 instead of R𝑄 ;
• dMPHE.CombKey: Identical to MPHE.CombKey, except that
enck𝐼 is now in R𝑃𝑄 instead of R𝑄 ;
• dMPHE.Enc: Identical to MPHE.Enc, except that one can

choose the resulting ciphertext not only to be in R2
𝑄
as in

MPHE, but also in R2
𝑃𝑄

;

• dMPHE.Dec: Identical toMPHE.Dec;
• dMPHE.Eval: Identical to MPHE.Eval, except that the ho-
momorphic multiplication and automorphisms cannot be

applied to the ciphertexts in R2
𝑃𝑄

;

• dMPHE.ExtKeyGen(enck𝐼 , {sk𝑖 }𝑖∈𝐼 ′\𝐼):
(1) It encrypts 0 with enck𝐼 , letting (a, b) = Encenck𝐼 (0) ∈
R2
𝑃𝑄

, then let a′ = a + 𝑃 ∈ R𝑃𝑄 ,
(2) compute extk𝐼→𝐼 ′ = (a′, b) −

∑
𝑖∈𝐼 ′\𝐼 (0, a′s𝑖 + e𝑖), where

e𝑖 ← 𝜒err;

• dMPHE.Extend (extk𝐼→𝐼 ′ , ct𝐼): MPHE.KS(extk𝐼→𝐼 ′ , ct𝐼).
We note that only the new parties need to be online when gen-

erating the extension keys. That is, the original parties can remain

offline and will only participate in the decryption phase.

In the settings using key switching keys with gadget decom-

positions, e.g., RNS setting with RNS gadgets or digit decomposi-

tions [15, 27], subtracting by 𝑃 in the ExtKeyGen can be replaced

by subtracting 𝑃 ·𝐺 𝑗 , where 𝐺 𝑗 are the gadgets.

Correctness of Dynamic MPHE (informal). Thanks to the compos-

ability of the baseMPHE, it suffices to showwhether the extended ci-

phertext and the original ciphertext are decrypted to the same plain-

text with respect to the set of secret keys {sk𝑖 }𝑖∈𝐼 ′ and {sk𝑖 }𝑖∈𝐼 ′ ,
respectively. Since extk𝐼→𝐼 ′ = (a′, b) −

∑
𝑖∈𝐼 ′\𝐼 (0, a′s𝑖 + e𝑖), it can

be rewritten as extk𝐼→𝐼 ′ = (a′, b′′) ∈ R2𝑃𝑄 , where

a′s𝐼 ′ + b′′ = a′s𝐼 ′ + b −
∑︁

𝑖∈𝐼 ′\𝐼
(a′s𝑖 + e𝑖) = (a′s𝐼 + b) − e𝐼 ′\𝐼

= as𝐼 + (as𝐼 + b) − e𝐼 ′\𝐼 = 𝑃 · s𝐼 + e′

modulo 𝑃𝑄 for some e′ = e − e𝐼 ′\𝐼 , where e is a freshily encrypted

ciphertext error and e𝐼 ′\𝐼 =
∑
𝑖∈𝐼 ′\𝐼 e𝑖 . Thus, the key-switching

operation concludes the proof unless the aggregated error is too

huge.

4.3 Semantic Security of DMPHE
When assuming the KeyGen, CombKey, and ExtKeyGen are done fol-
lowing the specifications, the ciphertexts that are freshly encrypted,

extended, or evaluated ciphertexts do not leak any information non-

negligibly in the security parameter.

Theorem 4.1 (Semantic security of our dMPHE). Assuming
the hardness of the decision-RLWE Problem and the circular security
assumption and that the parameters are set to achieve correctness, our
dMPHE construction depicted in Section 4.2 is semantically secure.

5 REUSABLE DYNAMIC MULTI-PARTY
HOMOMORPHIC ENCRYPTION SCHEME

We extend our Dynamic MPHE into a family of MKHE, by in-

troducing the ciphertexts encrypted under each party’s key, then

key-switch them into ciphertexts under a common key. This can

be viewed as an MKHE to Dynamic MPHE conversion, which is

an extension of Park’s conversion [45]. While keeping the dynam-

icity and the ciphertext reusability, our Reusable Dynamic MPHE

Scheme rdMPHE enjoys the compactness of the MPHE schemes

with respect to the ciphertext sizes and the Homomorphic operation

complexity.

5.1 Reusable Dynamic Multi-Party
Homomorphic Encryption Construction

Here, we give our rdMPHE construction, which also shares the

structures a lot with dMPHE.

• KeyGen: Identical to dMPHE.KeyGen;
• CombKey: Identical to dMPHE.CombKey;
• Enc: Identical to dMPHE.Enc;
• SwKeyGen (enck𝐼 , sk𝑖): If 𝑖 ∈ 𝐼 , it outputs swk𝑖→𝐼 := Encenck𝐼
(𝑃 · s𝑖) ∈ R2𝑃𝑄 ;
• Switch(swk𝑖→𝐼 , ct𝑖): For ct𝑖 ∈ R2𝑄 , it outputs dMPHE.KS
(swk𝑖→𝐼 , ct𝑖);
• Eval: Identical to dMPHE.Eval;
• Dec: Identical to dMPHE.Dec;
• ExtKeyGen(enck𝐼 , {sk𝑖 }𝑖∈𝐼 ′\𝐼):
– It first does identically with dMPHE.ExtKeyGen and gen-

erate extk𝐼→𝐼 ′ ,

– for each switching key swk𝑖→𝐼 = (a𝑖 , b𝑖), 𝑖 ∈ 𝐼 , it updates
the key as swk𝑖→𝐼 ′ := swk𝑖→𝐼 −

∑
𝑗∈𝐼 ′\𝐼 (0, a𝑖s𝑗 + e𝑖, 𝑗),

where e𝑖, 𝑗 ← 𝜒err,

– for the joining parties’ switching keys, swk𝑖→𝐼 ′ for 𝑖 ∈ 𝐼 ′,
it runs swk𝑖→𝐼 ′ := SwKeyGen(enck𝐼 ′ , sk𝑖);

• Extend: Identical to dMPHE.Extend.
8

Correctness of rdMPHE. We first show that the Switch algorithm
works correctly with the switching keys generated from SwKeyGen.
Let swk𝑖→𝐼 = (a𝑖 , b𝑖), then we have

b𝑖 = −a𝑖s𝐼 + 𝑃 · s𝑖 + e𝑖
in R𝑃𝑄 for some error e𝑖 and hence the Switch, which is basically

the key switching operation, works. Hence, the Switch algorithm

works correctly if the error term is relatively smaller than Δ. We

note that the error has a larger standard deviation compared to

the errors in automorphism keys; however, the difference is set to

be negligible compared to the smudging error since this is added

linearly, not exponentially.

