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Abstract—Know Your Customer (KYC) is a core component of
the Anti-Money Laundering (AML) framework, designed to pre-
vent illicit activities within financial systems. However, enforcing
KYC and AML on blockchains remains challenging due to diffi-
culties in establishing accountability and preserving user privacy.
This study proposes REGKYC, a privacy-preserving Attribute-
Based Access Control (ABAC) framework that balances user
privacy with externally mandated KYC and AML requirements.
REGKYC leverages a structured ABAC model to support the
flexible verification of KYC attributes and the enforcement of
compliance policies, providing benefits to multiple stakeholders.
First, it enables legitimate users to meet compliance requirements
while preserving the privacy of their on-chain activities. Second,
it empowers Crypto-asset Service Providers (CASPs) to tailor
compliance policies to operational needs, ensuring adaptability to
evolving regulations. Finally, it enhances regulatory accountabil-
ity by enabling authorized deanonymization of malicious actors.
We hope this work inspires future research to harmonize user
privacy and regulatory compliance in blockchain systems.

Index Terms—Blockchain, Compliance, Privacy, Know Your
Customer (KYC), Attribute-Based Access Control (ABAC)

I. INTRODUCTION

In traditional finance, Know Your Customer (KYC) proce-
dures are implemented as part of regulatory obligations under
Anti-Money Laundering (AML) frameworks to prevent illicit
activities and ensure financial stability. In the context of the
EU and UK, financial institutions such as banks, investment
firms, insurance companies, and money service businesses
are required to perform KYC under the EU’s Anti-Money
Laundering Directive (AMLD) and the UK’s Money Laun-
dering Regulations (MLR). KYC procedures often involve
collecting and verifying customer information, such as identity
documents, proof of address, and financial history.

In the cryptocurrency space, Crypto-asset Service Providers
(CASPs) such as Centralized Exchanges (CEXs) and custo-
dian wallet providers are often required to implement KYC
procedures. The EU’s 5th AMLD (AMLD5) extended AML
regulations to include CASPs, while the Markets in Crypto-
Asset (MiCA) regulation built a broader regulatory framework
and reinforced AML obligations. Similarly, the UK’s amended
MLR (2019) brought CASPs under AML compliance.

However, the pseudonymous and decentralized nature of
blockchain presents unique challenges for KYC, making it
difficult to determine the identity behind on-chain fund flows
once assets leave a regulated platform. Typically, KYC in
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the cryptocurrency space is only feasible at points where fiat
currencies are exchanged for cryptocurrencies or vice versa.
CEXs, which serve as key entry and exit points for users within
the blockchain system, are therefore required to verify and
ensure the legitimacy of users’ identities.

Although KYC procedures are widely adopted by CEXs for
AML compliance, they remain insufficient in addressing sev-
eral fundamental challenges. First, from the regulatory aspect,
although the KYC process at CEXs links user identities to
their initial on-chain addresses, there is no simple mechanism
to determine whether a given on-chain address corresponds to
an identifiable user. This gap in traceability presents significant
issues when blockchain addresses are used for illicit activities.
Without a clear and verifiable link between a blockchain
address and a real-world identity, regulatory bodies cannot
enforce accountability against criminal activities.

Second, from the perspective of CASPs, they will face in-
creasingly stringent compliance requirements as the regulatory
framework evolves. For example, verifying user nationality
is crucial to comply with AML and sanctions regulations,
as it helps identify individuals from high-risk or sanctioned
jurisdictions. This ensures that CASPs can apply due diligence
to prevent illicit activity. In addition, under the reverse solici-
tation rule, as outlined in Article 61 of the MiCA regulation,
while CASPs are allowed to serve non-EU customers who
actively seek out their services without being solicited, CASPs
must still demonstrate that such interactions were initiated by
the customer and not through proactive promotion. Without
a reliable mechanism to determine the nationality behind
blockchain addresses, CASPs may face compliance breaches.

Third, from the user’s perspective, the privacy of a legiti-
mate user should be protected after withdrawing assets from
a CEX to on-chain addresses. However, through blockchain
analytics, the CEX can monitor all subsequent transactions
linked to a given identity. The recent US court ruling on
Tornado Cash (TC), an on-chain mixing service, underscores
the tension between privacy and regulation. TC was sanctioned
in August 2022 for facilitating money laundering, but in
November 2024, the court overturned the sanction, stating
that targeting immutable smart contracts exceeded regulatory
authority1. This affirms the value of user privacy while high-
lighting the challenge of aligning it with AML compliance.

1Court overturns US sanctions against cryptocurrency mixer Tornado Cash.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L0843
https://eur-lex.europa.eu/eli/reg/2023/1114/oj
https://eur-lex.europa.eu/eli/reg/2023/1114/oj
https://www.legislation.gov.uk/uksi/2019/1511/made
https://www.reuters.com/legal/court-overturns-us-sanctions-against-cryptocurrency-mixer-tornado-cash-2024-11-27/


To mitigate these challenges, we propose REGKYC, a struc-
tured Attribute-Based Access Control (ABAC) [1] framework
that balances user privacy with externally imposed AML and
KYC compliance requirements in blockchain systems. From
a regulatory perspective, REGKYC enables blockchain ad-
dresses to be linked to verifiable identities without disclosing
specific details under normal circumstances. In cases of illicit
activities, REGKYC provides a mechanism for authorized
deanonymization, ensuring accountability while preserving
privacy in regular operations. From the CASPs’ perspective,
REGKYC enables the design of tailored compliance policies,
allowing flexible verification of KYC attributes and their
combinations. This empowers CASPs to serve customers
confidently while meeting evolving regulatory requirements.
From the users’ perspective, REGKYC ensures their on-chain
activities remain unlinkable to their real-world identity by
CEXs while maintaining compliance when interacting with
CASPs. We summarize our main contributions as follows:
• REGKYC Design. We propose REGKYC, a privacy-

preserving ABAC system that balances user privacy with ex-
ternally imposed AML and KYC compliance requirements
on smart contract-enabled blockchains. REGKYC enables
CASPs to define tailored compliance policies. It also allows
legitimate users to prove KYC verification and attribute
compliance while preventing CEXs from linking users’
KYC identities to their on-chain activities. In addition,
it provides regulators with a mechanism to deanonymize
malicious addresses when accountability is required.

