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ABSTRACT

Federated Learning (FL) has become a crucial framework for collab-

oratively training Machine Learning (ML) models while ensuring

data privacy. Traditional synchronous FL approaches, however, suf-

fer from delays caused by slower clients (called stragglers), which
hinder the overall training process. Specifically, in a synchronous

setting, model aggregation happens once all the intended clients

have submitted their local updates to the server. To address these

inefficiencies, Buffered Asynchronous FL (BAsyncFL) was intro-

duced, allowing clients to update the global model as soon as they

complete local training. In such a setting, the new global model

is obtained once the buffer is full, thus removing synchronization

bottlenecks. Despite these advantages, existing Secure Aggregation

(SA) techniques—designed to protect client updates from inference

attacks—rely on synchronized rounds, making them unsuitable for

asynchronous settings.

In this paper, we present Buffalo, the first practical SA pro-

tocol tailored for BAsyncFL. Buffalo leverages lattice-based en-

cryption to handle scalability challenges in large ML models and

introduces a new role, the assistant, to support the server in se-

curely aggregating client updates. To protect against an actively

corrupted server, we enable clients to verify that their local up-

dates have been correctly integrated into the global model. Our

comprehensive evaluation—incorporating theoretical analysis and

real-world experiments on benchmark datasets—demonstrates that

Buffalo is an efficient and scalable privacy-preserving solution in

BAsyncFL environments.

CCS CONCEPTS

• Security and privacy→ Privacy-preserving protocols; Secu-
rity protocols.

∗
Work done while Riccardo Taiello was working at Inria / EURECOM / Université

Côte d’Azur.

Please use nonacm option or ACM Engage class to enable CC licenses

This work is licensed under a Creative Commons Attribution 4.0 International License.

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1476-4/2025/06

https://doi.org/10.1145/3714393.3726498

KEYWORDS

Secure Aggregation, Asynchronous Federated Learning

ACM Reference Format:

Riccardo Taiello, Clémentine Gritti, Melek Önen, and Marco Lorenzi. 2025.

Buffalo: A Practical Secure Aggregation Protocol for Buffered Asynchro-

nous Federated Learning. In Proceedings of the Fifteenth ACM Conference
on Data and Application Security and Privacy (CODASPY ’25), June 4–6,
2025, Pittsburgh, PA, USA. ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/3714393.3726498

1 INTRODUCTION

Federated Learning (FL) [33] has rapidly emerged as a dominant par-

adigm for collaboratively training Machine Learning (ML) models

while maintaining the privacy of individual data. In the traditional

Synchronous FL (SyncFL) framework, a central server initializes

the global model and sends its parameters to a pre-selected subset

of clients. These selected clients optimize the model parameters

using their local data and transmit their updates to the server for

aggregation, which typically consists of weighted averaging. The

same process is repeated through several, well defined, rounds until

the model reaches a certain level of accuracy. Sharing local model

parameters introduces vulnerabilities that can inadvertently expose

sensitive client data to risks such as membership inference or model

inversion attacks [34, 42]. To mitigate these risks, Secure Aggre-

gation (SA) techniques have been proposed [5, 6, 30–32], which

protect client updates prior to transmission.

Despite its advantages, FL faces challenges due to the hardware

heterogeneity of the involved clients, differing significantly in stor-

age, communication, and computation capabilities. Notably, the

presence of stragglers, i.e. slower participating clients, can severely

delay the training rounds, especially in traditional FL frameworks

which assume that FL clients are strongly synchronized with the

server. Such delays can adversely affect the overall performance of

the FL system [10, 36].

One strategy to manage stragglers in a SyncFL environment is

the over-selection of clients [10]. This approach involves selecting

a larger subset of clients than necessary in anticipation that some

will not complete their tasks promptly. However, this method can

lead to inefficiencies, as slow clients that have locally trained the

model might not be included in the updated global model, leading to

wasted computational resources and potential loss of diverse data

contributions. Additionally, it significantly affects SA processes

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3714393.3726498
https://doi.org/10.1145/3714393.3726498
https://doi.org/10.1145/3714393.3726498


CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA Riccardo Taiello, Melek Önen, Clémentine Gritti, and Marco Lorenzi

since non-selected clients are treated as dropped, increasing proto-

col complexities.

Asynchronous FL (AsyncFL) frameworks, as described in [48],

address the aforementioned inefficiencies by processing client up-

dates as they arrive, thus eliminating the need for synchronized

rounds. However, in pure AsyncFL methods, each submitted local

contribution results in an immediate server model update. This

approach poses challenges for privacy, as traditional SA techniques

become inadequate. Specifically, SA relies on aggregating multiple

updates to protect individual contributions, which is not possible in

a pure AsyncFL setting where updates are processed individually.

To address these issues, a compatible privacy-preservingAsyncFL

framework has been proposed, namely BufferedAsyncFL (BAsyncFL)

[36], where a server collects local inputs in a buffer and updates the

global model periodically, i.e., every time the buffer is full. Nonethe-

less, most of the SA solutions are synchronous, necessitating clients’

prior knowledge of their participation and complicating their direct

application to BasyncFL.

Another challenge encountered in FL settings is the absence of

robust aggregation guarantees. This issue is intrinsic to both SyncFL

and AsyncFL environments. In particular, a malicious server could

deliberately aggregate distinct sets of local inputs and send their

corresponding outputs to different clients. As a result, these clients

end up training on inconsistent global models, which undermines

the overall accuracy expectations [38].

Our contributions in this paper include the following:

•We introduce Buffalo, the first practical SA protocol designed

specifically for BAsyncFL. Buffalo employs lattice-based encryp-

tion on models, coupled with homomorphic encryption on lattice-

based keys, to address scalability issues related to the dimensions

of ML models. We also define a new role, the assistant, to assist the

server during the aggregation phase. Informally, clients generate

fresh, ephemeral keys for each local update, and assistants help the

server reconstruct these keys. This ensures efficient SA without

requiring synchronized rounds.

•We also ensure aggregation integrity to address potential server

threats. For instance, a malicious server might distribute different

global models—derived from aggregating distinct sets of local in-

puts—to various clients. This type of threat, referred to as model

inconsistency attacks in [38], poses a significant risk. To mitigate

these attacks, Buffalo implements a verifiable SA protocol, allow-

ing clients to confirm the integrity of the local update aggregation

performed by the server. This ensures that the same global model

is consistently sent back to all clients who contributed to filling the

buffer.

•We evaluate Buffalo through real-world simulations, compar-

ing its performance against existing solutions adapted for BAsyncFL,

using benchmark datasets as well as a novel medical dataset [4].

Our protocol undergoes both theoretical analysis and experimental

testing across three real datasets. The results highlight Buffalo’s

practicality and effectiveness, particularly in medical applications.

2 RELATEDWORK

SA for SyncFL. SA has been widely deployed in FL systems to guar-

antee the privacy of local models. SecAgg [9] is the first single-

server SA protocol, using Shamir’s secret sharing and masking tech-

niques. Subsequent enhancements include SecAgg+ [6] and ACORN

[5], utilizing sparse graphs and lattice-based masking mechanisms.

DPSecAgg [44] employs packed secret sharing mechanisms over

lattice-based masks. Similarly, LightSecAgg [43] utilizes packed

Shamir secret sharing techniques over local inputs. The above so-

lutions manage client dropouts and failures at the cost of system

efficiency (e.g., client over-selection).

Recent works have aimed to reduce the number of communi-

cation rounds required in the protocol and the trust put on the

server. Flamingo [30] and LERNA [28] introduce a new role among

the clients, called committee members—referred to as assistants

in Buffalo—to mitigate client communication complexity. How-

ever, this design introduces additional overhead. In Flamingo [30],

committee members incur 560ms of CPU time and over 1MB of

bandwidth, as the protocol relies on decryptors to reconstruct pair-

wise masks due to high computational demands. In LERNA [28],

security requirements necessitate a committee size of up to 2
14
.

In contrast, Buffalo addresses a different challenge by focusing

on the Buffered Asynchronous setting and introducing assistants

specifically designed for this purpose. Solutions with two or more

non-colluding servers allow distributed trust and privacy preser-

vation [2, 14, 39]. ELSA [39] leverages two servers to aggregate

local inputs, and detect and filter out boosted gradients to with-

stand model poisoning attacks. Nevertheless, more-than-one-server

designs are not realistic in practice.

SA for BAsyncFL. The aforementioned solutions [5, 6, 9, 28, 30] only

operate within a SyncFL framework. In this setting, each selected

client submits its updated model in alignment with a well deter-

mined FL round. This synchronization typically relies on informa-

tion shared among the selected clients and/or utilizes round-specific

information.

LightSecAgg [43], originally designed for synchronous settings,

can be adapted to asynchronous environments. However, the en-

tire client population must participate, leading to high computa-

tional complexity and communication overhead. DPSecAgg [44]

also shows its adaptability to BAsyncFL settings. We choose its

asynchronous variant as a comparison baseline in Section 3. To the

best of our knowledge, only few FL protocols have been designed

for BAsyncFL environments specifically [21, 36].