We then show that the Switch algorithm works correctly if

some new party joins with ExtKeyGen. The switching keys are up-

dated from swk𝑖→𝐼 to swk𝑖→𝐼 ′ during ExtKeyGen. We assume the

switching key swk𝑖→𝐼 is generated from the SwKeyGen algorithm
for simplicity. Then, the new switching key can be rewritten as

a𝑖s𝐼 ′ + b′𝑖 = a𝑖s𝐼 ′ + b𝑖 −
∑︁
𝑗∈𝐼 ′\𝐼

(a𝑖s𝑗 + e𝑖, 𝑗)

= a𝑖s𝐼 + b𝑖 − e𝐼 ′\𝐼
= 𝑃 · s𝑖 + e′𝑖

where swk𝑖→𝐼 = (a𝑖 , b𝑖), swk𝑖→𝐼 ′ = (a𝑖 , b′𝑖), e
′
𝑖
= e𝑖 − e𝐼 ′\𝐼 , and

e𝐼 ′\𝐼 =
∑

𝑗∈𝐼 ′\𝐼 e𝑖, 𝑗 ; hence the Switch algorithm works correctly if

the error term is not too large compared than Δ.

5.2 Semantic Security of rdMPHE
Theorem 5.1 states the semantic security of our rdMPHE construc-

tion with respect to the newly introduced notions such as Switch.

Theorem 5.1 (Semantic security of our rdMPHE). Assuming
the hardness of the decision-RLWE problem and the circular security
assumption and that the parameters are set to achieve correctness, our
rdMPHE construction depicted in Section 5.1 is semantically secure.

6 ASYMPTOTIC ANALYSIS AND
IMPLEMENTATION RESULTS

In this section, we first give an asymptotic analysis by comparing

the known solutions for the scenario with reusable ciphertexts.

We then study the cases in which each solution is favorable. Then,

we give the implementation results which support our asymptotic

analysis. The implementation codes are publicly available at the

time of the submission.

6.1 Asymptotic Comparison between Known
Solutions

We provide an asymptotic analysis for the computation and com-

munication complexity of the HE in the multi-party setting. We

compare MPHE, MKHE, and rdMPHE, in the setting that computa-

tions for𝑀 different sets of parties are required. In the scenario with

reusable ciphertexts, the public key and the ciphertext reusability

are one of the main aspects, and MKHE and rdMPHE have this

property. Thus, for the complexity of computing and transmitting

the public keys and the ciphertexts, we don’t have to count them

repeatedly, but only once. For MPHE, it cannot reuse the ciphertext

as in MKHE or rdMPHE, however, the party’s public key can be

reused. Hence, we extend this property to MPHE for a fair compar-

ison. That is, we assumed that the public keys for each party in the

MPHE are also shared once and can be aggregated when the set of

participating parties is decided for each computation.

In this setting, we compare the complexity of the three concern-

ing:

• Computation cost for public key generation, encryption,

preparations (aggregation and key switching, if needed), and

the homomorphic evaluations.

• Communication cost for public key and ciphertext transmis-

sion and preparations.

• Communication rounds for𝑀 computations.

6.1.1 Computational Cost. We first recall the computational com-

plexity of running public key generation, encryption, key switch-

ings, and homomorphic additions and multiplications. For the ring

degree 𝑁 , ciphertext modulus 𝑄 , the auxiliary modulus 𝑃 , and the

gadget rank 𝑑 for the switching keys, it holds that 𝑃 ≈ 𝑄1/𝑑
and

thus, 𝑑 log 𝑃𝑄 ≈ (𝑑 + 1) log𝑄 holds. We assume 𝑀 computations

with different sets of parties, each requiring 𝑛ct ciphertexts.

Unit Operations. The public key generation runs inO(𝑑𝑁 log 𝑃𝑄)
due to the O(𝑑) number of Hadamard multiplications for R𝑃𝑄
elements. Similarly, a single encryption runs in O(𝑁 log𝑄) or
O(𝑑𝑁 log 𝑃𝑄) depending on the resulting modulus.

The main factors of the key-switching algorithm are the O(𝑑)
ModUps (from 𝑄 to 𝑃𝑄), O(1) ModDown (from 𝑃𝑄 to 𝑄), and the

O(𝑑) Hadamard multiplications in R𝑃𝑄 . The key-switching takes
O(𝑑𝑁 log𝑁 log 𝑃𝑄) since each ModUp and ModDown takes NTTs,

which require 𝑁 log𝑁 log 𝑃𝑄 complexity.

A homomorphic addition takes O(𝑁 log𝑄), and a homomor-

phic rotation takes O(𝑑𝑁 log𝑁 log 𝑃𝑄) since it is the same as

key switchings. A homomorphic multiplication takes O(𝑑𝑁 log𝑁

log 𝑃𝑄) since the key switching cost is again the dominant term

compared to tensor products, which are O(𝑁 log𝑄).