• Evaluation. We evaluate the gas cost, scalability, and off-
chain computation of the PRIVKYC pool, a core component
in the REGKYC framework. The results demonstrate effi-
cient gas usage and scalability, supporting up to 230 depos-
itors, aligning with Ethereum’s projected address growth.
The evaluation also shows the need to balance depositor
capacity with the feasibility of circuit generation time.

• Application. We discuss REGKYC’s flexibility in verify-
ing different combinations of KYC attributes. This allows
CASPs to design tailored attribute verification mechanisms
aligned with their service needs, addressing current compli-
ance requirements while adapting to future regulations.

II. RELATED WORK

ABAC system. ABAC is a dynamic access control model that
grants or denies access to resources based on the evaluation of
policies against a set of attributes [1]. In recent years, some
researchers have explored integrating the ABAC framework
into blockchain systems to enhance privacy protection [2, 3].
Blockchain-based KYC Solutions. Martens et al. [4] ex-
plored the potential of blockchain for KYC. Mansoor et al. [5]
provided a review of blockchain-based decentralized KYC
solutions. Hussain and Usmani [6] proposed a decentralized
KYC framework to enhance efficiency and reduce costs.
Blockchain-based Privacy Solutions. Bernabe et al. [7] high-
lighted the primary goals of privacy protection in blockchain
systems: anonymity, which ensures that participants’ identities
remain undisclosed; unlinkability, which prevents transactions

or blockchain addresses from being associated with one an-
other; and confidentiality, which safeguards the content of
transactions or smart contract data. Various cryptographic
techniques are utilized to achieve these objectives. Peng et
al. [8] provided a taxonomy of these techniques, including
Zero-Knowledge Proofs (ZKPs), secure multi-party computa-
tion, homomorphic encryption, ring signatures, etc. Among
these solutions, mixing services such as TC [9] have proven
highly effective in breaking the traceability of transactions
and blockchain addresses. TC utilizes Zero-Knowledge Suc-
cinct Non-Interactive Argument of Knowledge (zk-SNARK)
to anonymize transactions by allowing users to deposit funds
into a smart contract and later withdraw them to a new address,
thus achieving anonymity and unlinkability.
Privacy-Preserving KYC Solutions. Pauwels et al. [10] intro-
duced zkKYC, which uses ZKPs and self-sovereign identity to
enable privacy-preserving KYC in blockchain systems. Sun et
al. [11] introduced a privacy-preserving KYC scheme for
cross-chain identity management and compliance. Biryukov et
al. [12] proposed KYCE, which uses cryptographic accumu-
lators and ZKPs for compliance and privacy.
Compliance-Oriented Privacy Solutions. Academic research
is actively exploring regulatory-compliant privacy solutions.
For example, Buterin et al. [13] introduced two proof methods
for privacy pools: membership proofs to show funds belong to
a legitimate set and exclusion proofs to prove funds are not
linked to illicit sources. Dotan et al. [14] introduces Haze and
Daze, two compliant privacy mixers with mechanisms to block
or retroactively deanonymize non-compliant users.

Our work draws inspiration from on-chain mixers such as
TC but differs in three aspects. First, REGKYC enables KYC
verification while preserving privacy. Second, REGKYC in-
troduces a deanonymization mechanism, ensuring traceability
when necessary. Third, REGKYC supports verifying specific
combinations of KYC attributes to meet diverse compliance
needs, beyond the generic privacy focus of mixers.

III. PRELIMINARIES

We adopt standard approaches [14–16] in defining foun-
dational concepts. We denote the security parameter by 1λ

and the negligible function negl(λ). Public key pk is derived
deterministically from private key sk: pk = EXTRACTPK(sk).
The concatenation of binary strings k and r is denoted as k||r.

A. Hash Function
A hash function converts inputs of varying lengths into a

fixed-size output. Denoted as a family H , each function within
this family maps binary strings {0, 1}∗ to a fixed output size
{0, 1}λ. A family H is considered collision-resistant if no
probabilistic polynomial-time (PPT) adversary A can, with
non-negligible probability, find two distinct inputs x and x′

such that h(x) = h(x′) for a randomly selected h ∈ H .

B. Digital Signature
A digital signature is a cryptographic method to verify the

authenticity and integrity of digital messages. In blockchain,
it authorizes transactions and data authenticity.

2



• Setup: Given a security parameter 1λ, (pk, sk)← Setup(1λ)
initializes system parameters and generates sk and pk.

• Sign: Given the private key sk, σ ← Sign(sk,m) processes
the message m to produce a unique signature σ, which is
later verifiable by the corresponding public key pk.

• Verify: This function validates whether a signature σ for a
message m was generated using the sk corresponding to pk.
It outputs a Boolean result, 0/1← Verify(pk,m, σ).

C. ZKP and zk-SNARK

A ZKP is a cryptographic protocol that typically involves a
prover convincing a verifier that they know a witness w related
to a public statement x, without disclosing w [17, 18].

A ZKP protocol must satisfy three properties: complete-
ness, soundness, and zero-knowledge [17–19]. Completeness
ensures that if w is a valid witness for the statement x,
then an honest prover will always convince the verifier to
accept the proof. Soundness implies that if the statement is
false, an honest verifier will reject it with high probability.
Zero-knowledge ensures that the protocol does not reveal any
information about the w other than the fact that the x is true.

