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Abstract. At CRYPTO 2015, Kirchner and Fouque claimed that a
carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm
(JACM 2003) should solve the Learning with Errors problem (LWE) in
slightly subexponential time for modulus q = poly(n) and narrow er-
ror distribution, when given enough LWE samples. Taking a modular
view, one may regard BKW as a combination of Wagner’s algorithm
(CRYPTO 2002), run over the corresponding dual problem, and the
Aharonov-Regev distinguisher (JACM 2005). Hence the subexponential
Wagner step alone should be of interest for solving this dual problem –
namely, the Short Integer Solution problem (SIS) – but this appears to
be undocumented so far.

We re-interpret this Wagner step as walking backward through a chain of
projected lattices, zigzagging through some auxiliary superlattices. We
further randomize the bucketing step using Gaussian randomized round-
ing to exploit the powerful discrete Gaussian machinery. This approach
avoids sample amplification and turns Wagner’s algorithm into an ap-
proximate discrete Gaussian sampler for q-ary lattices.

For an SIS lattice with n equations modulo q, this algorithm runs in
subexponential time exp(O(n/ log logn)) to reach a Gaussian width pa-
rameter s = q/polylog(n) only requiring m = n + ω(n/ log log n) many
SIS variables. This directly provides a provable algorithm for solving the
Short Integer Solution problem in the infinity norm (SIS∞) for norm
bounds β = q/polylog(n). This variant of SIS underlies the security
of the NIST post-quantum cryptography standard Dilithium. Despite
its subexponential complexity, Wagner’s algorithm does not appear to
threaten Dilithium’s concrete security.

Keywords. Wagner’s algorithm, Short Integer Solution problem (SIS), Discrete
Gaussian sampling, Lattice-based cryptography, Cryptanalysis
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1 Introduction

The Short Integer Solution problem (SIS) is a fundamental problem in lattice-
based cryptography. It was introduced by Ajtai [Ajt96], along with an average-
case to worst-case reduction from SIS (in the average case) to the problem of find-
ing a short basis in an arbitrary lattice (in the worst case). Since then, a plethora
of cryptographic schemes have been based on the presumed average-case hard-
ness of SIS. The SIS problem asks to find an integer vector of norm at most β that
satisfies a set of n equations in m variables modulo q. The average-case to worst-
case reductions [Ajt96,MR07] consider SIS in the Euclidean norm, with norm
bound β significantly smaller than q. However, when it comes to practical cryp-
tographic schemes, designers are often tempted to consider SIS instances outside
of the asymptotic coverage of the reduction, or even to consider variants of the
problem. This is the case for the new NIST standard Dilithium [DKL+18],
which considers SIS in the ℓ∞-norm with norm bound β rather close to the
modulus q.

The dual of the latter SIS variant is commonly known as the Learning with
Errors problem (LWE) [Reg05] with narrow error distribution, say ternary errors.
This version of LWE was proven to be solvable in slightly subexponential time
by Kirchner and Fouque [KF15] using a variant of the Blum-Kalai-Wasserman
algorithm (BKW) [BKW03], at least when the number of samples m is large
enough. More precisely, it was claimed in [KF15] that m linear in n suffices, but a
subsequent work of Herold, Kirshanova, and May [HKM18] found an issue in the
proof. They resolved the issue only for m ≥ Cn log n (for some constant C > 0),
leaving open whether fewer samples would suffice. Whether this limitation on
the number of samples is fundamental or an artifact of the proof remains unclear.

Our work was triggered by the folklore interpretation of BKW as a combination
of Wagner’s algorithm [Wag02], run over the dual lattice, and the Aharonov-
Regev distinguisher [AR05]. This raises a natural question: using the tricks of
Kirchner and Fouque but only in the Wagner part of the algorithm, can one
(provably) solve interesting instances of SIS in subexponential time?

1.1 Contribution

We answer the above question positively, namely we prove that a variant of Wag-
ner’s algorithm solves SIS with n equations modulo q = poly(n), in subexponen-
tial time exp(O(n/ log log n)) for an ℓ∞-norm bound β = q/polylog(n) and only
requiring m = n+ ω(n/ log log n) many SIS variables. We also achieve subexpo-
nential complexity for ISIS and SIS× for an ℓ2-norm bound β =

√
n·q/polylog(n).

All prior algorithms (including heuristic ones) for these problems had exponen-
tial asymptotic complexity exp(Ω(n)).

Beyond these applications, we also provide a significant revision of the ideas and
techniques at hand. First, we propose a more abstract interpretation of Wagner
for lattices using a zigzag through a chain of projected lattices and superlattices,
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depicted in Figure 1. This emphasizes that the very principle of the algorithm
is not tied to SIS, and its subexponential complexity really stems from the ease
of constructing the appropriate chain of lattices in the case of SIS lattices.

Furthermore, we circumvent the sample-amplification technique [Lyu05], and
instead follow in the footsteps of [ADRS15,ADS15,AS18,ALS21,ACKS21] by
relying on discrete-Gaussian techniques to obtain provable results. Specifically,
we use discrete Gaussian sampling and rounding to maintain precise control of
the distribution of vectors throughout the chain of lattices.

Finally, we consider whether this approach threatens the concrete security claim
of the NIST standard Dilithium. It turns out that, despite its subexponential
complexity, and removing all the overhead introduced for provability, this al-
gorithm is far less efficient against the concrete parameters of Dilithium than
standard lattice reduction attacks.

Λ = Λr Λr−1 · · · Λ1 Λ0 = Zm−n

Λ′
1Λ′

r−1Λ′
r · · ·

⊆ ⊆ ⊆
Figure 1:Wagner’s algorithm interpreted over a chain of projected lattices Λi and
auxiliary superlattices Λ′

i. Thick black double-arrows denote surjective orthog-
onal projections between lattices. The red curvy arrow denotes the path taken
by the algorithm. It starts with (short) vectors in Zm−n, and follows the zigzag
path until it generates (short) vectors in the lattice Λ, which, in our application,
correspond to SIS solutions.

1.2 Technical Overview

The Short Integer Solution problem in the infinity norm is defined as follows.

Problem 1.1 (SIS∞n,m,q,β). Let n,m, q ∈ N with m ≥ n, and let β > 0. Given
a uniformly random matrix A ∈ Zn×m

q , the problem SIS∞n,m,q,β asks to find a
nonzero vector x ∈ Zm satisfying Ax = 0 mod q and ∥x∥∞ ≤ β.

This problem can be phrased as a short vector problem, as it is equivalent to
finding a nonzero vector of norm at most β in the q-ary lattice Λ⊥

q (A) := {x ∈
Zm : Ax = 0 mod q}. It is trivial when β > q, as (q, 0, . . . , 0) is a solution, and
becomes vacuously hard (i.e., typically no solution exists) when β is too small.

Consider an instance of the SIS∞n,m,q,β problem for some given A ∈ Zn×m
q . When

A is of full rank4 we can, without loss of generality, assume that A is written

4 This happens with overwhelming probability 1 − (1/q)o(1) when m − n = ω(1): a
uniformly random matrix in Zn×m

q (with m ≥ n) is of full rank with probability at
least 1− 1/qm−n.
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in systematic form, i.e., A = [A′ | In] with A′ ∈ Zn×(m−n)
q . With this writing

of A, we see that the problem of finding x ∈ Zm
q satisfying Ax = 0 mod q and

∥x∥∞ ≤ β is equivalent to finding z ∈ Zm−n
q satisfying ∥x(z)∥∞ ≤ β where

x(z) := (z;−A′z).5

Wagner-Style Algorithms for SIS. Wagner’s generalized birthday algo-
rithm [Wag02] addresses the problem of finding elements from a list L0 ⊆ Zn

q

that sum up to zero.6 The same technique was independently used in [BKW03]
to solve a dual problem.

Given an SIS instance A = [A′ | In] ∈ Zn×m
q , divide the rows of the parity-check

matrix A into r blocks of equal size n/r, as illustrated in Figure 2. The algorithm
then iteratively solves smaller SIS instances corresponding to the parity-check
matrices Ai = [A′

i | Iin/r], for i = 1 up to r, where A′
i is defined by the first

i blocks of rows of A′. Specifically, the algorithm begins by filling an initial
list L0 with short vectors. Then, in iteration i, it computes, for each vector

x ∈ Li−1 ⊆ Zm−n+(i−1)n/r
q , the unique (modulo q) vector y ∈ Zn/r such that

Ai(x;y) = 0 mod q. This vector y is likely to be of high norm since it is uniformly
distributed modulo q. The algorithm then searches for pairs of such vectors
x′
1 = (x1;y1), x

′
2 = (x2;y2) that satisfy y1 = y2 mod q, to then add x′

1 − x′
2 =

(x1−x2;0) to the list Li. This ensures that the difference x
′
1−x′

2 remains short,
as x1 and x2 are short and the rest has norm zero. The final list Lr contains
vectors x ∈ Zm

q that satisfy Ax = 0 mod q, providing potential nonzero and
short solutions to the original SIS problem.

m− n

b1

b1

A′
1 In1

b2

b2

A′
2

In2

InA′

Figure 2: Illustration of the parity-check matrices Ai := [A′
i | Ini

], where A′
i is

the matrix defined by the first ni :=
∑i

j=1 bj rows of A′. (Without the gen-
eralized lazy-modulus switching technique, the bj are set equal to n/r.) Each
iteration i of the algorithm solves an SIS instance given by parity-check matrix
Ai, until ultimately the whole matrix A = Ar is covered.

5 We use the notation (a;b) for the vertical concatenation of vectors a and b.
6 Although Wagner originally considered the case Zn

2 , the algorithm for Zn
q follows the

same principle.

4



Lazy-Modulus Switching. The aforementioned approach constructs the lists Li

by combining vectors that lie in the same ‘bucket’, where the bucket of (x;y)
for x ∈ Li−1 is labeled by the value of y modulo q. The vectors in Li are then
guaranteed to be of the form (x′;0), but this is not necessary for the algorithm
to succeed: a form like (x′;y′) with both x′ and y′ being short suffices. Based
on this observation, the authors of [AFFP14] consider using a smaller modulus
p < q, and combine (x1;y1) and (x2;y2) if ⌊p

qy1⌉ = ⌊p
qy2⌉ mod p. This modified

condition for combining vectors may result in a nonzero ‘rounding error’ in the
y′-part, which is traded for a reduced number of buckets: pn/r instead of qn/r.

Two concurrent works [KF15,GJMS17] generalize this ‘lazy-modulus switching’
technique by considering different moduli p1, . . . , pr (not necessarily prime). In
this approach, the matrix A is divided into r blocks of respective size b1, . . . , br.
The rounding errors induced by iteration i are at most q/pi, and may double in
each subsequent iteration when the vectors are combined. Hence, it makes sense
to use decreasing moduli pi to balance the accumulation of rounding error. Each
step requires (more than) pbii vectors to find collisions in Zbi

pi
, leading to increasing

block sizes bi. This increasing choice of bi’s is central to the subexponential
complexity claim of [KF15].

A Naive Analysis. Let us consider Algorithm 1 and attempt to analyze it in
order to highlight the core of the issue. It is a rephrased version of the algorithm
of [KF15] without the LWE dual-distinguishing step.

