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Abstract. Conventional Publicly Verifiable Secret Sharing (PVSS) pro-
tocols allow a dealer to share a secret among n parties without interac-
tion, ensuring that any t + 1 parties (where t + 1 ≤ n) can recover the
secret, while anyone can publicly verify the validity of both the individ-
ual shares and the reconstructed secret. PVSS schemes are shown to be a
key tool in a wide range of practical applications. In this paper, we intro-
duce Pre-constructed PVSS (PPVSS), an extension of standard PVSS
schemes, highlighting its enhanced utility and efficiency in various proto-
cols. Unlike standard PVSS, PPVSS requires the dealer to publish a com-
mitment or encryption of the main secret and incorporates a novel secret
reconstruction method. We show that these refinements make PPVSS
more practical and versatile than conventional PVSS schemes. To build
a PPVSS scheme, we first point out that the well-known PVSS scheme by
Schoenmakers (CRYPTO’99) and its pairing-based variant presented by
Heidarvand and Villar (SAC’08) can be seen as special cases of PPVSS,
where the dealer also publishes a commitment to the main secret. How-
ever, these protocols are not practical for many applications due to effi-
ciency limitations and are less flexible compared to a standard PPVSS
scheme. To address this, we propose a general strategy for transforming
a Shamir-based PVSS scheme into a PPVSS scheme. Using this strat-
egy, we construct two practical PPVSS schemes in both the Random
Oracle (RO) and plain models, grounded in state-of-the-art PVSS de-
signs. Leveraging the new RO-based PPVSS scheme, we revisit some
applications and present more efficient variants. Notably, we propose a
new universally verifiable e-voting protocol that improves on the alterna-
tive scheme by Schoenmakers (CRYPTO’99), reducing the verification
complexity with m voters from O(n2m) to O(nm) exponentiations–a
previously unattainable goal with standard PVSS schemes. Our imple-
mentation results demonstrate that both our proposed PPVSS schemes
and the new universally verifiable e-voting protocol significantly outper-
form existing alternatives in terms of efficiency.

Keywords: Publicly Verifiable Secret Sharing · PVSS · Pre-Constructed
Publicly Verifiable Secret Sharing · Universally Verifiable E-Voting
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1 Introduction

Secret sharing schemes allow a dealer to divide a secret into shares and distribute
them among n participants, such that any subset of t+1 participants can collab-
orate to reconstruct the secret, while any subset of t or fewer participants learn
nothing about it. This (t+ 1, n)-threshold structure ensures resilience and con-
fidentiality in settings where trust is distributed among multiple parties. Secret
sharing protocols have found applications in secure multi-party computation,
threshold cryptography, and decentralized systems such as blockchain.

Verifiable Secret Sharing. In the well-known secret sharing protocol pro-
posed by Shamir [23], a dealer shares a secret f0 among n parties using a secret
degree-t polynomial f(X). To do this, the dealer sets f(0) := f0, and each party
Pi privately receives f(i) as their individual share of the main secret f0 = f(0).
However, basic secret sharing schemes, while providing security guarantees, as-
sume that both the dealer and participants are honest. This assumption is prob-
lematic in adversarial environments, where malicious actors could compromise
the protocol by distributing incorrect shares or refusing to participate honestly.
To address this issue, Verifiable Secret Sharing (VSS) schemes were developed,
allowing parties to verify the correctness of their shares [1, 2, 4, 12, 15, 21]. Feld-
man’s VSS scheme [15] is a pioneering work in this area, utilizing homomorphic
commitments to enable verification of the shares in Shamir’s scheme, ensuring
that they are consistent with a unique secret polynomial. Feldman’s approach
guarantees that the shares are correct, but it does not hide the secret polyno-
mial’s coefficients, limiting its privacy guarantees and making it suitable only for
sharing high-entropy secrets. Pedersen’s VSS [21] extended this idea by using his
homomorphic commitment and incorporating additional randomness, providing
both verifiability and secrecy of the shared values. A recent work by Atapoor,
Baghery, Cozzo, and Pedersen [1] presented a highly efficient VSS scheme based
on Shamir’s protocol, using hash-based (i.e., non-homomorphic) commitments.

Publicly Verifiable Secret Sharing. In VSS schemes, the share verification
phase might require interaction between the dealer and the parties, and verifica-
tion can only be done by the shareholders. As cryptographic protocols evolved,
the need arose for schemes that allow external parties to verify the correct-
ness of the process. Publicly VSS (PVSS) was proposed to meet this demand,
allowing also external auditors to verify the shares and the reconstructed se-
cret [3, 7, 8, 17, 18, 22]. In PVSS schemes, a dealer publishes shares encrypted
under the public keys of parties along with a Non-Interactive Zero-Knowledge
(NIZK) proof, enabling anyone to verify the correctness of the shares. Schoen-
makers’ PVSS scheme [22] is a well-known example of such a scheme, built on
Feldman’s VSS in the Random Oracle (RO) model. His protocol has been par-
ticularly useful for applications requiring transparency, such as universally veri-
fiable e-voting, robust public-key infrastructure, threshold software key escrow,
and many more [22]. However, while Schoenmakers’ PVSS scheme guarantees
public verifiability, it suffers from inefficiencies, particularly in the verification
phase, where O(n2) exponentiations are required. This computational overhead
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makes Schoenmakers’ scheme unsuitable for applications requiring scalability,
such as large-scale elections or randomness beacons in decentralized protocols.

Despite its foundational role, the complexity of Schoenmakers’ PVSS scheme
has driven the development of more efficient alternatives. Several works have
sought to reduce the computational and communication costs associated with
PVSS. Heidarvand and Villar [19] proposed a pairing-based variant of Schoen-
makers’ PVSS scheme in the plain model, but it still requires O(nt) exponenti-
ations and O(n) pairing operations in the verification phase, which are com-
putationally expensive. In ACNS’17, Cascudo and David [7] improved upon
Schoenmakers’ work [22] and its pairing-based variant [19] by designing two
PVSS schemes that reduce the complexity of share verification to O(n) expo-
nentiations, making the schemes more suitable for large-scale applications. This
improvement in verification was achieved through a coding-theory technique,
employing a random codeword from the dual code of the Reed-Solomon code
used for secret sharing. The authors [7] also used their proposed PVSS schemes
to construct the SCRAIP protocol, a publicly verifiable randomness beacon pro-
tocol in the honest-majority setting. Several follow-up works [3, 8, 10] have pro-
posed new PVSS schemes that are concretely more efficient than those in [7].
For a detailed comparison, we refer to Table 4 in the appendix. We highlight
that PVSS schemes are mainly categorized into two classes, each suited to dif-
ferent applications: the schemes where the secret is gf0 , and those where it is
f0, with g as the generator of a cyclic group of prime order. The PVSS schemes
proposed in [3,7,8,10,22] belong to the first category, where each party obtains
a share gfi and, in the reconstruction phase, the parties collectively reconstruct
gf0 . Conversely, the schemes in [9, 18] belong to the second category.

Our Contributions. Our contributions can be summarized as follows:

Pre-Constructed Publicly Verifiable Secret Sharing.As the first contribu-
tion of this paper, we define Pre-Constructed PVSS (PPVSS) as an extension of
standard PVSS schemes. PPVSS offers all the capabilities of standard PVSS but
also requires the dealer to pre-construct and publish a commitment/encryption
of the main secret. This subtle modification allows us to have a novel secret
reconstruction approach specific to PPVSS schemes. Beyond a novel reconstruc-
tion approach, by enabling the dealer to publish a commitment to the main
secret and prove its well-formedness alongside other shares in the same round,
a PPVSS scheme provides enhanced functionality compared to PVSS schemes.
Using this new reconstruction approach, which we call optimistic reconstruction,
the dealer can open a single commitment to the (pre-constructed) secret during
the reconstruction phase, rather than involving at least t + 1 shareholders to
reconstruct the same secret or opening the entire secret polynomial, as done in
some current PVSS-based protocols [8]. Opening the entire polynomial by the
dealer incurs a communication cost of at least O(tλ) bits and a computation cost
of O(t) for each verifier, where λ and t are the security and threshold parameters,
respectively. In some applications of PVSS schemes, each player usually acts as
the dealer once. Since we assume the majority of parties are honest, most dealers
can use the proposed optimistic reconstruction approach. If reconstruction of a
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malicious dealer’s secret is needed and the dealer does not open the commitment,
any t + 1 honest parties can use their shares along with the classic reconstruc-
tion approach–here referred to as the pessimistic reconstruction–to reconstruct
the secret. Our analysis show that a PPVSS scheme can be more versatile and
broadly applicable than standard PVSS schemes.

Schoenmakers’ PVSS is a Special PPVSS. We show that Schoenmakers’
PVSS and its pairing-based variant [19,22], which are built on Feldman VSS [15],
can be seen as a special type of PPVSS. In addition to encrypting the shares,
the dealer also publishes a commitment to the main secret. However, his scheme
requires O(n2) exponentiations during verification and is not as flexible as our
defined and proposed PPVSS schemes. The reason for this reduced flexibility is
that, following Feldman VSS [14], in Schoenmakers’ (P)PVSS scheme [22], the
commitment to the main secret has to be based on the same group generator used
in other commitments and cannot be based on the public key of a specific party.
Due to this limitation, while constructing threshold binding ElGamal based on
his proposed (P)PVSS scheme [22, Section 6.1], Schoenmakers had to separately
encrypt gf(0) under the public key pk0 of the target party and use a Chaum-
Pedersen protocol [11] to prove that the commitment C0 = gf(0) commits to
the same value encrypted under the target public key pk0. This approach incurs
additional computational and communication costs. As we demonstrate later, in
our proposed PPVSS schemes, this can be achieved for free, by simply replacing
the commitment key with the target public key pk0.

In [7], Cascudo and David presented two PVSS protocols that improve
Schoenmakers’ scheme and its paring-based variant [19, 22], by reducing the
number of exponentiations required for verification from O(n2) to O(n). All
the follow-up works, like [3, 7, 8, 10, 22], also present a better efficiency com-
pared to Schoenmakers’ PVSS and its paring-based variant [19, 22]. However,
all the follow-up PVSS schemes with O(n) verification complexity lack the pre-
constructability feature of Schoenmakers’ original design. Since the goal of PVSS
is typically to allow public verifiability of the shares and the dealer only needs
to encrypt the shares under each participant’s public key. The main secret is not
shared with any individual, and thus the pre-constructability found in Schoen-
makers’ scheme was inherited from Feldman VSS and not carried forward into
the follow-up and more efficient PVSS designs. Our analysis show that this prop-
erty is crucial for some applications like universally verifiable e-voting and robust
public-key infrastructure [22].

General Strategy for Building PPVSS. As the next contribution of this
paper, we introduce a general strategy to convert a Shamir-based PVSS scheme
into an efficient PPVSS scheme with minimal computational and communication
overhead. Our approach is inspired by the design of the Shamir secret sharing
scheme. We note that in Shamir’s scheme, the individual shares f(i) and the
main secret f(0) are all distinct points on the same secret polynomial f(X). In
a standard Shamir-based PVSS scheme, given the parties’ public keys {pki}ni=1

and a secret degree-t polynomial f(X), a dealer generates a Non-Interactive
Zero-Knowledge (NIZK) proof for Ci = Enc(f(i), pki) for i = 1, . . . , n, where
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n ≥ 2t + 1 and Enc is a public key encryption algorithm. We show that, with
minimal modifications, the dealer can extend the NIZK proof scheme to the case
i = 0, 1, . . . , n, where f(0) denotes the main secret and pk0 is a commitment
key or the public key of a designated party. Notably, in terms of efficiency, the
computational and communication overhead in the resulting PPVSS scheme is
negligible compared to the original PVSS scheme, increasing by only a factor of
1/n for both the dealer and the verifier.

Practical PPVSS Schemes. Using the proposed strategy, we build two prac-
tical PPVSS schemes based on the PVSS schemes proposed in [3,7,8]. Our focus
is on these practical PVSS schemes, where the secret is gf0 , however, we believe
that our strategy is general enough to be used with other Shamir-based PVSS
schemes as well, including the ones that the secret is f0 [9]. Our initial PPVSS
scheme can be seen as a more efficient alternative to Schoenmakers’ PPVSS
scheme [22], as both are constructed in the RO model. While the second pro-
posed PPVSS scheme is constructed in the plain model and can be seen as a
more efficient alternative to the paring-based variant of Schoenmakers’ PPVSS
scheme [22], proposed by Heidarvand and Villar [19]. In terms of efficiency, the
new PPVSS schemes are more efficient than the (special) PPVSS schemes pro-
posed in [19, 22], and notably reducing the verification complexity from O(n2)
to O(n). Compared to the original PVSS schemes [3, 7, 8], the resulting PPVSS
schemes have very close efficiency, while presenting new functionalities, and en-
abling a more efficient reconstruction approach. Table 1 provides a summary of
performance metrics for the proposed PPVSS schemes.