A zk-SNARK [20] is a specialized type of ZKP that enables
a prover to convince a verifier of the truth of a statement,
with the additional properties of succinctness and simulation
extractability [21]. Succinctness indicates that the zk-SNARK
system produces proofs that are very small in size and can be
verified in constant time. Simulation extractability ensures that
even if an attacker can access simulated proofs, they cannot
produce a valid proof without knowing w.
• Setup: Given a circuit C, (Sp, Sv) ← Setup(1λ, C) gener-

ates the public parameters for the prover and verifier.
• Prove: Given Sp, x and w, the prover generates a proof,

represented as π ← Prove(Sp, x, w).
• Verify: Given Sv , x and π, the verifier outputs either true

or false, represented as 0/1← Verify(Sv, x, π).

D. Commitment Scheme

A commitment scheme [22] is a cryptographic protocol that
allows one party to commit to a chosen value while keeping it
hidden from another party with the option of later revealing the
committed value. A commitment scheme consists of two main
phases: commit and reveal. In the commit phase, the committer
generates a commitment to a value m using a random value r,
resulting in a commitment com = commit(m, r). In the reveal
phase, the committer can open the commitment by providing
m and r. The receiver can verify the commitment and decide
whether to accept it or not: 0/1← verify(m, r, com).

E. Merkle Tree

A Merkle tree is a cryptographic data structure designed
to efficiently verify the integrity and membership of data
elements. Following previous studies [15, 16], we define:
• T.Setup: Given a security parameter λ and a list L =
(l1, l2, . . . , lk), this setup function builds a Merkle tree
whose leaves are L and returns the root hash root as output.
Formally, we define root← T.Setup(1λ, L).

• T.Prove: This function generates a membership proof for an
element lj ∈ {0, 1}∗, given its index j (1 ≤ j ≤ k) and the
list L = (l1, . . . , lk). Formally, pathj ← T.Prove(j, lj , L)
outputs a proof pathj to show that lj is indeed in L.

• T.Verify: This function takes an element lj ∈ {0, 1}∗, an
index j (1 ≤ j ≤ k), the root hash root ∈ {0, 1}λ, and pathj

as a proof. Formally, 0/1 ← T.Verify(j, lj , root, pathj)
outputs 1 if π correctly verifies that lj is in the tree.

• T.Update: This function updates the tree by replacing the
j-th element lj ∈ L with a new element l ∈ {0, 1}∗.
Formally, root′ ← T.Update(root, j, l) recomputes root′ =
T.Setup(1λ, L′) where L′ is list L with lj replaced by l,
and root is the root computed by the list L.

F. Public-Key Encryption

A public-key encryption scheme allows a sender to encrypt
messages using a public key so that only the intended recipient,
who possesses the corresponding private key, can decrypt
them. The system consists of three core functions:
• Setup: (pk, sk) ← Setup(1λ) generates a pair of keys: a

public key pk and a private key sk.
• Encrypt: c ← Encrypt(m, pk) takes as input the pk and a

message m to produce a ciphertext c.
• Decrypt: m ← Decrypt(c, sk) uses the private key sk and

the ciphertext c to recover the original message m.

G. Threshold Encryption

Threshold Encryption [23] is a cryptographic scheme that
encrypts a message such that decryption requires collaboration
from at least t out of n authorized parties, where n is the total
number of parties and t ≤ n is the threshold.
• Setup: (pk, {ski}ni=1) ← Setup(1λ, t, n) generates a public

encryption key pk and a set of private decryption key shares
{sk1, sk2, ..., skn} for n participating parties.

• Encrypt: c = Encrypt(pk,m) takes as input the public key
pk and a message m to produce a ciphertext c.

• Decrypt: m = Combine({ParticialDecrypt(ski, c)}) re-
quires at least t decryption shares to recover the original
message m. First, each party i generates a partial decryption
DecSharei = ParticialDecrypt(ski, c) using its private key
share ski. Then at least t partial decryptions are combined
to fully decrypt the ciphertext m = Combine(DecSharei∈T )
where T ⊆ 1, .., n with |T | ≥ t.

IV. SYSTEM MODEL

A. ABAC System

ABAC [1] is an access control model that makes autho-
rization decisions based on policies defined through a set of
attributes. It typically contains the following components:
Policy Administration Point (PAP) defines access control
policies. In REGKYC (Fig. 1), external regulatory authorities
establish high-level compliance requirements. CASPs, acting
as the PAP, translate these requirements into actionable rules
and attribute policies according to their operational needs.
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Fig. 1: Illustration of the REGKYC ABAC system, using Alice’s interaction as an example to demonstrate key workflows.

Policy Information Point (PIP) collects attribute data for
policy evaluation. In REGKYC, this role is fulfilled by the
CEX, who issues KYC approvals over KYC attributes.
Policy Decision Point (PDP) evaluates attributes against pre-
defined compliance policies. The PRIVKYC pool, acting as
the PDP, verifies whether the attributes meet the criteria.
Policy Enforcement Point (PEP) enforces the PDP’s deci-
sions based on evaluation results. The PRIVKYC pool also
acts as the PEP to enforce the PDP’s decisions on whether to
accept users’ deposit and withdrawal access requests.

B. System Participants and Components
User. Alice is a legally conscious user who seeks to

participate in compliant on-chain activities. She provides her
KYC information and attributes (e.g., nationality /∈ high-
risk countries), along with a blockchain address (addrA), to
the CEX for approval. Alice wishes to engage in on-chain
transactions and wants her interacting counterparties, such
as CASPs, to know that the blockchain address she uses
(e.g., addrB) is associated with verified KYC information and
attributes. This helps CASPs ensure that they are dealing with
a compliant and verified user with qualified KYC attributes.

Additionally, Alice equally values her privacy. She wants to
ensure that, although the CEX knows her KYC information
and its association with her initial addrA, the CEX cannot
link her KYC to addrB or her subsequent on-chain activities.
This allows Alice to maintain privacy over her transactions
and address usage beyond the initial KYC process.