Recent concurrent works [7, 26] are compatible with BAsyncFL

by allowing a single round communication at the client. More

specifically, OPA [26] defines the concept of one-shot clients (i.e.,

clients only participate in the whole FL protocol by submitting

their contributions) and uses assistants to help the server during

the aggregation key reconstruction. However, OPA does not address

the challenge of ensuring aggregation integrity in the presence of

a malicious server. Moreover, Willow [7], in addition to enable one-

shot clients like in OPA, aims to prevent a malicious server from

aggregating a client’s contribution several times by introducing an

additional party, referred to as the verifier. The latter must certify

that the server has added to the buffer each local input at most

once. However, such integrity guarantee is weaker than ours since
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it does not prevent the server from providing distinct aggregated

outputs to different clients.

Verifiable SA. SA protocols prevent a curious FL server from learn-

ing about the clients’ inputs but do not protect against a malicious

server that might modify the aggregated model. We thus aim for

enabling the clients to verify the correctness of the aggregate com-

puted by the server. The initial solution [49] allows aggregation

correctness verification through a proof generated by the server.

However, the communication overhead is proportional to the model

size, making the solution impractical in large-scale FL systems. An

alternative [20] involves hashing clients’ local models for verifi-

cation. It was later found to be insecure and was fixed in [19].

Subsequently, LightVeriFL [11] utilizes elliptic curve-based secret

sharing techniques to enable aggregation integrity, effectively re-

ducing both computation and communication costs, particularly

in scenarios involving client dropouts. We adapt their approach to

ours.

3 BACKGROUND

In this section, we review both SyncFL and BAsyncFL frameworks,

along with SA techniques. Notations can be found in Table 1.

Symbol Description

𝑛𝑡𝑜𝑡 total number of clients

𝑛 buffer size

𝑘 number of assistants

𝑡 number of online honest assistants

𝑑 size of input

U set of clients s.t. |U| = 𝑛𝑡𝑜𝑡
Ubuff set of clients in the buffer s.t. |Ubuff | = 𝑛
K set of assistants s.t. |K | = 𝑘
𝑥𝑢 scalar input of client 𝑢

®𝑥𝑢 vector input of client 𝑢

⟨𝑥𝑢⟩ protected scalar input of client 𝑢

⟨®𝑥𝑢⟩ protected vector input of client 𝑢

𝑥 scalar aggregate

®𝑥 vector aggregate

𝑚 size of LWE secret key

𝜏𝑢 current FL round of client 𝑢

[𝑠] share of a secret 𝑠

𝑝, 𝑞 prime numbers

𝑁 JL modulus

𝜆 security parameter

𝜌 input sparsity parameter

𝑅←− chosen uniformly at random

Table 1: Notations

Synchronous FL. FL consists of a distributed ML framework where

a setU of clients (|U| = 𝑛𝑡𝑜𝑡 ) collaboratively trains a global model

®𝑥 ∈ R𝑑 under the guidance of a FL server. One of the first and

popular methods used to train an FL model is FedAvg [33]. With

FedAvg, at each FL round 𝜏 , the server selects a subset U (𝜏 ) ⊆
U of clients (|U (𝜏 ) | = 𝑛 ≤ 𝑛𝑡𝑜𝑡 ) through client selection. Each
client 𝑢 ∈ U (𝜏 ) trains the model ®𝑥𝑢,𝜏 on its private local data D𝑢 ,
for example through Stochastic Gradient Descent (SGD) [40], and

forwards this updated model ®𝑥𝑢,𝜏 to the server. When the server

receives the updated models from all clients inU (𝜏 ) , it proceeds
to the aggregation step by computing the average of these models

and updating the round counter as follows:

®𝑥𝜏 ←
1

𝑛

∑︁
𝑢∈U (𝜏 )

®𝑥𝑢,𝜏 and 𝜏 ← 𝜏 + 1

This iteration proceeds until the global model ®𝑥 exhibits some

desired level of accuracy. This approach requires a SyncFL setting

whereby FL clients should be synchronized and participate on a

round-by-round basis. Usually, in such a setting, 𝑛𝑡𝑜𝑡 ∈ [106, 1010]
and 𝑛 ∈ [50, 5000] [25].

Buffered Asynchronous FL. SyncFL settings are usually slowed down
by stragglers, i.e. slow clients [36]. Specifically, a FL round is com-

pleted only when all selected clients have sent their updated model.

Hence, the impact of stragglers might become significant, especially

when the set of clients in the system is heterogeneous. To mitigate

such a problem, some systems [10] employ client over-selection,
where the size of the subset of selected clients is usually increased

by 30% in order to reach the actual sufficient number of model up-

dates to run FedAvg. This means that, to execute FedAvg with 1000

client inputs, 1300 clients are selected, and the FL round concludes

whenever the server receives 1000 updates from the fastest clients.

As an alternative, BAsyncFL is proposed to remove the need for

synchronization and hence, to avoid the effect of late arrivals. Fed-

Buff [36] has been introduced as a BAsyncFL framework whereby

the FL server collects in a buffer local models received from clients,

and updates the global model whenever this buffer is full. As re-

ported in Figure 2, each client 𝑢 ∈ U′ generates its local update
®𝑥𝑢,𝜏𝑢 during its local round 𝜏𝑢 . The training round is specific to

each client: given another client 𝑣 ≠ 𝑢, 𝜏𝑣 ≠ 𝜏𝑢 . When the first

𝑛 clients fill the bufferUbuff, the server computes the aggregate

and resets the buffer. This process is repeated until a convergence

criterion is reached. In this setting, stragglers’ inputs are still taken

into account as they will eventually fill a buffer.

Figure 1 illustrates SyncFL and BAsyncFL environments. In a

SyncFL setting (part a), the server randomly selects two clients,

here clients 1 and 3 (step 1). Then, the selected clients locally train

and produce updated local models ®𝑥1,𝜏 and ®𝑥3,𝜏 , respectively (step
2). Finally, the server aggregates these local models (step 3). On the

other side, in a BAsyncFL setting (part b), all available clients start
local training asynchronously (step 1). Here, clients 1 and 3 are the

fastest to finish their training. They send their updated local models

®𝑥1,𝜏1 and ®𝑥3,𝜏3 , respectively, to fill the buffer on the server. Once the

buffer is full, the server aggregates the received local models (step
3).

Secure Aggregation. Several studies [34, 42] have shown that, al-

though FL clients train the model locally and keep their datasetsD𝑢
private in their premises, model updates that are shared with the

FL server do leak information about the local datasets. Hence, local

model updates should also remain confidential even against the FL

server. As already shown in [6, 9, 28, 30, 31], the main solution to

prevent such a leakage is the use of SA which enables the FL server,

named the aggregator, to compute the average of model updates, i.e.
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Figure 1: Illustrations of SyncFL (a) and BAsyncFL (b).

Setup: Server initializes the global model ®𝑥0, the empty buffer set

Ubuff = ∅ and a set of available clientsU′ = U
ServerAggregation(®𝑥𝜏 ,Ubuff,U′)
Server repeats steps 1-4 until convergence criteria is reached

(1) Run ClientUpdate(®𝑥𝜏 ) onU′ asynchronously
(2) If Client 𝑢’s input has been submitted:

Receive input ®𝑥𝑢,𝜏𝑢 from Client 𝑢

Ubuff ←Ubuff ∪ {𝑢}
𝑖 ← 𝑖 + 1

(3) If 𝑖 == 𝑛:

®𝑥𝜏 ←
∑
𝑢∈Ubuff

®𝑥𝑢,𝜏𝑢
Reset buffer:Ubuff ← ∅, 𝑖 ← 0, 𝜏 ← 𝜏 + 1

(4) Set available clientsU′ = Ubuff

ClientUpdate(®𝑥)
Client 𝑢 ∈ U′ proceeds as follows

(1) Receive global model ®𝑥 from Server

(2) ®𝑦𝑢,0 ← ®𝑥
(3) Perform local SGD updates: ®𝑦𝑢,𝑞 = LocalSGD( ®𝑦𝑢,0, 𝑞, 𝜂)
(4) Compute update difference: ®𝑥𝑢,𝜏𝑢 ← ®𝑦𝑢,0 − ®𝑦𝑢,𝑞
(5) Return ®𝑥𝑢,𝜏𝑢 to Server

Figure 2: FedBuff Algorithm

the global model parameters, without having access to the clients’

individual updates.

Towards SA for BAsyncFL. An initial study [43] highlights the incom-

patibility of current SA protocols with the BAsyncFL setting. This

incompatibility stems from the fact that clients know in advance

which other clients are participating to the FL round in SyncFL

settings, and protect their input accordingly. In general, the 𝑛𝑡𝑜𝑡
clients inU must learn who are the 𝑛 clients selected for a given

round 𝜏 . Moreover, in order to overcome stragglers, over-selection
is performed, meaning that 𝑛 + 0.3 · 𝑛 clients have been actually

selected (when fixing over-selection at 30% as suggested above).

Once this knowledge has been acquired, each selected client sub-

mits their updated input using some information specifically shared

with other selected clients. Such a constraint comes against the idea

behind buffered asynchronicity where clients train and submit their

inputs at their own pace, without following what other clients are

doing. Therefore, to successfully develop SA protocols for BAsync

FL settings, we must overcome the above constraint by avoiding

clients requiring to know which other clients participate to the

current round.