More Efficient Universally Verifiable E-Voting Protocol. Schoenmakers
demonstrated how his (P)PVSS scheme could be applied to various use cases,
including a universally verifiable e-voting protocol [22]. In Schoenmakers’ voting
protocol, the computational cost for the verification step is approximatelym(nt+
4.5n) exponentiations, where m and n are the number of voters and talliers,
respectively, and t = ⌊n−1

2 ⌋ is the threshold. In some cases, such as boardroom
elections, each participant may act as both a voter and a tallier, meaning m = n.
In such cases, the verification phase requires O(n3) exponentiations.

Table 1. A comparison of new PPVSS schemes with those of Schoenmakers [22]
and its paring-based variant [19]. BC: Dealer’s Broadcast size, Dow.: Download size
by a verifier, Opt. Reconst.: Optimistic Reconstruction, Pes. Reconst.: Pessimistic Re-
construction, PDL: Polynomial Discrete Logarithm, DDH: Decisional Diffie-Hellman,
DBS: Decisional Bilinear Square, RO: Random Oracle, Plain: Plain Model, n: Number
of parties, t: threshold parameter (t ≈ n/2), PG: Pairing Operation, EG: Exponentia-
tion in group G, MG: Multiplication in group G, PE : degree-t Polynomial Evaluation,
|G|: G element size, |Zq|: Zq element size.

PPVSS & Security Share Broadcast & Dow Verification Opt. Reconst. Pes. Reconst.

Schoenmakers [22] 4.5n EG BC: 1.5n|G| + n|Zq| nt + 4n EG + 1 EG 5t EG
(DDH, RO) 1n PE Dow: 2.5n|G| + n|Zq| nt + 2n MG + t MG

Sec. 4.2 2n EG BC: n|G| + 0.5n|Zq| 2n EG + 1 EG 5t EG +
(PDL, DDH, RO) 2n PE Dow: 2n|G| + 0.5n|Zq| n PE +n MG t MG

Hei-Vil [19] 1.5n EG BC: 1.5n|G| nt EG + 2n PG 1 EG 2t PG + t EG
(DBS, Plain) 1n PE Dow: 2.5n|G| + nt MG + t MG

Sec. 4.3 2n EG BC: 2n|G| n EG + 2n PG 1 EG 2t PG + t EG
(DBS, Plain) 1n PE Dow: 3n|G| + n MG + t MG
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As an additional contribution of this paper, leveraging our proposed RO-
based PPVSS scheme, we revisit the universally verifiable e-voting protocol pre-
sented by Schoenmakers [22] and introduce an improved version. The new e-
voting protocol outperforms Schoenmakers’ construction in several ways, notably
reducing the verification phase to O(mn) exponentiations rather than O(mn2).
This improvement makes the new e-voting protocol viable for elections with a
large value of n. To assess the performance of the new e-voting protocol, we
present a prototype Rust implementation of both the original and our revis-
ited protocols. Detailed performance evaluations and comparisons are provided
in Section 5.3. For (n, t) = (512, 255), we demonstrate that the new e-voting
scheme requires 90× less time for a single ballot verification. Additionally, for
the same parameter sizes, the improved e-voting protocol requires 40% less time
for ballot casting and 40% less (broadcast) communication by each voter.

Outline. In Sec. 2, we present some preliminaries. In Sec. 3, we discuss the def-
initions for PPVSS and introduce a general strategy to build a PPVSS scheme.
In Sec. 4, we present two practical PPVSS schemes along with some implemen-
tation results. In Sec. 5, we use the new RO-based PPVSS scheme and revisit
Shoenmakers’ e-voting protocol and evaluate its performance with a prototype
implementation. Finally, in Sec. 6, we conclude the paper.

2 Preliminaries

Notation. We denote by λ the security parameter. A function f is called neg-
ligible in X, written negl(X), if for any constant c, there exists some X0 such
that f(X) < X−c for all X > X0. When a function is negligible in the security
parameter λ, we refer to it simply as negligible. The symbol ← denotes uniform
sampling from a set Ξ, for example, x ← Ξ. Throughout this paper, p and q
represent two large primes such that q divides p− 1. We define G as the unique
subgroup of Z⋆

p with order q, and let g be a generator of the cyclic group G of
prime order q. The group G is chosen such that computing discrete logarithms
(DL) within G, i.e., finding logg h for some h ∈ G, is computationally hard.

2.1 Sigma Protocols

Next, we recall the definition of sigma protocols (Σ-protocols). Here the algo-
rithms are Probabilistic Polynomial-Time (PPT), unless mentioned. Let X =
X(λ) and W = W (λ) be sets. Let R be a relation on X × W that defines a
language L = {x ∈ X : ∃w ∈ W,R(x,w) = 1}. Given x ∈ L, an element w ∈ W
such that R(x,w) = 1 is called a witness. Let relation generator R be a PPT
algorithm such that R(1λ) outputs pairs (x,w) such that R(x,w) = 1.

A sigma-protocol (Σ-protocol) for the relation R is a 3-round interactive
protocol between two PPT algorithms: a prover P and a verifier V . P holds a
witness w for x ∈ L and V is given x. In first round, P sends a commitment value
a to V , and then in second round, V answers with a randomly sample challenge
value d. A Σ-protocol is called public-coin if the challenge value d is a public
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and random string rather than something derived in a complex or private way.
Finally, P answers with a response z, and V verifies the proof and outputs true
or false. The triple trans := (a, d, z) is called a transcript of the Σ-protocol. A
Σ-protocol is supposed to satisfy Completeness, Honest Verifier Zero-Knowledge
(HVZK), and Special Soundness defined below.

Definition 1 (Completeness). A Σ-protocol with parties (P, V ) is complete
for R, if for all (x,w) ∈ R, the honest V will always accept the honest P .

Definition 2 (HVZK). A Σ-protocol with parties (P, V ) satisfies HVZK for
R, if there exists a PPT algorithm S that given x ∈ X, can simulate the trans
of the scheme, s.t. for all x ∈ L, (x,w) ∈ R,

trans(P (x,w)↔ V (x)) ≈ trans(S(x))

where trans(P (·)↔ V (·)) indicates the transcript of the Σ-protocol with (P, V ),
and ≈ denotes the indistinguishability of transcripts.

Definition 3 (Special Soundness). A Σ-protocol with parties (P, V ) is spe-
cial sound for R, if there exists a PPT extractor E, such that for any x ∈ L,
given two valid transcripts (a, d, z) and (a, d′, z′) for the same message a but
d ̸= d′, then E(a, d, z, d′, z′) outputs a witness w for the relation R.

In the Random Oracle (RO) model, using Fiat-Shamir transform [16], a
public-coin, complete, HVZK, and special soundness Σ-protocol can be turned
into a Non-Interactive Zero-Knowledge (NIZK) proof or argument of knowledge.

Chaum-Pedersen Protocol for DL Equality. Let G be a group with hard
DL, and g, h be two group elements, where g is the group generator. Let a prover
aim to convince a verifier that for the public statement g, h, a, b, he knows a
witness x which holds in the following relation,

RDLEQ = {(g, h, a, b), x | a = gx ∧ b = hx}. (1)

This relation is known as DL EQuality (DLEQ). In [11], Chaum and Pedersen
introduced an efficient NIZK proof of knowledge for DLEQ, as summarized in
Fig. 1. This protocol is widely employed in various cryptographic protocols,
including threshold decryption, e-voting systems, PVSS schemes, etc.

Prover: Given the statement (g, h, a, b) ∈ G and the witness value x ∈ Zq, proceed
as follows and output a proof π.
1. Sample r ←$ Zq uniformly at random; and set c1 = gr and c2 = hr.
2. Set d← H(a, b, c1, c2), where H is a random oracle.
3. Set z = r + d · x mod q; and Return π := (d, z)

Verifier: Given the statement (g, h, a, b) ∈ G and the proof π = (d, z), checks if
d = H(a, b, gz

ad ,
hz

bd
) and outputs true or false.

Fig. 1. Chaum-Pedersen NIZK proof of knowledge for DLEQ [11].
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NIZK Proof of Binary Vote. In the ballot casting phase of the e-voting
protocol proposed by Schoenmakers [22], a voter V casts a binary vote v ∈ {0, 1}
by running the sharing phase for the (P)PVSS scheme, using a random secret
s ∈ Zq, and computing the value U = Gs+v. In addition, the voter generates a
proof πU to show that v ∈ {0, 1} without revealing any information on v. The
proof πU refers to the commitment C0 = gs, which is published as part of the
(P)PVSS transcript, and proves that:

logG U = logg C0 ∨ logG U = 1 + logg C0.

The proof πU is constructed using the technique of [13], and its protocol can be
summarized as follows:

1. The prover sets av = gw and bv = Gw for random w ∈R Zq. The prover

also sets a1−v = gr1−vC
d1−v

0 and b1−v = Gr1−v (U/G1−v)d1−v , for random
r1−v, d1−v ∈R Zq. The prover sends a0, b0, a1, b1 in this order to the verifier.

2. The verifier sends a random challenge c ∈R Zq to the prover.
3. The prover sets dv = c− d1−v (mod q) and rv = w− sdv (mod q), and sends

d0, r0, d1, r1 in this order to the verifier.
4. The verifier checks that c = d0 + d1 (mod q) and that

a0 = gr0Cd0
0 , b0 = Gr0Ud0 , a1 = gr1Cd1

0 , and b1 = Gr1
(
U
G

)d1
.

The protocol is proven to satisfy completeness, special soundness and hon-
est verifier zero-knowledge; hence, its non-interactive version achieves ZK and
releases no information on v in the random oracle model. This protocol is also
used in our revised e-voting protocol.

2.2 Bilinear Groups and Computational Assumptions

We present one of our proposed PPVSS schemes over a symmetric bilinear group,
which are defined as below.

Definition 4 (Bilinear Group). A bilinear group is a tuple (q,G,GT , e),
where:

- G and GT are groups of prime order q,
- e : G×G→ GT is a bilinear map with the following properties:

- Bilinearity: e(gα, gβ) = e(g, g)αβ for every g ∈ G and α, β ∈ Zq.
- Non-degeneration: e(g, g) ̸= 1 unless g = 1.
- Efficiency: There are efficient algorithms for computing group opera-
tions in G, GT , and evaluating e(x, y) for x, y ∈ G.

The security of Cascudo and David’s paring-based PVSS scheme [7] is proven
under the Decisional Bilinear Square (DBS) assumption [19], which was shown
to be related to the Decisional Bilinear Diffie-Hellman assumption.

Definition 5 (Decisional Bilinear Square (DBS) Assumption [19]). Let
(q,G,GT , e) be a bilinear group. For a generator g ∈ G, random values µ, ν, s←
Zq, and given u = gµ and v = gν , the following probability distributions are
computationally indistinguishable:

D0 = (g, u, v, T0 = e(u, u)ν) ≈ D1 = (g, u, v, T1 = e(u, u)s)
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Polynomial Discrete Problem. In [3], Baghery generalize Discrete Logarithm
(DL) relation over polynomials and introduce the Polynomial Discrete Logarithm
(PDL) relation denoted as RPDL, which is defined as follows,

RPDL = {(g, xi, Fi), f(X) | Fi = gf(xi) for i = 1, 2, . . . , n}.

Here, f(X) ∈ Zq[X]t is a (at most) degree t ≤ n − 1 witness polynomial with
coefficients from Zq, and {xi}ni=1 are n distinct elements from Zq. The RPDL

relation is based on the PDL problem, defined as follows, which is shown to be
reducible to the DL problem [3].

Definition 6 (Polynomial Discrete Logarithm Problem [3]). Let G be
a finite cyclic group of order q generated by g. Given F1, . . . , Fn from G and
distinct elements x1, . . . , xn from Zq, find a polynomial f(X) ∈ Zq[X]t of (at
most) degree t, where 0 ≤ t ≤ n− 1, such that Fi = gf(xi) for all i = 1, . . . , n.

In other words, an algorithm A has advantage ϵ in solving PDL in G if

Pr[A(x1, . . . , xn, g, g
f(x1), . . . , gf(xn)) = f(X)] ≥ ϵ

where f(X) ∈ Zq[X]t is (at most) a degree-t polynomial with 0 ≤ t ≤ n− 1, and
the probability is over the random choice of generator g ∈ G∗ and the distinct
choice of x1, . . . , xn in Zq.