Algorithm 1: Wagner-Style Algorithm for SIS

Input : Integers n,m, q;
Full-rank matrix A = [A′ | In] ∈ Zn×m

q ;
Integer parameters N, r, (pi)

r
i=1, (bi)

r
i=1 with

∑r
i=1 bi = n

Output: List of vectors x ∈ Zm
q such that Ax = 0 mod q and ∥x∥∞ ≤ 2r

Initialize a list L0 with 3rN independent, uniform samples from {−1, 0, 1}m−n

for i = 1, . . . , r do
Li := ∅
Initialize empty buckets B(c) for each c ∈ Zbi

q

for x ∈ Li−1 do // Bucketing

Compute the unique y ∈ Zbi
q satisfying Ai(x;y) = 0 mod q

Compute c =
⌊

pi
q
y
⌉
mod pi

Append x′ := (x;y) to B(c)
for c ∈ Zbi

pi do // Combining

for each two vectors x′
1,x

′
2 in B(c) do

Append x′
1 − x′

2 to the list Li

Remove x′
1 and x′

2 from B(c)
return Lr
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List Construction. Since each vector in Li is either paired or left alone in a
bucket, it follows that |Li| ≤ 2|Li+1|+ pbii . Thus, by initializing a list L0 of size

3rN , we obtain at least N vectors in Lr, assuming N ≥ maxi p
bi
i .

Bucketing and Combining. At the beginning of each iteration i ∈ {1, . . . , r},
the algorithm initializes some empty lists B(c), the ‘buckets’, each labeled by a
vector (coset) c ∈ Zbi

pi
. Every iteration works in two phases. First, the ‘for’-loop

over the x ∈ Li−1 performs the bucketing phase: the vectors are added to a
bucket according to their corresponding y-value. In the combining phase, the
‘for’-loop over each bucket representative c ∈ Zbi

pi
takes differences of vectors

x′
1,x

′
2 belonging to the same bucket. Since Ax′

1 = 0 mod q and Ax′
2 = 0 mod q,

the difference vector x′
1 − x′

2 also satisfies A(x′
1 − x′

2) = 0 mod q by linearity. If
the vectors x′

1 = (x1;y1), x
′
2 = (x2;y2) belong to the same bucket B(c) for a

given c, then they satisfy c = ⌊pi

q y1⌉ = ⌊pi

q y2⌉ mod pi, where the operation ⌊·⌉
denotes rounding each coordinate to its nearest integer modulo pi. Consequently,
y1 and y2 are ‘close’ to each other, ensuring their difference is short: we have
that ∥y1 − y2∥∞ ≤ q/pi, and thus ∥x′

1 − x′
2∥∞ ≤ max{2∥x1∥∞, 2∥x2∥∞, q/pi}.

By induction over the r iterations, it follows that the algorithm outputs vectors
x ∈ Lr satisfying

∥x∥∞ ≤ max
0≤i≤r

2r−i q
pi
, (1)

where we define p0 = q.

Time Complexity of Algorithm 1. Equation (1) shows that the choice of
the number of iterations r and the moduli pi influences the maximal norm of the
vectors. These parameters also affect the algorithm’s time complexity, along with
the other parameters that need to be chosen. Although the algorithm parameters
pi, bi, r andN should be integers to make sense, we consider them as real numbers
for simplicity in this introductory section.

Parameter Selection. Let the target norm for the SIS problem be β = q
f for

some factor f > 1. Note that the problem is easiest when f = 1 (norm q) and
harder when f increases (i.e., the norm q/f becomes shorter). The bound on the
output norms given in Equation (1) is minimized when both terms are balanced:
2r = 2r−iq/pi. Therefore we set pi := q/2i. One can generate pbii distinct vectors
modulo pi with bi coordinates, so to keep the number of samples comparable at
each step i, we set N = pbii . This implies bi =

logN
log pi

= log2 N
log2 q−i . By the choice of

the pi, the final vectors have a norm of at most 2r. To ensure that it is at most
β = q/f , we must choose r such that 2r ≤ q

f . We set r := log2(q/f)−1. We must

also ensure that n = nr =
∑r

i=1 bi. Since the bi increase with i, we can bound

their sum by n =
∑r

i=1 bi ≤
∫ r+1

1
log2 N

log2(q)−xdx = (log2 N) · ln
(

log2 q−1
log2 q−(r+1)

)
.7

7 For f an increasing function,
∫ r

0
f(x) dx ≤

∑r
i=1 f(i) ≤

∫ r+1

1
f(x) dx. Also, for

A,B, a, b > 0,
∫ b

a
A

B−x
dx = A ln

(
B−a
B−b

)
.
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Thus,

n ≤ log2(N) · ln
(
log2 q

log2 f

)
. (2)

Rewriting, we conclude that taking log2(N) = n
ln ln(q)−ln ln(f) suffices. Up to

rounding of the parameters (as they need to be integers), we would get the
following statement.

Tentative Theorem. Let n,m, q ∈ N and f > 1. There exists an algorithm
that, given A ∈ Zn×m

q , returns a (possibly zero) vector x ∈ Zm
q such that Ax =

0 mod q and ∥x∥∞ ≤ q
f in time

T = 2
n

ln ln(q)−ln ln(f) · poly(n, log q).

Important Remark. There is a catch! The output list of the algorithm contains
a SIS solution only if at least one of the output vectors is nonzero. So it remains
to be proven that the vectors do not all cancel out to zero. At the first iteration,
the set {−1, 0, 1}m−n is significantly larger than the number of buckets, hence
differences of vectors from a same bucket are unlikely to be zero vectors. However,
from the second iteration onward, specifying the vector distributions is far from
straightforward.

This issue does not arise in the original works of [Wag02,BKW03] where m was
assumed to be as large as the initial list size |L0|, and the initial list is simply
filled with standard unit vectors (i.e., vectors with one coordinate equal to 1 and
zeros elsewhere). These vectors are linearly independent and hence cannot cancel
each other out. In the case of solving ternary LWE with [BKW03] rather than
SIS with [Wag02], this situation can be emulated using a sample-amplification
technique from [Lyu05], however, this requires at least m = Θ(n log n) samples
to start with according to [HKM18]; the argument of [KF15] that this should
work for m = Θ(n) has been shown to be flawed in [HKM18].

Yet, at least heuristically, it is not clear why this approach should fail when
m = Θ(n). There is enough entropy to avoid collision at the first step, and
entropy should intuitively increase at a later stage: after all, the vectors are
getting larger. But to adequately formalize this intuition, we shift our perspective
on the algorithm.

From Parity-Check Perspective to Lattices. As mentioned before, the SIS
problem is equivalent to a short vector problem which asks to find a nonzero
vector of norm at most β in the lattice Λ := {x ∈ Zm : Ax = 0 mod q}. We
consider the sequence of lattices Zm−n = Λ0, . . . , Λr = Λ with Λi := {x ∈
Zm−n+ni : Aix = 0 mod q}. Each parity-check matrix Ai adds a block of bi
new coordinates, making Λi−1 a projection of Λi. It is easy to sample bounded
vectors in Λ0 := Zm−n, by sampling for example in {−1, 0, 1}m−n, as Algorithm 1
did. The goal is to use these initial samples to go back through the projections
towards Λ (recall Figure 1), while keeping the norms bounded.
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While one can lift back a vector from Λi−1 to Λi, such a lifted vector would not
be short because the lattice Λi we are lifting over is too sparse. Instead, what
happens in Algorithm 1, is that we implicitly lift to a denser lattice Λ′

i ⊇ Λi, and
then take the difference of two vectors in the same coset of the quotient Λ′

i/Λi to
fall again in Λi. More explicitly, setting c = ⌊pi

q y⌉ as in Algorithm 1, note that

the vector (x,y− q
pi
c) lives in the lattice Λ′

i = Λi+({0}m−n+ni−1 × q
pi
Zbi) which

satisfies |Λ′
i/Λi| = pbii . Furthermore, the coset of that vector in the quotient

Λ′
i/Λi is exactly determined by c mod p.

This provides a clean and pleasant interpretation of the algorithm as walking in
a commutative diagram shown in Figure 1. It further provides the framework
to deploy the full machinery of discrete Gaussian distributions over lattices: the
initial samples can easily be made Gaussian over Zm−n, the lifting step as well
using the randomized Babai algorithm [GPV08,EWY23], and the combination
step preserves Gaussians using convolution lemmas [Pei10,MP13], as already
used in [ADRS15,ADS15,ACKS21,AS18,ALS21] to solve short vector problems.
There are further technicalities to control the independence between the samples,
which we handle using the (conditional) similarity notion introduced in [ALS21].
This permits to control all the distributions throughout the algorithm, leading to
provable conclusions. In particular, a careful choice of the algorithm’s parameters
guarantees, with high probability, that the final distribution is not concentrated
at zero [PR06, Lemma 2.11].

1.3 Organization of the Paper

Section 2 provides the necessary background for this paper. In Section 3, we
present our Gaussian sampler and analyze its asymptotic time complexity. In
Section 4, we use the Gaussian sampler to asymptotically solve several variants
of SIS, carefully avoiding the ‘canceling out to zero’ issue. Finally, Appendix A
discusses the impact of the attack on the concrete security of Dilithium.

1.4 Acknowledgements

The authors are grateful to Ronald de Wolf and the anonymous reviewers for
their useful comments on the manuscript. LD and JL were supported by the
ERC Starting Grant 947821 (ARTICULATE). LE was supported by the Dutch
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2 Preliminaries

Notation. We write ∥ · ∥2 and ∥ · ∥∞ for the Euclidean and infinity norm of
a vector, respectively, and define B∞

n := {x ∈ Rn : ∥x∥∞ ≤ 1}. For a posi-
tive integer N , we define [N ] := {1, . . . , N}. We use the notation X = e±δ

as shorthand for X ∈ [e−δ, eδ]. For x = (x1, . . . , xN ) and i ∈ [N ], we de-
fine x−i := (x1, . . . , xi−1, xi, . . . , xN ). We define x−{i,j} analogously. For events
E0, E1, we use the convention that Pr[E0 | E1] = 0 if Pr[E1] = 0.
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Asymptotic Notation. Let f and g be functions that map positive integers to
positive real numbers. We write f(n) = O(g(n)) if there exist constants c, n0 > 0
such that f(n) ≤ c · g(n) for every integer n ≥ n0. We write f(n) = Ω(g(n)) if
there exist constants c, n0 > 0 such that f(n) ≥ c ·g(n) for every integer n ≥ n0.
We write f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)). We de-
fine Õ(f(n)) := O

(
f(n) · polylog(f(n))

)
, where polylog(f(n)) := log(f(n))O(1).

Similarly, Ω̃(f(n)) := Ω
(
f(n)/polylog(f(n))

)
. We write f(n) = o(g(n)) if, for

all constants c > 0, there exists n0 > 0 such that f(n) < c ·g(n) for every integer
n ≥ n0. We write f(n) = ω(g(n)) if, for all constants c > 0, there exists n0 > 0
such that f(n) > c · g(n) for every integer n ≥ n0.

2.1 Similarity of Distributions

Inspired by [ALS21], we consider the notions ‘similarity’ and ‘conditional similar-
ity’ to measure the pointwise distance between two distributions. These concepts
are slightly stronger than statistical distance (see Remark 2.1), and are particu-
larly useful for handling small independencies arising from ‘bucket and combine’
type of algorithms (like each iteration of Wagner-style algorithms).

Definition 2.1 (Similar). Let D be a probability distribution over a set X ,
and let δ ≥ 0 be a real. A random variable X ∈ X is δ-similar to D if, for all
x ∈ X , it holds that

Pr
X
[X = x] = e±δ · Pr

Y∼D
[Y = x].

Remark 2.1 (Similarity implies Closeness in Statistical Distance). The notion
of δ-similarity is a stronger notion than being within statistical distance δ, where
we recall that the statistical distance between two discrete random variablesX,Y
is defined as 1

2

∑
x∈X

∣∣Pr[X = x]− Pr[Y = x]
∣∣. Indeed, for all δ ∈ [0, 1], being

δ-similar implies being within statistical distance δ, since for any such δ we have
[e−δ, eδ] ⊆ [1− 2δ, 1 + 2δ].

The next definition is closely related to [ALS21, Definition 4.1], but we remark
that we use different terminology and that we made the definition more general.