Following the last remark, we identify two potential SA protocols

that can be easily transformed to be compatible with BASyncFL:

LightSecAgg [43] and DPSecAgg [44]. Indeed, in both original

schemes, clients do not need to know who is participating to the ac-

tual round 𝜏 . Nevertheless, those solutions have been first designed

for SyncFL, and thus assume that all 𝑛𝑡𝑜𝑡 clients are online during

the aggregation phase. Informally, clients secretly share their inputs

with all clients to enable successful aggregation. This is due to the

fact that clients lack the information related to client participation

for a specific round. We recall that 𝑛𝑡𝑜𝑡 >> 𝑛, hence this design is

really inefficient. One way to overcome such a limitation is to let the

server provide this missing information to the clients, resulting into

an extra communication round. Another way to make LightSecAgg

and DPSecAgg compatible in BAsyncFL settings is to introduce

several special clients that must remain online, called assistants,
whose task is to help the server reconstruct the aggregation key

and hence the aggregate. This is the direction we choose to follow

when designing Buffalo.

Aggregation Integrity. LightVeriFL [11] combines homomorphic

hash functions, digital signatures and commitments to enable clients

to verify whether the server has correctly computed the aggregate,

thereby preventing a malicious server to distribute to clients differ-

ent aggregates obtained from distinct sets of local updates [38]. We

choose to use a similar combination of cryptographic tools to guar-

antee aggregation integrity in Buffalo. Nevertheless, LightVeriFL

forces to hash the entire client local model at every training round,

while it has been observed that most of the client model parameters

from one round to another one remain unchanged. When develop-

ing our solution, we ensure that clients do not need to recompute

the hash value of their entire local input, but to only hash the small

parts that differ between two consecutive inputs. Consequently, the

computation cost at the client is decreased significantly.

Threat Model. Similar to [30], we assume a malicious adversary

that corrupts the server and up to a fraction 𝛾 of the total number

𝑛𝑡𝑜𝑡 of clients in the system. As mentioned above, we introduce

special clients, called the assistants, in addition to regular clients.
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Those assistants help the server recover the final aggregate. Con-

sequently, we must consider the involvement of both clients and

assistants when elaborating the security proof. We distinguish be-

tween the fraction 𝛾𝑛 of corrupted regular clients and the fraction

𝛾𝑘 of corrupted assistants. In particular, we examine the following

types of client and assistant failures: (i) honest parties that discon-
nect or are too slow to respond as a result of unstable network

conditions, power loss, etc; (ii) arbitrary actions by an adversary

that controls the server and some clients and assistants. Given a

threshold 𝑡 and the number 𝑘 of assistants in the system, we require

the number of honest and alive assistants to be 𝑡 > 2𝑘
3
[9].

As highlighted in [38], the threat model should also account for

model inconsistency attacks orchestrated by a malicious server. In

such attacks, the server may bypass SA steps by distributing distinct

global models to different clients. While this attack has primarily

been demonstrated in SyncFL contexts, it can be countered by

embedding the training round number within the encryption of

local models, leveraging client synchronization. To address this,

we extend the threat model to incorporate aggregation integrity

for BAsyncFL environments. Specifically, this involves enabling

clients to verify that the received global model corresponds to

the aggregate of client inputs from the full buffer. However, it is

important to note that this guarantee does not mitigate poisoning

attacks originating frommalicious clients. Detecting and addressing

such poisoned local inputs requires additional robust mechanisms,

as outlined in [5]. We consider denial of services attacks and client

model poisoning attacks out of scope.

4 BUILDING BLOCKS

In this section, we introduce the main cryptographic primitives

utilized as foundational elements in our two protocols. We recall

that notations can be found in Table 1.

Secure Aggregation

We are interested in SA schemes that are homomorphic with rela-

tion to the secret key 𝑠𝑘𝑢 and input 𝑥𝑢 :∑︁
𝑢∈U

Protect(𝑥𝑢 , 𝑠𝑘𝑢 ) = Protect(−
∑︁
𝑢∈U

𝑠𝑘𝑢 ,
∑︁
𝑢∈U

𝑥𝑢 )

Here, we describe the Joye-Libert (JL) scheme and a lattice-based

scheme relying on the Ring Learning With Errors (RLWE) problem.

For sake of simplicity, we denote the latter as the LWE scheme.

Joye-Libert SA. Let us consider 𝑛 clients and one aggregator. The

JL scheme is defined with three algorithms [24]:

• (𝑠𝑘0, {𝑠𝑘𝑢 }𝑢∈[1,𝑛] , 𝑝𝑝) ← JL.Setup(𝜆): Given the security pa-

rameter 𝜆, this algorithm generates two large, equal-size prime

numbers 𝑝 and 𝑞 and sets the modulus 𝑁 = 𝑝𝑞. It randomly gener-

ates 𝑛 client secret keys 𝑠𝑘𝑢 ∈ Z𝑁 2 and computes the aggregator

secret key 𝑠𝑘0 = −
∑𝑛
𝑢=1 𝑠𝑘𝑢 . Then, it defines a cryptographic hash

function 𝐹 : Z → Z∗
𝑁 2

. It outputs the 𝑛 + 1 secret keys and the

public parameters 𝑝𝑝 = (𝑁, 𝐹 ).
• 𝑦𝑢,𝜏 ← JL.Protect(𝑝𝑝, 𝑠𝑘𝑢 , 𝜏, 𝑥𝑢,𝜏 ): This algorithm encrypts

private input 𝑥𝑢,𝜏 ∈ Z𝑁 for the time period 𝜏 using the secret key

𝑠𝑘𝑢 ∈ Z𝑁 2 , resulting in the ciphertext 𝑦𝑢,𝜏 = (1 + 𝑥𝑢,𝜏𝑁 ) · 𝐹 (𝜏)𝑠𝑘𝑢
mod 𝑁 2

.

• 𝑥𝜏 ← JL.Agg(𝑝𝑝, 𝑠𝑘0, 𝜏, {𝑦𝑢,𝜏 }𝑢∈[1,𝑛] ): This algorithm aggre-

gates the 𝑛 protected inputs from clients received at the time period

𝜏 to obtain 𝑦𝜏 =
∏𝑛
𝑢=1 𝑦𝑢,𝜏 . It then decrypts 𝑦𝜏 to recover the plain

aggregate 𝑥𝜏 =
∑𝑛
𝑢=1 𝑥𝑢,𝜏 = (𝐹 (𝜏)−𝑠𝑘0 · 𝑦𝜏 − 1)/𝑁 mod 𝑁 .

The JL scheme ensures Aggregator Obliviousness under the De-
cision Composite Residuosity (DCR) assumption in the random

oracle model and assuming that each client 𝑢 encrypts only one

input 𝑥𝑢,𝜏 per time period 𝜏 [24, 37].

LWE-based SA. Several SA solutions [5] have their security relying

on the RLWE assumption. Such SA schemes are parameterized by

a ring 𝑅 of degree𝑚 over Z, an integer modulus 𝑞 > 0 defining a

quotient ring 𝑅𝑞 = 𝑅/𝑞𝑅, and two distributions 𝜒𝑠 , 𝜒𝑒 over 𝑅. Let

𝑑 be the length of the client’s vector input ®𝑥𝑢 . Let us consider 𝑛
clients and one aggregator. The LWE scheme is defined with three

algorithms [5]:

• 𝑝𝑝 ← LWE.Setup(𝜆): Given the security parameter 𝜆, this

algorithm generates the public matrix 𝐴 ∈ Z𝑚×𝑑𝑝 which is defined

as the public parameters 𝑝𝑝 = 𝐴.

• ⟨®𝑥𝑢⟩ ← LWE.Protect(𝑝𝑝, ®𝑠𝑢 , ®𝑥𝑢 ): To encrypt a vector ®𝑥𝑢 ∈
Z𝑑 , the algorithm first samples two vectors, namely the client’s

secret key ®𝑠𝑢 ← 𝜒𝑠 ⊆ Z𝑚𝑞 and the error vector ®𝑒 ← 𝜒𝑒 ⊆ Z𝑚𝑞 . The

ciphertext ⟨®𝑥𝑢⟩ ∈ Z𝑚𝐷 is computed as follows: ⟨®𝑥𝑢⟩ = 𝐴®𝑠𝑢 +𝐷 · ®𝑒+ ®𝑥𝑢
mod 𝑞, where 𝐷 is the chipertext modulus.

• ®𝑥 ← LWE.Agg(𝑝𝑝, ®𝑠0, {⟨®𝑥𝑢⟩}𝑢∈[1,𝑛] ): Let ®𝑠0 =
∑
𝑢∈[1,𝑛] ®𝑠𝑢 be

the aggregation key. This algorithm computes the aggregate ®𝑥 from

the 𝑛 chipertexts using ®𝑠0 as follows: ®𝑥 = (∑𝑢∈[1,𝑛] ⟨®𝑥𝑢⟩ − 𝐴®𝑠0)
mod 𝐷 .

The RLWE scheme guarantees Aggregator Obliviousness under
the Hint-RLWE problem, assuming that each client 𝑢 encrypts only

one input ®𝑥𝑢 per round using the same secret key ®𝑠𝑢 [5, 27].

Other Cryptographic Primitives. In our protocol, we also employ

the following cryptographic primitives for secure communication

among clients and server.

Through a secure Key Agreement protocol, denoted as KA, any

client will use their secret key and the public key of another client

to produce a shared secret key. In practice, it can be instantiated

with a Diffie–Hellman KA protocol followed by a key derivation

function [9].