Baghery [3] also presented a Non-Interactive Zero-Knowledge (NIZK) Proof-
of-Knowledge (PoK) scheme πPDL, that allows a prover to prove knowledge of a
witness for RPDL relation. The verifiability property of ΠS PVSS scheme [3, 8]
is proven under the PDL assumption.

2.3 Shamir Secret Sharing

A (t + 1, n)-Shamir secret sharing scheme [23] allows n parties to individually
hold a share xi of a common secret f0, such that any subset of t parties or less
are not able to learn any information about the secret f0, while any subset of
at least t + 1 parties are able to efficiently reconstruct the common secret f0.
In more detail, this is achieved via polynomial interpolation over the field Zq.
A common polynomial f(x) ∈ Zq[x]t is chosen, such that the secret f0 is set
to be its constant term, namely f0 = f(0). Each party Pi for i ∈ {1, · · · , n}
is assigned the secret share fi = f(i). Then any subset Q ⊆ {1, . . . , n} of at
least t + 1 parties can reconstruct the secret x0 via Lagrange interpolation by
computing f0 = f(0) =

∑
i∈Q fi · LQ

0,i, where

LQ
0,i :=

∏
j∈Q\{i}

j
j−i (mod q).

are the Lagrange basis polynomials evaluated at 0.
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2.4 Coding Theory and Dual Codes

We define a [n, t + 1, d] code RS to be a linear error-correcting code over Zq of
length n, dimension t + 1, and minimum distance d. Its dual code RS⊺ is the
vector space that consists of all vectors v⊺ ∈ Zn

q such that ⟨c,v⊺⟩ = 0 for all c
in RS. The dual code RS⊺ of an [n, t+ 1, d] code RS is an [n, n− t− 1, d⊺] code
(for some d⊺). In this work, we will use the following basic linear algebra fact.

Lemma 1 ([7]). If c′ ∈ Zn
q \RS, and v⊺ is chosen uniformly at random in RS⊺,

then the probability that ⟨c′,v⊺⟩ = 0 is exactly 1/q.

Proof. By linearity, a v⊺ ∈ RS⊺ is orthogonal to c′ if and only if it is also
orthogonal to every vector in the code D spanned by c′ and RS, i.e., if and only
if v⊺ ∈ D⊺. Since c′ /∈ RS, the dimension of D is t + 2, and hence the space D⊺

has dimension n− t− 2. Therefore, if v⊺ is chosen uniformly at random in RS⊺,
the probability that ⟨c′,v⊺⟩ = 0 is

#(D⊺)

#(RS⊺)
=

qn−t−2

qn−t−1
=

1

q
.

Moreover, in this work, we will always assume n < q, and we will use Reed-
Solomon codes RS of the following form:

RS = {(f(1), f(2), . . . , f(n)) : f(X) ∈ Zq[X],deg(f(X)) ≤ t},

where f(X) ranges over all polynomials in Zq[X] of degree at most t. This is an
[n, t + 1, n − t] code. Its dual RS⊺ is an [n, n − t − 1, t + 2] code, which can be
defined as follows:

RS⊺ = {(d1p(1), d2p(2), . . . , dnp(n)) : p(X) ∈ Zq[X],deg(p(X)) ≤ n− t},

where the coefficients di are given by di =
∏

1≤j≤n
j ̸=i

1
i−j .

3 Pre-Constructed Publicly Verifiable Secret Sharing

The definition of PVSS requires that given a secret f0 and public keys
pk1, . . . , pkn for a set of n parties P1, . . . , Pn, a dealer D proceeds as follows.
First, the dealer creates shares {fi}ni=1, and then encrypts each fi under the
corresponding pki, obtaining ciphertexts ci for i = 1, . . . , n. Finally, it publishes
{ci}ni=1 along with a proof πPV SS , proving that the encrypted shares are well-
formed. For instance, in the case of PVSS based on (n, t)-Shamir secret sharing,
the proof guarantees that the encrypted shares are valid shares generated by
the Shamir scheme. Specifically, any t + 1 of n decrypted shares can be used
to reconstruct the secret f0, while any t decrypted shares reveal no information
about the secret. As can be seen, the dealer in a PVSS scheme does not need
to publish a commitment to (or an encryption of) the secret f0. This is why in
practical PVSS schemes [3, 7, 8, 10], the dealer does not publish a commitment
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to f0. Consequently, in current cryptographic protocols that use practical PVSS
schemes [3,7,8,10] as a subroutine, if the main secret f0 is needed, either at least
t + 1 shareholders collaborate to reconstruct it, or the dealer has to publish at
least O(t) field elements, and each party has to do O(n) computation to compute
f0. For instance, in the SCRAPE randomness generation protocol [7], the dealer
commits to all n shares {fi}ni=1 separately and later opens them to verify and
reconstruct f0. This adds O(nλ) bits communication and O(n) computation cost
to this final protocol, where λ is the security parameter and n is the number of
parties. In the case of ALBATROSS [8], an improved version of SCRAPE, the
dealer opens the secret polynomial itself, which again adds O(tλ) bits commu-
nication and O(n) computation costs to the final protocol, where t ≈ n/2 is the
threshold parameter. Given the revealed polynomial, a verifier needs to evaluate
a degree-t polynomial n times and recompute n exponentiations to check if the
commitments are valid.

Above all, as shown in [22, Sections 5 and 6], some applications of PVSS
schemes, such as universally verifiable e-voting and threshold binding ElGamal,
require the commitment (i.e., C0 = gf0) or encryption of the main secret f0 to
be published by the dealer. Obviously, this feature exceeds the requirements of
a standard PVSS scheme and is absent in [3, 7, 8, 10]. The only exception is the
less efficient PVSS scheme proposed by Schoenmakers [22] and its paring-based
variant [19]. In Schoenmakers’ scheme, the dealer publishes C0 = gf0 in the
proof πPV SS , as a commitment to the first coefficient of the underlying secret
polynomial. One may note that is occurred due to the following reasons. First,
in Shamir secret sharing, the secret is typically embedded in f(0) = f0. Con-
sequently, in the Feldman VSS where the dealer publishes commitments to the
coefficient of the secret polynomial, C0 = gf(0) = gf0 serves as the commitment
to the first coefficient. However, if the secret would be embedded differently in
Shamir secret sharing, for instance by setting f(−1) = f0, Feldman VSS would
still work, but the commitment to the main secret, gf(−1), would not be pub-
lished. One might argue that given gf(i) for i = 1, . . . , n, it is possible to publicly
compute gf(j) at an arbitrary point j, such as the index of main secret, using
Lagrange interpolation in the exponent. However, this would require O(n) ex-
ponentiations. More importantly, in packed Shamir secret sharing and packed
PVSS schemes [8], where the l secrets f0, f−1, . . . , f−(l−1) are embedded to differ-
ent points, e.g., f(0), f(−1), . . . , f(−(l−1))), the secret is not solely f(0). Thus,
commitments to the secrets would not necessarily be published in a standard
PVSS scheme.

In applications where the dealer needs to publish the encryption of f0 = f(0)
under a specific public key pk0, such as threshold binding ElGamal [22, Section

6.1], in addition to proof πPV SS , the dealer publishes yf0 = pkf00 along with a

DLEQ proof πDLEQ (using Fig. 1) to show that yf0 = pkf00 ∧ C0 = gf0 . This
again adds extra communication and computation costs to the final protocol.

To address the concerns outlined above and develop more efficient, versa-
tile, and broadly applicable PVSS schemes, we introduce Pre-Constructed PVSS
(PPVSS) and present practical constructions. We start by defining the syntax for
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PPVSS schemes, adapting it from the standard PVSS syntax with some exten-
sions. Next, we propose a general strategy to efficiently convert a Shamir-based
PVSS scheme into a PPVSS protocol.

3.1 Definitions

Next, we introduce our definition for PPVSS schemes, which can be viewed as
a natural extension of the standard PVSS definitions adapted from [3,7, 8, 22].

Definition 7. A Pre-constructed PVSS (PPVSS) protocol consists of four al-
gorithms of (Initial, Share, Verify, Reconstruct) as follows:

1. Initial(1λ) → ({pki, ski}ni=1, h0 or (pk0, sk0)): Given 1λ, in this phase, each
party {Pi}ni=1 registers public key pki and withholds the corresponding secret
key ski. The parties and dealer also agree on a commitment key h0 or a
specific public key pk0 with the secret key sk0, which will be used in the
sharing phase while committing to or encrypting the main secret.

2. Share(n, t, f0, {pki}ni=1, h0 or pk0) → ({yi}ni=0, πPPV SS): Given secret f0, it
first secret shares f0 and obtains the shares {fi}ni=1. Next, it encrypts the
share fi under pki and obtains ciphertexts {yi}ni=1. It also commits to (resp.
encrypts) f0 using h0 (resp. pk0) and obtains y0. Then, it generates a publicly
verifiable NIZK proof πPPV SS that y0 is indeed commitment to (or encryp-
tion of) main secret f0 under h0 (resp. pk0), and {yi}ni=1 are encryptions of
a valid sharing of f0. Finally, returns (y0, y1, . . . , yn, πPPV SS).

3. Verify(n, t, {pki, yi}ni=0, πPPV SS)→ true/false: In this phase, anyone (not
necessarily a participant in the protocol) can verify non-interactively the val-
ues {yi}ni=0 using ({pki}ni=0, πPPV SS), and output either true/false.

4. Reconstruct: This phase can be done in two ways:
(a) (Optimistic) Reconstructopt((h0, y0, f0, r0) or (pk0, y0, sk0)) →
{f0, false}:
- Given the commitment key h0, the commitment y0 and the opening
values (f0, r0), a verifier checks if (f0, r0) are valid opening for y0.
If so, the verifier returns f0; otherwise it returns false.

- Given the public key pk0, the ciphertext y0 and the secret key sk0,
the algorithm decrypts y0 and returns f0;

(b) (Pessimistic) Reconstructpes({yi, ski}i∈Q,|Q|=t+1) → {f0, false}: Given

any t + 1 of the encrypted shares and secret keys, e.g., {yi, ski}t+1
i=1, it

returns either the main secret f0, or false. This can be done in two
phases: decryption of the shares and share pooling. In the first step, ev-
ery party Pi ∈ Q decrypts the share fi from the ciphertext yi by using its
secret key ski, and publishes fi together with a NIZK proof πDec

i that this
value is indeed a correct decryption of yi. In the share pooling phase, a
verifier V (not necessarily from the participants) first checks whether the
proofs {πDec

i }t+1
i=1 are correct. If the check passes for less than t parties in

Q then V returns false; otherwise V applies a reconstruction procedure
to the set of valid shares, i.e., {fi}t+1

i=1, and calculates and returns f0.
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Similar to a PVSS scheme [7,22], a PPVSS scheme needs to satisfy the following
security guarantees.

- Correctness: If the dealer and parties follow the protocol, then the Verify
algorithm will return true and the Reconstruct by both approaches will
return f0. More formally, for any integers n > 1 and t < n a PPVSS is called
correct, if for ({pki, ski}ni=1, h0 or (pk0, sk0))← Initial(1λ), we have:

Pr

[
({yi}ni=0, πPPV SS)← Share(n, t, f0, {pki}ni=1, h0 or pk0) :

true← Verify(n, t, {pki, yi}ni=0, πPPV SS)

]
= 1,

Pr

({yi}
n
i=0, πPPV SS)← Share(n, t, f0, {pki}ni=1, h0 or pk0),

f ′
0 ← Reconstructopt((h0, y0, f0, r0) or (pk0, y0, sk0)) ∨
f ′
0 ← Reconstructpes({yi, ski}i∈Q,|Q|=t+1) : f

′
0 = f0

 = 1 .

- Verifiability: If Verify algorithm returns true, then with high probability
the values {yi}ni=1 are encryptions of a valid sharing of some secret, and y0
is a commitment (or a ciphertext under pk0) to the same secret. Further-
more if the check in the (pessimistic) Reconstructpes phase passes then the
communicated values fi are indeed the shares of the secret distributed by
the dealer. Alternatively, if the check in the (optimistic) Reconstructopt phase
passes then the input value f0 is the main secret, shared in the sharing phase.
More formally, given λ, for any integers n ≥ 2t + 1 and t ≥ 0, a PVSS is
called verifiable if for any PPT adversaries A, we have:

Pr


({pki, ski}ni=1, h0 or (pk0, sk0))← Initial(1λ),

({yi}ni=0, πPPV SS)← A(n, t, {pki}ni=1, h0 or pk0),

true← Verify(n, t, {pki, yi}ni=0, πPPV SS) :

∃s,∀Q ∈ [n], s← Reconstructpes({yi, ski}i∈Q,|Q|≥t+1),

∨ s← Reconstructopt((h0, y0, s, r0) or (pk0, y0, sk0))

 ≥ 1− negl(λ) ,

where Q is the set of honest parties.