Definition 2.2 (Conditionally Similar). Let D be a probability distribution
over a set X , and let δ ≥ 0 be a real. Discrete random variables X1, . . . , XN ∈ X
are conditionally δ-similar to independent samples from D if, for all i ∈ [N ] and
x ∈ XN , it holds that

Pr
X1,...,XN

[Xi = xi | X−i = x−i] = e±δ · Pr
Y∼D

[Y = xi].

In particular, being conditionally 0-similar (i.e., δ = 0) is equivalent to being
independently distributed according to D.
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Remark 2.2 (Conditional Similarity implies Marginal Similarity). For N = 1,
conditional similarity coincides with Definition 2.1. More generally, for all N ≥ 1
and δ ≥ 0, conditional δ-similarity implies marginal δ-similarity. Indeed, if
X1, . . . , XN ∈ X are conditionally δ-similar to independent samples from a dis-
tribution D on X , then we have, for all i ∈ [N ] and x ∈ X , that Pr[Xi = x] =∑

y∈XN−1 Pr[Xi = x|X−i = y] Pr[X−i = y] = e±δ · PrY∼D[Y = x].

A useful property of similarity and conditional similarity is that these notions
are closed under convex combinations (as already observed in [ALS21]).

Lemma 2.1. Let D be a probability distribution over a set X , and let δ ≥ 0 be
a real. Let E be a finite or countably infinite set of mutually exclusive and col-
lectively exhaustive events. If discrete random variables X1, . . . , XN ∈ X satisfy

Pr
X1,...,XN

[Xi = xi | X−i = x−i and E] = e±δ · Pr
Y∼D

[Y = xi]

for all i ∈ [N ], x ∈ XN , and E ∈ E, then X1, . . . , XN are conditionally δ-similar
to independent samples from D.

Proof. Suppose that the premise is true for random variables X1, . . . , XN . Then,
for all i ∈ [N ] and x ∈ XN , we have

Pr
X1,...,XN

[Xi = xi | X−i = x−i]

=
∑
E∈E

Pr
X1,...,XN

[Xi = xi and E | X−i = x−i]

=
∑
E∈E

Pr
X1,...,XN

[Xi = xi | E and X−i = x−i] · Pr
X1,...,XN

[E | X−i = x−i]

= e±δ · Pr
Y∼D

[Y = xi]

since
∑

E∈E Pr[E | X−i = x−i] =
∑

E∈E Pr[E and X−i=x−i]

Pr[X−i=x−i]
= 1. This proves the

lemma. ⊓⊔

The following property can be viewed as the data-processing inequality for con-
ditional similarity.

Lemma 2.2. Let D be a probability distribution over a set X , and let δ ≥ 0 be
a real. If discrete random variables X1, . . . , XN ∈ X are conditionally δ-similar
to independent samples from D, then

Pr
X1,...,XN

[f(Xi) = 1] = e±δ · Pr
Y∼D

[f(Y ) = 1]

for all i ∈ [N ] and all functions f : X → {0, 1}.

10



Proof. Suppose that X1, . . . , XN are conditionally δ-similar to independent sam-
ples from D. Let i ∈ [N ] and let f : X → {0, 1} be an arbitrary function. Define
f−1(1) := {x ∈ X : f(x) = 1}. Then

Pr
X1,...,XN

[f(Xi) = 1] =
∑
x∈X

Pr
X1,...,XN

[f(Xi) = 1 and Xi = x]

=
∑

x∈f−1(1)

Pr
X1,...,XN

[Xi = x]

= e±δ ·
∑

x∈f−1(1)

Pr
Y∼D

[Y = x]

= e±δ · Pr
Y∼D

[f(Y ) = 1].

⊓⊔

2.2 Lattices

Given k linearly independent vectors b1, . . . ,bk ∈ Rn, let B ∈ Rn×k be the
matrix whose columns are the bi. The lattice associated to B is the set L(B) :=

BZk =
{∑k

i=1 zibi : zi ∈ Z
}

⊆ Rn of all integer linear combinations of these

vectors. We say that B is a basis for a lattice L if L = L(B). We say that L
has rank k and dimension n. If n = k, then L is said to be of full rank. We
define spanR(L(B)) = spanR(B) = {Bx : x ∈ Rn}. We define the dual of L by
L∗ := {y ∈ spanR(L) : ∀x ∈ L, ⟨x,y⟩ ∈ Z}, which is a lattice.

First Successive Minimum. Given a lattice L, we write λ1(L) := inf{∥x∥2 : x ∈
L \ {0}} for the (Euclidean) norm of a shortest lattice vector. We define λ∞

1 (L)
similarly for the infinity norm.

Projections and Primitive Sublattices. For any S ⊆ Rn, we write πS for the
projection onto spanR(S) and π⊥

S for the projection orthogonal to spanR(S). We
say that a sublattice S of a lattice L ⊆ Rn is primitive if S = spanR(S) ∩ L. It
implies that there exists a sublattice C ⊆ L such that S ⊕C = L (i.e., S + C = L
and S ∩ C = {0}). We then say that C is a complement to S.

Relevant q-ary Lattices. We say that a lattice L ⊆ Rn is q-ary if qZn ⊆ L ⊆ Zn.
The two relevant q-ary lattices in this work are of the following form. For A ∈
Zn×m
q , we define the full-rank q-ary lattices

Λ⊥
q (A) := {x ∈ Zm : Ax = 0 mod q} ⊆ Zm,

Λq(A) := {y ∈ Zm : ∃s ∈ Zn
q ,y = A⊤s mod q} = A⊤Zn + qZm ⊆ Zm.

They are duals up to appropriate scaling: namely, Λq(A) = q · (Λ⊥
q (A))∗ and

Λ⊥
q (A) = q · (Λq(A))∗. Furthermore, det(Λ⊥

q (A)) ≤ qn, det(Λq(A)) ≥ qm−n,

and det(Λ⊥
q (A)) · det(Λq(A)) = qm.

11



If m ≥ n and A is of full rank, we can assume without loss of generality that

A = [A′ | In] for some A′ ∈ Zn×(m−n)
q . Then a basis of Λ⊥

q (A) is given by(
0 Im−n

qIn −A′

)
.

2.3 Discrete Gaussian Distribution and Smoothness

In the following, when the subscripts s and c are omitted, they are respectively
taken to be 1 and 0.

For any real s > 0 and c ∈ Rn, we define the Gaussian function on Rn centered
at c with parameter s by

∀x ∈ Rn, ρs,c(x) := exp(−π∥(x− c)/s∥22).

For any countable set A, we define ρs,c(A) =
∑

x∈A ρs,c(x). Note that ρs,c(x) =
ρs(x− c), and thus ρs,c(A) = ρs(A− c).

For any real s > 0, c ∈ Rn, and full-rank lattice L ⊆ Rn, we define the discrete
Gaussian distribution over L centered at c with parameter s by

∀x ∈ L, DL,s,c(x) :=
ρs,c(x)

ρs,c(L)
=

ρs(x− c)

ρs(L − c)

and it is 0 for x /∈ L.

Similarly, for any t ∈ Rn, we define DL−t,s,c(y) :=
ρs,c(y)

ρs,c(L−t) for y ∈ L−t. (Note

that DL,s,c ≡ c+DL−c,s.)

Infinity Norm of Discrete Gaussian Samples. We can tail-bound the infinity
norm of a discrete Gaussian sample using the following lemma.

Lemma 2.3 ([Ban95, Lemma 2.10]). For any full-rank lattice L ⊆ Rn and
real R > 0,

ρ(L \R · B∞
n )

ρ(L)
< 2n · e−πR2

.

Smoothness. The work of [MR07] introduced a lattice quantity known as the
smoothing parameter. More precisely, for any full-rank lattice L ⊆ Rn and real
ε > 0, we define the smoothing parameter ηε(L) as the smallest real s > 0 such
that ρ1/s(L∗ \ {0}) ≤ ε.

Intuitively, it gives a lower bound on s such that DL,s ‘behaves like’ a continuous
Gaussian distribution, in a specific mathematical sense. The following lemma
justifies the name of the smoothing parameter.
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Lemma 2.4 (Implicit in [MR07, Lemma 4.4]). For any full-rank lattice
L ⊆ Rn, real ε ∈ (0, 1), real s ≥ ηε(L), and c ∈ Rn,

ρs,c(L)
ρs(L)

∈
[
1− ε

1 + ε
, 1

]
.

For s slightly above smoothing, we can upper bound the probability of the most
likely outcome of the discrete Gaussian distribution.

Lemma 2.5 (Min-entropy [PR06, Lemma 2.11]). For any full-rank lattice
L ⊆ Rn, reals ε > 0 and s ≥ 2ηε(L), center c ∈ Rn, and vector x ∈ Rn we have

Pr
X∼DL,s,c

[X = x] ≤ 1 + ε

1− ε
· 2−n.

In particular, for x = 0, Lemma 2.5 gives an upper bound on the probability that
a discrete Gaussian sample is zero (if the standard deviation s is large enough).

Sampling and Combining. In our algorithms, we sample from (scalings of) Zn

using the exact Gaussian sampler from [BLP+13].

Lemma 2.6 (Implicit in [BLP+13, Lemma 2.3]). There is a randomized
algorithm that, given a real s ≥

√
ln(2n+ 4)/π and c ∈ Rn, returns a sample

from DZn,s,c in expected time poly(n, log s, log ∥c∥∞).

Our proofs use a variant of the convolution lemma [MP13, Theorem 3.3] (see
also [Pei10, Theorem 3.1]) that bounds how similar the difference of two discrete
Gaussians is to a discrete Gaussian. It is a slightly tighter result than [ALS21,
Lemma 2.14].

Lemma 2.7 (Explicit Variant of Convolution Lemma). Let L ⊆ Rn be a
full-rank lattice and let s ≥

√
2ηε(L) for some real ε > 0. For i = 1, 2, let L+ ci

be an arbitrary coset of L and Yi an independent sample from DL+ci,s. Then the
distribution of Y1 − Y2 satisfies

∀y ∈ L+ c1 − c2, Pr[Y1 − Y2 = y] ∈
[
1− ε

1 + ε
,
1 + ε

1− ε

]
·DL+c1−c2,

√
2s(y).

It follows, for instance, that Y1 − Y2 is 3ε-similar to DL+c1−c2,
√
2s whenever

ε ≤ 1
2 .

Proof. We write D1 for DL+c1,s and D2 for DL+c2,s. The support of the distri-
bution of Y1−Y2, for Y1 ∼ D1 and Y2 ∼ D2, is L+c1−c2. For all x ∈ L+c1−c2,
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we have

Pr
Y1∼D1
Y2∼D2

[Y1 − Y2 = x] =
∑

y1∈L+c1

Pr
Y1∼D1
Y2∼D2

[Y1 = y1 and Y1 − Y2 = x]

=
∑

y1∈L+c1

Pr
Y1∼D1

[Y1 = y1] · Pr
Y1∼D1
Y2∼D2

[Y1 − Y2 = x | Y1 = y1]

=
∑

y1∈L+c1

ρs(y1)

ρs(L+ c1)
· ρs(y1 − x)

ρs(L+ c2)
(def. of D1, D2)

= ρ√2s(x) ·
∑

y1∈L+c1

ρs/
√
2(y1 − x/2)

ρs(L+ c1) · ρs(L+ c2)
(3)

= ρ√2s(x) ·
ρs/

√
2(L+ c1 − x/2)

ρs(L+ c1) · ρs(L+ c2)

where Equation (3) holds since ρs(v1) · ρs(v1 − v2) = ρs(v2/
√
2) · ρs(

√
2v1 −

v2/
√
2) = ρ√2s(v2) · ρs/√2(v1 − v2/2) for all v1,v2 ∈ Rn. Since s ≥

√
2ηε(L),

Lemma 2.4 implies ρs/
√
2(L+ c1 − x/2) ∈

[
1−ε
1+ε , 1

]
· ρs/√2(L). Hence,

Pr
Y1∼D1
Y2∼D2

[Y1 − Y2 = x] ∈
[
1− ε

1 + ε
, 1

]
· ρ√2s(x) ·

ρs/
√
2(L)

ρs(L+ c1) · ρs(L+ c2)
.