Authenticated Encryption, denoted as AE, combines confiden-

tiality and integrity guarantees for messages exchanged between

two parties. It consists of a key generation algorithm that outputs

a secret key, an encryption algorithm AE.Enc that takes as input

the secret key and a message, and outputs a ciphertext, and a de-

cryption algorithm AE.Dec that takes as input the ciphertext and

the secret key, and outputs the original plaintext.

We also consider a digital signature scheme that is existentially

unforgeable under chosen message attacks. A signing algorithm

Sig.Sign takes as input a secret key and a message, and outputs

a signature, and a verification algorithm Sig.Ver takes as input a

public key, a signature and a message, and outputs ’1’ if and only if

the signature is valid for the given message. In practice, it can be

instantiated with the Elliptic-Curve Digital Signature Algorithm

(ECDSA) followed by a key derivation function [23].
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Aggregation Integrity

To ensure the aggregation operation’s integrity, hash functions, sig-

natures, commitments and secret sharing techniques are employed

in LightVeriFL [11]. We choose to use the Threshold ElGamal (TEG)

encryption scheme instead of the Shamir Secret Sharing (SS) scheme

(see Appendix A) to reach constant computational costs. In this sub-

section, we describe the hash process presented in [11], and show

how we can benefit from its homomorphic properties to improve

the aggregation check step.

Threshold ElGamal Encryption. The following TEG scheme is ad-

ditively homomorphic with respect to messages (represented as

EC points) [29]. The TEG scheme uses the Shamir SS scheme [41],

where the algorithm SS.Share shares a secret 𝑠 into 𝑛 shares while

the algorithm SS.Recon allows recovering this secret 𝑠 by collect-

ing 𝑡 out of the 𝑛 shares (see Appendix A). The TEG scheme is

defined by four algorithms:

• (𝑝𝑘, {[𝑠𝑘]𝑢 }𝑢∈U ) ← TEG.Setup(𝑡,U, 𝜆): Let 𝑡 be the thresh-
old for successful secret reconstruction andU be the set of partici-

pants. The algorithm selects 𝑠𝑘 ∈ Z𝑝 where 𝑝 is a prime number,

and computes 𝑝𝑘 = 𝑔𝑠𝑘 where 𝑔 is a generator of the cyclic group

built from some elliptic curve. It then shares 𝑠𝑘 into [𝑠𝑘]𝑢 for𝑢 ∈ U
using the algorithm SS.Share.

• ⟨𝑚⟩ ← TEG.Encrypt(𝑝𝑘,𝑚): To encrypt the message𝑚, the

algorithm computes the ciphertext ⟨𝑚⟩ = (𝑐0, 𝑐1) = (𝑔𝑟 ,𝑚 · 𝑝𝑘𝑟 )
where 𝑟 ∈ Z𝑝 is the encryption randomness.

• [𝑚]𝑢 ← TEG.PartialDecrypt( [𝑠𝑘]𝑢 , ⟨𝑚⟩): The partial de-

cryption [𝑚]𝑢 of the message𝑚 is computed as follows: [𝑚]𝑢 =

(𝑐 [𝑠𝑘 ]𝑢
0

, 𝑐1) where ⟨𝑚⟩ = (𝑐0, 𝑐1).
• 𝑚 ← TEG.Decrypt({(𝑢, [𝑚]𝑢 )}𝑢∈U′ ): The algorithm com-

putes the Lagrange interpolation on the exponent as follows: 𝑐𝑠𝑘
0

=∏
𝑢∈U′ (𝑐

[𝑠𝑘 ]𝑢
0

)𝜆𝑢 where the coefficients 𝜆𝑢 are defined in the algo-

rithm SS.Recon, andU′ ⊆ U such that |U′ | ≥ 𝑡 . The algorithm
finally computes the original message𝑚 as follows:𝑚 = (𝑐𝑠𝑘

0
)−1 ·𝑐1.

The security of the TEG scheme relies on𝑚 being computation-

ally hidden w.r.t. the Discrete Logarithm (DL) problem [29].

Homomorphic Hashing. Let us consider the cyclic group G of prime

order 𝑝 with generator 𝑔. Given 𝑑 distinct elements 𝑔1, . . . , 𝑔𝑑 ∈ G,
the hash of a vector ®𝑥𝑢 ∈ Z𝑑𝑝 is defined as follows [8]:

ℎ𝑢 = 𝐻 ( ®𝑥𝑢 ) =
𝑑∏
𝑖=1

𝑔
®𝑥𝑢 [𝑖 ]
𝑖

(1)

where ®𝑥𝑢 [𝑖] represents the 𝑖th element of the vector ®𝑥𝑢 . This hash
function 𝐻 is additively homomorphic, meaning that for any two

vectors ®𝑥𝑢 , ®𝑥𝑣 , we have 𝐻 ( ®𝑥𝑢 + ®𝑥𝑣) = 𝐻 ( ®𝑥𝑢 ) · 𝐻 ( ®𝑥𝑣). Additionally,
the hash function 𝐻 is incrementally computable. Specifically, let

two vectors ®𝑥𝑢 and ®𝑥𝑣 differ in only one element: ®𝑥𝑢 [ 𝑗] ≠ ®𝑥𝑣 [ 𝑗]
and ∀𝑖 ≠ 𝑗, ®𝑥𝑢 [𝑖] = ®𝑥𝑣 [𝑖]. Thanks to the homomorphic property of

𝐻 , given ℎ𝑢 = 𝐻 ( ®𝑥𝑢 ), one can easily compute ℎ𝑣 using ℎ𝑢 . Indeed,

ℎ𝑣 = 𝐻 ( ®𝑥𝑣) = ℎ𝑢 · 𝑔−®𝑥𝑢 [ 𝑗 ]+®𝑥𝑣 [ 𝑗 ]𝑗
. Hence, instead of computing ℎ𝑣

from scratch using Eq. 1 (as it is done in LightVeriFL [11]), one

can save exponentiation calculations by using the aforementioned

technique. We thus define the function 𝐻inc as follows:

𝐻inc ( ®𝑥𝑣, ®𝑥𝑢 , ℎ𝑢 ) =
{
ℎ𝑢 · 𝑔−®𝑥𝑢 [ 𝑗 ]+®𝑥𝑣 [ 𝑗 ]𝑗

if ®𝑥𝑢 [ 𝑗] ≠ ®𝑥𝑣 [ 𝑗]
do nothing otherwise

(2)

To improve even further the efficiency of the hashing process, 𝐻

and 𝐻inc can be implemented using Elliptic Curve (EC) points [11].

In our solution, we promote the use of 𝐻inc as much as possi-

ble. Drawing from extensive research in distributed optimization

[17, 45, 46], which shows that not all local ML parameters (here,

gradients) change in each client round, we exploit parameter spar-

sification and quantization to avoid the full computation of Eq. 1.

Utilizing this assumption of sparsity, each client computes the input

hash for a given round 𝜏𝑢 and stores the local model ®𝑥𝑢,𝜏𝑢 . In the

next client round 𝜏𝑢 + 1, the client assesses the changes between
®𝑥𝑢,𝜏𝑢 and ®𝑥𝑢,𝜏𝑢+1, and employs the incremental hashing property

to compute partial hashes only for the changed parameters using

Eq. 2. Let 𝑑 be the size of the model and 𝜌 denote the fraction of

parameters that changed between two client rounds 𝜏𝑢 and 𝜏𝑢 + 1.
The aforementioned method requires only 𝑂 (𝑑) comparisons and

𝑂 (⌊𝜌 · 𝑑⌋) EC exponentiations, thus proving to be more efficient

than directly hashing the input ®𝑥𝑢,𝜏𝑢+1, despite incurring the cost
of storing the previous local model input ®𝑥𝑢,𝜏𝑢 in practice.

Commitments. A commitment scheme that is perfectly hiding and

computationally binding under the DL assumption is needed for

aggregation verification. A committing algorithm COM.Commit

takes as input a message and a witness, and outputs a commitment,

and an opening algorithm COM.Open takes as input a commit-

ment, a message and a witness, and outputs ’1’ if and only if the

commitment is valid for the given message. To prove the security

of Buffalo against malicious adversaries, a specific commitment

scheme with additional properties of equivocability and extractabil-
ity is necessary [47]. Equivocation means that there exist a trapdoor

value and an algorithmCOM.Equiv allowing the simulator to open

a commitment to an arbitrary value. Extractability means that the

simulator can leverage a trapdoor value to extract the message from

a commitment by invoking the algorithm COM.Ext. In practice, it

can be instantiated with commitments schemes from [1].

5 OUR FL PROTOCOL

We present Buffalo, a SA protocol in the context of a BAsyncFL

setting. The design principles of Buffalo are the following:

(1) As opposed to the synchronized setting, clients who con-

tribute to a given buffer are not known in advance. Hence, the

aggregation key cannot be pre-computed or pre-defined. There-

fore, Buffalo uses an ephemeral aggregation key to aggregate local

inputs once the buffer is full, based on the buffer setUbuff. This

aggregation key is computed through the help of assistants. They

are special clients who receive other clients’ contributions to the

aggregation key, and collaboratively construct the final version of

that key. It is worth noting that, as opposed to the state-of-the-art

solutions that make use of assistants to reduce/optimize some com-

putational costs [28, 30], the purpose here is to deal with potential

clients turning offline after uploading their contributions to the

buffer.