- IND1-Secrecy (Indistinguishability of Secrets): Prior to the recon-
struction phase, the public information together with the secret keys ski of
any set of at most t parties, excluding sk0, gives no information about the se-
cret f0. This is formalized by the following indistinguishability game adapted
from [7,19]. We say that for any integers n > 1 and t < n, the PVSS scheme
satisfies IND1-Secrecy if for any polynomial-time adversary A corrupting at
most t parties, excluding the owner of sk0, A has negligible advantage in the
following game played against a challenger.
1. The challenger runs Initial(1λ) of the PPVSS and obtains

({pki, ski}ni=1, h0 or (pk0, sk0)) and sends all public information along
with the secret information of all corrupted parties to the A.

2. The challenger chooses secrets s0 and s1 at random in the space of se-
crets. Furthermore, it chooses b ∈ {0, 1} uniformly at random and runs
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Share(n, t, s0, {pki}ni=1, h0 or pk0) algorithm of the PPVSS scheme with
s0 as the secret and obtains ({yi}ni=0, πPPV SS). It then sends A all public
information generated in that phase, together with sb.

3. A outputs a guess b′ ∈ {0, 1}.
The advantage of A is defined as

∣∣Pr[b = b′]− 1
2

∣∣.
3.2 Building a PPVSS from a Shamir-based PVSS

From the definition of PVSS schemes presented in Def. 7, we observe that a
PPVSS extends the functionality of PVSS schemes by committing to the main
secret and providing a unique and efficient reconstruction approach. These fea-
tures make a PPVSS scheme more useful and versatile than standard PVSS
schemes. Over the past decade, a wide range of practical PVSS schemes have
been proposed, achieving significant performance [3, 7–9,17,18,20].

In this section, we introduce a general strategy that enables the efficient trans-
formation of a Shamir-based PVSS scheme into an alternative PPVSS scheme
with minimal computational and communication overhead. This strategy pro-
vides a generic and efficient approach to constructing a PPVSS scheme from
a Shamir-based PVSS scheme. Our key observation is that in (n, t)-Shamir-
based secret sharing protocols, both the main secret f0 and the individual shares
{fi}ni=1 are distinct evaluations of a unique degree-t polynomial f(x). In a pub-
licly verifiable secret-sharing scheme, given individual public keys {pki}ni=1, the
dealer proves, in a publicly verifiable manner, that each individual share fi en-
crypted under public key pki is an evaluation of a unique degree-t polynomial
f(x) at point i. Building on this, we observe that in a PVSS scheme with public
keys {pki}ni=1, if a dealer can convince a public verifier that yi = Enc(f(i), pki)
for i = 1, . . . , n, then the dealer can be slightly modified to prove the same
statement for i = 0, 1, . . . , n as well. Here, pk0 can represent the public key of a
specific party in the target application, or it can be a public key whose secret key
is unknown to any party. It is worth mentioning that any public key encryption
scheme can act as a computationally hiding and perfectly binding commitment
scheme if the committer (or encryptor) does not know the secret key. Thus, pk0
can be set either as a specific party’s public key in the target application or as
the commitment key in a commitment scheme.

Applying this subtle modification to the Share algorithm of the underlying
PVSS scheme yields a modified Share′ algorithm for a new PPVSS scheme, which
returns n+1 ciphertexts (or n ciphertexts and 1 commitment) along with a proof
πPPV SS to verify the correctness of the new sharing phase. Consequently, a ver-
ifier in the resulting PPVSS scheme would run the verification algorithm of the
underlying PVSS scheme using n+1 ciphertexts and n+1 public keys (or n pub-
lic keys and one commitment key). We demonstrate that this subtle modification
has minimal impact on the efficiency of the underlying PVSS scheme while sig-
nificantly enhancing its functionality. Furthermore, it enables a new approach to
secret reconstruction in the resulting PPVSS scheme, which, in practice, can be
considerably more efficient than current methods.



Pre-Constructed Publicly Verifiable Secret Sharing and Applications 15

Initial′: In addition to running the Initial algorithm of the underlying PVSS scheme,
parties agree on a commitment key pk0, or a public key pk0 with its associated
secret key sk0 which is only known to a specific party.

Share′: Given (n, t), a secret f0, {pki}ni=1, and the commitment or public key pk0, the
dealer runs the Share algorithm of the underlying PVSS scheme for i = 0, 1, . . . , n
and obtains πPPV SS . Specifically, the dealer proceeds as follows:
1. Samples a uniformly random polynomial f(x) of degree t with f(0) = f0

and coefficients in Zq. Then, for i = 0, 1, . . . , n, sets fi = f(i).
2. Using {pki, i, fi}ni=0, computes the encrypted shares {yi}ni=0, where y0 is the

encryption/commitment of f0 under pk0.
3. Runs the proof generation procedure of the underlying PVSS scheme with

inputs ({pki, yi}ni=0, f(x)) and obtains the proof πPPV SS .
4. Finally, broadcasts (y0, y1, . . . , yn, πPPV SS).

Verify′: Given (n, t), {pki, yi}ni=0, and πPPV SS , a verifier runs the Verify algorithm
of Λ for i = 0, 1, . . . , n and outputs either true or false.

Reconstruct′: This phase can proceed in one of two approaches:
1. Approach 1 (Optimistic Case with Commitment): The dealer pub-

lishes the opening information for y0, such as f0 (and any associated ran-
domness r0 if needed). Then, given pk0 and y0, parties verify the validity of
the revealed value f0 (and associated randomness r0 if needed) and return
either f0 (if the opening was valid) or false.

2. Approach 2 (Pessimistic Case): Given any t+1 of the encrypted shares
and secret keys, e.g., {yi, ski}

t+1
i=1, parties run the Reconstruct algorithm of

the underlying PVSS scheme and return either f0 or false.

Fig. 2. A general construction for building a Shamir-based PPVSS scheme Λ′ =
(Initial′,Share′,Verify′,Reconstruct′) from a Shamir-based PVSS scheme Λ.

In Fig. 2, we present a general construction for building a PPVSS scheme
Λ′ = (Initial′,Share′,Verify′,Reconstruct′) using a Shamir-based PVSS scheme
Λ = (Initial,Share,Verify,Reconstruct).

Efficiency of Resulting PPVSS Scheme. The efficiency of the new protocol Λ′

closely aligns with that of the original protocol Λ, with only a marginal increase.
Specifically, the efficiency of the new algorithms is approximately 1/n times
more than the original ones, implying that running the algorithms of the PPVSS
scheme Λ′ is comparable to executing the original algorithms in the PVSS scheme
for n + 1 parties instead of n parties. The new PPVSS scheme Λ′ achieves
enhanced functionality and efficiency with minimal cost.

We will discuss the security of resulting PPVSS scheme, later in the context
of particular instantiations and the proposed protocols.

4 On Practical PPVSS Schemes

The strength of the scheme proposed in Fig. 2 lies in its generality and efficiency,
as it only requires a secure PVSS scheme Λ. Over the past decades, various PVSS
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schemes with different trade-offs have been proposed [3, 7, 8, 10, 17, 19, 22]. We
compare the efficiency of well-known PVSS schemes in App. A.1.

In this section, we instantiate the general construction from Fig. 2 using
two efficient PVSS schemes [3, 7] in the RO and plain models and construct
two novel and practical PPVSS schemes. The proposed PPVSS schemes exhibit
various trade-offs in terms of efficiency and security and the second construction
uses bilinear pairing groups. We first highlight two less efficient PVSS schemes
from the literature that can act as a PPVSS scheme, which in the dealer also
publishes commitments to the (pre-constructed) secret.

4.1 Schoenmakers’ PVSS Scheme is a PPVSS Scheme as Well

Among current constructions for PVSS schemes, one notable protocol was intro-
duced by Schoenmakers [22]. We refer to Appendix A.2 for an overview of his
construction. His proposed PVSS scheme is constructed in the RO model and
is distinguished by its versatility, being applicable in many protocols. Specifi-
cally, this PVSS scheme can be used for random beacons, universally verifiable
e-voting, binding ElGamal, revocable cash, and many other applications [22].
This versatility is primarily because, in Schoenmakers’ construction, as part of
the proof, the dealer uses Feldman VSS and publishes commitments to the coef-
ficients of the secret polynomial f(x), which includes a commitment to the first
coefficient. The commitment to the first coefficient can also be considered a com-
mitment to the main secret. This additional property is precisely what a type
of PPVSS schemes needs to guarantee, compared to standard PVSS schemes.
In [19], Heidarvand and Villar proposed a pairing-based variant of Schoenmak-
ers’ PVSS scheme, which removes the need for a random oracle and similarly
publishes a commitment to the main secret. Thus, Schoenmakers’ scheme [22]
and its pairing-based variant proposed in [19] can also be considered as (spe-
cial) PPVSS schemes, where in both cases, the dealer publishes a commitment
to the pre-constructed secret as well. Despite their versatility, Schoenmakers’
PPVSS scheme [22] and its pairing-based variant [19] are significantly less effi-
cient compared to more recent PVSS schemes. Notably, their verification costs
are dominated by O(n2) exponentiations.

Since the introduction of Schoenmakers’ (P)PVSS [22], and its pairing-based
variant [19], several follow-up and more efficient PVSS schemes have been de-
veloped [3, 7, 8, 10, 17], reducing the verification complexity to O(n). Although
all the recent PVSS schemes are considerably more efficient compared to the
PPVSS schemes from [19, 22], they all are limited in terms of applicability and
are mostly used in a restricted number of applications (e.g., distributed ran-
domness generation). Consequently, many protocols based on (P)PVSS, such as
universally verifiable e-voting and threshold binding ElGamal [22], still need to
rely on Schoenmakers’ construction [22] or its pairing-based variant [19], which
both are too slow, rendering them impractical for large-scale applications. In
PPVSS schemes build with our proposed construction, with minimal computa-
tional overhead, the dealer can publish either or both the encryption and/or
commitment of the main secret f0, providing greater flexibility.
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Initial′: As in the Initial phase of the original PVSS scheme [3,8], given the generator g for G, for
i = 1, . . . , n, each party Pi register their public key pki = gsi , and store the secret key si.
The parties also agree on pk0 ̸= g as the commitment key, or a target public key . In case
of former, pk0 is sampled randomly from G, and in case of later, it is registered by the
target person P0 as pk0 = gs0 , where s0 ∈ Zq is the secret key of the target person.

Share′: Given the parameters (n, t), a secret f0, the public keys {pk1, . . . , pkn}, and the commit-
ment or public key pk0 , the dealer acts as follows:

1. Samples a uniformly random polynomial f(x) of degree t with f(0) = f0 and coefficients
in Zq . Then, for i = 0 , 1, . . . , n sets fi = f(i).

2. Sets the encrypted shares y0 = pk
f0
0 , y1 = pk

f1
1 , . . . , yn = pkfnn . Note that, depending

on the target application, in practice, the secret key of pk0 might be unknown, or it can
be known for a specific party.

3. Based on the proof scheme πPDL (presented in [3]), samples a new random degree-t

polynomial r(x) with coefficients in Zq and sets ci = pk
r(i)
i for i = 0 , 1, . . . , n.

4. Given the random oracle H, compute d = H(y0 , y1, . . . , yn, c0 , c1, . . . , cn) and z(x) =
r(x) + df(x).

5. Finally, broadcasts (y0 , y1, . . . , yn, πPPV SS := (d, z(x)).

Verify′: Given (n, t), (pk0 , pk1, . . . , pkn, y0 , y1, . . . , yn), and πPPV SS = (d, z(x)), a verifier first

checks if z(x) is a degree-t polynomial. If so, given the random oracle H, it checks the
following equation and outputs true/false

d == H(y0 , y1, . . . , yn,
pk

z(0)
0
yd
0

,
pk

z(1)
1
yd
1

, . . . ,
pk

z(n)
n
yd
n

).