Summing both sides implies that 1 ∈
[
1−ε
1+ε , 1

]
·ρ√2s(L+c1−c2)·

ρs/
√

2(L)

ρs(L+c1)·ρs(L+c2)
,

i.e.,
ρs/

√
2(L)

ρs(L+c1)·ρs(L+c2)
∈
[
1, 1+ε

1−ε

]
· 1
ρ√

2s(L+c1−c2)
. It follows that

Pr
Y1∼D1
Y2∼D2

[Y1 − Y2 = x] ∈
[
1− ε

1 + ε
,
1 + ε

1− ε

]
·

ρ√2s(x)

ρ√2s(L+ c1 − c2)

as we wanted to show. ⊓⊔

2.4 Bounds on Smoothing Parameters of Relevant Lattices

The following lemma gives a bound on the smoothing parameter of Zn. (Note
that it can also be viewed as a special case of Lemma 2.9 below.)

Lemma 2.8 (Special Case of [MR07, Lemma 3.3]). For any real ε > 0,

ηε(Zn) ≤
√

ln(2n(1 + 1/ε))

π
.

The next lemma gives an upper bound on ηε(L) in terms of λ∞
1 (L∗). It will be

used to obtain an upper bound on the smoothing parameter of the lattices Λi

that we will consider.
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Lemma 2.9 (Part of [Pei08, Lemma 3.5]). For any full-rank lattice L ⊆ Rn

and real ε > 0,

λ∞
1 (L∗) · ηε(L) ≤

√
ln(2n(1 + 1/ε))

π
.

The lattices Λi considered in this work are of the form Λi = Λ⊥
q (Ai) for some

matrices Ai, and we recall that their dual lattice is of the form 1
qΛq(Ai). We

obtain the following lower bound on λ∞
1 (Λq(A)) for random matricesA ∈ Zn×m

q .

Lemma 2.10 (Variant of [GPV08, Lemma 5.3]). Let n,m, q be positive
integers with q prime and q1−n/m ≥ 6. For uniformly random A ∈ Zn×m

q , we
have that

λ∞
1 (Λq(A)) >

q1−n/m · 2−n/m

3

except with probability < 2−n.

In particular, if m ≥ n, then the right-hand side is lower bounded by q1−n/m

6 .

Proof. (In this proof, the probabilities are taken over all uniformly random A ∈
Zn×m
q .) For some positive real B to be determined, let S := {y ∈ Zm : ∥y∥∞ ≤

B}, and note that |S| = (2B+1)m. Furthermore, for all s ∈ Zn
q \{0}, Pr[A⊤s mod

q ∈ S] = |S|·q−m = (2B+1)m ·q−m. Taking the union bound over all s ∈ Zn
q \{0}

gives

Pr[λ∞
1 (Λq(A)) ≤ B] = Pr[∃s ∈ Zn

q \ {0} such that A⊤s mod q ∈ S]

≤ |Zn
q \ {0}| · (2B + 1)m · q−m

< (2B + 1)m · qn−m.

Let B := 1
3q

1−n/m·2−n/m, and observe that q1−n/m ≥ 6 implies q1−n/m·2−n/m ≥
3 for all m ≥ n. It follows that B ≥ 1 and thus Pr[λ∞

1 (Λq(A)) ≤ B] < (3B)m ·
qn−m = 2−n as desired. The last part is immediate. ⊓⊔

Lemma 2.11 (Smoothing Parameter of Λ⊥
q (A)). Let n,m, q be positive

integers with q prime, m ≥ n, and q1−n/m ≥ 6. Let ε ≤ 1
4m be a positive real.

For uniformly random A ∈ Zn×m
q , we have that

ηε(Λ
⊥
q (A)) <

√
72 ln(1/ε)

π
· qn/m

except with probability < 2−n.

Proof. Since m ≥ n, Lemma 2.10 for a uniformly random A ∈ Zn×m
q implies

that λ∞
1 (Λq(A)) > 1

6q
1−n/m, except with probability < 2−n. Since the dual of
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L := Λ⊥
q (A) is L∗ = 1

qΛq(A), we obtain that λ∞
1 (L∗) > 1

6q
−n/m. Furthermore,

by Lemma 2.9 (recall that L is full-rank and has dimension m), we have

λ∞
1 (L∗) · ηε(L) ≤

√
ln(2m(1 + 1/ε))

π

which is ≤
√

2 ln(1/ε)
π for ε ≤ 1

4m . The statement follows. ⊓⊔

3 Wagner-Style Gaussian Sampler

In Section 1.2, we presented a warm-up version of the Wagner-style algorithm,
which returns N short vectors in Λ⊥

q (A). However, these vectors are possibly all
equal to 0. We will now show that a variant of that algorithm, using discrete
Gaussians, allows us to avoid that issue. In particular, we present a Wagner-style
algorithm for sampling N vectors from a distribution that is essentially DΛ⊥

q (A),s

when s is sufficiently large. Such samples can be shown to be short and nonzero
with high probability. Specifically, we present an algorithm for sampling from
DΛ⊥

q (A),s in time subexponential in n for m = n+ ω(n/ log log n), q = poly(n),

and s = q/f for some f = ω(1).

Recall that, for some r ∈ N and b1, . . . , br such that n =
∑r

i=1 bi, we define the
q-ary lattices

Λ0 = Zm−n and Λi = Λ⊥
q (Ai) = {x ∈ Zm−n+ni : Aix = 0 mod q} (4)

for i = 1, . . . , r, where Ai ∈ Zni×(m−n+ni)
q is the matrix corresponding to the

first ni :=
∑i

j=1 bj SIS equations. (Recall Figure 2.) In other words, our goal is
to sample N vectors from DΛr,s for a given parameter s.

Our approach is to start from many vectors sampled from DΛ0,s0 , where s0
is such that s =

√
2rs0. Then, we iteratively (for i ∈ {1, . . . , r}) transform

a list of vectors that are conditionally similar to independent samples from
DΛi−1,

√
2i−1s0

into a list of samples that are conditionally similar to indepen-

dent samples from DΛi,
√
2is0

. Then, after the last iteration, the list contains
samples that are conditionally similar to independent samples from DΛ⊥

q (A),s,

as desired. (Using Lemma 2.5, we can then bound the probability that one such
sample is nonzero.)

As explained in Section 1.2, the mapping from vectors in Λi−1 to vectors in
Λi will be done by first lifting the vectors to vectors in a suitable superlattice
Λ′
i ⊇ Λi, and then combining them into vectors in Λi. Specifically, for some

pi ∈ N, the lattices Λ′
i are defined by Λ′

i = L(B′
i) for

B′
i =

(
0 Im−n

Di −A′
i

)
with Di :=

(
0 qIni−1

q
pi
Ibi 0

)
(5)
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The first bi columns ofB′
i generate (an embedding into Rm−n+ni of) q

pi
Zbi , which

is a primitive sublattice of Λ′
i that we denote by S. Consider the projected lattice

P = π⊥
S (Λ

′
i), and note that it is (an embedding of) Λi−1. Thus, we can consider

ways to lift from Λi−1 to Λ′
i; in Section 3.1, we will consider a randomized way

of lifting that preserves discrete Gaussian distributions.

From there, we would like to produce samples in Λi, rather than Λ′
i. A natural

approach is to bucket our samples according to their cosets in the quotient
Λ′
i/Λi, and then take differences within those buckets. Using standard analysis of

convolutions of discrete Gaussians, we show in Section 3.2 that these differences
are still essentially discrete Gaussian, yet with a width parameter increased by
a factor of

√
2.

In Section 3.3, we then lay out the resulting Gaussian variant of Wagner’s al-
gorithm, and demonstrate its correctness and time complexity, under certain
smoothing constraints on the parameters. Finally, in Section 3.4 we provide
the choice of parameters that satisfy those constraints and conclude with a
subexponential-time algorithm for sampling from DΛ⊥

q (A),s.

3.1 Discrete-Gaussian Lifting

Algorithm 2 below lifts vectors from Λi−1 to vectors in Λ′
i. It revisits the GPV

sampling algorithm [GPV08] with a reinterpretation of the induction: rather
than reducing the problem in dimension n to two instances in dimensions 1 and
n − 1, we consider arbitrary splits in n′ and n − n′ dimensions. Algorithm 2
can be viewed as a special case of [EWY23, Alg. 2], and our Lemma 3.1 is a
variant of [EWY23, Theorem 1], where we analyze the conditional similarity of
the output with respect to the discrete Gaussian (instead of merely looking at
the statistical distance).

In particular, Lemma 3.1 (with δ = 0 and N = 1) shows that Algorithm 2
turns a sample from DP,s into a sample that is 3ε-similar to (and thus within
statistical distance 3ε from) DL,s, whenever s ≥ ηε(S) for 0 < ε ≤ 1

2 .

Lemma 3.1 (Complexity and Distribution of DGLift). Let L ⊆ Rn be
a lattice and let P = π⊥

S (L) for a primitive sublattice S ⊆ L. Let s > 0 be a
real such that a randomized algorithm A exists that, given c ∈ span(S), returns
a sample from DS,s,c. Then DGLift(P,L, s, ·) (Algorithm 2) is a randomized
algorithm that, given a vector x ∈ P, outputs a vector x′ in L. It uses one query
to A, and all other operations run in polynomial time.

Moreover, for any reals δ ≥ 0 and 0 < ε ≤ 1
2 satisfying s ≥ ηε(S), if X1, . . . , XN ∈

P are conditionally δ-similar to independent samples from DP,s, then the dis-
tribution of X ′

1, . . . , X
′
N for X ′

i := DGLift(P,L, s,Xi) is conditionally (δ + 3ε)-
similar to independent samples from DL,s.

We will use the above lemma with S = q
pi
Zbi , hence an exact polynomial-time

sampler is available whenever s ≥ q
pi

√
ln(2bi + 4)/π by Lemma 2.6.
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Algorithm 2: DGLift(P,L, s,x)
Input : Lattices P,L, where P = π⊥

S (L) for a primitive sublattice S ⊆ L;
Real s > 0;
Vector x ∈ P

Output: Vector x′ ∈ L such that π⊥
S (x

′) = x

Let C be a complement to S
Compute the unique y ∈ C such that π⊥

S (y) = x // Lifting

Sample z ∼ DS,s,x−y // Sampling

return x′ := z+ y

Proof. Consider Algorithm 2, where we use algorithm A for the sampling step,
and let C be the complement of S that it considers. Note that π⊥

S induces a
bijection from C to P, and that both directions can be computed in polynomial
time. The claim on time and query complexity of Algorithm 2 is thus immediate.

For correctness, we remark that any output vector x′ = z + y belongs to L,
since z ∈ S ⊆ L and y ∈ C ⊆ L. Furthermore, x′ = πS(x

′) + π⊥
S (x

′) with
πS(x

′) = z+ πS(y) and π⊥
S (x

′) = π⊥
S (y) = x, so the output is as desired.

For the remainder of the proof, let f(x) := DGLift(P,L, s,x). We remark that
S ⊕ C = L implies that any v ∈ L can be uniquely written as v = vS + vC for
vS ∈ S and vC ∈ C (and we will define vS ,vC as such).

