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Abstract. The Middle-Product Learning with Errors (MPLWE) as-
sumption is a variant of the Learning with Errors (LWE) assumption.
The MPLWE assumption reduces the key size of corresponding LWE-
based schemes by setting keys as sets of polynomials. Moreover, MPLWE
has more robust security than other LWE variants such as Ring-LWE
and Module-LWE. Lombardi et al. proposed an identity-based encryp-
tion (IBE) scheme (LVV-IBE) based on the MPLWE assumption in the
random oracle model (ROM) by following Gentry et al.’s IBE scheme
(GPV-IBE) based on LWE. Due to the benefit of MPLWE, LVV-IBE
has a shorter master public key and a secret key than GPV-IBE with-
out changing the size of a ciphertext. However, Lombardi et al.’s proof
is not tight in the ROM, while Katsumata et al. proved that GPV-IBE
achieves tight adaptive anonymity in the quantum ROM (QROM). Re-
vocable IBE (RIBE) is a variant of IBE supporting a key revocation
mechanism to remove malicious users from the system. Takayasu pro-
posed the most efficient RIBE scheme (Takayasu-RIBE) based on LWE
achieving tight adaptive anonymity in the QROM. Although a concrete
RIBE scheme based on MPLWE has not been proposed, we can construct
a scheme (LVV-based RIBE) by applying Ma and Lin’s generic transfor-
mation to LVV-IBE. Due to the benefit of MPLWE, LVV-based RIBE
has an asymptotically shorter master public key and a shorter secret key
than Takayasu-RIBE although the former has a larger ciphertext than
the latter. Moreover, the security proof is not tight and anonymous in
the ROM due to security proofs of Ma-Lin and Lombardi et al. In this
paper, we propose a concrete RIBE scheme based on MPLWE. Com-
pared with the above RIBE schemes, the proposed RIBE scheme is the
most asymptotically efficient since the sizes of a master public key and
a secret key (resp. ciphertext) of the proposed scheme are the same as
those of LVV-based RIBE scheme (resp. Takayasu-RIBE). Moreover, we
prove the tight adaptive anonymity of the proposed RIBE scheme in the
QROM. For this purpose, we also prove the tight adaptive anonymity of
LVV-IBE in the QROM.

Keywords: Identity-based Encryption · Revocable Identity-based En-
cryption · Middle-Product Learning with Errors · Tight Security ·
Anonymity · Quantum Random Oracle Model.
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1 Introduction

1.1 Background

Lattice-based cryptography based on the Learning with Errors (LWE) assump-
tion [26] has been actively studied because they are resilient even against quan-
tum attacks. Moreover, we can construct cryptography schemes with advanced
functionality based on the LWE assumption such as identity-based encryption
(IBE). Among several adaptively secure IBE schemes based on the LWE as-
sumption [1,2,3,7,8,13,34,35], Gentry et al.’s IBE scheme (GPV-IBE) [13] is the
most efficient. Specifically, the sizes of a master public key, a secret key and a
ciphertext of an n-bit plaintext are O(n2 log2 n), O(n2 log2 n), and O(n log2 n),
respectively for the security parameter n. Although Gentry et al.’s original proof
is not tight in the random oracle model (ROM), Katsumata et al. [17] slightly
modified the scheme and proved the tight adaptive anonymity in the quantum
ROM (QROM) [6]. Since a proof in the ROM may not ensure post-quantum
security [36], Katsumata et al.’s proof ensures the post-quantum security of
GPV-IBE under better parameters.

Rosca et al. [27] proposed the Middle-Product LWE (MPLWE) assumption
as a variant of LWE. The MPLWE assumption can reduce the key size of corre-
sponding LWE-based schemes by replacing matrices and vectors in LWE-based
schemes with sets of polynomials. While other LWE variants over a specific
ring such as Ring-LWE [23] and Module-LWE [19] also reduce the key size, the
MPLWE-based schemes have more robust security guarantees than these vari-
ants because the MPLWE problem is as hard as the polynomial LWE (PLWE)
problem [29], which is a variant of the LWE over broader class of rings. So far,
various MPLWE-based schemes have been proposed by modifying LWE-based
schemes such as public key encryption [22,27], digital signatures [4,14,21], ring
signatures [10,21], IBE [12,22], hierarchical IBE [20], and inner product encryp-
tion [37,38]. Among known MPLWE-based IBE schemes [12,22], Lombardi et
al.’s scheme (LVV-IBE) [22] which is a MPLWE variant of GPV-IBE is the most
efficient. Due to the benefit of MPLWE, LVV-IBE has a shorter master public
key and a secret key of the size O(n log2 n) than GPV-IBE without changing the
size of a ciphertext O(n log2 n). Therefore, LVV-IBE is asymptotically more effi-
cient than GPV-IBE. LVV-IBE is the only known adaptively secure IBE scheme
based on MPLWE.3 Although Lombardi et al. [22] did not provide a concrete
security proof, they claimed that we can apply Gentry et al.’s proof technique of
GPV-IBE [13] to LVV-IBE; thus, a proof is not tight in the ROM. In other words,
it is not known whether we can prove tight adaptive anonymity of LVV-IBE in
the QROM as GPV-IBE [17].

Since IBE cannot revoke malicious users efficiently in a generic way,
Boldyreva et al. [5] proposed a notion of revocable IBE (RIBE). Since Ma and
Lin [24] proposed a generic transformation from IBE to RIBE that preserves the
3 Although Fan et al. [12] tried to construct an adaptively secure IBE scheme based

on MPLWE, the security definition is weaker than the standard adaptive security
since the number of adversary’s secret key queries is a-priori bounded.
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adaptive security, we can obtain LWE-based and MPLWE-based RIBE schemes
(GPV-based RIBE and LVV-based RIBE) by applying the transformation to
GPV-IBE [13] and LVV-IBE [22], respectively. Since Ma-Lin’s transformation
preserves the sizes of a master public key and a secret key, the sizes of GPV-
based RIBE (resp. LVV-based RIBE) are both O(n2 log2 n) (resp. O(n log2 n)).
However, since Ma-Lin’s transformation suffers from large ciphertexts, the sizes
of GPV-based RIBE and LVV-based RIBE become O(LIDn log2 n). Since Ma-
Lin’s transformation does not also preserve the tight security and anonymity,
the security of GPV-based RIBE is not tight or anonymous although GPV-
IBE satisfies the tight anonymity. Among several concrete LWE-based RIBE
schemes [9,15,30,31,32,33], Takayasu’s scheme (Takayasu-RIBE) [30] that is a
modification of GPV-based RIBE is the most efficient and resolves the above
issue of GPV-based RIBE. In particular, the sizes of a master public key, a
secret key, and a ciphertext are O(n2 log2 n), O(n2 log2 n), and O(LIDn log n),
respectively; thus, Takayasu-RIBE is asymptotically more efficient than GPV-
based RIBE. Moreover, Takayasu RIBE satisfies the tight adaptive anonymity
in the QROM. However, Takayasu RIBE is not strictly asymptotically more ef-
ficient than LVV-based RIBE since the sizes of a master public key and a secret
key of the former O(n2 log2 n) are larger than those of the latter O(n log2 n).
As MPLWE-based LVV-IBE [22] improves the efficiency of LWE-based GPV-
IBE [13], MPLWE may enable us to construct an RIBE scheme that is asymp-
totically more efficient than Takayasu-RIBE [30]. Then, it is desirable to prove
the tight adaptive anonymity of such an MPLWE-based RIBE scheme in the
QROM.

1.2 Our Contribution

In this paper, we propose an RIBE scheme based on MPLWE. We modify
LVV-based RIBE and obtain the proposed RIBE scheme by following the way
Takayasu [30] modified GPV-based RIBE and obtained Takayasu-RIBE. We
reduce the size of a ciphertext of LVV-based RIBE from O(LIDn log2 n) to
O(LIDn log n) as Takayasu reduced the size of a ciphertext of GPV-based RIBE
from O(LIDn log2 n) to O(LIDn log n). Similarly, the proposed scheme preserves
the sizes of a master public key and a secret key O(n log2 n) of LVV-based
RIBE as Takayasu-RIBE preserves the sizes of a master public key and a secret
key O(n2 log2 n) of GPV-based RIBE. Thus, the proposed scheme achieves the
shortest master public key, the secret key, and the ciphertext, simultaneously
compared with known LWE-based and MPLWE-based RIBE schemes. The top
of Table 1 compares the efficiency among GPV-based RIBE, LVV-based RIBE,
Takayasu-RIBE, and the proposed scheme. Although we have not explained the
detailed syntax of RIBE, there are also key updates and decryption keys. We do
not compare the efficiency of key updates and decryption keys in Table 1 since
they are the same among all four schemes. The bottom of Table 1 compares the
security among GPV-based RIBE, LVV-based RIBE, Takayasu-RIBE, and the
proposed scheme.
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Table 1. Comparison among adaptively secure RIBE schemes based on LWE and
MPLWE in the (Q)ROM

Scheme |mpk| |ct| |skID|

GPV-based RIBE [13]+ [24] O(n2 log2 n) O(LIDn log2 n) O(n2 log2 n)

LVV-based RIBE [22]+ [24] O(n log2 n) O(LIDn log2 n) O(n log2 n)

Takayasu-RIBE [30] O(n2 log2 n) O(LIDn logn) O(n2 log2 n)

Our Scheme (Section 5) O(n log2 n) O(LIDn logn) O(n log2 n)

Scheme Anonymity
Reduction

loss
Model Assumption

GPV-based RIBE [13]+ [24] O(LID) QROM LWE
LVV-based RIBE [22]+ [24] O(QHLID) ROM MPLWE

Takayasu-RIBE [30] ✓ O(1) QROM LWE
Our Scheme (Section 5) ✓ O(1) QROM MPLWE

GPV-based RIBE (resp. LVV-based RIBE) denotes a resulting RIBE
scheme by applying Ma-Lin’s transformation [24] to GPV-IBE [13] (resp.
LVV-IBE [22]). n denotes the security parameter. |mpk| and |ct| denote
the size of a master public key and a ciphertext for an n-bit plaintext,
respectively. LID = O(n) denotes the length of an identity. QH denotes the
number of adversary’s random oracle queries.

We try to prove the tight adaptive anonymity of the proposed RIBE scheme
in the QROM as Takayasu-RIBE [30]. Although a naive approach to complete
the task is combining security proofs of LVV-IBE and Takayasu-RIBE, it is
insufficient for our purpose since Lombardi et al.’s proof of LVV-IBE [22] is not
tight in the ROM. Therefore, we first prove the tight adaptive anonymity of
LVV-IBE in the QROM. To this end, we slightly modify LVV-IBE and prove
the tight adaptive anonymity in the QROM by following Katsumata et al.’s
approach [17] for GPV-IBE [13]. As a result, we successfully prove that LVV-IBE
ensures the post-quantum security. Table 2 compares the original LVV-IBE [22]
and our modification. We achieve the tight adaptive anonymity in the QROM
without sacrificing the efficiency of LVV-IBE [22]. Then, we prove the tight
adaptive anonymity of the proposed RIBE scheme in the QROM by combining
our security proof of modified LVV-IBE and Takayasu’s proof [30].

1.3 Technical Overview

We explain an overview of our proposed RIBE scheme. We first review GPV-
IBE [13] and show how to obtain Takayasu-RIBE [30] by modifying GPV-IBE.
Then, we review LVV-IBE [22] and show how to obtain the proposed RIBE
scheme by modifying LVV-IBE. We note that all the schemes encrypt an n-bit
plaintext m ∈ {0, 1}n.



Efficient Revocable Identity-Based Encryption from Middle-Product LWE 5

Table 2. Comparison among adaptively secure IBE schemes based on MPLWE in the
(Q)ROM

Scheme |mpk| |ct|
Reduction

loss
Model

LVV-IBE [22] O(n log2 n) O(n log2 n) O(QH) ROM
Our Scheme O(n log2 n) O(n log2 n) O(1) QROM

n denotes the security parameter. |mpk| and |ct| denote
the size of a master public key and a ciphertext for an
n-bit plaintext, respectively. QH denotes the number of
adversary’s random oracle queries.

GPV-IBE. Let H denote a hash function that maps an identity ID to a ma-
trix UID ∈ Zn×n

q . A master public key and a master secret key are a matrix
GPV.mpk = A ∈ Zn×m

q and its short trapdoor basis GPV.msk = TA, respec-
tively. The short trapdoor basis TA can sample a secret key for ID as a short
matrix GPV.skID = RID ∈ Zm×n

q such that ARID = UID mod q. A ciphertext
for ID and a plaintext m ∈ {0, 1}n is GPV.ctID = (b,b′) ∈ Zm

q × Zn
q ;

b = A⊤s+ noise, b′ = m ·
⌊q
2

⌋
+U⊤

IDs+ noise,

where s ∈ Zn
q is a uniformly random vector and both noise’s are short vectors

with compatible dimensions sampled from the discrete Gaussian distribution.
The second element b′ embeds a plaintext m masked by U⊤

IDs+ noise, while the
first element b is multiplied by a secret key RID and becomes U⊤

IDs + noise to
cancel the mask of b′. Specifically, the decryption algorithm computes

b′ −R⊤
IDb = m ·

⌊q
2

⌋
+U⊤

IDs+ noise−
(
[ARID]

⊤s+R⊤
ID · noise

)
mod q

= m ·
⌊q
2

⌋
+�

��U⊤
IDs+ noise−�

��U⊤
IDs+ noise mod q

= m ·
⌊q
2

⌋
+ noise mod q

by using the fact that RID is a short matrix such that ARID = UID mod q. Since
noise is small, we can recover a plaintext m ∈ {0, 1}n by comparing whether each
coordinate of b′ −R⊤

IDb is close to 0 or q/2.
In Katsumata et al.’s security proof [17], the LWE assumption ensures that

b = A⊤s + noise is indistinguishable from uniform. Since an IBE adversary
cannot receive GPV.skID⋆ = RID⋆ for the target identity ID⋆, the entropy of
RID⋆ ensures that U⊤

ID⋆s+ noise ≈ R⊤
ID⋆b is indistinguishable from uniform and

completely masks a plaintext.
Takayasu-RIBE. Takayasu-RIBE is a revocable variant of GPV-IBE. Let H
denote a hash function that maps a binary string to a matrix in Zn×n

q . We use
the hash function to compute H(ID) = UID and H(θ,T) = UT,θ. Let RLT be a
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revocation list at T, a set of identities that are revoked at T. Let IID (resp. IT)
denote a set of binary strings associated with ID (resp. RLT). Although we omit
the detail, Naor et al.’s KUNode algorithm [25] ensures that there is a unique
binary string θ̃ ∈ IID ∩ IT if ID /∈ RLT and IID ∩ IT = ∅ holds if ID ∈ RLT.
See Section 5 for the details of the KUNode algorithm. A master public/secret
key pair (Tak.mpk,Tak.msk) = (A,TA) and a secret key Tak.skID = RID are
the same as GPV-IBE. A ciphertext for (ID,T) and a plaintext m ∈ {0, 1}n is
Tak.ctID,T = (b, {b′

θ}θ∈IID
) ∈ Zm

q × (Zn
q )

|IID|;

b = A⊤s+ noise, b′
θ = m ·

⌊q
2

⌋
+ [UID +UT,θ]

⊤s+ noise,

where s ∈ Zn
q is a uniformly random vector and all noise’s are short vectors with

compatible dimensions sampled from the discrete Gaussian distribution. All the
latter elements b′

θ embed a plaintext m masked by [UID+UT,θ]
⊤s+noise. Unlike

the case of GPV-IBE, a secret key RID itself cannot decrypt a ciphertext ctID,T

since the first ciphertext element b multiplied by RID becomes U⊤
IDs+noise that

cannot cancel the mask U⊤
T,θs+noise of b′

θ for all θ ∈ IID. To decrypt a ciphertext
ctID,T, we have to use a key update kuT = {θ,RT,θ}θ∈IT

such that ART,θ = UT,θ

mod q. If ID is not revoked at T, the property of the KUNode algorithm [25]
ensures that there is a binary string θ̃ ∈ IID ∩ IT. Thus, a non-revoked ID can
cancel R⊤

T,θc0 ≈ U⊤
T,θs+ noise and decrypt a ciphertext Tak.ctID,T from (b,b′

θ̃
).