MPHE. We first consider MPHE for its computational complex-

ity. The public key generation is done only once, with a computa-

tional complexity of O(𝑑𝑁 log 𝑃𝑄). The encryption is done after

a common public key is generated by aggregation (which itself is

just a set of additions), resulting in a ciphertext in R2
𝑄
, thus taking

O(𝑀𝑁𝑛ct log𝑄) for the whole encryptions. For homomorphic eval-

uations, MPHE takes the same time as the unit complexity given

above. We let 𝐶
single

be a computational complexity of a circuit

based on these unit operations. Then it should take O(𝑀 ·𝐶
single
).

For the sake of simplicity, we let 𝐶
single

= 𝑐
single

𝑁 log𝑄 since

𝑁 log𝑄 is a factor that exists everywhere, regardless of the opera-

tions. In total, it takes O((𝑀𝑐
single

+𝑀𝑛ct + 𝑑)𝑁 log𝑄).

MKHE. We then consider MKHE. The public key generation and

the encryption are done only once, with a computational complexity

of O(𝑑𝑁 log 𝑃𝑄 +𝑛ct ·𝑁 log𝑄) for the whole encryptions, unless a
new public key encryption needs to be done. In that case, it requires

O(𝑛) times more for MKHE than MPHE or rdMPHE. For the sake

of simplicity, we ignore them here. For homomorphic evaluations,

MKHE takes O(𝑛) times more time than the unit complexity since

the number of components in each ciphertext is O(𝑛) times more.

9

Thus, it takes O(𝑀𝑛 ·𝐶
single
). In total, it takes O((𝑀𝑐

single
𝑛 +𝑛ct +

𝑑)𝑁 log𝑄).

rdMPHE. We then consider our rdMPHE. The public key genera-

tion and the encryption are done only once, with a computational

complexity of O(𝑑𝑁 log 𝑃𝑄 + 𝑛ct · 𝑁 log𝑄). For the preparation
phase, the aggregation of the keys is just additions, and the switch-

ing key generation takesO(𝑑𝑁 log 𝑃𝑄). A ciphertext key-switching

requires O(𝑁 log𝑁 log 𝑃𝑄), instead of O(𝑑𝑁 log𝑁 log 𝑃𝑄), since
the O(𝑑) ModUp can be omitted since they are done identically

for the 𝑀 computations, hence, taking O(𝑁𝑛ct log𝑁 log 𝑃𝑄) in
total. Homomorphic evaluations should take O(𝑀 ·𝐶

single
) as in

the MPHE. In total, it takes O((𝑀𝑐
single

+ 𝑛ct log𝑁 · (1 + 1/𝑑) +
𝑑)𝑁 log𝑄) = O((𝑀𝑐

single
+ 𝑛ct log𝑁 + 𝑑)𝑁 log𝑄).

6.1.2 Communication Cost. Apublic key has a size ofO(𝑑𝑁 log 𝑃𝑄)
= O(𝑑𝑁 log𝑄), where a ciphertext has a size of O(𝑁 log𝑄), except
for the MKHE ciphertexts. A ciphertext encrypted by a party’s key

has the same size, but the one encrypted by a common public key

or the one after evaluation has a size of O(𝑛𝑁 log𝑄).

MPHE. Since the MPHE public key is transmitted once, by all

the parties, it has a communication cost of O(𝑛𝑑𝑁 log𝑄). The
ciphertexts are transmitted for each set of parties, thus having a

communication cost of O(𝑀𝑛ct𝑁 log𝑄). In total, it has O((𝑀𝑛ct +
𝑛𝑑)𝑁 log𝑄) cost. The communication round is 3 since each party

first sends their public key, then receives a common public key, and

then sends the ciphertexts. We omit the decryptions.

MKHE. Since theMKHEpublic key and the ciphertexts encrypted

with each party’s public key are transmitted once, the communica-

tion cost is O((𝑛ct + 𝑛𝑑)𝑁 log𝑄). The communication round is 1

since each party sends their public key, with the ciphertexts.

rdMPHE. Since the rdMPHE public key and the ciphertexts en-

crypted with each party’s public key are transmitted once, the

communication cost is O((𝑛ct + 𝑛𝑑)𝑁 log𝑄). The switching keys
need to be generated after the common public key is generated,

and thus it transmits O(𝑀𝑛𝑑𝑁 log 𝑃𝑄). The total cost is O((𝑛ct +
𝑀𝑑𝑛)𝑁 log𝑄). The communication round is 3 since each party first

sends their public key and the ciphertexts, then receives a common

public key, and then sends the switching keys.

6.1.3 Complexity Dependencies in MGHE Ciphertext Structure. For
MGHE, however, it is hard to compare apple to apple–since the

complexities vary depending on the ciphertext and the group struc-

tures. In the worst-case, all the asymptotic complexities are the

same as MKHE if we replace 𝑛 by 𝑛𝑔 , the number of groups. When

the ciphertexts are well-structured, for example, if two ciphertexts

have many of their components 0, the complexity may decrease a

bit. In the best case, only two out of the 𝑛𝑔 + 1 components of each

ciphertext are non-zero, and the complexity becomes the same as

the MPHE.

We summarize the asymptotic analysis done in this section in

Table 2, showing their ciphertext sizes and the complexity of the

basic homomorphic operations, and in Table 3, showing the compu-

tation and communication complexity in the reusable ciphertexts

setting given in the first part of this section.

Ctxt

Homomorphic operations

Add. Mult. Aut.

MPHE [35, 43] O(1) O(1) O(𝑑 log𝑁) O(𝑑 log𝑁)
MKHE [32] O(𝑛) O(𝑛) O(𝑛𝑑 log𝑁) O(𝑛𝑑 log𝑁)
MGHE [35] O(𝑛𝑔) O(𝑛𝑔) O(𝑛𝑔𝑑 log𝑁) O(𝑛𝑔𝑑 log𝑁)

rdMPHE (Ours) O(1) O(1) O(𝑑 log𝑁) O(𝑑 log𝑁)
Table 2: Comparison of the variants of HE in the multi-party
setting, where the common factor 𝑁 log𝑄 is omitted. For
details, see Sections 6.1.1 and 6.1.2.