CASP. Acting as the PAP, CASPs translate high-level
external regulatory requirements into actionable compliance
policies. CASPs define the specific KYC attributes or attribute
combinations tailored to their services and operations. CASPs
provide verified users with crypto services based on compli-
ance policies. They can also report malicious addresses (e.g.,
addrB) to the system if they detect suspicious behavior.

CEX. The CEX, acting as the PIP, collects and verifies
KYC information and attributes, issuing approvals based on

verified user data. The CEX verifies Alice’s KYC information,
attributes, and addrA, then issues an approval with a digital
signature over these elements. This approval serves as proof
of identity for the PRIVKYC pool. If required, the CEX may
disclose KYC data linked to addrA to regulatory authorities.

PRIVKYC Pool. The PRIVKYC pool acts as a PDP
to evaluate whether users’ KYC attributes meet predefined
compliant attributes. Meanwhile, it also functions as a PEP,
executing the decisions on access requests (e.g., deposits and
withdrawals). This pool has three main functions:

• KYC-Bound Address Obfuscation. The primary function
of the PRIVKYC pool is to break the linkability between
Alice’s original address (addrA), which is associated with
her KYC information, and her new address (addrB). This
ensures that while addrB remains compliant, it cannot be
directly traced back to Alice’s original identity or previous
activities. As such, the CEX cannot link Alice’s KYC to
addrB or any subsequent transactions beyond addrA.

• KYC Attribute Verification. The pool verifies Alice’s KYC
attributes based on predefined criteria. For example, the pool
verifies that her nationality is not classified as “high-risk”
before permitting her to use addrB to interact with CASPs
that restrict access from such regions. This guarantees
that addrB , while obfuscated, remains compliant with the
specific requirements of the interacting CASPs.

• Anonymized Fund Withdrawal. Alice can also use the
PRIVKYC pool to withdraw funds in a privacy-preserving
manner. Analogous to traditional mixing services, the pool
facilitates the transfer of funds from addrA to addrB while
ensuring that the CEX and other observers cannot trace the
flow of funds back to addrA or Alice’s identity.

• KYC/AML Compliance. REGKYC ensures that all actions
taken by the user remain compliant with KYC/AML regula-
tory standards. It balances privacy and compliance, allowing
external regulatory authorities, such as the Deanonymization
Review Committee (DRC), to demononymize malicious
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addresses securely under authorized circumstances.
External Regulatory Authority (ERC). The ERC is an

external regulatory body overseeing compliance within the
blockchain system. It contains the DRC and the Enforcement
Agency (EA). The DRC consists of legal and blockchain
experts. When a suspicious address (e.g., Alice’s addrB) is
flagged by a CASP, the DRC uses a threshold decryption
scheme to collectively decide whether deanonymization should
proceed. When a predefined threshold of DRC members
approves the request, the corresponding deposit address (e.g.,
addrA) will be revealed. The DRC functions similarly to
audit logs or enforcement triggers in traditional access control
systems, ensuring deanonymization occurs securely.

After deanonymization, the DRC reveals addrA to the EA.
Then, the EA is able to retrieve Alice’s original KYC data
from the CEX and take enforcement action against Alice.

C. System Properties

The REGKYC system satisfies the following properties.
• Security: An unapproved address cannot be used to deposit

into the PRIVKYC pool. For any single deposit, the user is
limited to making only one withdrawal. Similarly, the same
approval cannot be used for multiple deposits.

• Privacy: The PRIVKYC pool can break the linkability
between the deposit and withdrawal transactions [24]. As
a result, withdrawal addresses remain pseudonymous under
normal circumstances, ensuring that compliant users’ identi-
ties and transaction histories are not exposed unnecessarily.
Furthermore, users’ on-chain activities cannot be traced back
to their KYC information by CASPs or other observers.

• Compliance: REGKYC ensures compliance through a dual
approach. For legitimate users, it enables proofs of KYC
verification and attribute compliance when interacting with
CASPs. For illicit actors, REGKYC ensures regulatory
accountability by allowing DRC members to collaboratively
deanonymize withdrawal addresses and the EA to take
appropriate enforcement actions.

V. SYSTEM DESIGN

A. System Workflow

This section describes the system workflow. Optional fund
transfers are excluded from the discussion, as this functionality
is implemented in existing mixers and can be adopted directly.

1) Setup: The system runs the following setups:
• par← SystemSetup(1λ): The setup takes as input a security

parameter λ, and outputs the system parameters.
• The CEX sets up a private key skCEX and a public key pkCEX

to sign and verify the approval. The CEX also specifies
a signature scheme Πsig and a hash function H used to
compute the hash value of the KYC information.

• The DRC sets up a private key skDRC and a public key
pkDRC, and a threshold encryption scheme Πte to encrypt
and decrypt the deposit information.

• A PRIVKYC pool with an attribute Attr is created. It con-
tains pkCEX, pkDRC, the Merkle tree depth d, two SNARK-
friendly hash functions Hp and H2p, and a zk-SNARK

instance Πzk. Πzk’s evaluation key is ekwd and verification
key is vkwd. A Merkle tree T with depth d is initialized to
store deposit commitments, with initial root Root0dep.
2) Approval from CEX: Upon receiving the KYC approval

request from a user, the CEX performs the Approve algorithm:
• σaddrdep/⊥ ← Approve(addrdep,KYC,Attr) takes as in-

put the address addrdep, the KYC information KYC,
and the KYC attribute Attr (e.g., nationality /∈ high-
risk country) provided by the user. The CEX verifies
the validity of the provided KYC and Attr data. If
the information is invalid, Approve returns ⊥. Other-
wise, the CEX computes the hash values H(KYC) and
H(Attr), then runs the signing algorithm σaddrdep ←
Πsig.Sign(skCEX, H(KYC)||H(Attr)||addrdep), and finally
returns the signature σaddrdep as approval.
3) Deposit KYC approvals into the PRIVKYC pool: A user