In a security proof, the LWE assumption ensures that b = A⊤s + noise is
indistinguishable from uniform. Let ID⋆ (resp. T⋆) denote the target identity
(resp. target time period). Unlike the case of IBE, an RIBE adversary may
receive Tak.skID⋆ = RID⋆ . If the adversary receives RID⋆ , the security definition of
RIBE ensures that ID⋆ is revoked by T⋆ to prevent trivial attacks. Therefore, the
property of the KUNode algorithm [25] ensures that Tak.kuT⋆ = {Rθ,T⋆}θ∈IT⋆

which the adversary receives satisfies Tak.kuT⋆ ∩ (IID⋆ ∩ IT⋆) = ∅. As a result,
each entropy of Rθ,T⋆ for θ ∈ IID⋆ ensures that U⊤

θ,T⋆s + noise ≈ R⊤
θ,T⋆b is

indistinguishable from uniform and completely masks a plaintext as the case of
IBE. If the adversary does not receive Tak.skID⋆ = RID⋆ , it can receive Tak.kuT⋆ =
{Rθ,T⋆}θ∈IT⋆

that contains Rθ̃,T⋆ for θ̃ ∈ IID⋆ ∩ IT⋆ . Since the property of the
KUNode algorithm [25] ensures that θ̃ is a unique binary string in IID⋆ ∩ IT⋆ ,
each entropy of Rθ,T⋆ for θ ∈ IID⋆ \ {θ̃} ensures that U⊤

θ,T⋆s + noise ≈ R⊤
θ,T⋆b

is indistinguishable from uniform and completely masks a plaintext of b′
θ. On

the other hand, the entropy of RID⋆ ensures that U⊤
ID⋆s + noise ≈ R⊤

ID⋆b is
indistinguishable from uniform and completely masks a plaintext of b′

θ̃
.

LVV-IBE. LVV-IBE is an MPLWE variant of GPV-IBE. For simplicity, we
ignore degrees of polynomials to explain overviews of LVV-IBE and the proposed
RIBE scheme. Hereafter, we assume all polynomials have compatible degrees.
LVV-IBE and the proposed RIBE scheme use a middle product between two
polynomials a, b ∈ R[X] denoted by a⊙b. The result a⊙b is a polynomial whose
coefficients are the same as the middle degrees of a · b, where “·” denotes the
standard polynomial multiplication over R[X]. Let H denote a hash function
that maps an identity ID to a polynomial uID ∈ R[X]. A master public key and
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a master secret key are a set of polynomials LVV.mpk = (ai)
t+γτ
i=1 ∈ R[X]t+γτ

and a set of small trapdoor polynomials LVV.msk = (wi,j)
(t,γτ)
(i,j)=(1,1), respectively.

The set of small trapdoor polynomials (wi,j)
(t,γτ)
(i,j)=(1,1) can sample a secret key

for ID as a set of small polynomials LVV.skID = (rID,i)
t+γτ
i=1 ∈ R[X]t+γτ such

that
∑t+γτ

i=1 airID,i = uID. A ciphertext for ID and a plaintext m ∈ {0, 1}n is
LVV.ctID = ((bi)

t+γτ
i=1 , b′) ∈ R[X]t+γτ ×R[X];

bi = ai ⊙ s+ 2 · noise, b′ = m+ uID ⊙ s+ 2 · noise,

where each coefficient of s ∈ R[X] follows the uniform distribution and that of
noise follows the discrete Gaussian distribution. The latter element b′ embeds a
plaintext m masked by uID⊙ s+2 ·noise, while a property of the middle product
(ai ⊙ s) ⊙ rID,i = (airID,i) ⊙ s ensures that the former elements (bi)

t+γτ
i=1 are

computed with a secret key (rID,i)
t+γτ
i=1 and becomes

∑t+γτ
i=1 bi⊙ rID,i ≈ uID⊙ s+

2 ·noise to cancel the mask of b′. Specifically, the decryption algorithm computes

b′ −
t+γτ∑
i=1

bi ⊙ rID,i

= m+ uID ⊙ s+ 2 · noise−
t+γτ∑
i=1

((ai ⊙ s)⊙ rID,i + 2 · noise⊙ rID,i)

= m+ uID ⊙ s+ 2 · noise−
t+γτ∑
i=1

((airID,i)⊙ s+ 2 · noise⊙ rID,i)

= m+����uID ⊙ s+ 2 · noise−����uID ⊙ s+ 2 · noise
= m+ 2 · noise

by using the fact that (rID,i)
t+γτ
i=1 ∈ R[X]t+γτ is a set of small polynomials

such that
∑t+γτ

i=1 airID,i = uID. Since noise is small, we can recover a plaintext
m ∈ {0, 1}n by computing

(
b′ −

∑t+γτ
i=1 bi ⊙ rID,i ∈ R[X]

)
mod 2.

In our security proof following Katsumata et al. [17], the MPLWE assumption
ensures that (bi = ai⊙s+2·noise)t+γτ

i=1 is indistinguishable from uniform. Since an
IBE adversary cannot receive LVV.skID⋆ = (rID⋆,i)

t+γτ
i=1 ∈ R[X]t+γτ for the target

identity ID⋆, the entropy of (rID⋆,i)
t+γτ
i=1 ensures that uID⊙s+2·noise ≈

∑t+γτ
i=1 bi⊙

rID,i is indistinguishable from uniform and completely masks a plaintext.
Proposed RIBE Scheme. The proposed RIBE scheme is an MPLWE variant
of Takayasu-RIBE and a revocable variant of LVV-IBE. Let H denote a hash
function that maps a binary string to a polynomial in R[X]. We use the hash
function to compute H(ID) = uID and H(θ,T) = uT,θ. A master public/secret key
pair (mpk,msk) = ((ai)

t+γτ
i=1 , (wi,j)

(t,γτ)
(i,j)=(1,1)) and a secret key skID = (rID,i)

t+γτ
i=1

are the same as LVV-IBE. A key update kuT = {θ, (rT,θ,i)t+γτ
i=1 }θ∈IT

such that∑t+γτ
i=1 airT,θj ,i = uT,θ combines the structures of Takayasu-RIBE and LVV-IBE.

A ciphertext for (ID,T) and a plaintext m ∈ {0, 1}n is an MPLWE variant of
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Takayasu-RIBE’s ciphertext ctID,T = (b, {b′θ}θ∈IID
) ∈ R[X]×R[X]|IID|;

bi = ai ⊙ s+ 2 · noise, b′θ = m+ (uID + uT,θ)⊙ s+ 2 · noise,

where each coefficient of s ∈ R[X] follows the uniform distribution and that of
noise follows the discrete Gaussian distribution. All the latter elements b′θ embed
a plaintext m masked by (uID + uT,θ) ⊙ s + 2 · noise. If ID is not revoked at T,
the property of the KUNode algorithm [25] ensures that there is a binary string
θ̃ ∈ IID ∩ IT. Thus, a property of the middle product ai ⊙ s ⊙ (rID,i + rT,θ,i) =

(ai(rID,i+rT,θ,i))⊙s ensures that a non-revoked ID can cancel
∑t+γτ

i=1 bi⊙(rID,i+
rT,θ,i) ≈ (uID + uT,θ)⊙ s+ 2 · noise and decrypt a ciphertext ctID,T.

We prove the security of the proposed RIBE scheme by combining secu-
rity proofs of Takayasu-RIBE and LVV-IBE. In a security proof, the MPLWE
assumption ensures that (bi = ai⊙s+2 ·noise)t+γτ

i=1 is indistinguishable from uni-
form. If the adversary receives skID⋆ = (rID⋆,i)

t+γτ
i=1 , the property of the KUNode

algorithm [25] ensures that kuT⋆ = {θ, (rT⋆,θ,i)
t+γτ
i=1 }θ∈IT⋆

which the adversary
receives satisfies kuT⋆ ∩(IID⋆ ∩IT⋆) = ∅. As a result, each entropy of (rT⋆,θ,i)

t+γτ
i=1

for θ ∈ IID⋆ ensures that uT⋆,θ⊙s+2·noise ≈
∑t+γτ

i=1 bi⊙rT,θ,i is indistinguishable
from uniform and completely mask a plaintext. If the adversary does not receive
skID⋆ = (rID⋆,i)

t+γτ
i=1 , it can receive kuT⋆ = {θ, (rT⋆,θ,i)

t+γτ
i=1 }θ∈IT⋆

that contains
(rT⋆,θ̃,i)

t+γτ
i=1 for θ̃ ∈ IID⋆ ∩IT⋆ . Since the property of the KUNode algorithm [25]

ensures that θ̃ is a unique binary string in IID⋆∩IT⋆ , each entropy of (rT⋆,θ,i)
t+γτ
i=1

for θ ∈ IID⋆ \ {θ̃} ensures that uT⋆,θ ⊙ s + 2 · noise ≈
∑t+γτ

i=1 bi ⊙ rT,θ,i is indis-
tinguishable from uniform and completely masks a plaintext of b′θ. On the other
hand, the entropy of (rID⋆,i)

t+γτ
i=1 ensures that uID⊙s+2 ·noise ≈

∑t+γτ
i=1 bi⊙rID,i

is indistinguishable from uniform and completely masks a plaintext of b′
θ̃
.

1.4 Difference from the Conference Version

Here, we highlight differences from the conference version of our paper. In this
paper, we first review LVV-IBE and prove the tight adaptive anonymity of LVV-
IBE in the QROM. The security proof of our RIBE scheme is based on that
of LVV-IBE. We also provide the complete proofs of the correctness and the
tight adaptive anonymity of our RIBE scheme. Moreover, we give a construction
of the proposed anonymous RIBE scheme with bounded decryption key expo-
sure resistance, which is a stronger security notion proposed by Takayasu and
Watanabe [31,32].

1.5 Roadmap

In Section 2, we review mathematical preliminaries. In Section 3, we review the
definition of IBE and the construction of LVV-IBE and prove the tight adaptive
anonymity in the QROM. In Section 4, we review the definition of RIBE. In
Section 5, we propose our RIBE scheme and prove the tight adaptive anonymity
in the QROM. In Section 6, we proposed our anonymous RIBE scheme with
bounded decryption key exposure resistance and a proof overview of the tight
adaptive anonymity in the QROM.
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2 Preliminaries

Notation. Let λ denote the security parameter. Let Zq = Z/qZ and Rq = R/qR.
Let Jn be an n × n anti-diagonal matrix whose all anti-diagonal components
are one. For positive integers n,m such that m ≥ n, let [n] = {1, . . . , n} and
[n,m] = {n, . . . ,m}. Let Func(X ,Y) be a set of all functions from a set X to
a set Y. For a distribution D over Rn, x ← D and x ← ⌊D⌉ denotes that
x is sampled from D, and x is sampled from D and then each coefficient is
rounded to the nearest integer, respectively. For a finite set S, x U←− S denotes
that x is sampled uniformly at random from S. Let poly(λ) and negl(λ) denote
unspecified functions f(λ) = O(λc) for some constant c and f(λ) = o(λ−c)
holds for all constant c, respectively. A function f is called negligible function
if f(λ) = negl(λ). For an event E, probabilities of occurrence of E are called
negligible probability and overwhelming probability if Pr[E] = negl(λ) holds and
Pr[E] = 1− negl(λ) holds, respectively. For a finite set A, let U(A) be a uniform
distribution over A. The statistical distance between two distributions X and Y
over a countable domain Ω is defined to be 1

2

∑
d∈Ω |X(d)− Y (d)|. We say that

two distributions X and Y (formally, two ensembles of distributions indexed by
n) are statistically indistinguishable if 1

2

∑
d∈Ω |X(d)− Y (d)| = negl(n) holds.

Quantum Computation. We briefly give some background on quantum
computation. Let {|x⟩}x∈{0,1}n denote an orthonormal basis of C2n and∑

x∈{0,1}n αx |x⟩ ∈ C2n denote a quantum state representing n qubits, where
αx is a complex such that

∑
x∈{0,1}n |αx|2 = 1. If we measure a quantum state∑

x∈{0,1}n αx |x⟩ ∈ C2n , a bit sequence x is observed with probability |αx|2. In
the QROM, we assume that a quantumly accessible oracle hash function H ex-
ists. The quantum random oracle takes

∑
x,y αx,y |x⟩ |y⟩ as input and outputs∑

x,y αx,y |x⟩ |H(x)⊕ y⟩. Let A|H⟩ denote a quantum algorithm A that accesses
to H. The running time Time(A) of a quantum algorithm A is defined to be the
number of universal gates (e.g., Hadamard, phase, CNOT, and π/8 gates) and
measurements required for running A. Here, an oracle query is counted as a unit
time if A is an oracle algorithm.

The following lemma states that if an oracle outputs independent and almost
uniform for any inputs, this oracle is indistinguishable from a random oracle even
with quantum oracle accesses.

Lemma 1 ([6]). Let A be a quantum algorithm that makes at most Q oracle
queries, and X and Y be arbitrary sets. Let H be a distribution over Func(X ,Y)
such that when we take H

U←− H, for each x ∈ X , H(x) is identically and inde-
pendently distributed according to a distribution D whose statistical distance is
within ε from uniform. Then for any input z, we have

∆(ARF(z),AH(z)) ≤ 4Q2
√
ε,

where RF
U←− Func(X ,Y) and H

U←− H.

We review the definition of quantum-accessible pseudorandom functions
(PRFs) [6].
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Definition 1 (Quantum-accessible PRF). For sets X and Y, we say a func-
tion F : X × Y → K is a quantum-accessible pseudorandom function if for any
quantum polynomial time algorithm A, the advantage defined below is negligible:

AdvPRFA,F (λ) =
∣∣∣Pr[A|RF⟩(1λ) = 1]− Pr[A|F (K,·)⟩(1λ) = 1]

∣∣∣,
where RF

U←− Func(X ,Y) and K
U←− K.

Lattices and Discrete Gaussian Distribution. We represent column vectors
in bold font small letters and matrices in bold font capital letters. When we
simply refer to vectors, we mean column vectors. A symmetric matrix P ∈ Rn×n

is called positive semi-definite if x⊤Px ≥ 0 holds for all x ∈ Rn. For a vector
a ∈ Rn, let ∥a∥ and ∥a∥∞ be L2 norm and L∞ norm of a, respectively.

For m linearly independent vectors (bi)
m
i=1 ∈ (Rn)m, an n-dimensional lattice

generated by (bi)
m
i=1 is defined as Λ = {

∑m
i=1 xibi | xi ∈ Z}. For a matrix

A ∈ Zn×m
q and a vector u ∈ Zn

q , let Λ⊥
u (A) = {z ∈ Zm | Az = u mod q}. For

a positive semi-definite matrix Σ ∈ Rn×n, the n-dimensional discrete Gaussian
function ρs : Λ → (0, 1] is defined as ρΣ(x) = exp(−πx⊤Σ−1x). For a positive
semi-definite matrix Σ ∈ Rn×n, the discrete Gaussian distribution DΛ,Σ on a
lattice Λ ⊂ Rn is defined as the distribution whose density is ρΣ(x)/

∑
x∈Λ ρΣ(x)

for x ∈ Λ. Especially, for an identity matrix In and a real σ, DΛ,σ denotes DΛ,σIn .

Lemma 2 ([13], Lemma 2.9). For ε ∈ (0, 1
2 ), σ ≥

√
ln(1 + ε−1)/π, t >

ω(
√
log n), a matrix A ∈ Zn×m

q and a vector u ∈ Zn
q , it holds that ∥x∥∞ ≤ tσ

with overwhelming probability in n, where x← DΛ⊥
u (A),σ.

Polynomials and Matrices. For a matrix M, let si(M) be the i-th largest
singular value of M. For a vector a ∈ Rn, let a be a degree n−1 polynomial over
R whose coefficient vector is a. For a ring R, let R<n[X] ⊂ R[X] denote a set of
polynomials of degree at most n−1. For a ring R and a polynomial a ∈ R<n[X],
let a ∈ Rn be a coefficient vector of a. For a degree n polynomial a over R, let
∥a∥ and ∥a∥∞ denote L2 norm and L∞ norm of the polynomial a’s coefficient
vector a, respectively. For a distribution D, let x← D<d[X] denote an operation
of sampling each coefficient according to D to obtain a polynomial of degree at
most d − 1. For a distribution D, let x ← ⌊D⌉<d

[X] denote an operation of
sampling each coefficient according to D and rounding to the nearest integer to
obtain a polynomial of degree at most d− 1.

We use the following lemmata to construct our schemes.