(2) In addition to being the first SA solution for the buffered

asynchronous setting, Buffalo exhibits good performance results



Buffalo: A Practical Secure Aggregation Protocol for Buffered Asynchronous Federated Learning CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA

at the client thanks to the use of a lattice-based batched encryp-

tion scheme to encrypt model parameters, as proposed in [5]. The

number of RLWE coefficients usually is in [211, 212], and each of

them needs to be protected and further aggregated. In order to

avoid clients sharing as many partial keys as the number of ring

coefficients, Buffalo introduces an additional layer of protection.

Informally, each client’s input is first encrypted using a LWE key

and the LWE key is further encrypted using a JL key. This key is

then secretly shared with all the assistants, only. Thanks to this

approach, Buffalo achieves better client computation by sharing a

single scalar value instead of a vector value. Such a performance

improvement is very important in the context of an asynchronous

setting wherein saving resources becomes fundamental and taking

into account inputs from slow clients pivotal.

(3) Buffalo ensures that every client 𝑢 ∈ Ubuff can verify the

aggregation of the global model obtained by the server, and in

particular, that their input ®𝑥𝑢,𝜏𝑢 has been included in the process.

Each client generates a homomorphic hash over the local update

®𝑥𝑢,𝜏𝑢 and commits to it. Then, both the hash value and the com-

mitment witness are masked with some randomness. Instead of

secretly sharing those random masks as in [11], we choose to use

the TEG scheme to encrypt them since this scheme provides con-

stant encryption time. The resulting TEG ciphertexts are sent to

the assistants who are in charge of applying threshold decryption

to obtain the masks. This design choice allows constant communi-

cation and computation costs compared to using the classical SS

scheme as in [11]. Specifically, Buffalo reduces the regular client

computation by a factor of 𝑘2 and communication by a factor of 𝑘 .

(4) We leverage the incremental nature of the homomorphic hash

function 𝐻inc to reduce computational overhead. As demonstrated

in [11], computing a homomorphic hash function over a locally

updated model of dimension 𝑑 remains a significant bottleneck.

While most steps in the protocol can be parallelized during the

training of local models [31, 43], the critical hashing step must

await the end of the training of the local model ®𝑥𝑢,𝜏𝑢 to be executed

[11]. Hence, employing the incremental hashing aspect is beneficial

in the context of BASyncFL.

Description. Themain protocol steps, reported in Figure 3, is defined

over three phases: the Setup phase during which clients first register

to the server and generate their keying material, the Online phase

during which aggregation occurs asynchronously (i.e. whenever the

buffer is full), and the Verification phase during which the aggregate

correctness is checked. For the sake of space, operations denoted as

executed on an input pair are actually operations executed twice,

once for each input taken individually (e.g. line 6 inOnline - Round

3: TEG.PartialDecrypt on the pair of encrypted hash and witness

masks).

In the Setup phase, similar to other solutions [9, 30], each client

creates a pair of secret and public keys and a pair of signing and

verification keys, and sends the public and verification keys to the

Public Key Infrastructure (PKI) to register them. Furthermore, each

pair of client and assistant 𝑢 and 𝑖 establish a pairwise key 𝑐𝑢,𝑖 . A

Trusted Dealer (TD)
∗
generates the public parameters, in particular

∗
Alternative methods exist in decentralized settings to avoid the participation of

a TD [13].

the JL modulus 𝑁 and the public LWE matrix 𝐴, and registers them

to the PKI.

The Online phase is split into three rounds:

(Round 1) Each client 𝑢 in the set U generates a secret LWE

key ®𝑠𝑢,𝜏𝑢 and a secret JL key 𝑠𝑘𝑢,𝜏𝑢 at their local round 𝜏𝑢 . The JL

key 𝑠𝑘𝑢,𝜏𝑢 protects the LWE key ®𝑠𝑢,𝜏𝑢 using a fixed ’round’ 𝜏 = 𝜏0.

Each private input vector ®𝑥𝑢,𝜏𝑢 is protected with the LWE key

®𝑠𝑢,𝜏𝑢 . The server collects the 𝑛 first submitted protected inputs and

encrypted secret LWE keys. The clients owning those elements

are finally included in a buffer setUbuff ⊆ U. Each client 𝑢 then

secretly shares their key 𝑠𝑘𝑢,𝜏𝑢 such that 𝑡 out of these 𝑛 shares can

reconstruct it using the SS scheme. They send the shares of 𝑠𝑘𝑢,𝜏𝑢 ,

encrypted using the AE scheme, to the server. The latter broadcasts

those elements to all assistants in the set K .
To prepare the Verification phase, the clients generate random

EC points 𝑟𝑢,𝜏𝑢 and (𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 ). They compute the local model

hash ℎ𝑢,𝜏𝑢 (using Eq. 2 except at their first own round 𝜏𝑢 = 1),

and commit to the latter using the witness 𝑟𝑢,𝜏𝑢 . They also mask

ℎ𝑢,𝜏𝑢 and 𝑟𝑢,𝜏𝑢 using the values 𝑧𝑢,𝜏𝑢 and 𝑧′𝑢,𝜏𝑢 , respectively. The
clients then protect the hash and witness masks (𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 ) using
the TEG scheme, and sign the resulting encryptions along with

the commitment 𝑐𝑢,𝜏𝑢 . They send both masked elements, protected

masks, signatures and commitments to the server.

(Round 2) The assistants follow the same consistency check

process as in [9, 30] over the setUbuff. The latter is signed by each

assistant and the resulting signature is forwarded to the server,

which passes it on to all assistants in K . This step ensures consis-

tency over the setUbuff across the entire system.

(Round 3) Each assistant in K2 ⊆ K receives the encrypted

shares of the secret JL keys of clients inUbuff. It computes the ag-

gregated value [𝑠𝑘0]𝑖 , that is its share of the server’s JL aggregation
key 𝑠𝑘0. The assistant then forwards it to the server. The latter must

receive at least 𝑡 of these aggregated shares in order to successfully

reconstruct 𝑠𝑘0. Once this key is retrieved, the server can have ac-

cess to the LWE aggregation key ®𝑠0 through the aggregation of the

clients’ encrypted LWE keys. The server finally recovers the aggre-

gated model ®𝑥 using the key ®𝑠0. To prepare the Verification phase,

at least 𝑡 remaining online assistants in K3 ⊆ K help the server

construct the aggregated masking pair (𝑧0, 𝑧′
0
), which enables the

construction of the aggregated hash ℎ0 and witness 𝑟0.

In the Verification phase, all the clients in Ubuff can verify if

the server has correctly aggregated their inputs. More precisely,

each client receives and aggregates the commitments of all other

clients inUbuff, verifying the aggregated commitment 𝑐0 using the

aggregated witness 𝑟0 and the aggregated hash value ℎ0. Finally,

the client computes the hash ℎ𝑎𝑔𝑔 of the received global model

and checks its consistency with ℎ0. Notably, this verification step

does not require synchronization, as the aggregated information is

collected beforehand. Consequently, clients can perform the verifi-

cation step to ensure aggregation integrity prior to initiating a new

round of local training.

Security Analysis. We briefly analyse the security of Buffalo. The

full, hybrid-based, proof is given in Appendix B. Let the set of

corrupted clients be denoted as C ⊂ U, where |C| = 𝛾 , the set of
corrupted regular clients as C𝑛 , where |C𝑛 | = 𝛾𝑛 , and the set of

corrupted assistants as C𝑘 ⊂ K , where |C𝑘 | = 𝛾𝑘 .
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Parties: Server and clients inU, such that |U| = 𝑛𝑡𝑜𝑡 , where assistants belong to K ⊆ U such that |K | = 𝑘 .
Public Parameters: input domain Z𝑑

𝐿
; buffer setUbuff whose size is |Ubuff | = 𝑛; security parameter 𝜆 for cryptographic primitives; secret

sharing threshold 𝑡 .

Prerequisites: For K and 𝑟 ∈ {2, 3}, we denote K𝑟 the set of assistants that execute Round 𝑟 , and we denote K′𝑟 the set of assistants that
completed without dropping out. It holds that K′𝑟 ⊆ K𝑟 ⊆ K𝑟−1 for all 𝑟 ∈ {2, 3}.
Setup

Client 𝑢 ∈ U:

Key registration

(1) (𝑐𝑃𝐾𝑢 , 𝑐𝑆𝐾𝑢 ) ← KA.Gen(𝑝𝑝KA)
(2) {𝑑𝑆𝐾𝑢 , 𝑑𝑃𝐾𝑢 }𝑢∈U ← Sig.Setup(𝜆)
(3) Register 𝑐𝑃𝐾𝑢 and 𝑑𝑃𝐾𝑢 to PKI

Assistant channel key setup

(4) ∀𝑖 ∈ K , 𝑐𝑢,𝑖 ← KA.Agree(𝑐𝑆𝐾𝑢 , 𝑐𝑃𝐾
𝑖
)

Trusted Dealer (TD):

(5) (⊥,⊥, 𝑝𝑝JL) ← JL.Setup(𝜆)
(6) 𝑝𝑝LWE ← LWE.Setup(𝜆)
(7) (𝑝𝑘, {[𝑠𝑘]𝑖 }𝑖∈K ) ← TEG.Setup(𝑡,K, 𝜆)
(8) Register 𝑝𝑝JL, 𝑝𝑝LWE

and 𝑝𝑘 to PKI

(9) Send [𝑠𝑘]𝑖 to Assistant 𝑖 ∈ K
Assistant 𝑖 ∈ K :
(10) Receive [𝑠𝑘]𝑖 from TD

Online - Round 1

Client 𝑢 ∈ U:

Input protection and authentication

(1) ®𝑠𝑢,𝜏𝑢
𝑅←− 𝜒𝑠 // Generate LWE secret key for round 𝜏𝑢

(2) ⟨®𝑥𝑢,𝜏𝑢 ⟩ ← LWE.Protect(𝑝𝑝LWE, ®𝑠𝑢,𝜏𝑢 , ®𝑥𝑢,𝜏𝑢 ) // Protect input using LWE
(3) ℎ𝑢,𝜏𝑢 = 𝐻inc ( ®𝑥𝑢,𝜏𝑢 , ®𝑥𝑢,𝜏𝑢−1, ℎ𝑢,𝜏𝑢−1) // Compute input hash

(4) (𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 , 𝑟𝑢,𝜏𝑢 )
𝑅←− 𝐸 (F𝑝 ) // Generate hash mask, witness mask and witness

(5)
˜ℎ𝑢,𝜏𝑢 = ℎ𝑢,𝜏𝑢 + 𝑧𝑢,𝜏𝑢 // Mask local input hash

(6) 𝑐𝑢,𝜏𝑢 ← COM.Commit(ℎ𝑢,𝜏𝑢 , 𝑟𝑢,𝜏𝑢 ) // Commit to input hash
(7) 𝜎𝑢,𝜏𝑢 ← Sig.Sign(𝑑𝑆𝐾𝑢 , 𝑐𝑢,𝜏𝑢 ) // Sign commitment

Key protection and authentication

(8) 𝑠𝑘𝑢,𝜏𝑢
𝑅←− Z𝑁 2 // Generate JL secret key for round 𝜏𝑢

(9) ⟨®𝑠𝑢,𝜏𝑢 ⟩ ← JL.Protect(𝑝𝑝JL, 𝑠𝑘𝑢,𝜏𝑢 , 𝜏0, ®𝑠𝑢,𝜏𝑢 ) // Protect LWE key using JL
(10) {(𝑖, [𝑠𝑘𝑢,𝜏𝑢 ]𝑖 )}𝑖∈K ← SS.Share(𝑠𝑘𝑢,𝜏𝑢 , 𝑡,K) // Secret share JL secret key
(11) ∀𝑖 ∈ K , 𝜖𝑢,𝑖 ← AE.Enc(𝑐𝑢,𝑖 , 𝑢 | | 𝑖 | | [𝑠𝑘𝑢,𝜏𝑢 ]𝑖 ) // Encrypt JL key shares
(12) 𝑟𝑢,𝜏𝑢 = 𝑟𝑢,𝜏𝑢 + 𝑧′𝑢,𝜏𝑢 // Mask witness
(13) ⟨(𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 )⟩ ← TEG.Protect(𝑝𝑘, (𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 ))

// Protect hash and witness masks using TEG
(14) 𝜎′𝑢,𝜏𝑢 ← Sig.Sign(𝑑𝑆𝐾𝑢 , ⟨(𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 )⟩) // Sign encrypted masks
(15) Send ⟨®𝑥𝑢,𝜏𝑢 ⟩, ⟨®𝑠𝑢,𝜏𝑢 ⟩, {𝜖𝑢,𝑖 }𝑖∈K , 𝑐𝑢,𝜏𝑢 , 𝜎𝑢,𝜏𝑢 , 𝜎′𝑢,𝜏𝑢 , ˜ℎ𝑢,𝜏𝑢 , ⟨(𝑧𝑢,𝜏𝑢 , 𝑧

′
𝑢,𝜏𝑢
)⟩, 𝑟𝑢,𝜏𝑢

to Server

Server:

(16) Collect {⟨®𝑥𝑢,𝜏𝑢 ⟩, ⟨®𝑠𝑢,𝜏𝑢 ⟩, {𝜖𝑢,𝑖 }𝑖∈K , 𝑐𝑢,𝜏𝑢 , 𝜎𝑢,𝜏𝑢 ,𝜎′𝑢,𝜏𝑢 , ˜ℎ𝑢,𝜏𝑢 , ⟨(𝑧𝑢,𝜏𝑢 , 𝑧
′
𝑢,𝜏𝑢
)⟩, 𝑟𝑢,𝜏𝑢 }𝑢∈Ubuff

(17) If |Ubuff | < 𝑡 , abort; otherwise, broadcast {𝜖𝑢,𝑖 }𝑢∈Ubuff
Ubuff,

{𝜎′𝑢,𝜏𝑢 , ⟨(𝑧𝑢,𝜏𝑢 , 𝑧
′
𝑢,𝜏𝑢
)⟩}𝑢∈Ubuff

to Assistant 𝑖 ∈ K

Online - Round 2

Assistant 𝑖 ∈ K2:

Consistency check

(1) Receive {𝜖𝑢,𝑖 , ⟨(𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 )⟩, 𝜎
′
𝑢,𝜏𝑢
}𝑢∈Ubuff

andUbuff

(2) Assert that |Ubuff | = 𝑛; if not, abort
(3) 𝜎′′

𝑖
← Sig.Sign(𝑑𝑆𝐾

𝑖
,Ubuff)

(4) ∀𝑢 ∈ Ubuff, 1← Sig.Ver(𝑑𝑃𝐾𝑢 , ⟨(𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 )⟩, 𝜎
′
𝑢,𝜏𝑢
); if not, abort

(5) Send 𝜎′′
𝑖
to Server

Server:

(6) Assert that |K′
2
| ≥ 𝑡 ; if not, abort

(7) Collect {𝜎′′
𝑖
}𝑖∈K′

2

and broadcast to Assistants in K′
2

Online - Round 3

Assistant 𝑖 ∈ K3:

Aggregation key share construction

(1) Receive {𝜎′′
𝑗
} 𝑗∈K′

2

(2) ∀𝑗 ∈ K′
2
, 1← Sig.Ver(𝑑𝑃𝐾

𝑗
,Ubuff, 𝜎

′′
𝑗
); if not, abort

(3) ∀𝑢 ∈ Ubuff, [𝑠𝑘𝑢,𝜏𝑢 ]𝑖 ← AE.Dec(𝑐𝑖,𝑢 , 𝑢 | | 𝑖 | | 𝜖𝑢,𝑖 ) // Decrypt JL secret key
(4) [𝑠𝑘0]𝑖 =

∑
𝑢∈Ubuff

[𝑠𝑘𝑢,𝜏𝑢 ]𝑖 // Compute share of JL aggregation key
(5) ⟨(𝑧0, 𝑧′

0
)⟩ =

∏
𝑢∈Ubuff

⟨(𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 )⟩ // Compute aggregated encrypted hash and
witness masks

(6) [(𝑧0, 𝑧′
0
)]𝑖 = TEG.PartialDecrypt( [𝑠𝑘]𝑖 , ⟨(𝑧0, 𝑧′

0
)⟩) // Compute partial TEG decryp-

tion
(7) Send [𝑠𝑘0]𝑖 and [(𝑧0, 𝑧′

0
)]𝑖 to Server

Server:

Aggregation

(8) Assert that |K′
3
| ≥ 𝑡 ; if not, abort

(9) Collect {[𝑠𝑘0]𝑖 , [𝑧0]𝑖 }𝑖∈K′
3

(10) 𝑠𝑘0 ← SS.Recon({[𝑠𝑘0]𝑖 }𝑖∈K′
3

, 𝑡) // Reconstruct JL aggregation key
(11) ®𝑠0 ← JL.Agg(𝑝𝑝JL, 𝑠𝑘0, 𝜏0, {⟨®𝑠𝑢,𝜏𝑢 ⟩}𝑢∈Ubuff

) // Compute LWE aggregation key
(12) ®𝑥 ← LWE.Agg(𝑝𝑝LWE, ®𝑠0, {⟨®𝑥𝑢,𝜏𝑢 ⟩}𝑢∈Ubuff

) // Compute aggregated input
(13) (𝑧0, 𝑧′

0
) ← TEG.Decrypt({[(𝑧0, 𝑧′

0
)]𝑖 }𝑖∈K′

3

) // Compute full TEG decryption

(14) ℎ0 =
∏
𝑢∈Ubuff

˜ℎ𝑢,𝜏𝑢 − 𝑧0 // Unmask aggregated input hash
(15) 𝑟0 =

∏
𝑢∈Ubuff

𝑟𝑢,𝜏𝑢 − 𝑧′0 // Unmask aggregated witness
(16) Broadcast ®𝑥 , {𝑐𝑢,𝜏𝑢 , 𝜎𝑢,𝜏𝑢 }𝑢∈Ubuff

, ℎ0, 𝑟0 to Client 𝑢 ∈ Ubuff

Verification

Client 𝑢 ∈ Ubuff:

(1) Receive {𝑐𝑣,𝜏𝑣 }𝑣∈Ubuff
, ®𝑥 , ℎ0 and 𝑟0

(2) ∀𝑣 ∈ Ubuff, 1← Sig.Ver(𝑑𝑃𝐾𝑣 , 𝑐𝑣,𝜏𝑣 , 𝜎𝑣,𝜏𝑣 ); if not, abort
(3) 𝑐0 =

∏
𝑣∈Ubuff

𝑐𝑣,𝜏𝑣 // Compute aggregated commitment
(4) Check COM.Commit(ℎ0, 𝑟0) = 𝑐0; if not, abort
(5) ℎ𝑎𝑔𝑔 = 𝐻 ( ®𝑥) // Compute global model hash
(6) Check if ℎ𝑎𝑔𝑔 = ℎ0; if not, abort

Figure 3: Buffalo protocol steps.