We first observe that for all x ∈ P and x′ ∈ L, the probability that DGLift on
input x outputs x′ is

Pr[f(x) = x′] = Pr
Z∼DS,s,x−y(x)

[Z = x′ − y(x)]

=

 ρs(πS(x′))
ρs(S+πS(x′

C))
if x = π⊥

S (x
′)

0 otherwise
(6)

where y(x) denotes the unique y ∈ C such that π⊥
S (y) = x. Indeed, note that

x′ − y(x) ∈ S if and only if x′
C = y(x) if and only if x = π⊥

S (x
′
C) if and only

if x = π⊥
S (x

′). Therefore, PrZ∼DS,s,x−y(x)
[Z = x′ − y(x)] = ρs(x

′−x)
ρs(S−x+y(x)) =

ρs(πS(x′))
ρs(S−x+y(x)) if x = π⊥

S (x
′) and 0 otherwise. Since x = π⊥

S (x
′) implies that

y(x) = x′
C , and thus y(x)− x = πS(y(x)) = πS(x

′
C), Equation (6) follows.

Next, we prove the following intermediate claim.

Claim. For s ≥ ηε(S), we have ρs(P) · ρs(S) ∈
[
1, 1+ε

1−ε

]
· ρs(L).
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Proof (of Claim). By Equation (6), if the input is a random variable X ∼ D
for some distribution D on P, then for all x′ ∈ L, we have that

Pr
X,Z

[f(X) = x′] = Pr
X,Z

[X = π⊥
S (x

′)] · Pr
X,Z

[f(X) = x′ | X = π⊥
S (x

′)]

= Pr
X∼D

[X = π⊥
S (x

′)] · ρs(πS(x
′))

ρs(S + πS(x′
C))

∈
[
1,

1 + ε

1− ε

]
· Pr
X∼D

[X = π⊥
S (x

′)] · ρs(πS(x
′))

ρs(S)
. (Lemma 2.4)

In particular, if D is DP,s, then we have (for all x′ ∈ L) that Pr[f(X) = x′] ∈[
1, 1+ε

1−ε

]
· ρs(x

′)
ρs(P)ρs(S) since π

⊥
S (x

′)+πS(x
′) = x′. Finally, summing both sides over

all x′ ∈ L yields that 1 ∈
[
1, 1+ε

1−ε

]
· ρs(L)
ρs(P)ρs(S) , which proves the claim. ⊓⊔

We now proceed with the main proof. Suppose that the input consists of N
random variables conditionally δ-similar to independent samples from DP,s. By
Equation (6), we know that for all x′ ∈ LN and any I ⊆ [N ],

Pr
(X1,Z1),...,(XN ,ZN )

[∀j ∈ I, f(Xj) = x′
j ]

= Pr
X1,...,XN

[∀j ∈ I,Xj = π⊥
S (x

′
j)] · Pr

Z1,...,ZN

[∀j ∈ I, f(π⊥
S (x

′
j)) = x′

j ]

= Pr
X1,...,XN

[∀j ∈ I,Xj = π⊥
S (x

′
j)] ·

∏
j∈I

ρs(πS(x
′
j))

ρs(S + πS(x′
j,C))

(7)

since the Zj are independent when the values of the Xj are fixed. (Here, we write
x′
j,C for the unique c ∈ C such that x′

j = s + c for (s, c) ∈ S × C.) To conclude

the proof, take any i ∈ [N ] and x′ ∈ LN . Then

Pr
X1,...,XN

[f(Xi) = x′
i | ∀j ∈ [N ] \ {i}, f(Xj) = x′

j ]

=
PrX1,...,XN

[∀j ∈ [N ], f(Xj) = x′
j ]

PrX1,...,XN
[∀j ∈ [N ] \ {i}, f(Xj) = x′

j ]
(def. conditional probability)

=
PrX1,...,XN

[∀j ∈ [N ], Xj = π⊥
S (x

′
j)]

PrX1,...,XN
[∀j ∈ [N ] \ {i}, Xj = π⊥

S (x
′
j)]

· ρs(πS(x
′
i))

ρs(S + πS(x′
i,C))

(Equation (7))

= Pr
X1,...,XN

[Xi = π⊥
S (x

′
i) | ∀j ∈ [N ] \ {i}, Xj = π⊥

S (x
′
j)] ·

ρs(πS(x
′
i))

ρs(S + πS(x′
i,C))

= e±δ · ρs(π
⊥
S (x

′
i))

ρs(P)
· ρs(πS(x

′
i))

ρs(S + πS(x′
i,C))

(by assumption)

= e±δ · ρs(x
′
i)

ρs(P)ρs(S + πS(x′
i,C))

∈
[
e−δ, eδ · 1 + ε

1− ε

]
· ρs(x

′
i)

ρs(P)ρs(S)
(by Lemma 2.4)
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⊆
[
e−δ · 1− ε

1 + ε
, eδ · 1 + ε

1− ε

]
· ρs(x

′
i)

ρs(L)
. (by the claim)

Since
[
1−ε
1+ε ,

1+ε
1−ε

]
⊆ [e−3ε, e3ε] for all 0 < ε ≤ 1

2 , the lemma follows. ⊓⊔

3.2 Combining to a Sublattice

We will now show that, given many independent discrete Gaussian samples from
a lattice L′, we can construct many vectors in a full-rank sublattice L ⊆ L′ whose
distributions are (conditionally) similar to a discrete Gaussian over L.

By the convolution lemma [Pei08,MP13] (more precisely, by Lemma 2.7), the
difference of two independent samples from DL′,s follows a distribution similar
to DL′,

√
2s. If we condition on the result being in the sublattice L, then this

distribution can in fact be shown to be similar to DL,
√
2s.

Motivated by this fact, we consider an algorithm (Algorithm 3) that first buckets
its input vectors in L′ with respect to their cosets modulo the sublattice L, and
then (carefully) combines pairs of vectors in the same cosets to obtain vectors in
L.8 If we start with at least 3|L′/L| vectors from L′, then the number of output
vectors is only a constant factor smaller, as shown by Lemma 3.2. Furthermore,
if the input vectors are conditionally similar to independent samples from DL′,s,
the output vectors are conditionally similar to independent samples fromDL,

√
2s,

as shown by Lemma 3.3.

Algorithm 3: BucketAndCombine(L′,L, L)
Input : Full-rank lattices L ⊆ L′ in Rd;

A list L with N vectors x1, . . . ,xN ∈ L′ for some integer N ≥ 3|L′/L|
Output: A list Lout with ⌊N/3⌋ vectors in L

Initialize empty lists B(c) for each coset c ∈ L′/L
for i = 1, . . . , N do // Bucketing

Let ci := xi mod L
Append xi to B(ci)

Initialize an empty list Lout

for i = 1, . . . , N do // Combining

if B(ci) contains at least two elements and |Lout| < ⌊N/3⌋ then
Let x,x′ be the first two elements in B(ci)
Append y := x− x′ to Lout

Remove x and x′ from B(ci)
return Lout

8 Algorithm 3 is just a reformulation of [ALS21, Algorithm 2] with a different number
of output vectors (and output vectors of the form x− x′ instead of x+ x′).
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Lemma 3.2 (Correctness of Algorithm 3). Algorithm 3 is correct. That
is, on input two full-rank lattices L ⊆ L′ in Rd and a list of N vectors in L′, it
returns a list of ⌊N/3⌋ vectors in L if N ≥ 3|L′/L|.

Proof. By construction, each element of Lout is of the form y = x − x′ for
x = x′ mod L, so y ∈ L. It thus remains to show that the output list Lout

always consists of ⌊N/3⌋ elements. Suppose, for contradiction, that the algorithm
returns a list of size ℓ for some ℓ ∈ {0, . . . , ⌊N/3⌋− 1}. Then the number of used
L elements (i.e., those xi that are being used as part of the output) is 2ℓ, so there
must be N−2ℓ list elements that are not used. (Here, we talk about list elements
instead of vectors, since two list elements may correspond to the same vector.)
Their corresponding cosets must be distinct (since otherwise the algorithm would
have been able to find more than ℓ output elements), so N −2ℓ ≤ |L′/L| ≤ N/3.
It follows that ⌊N/3⌋ ≤ N/3 ≤ ℓ, which is a contradiction. Hence, the algorithm
always succeeds to construct ⌊N/3⌋ output vectors. ⊓⊔

The following is a variant of [ALS21, Lemma 4.5], suitable for our purposes.

Lemma 3.3 (Distribution of Output). Let L ⊆ L′ be full-rank lattices in
Rd. Let N ≥ 3|L′/L| be a positive integer, and let δ ≥ 0, 0 < ε ≤ 1

2 , and

s ≥
√
2ηε(L′) be reals.

If the input list consists of N random variables on L′ that are conditionally δ-
similar to independent samples from DL′,s, then Algorithm 3 returns a list of
⌊N/3⌋ vectors from L that are conditionally (4δ + 3ε)-similar to independent
samples from DL,

√
2s.

Our proof makes use of the following fact: given a sample X from a distribution
similar to DL′,s, if we condition on X = c mod L for some L ⊆ L′ and c ∈ L′,
then this distribution is similar to DL+c,s. More generally, conditioning on cosets
preserves conditional similarity.

Lemma 3.4 (Conditioning on Cosets). Let L ⊆ L′ be full-rank lattices in
Rd. Let N be a positive integer, and let δ ≥ 0 and s > 0 be reals. Suppose that
X1, . . . , XN ∈ L′ are discrete random variables that are conditionally δ-similar
to independent samples from DL′,s. Then, for all i ∈ [N ], all c ∈ (L′/L)N , and
all x ∈ (L′)N satisfying xj = cj mod L for all j ∈ [N ],

Pr[Xi = xi | X−i = x−i and ∀j ∈ [N ], Xj = cj mod L] = e±2δ · ρs(xi)

ρs(L+ ci)
.

Proof. Suppose that X = (X1, . . . , XN ) consists of N random variables on L′

that are conditionally δ-similar to independent samples from DL′,s. Then, by
definition, we have for all i ∈ [N ] and all x ∈ (L′)N that

Pr[Xi = xi | X−i = x−i] = e±δ · ρs(xi)

ρs(L′)
. (8)
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Consider arbitrary i ∈ [N ], c ∈ (L′/L)N , and x ∈ (L′)N satisfying xj = cj mod
L for all j ∈ [N ]. Then, by definition of conditional probability,

Pr[Xi = xi | X−i = x−i and ∀j ∈ [N ], Xj = cj mod L]

=
Pr[Xi = xi and X−i = x−i and ∀j ∈ [N ], Xj = cj mod L]

Pr[X−i = x−i and ∀j ∈ [N ], Xj = cj mod L]

=
Pr[Xi = xi and X−i = x−i]

Pr[X−i = x−i and Xi = ci mod L]
(as xj = cj mod L ∀j ∈ [N ])

=
Pr[Xi = xi | X−i = x−i]

Pr[Xi = ci mod L | X−i = x−i]

=
Pr[Xi = xi | X−i = x−i]∑

v∈L+ci
Pr[Xi = v | X−i = x−i]

= e±2δ ρs(xi)/ρs(L′)

ρs(L+ ci)/ρs(L′)

where we apply Equation (8) twice (to both the numerator and denominator)
to obtain the last line. The conclusion then immediately follows. ⊓⊔

We can now prove Lemma 3.3.

Proof (of Lemma 3.3). Correctness (on arbitrary input) follows from Lemma 3.2.

Let Y1, . . . , YM be the random variables corresponding to the vectors in the
output list (in order), where M := ⌊N/3⌋. We want to show that, for all j ∈ [M ]
and y ∈ LM ,

Pr
X1,...,XN

[Yj = yj | Y−j = y−j ] = e±(4δ+3ε)DL,
√
2s(yj).