Definition 2 ([27], Definition 2.5). For positive integers d, k and a polyno-
mial a ∈ R<d[X], let Td,k(a) ∈ R(d+k−1)×k denote a matrix whose i-th row is
a coeffcient vector of xi−1 · a. By definition, Td,1(a) is a coefficient vector of a.
Moreover, we define Td,k

flip = Jd+k−1T
d,kJk.

Lemma 3 ([27]). For positive integers ℓ, k, d and polynomials a ∈ R<k[X]
and b ∈ R<ℓ[X], it holds that Tk,ℓ+d−1(a)Tℓ,d(b) = Tℓ+k−1,d(ab) and
Tk,ℓ+d−1
flip (a)Tℓ,d

flip(b) = Tℓ+k−1,d
flip (ab).
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Lemma 4 (implicit in [22], Theorem 3 and Lemma 11). For a dis-
tribution χ = DZ,σ, we define a distribution V = ((ai)

t
i=1,

∑t
i=1 airi) over

S = (Z<n
q [X])t × Z<n+d−1

q [X], where ai
U←− Z<n

q [X] and ri ← χd[X]. If d ≤ n,
σ = ω(1), q = poly(n), q = ω(

√
log n)σ, and dt

n = Ω(log n), then V is sta-
tistically indistinguishable from U(S). Let A = [Tn,d(a1)| · · · |Tn,d(at)] and r =
[r⊤1 | · · · |r⊤t ]⊤, where ri ← χd[X] for each i ∈ [t]. For a fixed u ∈ Z<n+2d−2

q [X],
the conditional distribution of r, given u =

∑t
i=1 airi mod q is DΛ⊥

u (A),σ.

Lemma 5 ([16], Lemma 1). Let q, ℓ,m be positive integers, r >
max{ω(

√
logm), ω(

√
log ℓ)} be a positive real, b ∈ Zm

q be a vector, and x ←
DZm,r. For a matrix V ∈ Zm×ℓ

q and a positive real σ > s1(V), there is a PPT
algorithm Rerand(V,b + x, r, σ), which outputs b′ = V⊤b + x′ ∈ Zℓ

q. The dis-
tribution of x′ is statistically indistinguishable from DZℓ,2rσ.

Lemma 6 ([13,22]). Suppose that q = poly(n), d ≤ n, dt
n = Ω(log n), and

γ = n+2d−2
d . Then, there exist the following three PPT algorithms.

TrapGen(1n)→ ((ai)
t+γτ
i=1 , (wi,j)

(t,γτ)
(i,j)=(1,1)): TrapGen algorithm takes n as input,

and outputs (ai)
t+γτ
i=1 ∈ (Z<n

q [X])t × (Z<n+d−1
q [X])γτ and (wi,j)

(t,γτ)
(i,j)=(1,1) ∈

(Z<d
q [X])tγτ . (ai)

t+γτ
i=1 is statistically indistinguishable from uniform. For

each (i, j) ∈ [τ ] × [γ], it holds that at+(i−1)γ+j = 2i−1xd(j−1) −∑t
h=1 ahwh,(i−1)γ+j.

SamplePre((ai)
t+γτ
i=1 , (wi,j)

(t,γτ)
(i,j)=(1,1), u, σ)→ (ri)

t+γτ
i=1 : SamplePre algorithm takes

(ai)
t+γτ
i=1 , (wi,j)

(t,γτ)
(i,j)=(1,1), u ∈ Z<n+2d−2

q [X], and σ = ω(log2 n)
√
ndt as

input, and outputs (ri)
t+γτ
i=1 ∈ (Z<2d−1[X])t × (Z<d[X])γτ . Let A =

[Tn,2d−1(a1)| · · · |Tn+d−1,d(at+γτ )]. r = [r1| · · · |rt+γτ ] is statistically indis-
tinguishable from DΛ⊥

u (A),σ. In particular, (ri)
t+γτ
i=1 is statistically indis-

tinguishable from (DZ2d−1,σ)
t × (DZd,σ)

γτ subject to the constraint that∑t+γτ
i=1 airi = u mod q.

SampleZ(σ)→ e: SampleZ algorithm takes σ > 16
√

log 2m/π as input and out-
puts e ∈ Zm. The distribution of e is statistically indistinguishable from
DZm,σ.

Middle-Product Learning with Errors. We use the following definitions and
lemmata to define the MPLWE assumption.

Definition 3 ([27], Definition 3.1). Let da, db, d, k be positive integers such
that da+db−1 = d+2k. Middle Product ⊙d : R<da [X]×R<db [X]→ R<d[X] is
defined as a ⊙d b =

⌊
(a·b) mod xk+d

xk

⌋
. This operation extracts the middle-degree

d terms after the multiplication of the input two polynomials.

For example, for a = x2 + 2x + 3 and b = x3 + 2x2 + 3x + 4, we have a · b =
x5 + 4x4 + 10x3 + 16x2 + 17x+ 12 and a⊙2 b = 10x+ 16.
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Lemma 7 ([27], Lemma 3.2 and Lemma 3.3). Let d, k, n > 0 be positive
integers. For polynomials r ∈ R<k+1[X], a ∈ R<n[X], and s ∈ Z<n+d+k−1

q [X],
it holds that (a ⊙d+k s) ⊙d r = (ar) ⊙d s. For polynomials r ∈ R<k+1[X], c ∈
R<k+d[X], and b ∈ R<d[X], it holds that b = r ⊙d c⇔ b = Tk+1,d

flip (r)⊤c.

We review the MPLWE assumption.

Definition 4 (MPLWE Assumption [22], Definition 9). For an even num-
ber n > 0, positive integers q ≥ 2, m > 0, a positive integer vector d = (di)

t
i=1 ∈

[n2 ]
t, a distribution χ over Zq, and a quantum polynomial time algorithm A,

the advantage for the MPLWE problem MPLWEq,n,d,χ is defined as follows:
Adv

MPLWEq,n,d,χ

A (λ) =
∣∣∣Pr[A((ai, ai⊙di s+ ei)

t
i=1) = 1]−Pr[A((ai, wi+ ei)

t
i=1) =

1]
∣∣∣, where s

U←− Z<n
q [X], ai

U←− Z<n−di
q [X], ei ← χ<di [X], and wi

U←− Z<di
q [X] for

each i ∈ [t]. We say that the MPLWEq,n,d,χ assumption holds if AdvMPLWEq,n,d,χ

A
is negligible for all quantum polynomial time algorithm A.

Rosca et al. [27] first defined the MPLWE assumption which is slightly dif-
ferent from Definition 4. In Rosca et al.’s one, all di are equal and Lombardi et
al. [22] called Definition 4 Degree-Parametrized MPLWE assumption.

We also define the MPLWE assumption against adversaries that can access
to a quantum random oracle.

Definition 5 (MPLWE Assumption relative to the QROM). For an even
number n > 0, positive integers q ≥ 2, m > 0, a positive integer vector
d = (di)

t
i=1 ∈ [n2 ]

t, a distribution χ over Zq, and a quantum polynomial
time algorithm A, the advantage for the MPLWE problem MPLWEq,n,d,χ rel-
ative to a quantum random oracle is defined as follows: Adv

MPLWEq,n,d,χ

A,QROa,b
(λ) =∣∣∣Pr[A|H⟩((ai, ai ⊙di s + ei)

t
i=1) = 1] − Pr[A|H⟩((ai, wi + ei)

t
i=1) = 1]

∣∣∣, where

s
U←− Z<n

q [X], ai
U←− Z<n−di

q [X], ei ← χ<di [X], wi
U←− Z<di

q [X] for each i ∈ [t],

and H
U←− Func({0, 1}a, {0, 1}b). We say that the MPLWEq,n,d,χ assumption to an

(a, b)-quantum random oracle holds if AdvMPLWEq,n,d,χ

A is negligible for all quan-
tum polynomial time algorithm A.

If we assume the existence of a quantum-accessible PRF, the MPLWE assump-
tion relative to the QROM in Definition 5 is tightly reduced from the MPLWE
assumption in Definition 4.

Lemma 8 ([39], implicit in Lemma 6.1). Let F : K × {0, 1}a → {0, 1}b
be a quantum-accessible PRF. For any q, n,d, χ and a quantum polynomial time
algorithm A making at most Q oracle queries, there are two quantum polynomial
time algorithms B1 and B2 such that

Adv
MPLWEq,n,d,χ

A,QROa,b
(λ) ≤ Adv

MPLWEq,n,d,χ

B1
(λ) + AdvPRFB2,F (λ),

Time(B1) ≈ Time(A) +Q · TF , and Time(B2) ≈ Time(A), where TF denotes the
time to evaluate F .



Efficient Revocable Identity-Based Encryption from Middle-Product LWE 13

We review the PLWE assumption.

Definition 6 (PLWE assumption). Let f be a polynomial of degree m, q ≥ 2,
and χ be a distribution over Zq[X]/(f). For a quantum polynomial time algo-
rithm A, the advantage Adv

PLWEq,χ

A (λ) is defined as follows:

Adv
PLWEq,χ

A (λ) =
∣∣∣Pr[A(a, as+ e) = 1]− Pr[A(a,w) = 1]

∣∣∣,
where s

U←− Zq[X]/(f), a U←− Zq[X]/(f), e ← χ, and w
U←− Zq[X]/(f). We say

that the PLWEq,χ assumption holds if Adv
PLWEq,χ

A is negligible for all quantum
polynomial time algorithm A.

We review a reduction from PLWE to MPLWE.

Lemma 9 ([4], implicit in Theorem 2). For any polynomial f ∈ E(T,d, n)
and a real α such that 1 ≥ α ≥ 2

√
n

qT , there is a PPT reduction from PLWE
(f)
q,DZmq ,αq

to MPLWEq,n,d,DZq,α′q , where α′ = α ·
√
n · EF(f).

3 Tight Adaptive Anonymity of LVV-IBE in the QROM

In this section, we prove the tight adaptive anonymity of LVV-IBE in the QROM.
In Section 3.1, we review the definition of IBE. In Section 3.2, we propose a
slight modification of LVV-IBE. In Section 3.3, we prove the correctness and set
parameters. In Section 3.4, we prove the tight adaptive anonymity.

3.1 Identity-based Encryption

We review the definition of IBE.
Syntax. A plaintext space, a ciphertext space, and an identity space are denoted
byM, CT and ID, respectively. An IBE scheme Π consists of the following four
algorithms.

Setup(1λ)→ (mpk,msk): Setup algorithm takes a security parameter 1λ as in-
put, and outputs a master public key mpk and a master secret key msk.

SKGen(mpk,msk, ID)→ skID: SKGen algorithm takes mpk, msk, and an identity
ID ∈ ID as input, and outputs a secret key skID for the identity ID.

Encrypt(mpk, ID,m)→ ctID: Encrypt algorithm takes mpk, ID, and a plaintext
m ∈M as input, and outputs a ciphertext ctID ∈ CT for ID.

Decrypt(mpk, skID, ctID)→ m′: Decrypt algorithm takes mpk, skID, and ctID as
input, and outputs a decryption result m′.

Correctness. A ciphertext ctID ∈ CT for an identity ID has to be decrypted cor-
rectly by a secret key skID for the same ID. Namely, for all λ ∈ N, (mpk,msk)←
Setup(1λ), ID ∈ ID, and m ∈ M, we require m′ obtained by running the
following algorithms to satisfy m′ = m. (1) skID ← SKGen(mpk,msk, ID), (2)
ctID ← Encrypt(mpk, ID,m), and (3) m′ ← Decrypt(mpk, skID, ctID).
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Security. The security of IBE is defined via a security game between an adver-
sary A and a challenger C.

In the beginning of the security game, C runs (mpk,msk) ← Setup(1λ). A
may adaptively make the following two queries.

Secret Key Reveal Query: Upon a query ID ∈ ID by A, if ID = ID⋆, C
returns ⊥ to A. Otherwise, C runs skID ← SKGen(mpk,msk, ID) and returns
skID to A.

Challenge Query: A is allowed to make this query only once in this game.
Upon a query (m⋆, ID⋆) by A, C picks coin

U←− {0, 1}. If coin = 0 holds, C
runs ct⋆ ← Encrypt(mpk, ID⋆,m⋆). If coin = 1 holds, C picks ct⋆

U←− CT .
Then, C returns ct⋆ to A.

At some point in this game, A outputs ĉoin ∈ {0, 1} as a guess value of coin
and terminates this game.

We say that A wins if ĉoin = coin holds. Let AdvIBE
Π,A(λ) = |Pr[ĉoin = coin]−

1
2 | be the A’s advantage in this game.

Definition 7. An IBE scheme Π is said to satisfy the adaptive anonymity if
AdvIBE

Π,A(λ) = negl(λ) holds for all PPT adversary A.

3.2 LVV-IBE

Construction and parameter settings are almost the same as LVV-IBE [22]. Let
q be a prime number, and n, d, t, k, γ, τ , and LID be positive integers. Let
α, α′, σ be positive real numbers. The plaintext space, the identity space, and
the ciphertext space are defined as M = {0, 1}k+2, ID = {0, 1}LID , and CT =
(Z<2d+k

q [X])t × (Z<d+k+1
q [X])γτ × Z<k+2

q [X], respectively. A hash function H :

{0, 1}LID → Z<n+2d−2
q [X] will be modeled as a random oracle in the security

proof.

Setup(1n)→ (mpk,msk): Run ((ai)
t+γτ
i=1 , (wi,j)

(t,γτ)
(i,j)=(1,1)) ← TrapGen(1n) and

output mpk = (ai)
t+γτ
i=1 and msk = (wi,j)

(t,γτ)
(i,j)=(1,1).

SKGen(mpk,msk, ID)→ skID: Run (rID,i)
t+γτ
i=1 ← SamplePre(mpk,msk, uID, σ),

where uID = H(ID). By Lemma 6, it holds that
∑t+γτ

i=1 airID,i = uID. Then,
output skID = (rID,i)

t+γτ
i=1 .

Encrypt(mpk, ID,m)→ ctID: Sample s
U←− Z<n+2d+k−1

q [X], ei ← D<2d+k
Zq,α′q [X] for

each i ∈ [t], ei ← D<d+k+1
Zq,α′q [X] for i ∈ [t + 1, t + γτ ], and e′ ← D<k+2

Zq,α′q[X].
Then, compute

bi =

{
ai ⊙2d+k s+ 2ei if i ∈ [t]

ai ⊙d+k+1 s+ 2ei if i ∈ [t+ 1, t+ γτ ]

b′ = m+ uID ⊙k+2 s+ 2e′

and output ctID = ((bi)
t+γτ
i=1 , b′).
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Decrypt(mpk, skID, ctID)→ m′: Output

m′ =

(
b′ −

t+γτ∑
i=1

bi ⊙k+2 rID,i mod q

)
mod 2.

Here, we slightly modify LVV-IBE’s Encrypt algorithm to apply the noise
rerandomization algorithm. Concretely, in the Encrypt algorithm of LVV-IBE,
the error polynomials are ei ←

⌊
DRq,α′q

⌉<2d+k
[X] for each i ∈ [t], ei ←⌊

DRq
, α′q

⌉<d+k+1
[X] for each i ∈ [t+ 1, t+ γτ ], and e′ ←

⌊
DRq,α′q

⌉<k+2
[X].

3.3 Correctness and Parameter Settings

We prove the correctness by following the original LVV-IBE [22].

Theorem 1 ([22], Lemma 12). For a positive real number α′ <
(8
√
2ω(log n)σK + 1)−1 and a positive integer K = t(2d − 1) + γτd, LVV-IBE

satisfies the correctness with overwhelming probability in n.

Proof. Since bi = ai⊙2d+k s+2ei holds for each i ∈ [t] and bi = ai⊙d+k+1 s+2ei
holds for each i ∈ [t+1, t+γτ ], when the Decrypt algorithm operates as specified,
we have

b′ −
t+γτ∑
i=1

bi ⊙k+2 rID,i

= m+ uID ⊙k+2 s+ 2e′ −
t∑

i=1

(ai ⊙2d+k s)⊙k+2 rID,i

−
t+γτ∑
i=t+1

(ai ⊙d+k+1 s)⊙k+2 rID,i − 2

t+γτ∑
i=1

ei ⊙k+2 rID,i.