Since every homomorphic evaluation of rdMPHE and Liu et

al. [40] follows the evaluation of a single-key HE scheme, the as-

ymptotic complexity of every evaluation does not depend on the

number of parties 𝑁 . In other words, an rdMPHE ciphertext is al-

ways of the form (ct0, ct1) ∈ R2𝑄𝐿
, for any number of participating

parties.

On the other hand, every asymptotic computational complexity

of MKHE depends on the number of participating parties. Since

a ciphertext in MKHE is of the form (ct0, ct1, · · · , ct𝑁) ∈ R𝑁+1𝑄𝐿

depending on N, the addition between ciphertexts (Add) and key-

switching (KS) becomes 𝑁 -times heavier than a single-key HE

scheme. Moreover, the multiplication between ciphertexts (Mult)

in MKHE is much heavier than in the aforementioned evaluations.

This is because the MKHEmultiplication between ciphertexts needs

a special relinearization procedure as its subroutine. It converts

the cross terms, that correspond to the secret key sk𝑖 · sk𝑗 , into
the standard MKHE term, that corresponds to a single secret key

sk𝑖 . Hence, the asymptotic complexity of the MKHE multiplication

between ciphertexts follows 𝑂 (𝑁).

6.2 Implementation Results
In this section, we report the implementation result of our rdMPHE
and compare it with the prior solutions supporting dynamicity,

such asMKHE. We excluded the comparison withMGHE in this

section. This is because the performance of MGHE highly relies on

its predefined group structure, the fair apple-to-apple comparison

is hard to be made although our implementation encompasses the

implementation ofMGHE.
We implemented our rdMPHE scheme based on the MGHE im-

plementation [47] of [35], which is written in Lattigo library [49]

version 2.3.0. It basically includes our dMPHE scheme, without the

key switching keys from a party’s key to a public key. To compare

the latencies of each component in our rdMPHE withMKHE, we
use the MKHE implementation in [47].

Specifically, we implemented the following:

• dMPHE constructed in Section 4,

• rdMPHE constructed in Section 5,

• MKHE extended from [47] to have the joining functionality.

Experimental Setup. All our experiments are performed on an

Intel Xeon Silver 4114 CPU at 2.2GHz with 260GB of RAM with

Linux. Our benchmark is performed with the CKKS scheme [16]

and BFV scheme [8, 24]. The comparison is performed under the

HE parameter set (ring dimension 𝑁 , key moduli bit log 𝑃𝑄 , gadget

10

Reusables. Computation comp. Communication comp. Rounds Dynamicity

MPHE [35, 43] pk𝑖 O(𝑀𝑐
single

+𝑀𝑛ct + 𝑑) O(𝑀𝑛ct + 𝑛𝑑) 3 ✗

MKHE [32] pk𝑖 , ct𝑖 O(𝑀𝑐
single

𝑛 + 𝑛ct + 𝑑) O(𝑛ct + 𝑛𝑑) 1 ✓

rdMPHE (Ours) pk𝑖 , ct𝑖 O(𝑀𝑐
single

+ 𝑛ct log𝑁 + 𝑑) O(𝑛ct +𝑀𝑛𝑑) 3 ✓

Table 3: Comparison of the existing solutions when applied to the scenario with reusable ciphertexts scenario, where the public
keys and ciphertexts are already uploaded and maybe reused, with𝑀 different sets of parties. The common factor 𝑁 log𝑄 is
omitted from the complexities. For details, see Sections 6.1.1 and 6.1.2.

rank 𝑑) for (214, 439, 6) and (215, 880, 14). The key distribution 𝜒sk
samples a secret key’s coefficients from the ternary set {−1, 0, 1}
with equal probability 1/3 and the error distribution 𝜒err samples

the error with a standard deviation 3.2. The parameter set achieves

128 bits of semantic security against the current best-known attacks,

estimated with Lattice estimator [1] following the prior works [35,

43].

Benchmark Result. Each of the benchmark evaluations is per-

formed for 2 ∼ 2
5
participating parties for each scheme. We mea-

sured the latency of KeyGen +CombKey +SwKeyGenwith the number

of parties 1, 3, 7, 15, 31, the latencies of Switch/Extend, ExtKeyGen
assuming a single party joins, and the latencies of Add, Mult, Rot
with the extended number of parties 2, 4, 8, 16, 32. All the evalu-

ations (Add, Mult, Rot, Conj) are performed with ciphertexts at

the top level. For the rotation (Rot), we generated the rotation key

with respect to the left rotation by a single slot and timed only for

the rotation that can be performed by a single key-switching. We

perform KS for a single ciphertext during the Extend phase.
Table 4 shows that our proposed rdMPHE outperforms every

homomorphic computation compared toMKHE. We emphasize that

the performance degradation of homomorphic evaluations upon the

number of participating parties does not occur in rdMPHE, while
MKHE does. This is from the computational complexity of MKHE
that grows linearly to the number of participating parties unlike

rdMPHE, as analyzed in Section 6.1.1 and also can be checked in

Table 4 and Figure 2.

The main drawback of our rdMPHE comes from the computa-

tional cost for Switch, Extend, and ExtKeyGen, which are zero in

MKHE. However, Figure 2 shows that the above costs, performed

only once per joining, are small enough even compared to a single

ciphertext-ciphertext multiplication ofMKHE. In addition, we note

that the performance of switching key swk𝑖 related factors highly

depends on the HE parameter gadget rank𝑑 . One can check that the

KeyGen latency increased a bit compared to that ofMKHE due to

additionally generating switching key swk𝑖→𝐼 . However, such extra

overheads will be reduced when a parameter set with a smaller

gadget rank 𝑑 is used, including the latencies for ExtKeyGen.
In more detail, rdMPHE,MPHE, single-groupMGHE, and single-

key HE share the same ciphertext/key structures for evaluation.
3

In addition, the multi-group homomorphic evaluations inMGHE
with the number of groups 𝑛𝑔 can be considered as the multi-party

homomorphic evaluations in MKHE with the number of parties

𝑛𝑔 that grows with the length of ciphertext and the computational

3
In fact, the relinearization algorithm of the single-key HE is slightly faster than that

of rdMPHE/MPHE/single-group MGHE. This is because the usual HE does not use

the 3-tuple rlk structure [34], which has no advantages for the single-key setting.