Reconstruct′: This phase can proceed in one of two approaches:

1. Approach 1 (Optimistic Case): The dealer publishes f0. Then, given (g, pk0, y0), a ver-

ifier (not necessarily from the parties) checks if y0 == pk
f0
0 and returns either gf0 (if

the check passes) or false.
2. Approach 2 (Pessimistic Case): Parties run the Reconstruct algorithm of ΠS PVSS

scheme and return either gf0 or false. To this end,
(a) They first use their secret key si, and obtain their share Fi := gfi from yi by

computing Fi = y
1/si
i . Then, they publish Fi plus a NIZK proof that the value Fi

is a correct decryption of yi. To this end, the party Pi needs to prove knowledge
of an si such that, (pki = gsi )∧ (yi = F

si
i ), which can be done by the NIZK proof

scheme for the DLEQ relation (given in Fig. 1).
(b) Then, given any t + 1 valid values of Fi, w.l.o.g. for i = 1, . . . , t + 1, the secret

gf0 = gf(0), can be obtained by Lagrange interpolation,

∏t+1
i=1 F

λi
i =

∏t+1
i=1(g

fi )λi = g
∑t+1

i=1
fiλi = gf(0) = gf0 ,

where λi =
∏

j ̸=i
j

j−i is a Lagrange coefficients.

Fig. 3. ΛRO: an efficient RO-based PPVSS scheme based on the PVSS scheme ΠS .

4.2 A Practical PPVSS Scheme in the Random Oracle Model

In this section, we instantiate the general construction from Fig. 2 using the RO-
based PVSS scheme proposed by Baghery [3], so-called ΠS , which can also be
considered as a formally proven and non-packed version of the PVSS scheme
initially proposed by Cascudo and David [8]. The resulting PPVSS scheme
ΛRO = (Initial′,Share′,Verify′,Reconstruct′) is summarized in Fig. 3. The key
differences between the original scheme and the resulting PPVSS scheme are
highlighted in gray color. The resulting RO-based PPVSS scheme can be seen
as the first alternative to the RO-based (P)PVSS scheme proposed by Schoen-
makers [22], offering greater flexibility and more efficient verification, requiring
O(n) exponentiations instead of O(n2). This improvement allows us to revisit
all the applications discussed in [22], and enhance their performance.
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Theorem 1 (RO-Based PPVSS). Under the Polynomial Discrete Logarithm
(PDL) and Decisional Diffie-Hellman (DDH) assumptions, the PPVSS scheme
(outlined in Fig. 3), is secure against an static adversary in the random oracle
model. That is, (i) the protocol satisfies Correctness, (ii) it satisfies Verifiabil-
ity under PDL assumption, and both the reconstruction algorithms described in
Reconstruct′ phase result in the secret gf0 distributed by the dealer (for any qual-
ified set of shareholders in case of approach 2), (iii) it satisfies IND1-Secrecy
under DDH assumption, and any non-qualified set of shareholders is unable to
distinguish between the shares of two secrets.

Proof. In summary, the properties of Correctness, Verifiability, and IND1-
Secrecy of the new PPVSS scheme inherit those of the underlying PVSS
scheme [3]. However, for the sake of completeness, we provide a detailed dis-
cussion below.

Correctness. If the dealer and parties follow the protocol honestly, the veri-
fication and reconstruction processes yield the expected results. At the end of
initialization phase, parties register public keys ({pki := gsi}ni=1, pk0 or (pk0, s0))
and store the associated secret keys {si}ni=1 (or {si}ni=0) for the reconstruction
phase. Given (n, t), the secret f0, public keys {pki}ni=1, and the commitment or
public key pk0, the dealer proceeds as follows: samples a polynomial f(x) of de-

gree t such that f(0) = f0 and generates the encrypted shares {yi = pk
f(i)
i }ni=0,

where y0 is the encryption or commitment of f0 under pk0. Then, it samples

r(x) of degree t and sets ci = pk
r(i)
i for i = 0, 1, . . . , n. Next, it computes the

challenge value d = H(y0, y1, . . . , yn, c0, c1, . . . , cn) and z(x) = r(x) + df(x). Fi-
nally, it broadcasts πPPV SS := (d, z(x)) and y0, y1, . . . , yn. By substituting these
values in the verification equation, we observe that

d == H(y0, y1, . . . , yn, pk
z(0)
0

yd
0

,
pk

z(1)
1

yd
1

, . . . ,
pkz(n)

n

yd
n

)

= H(y0, y1, . . . , yn,
pk

r(0)+df(0)
0

pk
df(0)
0

,
pk

r(1)+df(1)
1

pk
df(1)
1

, . . . ,
pkr(n)+df(n)

n

pkdf(n)n

)

= H(y0, y1, . . . , yn, pkr(0)0 , pk
r(1)
1 , . . . , pkr(n)n ) = H(y0, y1, . . . , yn, c0, c1, . . . , cn).

During the optimistic reconstruction phase, given (g, pk0, y0, f0), clearly y0 =

pkf00 and the algorithm will always return f0. For the pessimistic case, given any
t + 1 shares and their secret keys, e.g., {yi, si}i∈Q,|Q|=t+1, the parties run the
Reconstruct algorithm of the original PVSS scheme and this also always yields
f0 if the shares will be generated honestly.

Verifiability. For the verifiability, we show that if Verify algorithm returns true,
then the values {yi}ni=1 are encryptions of a valid sharing of some secret, and y0
is a commitment (or a ciphertext under pk0) to the same secret. Furthermore
if the check in the (pessimistic) Reconstructpes phase passes then the communi-
cated values fi are indeed the shares of the secret distributed by the dealer and
the reconstruction with any t + 1 of valid shares will reach to the same secret



Pre-Constructed Publicly Verifiable Secret Sharing and Applications 19

gf0 . Alternatively, if the check in the (optimistic) Reconstructopt phase passes
then the output value gf0 is the main secret, shared in the sharing phase. This
is achieved by showing that the NIZK argument deployed in the new PPVSS

scheme satisfies special soundness under PDL problem for the relation yi = pk
f(i)
i

for i = 0, 1, 2, . . . , n, where f(x) is a (at most) degree-t witness polynomial. In
other words, akin to the case of original PVSS scheme [3], we show that given two
acceptable transcripts of the (interactive) protocol, any t+1 honest shareholders
can use theirs secret keys and extract a unique (at most) degree-t polynomial
from the dealer, which is a solution for the PDL problem. This implies that both
the reconstitution approaches will result in a unique secret gf0 . Let, (ci, d, z(x))
and (ci, d

′, z′(x)) be two acceptable transcripts of the (interactive) protocol, for
i = 0, 1, . . . , n. From the verification equation, we know that

pk
z(i)
i = ci(yi)

d , pk
z′(i)
i = ci(yi)

d′
for i = 0, 1, , . . . , n .

Note that, as pointed in [3], the verification equation can be written in the above
form as well. This implies that,

pk
z(i)−z′(i)
i = yd−d′

i ⇒ yi = pk
z(i)−z′(i)

d−d′

i for i = 0, 1, . . . , n . (2)

Then, if all n ≥ 2t + 1 of the checks in the verification pass successfully, given
the (pessimistic) reconstruction protocol detailed in Fig. 3, any set of t + 1

honest parties can decrypt {yi}i∈Q,|Q|=t+1,i̸=0, as Fi := y
1/si
i , and rewrite the

last equation as below,

gz(i)−z′(i) = F d−d′

i ⇒ Fi = g
z(i)−z′(i)

d−d′ for i ∈ Q, |Q| = t+ 1, i ̸= 0.

Note that at this stage parties need to give NIZK proof for DLEQ relation for
their correct decryption, therefore malicious parties will be aborted. Now, since

z(x) is a degree-t polynomial, and since from fi := z(i)−z′(i)
d−d′ for i ∈ Q, |Q| =

t+1, i ̸= 0, we obtain t+1 distinct evaluations of a (witness) degree-t polynomial
z(x)−z′(x)

d−d′ , therefore an extractor can use {fi}i∈Q,|Q|=t+1,i̸=0 and reconstruct
(extract) a unique (at most) degree-t polynomial f(x), which is a solution for
the PDL problem. This implies that, in the secret reconstruction with pessimistic
approach, any set of t + 1 honest parties, can use their individual (decrypted)

shares Fi := y
1/si
i , employ Lagrange interpolation (as in Fig. 3), and evaluate

a unique degree-t polynomial f(x) in the exponent at any point. By evaluating
gf(x) at point 0, they can obtain a unique secret value gf(0).

Note that in the case of i = 0, from equation (2), we can write

pk
z(0)−z′(0)
0 = yd−d′

0 ⇒ y0 = pk
z(0)−z′(0)

d−d′
0

which is a discrete logarithm solution. This implies that z(0)−z′(0)
d−d′ is the constant

term of the same (up to) degree-t witness polynomial f(x), extracted using the

pessimistic reconstruction approach. Consequently, we conclude y0 = pk
f(0)
0 =
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pkf00 . Thus, in secret reconstruction using the optimistic approach, given the
opening information f0, anyone can verify its validity and compute the unique
secret gf0 . In the scenario where pk0 is the public key of a specific party, given
the associated secret key s0, one can compute the unique secret F0 := gf0 by

calculating y
1/s0
0 .

IND1-Secrecy. We show that, if there exists an adversary A which can break
the IND1-secrecy property of the PPVSS scheme from Fig. 3, then there exists
an adversary B which can use A as a subroutine to break the Decisional Diffie-
Hellman (DDH) assumption with the same advantage.

Without loss of generality, we assume A corrupts the t− 1 first parties (ex-
cluding the owner of s0). Let (h, h

α, hβ , hγ) be an instance of the DDH problem.
We assume the values of α or β are nonzero. Now B, using A, can simulate an
IND1 game as follows:

1. The challenger sets g = hα and runs the initial phase of the protocol. For
t ≤ i ≤ n and i = 0, B selects uniformly random values ui ← Zq (implicitly
defining si = ui/α) and sends the values pki = hui to A.

2. For 1 ≤ i ≤ t − 1, A chooses uniformly random values si ← Zq and sets
pki = gsi and sends this to the challenger.

3. For 1 ≤ i ≤ t − 1, the challenger chooses uniformly random values fi ← Zq

and sets vi = hfi and yi = pkfii .
For t ≤ i ≤ n, it generates the values vi = hp(i), where p(x) is the unique
polynomial of degree at most t determined by p(0) = β and p(i) = fi for
i = 1, . . . , t− 1. Note that B does not know β, but it does know hβ = hp(0)

and hfi = hp(i) for 1 ≤ i ≤ t − 1, so it can use Lagrange interpolation in
the exponent to compute the adequate vi. It also creates the values yi = vui

i

for t ≤ i ≤ n and y0 = (hβ)u0 . From all the computed values {pki, yi}ni=0,
and given the challenge value of the interactive proof scheme, the simulator

can sample a random degree-t polynomial z′(x) and set c′i := pk
z′(i)
i /ydi for

i = 0, 1, . . . , n. Finally, it sends all this information together with the value
hγ (which plays the role of sb in the IND1 game) to A.

4. A makes a guess b′. If b′ = 0, B guesses that γ = α · β. If b′ = 1, B guesses
that γ is a random element in Zp.

The information that A receives in step 3 is distributed exactly like a sharing
of the value gβ = hα·β with the PPVSS. Consequently, γ = α · β if and only if
the value hγ sent to A is the secret shared by the PPVSS. It is now easy to see
that the guessing advantage of B is the same as the advantage of A. ⊓⊔

4.3 An Efficient PPVSS Scheme in the Plain Model

The PPVSS scheme proposed in Sec. 4.2 is built in the random oracle model. In
this section, we present an efficient PPVSS scheme based on pairings in the plain
model. To this end, we instantiate the general construction from Fig. 2 using
the pairing-based PVSS scheme proposed by Cascudo and David [7], that relies
on Decisional Bilinear Square (DBS) assumption [19]. Similarly, the resulting
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pairing-based PPVSS scheme can be seen as the first alternative to the paring-
based PPVSS scheme proposed by Heidarvand and Villar [19], offering greater
flexibility and more efficient verification, requiring O(n) exponentiations and
O(n) pairings instead of O(nt) exponentiations and O(n) pairings.

As in the underlying PVSS scheme, in the new PPVSS scheme, the dealer
initially uses pairings to prove the equality of the encrypted and committed
shares, i.e., {yi, ci}ni=0. Subsequently, the verifier employs the dual-code trick
to check that the committed shares {ci}ni=0 are valid and properly formed. It is
important to note that the equality proof provided by the dealer ensures that the
correctness of the committed shares {ci}ni=0 implies that the encrypted shares
{yi}ni=0 are also correct and well-formed.