Then, by Lemma 7 and the fact that
∑t+γτ

i=1 airID,i = uID holds as we explained
in the SKGen algorithm, we have

m+ uID ⊙k+2 s+ 2e′ −
t∑

i=1

(ai ⊙2d+k s)⊙k+2 rID,i

−
t+γτ∑
i=t+1

(ai ⊙d+k+1 s)⊙k+2 rID,i − 2

t+γτ∑
i=1

ei ⊙k+2 rID,i

= m+(((((uID ⊙k+2 s+ 2e′ −
���������t+γτ∑
i=1

(airID,i)⊙k+2 s− 2

t+γτ∑
i=1

ei ⊙k+2 rID,i

= m+ 2

(
e′ −

t+γτ∑
i=1

ei ⊙k+2 rID,i

)
︸ ︷︷ ︸

error terms

.
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If ∥e′ℓ −
∑t+γτ

i=1 ei ⊙k+2 rID,i∥∞ < q
8 holds, the decryption of our IBE scheme

satisfies the correctness. Let rID = [r⊤ID,1| · · · |r⊤ID,t+γτ ]
⊤ and

A = [Tn,2d−1(a1)| · · · |Tn,2d−1(at)|Tn+d−1,d(at+1)| · · · |Tn+d−1,d(at+γτ )].

By Lemma 6, the property of the SamplePre algorithm ensures that rID is dis-
tributed statistically close to DΛ⊥

uID
(A). Therefore, by Lemma 2, it holds that

∥rID,i∥∞ ≤ ω(
√
log n)σ, ∥ei∥∞ ≤ ω(

√
log n)α′q

with overwhelming probability in n. Since it holds that

∥e′ℓ −
t+γτ∑
i=1

ei ⊙k+2 rID,i∥∞

≤ ∥e′ℓ∥∞ + ∥
t+γτ∑
i=1

ei ⊙k+2 rID,i∥∞

≤ ω(
√

log n)α′q +K(
√
2ω(
√

log n)σ)(ω(
√

log n)α′q),

we have ∥e′ℓ −
∑t+γτ

i=1 ei ⊙k+2 rID,i∥∞ < q
8 if α′ < (8

√
2ω(log n)σK +1)−1 holds.

⊓⊔
To guarantee the correctness and the adaptive anonymity of LVV-IBE, the

parameters have to satisfy the following restrictions.

– For the correctness, α′ < (8
√
2ω(log n)σK + 1)−1 holds.

– By Lemma 6, q = poly(n), d ≤ n, dt
n = Ω(log n), σ = ω(log2 n)

√
ndt, and

γ = n+2d−2
d hold to apply TrapGen and SamplePre algorithms properly.

– By Lemma 4, d ≤ n, σ = ω(1), q = poly(n), q = ω(
√
log n)σ, and dt

n =
Ω(log n) hold so that the master public key is statistically indistinguishable
from uniform.

– By Lemma 6, σ > 16
√
log 2(2d− 1)/π holds to apply SampleZ algorithm

properly.
– By Lemma 5, α′

2α >
√

σ2((2d− 1)t+ dγτ) + 1 and αq >

ω(
√
log(t(2d+ k) + γτd+ (K + 2))) hold to apply ReRand algorithm prop-

erly.
– Let c > 0 be a constant. For some polynomial f ∈ E(T,d, n+2d+k) of degree

m ∈ [2d+k, n] with EF(f) = O(nc), ᾱ = Ω(
√
m/q), and 1 ≥ ᾱ ≥ 2

√
n+2d+k
qT ,

PLWE
(f)
Zq,ᾱq

assumption holds. Furthermore, q is a prime and q = Ω(α−1nc+1)
holds so that MPLWEq,n+2d+k,d,DZ,αq

assumption holds by Lemma 9.

We note that the restrictions are almost the same as those of LVV-IBE, but we
add another restriction to apply ReRand algorithm.

To satisfy these restrictions, we set

d = Θ(n), k = Θ(n), t = log n, γ =
n+ 2d− 2

d
, σ = n1+µ1 ,

q = n4.5+4µ1+c, τ = ⌈log q⌉, α′ = (n2+2µ1)−1, α = (n3.5+4µ1)−1,
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where µ1 > 0 can be set arbitrarily small and c > 0 is a parameter of the PLWE
assumption.

3.4 The Adaptive Anonymity in the QROM

In this section, we prove the tight adaptive anonymity of LVV-IBE in the QROM.

Theorem 2. LVV-IBE satisfies the adaptive anonymity in the QROM under the
parameter settings and the MPLWE assumption. In particular, for any quantum
adversary A making at most QH queries to |H⟩ and QID secret key reveal queries,
there exists a quantum algorithm B making QH + QID quantum random oracle
queries such that

AdvIBE
LVV-IBE,A(n) ≤ Adv

MPLWEq,n+2d+k,d,DZq,αq

B,QROLID+⌈log(t+γτ)⌉+1,κ
(n) + (Q2

H +QID) · negl(n)

and
Time(B) = Time(A) + (QH +QID) · poly(λ),

where κ denotes the length of randomness for SampleZ and

d =

{
2d+ k if i ∈ [t]

d+ k + 1 if i ∈ [t+ 1, t+ γτ ].

Proof. Let Ei denote an event that A wins in game i.
Game0: Game0 is the original security game. The challenger C chooses a hash
function H : {0, 1}LID → Z<n+2d−2

q [X] at the beginning of the game. Upon a
quantum random oracle query

∑
ID,y αID,y |ID⟩ |y⟩ by the adversary A, C returns∑

ID,y αID,y |ID⟩ |H(ID)⊕ y⟩.
Game1: We change how to answer the quantum random ora-
cle queries from Game0. In Game1, C chooses a function Ĥ

U←−
Func({0, 1}≤LID+⌈log(t+γτ)⌉, {0, 1}κ) at the beginning of the game. With
respect to H(ID), sample coefficient vectors rID,i ← SampleZ(σ; Ĥ(ID∥i)) for
each i ∈ [t+γτ ] and compute H(ID) =

∑t+γτ
i=1 airID,i. Here, SampleZ(σ; Ĥ(ID∥i))

denotes running SampleZ(σ) with Ĥ(ID∥i) as an input random seed.
By Lemma 4, H(ID) is statistically indistinguishable from uniform. Therefore,

Lemma 1 ensures that |Pr[E0]−Pr[E1]| = negl(n)+4Q2
H

√
negl(n) = QH ·negl(n),

where QH is the number of random oracle queries.
Game2: We change how to generate a secret key (rID,i)

t+γτ
i=1 from Game1. In

Game2, we do not use SamplePre algorithm. Instead, upon a secret key reveal
query of ID, return rID,i ← SampleZ(σ; Ĥ(ID∥i)) for each i ∈ [t+ γτ ] to A.

Let A = [Tn,2d−1(a1)| · · · |Tn+d−1,d(at+γτ )]. By Lemma 6, the property of
the SamplePre algorithm ensures that rID = [r⊤ID,1| · · · |r⊤ID,t+γτ ]

⊤ of Game1 is
statistically indistinguishable from the discrete Gaussian distribution DΛ⊥

uID
(A),σ.

Moreover, by Lemma 4, rID = [r⊤ID,1| · · · |r⊤ID,t+γτ ]
⊤ of Game2 is also statistically
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indistinguishable from the above distribution. Since A obtains at most QID secret
keys during the game, we have |Pr[E2]− Pr[E1]| = QID · negl(n).
Game3: We change how the master public key is generated from Game2. In
Game3, the master public key is chosen by running (ai)

t+γτ
i=1

U←− (Zn
q [X])t ×

(Zn+d−1
q [X])γτ .
By Lemma 6, the property of the TrapGen algorithm ensures that mpk

of Game2 is statistically indistinguishable from uniform, and thus |Pr[E3] −
Pr[E2]| = negl(n) holds.
Game4: We change how to compute the challenge ciphertext of coin = 0
from Game3. Let Ke = t(2d + k) + γτ(d + k + 1). In Game4, C samples
s

U←− Z<n+2d+k−1
q [X], ei ← D<2d+k

Zq,αq
[X] for each i ∈ [t], and ei ← D<d+k+1

Zq,αq
[X]

for each i ∈ [t+ 1, t+ γτ ]. Then, C computes

vi =

{
ai ⊙2d+k s+ ei if i ∈ [t]

ai ⊙d+k+1 s+ ei if i ∈ [t+ 1, t+ γτ ].
(1)

By Eq. (1) and Lemma 7, we have

vi =

{
Tn,2d+k
flip (ai)

⊤s+ ei if i ∈ [t]

Tn+d−1,d+k+1
flip (ai)

⊤s+ ei if i ∈ [t+ 1, t+ γτ ]
. (2)

Let v = [v⊤
1 | · · · |v⊤

t+γτ ]
⊤ ∈ ZKe

q and

RID⋆,i =

{
T2d−1,k+2
flip (rID⋆,i) ∈ Z(2d+k)×(k+2)

q if i ∈ [t]

Td,k+2
flip (rID⋆,i) ∈ Z(d+k+1)×(k+2)

q if i ∈ [t+ 1, t+ γτ ]
,

RID⋆ =

 RID⋆,1

...
RID⋆,t+γτ

 ∈ ZKe×(k+2)
q . (3)

Then, run

[b1| · · · |bt+γτ | b′]← 2 · ReRand
(
2−1[IKe

| RID⋆ ],v, αq,
α′

2α

)
(4)

and output the challenge ciphertext ((bi)
t+γτ
i=1 , b′ +m⋆).

We will show that the ReRand algorithm can be applied properly. Since there
is a restriction on the maximum singular value of the ReRand algorithm’s input
matrix, we will evaluate it. We have

s1([IKe | RID⋆ ])2 ≤ s1(RID⋆)2 + 1 ≤
t+γτ∑
i=1

s1(RID⋆,i)
2 + 1

and

s1(RID⋆,i)
2 = max

∥h∥=1
∥T2d−1,k+2(rID⋆,i)∥h2
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= max
∥h∥=1

∥T2d−1,k+2(rID⋆,i)T
k+2,1(h)∥2

= max
∥h∥=1

∥T2d+k,1(rID⋆,ih)∥2

≤ ∥rID⋆,i∥2

≤ σ2(2d− 1)

for each i ∈ [t]. By a similar argument for each i ∈ [t+ 1, t+ γτ ], it follows that
if α′

2α >
√
σ2((2d− 1)t+ dγτ) + 1 holds, the ReRand algorithm can be applied

properly.
We will show that the challenge ciphertext is statistically indistinguish-

able between Game3 and Game4. Let e = [e⊤1 | · · · |e⊤t+γτ ]
⊤ ∈ ZKe

q and A =

[Tn,2d+k
flip (a1)| · · · |Tn+d−1,d+k+1

flip (at+γτ )] ∈ Z(n+2d+k−1)×Ke
q . By Eq. (2), we have

A⊤s+ e =


Tn,2d+k
flip (a1)

⊤

...
Tn+d−1,d+k+1
flip (at+γτ )

⊤

 s+

 e1
...

et+γτ


= [v⊤

1 | · · · |v⊤
t+γτ ]

⊤

= v. (5)

Let U = Tn+2d−2,k+2
flip (uID⋆) ∈ Z(n+2d+k−1)×(k+2)

q . By Eq. (3), we have

ARID⋆ =

t∑
i=1

Tn,2d+k
flip (ai)RID⋆,i +

t+γτ∑
i=t+1

Tn+d−1,d+k+1
flip (ai)RID⋆,i

=

t∑
i=1

Tn,2d+k
flip (ai)T

2d−1,k+2
flip (rID⋆,i)

+

t+γτ∑
i=t+1

Tn+d+1,d+k+1
flip (ai)T

d,k+2
flip (rID⋆,i)

= Tn+2d−2,k+2
flip

(
t+γτ∑
i=1

airID⋆,i

)
= UID⋆ . (6)

With respect to the challenge ciphertext in Game4, Eq. (5), Eq. (6), and the
property of the ReRand algorithm in Lemma 5 ensure that

[b⊤
1 | · · · |b⊤

t+γτ | b′⊤]⊤ = 2
(
2−1(A · [IKe

| RID⋆ ])⊤s+ e′
)

= [A | UID⋆ ]⊤s+ 2e′ (7)

and the distribution of e′ is statistically indistinguishable from DZKe+(k+2)
q ,α′q

.

By Lemma 7 and Eq. (7), the challenge ciphertext in Game4 (bi)
t+γτ
i=1 and b′ can
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be written as

bi =

{
ai ⊙2d+k s+ 2ei if i ∈ [t]

ai ⊙d+k+1 s+ 2ei if i ∈ [t+ 1, t+ γτ ]

b′ = u⋆
ID ⊙k+2 s+ 2e′,

where the distribution of ei for each i ∈ [t], ei for each i ∈ [t+ 1, t+ γτ ], and e′

are statistically indistinguishable from D<2d+k
Zq,α′q [X], D<d+k+1

Zq,α′q [X], and D<k+2
Zq,α′q[X],

respectively.
Thus, the challenge ciphertexts of Game3 and Game4 are statistically indis-

tinguishable, and |Pr[E4]− Pr[E3]| = negl(n) holds.
Game5: We change how to compute the challenge ciphertext of coin = 0 from
Game4. Namely, we change how to compute (vi)

t+γτ
i=1 in Eq. (1). In Game5, first

sample zi
U←− Z<2d+k

q [X] and ei ← D<2d+k
Zq,αq

[X] for each i ∈ [t], and zi
U←−

Z<d+k+1
q [X] and ei ← D<d+k+1

Zq,αq
[X] for each i ∈ [t + 1, t + γτ ]. Then, compute

vi = zi + ei for each i ∈ [t + γτ ], run ReRand algorithm as Eq. (4), and output
the challenge ciphertext ((bi)

t+γτ
i=1 , b′ +m⋆).

We will show that |Pr[E5]− Pr[E4]| = Adv
MPLWEq,n+2d+k,d,DZq,αq

B,QROLID+⌈log(t+γτ)⌉+1,κ
(n) holds.

We construct a reduction algorithm B which solves MPLWEq,n+2d+k,d,DZq,αq

relative to the QROM using A. B receives (ai)
t+γτ
i=1 and (zi + ei)

t+γτ
i=1 , where

zi ∈ Z<2d+k
q [X] and ei ← D<2d+k

Zq,αq
[X] for each i ∈ [t] and zi ∈ Z<d+k+1

q [X] and
ei ← D<d+k+1

Zq,αq
[X] for each i ∈ [t+ 1, t+ γτ ].

The task of B is to distinguish whether zi is uniform or

zi =

{
ai ⊙2d+k s if i ∈ [t]

ai ⊙d+k+1 s if i ∈ [t+ 1, t+ γτ ],
(8)

where s
U←− Z<n+2d+k−1

q [X], ai
U←− Z<n

q [X] for each i ∈ [t], and ai
U←−

Z<n+d−1
q [X] for each i ∈ [t+ 1, t+ γτ ].

B sends mpk = (ai)
t+γτ
i=1 to A. Let Ĥ

U←−
Func({0, 1}≤LID+⌈log(t+γτ)⌉+1, {0, 1}κ) be a hash function chosen by B at
the beginning of the game. Upon a secret key reveal query ID ∈ ID by
A, B returns rID,i ← SampleZ(σ; Ĥ(ID∥i)) for each i ∈ [t + γτ ] to A.
Upon a quantum random oracle query

∑
ID,y αID,y |ID⟩ |y⟩ by A, B returns∑

ID y αID,y |ID⟩ |H(ID)⊕ y⟩, where H(ID) =
∑t+γτ

i=1 airID,i. B picks coin U←− {0, 1},
and if coin = 1, send a uniformly random ciphertext to A. Otherwise, let
v = [w⊤

1 +e⊤1 | · · · |w⊤
t+γτ +e⊤t+γτ ]

⊤ and run ReRand algorithm as Eq. (4). Then,
send the challenge ciphertext ((bi)

t+γτ
i=1 , b′ +m⋆) to A.