2 4 8 16 32

0

1

2

3

4

·104

participating parties

l
a
t
e
n
c
y
(
m
s
)

rdMPHE.Mult
rdMPHE.Extend
rdMPHE.Switch
MKHE.Mult

Figure 2: Comparison of the key operations of MKHE and
our rdMPHE. The homomorphic multiplication latencies of
rdMPHE andMKHE; and joining (ExtKeyGen and Extend) and
switching (Switch) latencies of rdMPHE are given over the
varying number of participating parties (meaning that each
number 𝑛 corresponds to a party is joining to a group of
𝑛 − 1 parties). The values are based on the implementation
of the BFV-based scheme [8, 24] with a parameter set (𝑁=215,
log(𝑃𝑄) = 880, 𝑑 = 14) from the prior works.

complexity. Thememory/latency efficiency of rdMPHE is important

since the number of parties𝑀 might be huge in many use cases. We

note that the aforementioned ciphertext size is also directly related

to the communication cost.

To summarize, rdMPHE can efficiently evaluate an arbitrary cir-
cuit regardless of the number of participating parties, with the advan-
tages ofMKHE preserved: data reusability and extension of parties
during the computation.

REFERENCES
[1] Martin R. Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness

of Learning with Errors. Journal of Mathematical Cryptology 9, 3 (2015), 169–203.

https://doi.org/doi:10.1515/jmc-2015-0016

[2] Asma Aloufi, Peizhao Hu, Harry W. H. Wong, and Sherman S. M. Chow. 2021.

Blindfolded Evaluation of Random Forests with Multi-Key Homomorphic En-

cryption. IEEE Transactions on Dependable and Secure Computing 18, 4 (2021),

1821–1835. https://doi.org/10.1109/TDSC.2019.2940020

11

https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1109/TDSC.2019.2940020

Scheme

(log
2
𝑃𝑄)

Parties 2 4 8 16 32

(ms) Ours MKHE Ours MKHE Ours MKHE Ours MKHE Ours MKHE

KeyGen 4981.9 4868.6 5552.5 5402.0 6830.9 6282.8 9276.4 8402.0 14531.0 12476.0

Switch/Extend 38.2 0 39.0 0 38.4 0 39.3 0 39.9 0

BFV ExtKeyGen 190.0 0 311.0 0 429.3 0 831.3 0 1477.4 0

(439) Add 0.6 1.5 1.0 2.7 0.7 5.5 1.0 8.8 1.0 17.5

Mult 150.2 275.3 150.0 539.0 150.9 1031.2 152.0 2111.8 163.1 4329.8

Rot 41.9 83.4 44.0 169.9 42.8 335.3 42.9 677.2 44.2 1376.5

KeyGen 853.1 708.3 1333.4 1072.4 2307.3 1739.8 4336.7 3138.3 8430.1 5686.4

Switch/Extend 37.5 0 37.6 0 37.5 0 38.0 0 37.7 0

CKKS ExtKeyGen 227.9 0 297.1 0 458.0 0 760.7 0 1371.6 0

(439) Add 0.8 1.8 1.0 2.3 1.6 4.5 0.7 10.4 0.9 18.8

Mult 69.0 129.3 70.4 248.1 71.0 504.4 73.2 1014.3 72.7 2016.4

Rot 40.7 81.0 41.2 165.8 41.5 337.9 42.0 677.9 41.2 1341.9

KeyGen 28415.9 28175.3 34031.1 33104.3 45862.9 42732.1 70989.9 61148.3 119392.8 101217.4

Switch/Extend 349.5 0 349.5 0 345.7 0 349.0 0 355.3 0

BFV ExtKeyGen 1977.3 0 2615.6 0 3894.6 0 7608.4 0 13347.3 0

(880) Add 4.0 9.6 5.3 14.2 3.9 23.4 5.9 36.1 4.5 96.8

Mult 1288.9 2368.3 1306.7 4708.2 1320.4 9472.7 1392.8 18785.1 1353.3 37580.5

Rot 372.7 721.1 368.7 1463.9 369.4 2954.0 370.3 5920.9 365.8 11624.0

KeyGen 7585.0 6662.6 12028.1 10070.5 21451.6 16290.2 40435.9 28053.5 82317.0 52405.4

Switch/Extend 355.4 0 338.1 0 334.6 0 338.5 0 346.1 0

CKKS ExtKeyGen 2078.6 0 2760.8 0 4195.9 0 7065.4 0 13492.1 0

(880) Add 5.6 9.0 4.2 12.8 4.2 25.6 5.1 41.9 4.0 90.6

Mult 585.2 1096.6 577.1 2254.4 565.8 4077.8 560.9 8623.0 680.3 17642.9

Rot 356.3 711.9 361.7 1486.1 354.0 2850.1 353.9 5881.9 375.7 11792.4

Table 4: Latency comparison between our Reusable Dynamic Multi-Party Homomorphic Encryption (rdMPHE) and Multi-Key
Homomorphic Encryption (MKHE) from [35]. For each party number 𝑛 = 2, 4, 8, 16, 32, the latency of KeyGen (with CombKey and
SwKeyGen if needed) is measured with 𝑛 − 1 parties; the latencies of Switch/Extend, or ExtKeyGen are measured when a single
party is joining, and the latencies of Add, Mult, Rot are measured after the joining, with 𝑛 parties. All the latencies are given in
milliseconds (ms).