Note that we make the distinction between the fraction of cor-

rupted regular clients (𝛾𝑛) and the fraction of corrupted decryptors

(𝛾𝑘 ), similar to [30]. Those metrics already reflect the total number

of corrupted parties (𝛾 ). More specifically, the majority of corrupted

parties are regular clients (hence 𝛾𝑛 is close to 𝛾 ) and not assistants

(𝛾𝑘 is upper bound with 2
𝜃 (𝜆)

where 𝜆 is the security parameter).

While it is true that assistants help achieve SA in the BAsync set-

ting, these parties can be selected from the set of regular clients,

are considered as being dynamic, and can drop.

The security of the LWE and JL schemes guarantees that parties

in C cannot distinguish the protected input ®𝑥𝑢,𝜏𝑢 (protected with

a LWE key) and the LWE key ®𝑠𝑢,𝜏𝑢 (protected with a JL key) of an

honest client 𝑢 from random values. The security of the SS scheme

guarantees that assistants in C𝑘 cannot distinguish the protected JL

key 𝑠𝑘𝑢,𝜏𝑢 of an honest client𝑢 from a random value. More precisely,

the security of the SS scheme ensures that if at most 𝑡−1 assistants in
C𝑘 have access to shares of [𝑠𝑘0]𝑢 (i.e. each assistant has at most one

share and |C𝑘 | < 𝑡 ), then they cannot reconstruct the key. The TEG

scheme ensures that the server, along with assistants in the set C𝑘 ,
cannot distinguish the protected masking pair ⟨(𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 )⟩ from
random values. Thus, the security of the TEG scheme guarantees

that, given the protected pair ⟨(𝑧0, 𝑧′
0
)⟩, up to 𝑡 − 1 assistants in C𝑘

cannot collaboratively decrypt it.

Moreover, when the server is a malicious adversary, it can try

to convince some honest assistants that the set of clients in the
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buffer isUbuff while indicating to other honest assistants that the

set of clients in the buffer isU∗
buff

= Ubuff \ {𝑢} for a client 𝑢. If
this occurs, the server can reconstruct 𝑠𝑘0 for Ubuff and 𝑠𝑘

∗
0
for

U∗
buff

. Then, it can compute 𝑠𝑘𝑢,𝜏𝑢 = 𝑠𝑘0 − 𝑠𝑘∗
0
. This is prevented

during Round 2, through a consistency check step over the set

Ubuff [9, 30]. Since we assume that there are 𝑘 − 𝑡 corrupted assis-

tants, the server can obtain 𝑘 − 𝑡 shares of 𝑠𝑘0 and 𝑠𝑘∗
0
, respectively.

Furthermore, the server has the ability to convince
𝑡
2
honest as-

sistants that the client 𝑢 is in the buffer and the other
𝑡
2
honest

assistants that 𝑢 is not, thereby collecting shares of 𝑠𝑘0 and 𝑠𝑘
′
0
ac-

cordingly. Therefore, to ensure Aggregator Obliviousness regarding
the JL scheme, we require that 𝑘 − 𝑡 + 𝑡

2
< 𝑡 =⇒ 𝑡 > 2𝑘

3
.

During the Verification phase, clients in the buffer set Ubuff

receive two to-be-verified elements from the server. The first ele-

ment is the aggregated hash ℎ0 of the other clients in the buffer,

verified using the individual (signed) commitments 𝑐0. If the server

sends an incorrect aggregated hash ℎ0 at this step, clients inUbuff

can detect the error during the aggregated commitment check step

thanks to the computationally binding property of the underly-

ing commitment scheme. The second element is the aggregated

model ®𝑥 . The clients will not accept an incorrect global model if

the hash ℎ𝑎𝑔𝑔 of this value does not match the constructed hash ℎ0
sent by the server. This is ensured by the collision resistance of the

homomorphic hash function 𝐻 we use.

Further Extensions

Decentralized setup. To enhance readability, we initially present the
protocol with the participation of a TD for the key generation of the

JL and TEG schemes. It is worth to note that their Setup phase can be

run among the assistants in a decentralized manner, i.e. without the

intervention of a TD. Informally, the public LWE parameters can be

generated following [16], the common modulus 𝑁 of the JL scheme

can be generated using the decentralized solution proposed in [13],

and the TEG setup phase can follow the decentralized process

presented in [30]. However, at the current stage, we are unaware

of a threshold LWE encryption scheme that does not require a TD

for its Setup phase.

Dynamic assistants. To balance the computation costs over assis-

tants, it could be beneficial to offer dynamicity over the set K , i.e.
the set of assistants changes after some amount of aggregation

operations. This could be achieved by assuming that regular clients

pull down from the server information related to the set K of the

selected assistants before sending the protected inputs. However,

we want to minimize the communication overhead, hence we must

avoid that clients require to knowwho are those assistants. Unfortu-

nately, the current version of Buffalo implies exchanging pairwise

keys between each pair of client and assistant. Consequently, each

time the set K changes, new pairwise keys need to be generated.

Another way of enabling dynamic assistants would be to use

the additively homomorphic TEG scheme (based on ECs) which

allows all clients to encrypt their local inputs with the same public

key, independently of the set K . As a consequence, the set K of

assistants can change using transfer share techniques as in [30].

Unfortunately, replacing the SS steps by such a TEG scheme would

negatively affect the overall performance of the system. More pre-

cisely, the TEG decryption of the LWE and JL keys would consist

of computing the discrete logarithm of a point in a large field. Thus,

enabling realistic dynamic assistants in Buffalo while maintaining

acceptable overheads is not straightforward.

6 COMPLEXITY ANALYSIS

Weanalyze the complexity of Buffalo and compare it withAsyncDP-

SecAgg, i.e. the asynchronous extension of DPSecAgg [44]. We

report the comparison results in Table 2. We refrain from direct

comparison with AsyncLightSecAgg, i.e. the asynchronous exten-

sion of LightSecAgg [43], due to its higher complexity in practical

applications (see Section 2).

• Client Computation: The encryption cost of the private input

®𝑥𝑢,𝜏𝑢 in Buffalo is equivalent to the one in AsyncDPSecAgg. The

encryption cost of the LWE secret key in AsyncDPSecAgg is calcu-

lated as 𝑂 (𝑘2 𝑚
⌊𝛿𝑘𝑘−𝑡 ⌋ ), due to the packed variant of the SS scheme.

In contrast, in Buffalo, the cost of protecting this key through

the JL scheme is 𝑂 (𝑚). Furthermore, the cost for sharing the JL

key using the SS scheme is 𝑂 (𝑘2) since such process deals with a

scalar value. Indeed, our protocol does not secretly share a vector

but a scalar value, and hence improves the overall performance,

as empirically shown in Section 7. Regarding the assistants, the

cost only corresponds to the summation of𝑂 (𝑛) shares in Buffalo,

whereas it reaches 𝑂 (𝑛 𝑚
⌊𝛿𝑘𝑘−𝑡 ⌋ ) in AsyncDPSecAgg.

• Client Communication: In both Buffalo and AsyncDPSecAgg,

each client 𝑢 sends a protected input ⟨®𝑥𝑢,𝜏𝑢 ⟩ of dimension 𝑂 (𝑑).
However, there are notable differences between the two solutions

beyond this point. In AsyncDPSecAgg, clients transmit𝑂 (𝑘 𝑚
⌊𝛿𝑘𝑘−𝑡 ⌋ )

secret shares, and each assistant receives 𝑂 (𝑛 𝑚
⌊𝛿𝑘𝑘−𝑡 ⌋ ) of them. In

contrast, our protocol involves sending the LWE secret key, of size

𝑚, to the server. This is accompanied by the protected JL secret key.

Each regular client thus ends up sending 𝑘 shares of the JL secret

key, while each assistant receives 𝑛 of these shares. In practice,

our experimental results have demonstrated that the bandwidth re-

quired for communication in AsyncDPSecAgg is greater compared

to Buffalo at assistants, since the number of shares is proportional

to the size𝑚 of the LWE secret key.

• Server Computation: At Round 3, the server constructs the JL

aggregation key 𝑠𝑘0 from 𝑡 shares, requiring a computation cost

of 𝑂 (𝑘2), in contrast with 𝑂 (𝑘2 𝑚
⌊𝛿𝑘𝑘−𝑡 ⌋ ) for AsyncDPSecAgg due

to the reconstruction of ®𝑠0. Additionally, for both protocols, the

server aggregates the protected LWE secret keys and the protected

private inputs received from clients and unmasks the aggregated

results, which requires computation costs of 𝑂 (𝑛 ·𝑚) and 𝑂 (𝑛 · 𝑑),
respectively.

• Server Communication: The message exchanges in both proto-

cols only occur between the server and clients. Hence, the server

communication cost is equal to 𝑛 times each client communication

cost.