issues a deposit transaction to interact with the pool.
• ((kdep, rdep), txdep)← CreateDeposit(H(KYC), H(Attr),
addrdep, σaddrdep): The user selects two random values

kdep
$←− {0, 1}λ and rdep

$←− {0, 1}λ, and computes the
deposit commitment cm = H2p(kdep||rdep). The algorithm
returns a note = (kdep, rdep), and a deposit transaction
txdep whose input data includes the hash values of H(KYC)
and H(Attr), the approved address addr, the approval
σaddrdep from the CEX, and the deposit commitment cm.
After receiving txdep from the user, the pool executes:
• 1/0 ← ExecuteDeposit(txdep) first parses txdep input

data as (H(KYC), H(Attr), addrdep, σaddrdep , cm),
and then checks whether H(σaddrdep) is stored
in ListOfApprovals to prevent double deposits. If
H(σaddrdep) is not found, the algorithm performs
Πsig.Verify(pkCEX, H(KYC)||H(Attr)||addrdep, σaddrdep)
to verify the approval from the CEX, and returns 0 for
invalid approval. If valid, the smart contract executes: (i)
Adds cm to ListOfCommitments. (ii) Extracts the latest
Merkle tree root Rootolddep = ListOfRootsdep,k[idx], where
k is the root list size and idx is the current root index.
(iii) Inserts cm into the Merkle tree to compute the new
root: Rootnewdep = T.Update(Rootolddep, j + 1, cm), where
j is the latest inserted element index of the Merkle tree.
(iv) Updates ListOfRootsdep,k with Rootnewdep and updates
the current root index idx. (v) Appends H(σaddrdep) to
ListOfApprovals and finally returns 1.

4) Withdrawal from the PRIVKYC Pool: Similar to the
existing on-chain mixers [9, 15, 16], the withdrawal algorithm
allows a user to utilize the private note and private key skwd

to produce a proof and initiate a withdrawal transaction.
• txwd ← CreateWithdraw(skwd, note): The user uses
note = (kdep, rdep) to calculate the withdrawal nul-
lifier nfwd = Hp(kdep) and the deposit commitment
cm = H2p(kdep||rdep). The user then locates the in-
dex i such that ListOfCommitmentsb[i] = cm and re-
trieves the public parameter parb from the smart con-
tract in block b. The user extracts the most recent up-
dated Merkle tree root Rootdep = ListOfRootsdep,k[idx],
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and computes the Merkle path proof pathi, satisfying
T.Verify(i, cm,Rootdep, pathi) = 1. The user encrypts
the commitment cm using the DRC’s public key pkDRC:
enc = Πte.Encrypt(cm||Hp(rdep), pkDRC). The user then
generates a fresh address addrwd and uses the withdrawal
witness witdep = (skwd, kdep, rdep, pathi) and the pub-
lic statement stmt = stmt[addrwd, nfwd,Rootdep, enc] to
generate a proof πwd = Πzk.Prove(ekwd,witdep, stmt),
which satisfies cm = H2p(kdep||rdep) ∧ nfwd =
Hp(kdep) ∧ T.Verify(i, cm, root, pathi) = 1 ∧ enc =
Πte.Encrypt(cm||Hp(rdep), pkDRC). The proof πwd shows
that the user knows the private note of a deposit without
leaking it. πwd also ensures that enc is indeed derived
from the cm and Hp(rdep). The user finally composes
(addrwd, enc, nfwd,Rootdep, πwd) as the input data of the
withdrawal transaction txwd. Upon receiving txwd, the pool
verifies whether the user has deposited into the pool and
correctly generated the encryption enc.

• 1/0 ← ExecuteWithdraw(txwd) first parses the txwd

input data as (addrwd, enc, nfwd,Rootdep, πwd) and then
checks whether nfwd is not included in the withdraw
ListOfNullifier and whether Rootdep is one element in the
most recent Merkle tree ListOfRootsdep,k. It returns 0 if the
conditions are not satisfied. Otherwise, the smart contract
checks the validity of proof πwd by verifying whether
Πzk.Verify(vkwd, πwd, stmt[pksender, nfwd,Rootdep, enc]) =
1, where pksender is the public key of the sender of txwd.
The smart contract then appends nfwd into ListOfNullifier
to avoid double withdrawal and the pair (addrwd, enc) into
the ListOfWithdrawAddr. The algorithm finally returns 1.
5) Interaction with CASPs: After withdrawing from a

PRIVKYC pool that verifies the attribute Attr, the user can
use the withdrawal address addrwd along with the withdrawal
transaction txwd to interact with CASPs. The CASP verifies:
• 1/0 ← VerifyAuthorization(txwd, addrwd,Attr): Upon re-

ceiving an interaction request from the address addrwd, the
CASP checks its withdrawal transaction txwd to verify that
addrwd is indeed a withdrawal address from a PRIVKYC
pool that handles the attribute Attr. If the verification is
successful, the algorithm returns 1, allowing addrwd to
interact further with the CASP; otherwise, it returns 0.
6) Deanonymization: The DRC conducts the following

deanonymization process when accountability is required:
• addrdep/⊥ ← Deanonymize(addrwd, skDRC): This algo-

rithm first interacts with the PRIVKYC pool to ex-
tract the pair (addrwd, enc) from ListOfWithdrawAddr. If
(addrwd, enc) is not in the list, then it returns 0. Otherwise,
the DRC members collborate to decrypt the ciphertext enc
to obtain the plaintex cm||Hp(rdep) using threshold decryp-
tion: cm||Hp(rdep) = Πte.Decrypt(skDRC, enc). Then the
DRC parses cm||Hp(rdep) to obtain cm and retrieve the cor-
responding deposit address addrdep. Finally, the algorithm
returns addrdep to EA. Once the EA knows addrdep, they
can request the CEX to provide the KYC data of the identity
behind addrdep and take enforcement actions accordingly.