[3] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-

tanathan, and Daniel Wichs. 2012. Multiparty Computation with Low Communi-

cation, Computation and Interaction via Threshold FHE. In EUROCRYPT 2012
(LNCS, Vol. 7237), David Pointcheval and Thomas Johansson (Eds.). Springer,

Heidelberg, 483–501. https://doi.org/10.1007/978-3-642-29011-4_29

[4] Md Momin Al Aziz, Dima Alhadidi, and Noman Mohammed. 2017. Secure

approximation of edit distance on genomic data. BMC medical genomics 10 (2017),
55–67.

[5] Ahmad Al Badawi, Jack Bates, Flávio Bergamaschi, David Bruce Cousins, Saroja

Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee,

Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov, R. V. Saraswathy, Kurt

Rohloff, Jonathan Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod Vaikun-

tanathan, and Vincent Zucca. 2022. OpenFHE: Open-Source Fully Homomorphic

Encryption Library. InWAHC. Library available at https://www.openfhe.org/.

IACR Cryptol. ePrint Arch. 2022/915, dated March 12, 2024..

[6] M. Barni, C. Orlandi, and A. Piva. 2006. A privacy-preserving protocol for neural-

network-based computation. In Proceedings of the 8th Workshop on Multimedia
and Security (Geneva, Switzerland) (MM&Sec ’06). Association for Computing Ma-

chinery, New York, NY, USA, 146–151. https://doi.org/10.1145/1161366.1161393

[7] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. 2018. Fast

Homomorphic Evaluation of Deep Discretized Neural Networks. In CRYPTO 2018,
Part III (LNCS, Vol. 10993), Hovav Shacham and Alexandra Boldyreva (Eds.).

Springer, Heidelberg, 483–512. https://doi.org/10.1007/978-3-319-96878-0_17

[8] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus

Switching from Classical GapSVP. In CRYPTO 2012 (LNCS, Vol. 7417), Reihaneh
Safavi-Naini and Ran Canetti (Eds.). Springer, Heidelberg, 868–886. https:

//doi.org/10.1007/978-3-642-32009-5_50

[9] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2011. Fully Homo-

morphic Encryption without Bootstrapping. Cryptology ePrint Archive, Report

2011/277. https://eprint.iacr.org/2011/277.

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully

homomorphic encryption without bootstrapping. In ITCS 2012, Shafi Goldwasser

(Ed.). ACM, 309–325. https://doi.org/10.1145/2090236.2090262

[11] Zvika Brakerski and Renen Perlman. 2016. Lattice-Based Fully DynamicMulti-key

FHE with Short Ciphertexts. In CRYPTO 2016, Part I (LNCS, Vol. 9814), Matthew

Robshaw and Jonathan Katz (Eds.). Springer, Heidelberg, 190–213. https://doi.

org/10.1007/978-3-662-53018-4_8

[12] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,

and Emmanuel Prouff. 2017. Privacy-Preserving Classification on Deep Neural

Network. Cryptology ePrint Archive, Report 2017/035. https://eprint.iacr.org/

2017/035.

[13] Hao Chen, Ilaria Chillotti, and Yongsoo Song. 2019. Multi-Key Homomorphic

Encryption from TFHE. In ASIACRYPT 2019, Part II (LNCS, Vol. 11922), Steven D.

Galbraith and Shiho Moriai (Eds.). Springer, Heidelberg, 446–472. https://doi.

org/10.1007/978-3-030-34621-8_16

[14] Yuling Chen, Sen Dong, Tao Li, Yilei Wang, and Huiyu Zhou. 2021. Dynamic

Multi-Key FHE in Asymmetric Key Setting From LWE. IEEE Transactions on
Information Forensics and Security 16 (2021), 5239–5249. https://doi.org/10.1109/

TIFS.2021.3127023

[15] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.

2019. A Full RNS Variant of Approximate Homomorphic Encryption. In SAC
2018 (LNCS, Vol. 11349), Carlos Cid and Michael J. Jacobson Jr: (Eds.). Springer,

Heidelberg, 347–368. https://doi.org/10.1007/978-3-030-10970-7_16

[16] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017. Homomor-

phic Encryption for Arithmetic of Approximate Numbers. In ASIACRYPT 2017,

12

https://doi.org/10.1007/978-3-642-29011-4_29
https://www.openfhe.org/
https://doi.org/10.1145/1161366.1161393
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2011/277
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://eprint.iacr.org/2017/035
https://eprint.iacr.org/2017/035
https://doi.org/10.1007/978-3-030-34621-8_16
https://doi.org/10.1007/978-3-030-34621-8_16
https://doi.org/10.1109/TIFS.2021.3127023
https://doi.org/10.1109/TIFS.2021.3127023
https://doi.org/10.1007/978-3-030-10970-7_16

Part I (LNCS, Vol. 10624), Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer,

Heidelberg, 409–437. https://doi.org/10.1007/978-3-319-70694-8_15

[17] Mandy Chessell, Ferd Scheepers, Nhan Nguyen, Ruud van Kessel, and Ron van der

Starre. 2014. Governing and managing big data for analytics and decision makers.

IBM Redguides for Business Leaders 252 (2014).
[18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2016.

Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds.

In ASIACRYPT 2016, Part I (LNCS, Vol. 10031), Jung Hee Cheon and Tsuyoshi

Takagi (Eds.). Springer, Heidelberg, 3–33. https://doi.org/10.1007/978-3-662-

53887-6_1

[19] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.

TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptology
33, 1 (Jan. 2020), 34–91. https://doi.org/10.1007/s00145-019-09319-x

[20] Siddhartha Chowdhury, Sayani Sinha, Animesh Singh, Shubham Mishra, Chan-

dan Chaudhary, Sikhar Patranabis, Pratyay Mukherjee, Ayantika Chatterjee,

and Debdeep Mukhopadhyay. 2022. Efficient Threshold FHE with Applica-

tion to Real-Time Systems. Cryptology ePrint Archive, Report 2022/1625.

https://eprint.iacr.org/2022/1625.