By Lemma 2.1, it suffices to show that for all c1, . . . , cN ∈ L′/L such that
PrX1,...,XN

[∀i ∈ [N ], Xi = ci mod L] > 0, we have, for all j ∈ [M ], y ∈ LM ,

Pr
X1,...,XN

[Yj = yj | Y−j = y−j and ∀i ∈ [N ], Xi = ci mod L]

= e±(4δ+3ε)DL,
√
2s(yj). (9)

So consider any c1, . . . , cN ∈ L′/L such that PrX1,...,XN
[∀i ∈ [N ], Xi = ci mod

L] > 0. Note that the output (in particular, the way the vectors are paired) is
entirely determined by the cosets (c1, . . . , cN ) for ci := xi mod L. In particular,
for any permutation π : [N ] → [N ] such that (x′

1, . . . ,x
′
N ) := (xπ(1), . . . ,xπ(N))

satisfies yj = x′
2j−1 − x′

2j for all j ∈ [M ], we have that x′
1, . . . ,x

′
2M is entirely

determined by the cosets (c1, . . . , cN ). (The order of the vectors x′
2M+1, . . . ,x

′
N

does not affect the algorithm’s output.) Without loss of generality, we will there-
fore redefine (x1, . . . ,xN ) as (x′

1, . . . ,x
′
N ) for such a permutation (allowing us

to write yj = x2j−1 − x2j for all j ∈ [M ]).
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Let D be the distribution of the input variables X = (X1, . . . , XN ) conditional
on Xi = ci mod L for all i ∈ [N ]. By the conditional similarity assumption and
by Lemma 3.4, for all i ∈ [N ] and all x ∈ (L′)N satisfying xj = cj mod L for all
j ∈ [N ], we have

Pr
X∼D

[Xi = xi | X−i = x−i] = e±2δ ·DL+ci,s(xi), (10)

which we will repeatedly use below.

To show that Equation (9) holds (for any j ∈ [M ], y ∈ LM ), and thus to finish
the proof, it suffices (by another application of Lemma 2.1) to show that for all
j ∈ [M ], y ∈ LM , and all v ∈ (L′)N−2 satisfying Pr[X−{2j−1,2j} = v|Y−j =
yj ] > 0, we have that

Pr
X∼D

[Yj = yj | Y−j = y−j and X−{2j−1,2j} = v] = e±(4δ+3ε)DL,
√
2s(yj).

So take any j ∈ [M ] and y ∈ LM , and any such v ∈ (L′)N−2. Since X−{2j−1,−2j}
determines all the entries of Y−j , we have that Pr[X−{2j−1,2j} = v|Y−j = yj ] > 0
implies that Pr[Y−j = y−j | X−{2j−1,2j} = v] = 1. Hence,

Pr
X∼D

[Yj = yj | Y−j = y−j and X−{2j−1,2j} = v]

= Pr
X∼D

[Yj = yj | X−{2j−1,2j} = v].

Writing c := X2j−1 mod L = X2j mod L, we have that

Pr
X∼D

[Yj = yj | X−{2j−1,2j} = v]

= Pr
X∼D

[X2j−1 −X2j = yj | X−{2j−1,2j} = v]

=
∑

x∈L+c

Pr
X∼D

[X2j−1 = x and X2j = x− yj | X−{2j−1,2j} = v]

= e±2δ ·
∑

x∈L+c

DL+c,s(x) · Pr
X∼D

[X2j = x− yj | X−{2j−1,2j} = v]

where the last line follows from the definition of conditional probability and from
applying Equation (10) to i = 2j − 1. Now,

Pr
X∼D

[X2j = x− yj | X−{2j−1,2j} = v]

=
∑

z∈L+c

Pr
X∼D

[X2j−1 = z and X2j = x− yj | X−{2j−1,2j} = v]

= e±2δ ·DL+c,s(x− yj) ·
∑

z∈L+c

Pr
X∼D

[X2j−1 = z | X−{2j−1,2j} = v]

= e±2δ ·DL+c,s(x− yj)
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where the second line again follows from the definition of conditional probability
and Equation (10). Therefore, it follows that

Pr
X∼D

[Yj = yj | X−{2j−1,2j} = v] = e±4δ ·
∑

x∈L+c

DL+c,s(x) ·DL+c,s(x− yj)

= e±4δ · Pr
(X1,X2)∼(DL+c,s)2

[X1 −X2 = yj ]

= e±(4δ+3ε) ·DL,
√
2s(yj)

by Lemma 2.7 and since 1+ε
1−ε ≤ e3ε for ε ≤ 1

2 . This completes the proof. ⊓⊔

3.3 The Algorithm: Wagner as a Gaussian sampler

We are now ready to present our Gaussian sampler, laid out as Algorithm 4.

Algorithm 4: Wagner-Style Gaussian Sampler

Input : Integers n,m, q;
Full-rank matrix A = [A′ | In] ∈ Zn×m

q ;
Integer parameters N, r, (pi)

r
i=1, (bi)

r
i=1 with

∑r
i=1 bi = n;

Real parameter s0 > 0
Output: List of vectors in Λ⊥

q (A)

Let Λ0 := Zm−n

Initialize a list L0 with 3rN independent samples from DΛ0,s0

for i = 1, . . . , r do
Let Λi as defined in Equation (4)
Let Λ′

i = L(B′
i) for B

′
i as defined in Equation (5)

L′
i−1 := ∅

for x ∈ Li−1 do // Lift to Λ′
i

Sample x′ ∼ DGLift(Λi−1, Λ
′
i, si−1,x) ▷ Algorithm 2

Append x′ to L′
i−1

Li = BucketAndCombine(Λ′
i, Λi, L

′
i−1) ▷ Algorithm 3 // Combine to Λi

si :=
√
2si−1

return Lr

Remark 3.1. In our applications of Algorithm 4, we consider input parameter s0
satisfying s0 ≥

√
ln(2(m− n) + 4)/π and

√
2i−1s0 ≥ q

pi

√
ln(2bi + 4)/π for all

i ∈ [r]. This allows us to use the exact sampler from Lemma 2.6 to sample from
DΛ0,s0 (in the first iteration) and from D q

pi
Zbi ,

√
2i−1s0

(in iterations i = 1, . . . , r).

Theorem 3.1 (Correctness of One Iteration). Let δ ≥ 0 and 0 < ε ≤ 1
2

be reals. For i ∈ [r], consider iteration i of Algorithm 4 with well-defined param-
eters. If si−1 ≥ max(ηε(

q
pi
Zbi),

√
2ηε(Λ

′
i),

q
pi

√
ln(2bi + 4)/π) and Li−1 consists

of |Li−1| ≥ 3pbii vectors in Λi−1 that are conditionally δ-similar to independent
samples from DΛi−1,si−1

, then Li consists of ⌊|Li−1|/3⌋ vectors in Λi that are
conditionally (4δ + 15ε)-similar to independent samples from DΛi,

√
2si−1

.
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Proof. Let S be the embedding of q
pi
Zbi in Rm−n+ni and P the embedding of

Λi−1 in Rm−n+ni . Note that S is a primitive sublattice of Λ′
i and that P = π⊥

S (C)
for some complement C to S. Since si−1 ≥ ηε(

q
pi
Zbi) = ηε(S), the application of

the algorithm from Lemma 3.1 turns the |Li−1| random variables on Λi−1 into
|Li−1| random variables on Λ′

i that are conditionally (δ+3ε)-similar to DΛ′
i,si−1

.
Here, as oracle to sample from D q

pi
Zbi ,si−1,c (exactly), we use Lemma 2.6 to

sample from DZbi ,
pi
q si−1,

pi
q c, and multiply the resulting vector by q

pi
. This is

justified since we assume that pi

q si−1 ≥
√
ln(2bi + 4)/π.

By Lemma 3.3 (where we use that si−1 ≥
√
2ηε(Λ

′
i)), the output list Li of

BucketAndCombine consists of ⌊|Li−1|/3⌋ vectors in Λi that are conditionally
δ′-similar to independent samples from DΛi,

√
2si−1

, where δ′ = 4(δ + 3ε) + 3ε =
4δ + 15ε. ⊓⊔

Theorem 3.2 (Correctness of Algorithm 4). Let 0 < ε ≤ 1
2 be a real, and r

an integer. If the input parameters satisfy N ≥ pbii , s0 ≥
√
ln(2(m− n) + 4)/π,

and
√
2i−1s0 ≥ max(ηε(

q
pi
Zbi),

√
2ηε(Λ

′
i),

q
pi

√
ln(2bi + 4)/π) for all i ∈ [r], then

Algorithm 4 returns a list of size N consisting of vectors that are conditionally
4r5ε-similar to independent samples from DΛ⊥

q (A),
√
2rs0

.

Proof. To obtain the list L0, we use the exactDZm−n,s0-sampler from Lemma 2.6,
which takes time poly(m − n, log s0). This is justified since we assume s0 ≥√
ln(2(m− n) + 4)/π.

We show by induction that, for each iteration i ∈ {1, . . . , r}, the output list Li

consists of 3r−iN vectors in Λi that are conditionally δi-similar to independent
samples from DΛi,si for δi := (4i − 1)5ε. The theorem then immediately follows,
since (4r − 1)5ε ≤ 4r5ε.

By assumption, |L0| = 3rN ≥ 3rpb11 ≥ 3pb11 and s0 ≥ max(ηε(
q
p1
Zb1),

√
2ηε(Λ

′
1),

q
p1

√
ln(2b1 + 4)/π). Therefore, Theorem 3.1 implies that the output list L1 of

iteration i = 1 consists of 3r−1N vectors in Λ1 that are conditionally 15ε-similar
to independent samples from DΛ1,s1 . Since δ1 = 15ε, this proves the base case.

Consider any i ∈ {2, . . . , r}, and suppose the claim holds for all 1 ≤ j ≤ i−1. By
the induction hypothesis and assumption, |Li−1| = 3r−(i−1)N ≥ 3r−(i−1)pbii ≥
3pbii and si−1 =

√
2i−1s0 ≥ max(ηε(

q
pi
Zbi),

√
2ηε(Λ

′
i),

q
pi

√
ln(2bi + 4)/π). There-

fore, Theorem 3.1 implies that the output list Li of iteration i consists of 3r−iN
vectors in Λi. By the induction hypothesis the vectors in Li−1 are conditionally
δi−1-similar to independent samples from DΛi−1,si−1

, so Theorem 3.1 yields that
the vectors in Li are conditionally (4δi−1 +15ε)-similar to independent samples
from DΛi,si . Since 4δi−1+15ε = 4(4i−1−1)5ε+15ε = (4i−1)5ε = δi, the claim
follows. ⊓⊔

Remark 3.2 (Expected Runtime). Using the exact sampler from Lemma 2.6
ensures that all vectors processed by Algorithm 4 have expected bitsize at most

25



poly(m, r, log s0, log q) when the parameters satisfy pi ≤ q for all i ∈ [r]. Hence,
the expected runtime of Algorithm 4 is then at most (3rN +

∑r
i=1 |Li−1|) ·

poly(m, r, log s0, log q) = 3rN · poly(m, r, log s0, log q).

3.4 Putting It All Together

We now have all the ingredients to prove the existence of a subexponential-time
algorithm for sampling from a distribution conditionally similar to DΛ⊥

q (A),s for

random (full-rank) matrices A. We write the width s of the desired discrete
Gaussian distribution as s = q/f for some f > 1, and remark that the diffi-
culty of sampling with width q/f increases with f . Below, we demonstrate that
subexponential complexity is feasible for all q/f above a certain threshold.

We note that, for the parameters of interest, we have q1−n/m ≥ 2Θ(logn/ log logn),
which tends to infinity as n grows (so the assumption q1−n/m ≥ 6 is not too
restrictive).