VI. SYSTEM PROPERTIES ANALYSIS

A. Security

• Double Withdrawal: We follow the definition of exist-
ing work [15, 16] to define the probability of double
withdrawal. Consider an adversary A who deposits into
the PRIVKYC pool using a transaction txb

dep in block b,
where the transaction contains the commitment cm. We
define the adversarial advantage for double withdrawal as
the probability that the adversary can successfully create
two distinct withdrawal transactions linked to txb

dep:

Pr[A(txb
dep(cm))→

(
tx0

wd

(
nfb0wd

)
, tx1

wd

(
nfb1wd

))
s.t. nfb0wd

origin← cm ∧ nfb1wd

origin← cm

∧ b0 > b ∧ b1 > b ∧ nfb0wd ̸= nfb1wd] ≤ negl(λ)

Proof Sketch. Consider a deposit transaction txdep that
includes the commitment cm. If an adversary can identify
two distinct nullifiers, nfb0wd and nfb1wd, both derived from
cm, then there must exist two different pairs, (k0, r0)
and (k1, r1), such that Hp(k0||r0) = Hp(k1||r1) = cm,
and Hp(k0) = nfb0wd ̸= Hp(k1) = nfb1wd. However, as
the cryptographic primitives are secure, the probability
of breaking the collision resistance of Hp is negligible.

• Double Deposit: A user cannot use the same approval
to deposit twice. Consider an adversary who generates
two deposit transactions tx0

dep and tx1
dep, which contain

the same approval σ but different depsoit addresses addr0
and addr1. Then the probability that the pool will accept
both the two deposit transactions is negligible, i.e.,

Pr[A(H(KYC), H(Attr), addr0, addr1, σ, )→ (tx0
dep, tx

1
dep) s.t.

ExecuteDeposit(tx0
dep) = ExecuteDeposit(tx1

dep) = 1] ≤ negl(λ)

Proof Sketch. Because the PRIVKYC pool verifies the
uniqueness of elements in ListOfApprovals during each
deposit transaction, it is impossible for the contract to
store the value H(σ) more than once.

• Unapproved Transfer: A user cannot use an address
with unapproved KYC information to deposit into the
PRIVKYC pool. Consider an adversary A attempting to
issue a deposit transaction to interact with the PRIVKYC
pool using an address addr that has not been approved
through the CEX ’s KYC process. The probability that
the pool will accept its deposit is negligible, i.e.,

Pr[A(H(KYC), H(Attr), addr, σ)→ txdep

s.t. ExecuteDeposit(txdep) = 1] ≤ negl(λ)

Proof Sketch. We assume the security of the underlying
cryptographic primitives. If σ is not generated by the
algorithm Approve(addr,KYC,Attr), the probability that
Πsig.Verify(pkCEX, H(KYC)||H(attr)addr, σ) = 1 for
an unapproved address is negligible. Consequently, the
probability of the pool accepting txdep is also negligible.

B. Privacy

In the following, we analyze the privacy of PRIVKYC pool
users against CEXs, CASPs, and other users.
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1) Privacy against CASPs and other users: Following the
definition of mixer privacy in [15, 16], we consider the privacy
of a REGKYC user against CASPs and other users as follows:

Let DepAddrs[0,b] and WdAddrs[0,b] denote the set of
addresses that are used to deposit into and withdraw from
the PRIVKYC pool before block number b. Given a specific
withdrawal address addrwd ∈WdAddrs[0,b], the advantage for
a PPT adversary A in associating its correct deposit address
addrdep ∈ DepAddrs[0,b] is bounded as follows:

Pr[A(addrwd)→ addrdep, s.t. addrdep ∈ DepAddrs[0,b]∧

addrdep
assoc↔ addrwd] ≤

1∣∣∣DepAddrs[0,b]∣∣∣ + negl(λ)

Proof Sketch. The adversary’s advantage in breaking the
cryptographic primitive is negligible, denoted as negl(λ).
Each new deposit address increases the anonymity set. For
a withdrawal address addrwd at block b, the probability of
identifying the corresponding deposit address addrdep is at
most 1

|DepAddrs[0,b]| . Therefore, the overall adversarial advan-
tage is bounded by 1

|DepAddrs[0,b]| + negl(λ), which approaches

negl(λ) as |DepAddrs[0,b]| grows large.
2) Privacy against CEX: Let DepAddrs[0,b0] denote the

set of deposit addresses before block number b0 and
WdAddrs[b0,∞) denote set of withdrawal addresses after b0.
Given a specific deposit address addrdep ∈ DepAddrs[0,b0],
the advantage for a PPT adversary A in associating its correct
withdrawal address addrwd ∈WdAddrs[b0,∞) is bounded as:

Pr[A(addrdep)→ addrwd, s.t. addrwd ∈WdAddrs[b0,∞)

∧ addrwd
assoc↔ addrdep] ≤

1∣∣∣WdAddrs[b0,∞)
∣∣∣ + negl(λ)

Proof Sketch. The adversary’s advantage in compromis-
ing the cryptographic primitive remains negligible. If the
adversary learns that the deposit address received approval
before block b0, they can infer the withdrawal occurs af-
ter b0. The total probability of identifying the withdrawal
address is 1

|WdAddrs[b0,∞)| + negl(λ), which diminishes as∣∣∣WdAddrs[b0,∞)
∣∣∣ grows, preventing CEXs from tracing on-

chain activities or linking them to KYC data.