Let (q,G,GT , e) be a description of a bilinear group and (g, h) be two inde-
pendently chosen generators of G. Let RS be the linear error correcting code
equivalent to the (n, t)-threshold Shamir secret sharing scheme and RS⊺ be
its dual code. The resulting PPVSS scheme ΛPlain = (Initial′,Share′,Verify′,
Reconstruct′) is summarized in Fig. 4. As in ΛRO, the key differences between
the original scheme [19] and the new PPVSS scheme are highlighted.

As in the original and prior PVSS schemes in the plain model [7, 19], we
present our PPVSS schemes over a symmetric bilinear group, also known as
Type-I bilinear groups. However, as in original PVSS case, we note that our
proposed PPVSS scheme can be adapted to asymmetric bilinear groups, where
pairing-friendly curves enable more efficient pairing algorithms.

Security. The algorithms of new PPVSS scheme are similar to the underlying
PVSS scheme [7], while the optimistic reconstruction is specific for the new
PPVSS scheme. We have made adjustments in the security proof of underlying
PVSS scheme to adapt for our protocol under the Decisional Bilinear Square
(DBS) assumption. This proof leverages pairing-based verification, ensuring that
any maliciously constructed encrypted shares y0, y1, . . . , yn will pass verification
with probability no higher than 1/q, while c0, c1, . . . , cn reveal no information
about the secret e(h, h)f0 under the DBS assumption.

Theorem 2. Under the DBS assumption, the PPVSS scheme ΛPlain outlined in
Fig. 4 satisfies IND1-secrecy against a static PPT adversary in the plain model.

Proof. We show that, if an adversary A can break the IND1-secrecy property of
PPVSS scheme ΛPlain, then we can build another adversary B that can exploit
A to break the Decisional Bilinear Square (DBS) assumption with equivalent
advantage. Without loss of generality, we assume A corrupts the t first parties
(excluding the owner of s0).

Assume an instance (g, gα, gβ , T ) is given, where B must determine whether
T = e(gα, gα)β or T = e(gα, gα)γ for a random γ ← Zq. Obviously if α = 0 or
β = 0 then the problem is trivial, so we assume these values are nonzero. Now
B, using A in an IND1 game as follows:

1. The challenger sets h = gα and runs the Setup phase of PPVSS in plain
model. For t < i ≤ n and i = 0, ADBS selects uniformly random values
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Initial′: Let (q,G,GT , e) be a description of a bilinear group and (g, h) be two independently cho-
sen generators of G. As in the Initial phase of the original PVSS scheme [7], given the generator
h, for i = 1, . . . , n, each party Pi register their public key pki = hsi , and store the secret
key si. The parties also agree on pk0 ̸= h as the commitment key, or a target public key .
In case of former, pk0 is sampled randomly from G, and in case of later, it is registered
by the target person P0 as pk0 = hs0 , where s0 ∈ Zq is the secret key of P0.

Share′: Given the parameters (n, t), a secret f0, the public keys {pk1, . . . , pkn}, and the commit-

ment or public key pk0 , the dealer defines the secret S = e(h, h)f0 and acts as follows:

1. Samples a uniformly random polynomial f(x) of degree t with f(0) = f0 and coefficients
in Zq . Then, for i = 0 , 1, . . . , n sets fi = f(i).

2. Sets the encrypted shares y0 = pk
f0
0 , y1 = pk

f1
1 , . . . , yn = pkfnn . Note that, depending

on the target application, in practice, the secret key of pk0 might be unknown, or it can
be known for a specific party.

3. Sets the commitments ci = gfi for i = 0 , 1, . . . , n.
4. Finally, broadcasts πPPV SS := (c0 , c1, . . . , cn) and (y0 , y1, . . . , yn).

Verify′: Given (n, t), (pk0 , pk1, . . . , pkn, y0 , y1, . . . , yn), and πPPV SS = (c0 , c1, . . . , cn), a veri-

fier first checks if e(yi, g) = e(pki, ci), for i = 0 , 1, . . . , n. If so, it samples a random codeword

v⊺ = (v⊺
0 , v⊺

1 , . . . , v
⊺
n) of the dual code RS⊺ corresponding to RS, the instance of Shamir’s

(n, t)-threshold secret sharing used by dealer, and checks if:

c
v
⊺
0

0

∏n
i=1 c

v
⊺
i

i == 1

and outputs either true/false.

Reconstruct′: This phase can proceed in one of two approaches:

1. Approach 1 (Optimistic Case): The dealer publishes f0. Then, given (h, pk0, y0), a

verifier (not necessarily from the parties) checks if y0 == pk
f0
0 and returns either

S = e(hf0 , h) or false.
2. Approach 2 (Pessimistic Case): Parties run the Reconstruct algorithm of the original

PVSS scheme [7] and return either S = e(hf0 , h) or false. To this end,
(a) Parties in a qualified set Q first use their secret key si, and obtain their share

Fi := hfi from yi by computing Fi = y
1/si
i . Then, they publish Fi. Note that

here the NIZK proof for the correctness of decryption is empty.
(b) Given {pki, ci, Fi}i∈Q, a verifier checks if e(pki, Fi) = e(yi, h) for every Pi ∈ Q.

(c) If the check succeeds, they reconstruct hf0 = hf(0) by Lagrange interpolation as,∏
Pi∈Q F

λi
i =

∏
Pi∈Q(hfi )λi = h

∑
Pi∈Q fiλi = hf(0) = hf0 ,

where λi =
∏

j ̸=i
j

j−i is a Lagrange coefficients.

(d) They return S = e(hf0 , h) or false if fewer than t + 1 valid shares were collected.

Fig. 4. ΛPlain: an efficient PPVSS scheme in the plain model.

ui ← Zq (these can be thought of implicitly defining si as si = ui/α) and
sends the values pki = gui to A.

2. For 1 ≤ i ≤ t, A chooses uniformly random values si ← Zq and sets pki = hsi

and sends this to the challenger.
3. For 1 ≤ i ≤ t, the challenger chooses uniformly random values fi ← Zq and

sets ci = gfi and yi = pkfii .
4. For t < i ≤ n and i = 0, the challenger generates the values ci = gf(i)

where f(X) is a unique (at most) degree-t polynomial, determined by f(0) =
e(h, h)β = e(gα, gα)β and f(i) = fi for i = 1, . . . , t. The challenger now sends
T (which plays the role of sb in the IND1 game) to A.

5. At the end of sharing phase, the value T is sent as part of the game response.
If A’s guess b′ = 0, then B guesses that T = e(gα, gα)β ; if b′ = 1, it guesses
T = e(gα, gα)γ . This ensures that B’s advantage mirrors that of A.

This completes the proof. ⊓⊔
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Theorem 3. If the dealer does not construct values (ci, yi) of the right form in
the sharing phase (i.e. either logg ci ̸= logpki yi for some i, or logg ci = logpki yi =
fi for all 0 ≤ i ≤ n but the values {fi}ni=1 do not constitute a valid sharing of
f0 ∈ Zq with the (n, t)-threshold Shamir secret sharing scheme), then this is
detected in the verification phase with probability at least 1− 1/q.

Proof. For all i = 0, . . . , n the relation of logg ci = logpki yi is verified by checking
that e(yi, g) = e(pki, ci). Note that if a = logg ci ̸= logpki yi = b for some i, then

e(yi, g) = e(pki, g)
b ̸= e(pki, g)

a = e(pki, ci) and the check fails with probability
1. Now with probability ϵ, for every 0 ≤ i ≤ n, there exists fi with ci = gfi and
yi = pkfii . Now the values fi are a valid sharing of f0 with the (n, t)-threshold

Shamir secret sharing scheme if and only if the vector F⃗ = (f0, f1, . . . , fn) ∈ RS,
where RS is the liner error correcting code equivalent to the (n, t)-threshold

Shamir secret sharing. Suppose that F⃗ := (f0, f1, . . . , fn) /∈ RS. Let, RS⊺ denotes

the dual code of RS. Then, since the codeword V⃗ ⊺ := (v⊺0 , v
⊺
1 , . . . , v

⊺
n) ∈ RS⊺ is

sampled uniformly at random, then ⟨F⃗ , V⃗ ⊺⟩ ≠ 0 except with probability 1/q,

where ⟨F⃗ , V⃗ ⊺⟩ denotes the inner product of two vectors F⃗ and V⃗ ⊺ as ⟨F⃗ , V⃗ ⊺⟩ =∑n
i=0 fi · v

⊺
i . But then, from the verification equation, we will have∏n

i=0 c
v⊺
i

i =
∏n

i=0 g
fi·v⊺

i = g⟨F⃗ ,V⃗ ⊺⟩ ̸= 1.

Hence if the values {fi}ni=1 are not a valid Shamir sharing of f0, then the check
fails with probability 1− 1/q. This completes the proof. ⊓⊔

Theorem 4. In the reconstruction phase of new PPVSS scheme, if the dealer or
parties communicate invalid values, this is detected by the verifier. Namely, i) if
a party in Q communicates an erroneous decryption share yi in the pessimistic
reconstruction phase, this is detected by the verifier with probability 1. i) if a
dealer publishes an invalid f0 in the optimistic reconstruction phase, then this is
catched with probability 1.

Proof. For the pessimistic case we observe that, if yi = ha with a ̸= fi then
e(pki, yi) = e(pki, h)

a ̸= e(pki, h)
si = e(fi, h). For the optimistic case, we note

that given (h, pk0, y0, f0), a verifier checks if y0 == pkf00 , which can be seen as a
perfectly binding commitment scheme and the check fails with probability 1 if
y0 ̸= pkf00 . ⊓⊔

In App. B.3, we discuss the homomorphic property of new PPVSS schemes.

4.4 Empirical Performance of ΛRO PPVSS Scheme and Comparison

We conducted a detailed analysis of the concrete efficiency of the proposed
PPVSS schemes and compared them with relevant constructions from the liter-
ature. A summary of the results is presented in Table 1.

In addition, we evaluated the practical performance of the new RO-based
PPVSS scheme through a prototype implementation in Rust and compared its
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performance with the (P)PVSS scheme proposed by Schoenmakers [22] 1. From
the results in Table 1, we observe that the reconstruction phases of both new
PPVSS schemes are as efficient as those of comparable schemes. Therefore, we
focus primarily on the performance of the sharing and verification phases, as well
as the communication size. Our experiments are done using the Ristretto Group
under Curve25519 and the hash function Blake3 for the random oracle. The tests
were run on MacBook Pro with an M4 Pro CPU with 24GB RAM. Both sharing
and verification were limited to 8 threads to utilize the 8 performance cores
available. All numbers are averaged over 100 iterations. The implementation
results for several parameter sets are summarized in Table 2.

Table 2. Implementation results of ΛRO PPVSS scheme and comparison with Schoen-
makers’ scheme [22]. n: Number of parties, t: Threshold value, |Zq| = |G| = 256 bits.

(n, t) Metrics Schoenmakers [22] ΛRO PPVSS (Fig. 3)
Sharing 1.29 ms 0.59 ms

(64, 31) Verification 8.30 ms 0.51 ms
Dealer’s Broadcast 5 KB 3 KB

Sharing 2.39 ms 1.12 ms
(128, 63) Verification 31.60 ms 0.94 ms

Dealer’s Broadcast 10 KB 6 KB

Sharing 4.87 ms 2.47 ms
(256, 127) Verification 123.58 ms 2.10 ms

Dealer’s Broadcast 20 KB 12 KB

Sharing 10.51 ms 6.21 ms
(512, 255) Verification 482.70 ms 4.97 ms

Dealer’s Broadcast 40 KB 24 KB

Sharing 24.73 ms 17.96 ms
(1024, 513) Verification 1.91 s 13.68 ms

Dealer’s Broadcast 80 KB 48 KB

Sharing 64.56 ms 59.16 ms
(2048, 1023) Verification 7.72 s 42.97 ms

Dealer’s Broadcast 160 KB 96 KB

The implementation results also confirm that the new PPVSS protocol im-
proves upon Schoenmakers’ scheme [22] in all aspects and offers significantly
faster verification. For (n, t) = (512, 255), the new scheme achieves verification
times that is approximately 97× faster in comparison to the Schoenmakers’
scheme, and this gap increases for the large values of n.

5 A Practical Universally Verifiable E-Voting Protocol

In [22, Sections 5 and 6], Schoenmakers proposed a variety of applications based
on his (P)PVSS scheme, including a universally verifiable e-voting protocol,

1 Our source code for the implementations is publicly available at https://github.

com/KULeuven-cosic/ppvss-evoting.

https://github.com/KULeuven-cosic/ppvss-evoting
https://github.com/KULeuven-cosic/ppvss-evoting
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threshold software key escrow, and threshold binding ElGamal encryption. Our
analysis shows that these applications are specifically suited for PPVSS schemes
and crucially rely on the dealer’s ability to commit to the main secret or encrypt
it under a specific public key–features that are absent in standard, more efficient
PVSS schemes [3,7,8,10]. Our proposed PPVSS schemes, presented in Section 4,
directly address these limitations.