A returns ĉoin as a geuss value of coin to B. If coin = ĉoin holds, B outputs 1.
Otherwise, outputs 0. If (zi)

t+γτ
i=1 is obtained as Eq. (8), the view ofA corresponds

to Game4. Otherwise, it corresponds to Game5. Therefore, it holds that |Pr[E5]−
Pr[E4]| = Adv

MPLWEq,n+2d+k,d,DZq,αq

B,QROLID+⌈log(t+γτ)⌉+1,κ
(n).
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Game6: We change how to compute the challenge ciphertext of coin = 0 from
Game5. In Game6, first sample (vi)

t+γτ
i=1

U←− (Z<2d+k
q [X])t × (Z<d+k+1

q [X])γτ ,
ei ← D<2d+k

Zq,αq
[X] for each i ∈ [t], ei ← D<d+k+1

Zq,αq
[X] for each i ∈ [t + 1, t + γτ ],

and e′ ← D<k+2
Zq,α′q[X]. Let Ke = (2d+ k)t+ (d+ k + 1)γτ , v = [v⊤

1 | · · · |v⊤
t+γτ ]

⊤,
e = [e⊤1 | · · · |e⊤t+γτ | e′⊤]⊤, and RID⋆ as specified in Eq. (3) Then, compute

[b⊤
1 | · · · |b⊤

t+γτ | b′⊤]⊤ = [IKe
| RID⋆ ]⊤v + 2e

and output the challenge ciphertext ((bi)
t+γτ
i=1 , b′ +m⋆).

As mentioned in Game4, by Lemma 5, the challenge ciphertext of Game5
and Game6 are statistically indistinguishable. Therefore, it holds that |Pr[E6]−
Pr[E5]| = negl(n).

Note that bi can be written as bi = vi + 2ei. Also, by Lemma 7, b′ can be
written as

b′ =

t+γτ∑
i=1

rID⋆,i ⊙k+2 vi + 2e′. (9)

Game7: We change how to compute the challenge ciphertext of coin = 0 from
Game6. In Game7, the challenge ciphertext when coin = 0 is ((bi)

t+γτ
i=1 , b′)

U←− CT .
By the definition of IBE’s security game, A cannot obtain (rID⋆,i)

t+γτ
i=1 by

making the secret key reveal query.
∑t+γτ

i=1 rID,i ⊙k+2 vi in the right hand side
of Eq. (9) is statistically indistinguishable from a uniform polynomial since∑t

i=1 rID⋆,i · vi ∈ Z<4d+k−2
q [X] is distributed statistically close to uniform by

Lemma 4. Therefore, the challenge ciphertext of Game6 is statistically indistin-
guishable from that of Game7 and |Pr[E7]− Pr[E6]| = negl(n) holds.

In Game7, both the challenge ciphertexts of coin = 0 and coin = 1 are random
polynomials in CT and Pr[E7] =

1
2 holds. Thus, we have

AdvIBE
LVV-IBE,A(n) = |Pr[E0]−

1

2
|

≤
6∑

i=0

|Pr[Ei]− Pr[Ei+1]|+ |Pr[E7]−
1

2
|

≤ Adv
MPLWEq,n+2d+k,d,DZq,αq

B,QROLID+⌈log(t+γτ)⌉+1,κ
(n) + (Q2

H +QID) · negl(n).

⊓⊔

4 Revocable Identity-based Encryption

In this section, we review the definition of RIBE by following Katsumata et al.’s
one [15] and Takayasu’s one [30].
Syntax. A time space, a plaintext space, a ciphertext space, and an identity
space are denoted by T , M, CT , and ID, respectively. Let RLT ⊂ ID be a key
revocation list for a time period T ∈ T . A key revocation algorithm of RIBE is
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to add newly revoked identities to the revocation list. Users on the list are not
deleted. An RIBE scheme Π consists of the following six algorithms.

Setup(1λ)→ (mpk,msk): Setup algorithm takes a security parameter 1λ as in-
put, and outputs a master public key mpk and a master secret key msk.

SKGen(mpk,msk, ID)→ skID: SKGen algorithm takes mpk, msk, and an identity
ID ∈ ID as input, and outputs a secret key skID for the identity ID.

KeyUp(mpk,msk,T,RLT)→ kuT: KeyUp algorithm takes mpk, msk, a time pe-
riod T ∈ T , and a revocation list RLT ⊂ ID for the time period T as input,
and outputs a key update kuT for the time period T.

DKGen(mpk, skID, kuT)→ dkID,T / ⊥: DKGen algorithm takes mpk, skID, and kuT
as input. If the identity ID has not been revoked by T, this algorithm outputs
a decryption key dkID,T for ID and T. Otherwise, this algorithm outputs ⊥.

Encrypt(mpk, ID,T,m)→ ctID,T: Encrypt algorithm takes mpk, ID, T, and a
plaintext m ∈ M as input, and outputs a ciphertext ctID,T ∈ CT for ID
and T.

Decrypt(mpk, dkID,T, ctID,T)→ m′: Decrypt algorithm takes mpk, dkID,T, and
ctID,T as input, and outputs a decryption result m′.

Correctness. A ciphertext ctID,T ∈ CT for an identity ID and a time period T
has to be decrypted correctly by a decryption key dkID,T for ID and T if ID has
not been revoked by T. We consider all the possible situations of creating the
decryption key dkID,T. Namely, for all λ ∈ N, (mpk,msk)← Setup(1λ), ID ∈ ID,
T ∈ T , m ∈ M, and RLT ⊂ ID \ {ID}, we require m′ obtained by running
the following algorithms to satisfy m′ = m. (1) skID ← SKGen(mpk,msk, ID),
(2) kuT ← KeyUp(mpk,msk,T,RLT), (3) dkID,T ← DKGen(mpk, skID, kuT), (4)
ctID,T ← Encrypt(mpk, ID,T,m), and (5) m′ ← Decrypt(mpk, dkID,T, ctID,T).

Security. The security of RIBE is defined via a security game between an ad-
versary A and a challenger C. This game has a global counter Tcu which denotes
the current time period initialized with 1.

In the beginning of the security game, C runs (mpk,msk) ← Setup(1λ),
initializes a list SKList to (ID = kgc,msk), and sets a decryption key ku1 ←
KeyUp(mpk,msk,T = 1,RL1 = ϕ) for T = 1. Then, C sends mpk and ku1 to A.
A may adaptively make the following four queries.

Secret Key Generation Query: Upon a query ID ∈ ID by A, C checks if
(ID, ∗) ∈ SKList and returns ⊥ to A if this is the case. If not, C runs skID ←
SKGen(mpk,msk, ID), adds (ID, skID) to SKList, and returns nothing to A.
We require that all identities in the following queries except the challenge
query are “activated”. In other words, skID is generated via this query and
hence (ID, skID) ∈ SKList.

Secret Key Reveal Query: Upon a query ID ∈ ID by A, C finds skID in
SKList and returns it to A until the challenge query. After the challenge
query, C checks if Tcu ≥ T⋆ and ID /∈ RLT⋆ , then ID ̸= ID⋆. If this is not the
case, C returns ⊥ to A. Otherwise, C finds skID in SKList and returns it.
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Revoke & Key Update Query: Upon a query RL ⊆ ID by A, C checks if
RLTcu ⊆ RL until the challenge query. After the challenge query, C also checks
if Tcu = T⋆ − 1 holds and A has already made the secret key reveal query
on ID⋆, then ID⋆ ∈ RLT. If these conditions are not satisfied, C returns ⊥
to A. Otherwise, C updates Tcu ← Tcu + 1 and RLTcu ← RL, runs kuTcu ←
KeyUp(mpk,msk,T,RLTcu), and returns kuTcu .

Challenge Query: A is allowed to make this query only once in this game.
Upon a query (m⋆, ID⋆,T⋆) by A, C checks if T⋆ ≤ Tcu holds and skID⋆

has been revealed to A, then ID ∈ RLT⋆ . If this is not the case, C re-
turns ⊥. Otherwise, C picks coin

U←− {0, 1}. If coin = 0, C returns ct⋆ ←
Encrypt(mpk, ID⋆,T⋆,m⋆) to A. If coin = 1, C returns ct⋆

U←− CT to A.

At some point in this game, A outputs ĉoin ∈ {0, 1} as a guess value of coin
and terminates this game.

We say that A wins if ĉoin = coin holds. Let AdvRIBE
Π,A (λ) = |Pr[ĉoin =

coin]− 1
2 | be A’s advantage in this game. We say that an RIBE scheme Π satisfies

the adaptive anonymity if AdvRIBE
Π,A (λ) = negl(λ) holds for all PPT adversary

A.

5 Our RIBE Scheme

In this section, we propose an RIBE scheme. In advance, we prepare parameters,
binary tree data structures, and the KUNode algorithm [25] to describe the
proposed scheme. In Section 5.1, we propose our RIBE scheme. In Section 5.2,
we prove the correctness of the scheme and set the parameters.

Here, we define notation to describe our RIBE scheme. Let q be a prime
number, and n = Θ(λ), d, t, k, γ, τ , LID, LT , and T be positive integers.
Let α, α′, σ be positive real numbers. The plaintext space, the identity space,
the ciphertext space, and the time period space are defined as M = {0, 1}k+2,
ID = 0||{0, 1}LID , CT = (Z<2d+k

q [X])t × (Z<d+k+1
q [X])γτ × (Z<k+2

q [X])LID+1,
and T = {0, 1}LT , respectively by following Takayasu [30]. For ID ∈ ID and
ℓ ∈ [0, LID], let ID[0 : ℓ] be the first ℓ + 1 bits of ID. A hash function H :
{0, 1}≤LID+LT +1 → Z<n+2d−2

q [X] will be modeled as a random oracle in the
security proof.

We use a binary tree BT which has 2LID leaf nodes to manage users’ iden-
tities. BT’s nodes of depth ℓ are assigned ℓ + 1 bits whose first bit is 0. Es-
pecially, the root node is assigned 0. For a node assigned a bit sequence θ,
the left and right child nodes are assigned θ∥0 and θ∥1, respectively. We note
that each leaf node is assigned some identity ID ∈ ID. We use the KUNode
algorithm [25] to realize a key revocation mechanism as known lattice-based
RIBE schemes [15,30,31,32,33]. The KUNode algorithm takes a set of leaf nodes
RLT = {ID1, . . . , IDR} as input and outputs a set of nodes KUT = {θ1, . . . θr}
such that

– If ID /∈ RLT holds, there exists a unique node ID[0 : ℓ] ∈ KUT for some
ℓ ∈ [0, LID].
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output

Fig. 1. Example of how identities are managed and the KUNode algorithm works

– If ID ∈ RLT holds, there is no node ID[0 : ℓ] ∈ KUT for all ℓ ∈ [0, LID].

Moreover, |KUT| = O(|RLT|(LID − log |RLT|)) holds.
Figure 1 illustrates how identities are managed and the KUNode algorithm

works. In Figure 1, let LID = 3. The algorithm takes a revoked identities list
{0010, 0011} as input and outputs a node list {01, 000}. For each non-revoked
identity, we can find a unique node which is in the output and on the path to
the corresponding leaf node.

5.1 Construction

We describe our RIBE scheme Π.

Setup(1λ)→ (mpk,msk): Run ((ai)
t+γτ
i=1 , (wi,j)

(t,γτ)
(i,j)=(1,1)) ← TrapGen(1n) and

output mpk = (ai)
t+γτ
i=1 and msk = (wi,j)

(t,γτ)
(i,j)=(1,1).

SKGen(mpk,msk, ID)→ skID: Let uID = H(ID∥0). Output skID = (rID,i)
t+γτ
i=1 ←

SamplePre(mpk,msk, uID, σ). By Lemma 6, it holds that
∑t+γτ

i=1 airID,i = uID.
KeyUp(mpk,msk,T,RLT)→ kuT: First, run the KUNode algorithm with input a

key revocation list RLT ⊂ ID and obtain KUT = {θ1, . . . θr}. Then, for each
node θj ∈ KUT, run (rT,θj ,i)

t+γτ
i=1 ← SamplePre(mpk,msk, uT,θj , σ), where

uT,θj = H(θj∥T). Finally, output kuT = (KUT, ((rT,θj ,i)
t+γτ
i=1 )θj∈KUT

). By
Lemma 6, it holds that

∑t+γτ
i=1 airT,θj ,i = uT,θj .

DKGen(mpk, skID, kuT)→ dkID,T / ⊥: DKGen algorithm takes mpk, skID =
(rID,i)

t+γτ
i=1 , and kuT = (KUT = {θ1, . . . , θr}, ((rT,θj ,i)

t+γτ
i=1 )θj∈KUT

) as in-
put. Then, find θj ∈ KUT such that ID[0 : ℓ] = θj for some ℓ ∈ [0, LID].
If such θj does not exist, output ⊥. Otherwise, output a decryption key
dkID,T = (dID,T,i)

t+γτ
i=1 = (rID,i + rT,θj ,i)

t+γτ
i=1 . By Lemma 6, it holds that∑t+γτ

i=1 aidID,T,i =
∑t+γτ

i=1 ai(rID,i + rT,θj ,i) = uID + uT,θj .

Encrypt(mpk, ID,T,m)→ ctID,T: Sample s
U←− Z<n+2d+k−1

q [X], ei ← D<2d+k
Zq,α′q [X]

for each i ∈ [t], ei ← D<d+k+1
Zq,α′q [X] for each i ∈ [t + 1, t + γτ ], and e′ℓ ←
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D<k+2
Zq,α′q[X] for ℓ ∈ [0, LID]. Then, compute ctID,T = ((bi)

t+γτ
i=1 , (b′ℓ)

LID
ℓ=0 );

bi =

{
ai ⊙2d+k s+ 2ei, if i ∈ [t]

ai ⊙d+k+1 s+ 2ei, if i ∈ [t+ 1, t+ γτ ]
,

b′ℓ = m+ (uID + uT,ID[0:ℓ])⊙k+2 s+ 2e′ℓ.

Decrypt(mpk, dkID,T, ctID,T)→ m′: Find ℓ ∈ [0, LID] such that
∑t+γτ

i=1 aidID,T,i =
uID + uT,ID[0:ℓ] and output

m′ =

(
b′ℓ −

t+γτ∑
i=1

bi ⊙k+2 dID,T,i mod q

)
mod 2.

5.2 Correctness and Parameter Settings

The following lemma states that our scheme satisfies the correctness with over-
whelming probability.

Theorem 3. For a positive real α′ < (8
√
2ω(log n)σK + 1)−1 and a positive

integer K = t(2d − 1) + γτd, our RIBE scheme satisfies the correctness with
overwhelming probability in n.

Proof Overview of Theorem 3. Before giving the complete proof, we first
briefly sketch our proof overview.

By the property of the KUNode algorithm, each non-revoked user can find a
unique node θj ∈ KUT such that ID[0 : ℓ] = θj for some ℓ ∈ [0, LID]. Therefore,
the DKGen algorithm does not output ⊥. When the Decrypt algorithm operates
as specified, by Lemma 7 and the fact that

∑t+γτ
i=1 aidID,T,i =

∑t+γτ
i=1 ai(rID,i +

rT,ID[0:ℓ],i) = uID + uT,ID[0:ℓ] holds, we have

b′ℓ −
t+γτ∑
i=1

bi ⊙ dID,T,i

= m+ (uID + uT,ID[0:ℓ])⊙ s+ 2e′ℓ −
t+γτ∑
i=1

(ai ⊙ s)⊙ dID,T,i − 2

t+γτ∑
i=1

ei ⊙ dID,T,i

= m+
(((((((((
(uID + uT,ID[0:ℓ])⊙ s−

��������t+γτ∑
i=1

(aidID,T,i)⊙ s+ 2

(
e′ℓ −

t+γτ∑
i=1

ei ⊙ dID,T,i

)
︸ ︷︷ ︸

error terms

.

Since the error terms are small by Lemma 2, we can recover the plaintext m.
Proof of Theorem 3. Hereafter, we provide the complete of Theorem 3 and
parameter restrictions.

Proof. By the property of the KUNode algorithm, each non-revoked user can
find a unique node θj ∈ KUT such that ID[0 : ℓ] = θj for some ℓ ∈ [0, LID].
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Therefore, the DKGen algorithm does not output ⊥. Since bi = ai ⊙2d+k s+ 2ei
holds for each i ∈ [t] and bi = ai⊙d+k+1 s+2ei holds for each i ∈ [t+1, t+ γτ ],
when the Decrypt algorithm operates as specified, we have

b′ℓ −
t+γτ∑
i=1

bi ⊙k+2 dID,T,i

= m+ (uID + uT,ID[0:ℓ])⊙k+2 s+ 2e′ℓ −
t∑

i=1

(ai ⊙2d+k s)⊙k+2 dID,T,i

−
t+γτ∑
i=t+1

(ai ⊙d+k+1 s)⊙k+2 dID,T,i − 2

t+γτ∑
i=1

ei ⊙k+2 dID,T,i.