C. Compliance

Given a withdraw address addrwd ∈ WdAddrs[0,b] that has
been flagged for accountability before block number b, the
probability for the DRC to link it to the correct deposit address
addrdep through threshold decyrption satisfies:

Pr[DRC(addrwd)→ addrdep, s.t. addrdep ∈ DepAddrs[0,b]∧
addrdep

assoc↔ addrwd] ≥ 1− negl(λ)

Proof Sketch. If addrwd ∈ WdAddrs[0,b] was flagged
malicious, the DRC members can extract the corresponding
(addrwd, enc) pair from the PRIVKYC pool. Because the
proof πwd ensures that the enc is derived from correct cm and
Hp(rdep), the DRC can apply threshold decryption to obtain

the plaintext cm||Hp(rdep) = Πte.Decrypt(skDRC, enc). The
DRC then parse cm||Hp(rdep) to obtain cm and retrieve the
corresponding deposit addresses addrdep.

VII. IMPLEMENTATION

A. Implementation of PRIVKYC Pool

We adapt the implementation of an existing on-chain mixer,
TC, to build the PRIVKYC pool.
• zkSnarks and Merkle Trees: Consistent with existing work

on on-chain mixers [15, 16], we employ Groth16 [25]
as our zkSNARK implementation, chosen for its efficient
proof size and low verification computational cost. For
constructing Merkle trees, we utilize two SNARK-friendly
hash functions: the Pedersen hash [26] and the MiMC
hash [27]. Additionally, we generate withdrawal proofs off-
chain using the Circom library and the snarkjs library.

• Digital Signatures: We use the soliditySha3 func-
tion to compute the message hash, replicating Ethereum’s
keccak256 as implemented in the web3.js library. To
generate the signature, we leverage the signMessage
function from the ethers.js library, which employs the
ECDSA algorithm on secp256k1 to sign messages. To
perform the signature verification, we use Ethereum’s
ecrecover function to derive the signer’s address from
the provided signature and verify its authenticity. Addi-
tionally, due to Circom’s limited support for asymmetric
encryption, we implement a simplified elliptic curve method.

• Testbed: We perform the experiments on a macOS Monterey
machine with an Apple M1 chip (8-core, 3.2 GHz), 8 GB
RAM, and 512 GB SSD storage.

B. Evaluation Results
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Fig. 2: Gas costs evaluation for the PRIVKYC pool.

1) Gas Costs: The gas cost evaluation for the PRIVKYC
pool analyzes the deployment, deposit, and withdrawal costs
as a function of the Merkle tree depth (see Fig. 2). The deploy-
ment costs remain the most significant contributor to overall
gas consumption, requiring around 6 × 106 gas units. This
reflects the one-time setup cost for deploying the PRIVKYC
pool smart contract. The deposit costs grow with increasing
Merkle tree depth, rising from approximately 0.57× 106 gas
units at depth 10 to 2.84×106 at depth 60. This increase is due
to the higher computational overhead for inserting leaves into

7

https://github.com/tornadocash/tornado-core


deeper Merkle trees. The withdrawal costs remain relatively
low and consistent across all depths, averaging around 368,513
gas units. This efficiency is achieved by generating withdrawal
proofs off-chain. Overall, the PRIVKYC pool demonstrates
similar gas efficiency for deployment, deposit, and withdrawal
operations as TC. The gas costs of TC for deposit and
withdrawal are 1,088,354 and 301,233 at tree depth of 20.
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Fig. 3: The number of unique Ethereum addresses and the
maximum support depositors in PRIVKYC pool.

2) Scalability: The scalability of the PRIVKYC pool is
evaluated by comparing the number of unique Ethereum
addresses over time with the maximum depositor capacity
supported by the pool (see Fig. 3). The PRIVKYC pool’s
depositor capacity is determined by the Merkle tree depth.
The green and red dashed lines in the figure correspond to
tree depths of 20 and 30, supporting 220 and 230 depositors
respectively. These capacities represent the theoretical upper
limit of depositors that the pool can handle. According to
historical data from etherscan.io, the total number of
unique Ethereum addresses grew from approximately 212 to
227 addresses. With a Merkle tree depth of 20, the pool
can accommodate only a small set of depositors. However,
a Merkle tree depth of 30 ensures that the pool can scale to
handle nearly all unique Ethereum addresses. The evaluation
highlights that, by supporting deeper Merkle trees (e.g., depth
30), the PRIVKYC pool can remain scalable for years to come.
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Fig. 4: Off-chain circuit proof generation time and number of
constraints in the circuit with various Merkle tree depths.

3) Off-Chain zkSnarks Circuit Generation: Fig. 4 shows the
relationship between the off-chain circuit generation time and
the number of constraints in the circuit for various Merkle
tree depths. The number of constraints grows linearly with
the tree depth, increasing from approximately 1.57 × 104

constraints at depth 10 to 8.19 × 104 constraints at depth

60. In contrast, the circuit generation time increases non-
linearly, from approximately 150 seconds at depth 10 to nearly
850 seconds at depth 60. Focusing on depths 20 and 30,
which are highlighted in Fig. 3 as critical configurations, the
proof generation times are approximately 280 seconds and
430 seconds respectively. While a Merkle tree depth of 30
significantly increases depositor capacity, it comes with higher
costs. This highlights the need to balance depositor capacity
with manageable circuit generation times.

VIII. DISCUSSION

Extensions and Applications: A key strength of REGKYC
is its flexibility to be extended to support conjunctions or
disjunctions of attributes. While this work focuses on a single
KYC attribute as an example, REGKYC can instantiate mul-
tiple PRIVKYC pools, each designed to verify specific com-
binations of attributes (e.g., nationality /∈ high-risk countries
& age > 20), thereby addressing more complex compliance
requirements (see Appendix A for detailed discussion).
Limitations and Future Work: In this work, we mainly focus
on evaluating the performance of the PRIVKYC pool on-chain
smart contracts and off-chain ZKPs, as these aspects have a
direct impact on user experience. The off-chain governance
and operational processes of the DRC also require evaluation
to ensure the robust handling of deanonymization requests and
governance resilience against adversarial manipulation.