Theorem 3.3. For n ∈ N, let m ≥ n be an integer and q = poly(n) be a
prime such that q1−n/m ≥ 6. Let f > 1 and ε ≤ 1

m be positive reals such that
q
f ≥

√
ln(1/ε). For sufficiently large n, there exists a randomized algorithm

that, given a uniformly random full-rank matrix A ∈ Zn×m
q , with probability

> 1− 2−Ω̃(n) returns N vectors in Λ⊥
q (A), where N ∈ 2o(m−n) is such that

log2(N) =
n/2

ln(ln(q))− ln
(
ln(f) + 1

2 ln ln(1/ε)
)
−O(1)

. (11)

The output vectors are conditionally q4ε-similar to independent samples from
DΛ⊥

q (A), qf
. This algorithm has time and memory complexity N · poly(m).

Proof. We first provide a choice of parameters for Algorithm 4 (instantiated
with the exact sampler from Lemma 2.6). Then, we show that they satisfy the
conditions of Theorem 3.2, and conclude the proof.

Choice of Parameters. Define ε′ := ε/5, and let N be the smallest possible
integer such that

log2(N/q) ≥ n/2

ln ln(q)− ln
[
(ln(f) + 1

2 ln(
144
π ln(3/ε′)) + 1/2

] ,
which satisfies Equation (11) for sufficiently large n. Let s0 := q/f√

2r
, where 9

r := ⌊2 log2(q/f)− log2(
144 ln(3/ε′)

π )⌋.
9 For all interesting parameters, we have r ≥ 1. For the rare setting of parameters for
which r < 1, we replace r by r+10. (This suffices since, for any valid parameters, the
assumption q

f
≥

√
ln(1/ε) ensures that 2 log2(q/f) − log2(144 ln(3/ε

′)/π) + 10 ≥ 1
when n ≥ 2.) Note that increasing r by a constant additive factor does not affect
the proof; in particular, Equation (12) below would still hold as it decreases with r.
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For i ∈ [r], define pi := ⌊q/
√
2i⌋. For i ∈ [r − 1], define bi := ⌈ log2(N)

log2(q)−i/2 − 1⌉,
and define br := n−

∑r−1
i=1 bi so that

∑r
i=1 bi = n. Note that pi, bi are integers.

We now show that these parameters satisfy the conditions of Theorem 3.2. We
consider sufficiently large n so that ε′ ≤ 1

6 (i.e., ε ≤ 5
6 ) and 2 log2(N) ≤ m − n

(justified by the condition log2(N) = o(m− n)).

Verifying that N is Large Enough. We claim that N ≥ pbii for all i ∈ [r].
For all i ∈ [r − 1], this claim follows immediately from the definition of bi:

bi ≤ log2(N)
log2(q)−i/2 ≤ log2(N)

log2(pi)
. So it remains to show that br ≤ log2(N)

log2(pr)
. By definition,

log2(N/q) ≥ n/2

ln ln(q)− ln
[
(ln(f) + 1

2 ln(
144
π ln(3/ε′)) + 1/2

]
≥ n/2

ln(log2(q))− ln
[
log2(f) +

1
2 log2(

144 ln(3/ε′)
π ) + 1/2

]
≥ n/2

ln
(

2 log2(q)
2 log2(q)−r

) (12)

since r ≥ 2 log2(q/f)− log2(
144 ln(3/ε′)

π )− 1. In particular, using known facts of
integrals (recall Footnote 7 on page 6) we obtain

n ≤ 2 log2(N/q) · ln
(

2 log2 q

2 log2 q − r

)
=

∫ r

0

2 log2(N/q)

2 log2(q)− x
dx ≤

r∑
i=1

2 log2(N/q)

2 log2(q)− i
.

Since 2 log2(N/q)
2 log2(q)−i ≤ 2 log2(N)

2 log2(q)−i − 1 ≤ bi, we obtain that n ≤
∑r−1

i=1 bi +
2 log2(N/q)
2 log2(q)−r ,

and thus br = n−
∑r−1

i=1 bi ≤ 2 log2(N/q)
2 log2(q)−r ≤ 2 log2(N)

2 log2(q)−r ≤ log2(N)
log2(pr)

, as desired.

Verifying the Smoothing Conditions of Theorem 3.2. To show that the

smoothing conditions in Theorem 3.2 are satisfied with probability 1 − 2−Ω̃(n),
it suffices to show that the following holds (for large enough n):

(I) s0 ≥
√
ln(2(m− n) + 4)/π and

√
2i−1s0 ≥ q

pi

√
ln(2bi + 4)/π for all i ∈ [r].

(II) With probability 1− 2−Ω̃(n), we have that
√
2i−1s0 ≥

√
2max(ηε′/3(

q
pi
Zbi),

ηε′/3(Λi−1)) for all i ∈ [r].

Indeed, if
√
2i−1s0 ≥

√
2max(ηε′/3(

q
pi
Zbi), ηε′/3(Λi−1)) (for any i ∈ [r]), then√

2i−1s0 ≥ max(ηε′(
q
pi
Zbi),

√
2ηε′(Λ

′
i)) by [EWY23, Proposition 2] (with the em-

bedding of q
pi
Zbi in Rm−n+ni as sublattice) and because ηε′/3(

q
pi
Zbi) ≥ ηε′(

q
pi
Zbi).

To prove (I) and (II), we will use that our choice of r implies that s0 ≥√
144 ln(3/ε′)

π . Furthermore, we emphasize that ε ≤ 1
m implies ε′ ≤ 3

4m , so

ε′ ≤ min( 3
4(m−n) ,

3
4b1

) and ε′ ≤ min( 3
4(m−n+ni−1)

, 3
4bi

) for all i ∈ {2, . . . , r}.
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(This allows us to apply the results from Section 2.4 to bound the parameters
ηε′(

q
pi
Zbi) and ηε′(Λ

′
i).)

So consider any i ∈ [r]. By Lemma 2.8 (with dimension bi and using that ε′ ≤
3
4bi

), we obtain
√
2ηε′/3(

q
pi
Zbi) ≤ q

pi

√
4 ln(3/ε′)

π ≤
√
2i−1

√
32 ln(3/ε′)

π ≤
√
2i−1s0

(since pi = ⌊q/
√
2i⌋ ≥ (q/

√
2i)/2 whenever pi ≥ 2, and thus q

pi
≤ 2

√
2i). Fur-

thermore, for i = 1, we have by Lemma 2.8 that
√
2ηε′/3(Λ0) =

√
2ηε′/3(Zm−n) <√

4 ln(3/ε′)
π ≤ s0. Since ε′ ≤ 3

4m we have that 3
ε′ ≥ 2m ≥ 2(m − n) + 4 and

3
ε′ ≥ 4m ≥ 4n ≥ 2n+ 4 ≥ 2bi + 4 for all i ∈ [r]. Hence, s0 ≥

√
4 ln(3/ε′)

π implies

that s0 ≥
√

ln(3/ε′)
π ≥

√
ln(2(m−n)+4)

π , and
√
2i−1s0 ≥ q

pi

√
4 ln(3/ε′)

π implies that
√
2i−1s0 ≥ q

pi

√
ln(3/ε′)

π ≥ q
pi

√
ln(2bi+4)

π for all i ∈ [r]. Thus, (I) holds for n ≥ 2.

Note that q
nj

m−n+nj ≤
√
2j for all j ∈ [r]. To see this, observe that (for any j ∈ [r])

nj ≤ jbj , so that
nj

j

(
2 log2(q)− j

)
≤ bj(2 log2(q) − j) ≤ 2 log2(N) ≤ m − n.

Since
nj

j

(
2 log2(q)− j

)
≤ m−n if and only if q

nj
m−n+nj ≤

√
2j , the claim follows.

Thus, for each i ∈ {2, . . . , r}, Lemma 2.11 and the previous claim imply that

√
2ηε′/3(Λi−1) <

√
144 ln(3/ε′)

π
· q

ni−1
m−n+ni−1 ≤

√
144 ln(3/ε′)

π

√
2i−1 ≤

√
2i−1s0,

except with probability < 2−ni−1 .

Therefore, by the union bound, we have with probability > 1 −
∑r−1

i=1 2−ni

that
√
2i−1s0 ≥

√
2max(ηε′/3(

q
pi
Zbi), ηε′/3(Λi−1)) for all i ∈ [r]. Note that

1 −
∑r−1

i=1 2−ni ≥ 1 − r2−b1 = 1 − 2−(b1+log2(r)) = 1 − 2−Ω̃(n) since log2(r) =

log2 log2(n) + O(1), b1 = Ω( log2 N
log2 n ), and log2(N) = Ω( n

log2 log2(n)
), so (II) holds

as well.10

Conclusion of the Proof. Theorem 3.2 then implies that the output of this
algorithm consists of at least N vectors in Λ⊥

q (A) that are conditionally 4r5ε′-
similar to independent samples from DΛ⊥

q (A),
√
2rs0

. Since 4r ≤ q4, we obtain

that they are conditionally δ-similar for δ = q45ε′ = q4ε-similar.

Finally, the runtime of Algorithm 4 is at most 3rN · poly(m, r, log s0, log q) by
Remark 3.2. Since r = O(log q), s0 ≤ q, and q = poly(m), it follows that the
time and memory complexity are both upper bounded by N · poly(m). ⊓⊔

10 We emphasize that it also follows that ηε/4(Λ
⊥
q (A)) < q

f
. Indeed, another application

of Lemma 2.11 (using that ε/4 ≤ 1
4m

) yields ηε/4(Λ
⊥
q (A)) <

√
72 ln(4/ε)/πqn/m,

except with probability < 2−n, but this does not affect the lower bound on the
success probability. By the aforementioned fact, we have that qn/m ≤

√
2r, so by

definition of r we obtain that ηε/4(Λ
⊥
q (A)) < q

f
.
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4 Asymptotic Application to Cryptographic Problems

We now apply our previous result on Gaussian sampling for SIS lattices to solving
various variants of SIS in subexponential time. We also discuss why our result
does not directly lead to a provable subexponential-time algorithm for LWE with
narrow error distribution.

4.1 Implications for SIS∞

The following theorem instantiated with any m = n+ω(n/ log log n) such that11

m ≤ poly(n), q = poly(n), β = q/polylog(n), and with a sufficiently small
ε = 1/poly(n) provides a subexponential-time algorithm for SIS∞n,m,q,β .

Theorem 4.1. For n ∈ N, let m = n+ω(n/ log log n) be integer and q = poly(n)
be prime such that q1−n/m ≥ 6. Let f > 1 and ε ≤ 1

mq4 be positive reals such

that q
f ≥

√
ln(1/ε). For sufficiently large n, there exists an algorithm that solves

SIS∞n,m,q,β for β := q
f

√
lnm in expected time

T = 2

n/2

ln(ln(q))−ln(ln(f)+ 1
2 ln ln(1/ε))−O(1) · poly(m)

with success probability 1− 1
Ω(n) .

Proof. Apply Theorem 3.3 with input n,m, q, f, ε to the SIS∞n,m,q,β instance A.

With probability > 1− 2−Ω̃(n), it returns a list of vectors x1, . . . ,xN in Λ⊥
q (A)

(so they are solutions to Ax = 0 mod q) that are conditionally q4ε-similar to
independent samples from DΛ⊥

q (A),s for s := q
f . In particular, it follows that the

first vector x1 follows a distribution D that is q4ε-similar to DΛ⊥
q (A),s (recall

Remark 2.2). By Footnote 10 we have q
f > ηε/4(Λ

⊥
q (A)). We note that without

loss of generality, we may assume that q
f > 2ηε/4(Λ

⊥
q (A)) by replacing the role

of the constant 144 in the proof of Theorem 3.3 by a larger constant.