Then, by Lemma 7 and the fact that
∑t+γτ

i=1 aidID,T,i = uID + uT,ID[0:ℓ] holds as
we explained in the DKGen algorithm, we have

m+ (uID + uT,ID[0:ℓ])⊙k+2 s+ 2e′ℓ −
t∑

i=1

(ai ⊙2d+k s)⊙k+2 dID,T,i

−
t+γτ∑
i=t+1

(ai ⊙d+k+1 s)⊙k+2 dID,T,i − 2

t+γτ∑
i=1

ei ⊙k+2 dID,T,i

= m+
(((((((((((
(uID + uT,ID[0:ℓ])⊙k+2 s+ 2e′ℓ

−
����������t+γτ∑
i=1

(aidID,T,i)⊙k+2 s− 2

t+γτ∑
i=1

ei ⊙k+2 dID,T,i

= m+ 2

(
e′ℓ −

t+γτ∑
i=1

ei ⊙k+2 dID,T,i

)
︸ ︷︷ ︸

error terms

.

If ∥e′ℓ −
∑t+γτ

i=1 ei ⊙k+2 dID,T,i∥∞ < q
8 holds, the decryption of our RIBE

scheme satisfies the correctness. Let

A = [Tn,2d−1(a1)| · · · |Tn,2d−1(at)|Tn+d−1,d(at+1)| · · · |Tn+d−1,d(at+γτ )],

rID = [r⊤ID,1| · · · |r⊤ID,t+γτ ]
⊤, rT,ID[0:ℓ] = [r⊤T,ID[0:ℓ],1| · · · |r

⊤
T,ID[0:ℓ],t+γτ ]

⊤.

By Lemma 6, the property of the SamplePre algorithm ensures that rID and
rT,ID[0:ℓ] are distributed statistically close to DΛ⊥

uID
(A) and DΛ⊥

uT,ID[0:ℓ]
(A), respec-

tively. Therefore, by Lemma 2, it holds that

∥rID,i∥∞ ≤ ω(
√

log n)σ, ∥rT,ID[0:ℓ],i∥∞ ≤ ω(
√

log n)σ

∥ei∥∞ ≤ ω(
√
log n)α′q, ∥e′ℓ∥∞ ≤ ω(

√
log n)α′q
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with overwhelming probability in n. We have

∥e′ℓ −
t+γτ∑
i=1

ei ⊙k+2 dID,T,i∥∞

≤ ∥e′ℓ∥∞ + ∥
t+γτ∑
i=1

ei ⊙k+2 dID,T,i∥∞

≤ ω(
√
log n)α′q +K(

√
2ω(
√

log n)σ)(ω(
√

log n)α′q),

where K = t(2d − 1) + dγτ . Thus, we have ∥e′ℓ −
∑t+γτ

i=1 ei ⊙k+2 dID,T,i∥∞ < q
8

if α′ < (8
√
2ω(log n)σK + 1)−1. ⊓⊔

To guarantee the correctness and the adaptive anonymity of our RIBE
scheme, parameters have to satisfy the following restrictions.

– For the correctness, α′ < (8
√
2ω(log n)σK + 1)−1 holds.

– By Lemma 6, q = poly(n), d ≤ n, dt
n = Ω(log n), σ = ω(log2 n)

√
ndt, and

γ = n+2d−2
d hold to apply TrapGen and SamplePre algorithms properly.

– By Lemma 4, d ≤ n, σ = ω(1), q = poly(n), q = ω(
√
log n)σ, and dt

n =
Ω(log n) hold so that the master public key is statistically indistinguishable
from uniform.

– By Lemma 6, σ > 16
√
log 2(2d− 1)/π holds to apply SampleZ algorithm

properly.
– By Lemma 5, α′

2α >
√

2σ2((2d− 1)t+ dγτ)(LID + 1) + 1 and αq >

ω(
√

log(t(2d+ k) + γτd+ (K + 2)(LID + 1))) hold to apply ReRand algo-
rithm properly.

– MPLWEq,n+2d+k,d,DZ,αq
assumption holds. In other words, by Lemma 9,

q = Ω(α−1nc+1) and PLWE
(f)
Zq,ᾱq

assumption holds for a constant c > 0,
a polynomial f ∈ E(T,d, n + 2d + k) of degree m ∈ [2d + k, n] such that
EF(f) = O(nc), ᾱ = Ω(

√
m/q), and 1 ≥ ᾱ ≥ 2

√
n+2d+k
qT by Lemma 9.

We set the parameters as follows:

d = Θ(n), k = Θ(n), t = log n, γ =
n+ 2d− 2

d
, LID = Θ(n), σ = n1+µ0 ,

q = n4.5+4µ0+c
√

LID, τ = ⌈log q⌉, α′ = (n2+2µ0)−1, α =
(
n3.5+4µ0

√
LID

)−1

,

where µ0 > 0 can be set arbitrarily small and c > 0 is a parameter of the PLWE
assumption.

5.3 Tight Adaptive Anonymity in the QROM

The following theorem states that our RIBE scheme Π in Section 5 satisfies the
tight adaptive anonymity in the QROM.
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Theorem 4. Our RIBE scheme Π in Section 5 satisfies the adaptive anonymity
in the QROM under the parameter settings and the MPLWE assumption. In
particular, for any quantum adversary A making at most QH queries to |H⟩
and QID secret key reveal queries, there exists a quantum algorithm B making
QH +QID +

∑
T∈T #kuT quantum random oracle queries such that

AdvRIBE
Π,A (λ) ≤ Adv

MPLWEq,n+2d+k,d,DZq,αq

B,QROLID+LT +⌈log(t+γτ)⌉+1,κ
(λ)+(Q2

H+QID+
∑
T∈T

#kuT)·negl(λ)

and Time(B) = Time(A) + (QH +QID +
∑

T∈T #kuT) · poly(λ), where κ denotes
the length of randomness for SampleZ,

∑
T∈T #kuT denotes the number of key

updates created during the security game, and

d =

{
2d+ k (if i ∈ [t])

d+ k + 1 (if i ∈ [t+ 1, t+ γτ ]).

Proof Overview of Theorem 4. Before giving the complete proof, we first
briefly sketch our proof overview. Let ct⋆ = ((bi)

t+γτ
i=1 , (b′ℓ)

LID
ℓ=0 ) be a challenge

ciphertext for coin = 0. In the first step, we show that ct⋆ for coin = 0 is
computationally indistinguishable if we replace (bi)

t+γτ
i=1 with a set of uniform

polynomials. In the second step, we show that ct⋆ for coin = 0 is statistically
indistinguishable if we replace (b′ℓ)

LID
ℓ=0 with a set of uniform polynomials.

First, we explain an overview of the first step. We do not run the TrapGen

algorithm but sample (ai)
t+γτ
i=1

U←− (Z2d−1
q [X])t × (Zd

q [X])γτ and send mpk =

(ai)
t+γτ
i=1 to A at the beginning of the game. The property of the TrapGen algo-

rithm (Lemma 6) ensures that the change is statistically indistinguishable. To an-
swerA’s quantum random oracle query

∑
ID,y αID,y |ID⟩ |y⟩, we first choose a hash

function Ĥ
U←− Func({0, 1}≤LID+T +⌈log(t+γτ)⌉+1, {0, 1}κ), where κ is the length of

a random seed for the SampleZ algorithm. To program H(ID∥0) (resp. H(θj∥T)),
we use Ĥ(ID∥0∥i) (resp. Ĥ(θj∥T∥i)) as an input random seed and run rID,i ←
SampleZ(σ; Ĥ(ID∥0∥i)) (resp. rT,θj ,i ← SampleZ(σ; Ĥ(θj∥T∥i))) for each i ∈
[t+γτ ]. Then, we set H(ID∥0) =

∑t+γτ
i=1 airID,i (resp. H(θj∥T) =

∑t+γτ
i=1 airT,θj ,i).

Lemma 4 ensures that the change is statistically indistinguishable. To cre-
ate skID = (rID,i)

t+γτ
i=1 (resp. (rT,θj ,i)

t+γτ
i=1 ∈ kuT), we use the above rID,i ←

SampleZ(σ; Ĥ(ID∥0∥i)) (resp. rT,θj ,i ← SampleZ(σ; Ĥ(θj∥T∥i))) for each i ∈
[t + γτ ]. Lemma 4 and the property of the SamplePre algorithm (Lemma 6)
ensure that the change is statistically indistinguishable. To answer the challenge
query on (m⋆, ID⋆,T⋆), we replace (bi)

t+γτ
i=1 with a set of uniform polynomials if

coin = 0. The MPLWE assumption ensures that the change is computationally
indistinguishable. Finally, we use skID⋆ = (rID⋆,i)

t+γτ
i=1 and (rT⋆,ID⋆[0:ℓ],i)

t+γτ
i=1 , and

set b′ℓ for ℓ ∈ [0, LID] by computing

b′ℓ =

t+γτ∑
i=1

(rID⋆,i + rT,ID⋆[0:ℓ],i)⊙k+2 bi + 2e′ℓ.
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The property of the ReRand algorithm (Lemma 5) ensures that the change is
statistically indistinguishable. Thus, we can replace (bi)

t+γτ
i=1 with a set of uniform

polynomials.
Next, we explain an overview of the second step. For this purpose, we divide

A’s attack strategy into two types depending on whether A receives skID⋆ by
making a secret key reveal query. If A receives skID⋆ , the security definition of
RIBE ensures that ID⋆ is revoked by T⋆. Then, the property of the KUNode
algorithm ensures that A cannot receive (rT⋆,ID⋆[0:ℓ],i)

t+γτ
i=1 for ℓ ∈ [0, LID] by

making revoke and key update queries. Thus, each
∑t+γτ

i=1 rT,ID⋆[0:ℓ],i ⊙k+2 bi +
2e′ℓ for ℓ ∈ [0, LID] is indistinguishable from uniform due to the entropy of
each (rT⋆,ID⋆[0:ℓ],i)

t+γτ
i=1 . Therefore, we can replace (b′ℓ)

LID
ℓ=0 with a set of uniform

polynomials. If A does not receive skID⋆ , the property of the KUNode algorithm
ensures that there is (rT⋆,ID⋆[ℓ⋆],i)

t+γτ
i=1 for a unique ℓ⋆ ∈ [0, LID] which A receives

by making a revoke and key update query. In other words, A cannot receive
(rT⋆,ID⋆[0:ℓ],i)

t+γτ
i=1 for ℓ ∈ [0, LID]\{ℓ⋆}. Thus, each

∑t+γτ
i=1 rT,ID⋆[0:ℓ],i⊙k+2bi+2e′ℓ

for ℓ ∈ [0, LID] \ {ℓ⋆} is indistinguishable from uniform due to the entropy of
each (rT⋆,ID⋆[0:ℓ],i)

t+γτ
i=1 . Therefore, we can replace (b′ℓ)ℓ∈[0,LID]\{ℓ⋆} with a set

of uniform polynomials. Finally,
∑t+γτ

i=1 rID⋆,i ⊙k+2 bi + 2e′ℓ⋆ is indistinguishable
from uniform due to the entropy of skID⋆ = (rID⋆,i)

t+γτ
i=1 . Therefore, we can also

replace b′ℓ⋆ with a set of uniform polynomials.
Proof of Theorem 4. Hereafter, we provide the complete proof of Theorem 4.

Proof. We show the tight adaptive anonymity of our RIBE scheme via the fol-
lowing security games. Let Ei denote an event that A wins in game i.
Game0: Game0 is the original security game. The challenger C chooses a hash
function H : {0, 1}≤LID+LT +1 → Z<n+2d−2

q [X] at the beginning of the game.
Upon a quantum random oracle query

∑
ID∥T,y αID∥T,y |ID∥T⟩ |y⟩ by the adver-

sary A, C returns
∑

ID∥T,y αID∥T,y |ID∥T⟩ |H(ID∥T)⊕ y⟩.
Game1: We change how to answer the quantum random ora-
cle queries from Game0. In Game1, C chooses a function Ĥ

U←−
Func({0, 1}≤LID+LT +⌈log(t+γτ)⌉+1, {0, 1}κ) at the beginning of the game. With
respect to H(ID∥0), sample coefficient vectors rID,i ← SampleZ(σ; Ĥ(ID∥0∥i)) for
each i ∈ [t+γτ ] and compute H(ID∥0) =

∑t+γτ
i=1 airID,i. With respect to H(θj∥T),

sample coefficient vectors rT,θj ,i ← SampleZ(σ; Ĥ(θj∥T∥i)) for each i ∈ [t + γτ ]

and compute H(θj∥T) =
∑t+γτ

i=1 airT,θj ,i. Here, SampleZ(σ; Ĥ(ID∥0∥i)) and
SampleZ(σ; Ĥ(θj∥T∥i)) denote running SampleZ(σ) with Ĥ(ID∥0∥i) and
Ĥ(θj∥T∥i) as input random seeds, respectively.

By Lemma 4, H(ID∥0) and H(θj∥T) are statistically indistinguishable from
uniform. Therefore, Lemma 1 ensures that |Pr[E0] − Pr[E1]| = negl(n) +
4Q2

H

√
negl(n) = Q2

H · negl(n), where QH is the number of random oracle queries.

Game2: We change how to generate a secret key (rID,i)
t+γτ
i=1 and a key update

(rT,θj ,i)
t+γτ
i=1 from Game1. In Game2, we do not use SamplePre algorithm. Instead,

upon a secret key reveal query of ID, return rID,i ← SampleZ(σ; Ĥ(ID∥0∥i)) for
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each i ∈ [t + γτ ] to A. Similarly, upon a key update query of (θj ,T), return
rT,θj ,i ← SampleZ(σ; Ĥ(θj∥T∥i)) for each i ∈ [t+ γτ ].

Let A = [Tn,2d−1(a1)| · · · |Td,n+d−1(at+γτ )]. By Lemma 6, the property of
the SamplePre algorithm ensures that rID = [r⊤ID,1| · · · |r⊤ID,t+γτ ]

⊤ of Game1 is sta-
tistically indistinguishable from the discrete Gaussian distribution DΛ⊥

uID
(A),σ.