[21] cryptolabinc. 2023. HEaaN private AI: Homomorphic Encryption Library. Avail-

able at https://hub.docker.com/r/cryptolabinc/heaan. CryptoLab. Inc..

[22] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,

and John Wernsing. 2016. CryptoNets: applying neural networks to encrypted

data with high throughput and accuracy. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48 (New
York, NY, USA) (ICML’16). JMLR.org, 201–210.

[23] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic

Encryption in Less Than a Second. In EUROCRYPT 2015, Part I (LNCS, Vol. 9056),
Elisabeth Oswald and Marc Fischlin (Eds.). Springer, Heidelberg, 617–640. https:

//doi.org/10.1007/978-3-662-46800-5_24

[24] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-

momorphic Encryption. Cryptology ePrint Archive, Report 2012/144. https:

//eprint.iacr.org/2012/144.

[25] Craig Gentry. 2009. A fully homomorphic encryption scheme. Ph. D. Dissertation.
Stanford University. crypto.stanford.edu/craig.

[26] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,

and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted

Data with High Throughput and Accuracy. In Proceedings of The 33rd Inter-
national Conference on Machine Learning (Proceedings of Machine Learning Re-
search, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.). PMLR,

New York, New York, USA, 201–210. https://proceedings.mlr.press/v48/gilad-

bachrach16.html

[27] Shai Halevi, Yuriy Polyakov, and Victor Shoup. 2019. An Improved RNS Variant

of the BFV Homomorphic Encryption Scheme. In CT-RSA 2019 (LNCS, Vol. 11405),
Mitsuru Matsui (Ed.). Springer, Heidelberg, 83–105. https://doi.org/10.1007/978-

3-030-12612-4_5

[28] Xiaoqian Jiang, Miran Kim, Kristin E. Lauter, and Yongsoo Song. 2018. Secure

Outsourced Matrix Computation and Application to Neural Networks. In ACM
CCS 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang

(Eds.). ACM Press, 1209–1222. https://doi.org/10.1145/3243734.3243837

[29] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon.

2018. Logistic regression model training based on the approximate homomorphic

encryption. BMC medical genomics 11 (2018), 23–31.
[30] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon.

2018. Logistic regression model training based on the approximate homomorphic

encryption. BMC Medical Genomics 11 (10 2018). https://doi.org/10.1186/s12920-

018-0401-7

[31] Dongwoo Kim and Cyril Guyot. 2023. Optimized Privacy-Preserving CNN Infer-

ence With Fully Homomorphic Encryption. IEEE Transactions on Information
Forensics and Security 18 (2023), 2175–2187. https://doi.org/10.1109/TIFS.2023.

3263631

[32] Taechan Kim, Hyesun Kwak, Dongwon Lee, Jinyeong Seo, and Yongsoo Song.

2023. Asymptotically Faster Multi-Key Homomorphic Encryption from Ho-

momorphic Gadget Decomposition. In ACM CCS 2023, Weizhi Meng, Chris-

tian Damsgaard Jensen, Cas Cremers, and Engin Kirda (Eds.). ACM Press, 726–740.

https://doi.org/10.1145/3576915.3623176

[33] R. Hari Kishore, A. Chandra Sekhar, Pramoda Patro, and Debabrata Swain. 2023.

Multi-Key Privacy-Preserving Training and Classification using Supervised Ma-

chine Learning Techniques in Cloud Computing. In 2023 International Conference
on Advances in Computing, Communication and Applied Informatics (ACCAI). 1–6.
https://doi.org/10.1109/ACCAI58221.2023.10200291

[34] Hyesun Kwak, Dongwon Lee, Yongsoo Song, and Sameer Wagh. 2021. A

Unified Framework of Homomorphic Encryption for Multiple Parties with

Non-Interactive Setup. Cryptology ePrint Archive, Report 2021/1412. https:

//eprint.iacr.org/2021/1412.

[35] Hyesun Kwak, Dongwon Lee, Yongsoo Song, and Sameer Wagh. 2024. A Gen-

eral Framework of Homomorphic Encryption for Multiple Parties with Non-

interactive Key-Aggregation. In Applied Cryptography and Network Security,
Christina Pöpper and Lejla Batina (Eds.). Springer Nature Switzerland, Cham,

403–430.

[36] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-

Seon No, and Woosuk Choi. 2022. Low-Complexity Deep Convolutional Neural

Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convo-

lutions. In Proceedings of the 39th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, Ste-

fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.).

PMLR, 12403–12422. https://proceedings.mlr.press/v162/lee22e.html

[37] Seewoo Lee, Garam Lee, Jung Woo Kim, Junbum Shin, and Mun-Kyu Lee.

2023. HETAL: efficient privacy-preserving transfer learning with homomor-

phic encryption. In Proceedings of the 40th International Conference on Machine
Learning (<conf-loc>, <city>Honolulu</city>, <state>Hawaii</state>, <coun-

try>USA</country>, </conf-loc>) (ICML’23). JMLR.org, Article 786, 26 pages.

[38] Wei-Shan Lee, John A, Hsiu-Chun Hsu, and Pao-Ann Hsiung. 2022. SPChain:

A Smart and Private Blockchain-Enabled Framework for Combining GDPR-

Compliant Digital Assets Management With AI Models. IEEE Access 10 (2022),
130424–130443. https://doi.org/10.1109/ACCESS.2022.3227969

[39] Baiyu Li, Daniele Micciancio, Mark Schultz, and Jessica Sorrell. 2022. Securing Ap-

proximate Homomorphic Encryption Using Differential Privacy. In CRYPTO 2022,
Part I (LNCS, Vol. 13507), Yevgeniy Dodis and Thomas Shrimpton (Eds.). Springer,

Heidelberg, 560–589. https://doi.org/10.1007/978-3-031-15802-5_20

[40] Wenchao Liu, Tanping Zhou, Long Chen, Hongjian Yang, Jiang Han, and Xi-

aoyuan Yang. 2024. Round efficient privacy-preserving federated learning

based on MKFHE. Computer Standards & Interfaces 87 (2024), 103773. https:

//doi.org/10.1016/j.csi.2023.103773

[41] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. 2012. On-the-fly

multiparty computation on the cloud via multikey fully homomorphic encryption.