Since D is q4ε-similar to DΛ⊥
q (A),s, Lemma 2.2 (together with the fact that

e−x ≥ 1− x for all x ∈ R) implies that

Pr[∥x1∥∞ ≤ β ∧ x1 ̸= 0] ≥ e−q4ε Pr
X∼D

Λ⊥
q (A),s

[∥X∥∞ ≤ β ∧X ̸= 0]

≥ Pr
X∼D

Λ⊥
q (A),s

[∥X∥∞ ≤ β ∧X ̸= 0]− q4ε

≥ Pr
X∼D

Λ⊥
q (A),s

[∥X∥∞ ≤ β ∧X ̸= 0]− 1

m
.

11 Note that one may always decrease m by ignoring SIS variables, hence the condition
m ≤ poly(n) comes with no loss of generality.
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We will now show that PrX∼D
Λ⊥
q (A),s

[∥X∥∞ ≤ β ∧ X ̸= 0] ≥ 1 − 2
m2 − 1

2m−1 ,

from which it follows that x1 is a solution to SIS∞ with probability at least
1− 2

m2 − 1
2m−1 − 1

m ≥ 1− 3
m ≥ 1− 3

n when n ≥ 2 (where we use that m ≥ n),
thereby proving the theorem.

It remains to prove our claim. We have that

Pr
X∼D

Λ⊥
q (A),s

[∥X∥∞ ≤ β ∧X ̸= 0] ≥ Pr
X∼D

Λ⊥
q (A),s

[∥X∥∞ ≤ β]− Pr
X∼D

Λ⊥
q (A),s

[X = 0].

As s = q
f > 2ηε/4(Λ

⊥
q (A)), we have by Lemma 2.5 that PrX∼D

Λ⊥
q (A),s

[X = 0] ≤
1+ε/4
1−ε/4 · 2−m ≤ 1

2m−1 (since 1+x/4
1−x/4 ≤ 2 for all x ∈ [0, 1]). Also, Lemma 2.3 yields

that PrX∼D
Λ⊥
q (A),s

[∥X∥∞ ≤ β] > 1− 2me−π( βf
q )2 ≥ 1− 2

m2 (where we use that

β = q
f

√
lnm). So our claim follows. ⊓⊔

One may remark that our application of Lemma 2.3 makes us lose a
√
lnm

factor on the norm bound to reach a constant success probability per sample.
It would be tempting to only aim for a success probability barely greater than
1/N instead, however, the proof would then require ε ≈ 1/N , which would make
the algorithm exponential. This is admittedly a counterintuitive situation, and
plausibly a proof artifact.

4.2 Implications for SIS× and ISIS in ℓ2 norm

Regarding the ℓ2-norm, for the same parameters as above, our Gaussian sampler
outputs vectors of length less than β =

√
m · q/f for any f = polylog(n) in

subexponential time. However, this SIS in ℓ2-norm is trivial for such a bound;
for example, (q, 0, . . . , 0) is a valid solution.

Yet, some schemes [ETWY22] have used the inhomogeneous version of SIS
(ISIS) for bounds β > q, which was shown [DEP23] to be equivalent to solv-
ing SIS×, a variant of SIS where the solution must be nonzero modulo q. The
work of [DEP23] notes that the problem becomes trivial at β ≥ q

√
n/12 and

proposes a heuristic attack that is better than pure lattice reduction when β > q;
however, it appears to run in exponential time in n for β =

√
n · q/polylog(n).

Our Gaussian sampler directly yields a provably subexponential-time algorithm
in that regime.

Theorem 4.2. For n ∈ N, let m = n+ω(n/ log log n) be integer and q = poly(n)
be prime such that q1−n/m ≥ 6. Let f > 1 and ε ≤ 1

mq4 be positive reals such

that q
f ≥

√
ln(1/ε). For sufficiently large n, there exists an algorithm that solves

SIS×n,m,q,β and ISISn,m,q,β for β := q
f

√
m in expected time

T = 2

n/2

ln(ln(q))−ln(ln(f)+ 1
2 ln ln(1/ε))−O(1) · poly(m)

with success probability 1− 1
Ω(n) .
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The proof is essentially equivalent to that of Theorem 4.1, up to the invocation
of Lemma 2.3 used to tail-bound the norm of a discrete Gaussian, which should
be replaced by a similar tail-bound for the ℓ2-norm [Ban93, Lemma 1.5].

Note again here that one may always choose m = n(1 + o(1)) without loss of
generality even when the given m is much larger, simply by ignoring some SIS
variables. Hence, reaching the norm bound β = q

√
m/polylog(n) also permits

to reach β = q
√
n/polylog(n).

4.3 Potential Implications for LWE

Having obtained a discrete Gaussian sampler for SIS lattices, one may be tempted
to apply the dual distinguisher of [AR05] and directly obtain a subexponential-
time algorithm for LWE with narrow secrets. This is in fact problematic because
such a distinguisher needs to consider subexponentially many samples simultane-
ously, so some naive reasoning using the data-processing inequality would force

one to instantiate our Gaussian sampler with ε = 2−Ω̃(n) rather than ε = n−Θ(1).
Unfortunately, for such a small ε our Gaussian sampler has exponential complex-
ity.

This issue resonates with the one raised by [HKM18] regarding the proof of [KF15]
when m is linear in n, namely that it is about reaching exponentially small sta-
tistical distance. However, it is technically different: in our case, it cannot be
fixed by increasing m to Θ(n log n). Tracking down the limiting factor leads to
blaming the poor smoothing parameters of q

pi
Zbi . Thanks to the generality of

our framework, it is plausible that this superlattice of qZbi can be replaced by
one of similar index with a much better smoothing parameter. We hope that
future work will finally be able to provably fix the claim of [KF15] when m is
linear in n.
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A Concrete and Heuristic Application, Including to
Dilithium

Our asymptotic result for SIS∞ immediately raises the question of its impact
on the concrete security of Dilithium. However, the algorithm described above
introduces inefficiencies for the sake of provability. There are various details that
one would approach differently when aiming to break the problem in practice. It
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might be that the analysis given below is too aggressive and that the resulting
algorithm will fail; in particular, the resulting claim should only be read as a
rough underestimation of the cost of the approach. There are certainly further
tricks and fine-tuning to be considered, for example from [BGJ+20].

Relaxing Independence. IfN is the number of buckets for the colliding phase,
our provable algorithm used 3rN many initial samples, losing a factor of 3 on
the list size at each iteration, but never re-using a sample twice. If we allow
ourselves to re-use a sample in several combinations, then 3N samples will be
enough to maintain the list size throughout the algorithm. In this case, there
will be an average of 3 samples per bucket (x,y, z), from which we can build
3 different pairs to be subtracted: x − y,x − z, z − y. Note that if the buckets
have unequal sizes, the total number of available pairs only increases due to the

convexity of the function x 7→
(
x
2

)
= x(x−1)

2 . In the context of BKW, such a
heuristic improvement can be traced back to at least Levieil and Fouque [LF06].

Initializing Sparse Ternary Vectors. Having chosen some N , one may set
the initial list L0 of vectors from Zm−n to be as small as possible without du-
plicates. We therefore choose ternary vectors of ℓ∞-norm w, where w is the
smallest integer such that 2w

(
m−n
w

)
≥ N . This gives an initial variance of

σ2
0 = w/(m− n).12

Rounding and Quantization. The introduction of Gaussians is also moti-
vated by provability, and one would rather use regular rounding in practice.
Following the analysis of [KF15,GJMS17], the rounding introduced an error of
deviation σi = q/(pi

√
12). Both works also mention that lattice quantization

could replace this rounding, which would improve the deviation to q/(pi
√
2πe).

This allows to choose smaller pi while maintaining σi = 2i/2 · σ0, and therefore
increases bi.

Fractional Parameters. The parameters pi and bi would need to be integers,
which might force the attacker not to match exactly the optimal parametrization.
However, the exercise of globally rounding those parameters optimally appears
painful. We ignore these constraints for the attacker, leading to further under-
estimation of the attack cost.

Central Gaussian Heuristic. At step r, we have obtained 3N many samples
of standard deviation σr and we wish to know whether one of them is likely to
have an ℓ∞-norm bound less than β. We proceed using the error function as if
the distribution at hand was Gaussian; there are many coordinates where this

12 To relate the σi with the standard deviations of the discrete Gaussian distributions
in the rest of the paper, note that a discrete Gaussian distribution with parameter
si has standard deviation si/

√
2π.
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is reasonable, as they result from summing 2j+1 coordinates for j ≤ r. This is
questionable for the very last coordinates when using rounding; it seems less of
an issue when using quantization which should result in a distribution close to
uniform over a ball.

Having computed the success probability p for one sample, we consider the attack
successful if Np > 1/2.

Early Abort. It could be that after r′ < r steps, the remaining dimensions to
lift over are nonzero yet small enough that one of the N samples could have small
enough coordinates, while running one further step would double the variance
of the rest of the vector. Such a trick has already been considered for lattice
reduction attacks [DKL+18,DEP23] on some instances of ISIS and SIS×, where,
for different reasons, one would also naturally have many candidate solutions at
hand. Hence, we consider such an option when exploring the parameter space.

The number of left-over dimensions will be denoted by ℓ = n−
∑r′

i=1 bi.

A.1 Concrete Analysis Against Dilithium

We first recall in Table 1 the SIS∞ parameters underlying the security of the
NIST standard Dilithium [DKL+18].

NIST level n m q β q/β

2 256 · 4 256 · 9 8380417 350209 23.9
3 256 · 6 256 · 12 8380417 724481 11.6
5 256 · 8 256 · 16 8380417 769537 10.9

Table 1: SIS∞ parameters underlying the Dilithium scheme.

Using the script from https://github.com/lducas/Provable-Wagner-SIS, we
evaluate the smallest N such that the attack is successful according to the above
analysis. Our script offers both the straightforward rounding and quantization
version. The quantization version gave slightly better results, which are given in
Table 2.

NIST level log2 N w σ0 r′ σr′ ℓ

2 269.9 37 0.1700 40 178277.2 28.9
3 343.0 47 0.1749 42 366845.5 50.5
5 450.2 61 0.1726 42 361934.4 104.0

Table 2: Best attack parameters against Dilithium according
to the heuristic analysis above, and using the quantization trick.
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We do not directly provide the cost of the attack in terms of binary gates, but
that cost is clearly larger than N . Hence, we conclude that Wagner’s algorithm
alone does not threaten the concrete security of Dilithium; for example at
NIST security level 2 [NIS16] (classically, approximately 2128 hash evaluations),
it already requires operating and storing more than 2256 vectors.

A.2 When Would Wagner Shine?

Given the negative concrete application toDilithium, one may wonder for which
parameters this algorithm has a practical chance to actually beat lattice reduc-
tion to solve SIS∞n,m,q,β , say fixing β = q/4.

Given its complexity 2O(n/ log log q), one might be tempted to choose a large q,
but that is in fact favoring lattice reduction attacks which have a complexity of
2O(n log(n)/ log(q)) when q = nΘ(1) and m is large enough. So one would rather
choose a small q and potentially very large n to make Wagner win. But there
is yet another handle, namely the number of variables m. Indeed, we proved
that Wagner could work for m as small as n(1 + o(1)), a regime that is very
unfavorable to lattice attacks as it makes the volume of the lattice huge.

For example, consider SIS∞ with n = 500,m = 600, q = 1000, β = q/4. The
security estimation script13 using the core-SVP methodology gives a cost for
lattice reduction attacks of roughly 2107. Our script for (heuristic and optimistic)
Wagner gives N = 254. We emphasize, however, that both numbers are merely
illustrative, and may not be accurate estimates. If relevant, one could consider
adapting the software of [WBLW25] to estimate the cost of Wagner for SIS.

13 https://github.com/pq-crystals/security-estimates/blob/master/MSIS_

security.py
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