Moreover, by Lemma 4, rID = [r⊤ID,1| · · · |r⊤ID,t+γτ ]
⊤ of Game2 is also statisti-

cally indistinguishable from DΛ⊥
uID

(A),σ. Similarly, the distributions of rT,θj =

[r⊤T,θj ,1| · · · |r
⊤
T,θj ,t+γτ ]

⊤ in Game1 and Game2 are statistically indistinguishable
from DΛ⊥

uT,θj
(A),σ. Since A obtains

∑
T∈T #kuT key updates and at most QID

secret keys during the game, we have |Pr[E2]−Pr[E1]| = (QID +
∑

T∈T #kuT) ·
negl(n).
Game3: We change how to generate the master public key from Game2. In
Game3, the master public key is chosen by running (ai)

t+γτ
i=1

U←− (Zn
q [X])t ×

(Zn+d−1
q [X])γτ .
By Lemma 6, the property of the TrapGen algorithm ensures that mpk

of Game2 is statistically indistinguishable from uniform, therefore |Pr[E3] −
Pr[E2]| = negl(n) holds.
Game4: We change how to compute the challenge ciphertext of coin = 0 from
Game3. Let Ke = t(2d + k) + γτ(d + k + 1). In Game4, first, sample s

U←−
Z<n+2d+k−1
q [X], ei ← D<2d+k

Zq,αq
[X] for each i ∈ [t], and ei ← D<d+k+1

Zq,αq
[X] for

each i ∈ [t+ 1, t+ γτ ]. Then, compute

vi =

{
ai ⊙2d+k s+ ei if i ∈ [t]

ai ⊙d+k+1 s+ ei if i ∈ [t+ 1, t+ γτ ].
(10)

By Eq. (10) and Lemma 7, we have

vi =

{
Tn,2d+k
flip (ai)

⊤s+ ei if i ∈ [t]

Tn+d−1,d+k+1
flip (ai)

⊤s+ ei if i ∈ [t+ 1, t+ γτ ].
(11)

Let v = [v⊤
1 | · · · |v⊤

t+γτ ]
⊤ ∈ ZKe

q and

RID⋆,T⋆,ℓ,i

=

{
T2d−1,k+2
flip (rID⋆,i + rT⋆,ID⋆[ℓ],i) ∈ Z(2d+k)×(k+2)

q if i ∈ [t]

Td,k+2
flip (rID⋆,i + rT⋆,ID⋆[ℓ],i) ∈ Z(d+k+1)×(k+2)

q if i ∈ [t+ 1, t+ γτ ]

RID⋆,T⋆,ℓ =

 RID⋆,T⋆,ℓ,1

...
RID⋆,T⋆,ℓ,t+γτ

 ∈ ZKe×(k+2)
q (ℓ ∈ [0, LID]). (12)

Then, run

[b0| · · · |bt+γτ |b′
1| · · · |b′

LID
]
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← 2 · ReRand
(
2−1[IKe | RID⋆,T⋆,0| · · · |RID⋆,T⋆,LID ],v, αq,

α′

2α

)
(13)

and output the challenge ciphertext ((bi)
t+γτ
i=1 , (b′ℓ +m⋆)LID

ℓ=0 ).
We will show that the ReRand algorithm can be applied properly. There is

a restriction on the maximum singular value of the ReRand algorithm’s input
matrix, therefore we will evaluate it. We have

s1([IKe | RID⋆,T⋆,0| · · · |RID⋆,T⋆,LID ])
2 ≤

LID∑
ℓ=0

s1(RID⋆,T⋆,ℓ)
2 + 1

≤
LID∑
ℓ=0

t+γτ∑
i=1

s1(RID⋆,T⋆,ℓ,i)
2 + 1

and

s1(RID⋆,T⋆,ℓ,i)
2 = max

∥h∥=1
∥T2d−1,k+2(rID⋆,i + rT⋆,ID⋆[ℓ],i)∥h2

= max
∥h∥=1

∥T2d−1,k+2(rID⋆,i + rT⋆,ID⋆[ℓ],i)T
k+2,1(h)∥2

= max
∥h∥=1

∥T2d+k,1((rID⋆,i + rT⋆,ID⋆[ℓ],i)h)∥2

≤ ∥rID⋆,i∥2 + ∥rT⋆,ID⋆[ℓ],i∥2

≤ 2σ2(2d− 1)

for each i ∈ [t]. By a similar argument for each i ∈ [t+ 1, t+ γτ ], it follows that
if α′

2α >
√
2σ2((2d− 1)t+ dγτ)(LID + 1) + 1 holds, ReRand algorithm can be

applied properly.
We will show that the challenge ciphertext is statistically indistinguish-

able between Game3 and Game4. Let e = [e⊤1 | · · · |e⊤t+γτ ]
⊤ ∈ ZKe

q and A =

[Tn,2d+k
flip (a1)| · · · |Tn+d−1,d+k+1

flip (at+γτ )] ∈ Z(n+2d+k−1)×Ke
q . By Eq. (11), we have

A⊤s+ e =


Tn,2d+k
flip (a1)

⊤

...
Tn+d−1,d+k+1
flip (at+γτ )

⊤

 s+

 e1
...

et+γτ


= [v⊤

1 | · · · |v⊤
t+γτ ]

⊤ = v. (14)

Let

UID⋆,T⋆,ℓ = Tn+2d−2,k+2
flip (uID⋆ + uT⋆,ID⋆[ℓ])

∈ Z(n+2d+k−1)×(k+2)
q (ℓ ∈ [0, LID]).

By Eq. (12), we have

ARID⋆,T⋆,ℓ =

t∑
i=1

Tn,2d+k
flip (ai)RID⋆,T⋆,ℓ,i +

t+γτ∑
i=t+1

Tn+d−1,d+k+1
flip (ai)RID⋆,T⋆,ℓ,i
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=

t∑
i=1

Tn,2d+k
flip (ai)T

2d−1,k+2
flip (rID⋆,i + rT⋆,ID⋆[ℓ],i)

+

t+γτ∑
i=t+1

Tn+d+1,d+k+1
flip (ai)T

d,k+2
flip (rID⋆,i + rT⋆,ID⋆[ℓ],i)

= Tn+2d−2,k+2
flip

(
t+γτ∑
i=1

ai(rID⋆,i + rT⋆,ID⋆[ℓ],i)

)
= UID⋆,T⋆,ℓ (15)

for each ℓ ∈ [0, LID]. Eq. (13), Eq. (14), Eq. (15), and the property of the ReRand
algorithm in Lemma 5 ensure that

[b1| · · · |bt+γτ |b′
0| · · · |b′

LID
]

= 2
(
2−1 (A · [IKe | RID⋆,T⋆,0| · · · |RID⋆,T⋆,LID ])

⊤
s+ e′

)
= [A | UID⋆,T⋆,0| · · · |UID⋆,T⋆,LID ]

⊤s+ 2e′ (16)

and the distribution of e′ is statistically indistinguishable from
DZKe+(k+2)(LID+1)

q ,α′q
. By Lemma 7 and Eq. (16), the challenge ciphertext

in Game4 (bi)
t+γτ
i=1 and (b′ℓ)

LID
ℓ=0 can be written as

bi =

{
ai ⊙2d+k s+ 2ei if i ∈ [t]

ai ⊙d+k+1 s+ 2ei if i ∈ [t+ 1, t+ γτ ]

b′ℓ = (uID⋆ + uT⋆,ID⋆[ℓ])⊙k+2 s+ 2e′ℓ (ℓ ∈ [0, LID]),

where the distribution of ei for each i ∈ [t], ei for each i ∈ [t + 1, t + γτ ],
and e′ℓ for each ℓ ∈ [0, LID] are statistically indistinguishable from D<2d+k

Zq,α′q [X],
D<d+k+1

Zq,α′q [X], and D<k+2
Zq,α′q[X], respectively.

Thus, the challenge ciphertexts of Game3 and Game4 are statistically indis-
tinguishable, thus |Pr[E4]− Pr[E3]| = negl(n) holds.
Game5: We change how to compute the challenge ciphertext of coin = 0 from
Game4. Namely, we change how to compute (vi)

t+γτ
i=1 in Eq. (10). In Game5,

first sample zi
U←− Z<2d+k

q [X] and ei ← D<2d+k
Zq,αq

[X] for each i ∈ [t], and zi
U←−

Z<d+k+1
q [X] and ei ← D<d+k+1

Zq,αq
[X] for each i ∈ [t + 1, t + γτ ]. Then, compute

vi = zi + ei for each i ∈ [t+ γτ ], run ReRand algorithm as Eq. (13), and output
the challenge ciphertext ((bi)

t+γτ
i=1 , (b′ℓ +m⋆)LID

ℓ=0 ).

We will show that |Pr[E5] − Pr[E4]| = Adv
MPLWEq,n,d,DZq,αq

B,QROLID+LT +⌈log(t+γτ)⌉+1,κ
(n)

holds. We construct a reduction algorithm B which solves
MPLWEq,n+2d+k,d,DZq,αq

relative to the QROM using A. B receives (ai)
t+γτ
i=1

and (zi + ei)
t+γτ
i=1 , where zi ∈ Z<2d+k

q [X], ei ← D<2d+k
Zq,αq

[X] for each i ∈ [t] and
zi ∈ Z<d+k+1

q [X], ei ← D<d+k+1
Zq,αq

[X] for each i ∈ [t+ 1, t+ γτ ].
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The task of B is to distinguish whether zi is uniform or

zi =

{
ai ⊙2d+k s if i ∈ [t]

ai ⊙d+k+1 s if i ∈ [t+ 1, t+ γτ ],
(17)

where s
U←− Z<n+2d+k−1

q [X], ai
U←− Z<n

q [X] for each i ∈ [t], and ai
U←−

Z<n+d−1
q [X] for each i ∈ [t+ 1, t+ γτ ].

B sends mpk = (ai)
t+γτ
i=1 to A. Let Ĥ

U←−
Func({0, 1}≤LID+LT +⌈log(t+γτ)⌉+1, {0, 1}κ) be a hash function chosen by B
at the beginning of the game. Upon a secret key reveal query ID ∈ ID by A, B
returns rID,i ← SampleZ(σ; Ĥ(ID∥0∥i)) for each i ∈ [t+ γτ ] to A. Upon a revoke
and key update query RLT ⊂ ID by A, B runs the KUNode algorithm and
obtains KUT = {θ1, . . . , θr}. Then, B returns rT,θj ,i ← SampleZ(σ; Ĥ(θj∥T∥i))
for each (i, θj) ∈ [t + γτ ] × KUT to A. Upon a quantum random oracle query∑

ID∥T,y αID∥T,y |ID∥T⟩ |y⟩ by A, B returns
∑

ID∥T,y αID∥T,y |ID∥T⟩ |H(ID∥T)⊕ y⟩,
where H(ID∥T = 0) =

∑t+γτ
i=1 airID,i and H(ID∥T > 1) =

∑t+γτ
i=1 airT,ID,i. B

picks coin
U←− {0, 1}, and if coin = 1, send a uniformly random ciphertext to A.

Otherwise, let v = [w⊤
1 + e⊤1 | · · · |w⊤

t+γτ + e⊤t+γτ ]
⊤ and run ReRand algorithm

as Eq. (13). Then, send the challenge ciphertext ((bi)
t+γτ
i=1 , (b′ℓ +m⋆)LID

ℓ=0 ) to A.
A returns ĉoin as a geuss value of coin to B. If coin = ĉoin, B outputs 1.

Otherwise, outputs 0. If (zi)
t+γτ
i=1 is obtained as Eq. (17), the view of A corre-

sponds to Game4. Otherwise, it corresponds to Game5. Therefore, it holds that

|Pr[E5]− Pr[E4]| = Adv
MPLWEq,n,d,DZq,αq

B,QROLID+LT +⌈log(t+γτ)⌉+1,κ
(n).

Game6: We change how to compute the challenge ciphertext of coin = 0 from
Game5. In Game6, first sample (vi)

t+γτ
i=1

U←− (Z<2d+k
q [X])t × (Z<d+k+1

q [X])γτ ,
ei ← D<2d+k

Zq,α′q [X] for each i ∈ [t], ei ← D<d+k+1
Zq,α′q [X] for each i ∈ [t + 1, t +

γτ ], and e′ℓ ← D<k+2
Zq,α′q[X] for each ℓ ∈ [0, LID]. Let Ke = t(2d + k) + γτ(d +

k + 1), v = [v⊤
1 | · · · |v⊤

t+γτ ]
⊤ ∈ ZKe

q , e = [e⊤1 | · · · |e⊤t+γτ |e′0⊤| · · · |e′LID
⊤]⊤ ∈

ZKe+(LID+1)(k+2)
q , and RID⋆,T,ℓ ∈ ZKe×(k+2)

q as specified in Eq. (12). Then,
compute

[b⊤
1 | · · · |b⊤

t+γτ |b′
0
⊤| · · · |b′

LID
⊤]⊤

= [IKe
| RID⋆,T⋆,0| · · · |RID⋆,T⋆,LID ]

⊤v + 2e

and output the challenge ciphertext ((bi)
t+γτ
i=1 , (b′ℓ +m⋆)LID

ℓ=0 ).
As mentioned in Game4, by Lemma 5, the challenge ciphertext of Game5

and Game6 are statistically indistinguishable. Therefore, it holds that |Pr[E6]−
Pr[E5]| = negl(n).

Note that bi can be written as bi = vi + 2ei. Also, by Lemma 7, b′ℓ can be
written as

b′ℓ =

t+γτ∑
i=1

(rID⋆,i + rT⋆,ID⋆[ℓ],i)⊙k+2 vi + 2e′ℓ. (18)
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Game7: We change how to compute the challenge ciphertext of coin =
0 from Game6. In Game7, the challenge ciphertext when coin = 0 is
((bi)

t+γτ
i=1 , (b′ℓ)

LID
ℓ=0 )

U←− CT . We will show that the challenge ciphertext of Game6
and Game7 is statistically indistinguishable.

If ID⋆ ∈ RLT⋆ , A cannot obtain (rT⋆,ID⋆[ℓ],i)
t+γτ
i=1 in the key update kuT⋆ for

each ℓ ∈ [0, LID] by the property of KUNode algorithm. For each ℓ ∈ [0, LID],
a statistical distance between a distribution of(

(vi)
t+γτ
i=1 ,

t+γτ∑
i=1

rT⋆,ID⋆[ℓ],i ⊙k+2 vi

)
in Eq. (18) and a uniform distribution is negl(n) since(

(vi)
t+γτ
i=1 ,

t∑
i=1

rT⋆,ID⋆[ℓ],i · vi ∈ Z<4d+k−2
q [X]

)
is distributed statistically close to uniform by Lemma 4. Therefore, a statistical
distance between a distribution of(vi)

t+γτ
i=1 ,

(
t+γτ∑
i=1

rT⋆,ID⋆[ℓ],i ⊙k+2 vi

)LID

ℓ=0


and a uniform distribution is (LID + 1) · negl(n) = negl(n). Thus, challenge
ciphertext ((bi)

t+γτ
i=1 , (b′ℓ)

LID
ℓ=0 ) in Game6 is statistically indistinguishable from the

challenge ciphertext in Game7.
If ID⋆ /∈ RLT⋆ , by the definition of RIBE’s security game, A cannot ob-

tain skID⋆ = (rID⋆,i)
t+γτ
i=1 by making the secret key reveal query. Furthermore,

the property of the KUNode algorithm ensures that A receives the key up-
date (rT⋆,ID⋆[ℓ′],i)

t+γτ
i=1 for only one ℓ′ ∈ [0, LID]. By a discussion similar to

that of ID⋆ ∈ RLT⋆ , for ℓ ∈ [0, LID] \ {ℓ′}, a statistical distance between
a distribution of

(
(vi)

t+γτ
i=1 ,

∑t+γτ
i=1 rT⋆,ID⋆[ℓ],i ⊙k+2 vi

)
and a uniform distri-

bution is negl(n). Similarly, a statistical distance between a distribution of(
(vi)

t+γτ
i=1 ,

∑t+γτ
i=1 rID⋆,i ⊙k+2 vi

)
and a uniform distribution is negl(n). There-

fore, the statistical distance between a distribution of(vi)
t+γτ
i=1 ,

t+γτ∑
i=1

rID⋆,i ⊙k+2 vi,

(
t+γτ∑
i=1

rT⋆,ID⋆[ℓ],i ⊙k+2 vi

)
ℓ∈[0,LID]\{ℓ′}


and a uniform distribution is (LID + 1) · negl(n) = negl(n). Thus, challenge
ciphertext ((bi)

t+γτ
i=1 , (b′ℓ)

LID
ℓ=0 ) in Game6 is statistically indistinguishable from the

challenge ciphertext in Game7. Therefore, |Pr[E7]− Pr[E6]| = negl(n) holds.
In Game7, both the challenge ciphertexts of coin = 0 and coin = 1 are random

samples in CT and Pr[E7] =
1
2 holds. Thus, we have

AdvRIBE
Π,A (n) = |Pr[E0]−

1

2
|
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≤
6∑

i=0

|Pr[Ei]− Pr[Ei+1]|+ |Pr[E7]−
1

2
|

≤ Adv
MPLWEq,n+2d+k,d,DZq,αq

B,QROLID+LT +⌈log(t+γτ)⌉+1,κ
(n) + (Q2

H +QID +
∑
T∈T

#kuT) · negl(n).

⊓⊔

6 Our RIBE Scheme with Bounded DKER

In this section, we propose an RIBE scheme achieving bounded decryption key
exposure resistance (DKER). We give some backgrounds and preliminaries on
RIBE with bounded DKER in Section 6.1 and Section 6.2, respectively. We
propose our construction and prove its adaptive anonymity in Section 6.3 and
Section 6.4, respectively.

6.1 Background

Seo and Emura [28] introduced a security notion called decryption key exposure
resistance (DKER). DKER is a stronger security notion than the simplest notion
defined by Boldyreva et al. [5]. DKER ensures an RIBE scheme is secure even
when the decryption key of the target identity ID⋆ is revealed. It is believed that
an adaptive-identity secure RIBE scheme with DKER based on LWE can be
constructed, but no concrete construction has been proposed so far. 4 Moreover,
all previous adaptive-identity RIBE schemes achieving DKER do not satisfy the
anonymity. However, a selective-identity RIBE scheme that satisfies DKER and
the anonymity can be obtained by applying Katsumata et al.’s generic construc-
tion [15] to our RIBE scheme and the selective-identity hierarchical IBE scheme
on MPLWE [20]. Takayasu and Watanabe [31,32] introduced a weaker security
notion called bounded DKER. Bounded DKER is a variant of DKER and there
is a-priori number QD and an adversary is allowed to make the decryption key re-
veal query of ID⋆ at most QD. As discussed in [31,32], bounded DKER is enough
to be secure against exposure of the decryption key in practice because it rarely
happens so many times. Takayasu’s RIBE scheme [30] can be transformed into a
scheme with the anonymity and bounded DKER. However, an adaptive-identity
RIBE scheme with the anonymity and bounded DKER based on MPLWE has
not been constructed. In this paper, we propose an RIBE scheme with bounded
DKER based on the MPLWE assumption. Table 3 compares Takayasu’s RIBE
with bounded DKER and our scheme. Our scheme achieves a shorter master
public key and a secret key compared to Takayasu’s RIBE.