In Appendix B, we revisit the threshold software key escrow and threshold
binding ElGamal encryption applications proposed by Schoenmakers [22] and
present a more efficient variant of each. The threshold binding ElGamal encryp-
tion application relies on the dealer encrypting the main secret under a specific
public key, a property readily achievable with our proposed PPVSS schemes.
The threshold software key escrow application relies on the dealer publishing a
commitment to the main secret.

As another important application of PPVSS schemes, in this section, we use
our proposed RO-based PPVSS scheme (from Fig. 3) to revisit Schoenmakers’
universally verifiable e-voting protocol and improve its overall performance. No-
tably, the new e-voting protocol requires O(mn) exponentiations, rather than
O(mn2), in the verification phase, where n and m denote the number of tal-
liers and voters, respectively. This improvement makes our proposal considerably
more efficient in practice, particularly for elections with large values of n. We be-
gin by briefly outlining Schoenmakers’ original e-voting protocol [22, Section 5]
before presenting our revised variant.

5.1 Schoenmakers’ Universally Verifiable E-Voting Protocol

Schoenmakers’ proposed e-voting protocol follows the model for universally ver-
ifiable elections introduced by Benaloh et al. [6]. This model assumes the avail-
ability of a public bulletin board where all participants can post messages. The
players in the scheme consist of a set of tallying authorities (talliers) A1, . . . , An,
a set of voters V1, . . . , Vm and a set of passive observers. These two sets need not
be disjoint. As an instance, in small-scale elections like board-room elections,
each player may be both a voter and a tallier. Schoenmakers’ protocol leverages
his proposed (P)PVSS scheme to achieve public verification while maintaining
voter privacy. It consists of three main phases. In the first phase, voters use the
(P)PVSS scheme to cast their encrypted ballots on the public bulletin board.
Since voter anonymity is not a requirement in this scheme, double voting can be
easily prevented by checking the votes and verifying the validity of ballots before
accepting them. In the second phase, the bulletin board verifies the ballots and
obtain the list of valid votes {Vi}mj=1. Note that, since all the proofs verified
in this phase are publicly verifiable, therefore they can be verified by anyone.
After a successful verification phase, in the third phase, the talliers use their
private keys to collectively compute the final tally, by accumulating all valid
ballots and decrypting the accumulated ballot. Fig. 5 summarizes the procedure
of Schoenmakers’ e-voting protocol.
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Initialization Phase: In this phase, the initialization of the PPVSS scheme has been completed,
and each tallier Ai has sampled a secret key xi ∈ Zq and registered public key pki = Gxi .
They also agree on pk0 as the commitment key.

Ballot Casting Phase: Given the public keys of tallies, to casts a vote v ∈ {0, 1}, a voter acts
as below:
1. Samples a random secret value s ∈ Zq .
2. Using the public keys of talliers {pki}

n
i=0 and the secret value s, runs the distribution

protocol for his PVSS (or our PPVSS) scheme and obtains the encrypted shares and
the associated proof πPV SS (or πPPV SS ).

3. Computes the value U = Gs+v and using the protocol given in Sec. 2.1 constructs
a well-formedness proof πU , showing that indeed v ∈ {0, 1}, without revealing any
information on v. The proof πU refers to the value of C0 = hs (or y0 = pks0 ) which is

published as part of πPV SS (or πPPV SS ) in the (P)PVSS (or PPVSS) distribution
protocol, and shows that:

logG U = logh C0∨logG U = 1+logh C0 (or logG U = logpk0
y0 ∨ logG U = 1 + logpk0

y0 ).

The ballot for voter V consists of the output of the (P)PVSS (or PPVSS) distribution
protocol (which consists of encryption of shares and the proof πPV SS (or πPPV SS )),
the value U (which can be seen as an encryption of the vote), and proof πU (which
proves the well-formedness of U).

Ballot Verification Phase: Once voters submitted their ballots, the ballots are checked by the
bulletin board. Note that both proofs πPV SS (or πPPV SS ) and πU are publicly verifiable
and can be checked by anyone.

Tallying Phase: Suppose voters {Vj}m
j=1, have all cast valid ballots. The tallying protocol con-

sists of the following step:

1. Talliers first accumulate all the respective encrypted shares, under the same public keys,
by computing the values Y ⋆

i , where the index j ranges over all voters:

Y ⋆
i =

∏m
j=1 Yij = y

∑m
j=1 pj(i)

i .

2. Next, each tallier Ai applies the reconstruction protocol of Schoenmakers’ (P)PVSS

(or our PPVSS) scheme to the value Y ⋆
i , which will produce S⋆ = G

∑m
j=1 pj(0) =

G
∑m

j=1 sj , due to the homomorphic property of the (P)PVSS (or PPVSS) scheme.

3. Using {Uj}m
j=1, talliers compute U⋆ =

∏m
j=1 Uj = G

∑m
j=1 sj+vj . Then, using S⋆ and

U⋆ they compute V ⋆ = U⋆

S⋆ = G
∑m

j=1 vj . Given V ⋆, the tally V =
∑m

j=1 vj , 0 ≤ V ≤ m,

can be computed efficiently.

Fig. 5. A universally verifiable e-voting protocol based on Schoenmakers’ (P)PVSS [22]
and our proposed PPVSS. The highlighted texts are particular for the new variant.

5.2 Schoenmakers’ E-Voting Protocol Revisited

Leveraging the proposed RO-based PPVSS scheme from Fig. 3, next we revisit
Schoenmakers’ e-voting protocol and present a more efficient version. Given the
new PPVSS scheme, the revision is straightforward. Essentially, in Schoenmak-
ers’ e-voting protocol (summarized in Fig. 5) we replace his (P)PVSS scheme
with our proposed PPVSS scheme and adapt the rest of the protocol accord-
ingly. With this replacement, using our PPVSS scheme, each voter will publish
y0 = pks0 as the commitment to their random secret s, which will serve the role
of C0 in Schoenmakers’ voting protocol. Fig. 5 presents the resulting e-voting
protocol and highlights its key difference with the original scheme.

5.3 Efficiency Comparisons and Benchmarks

Efficiency of Schoenmakers’ E-voting Protocol. The efficiency of Schoenmakers’
e-voting protocol can be summarized as follows. In the first phase, each voter
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acts as the dealer in Schoenmakers’ (P)PVSS scheme and distributes a random
secret s. This requires each voter (i.e., the dealer) to compute 4.5n exponenti-
ations and n evaluations of a degree-t polynomial. Using C0 and U , each voter
also runs the proof scheme from Sec. 2.1 and generates a proof πU . This proof
consists of (4|G|, 4|Zq|) elements and requires an additional 6 exponentiations
in the group. In the second phase, the verifier needs to run the verifier of both
Schoenmakers’ (P)PVSS protocol and the NIZK proof scheme from Sec. 2.1 to
check the validity of all ballots submitted by {Vj}mj=1. The computational cost of
this step is approximately m(nt+4.5n) exponentiations, where m and n are the
number of voters and talliers, respectively, and t =

⌊
n−1
2

⌋
is the threshold value.

In the third phase, each tallier Ai needs to compute Y ⋆
i , run the reconstruc-

tion of Schoenmakers’ (P)PVSS scheme, check the openings of other talliers and

compute the final tally by calculating the discrete logarithm of V ⋆ = G
∑m

j=1 .
The total cost for this step is approximately 5t exponentiations and n+ t mul-
tiplications in the underplaying group.

Efficiency of New E-voting Protocol. In the first phase of new e-voting protocol,
each voter compute 2n exponentiations and 2n evaluations of a degree-t poly-
nomial. Using y0 and U , each voter also runs the proof scheme from Sec. 2.1
and generates a proof πU , which consists of (4|G|, 4|Zq|) elements and requires
an additional 6 exponentiations in the group. In the second phase, the verifier
needs to verify both proofs πPPV SS and πU to check the validity of all ballots
submitted by {Vj}mj=1. The computational cost of this step is approximately
2nm exponentiations and nm degree-t polynomial evaluations, where n and m
are the number of talliers and voters, respectively. The tallying phase (i.e., the
third phase) is identical for both protocols, therefore have the same efficiency.

Empirical Performance of E-Voting Protocols. In addition, we assessed the prac-
tical performance of both e-voting protocols by implementing them in Rust and
comparing their performance. As in case of PPVSS schemes, our experiments
are done using the Ristretto Group under Curve25519 and the hash function
Blake3 for the random oracle. The tests were run on MacBook Pro with an M4
Pro CPU with 24GB RAM. All three phases, ballot casting, ballot verification,
and tallying were limited to 8 threads to utilize the 8 performance cores avail-
able. All numbers are averaged over 100 iterations. We have summarized our
implementation results for various parameter sets in Table 3.

Upon comparing the implementation outcomes, it becomes apparent that the
new e-voting protocol outperforms Schoenmakers’ scheme in all metrics. Notably,
it yields a remarkable acceleration in the verification phase, particularly for large
value of n, making it practical for even large-scale board-room elections. As an
instance, the new scheme achieves verification times that are approximately 52×
and 90× faster in comparison to the Schoenmakers’ scheme for each voter with
the parameter pairs (n, t) equal to (256, 127) and (512, 255). In large-scale elec-
tions, we observe that for (n, t,m) = (17, 8, 100K), ballot casting takes just 0.42
milliseconds, each voter needs to broadcast 1104 bytes of data, each ballot can
be verified in 0.26 milliseconds, and vote tallying is completed in 2.62 seconds.
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Table 3. Implementation results of the universally verifiable e-voting protocols pro-
posed in [22] and Section 5 for different types and sizes of elections. n: Number
of talliers, t: Threshold value (number of malicious talliers), m: Number of voters,
|Zq| = |G| = 256 bits, s: seconds, ms: milliseconds, B: Byte, K: Kilo, M: Million.

Election, (n, t,m) Metrics Schoenmakers [22] Our Scheme (Fig. 5)

Election 1 Ballot Casting Time 4.65 ms 2.63 ms
(board-room) Voter’s Communication 20.28 KB 12.28 KB
(256, 127, 256) Verification of One Ballot 121.15 ms 2.30 ms

Tallying Time 11.18 ms 11.18 ms

Election 2 Ballot Casting Time 9.92 ms 6.43 ms
(board-room) Voter’s Communication 40.28 KB 24.28 KB
(512, 255, 512) Verification of One Ballot 481.19 ms 5.33 ms

Tallying Time 27.91 ms 27.91 ms

Election 3, 4, 5 Ballot Casting Time 0.56 ms 0.42 ms
(large-scale) Voter’s Communication 1648 B 1104 B
(17, 8,m) Verification of One Ballot 1.24 ms 0.41 ms
m = 50K Tallying Time 1.31 s 1.31 s
m = 100K Tallying Time 2.61 s 2.61 s
m = 1M Tallying Time 25.70 s 25.70 s

6 Conclusion

In this paper, we introduced Pre-constructed PVSS (PPVSS), an extension of
standard PVSS schemes that offers improved flexibility and efficiency by requir-
ing the dealer to publish a commitment (or an encryption) to the main secret.
This new design, combined with a novel secret reconstruction approach, directly
addresses the limitations of existing PVSS schemes in applications that require
the dealer’s commitment to the secret itself, such as e-voting, threshold key
escrow, and other transparency-focused protocols [22].

A major contribution of our work is a general strategy for transforming
Shamir-based PVSS schemes into PPVSS schemes, applicable across a wide
range of PVSS schemes. This flexibility enables PPVSS schemes to support a
broader array of applications, including areas such as distributed key generation
and randomness generation protocols. Our constructions include both RO-based
and plain-model PPVSS schemes, both of which are built on state-of-the-art
PVSS protocols [3, 7, 8]. Through theoretical analysis and practical evaluation,
we showed that these PPVSS schemes not only match the security properties
of PVSS but also improves upon current alternative protocols in terms of effi-
ciency and flexibility. The RO-based scheme, in particular, enables the revision
of universally verifiable e-voting protocol from [22], that improves its overall
performance and significantly reduces the computational complexity of ballot
verification, especially in settings with a high number of talliers.

While our focus has been on PVSS schemes where the secret is gf0 and
parties can only reconstruct gf0 in the reconstruction phase, we believe our
general strategy can readily apply to other PVSS schemes where the secret is
shared directly as f0, e.g., [9, 18]. In addition, we revisited only a select few
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applications of PPVSS schemes, emphasizing their adaptability and potential for
improved efficiency. Given the inherent flexibility of PPVSS, we anticipate that
these schemes could find even wider applicability in cryptographic protocols.
This opens new avenues for future research to explore additional applications
where PPVSS can offer advantages over traditional PVSS schemes.