The freshness of KYC attributes is also a relevant concern.
Attributes such as age and financial credit rating may change
over time, which can lead to previously verified KYC attributes
becoming outdated. Future research can explore how the PIP
may support the dynamic updating and validation of such
attributes to ensure that compliance checks remain reliable.

While this work presents a technical exploration of privacy-
preserving and KYC compliance solutions in blockchains, the
challenge of balancing user privacy with compliance cannot
be resolved by technical means alone. A sustainable solution
requires a governance framework built on mutual trust and
effective incentive mechanisms, where CASPs translate regula-
tory requirements into attribute-based policies, CEXs maintain
accurate KYC data, and users develop compliance awareness.

IX. CONCLUSION

In this work, we propose REGKYC, a privacy-preserving
ABAC framework that balances externally imposed KYC and
AML regulatory requirements with user privacy in blockchain
systems. REGKYC enables the flexible verification of KYC
attributes, enforces compliance policies, and supports autho-
rized deanonymization when accountability is required. This
framework benefits multiple stakeholders. Users can achieve
compliance while preserving the privacy of their on-chain
activities. CASPs can implement tailored compliance policies
aligned with their operational needs. External regulators can
ensure accountability when necessary. We hope this structured
framework provides a foundation to inspire the future develop-
ment of best practices for integrating regulatory requirements
into blockchain systems while protecting user privacy.
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Fig. 5: Illustration examples of how REGKYC supports different combinations of KYC attributes.

APPENDIX A
EXTENSION AND APPLICATION

One of the key strengths of REGKYC lies in its flexibility
to verify multiple KYC attribute combinations. This facilitates
compliance with complex regulatory frameworks. By initial-
izing tailored PRIVKYC pool instances for specific attribute
sets, CASPs can enforce fine-grained compliance policies,
such as the combination of nationality and age requirements.
This ensures that only eligible users are granted access.

a) Alice’s Scenario: Nationality + Occupation Verifica-
tion: Alice seeks to access a structured financial product
offered by a CASP. The CASP mandates that users meet
two compliance requirements: they must not be from a high-
risk country and must be financial practitioners (e.g., working
in the finance sector). Alice submits her KYC information,
which includes her nationality and occupation, to a CEX along
with her blockchain address addrA. After verifying Alice’s
information, the CEX issues a digitally signed approval
certifying that Alice satisfies the nationality and occupation
requirements. Alice deposits her funds and approval to a
PRIVKYC pool designed to validate these attributes. Once
validated, she receives a new compliant address addrB and
uses it to interact with the target CASP.

b) Bob’s Scenario: Age + Credit Rating Verification:
Bob intends to use a lending service provided by a CASP.
To ensure compliance, the CASP requires users to meet two
criteria: they must be older than 20 and have a financial credit
rating of A or higher. Bob submits his KYC information,
including proof of age and a certified credit rating, along with
his blockchain address addrC to the CEX. The CEX verifies
that Bob meets the requirements and issues a digitally signed
approval, which certifies that Bob’s age is greater than
20 and his credit rating is above A. Bob then deposits this
approval and funds to a PRIVKYC pool configured to validate
these attributes. After successful validation, Bob is issued a
compliant address addrD, which he uses to interact with the
lending CASP. REGKYC ’s support for attribute combinations
enables the integration of traditional financial credit ratings
into the blockchain system, allowing CASPs to evaluate user
creditworthiness based on established financial systems. This
enhances risk assessment, maintains privacy and compliance,

and expands CASPs’ accessibility to more compliant users.
c) Formalized Process: We express the formalized at-

tribute combination by taking Bob’s scenario as an example.
• Setup: System parameters are initialized. A PRIVKYC pool

is created to handle the compliant attribute combinations of
Attr = {age > 20, credit rating > A}.

• Approval from CEX: Bob provides addrC ,KYC information,
and Attr to the CEX. The CEX verifies Bob’s KYC informa-
tion and checks the validity of Attr. Once verified, the CEX
generates a digital signature using its private key skCEX.
This results in σaddrC ← Sign(skCEX, H(KYC)||H(age >
20)||H(credit rating > A)||addrC) as Bob’s approval.

• Deposit into the PRIVKYC pool: Bob computes
cm = H2p(kdep||rdep) and submits txdep that includes
(H(KYC), H(Attr), addrC , σaddrC , cm). The pool then
performs verfication πsig.Verify(pkCEX, H(KYC)||H(age >
20)||H(credit rating > A)||addrC , σaddrC ) to verify the
approval. If valid, cm is added to the pool’s Merkle tree.

• Withdraw from the PRIVKYC pool: Bob computes the
nullifier nfwd and uses DRC’s public key to encrypt
cm||Hp(rdep). Then he generates a proof πwd and com-
poses (addrD, enc, nfwd,Rootdep, πwd) as the input data to
issue the withdrawal transaction txwd. The pool permits a
withdrawal to Bob’s fresh address if the proof πwd is valid.

• Interaction with CASPs: Bob uses addrD to interact with the
lending CASP. The CASP validates txwd to ensure that it is
dealing with a verified and compliant user with a compliant
attribute combination of age > 20 and credit rating > A.

• Deanonymization (if required): If addrD is flagged for
malicious activity, the DRC decrypts enc to retrieve cm. The
DRC identifies addrC by matching cm in the pool’s records
and requests the CEX to provide Bob’s KYC information.
Overall, REGKYC’s ability to support the verification of
attribute combinations offers flexibility for CASPs. It allows
CASPs to design attribute requirements tailored to the
specific nature of the services they provide, ensuring that
compliance measures align closely with their operational
needs. Furthermore, this adaptability not only addresses
current compliance needs but also positions CASPs to
proactively meet stricter regulatory demands that may arise.
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