4 Wang et al. [33] claimed to construct the adaptive-identity hierarchical RIBE scheme
on LWE in the ROM. However, this scheme is based on Agrawal et al.’s [3] hierar-
chical IBE scheme on LWE which is selective-identity secure, therefore, the security
proof is doubtful.
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6.2 Preliminaries on RIBE with Bounded DKER

We give some preliminaries on RIBE with Bounded DKER.
Cover Free Family. We use the following result of the cover free family to
construct an RIBE scheme achieving the bounded DKER.

Definition 8 ([11]). Let α,G,W,Q be positive integers and F = {Fi}αi=1 be a
family of subsets of [G], where |Fi| = W for each i ∈ [α]. If

⋃Q
j=1 Fij ̸⊃ FiQ+1

holds for any Fi1 , . . . ,FiQ+1
∈ F such that Fik ̸= Fiℓ for any distinct k, ℓ ∈

[Q+ 1], F is termed as W -uniform Q-cover-free.

Lemma 10 ([18]). There is a deterministic polynomial time algorithm CFF.Gen
which takes positive integers α and Q as input, and outputs a positive integer
G and a W -uniform Q-cover-free family F = {Fi}αi=1 over [G], where G ≤
16Q2 logα and W = G

4Q .

Anonymous RIBE achieving Bounded DKER. Takayasu and Watan-
abe [31] formalized bounded DKER which is a weaker security notion than the
full DKER. In RIBE with bounded DKER, an adversary A is allowed to make
the decryption key reveal queries on the target identity ID⋆ at most QD times
for a-priori positive integer QD as well as the queries described in Section 4.

Decryption Key Reveal Query: Until the challenge query, upon a query
(ID,T) ∈ ID × T by A, C checks (1) T ≤ Tcu and (2) ID /∈ RLT. After
the challenge query, C also checks (3) (ID,T) ̸= (ID⋆,T⋆) and (4) Tcu ≥ T⋆,
dkID⋆,T has been revealed toAQD times by the decryption key reveal queries,
and ID ̸= ID⋆. If the all conditions are satisfied, C finds skID from SKList and
returns dkID,T ← DKGen(mpk, skID, kuT) to A. Otherwise, returns ⊥ to A.

To capture this query, we change several queries described in Section 4. Upon
the revoke & key update query by A, C also checks Tcu = T⋆ − 1, dkID⋆,T has
been revealed to A QD times by the decryption key reveal queries, and ID⋆ ∈ RL.
Upon the challenge query by A, C also checks (1) T⋆ ≤ Tcu and A has made
a decryption key reveal query (ID⋆,T⋆), and (2) T⋆ ≤ Tcu, dkID⋆,T has been
revealed to A more than QD times, and ID⋆ ∈ RLT⋆ .

We note that our RIBE scheme in Section 5 does not satisfy (bounded)
DKER. A can obtain ID⋆’s decryption key (dID,T,i)

t+γτ
i=1 = (rID,i + rT,θj ,i)

t+γτ
i=1

and the key update (rT,θj ,i)
t+γτ
i=1 if ID⋆ has not been revoked by T⋆. Therefore, A

can retrieve ID⋆’s secret key by computing (rID⋆,i)
t+γτ
i=1 = (dID,T,i − rT,θj ,i)

t+γτ
i=1 .

6.3 Construction

In this section, we propose our RIBE scheme with bounded DKER.
Let G be a positive integer. A hash function H : {0, 1}≤LID+LT +⌈logG⌉+1 →

Z<n+2d−2
q [X] will be modeled as a random oracle in a security proof. Other no-

tations are the same as in Section 5. Our bounded DKER RIBE scheme consists
of the following algorithms.
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Table 3. Comparison among adaptively secure RIBE schemes with bounded DKER
based on LWE and MPLWE in the (Q)ROM

Scheme |mpk| |ct| |skID|

Takayasu-RIBE [30]
(with Bounded DKER)

O(n2 log2 n) O(LIDn logn) O(Gn2 log2 n)

Our Scheme O(n log2 n) O(LIDn logn) O(Gn log2 n)

Scheme Anonymity
Reduction

loss
Model Assumption

Takayasu-RIBE [30]
(with Bounded DKER)

✓ O(1) QROM LWE

Our Scheme ✓ O(1) QROM MPLWE

n denotes the security parameter. |mpk|, |ct|, and |skID| denote the
size of a master public key, a ciphertext for a n-bit plaintext, and a
secret key, respectively. LID = O(n) denotes the length of an identity.
Let G = poly(n) be a positive integer proportional to QD, where QD

is the bounded number of the decryption key reveal queries.

Setup(1n)→ (mpk,msk): Run ((ai)
t+γτ
i=1 , (wi,j)

(t,γτ)
(i,j)=(1,1)) ← TrapGen(1n) and

output mpk = (ai)
t+γτ
i=1 and msk = (wi,j)

(t,γτ)
(i,j)=(1,1).

SKGen(mpk,msk, ID)→ skID: For g ∈ [G], run ((rID,g,i)
t+γτ
i=1 )Gg=1 ←

SamplePre(mpk,msk, uID,g, σ), where uID,g = H(ID∥g∥0), and output skID =

((rID,g,i)
t+γτ
i=1 )Gg=1. By Lemma 6, it holds that

∑t+γτ
i=1 airID,g,i = uID,g.

KeyUp(mpk,msk,T,RLT)→ kuT: First, run the KUNode algorithm with input a
key revocation list RLT ⊂ ID and obtain KUT = {θ1, . . . θr}. Then, for each
node θj ∈ KUT, run (rT,θj ,i)

t+γτ
i=1 ← SamplePre(mpk,msk, uT,θj , σ), where

uT,θj = H(θj∥0∥T). Finally, output kuT = (θj , (rT,θj ,i)
t+γτ
i=1 )θj∈KUT

for the
time period T. By Lemma 6, it holds that

∑t+γτ
i=1 airT,θj ,i = uT,θj .

DKGen(mpk, skID, kuT)→ dkID,T / ⊥: DKGen algorithm takes mpk, skID =
((rID,g,i)

t+γτ
i=1 )g∈FT

, and kuT = (KUT = {θ1, . . . , θr}, ((rT,θj ,i)
t+γτ
i=1 )θj∈KUT

) as
input. Then, find θj ∈ KUT such that ID[0 : ℓ] = θj for some ℓ ∈ [0, LID]. If
such θj does not exist, output⊥. Otherwise, output a decryption key dkID,T =
(dID,T,i)

t+γτ
i=1 = (

∑
g∈FT

rID,g,i+rT,θj ,i)
t+γτ
i=1 for (ID,T). By Lemma 6, it holds

that
∑t+γτ

i=1 aidID,T,i =
∑t+γτ

i=1 ai(
∑

g∈FT
rID,g,i + rT,θj ,i) =

∑
g∈FT

uID,g +
uT,θj .

Encrypt(mpk, ID,T,m)→ ctID,T: Sample s
U←− Z<n+2d+k−1

q [X], ei ← DZ2d+k
q ,α′q

for each i ∈ [t], ei ← DZd+k+1
q ,α′q for each i ∈ [t+1, t+γτ ], and e′ℓ ← DZk+2

q ,α′q

for ℓ ∈ [0, LID]. Then, compute

bi =

{
ai ⊙2d+k s+ 2ei if i ∈ [t]

ai ⊙d+k+1 s+ 2ei if i ∈ [t+ 1, t+ γτ ]
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b′ℓ = m+

∑
g∈FT

uID,g + uT,ID[0:ℓ]

⊙k+2 s+ 2e′ℓ (ℓ ∈ [0, LID])

and output ctID,T = ((bi)
t+γτ
i=1 , (b′ℓ)

LID
ℓ=0 ).

Decrypt(mpk, dkID,T, ctID,T)→ m′: Find ℓ ∈ [0, LID] such that
∑t+γτ

i=1 aidID,T,i =
uID + uT,ID[0:ℓ]. Then, output

m′ =

(
b′ℓ −

t+γτ∑
i=1

bi ⊙k+2 dID,T,i mod q

)
mod 2.

The following lemma states that our scheme satisfies the correctness with
overwhelming probability.

Theorem 5. For a positive real number α′ < (8
√
W + 1ω(log n)σK+1)−1 and

a positive integer K = t(2d− 1) + γτd, the scheme satisfies the correctness with
overwhelming probability in n.

Proof. By the property of the KUNode algorithm, each non-revoked user can
find a unique node θj ∈ KUT such that ID[0 : ℓ] = θj for some ℓ ∈ [0, LID].
Therefore, the DKGen algorithm does not output ⊥. Since bi = ai ⊙2d+k s+ 2ei
holds for each i ∈ [t] and bi = ai⊙d+k+1 s+2ei holds for each i ∈ [t+1, t+ γτ ],
when the Decrypt algorithm operates as specified, we have

b′ℓ −
t+γτ∑
i=1

bi ⊙k+2 dID,T,i

= m+

∑
g∈FT

uID,g + uT,ID[0:ℓ]

⊙k+2 s+ 2e′ℓ −
t∑

i=1

(ai ⊙2d+k s)⊙k+2 dID,T,i

−
t+γτ∑
i=t+1

(ai ⊙d+k+1 s)⊙k+2 dID,T,i − 2

t+γτ∑
i=1

ei ⊙k+2 dID,T,i.

Then, by Lemma 7 and the fact that
∑t+γτ

i=1 aidID,T,i =
∑

g∈FT
uID,g + uT,ID[0:ℓ]

holds as we explained in the DKGen algorithm, we have

m+

∑
g∈FT

uID,g + uT,ID[0:ℓ]

⊙k+2 s+ 2e′ℓ −
t∑

i=1

(ai ⊙2d+k s)⊙k+2 dID,T,i

−
t+γτ∑
i=t+1

(ai ⊙d+k+1 s)⊙k+2 dID,T,i − 2

t+γτ∑
i=1

ei ⊙k+2 dID,T,i

= m+

���������������∑
g∈FT

uID,g + uT,ID[0:ℓ]

⊙k+2 s+ 2e′ℓ
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−
����������t+γτ∑
i=1

(aidID,T,i)⊙k+2 s− 2

t+γτ∑
i=1

ei ⊙k+2 dID,T,i

= m+ 2

(
e′ℓ −

t+γτ∑
i=1

ei ⊙k+2 dID,T,i

)
︸ ︷︷ ︸

error terms

.

If ∥e′ℓ −
∑t+γτ

i=1 ei ⊙k+2 dID,T,i∥∞ < q
8 , the decryption of the scheme satisfies

the correctness. Let

A = [Tn,2d−1(a1)| · · · |Tn,2d−1(at)|Tn+d−1,d(at+1)| · · · |Tn+d−1,d(at+γτ )],

rID,g = [r⊤ID,g,1| · · · |r⊤ID,g,t+γτ ]
⊤, rT,ID[0:ℓ] = [r⊤T,ID[0:ℓ],1| · · · |r

⊤
T,ID[0:ℓ],t+γτ ]

⊤.

By Lemma 6, rID,g and rT,ID[0:ℓ] are distributed statistically close to DΛ⊥
uID,g

(A)

and DΛ⊥
uT,ID[0:ℓ]

(A), respectively. Therefore, by Lemma 2, for each g ∈ FT and

ℓ ∈ [0, LID], it holds that

∥rID,g,i∥∞ ≤ ω(
√

log n)σ, ∥rT,ID[0:ℓ],i∥∞ ≤ ω(
√
log n)σ

∥ei∥∞ ≤ ω(
√
log n)α′q, ∥e′ℓ∥∞ ≤ ω(

√
log n)α′q

with overwhelming probability in n. We have

∥e′ℓ −
t+γτ∑
i=1

ei ⊙k+2 dID,T,i∥∞

≤ ∥e′ℓ∥∞ + ∥
t+γτ∑
i=1

ei ⊙k+2 dID,T,i∥∞

≤ ∥e′ℓ∥∞ + ∥
t+γτ∑
i=1

ei ⊙k+2 rT,ID[0:ℓ],i∥∞ +
∑
g∈FT

∥
t+γτ∑
i=1

ei ⊙k+2 rID,g,i∥∞

≤ ω(
√
log n)α′q +K(

√
W + 1ω(

√
log n)σ)(ω(

√
log n)α′q),

where K = t(2d − 1) + dγτ . Thus, we have ∥e′ℓ −
∑t+γτ

i=1 ei ⊙k+2 dID,T,i∥∞ < q
8

if α′ < (8
√
W + 1ω(log n)σK + 1)−1 holds. ⊓⊔

To guarantee the correctness and the adaptive anonymity of the scheme,
parameters have to satisfy the following restrictions.

– For the correctness, α′ < (8
√
W + 1ω(log n)σK + 1)−1 holds.

– By Lemma 6, q = poly(n), d ≤ n, dt
n = Ω(log n), σ = ω(log2 n)

√
ndt, and

γ = n+2d−2
d hold to apply TrapGen and SamplePre algorithms properly.

– By Lemma 4, d ≤ n, σ = ω(1), q = poly(n), q = ω(
√
log n)σ, and dt

n =
Ω(log n) hold to the public key is statistically indistinguishable from uniform.

– By Lemma 6, σ > 16
√
log 2(2d− 1)/π holds to apply SampleZ algorithm

properly.
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– By Lemma 5, α′

2α >
√

2σ2((2d− 1)t+ dγτ)(LID + 1) + 1 and αq >

ω(
√

log(t(2d+ k) + γτd+ (K + 2)(LID + 1))) holds to apply ReRand algo-
rithm properly.

– MPLWEq,n+2d+k,d,DZ,αq
assumption holds. In other words, by Lemma 9,

q = Ω(α−1nc+1) and PLWE
(f)
Zq,ᾱq

assumption holds for a constant c > 0,
a polynomial f ∈ E(T,d, n + 2d + k) of degree m ∈ [2d + k, n] such that
EF(f) = O(nc), ᾱ = Ω(

√
m/q), and 1 ≥ ᾱ ≥ 2

√
n+2d+k
qT by Lemma 9.

To satisfy these restrictions, we set

d = Θ(n), k = Θ(n), t = log n, γ =
n+ 2d− 2

d
, LID = Θ(n), σ = n1+µ2 ,

q =
√
WLIDn

4.5+4µ2+c, τ = ⌈log q⌉,

α′ = (
√
Wn2+2µ2)−1, α = (

√
WLIDn

3.5+4µ2)−1,

where µ2 > 0 can be set arbitrarily small and c > 0 is a parameter of the PLWE
assumption.

6.4 Security

A security proof is also almost the same as that of Theorem 4. The only difference
is the discussion in Game7 because Eq. (18) is replaced by the following equation.

b′ℓ =

t+γτ∑
i=1

∑
g∈FT

rID⋆,g,i + rT⋆,ID⋆[ℓ],i

⊙k+2 vi + 2e′ℓ

If ID⋆ ∈ RLT⋆ , by the same discussion in Game7 of the security proof of The-
orem 4, the challenge ciphertext is statistically indistinguishable from uniform.
If ID⋆ /∈ RLT⋆ , even when an adversary A obtains at most QD decryption keys
dkID⋆,T⋆ for T ̸= T⋆, Lemma 10 ensures that at least one rID⋆,g,i in (rID⋆,g,i)g∈FT

is not revealed to A. Therefore, by a similar discussion in Game7 the proof of
Theorem 4, the challenge ciphertext is statistically indistinguishable from uni-
form.

7 Conclusion

In this paper, we prove the tight adaptive anonymity of LVV-IBE in the QROM
and propose an RIBE scheme achieving tight adaptive anonymity in the QROM.
Moreover, we also propose an RIBE scheme achieving bounded DKER as well
as tight adaptive anonymity in the QROM.
Acknowledgement. This research was partially supported by JST CREST
Grant Number JPMJCR2113, Japan, and JSPS KAKENHI Grant Number
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