We primarily examined PPVSS schemes based on the Discrete Logarithm
(DL) assumption. However, constructing PPVSS schemes based on alternative
assumptions, such as lattice-based cryptography, presents an interesting direc-
tion for further study, potentially broadening the scope of applications and en-
hancing security against quantum adversaries.

Our work used one positive feature of PPVSS schemes–publishing an encryp-
tion or commitment of the main secret under a specific public key–across three
revisited applications. We also introduced a new reconstruction approach that
may improve efficiency in PVSS-based protocols by supporting constant commu-
nication and verification costs under an optimistic reconstruction method. This
approach leverages the assumption that in some applications, each participant
acts as a dealer at least once, and a majority of participants are honest. In such
cases, this optimistic reconstruction approach can streamline the reconstruction
phase and reduce overall computational overhead.

In summary, our work provides a flexible, efficient PPVSS framework that
expands the practical capabilities of secret sharing schemes, setting the stage for
future advancements in publicly verifiable threshold protocols and their appli-
cations in secure and decentralized systems.
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A Appendix

A.1 Efficiency Comparison of PVSS Schemes

Table 4 (adapted from [3]) summarizes the detailed performance metrics for
the established PVSS schemes [3, 7, 8, 10] and two particular (P)PVSS schemes
from [19,22] which are proposed to share the secret gf0 .

Table 4. A comparison of established PVSS schemes for sharing gs from [3,7,8,10] and
two particular PPVSS schemes from [19,22]. BC: Dealer’s Broadcast Communication,
Dow.: Download size by a verifier, DL: Discrete Logarithm, PDL: Polynomial Discrete
Logarithm, DDH: Decisional Diffie-Hellman, DBS: Decisional Bilinear Square, RO:
Random Oracle, Plain: Plain Model, BC: Broadcast, n: Number of parties, t: threshold
parameter (t ≈ n/2), PG: Pairing Operation, EG: Exponentiation in group G, MG:
Multiplication in group G, PE : degree-t Polynomial Evaluation, |G|: G element size,
|Zq|: Zq element size.

Scheme Share Broadcast & Dow. Verification Recon.

[22], PPVSS 4.5n EG BC: 1.5n|G|+ n|Zq| nt+ 4n EG 5t EG
(DDH, RO) 1n PE Dow: 2.5n|G|+ n|Zq| + nt+ 2n MG + t MG

[19], PPVSS 1.5n EG BC: 1.5n|G| nt EG + 2nPG 5t EG
(DDH, Plain) 1n PE Dow: 2.5n|G| + nt MG + t MG

[7], PVSS 2n EG BC: 2n|G| 2n PG + 2t PG +
(DBS, Plain) 1n PE Dow: 3n|G| n EG + n MG t EG + t MG

[7], PVSS 4n EG BC: 2n|G|+ n|Zq| 5n EG 5t EG
(DDH, RO) 1n PE Dow: 3n|G|+ n|Zq| + 3n MG + t MG

[10], PVSS 4n EG BC: n|G|+ 2|Zq| 2n EG + 5t EG +
(DDH, RO) 2n PE + 3n MG Dow: 2n|G|+ n|Zq| n PE +2n MG 2t MG

[3, 8], PVSS 2n EG BC: n|G|+ 0.5n|Zq| 2n EG + 5t EG +
(PDL, DDH, RO) 2n PE Dow: 2n|G|+ 0.5n|Zq| n PE +n MG t MG

A.2 Overview of Schoenmakers’ (P)PVSS Scheme

In CRYPTO’99, Schoenmakers [22] proposed a PVSS scheme, based on Feld-
man’s VSS scheme, which allows a dealer to encrypt the shares under the public
key of the parties, and then generate a publicly-verifiable NIZK proof to show
that the secret sharing and encryptions are done correctly. Next, we present an
overview of his proposed protocol.

Let g, h be two random generators of the group G. In the initialization step,
a party Pi generates a secret key si ←$ Zq and registers pki = gsi , as its public
key. Then, given n and t, to share a high-entropy secret f0, the dealer proceeds
as follows:

1. Sample a uniformly random degree-t polynomial f(X) := f0 + a1X + · · ·+
atX

t with coefficients in Zq, subject to f(0) = f0.

2. For i = 1, 2, · · · , n: set fi := f(i) and yi = pk
f(i)
i .

3. Set C0 = hf0 and Cj = haj for j = 1, 2, · · · , t.
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4. Let xi =
∏t

j=0 C
ij

j , for i = 1, 2, · · · , n. Then, the dealer shows that the
encrypted shares yi are consistent by producing a proof of knowledge of the

unique f(X), 1 ≤ i ≤ n, satisfying: xi = hf(i) ∧ yi = pk
f(i)
i .

5. To generate the proof for above relation, the dealer uses an extended version
of Chaum-Pedersen PoK scheme for DLEQ [11] and acts as follows:
(a) For i = 1, 2, · · · , n, it samples ri ←$ Zq, and sets ai = hri and bi = pkrii .
(b) Using Fiat-Shamir transform, feeds {ai, bi, xi, yi}ni=1 into the random

oracle H, an obtains a challenge value d ∈ Zq.
(c) For i = 1, 2, · · · , n: computes zi = ri − d · fi mod q.

6. Publish πShare := (h,Cj , pki, yi, d, zi) for 0 ≤ j ≤ t, and 1 ≤ i ≤ n.

Verification. To verify the shares, given πShare := (h,Cj , pki, yi, d, zi) for 0 ≤
j ≤ t, and 1 ≤ i ≤ n, the verifier acts as follows:

- For 1 ≤ i ≤ n: computes xi =
∏t

j=0 C
ij

j .

- For 1 ≤ i ≤ n: using (h, d, xi, pki, yi, zi), computes ai and bi, as follows

ai := hzixd
i , bi := pkzii (yi)

d

and checks if the hash of {ai, bi, xi, yi}ni=1 matches the challenge value d. If
so returns true, otherwise returns false.

Reconstruction. To reconstruct the secret gf0 , the parties proceed as follows.

1. They first use their secret key si, and obtain their share Fi := gfi from yi
by computing Fi = y

1/si
i . Then, they publish Fi plus a NIZK proof that the

value Fi is a correct decryption of yi. To this end, the party Pi needs to
prove knowledge of an si such that, (pki = gsi) ∧ (yi = F si

i ), which is done
using Chaum-Pedersen [11] proof system for DLEQ (described in Fig. 1).

2. Then, given any t+1 valid values of Fi, w.l.o.g. for i = 1, . . . , t+1, the secret
gf(0), can be obtained by Lagrange interpolation,∏t+1

i=1 F
λi
i =

∏t+1
i=1(g

fi)λi = g
∑t+1

i=1 fiλi = gf(0) = gf0 ,

where λi =
∏

j ̸=i
j

j−i is a Lagrange coefficient.

B More Efficient Protocols Based on PPVSS

Next, we revisit two more applications of PPVSS schemes, proposed in [22].

B.1 More Efficient Threshold Binding ElGamal

In [25], Verheul and van Tilborg introduced a scheme called binding ElGamal,
designed to strengthen a public-key infrastructure that relies on software key
escrow. The binding ElGamal scheme enables a session key to be shared not
only with the intended recipient but also with n trustees, who can collectively
reconstruct the key using a (t, n)-threshold scheme. This approach, referred to as
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threshold binding ElGamal, can be implemented through distributed key gen-
eration, as outlined in [25]. However, their approach involves multiple rounds
of interaction, is computationally intensive, and requires repetition each time
new participants are added or removed. To address these limitations, Schoen-
makers [22] proposed using his (P)PVSS scheme as an alternative. While useful,
Schoenmakers’ protocol is less efficient, and recent PVSS schemes lack the ability
to serve threshold binding ElGamal directly, as they do not provide commitment
to the main secret.

Our proposed PPVSS schemes address this limitation in standard PVSS
schemes. With our RO-based PPVSS, threshold binding ElGamal can be im-
plemented efficiently. The sender, acting as the dealer, uses the PPVSS scheme
from Fig. 3 to share the secret gf0 with a committee. For this purpose, the sender
simply uses the receiver’s public key as pk0. Unlike in Schoenmakers’ protocol,
our approach does not require the dealer to provide an additional DLEQ NIZK
proof to verify that y0 = pkf00 ∧ C0 = gf0 , where y0 represents the encryption
of f0 and C0 is the commitment to f0, published as part of the transcript of
Feldman VSS.

The need for an additional DLEQ NIZK proof highlights why Schoenmak-
ers’ PPVSS scheme is considered a special type of PPVSS, with less flexibility
compared to our proposed PPVSS schemes. In Schoenmakers’ design, the com-
mitment to the secret f0 cannot be replaced with encryption of f0, while in our
protocols this is possible without additional overhead. Additionally, our proto-
cols deliver improved overall performance, especially in the verification phase.

Using the PPVSS scheme to share the secret gf0 guarantees that both the
intended receiver (i.e., the party who knows the secret key for pk0) and the
committee members will reconstruct the same value gf0 through either optimistic
or pessimistic reconstruction methods. The advantage of this approach is that the
sender can pre-select a group of participants capable of reconstructing the secret
without the need for a prior key generation protocol. This structure intuitively
combines a full-threshold access structure with a (n, t)-threshold structure.

B.2 Threshold Software Key Escrow

In [26], Young and Yung presented a software key escrow solution allowing users
to independently sample and register their secret and public keys with a certi-
fication authority. This approach involves distributing encrypted shares of the
private key to a designated group of trustees using a secret sharing scheme.
The key pair is accepted only if these encrypted shares match the public key
registered with the authority.

Alternatively, Schoenmakers [22] proposes leveraging his (P)PVSS scheme
to achieve this functionality more efficiently. In this version, the user generates
a random private key S = Gs and then distributes shares of this key among
trustees using the (P)PVSS scheme. The user also publishes their public key
H = f(Gs), where f is a suitable generator (as referenced in [24]). Finally, to
confirm that the trustees indeed receive valid shares of the private key S = Gs,
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the user uses a protocol from [24] and proves knowledge of a witness s such that

H = f(Gs) ∧ C0 = gs, (3)

where C0 is published during the sharing phase of Schonmakers’ (P)PVSS
scheme.

To decrypt an ElGamal ciphertext (x, y) = (fα, Hαm), x is raised to the
power Gs. Assuming the first t trustees participate in decrypting the ciphertext,
and given that Gs =

∏
Gp(i)λi , decryption is carried out by setting z0 = x and

allowing each trustee to transform zi as follows:

zi+1 = zG
p(i)λi

i = zS
λi

i .

If needed, each trustee can produce a proof confirming the correctness of their
decryption step. Stadler’s proof is applied here to show:

zi+1 = zY
λi/xi

i ∧ gλi = yλi/xi ,

where yi represents the i-th trustee’s public key, and Yi is their encrypted share
of Gs.

As in other applications, for enhanced performance, our proposed PPVSS
scheme from Fig. 3 can be employed. In this modified setup, the dealer publishes
a commitment y0 = gs and proves its validity alongside the encryption of other
shares. Subsequently, in equation (3), y0 = gs is substituted for C0 = gs, while
the rest of the protocol proceeds as outlined.

B.3 Homomorphic Property of New PPVSS Schemes

The notion of homomorphic secret sharing was introduced by Benaloh [5], high-
lighting its relevance to applications like electronic voting. Informally, homo-
morphic secret sharing enables combining shares of independent secrets so that
reconstructing the combined shares results in a combined secret.

In the context of PVSS [22], there is an operation ⊕ on the shares and an
operation ⊗ on the encrypted shares, such that for all participants:

Ei(fi)⊗ Ei(f
′
i) = Ei(fi ⊕ f ′

i).

This property implies that by decrypting the ⊗-combined encrypted shares, the
reconstructed secret will equal fi⊕f ′

i , assuming that the underlying secret shar-
ing scheme is ⊕-homomorphic. Our proposed PPVSS scheme adheres to this
principle. For encrypted (committed) shares f0 and f ′

0, their encrypted combi-
nation through multiplication yields a new encrypted commitment to f0 + f ′

0.
The corresponding shares of participant i maintain the same property, leading to
a homomorphic PPVSS that enables secure combination of shares. In Section 5,
we use the new RO-based homomorphic PPVSS scheme and revisit Schoenmak-
ers’ universally verifiable e-voting protocol [22].
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