In 44th ACM STOC, Howard J. Karloff and Toniann Pitassi (Eds.). ACM Press,

1219–1234. https://doi.org/10.1145/2213977.2214086

[42] Christian Mouchet, Elliott Bertrand, and Jean-Pierre Hubaux. 2023. An Efficient

Threshold Access-Structure for RLWE-Based Multiparty Homomorphic Encryp-

tion. J. Cryptol. 36, 2 (mar 2023), 20 pages. https://doi.org/10.1007/s00145-023-

09452-8

[43] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-

Pierre Hubaux. 2021. Multiparty homomorphic encryption from ring-learning-

with-errors. Proceedings on Privacy Enhancing Technologies 2021, 4 (2021), 291–
311.

[44] Christian Mouchet, Juan Ramón Troncoso-Pastoriza, Jean-Philippe Bossuat, and

Jean-Pierre Hubaux. 2021. Multiparty Homomorphic Encryption from Ring-

Learning-with-Errors. PoPETs 2021, 4 (Oct. 2021), 291–311. https://doi.org/10.

2478/popets-2021-0071

[45] Jeongeun Park. 2021. Homomorphic Encryption for Multiple Users with Less

Communications. IEEE Access PP (2021), 1–1. https://api.semanticscholar.org/

CorpusID:237425395

[46] Christoph Quix, Rihan Hai, and Ivan Vatov. 2016. GEMMS: A Generic and

Extensible Metadata Management System for Data Lakes.

[47] SNUCP. 2023. SNU-MGHE. Available at https://github.com/SNUCP/snu-mghe.

git.

[48] Ignacio G. Terrizzano, Peter M. Schwarz, Mary Roth, and John E. Colino. 2015.

Data Wrangling: The Challenging Yourney from the Wild to the Lake. In Con-
ference on Innovative Data Systems Research. https://api.semanticscholar.org/

CorpusID:17462093

[49] Tuneinsight. 2021. Lattigo v2.3.0. Available at https://github.com/ldsec/lattigo.

[50] Coral Walker and Hassan Alrehamy. 2015. Personal Data Lake with Data Gravity

Pull. In 2015 IEEE Fifth International Conference on Big Data and Cloud Computing.
160–167. https://doi.org/10.1109/BDCloud.2015.62

[51] Guowen Xu, Guanlin Li, Shangwei Guo, Tianwei Zhang, and Hongwei Li. 2023.

Secure Decentralized Image Classification With Multiparty Homomorphic En-

cryption. IEEE Transactions on Circuits and Systems for Video Technology 33, 7

(2023), 3185–3198. https://doi.org/10.1109/TCSVT.2023.3234278

[52] Jiawei Yuan and Shucheng Yu. 2014. Privacy Preserving Back-Propagation Neural

Network Learning Made Practical with Cloud Computing. IEEE Transactions on
Parallel and Distributed Systems 25, 1 (2014), 212–221. https://doi.org/10.1109/

TPDS.2013.18

13

https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/s00145-019-09319-x
https://eprint.iacr.org/2022/1625
https://hub.docker.com/r/cryptolabinc/heaan
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
crypto.stanford.edu/craig
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1186/s12920-018-0401-7
https://doi.org/10.1186/s12920-018-0401-7
https://doi.org/10.1109/TIFS.2023.3263631
https://doi.org/10.1109/TIFS.2023.3263631
https://doi.org/10.1145/3576915.3623176
https://doi.org/10.1109/ACCAI58221.2023.10200291
https://eprint.iacr.org/2021/1412
https://eprint.iacr.org/2021/1412
https://proceedings.mlr.press/v162/lee22e.html
https://doi.org/10.1109/ACCESS.2022.3227969
https://doi.org/10.1007/978-3-031-15802-5_20
https://doi.org/10.1016/j.csi.2023.103773
https://doi.org/10.1016/j.csi.2023.103773
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1007/s00145-023-09452-8
https://doi.org/10.1007/s00145-023-09452-8
https://doi.org/10.2478/popets-2021-0071
https://doi.org/10.2478/popets-2021-0071
https://api.semanticscholar.org/CorpusID:237425395
https://api.semanticscholar.org/CorpusID:237425395
https://github.com/SNUCP/snu-mghe.git
https://github.com/SNUCP/snu-mghe.git
https://api.semanticscholar.org/CorpusID:17462093
https://api.semanticscholar.org/CorpusID:17462093
https://github.com/ldsec/lattigo
https://doi.org/10.1109/BDCloud.2015.62
https://doi.org/10.1109/TCSVT.2023.3234278
https://doi.org/10.1109/TPDS.2013.18
https://doi.org/10.1109/TPDS.2013.18

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Works

	2 Preliminaries
	2.1 Notations
	2.2 Ring Learning with Errors (RLWE)
	2.3 Homomorphic Encryptions in the Multi-Party Setting
	2.4 Key Switching

	3 Homomorphic Computation Scenario with Reusable Ciphertexts
	3.1 MPHE with KeySwitch
	3.2 Real-World Scenarios
	3.3 Security Model
	3.4 Applications

	4 Dynamic MPHE Scheme
	4.1 Base MPHE Scheme
	4.2 Dynamic MPHE Construction
	4.3 Semantic Security of DMPHE

	5 Reusable Dynamic Multi-Party Homomorphic Encryption Scheme
	5.1 Reusable Dynamic Multi-Party Homomorphic Encryption Construction
	5.2 Semantic Security of rdMPHE

	6 Asymptotic Analysis and Implementation Results
	6.1 Asymptotic Comparison between Known Solutions
	6.2 Implementation Results

	References