7 EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the performance of

Buffalo. In order to conduct a comparative study, in addition

to our solution, we have also implemented AsyncDPSecAgg [44]

(which is more efficient than AsyncLightSecAgg [35, 43]). Note that

AsyncDPSecAgg is not secure in our considered threat model.
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AsyncDPSecAgg Buffalo

Client Computation Client: 𝑂 (𝑘2 𝑚
⌊𝛿𝑘𝑘−𝑡 ⌋ + 𝑑) Client: 𝑶 (𝒌2 +𝒎 + 𝒅)

Assistant: 𝑂 (𝑛 𝑚
⌊𝛿𝑘𝑘−𝑡 ⌋ ) Assistant: 𝑶 (𝒏)

Client Communication Client: 𝑂 (𝑘 𝑚
⌊𝛿𝑘𝑘−𝑡 ⌋ + 𝑑) Client: 𝑶 (𝒌 +𝒎 + 𝒅)

Assistant: 𝑂 (𝑛 𝑚
⌊𝛿𝑘𝑘−𝑡 ⌋ ) Assistant: 𝑶 (𝒏)

Server Compuation 𝑂 (𝑘2 𝑚
⌊𝛿𝑘𝑘−𝑡 ⌋ + 𝑛𝑚 + 𝑛𝑑) 𝑶 (𝒌2 + 𝒏𝒎 + 𝒏𝒅)

Table 2: Complexity analysis for one BAsyncFL round (𝑛:

buffer size; 𝑘: number of assistants;𝑚: number of LWE key

coefficients, 𝑡 : threshold value; 𝑑: input dimension; 𝛿𝑘 : frac-

tion of dropped assistants).

Experimental Setting

Our implementations use Python with the Olympia framework [35]

and Pybind11 to wrap the C++ LWE SHELL library
†
. The code for

this project is available on GitHub
‡
.

Experiments are conducted on a single-threaded processor, using

a machine equipped with an Intel(R) Core(TM) i7-7800X CPU @

3.50GHz and 126 GB of RAM. For the sake of a fair comparison, Buf-

falo and AsyncDPSecAgg are implemented using the same building

blocks and libraries mentioned in [11, 35]. We only evaluate the

Online phase of the protocols. The Verification step implementation

is the same as the one evaluated in [11].

• FL Parameters: To accurately evaluate the performance of the

two schemes, we consider several scenarios that simulate realistic

environments with the following varying parameters: buffer size

𝑛 in {64, 128, 256, 512}; model dimension 𝑑 in {30𝐾 , 260𝐾 , 1.2𝑀};

assistant number 𝑘 in {60, 120, 360} with a threshold 𝑡 set as 2𝑘
3
.

The performance of the two solutions is evaluated by measuring

the execution time (i.e. computation cost) and the bandwidth (i.e.

communication cost) at both the client and server sides. The values

shown for each scenario are the result of the average of measure-

ments from five independent executions.

• SA Parameters: Following [5], the LWE error distribution 𝜒𝑒
with a discrete Gaussian distribution has a standard deviation equal

to 4.5. The degree of the ring is set to𝑚 = 2
11
and the primemodulus

𝑞 = 1( mod 𝑁 ), with 𝜆 > 128 bits of security and a buffer size

𝑛 ≤ 10
4
[3]. The size of the JL modulus 𝑁 is set to log

2
(𝑁 ) = 2048.

For both the LWE and JL schemes, we apply packing techniques

from [5, 31] to pack multiple plaintexts in one single ciphertext.

• BAsyncFL Environment: We emulate realistic BAsyncFL scenar-

ios using the FLSim framework
§
with Pytorch. The FLSim frame-

work allows us to emulate asynchronicity. We use the same stale-

ness distribution (i.e. the delay in clients’ updates that can occur

in asynchronous systems) as FedBuff [36], namely a half-normal

distribution with standard deviation equal to 1.25.

• Test Datasets:We consider three FL use cases with two datasets

from the LEAF benchmark [12], namely CELEBA and SENT140,

and one new medical dataset called REPLACE-BG [4]. Stochastic

Gradient Descent (SGD) was employed as the client training algo-

rithm with a learning rate 𝜂, batch size 𝑏 and a specific number 𝑒

of local SGD steps.

†
https://github.com/google/shell-encryption/tree/master

‡
https://github.com/rtaiello/buffalo

§
https://github.com/facebookresearch/FLSim/tree/main

• The CELEBA is a binary image classification dataset that

contains celebrity pictures. We use the Convolutional Neural

Network (CNN) proposed in [48]. We set 𝜂 = 0.01, 𝑏 = 8,

𝑒 = 10.

• The SENT140 dataset is a text classification dataset for bi-

nary sentiment analysis. We use an LSTM model with 1.2M

parameters. We set 𝜂 = 0.1, 𝑏 = 32, 𝑒 = 10.

• The REPLACE-BG dataset was obtained from a cohort of 202

adult participants. It consists of three primary features: (i) in-
terstitial glucose levels measured in milligrams per deciliter

(mg/dL) using Dexcom G4 Platinum sensors; (ii) insulin bo-

luses administered in units (U); (iii) carbohydrate (CHO)

content measured in milligrams (mg). We have implemented

the pre-processing steps for this dataset following the pro-

cedure described in [22]. Namely, the data were prepared

as inputs to a CNN-Long Short-Term Memory (CNN-LSTM)

architecture, a model commonly used for sequential data

prediction tasks. The CNN-LSTM network is trained to pre-

dict blood glucose levels for the subsequent hour based on

data from the last three hours, including glucose levels, in-

sulin boluses, and CHO content [15]. We set 𝜂 = 0.1, 𝑏 = 64,

𝑒 = 20.

Model parameter updates are converted to 8-bit fixed-point values

by multiplying by a factor of 10.

Client and Server Performance

We first evaluate the performance of Buffalo and compare it with

AsyncDPSecAgg [44]. We consider the three aforementioned use

cases and fix the buffer size to 𝑛 = 512. We first measure the com-

putation and communication costs at the client with respect to the

number 𝑘 of assistants. Figure 4 shows the experimental results. We

observe that, thanks to the use of the JL scheme for the aggregation

of the LWE key, Buffalo outperforms AsyncDPSecAgg in terms

of computation both at the client and server sides. We recall that

the LWE key is secretly shared with assistants in AsyncDPSecAgg

while this is the JL key in Buffalo. The communication cost re-

mains similar for both solutions since this cost mainly depends on

the transmission of protected inputs of dimension 𝑑 . Below, we will

report the performance comparison at the assistant.

Assistant Performance

We report the performance costs for the Online phase at assistants

in Table 3. In Buffalo, assistants firstly perform homomorphic op-

erations, and participate in reconstructing a single message. Those

steps provide minimal overhead, namely < 100 ms in CPU time

and < 0.2 MB in bandwidth. In [30], committee members take part

of the reconstruction of multiple messages, incurring significant

overhead worth 560 ms CPU time and > 1MB in bandwidth (see

Figures 5, 6 and 7 in [30]). In addition, Buffalo only requires 512

assistants at most. In [28], there is a huge number of contributing

clients (𝑛 > 20𝑘) and of committee members (𝑘 = 2
14) to reach the

desired security level, which impedes the overall performance of

the protocol.

https://github.com/google/shell-encryption/tree/master
https://github.com/rtaiello/buffalo
https://github.com/facebookresearch/FLSim/tree/main
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(a) Average Client Computation (ms)

(b) Average Client Send Communication (Bytes)

(c) Average Server Computation (ms)

Figure 4: Performance evaluation of Buffalo (green) and

AsyncDPSecAgg (crossed-orange). Buffer size is fixed to 𝑛 =

512 while varying the number 𝑘 ∈ {60, 120, 360} of assistants.

Buffer Size Computation (ms) Communication (MB)

64 0.31 0.02

128 0.63 0.03

256 1.26 0.07

512 62.54 0.13

Table 3: Assistant performance costs. The buffer size 𝑛 varies

in {64, 128, 256, 512}.

Overall Performance

For each FL task, namely REPLACE-BG, CELEBA and SENT140,

we consider Client Updates (CU), determined by the product of the

buffer size and the total number of rounds necessary to achieve the

Target Metric (TM). We set the number of assistants as 𝑘 = 60, with

a dropout rate 𝛿𝑘 = 0.01.

In Table 4, we depict the total execution time in hours (h) and

the bandwidth consumption in GigaBytes (GB) of Buffalo and

AsyncDPSecAgg, and compare them with the case where aggre-

gation is performed in cleartext (called FedBuff). We observe that

Buffalo always outperforms AsyncDPSecAgg by at least a factor of

× 1.4 in terms of computation, including the overhead induced by

Protocol Time (h) Bandwidth (GB) Avg (= ⌊𝜌 · 𝑑⌋) Storage (MB)

REPLACE-BG (𝑑 = 260𝐾 ; CU=24𝐾 ; TM: RMSE 11.5% ↓; 𝑛 = 16; 𝑛𝑡𝑜𝑡 = 180)

FedBuff 28.41 6.42 N/A N/A

AsyncDPSecAgg 100.46 16.37 N/A N/A

Buffalo 73.43 14.63 1653 0.26

CELEBA (𝑑 = 31𝐾 ; CU=48𝐾 ; TM: Accuracy 90.0% ↑; 𝑛 = 128; 𝑛𝑡𝑜𝑡 = 2336)

FedBuff 6.75 1.51 N/A N/A

AsyncDPSecAgg 142.10 13.20 N/A N/A

Buffalo 54.61 10.04 2310 0.03

SENT140 (𝑑 = 1.2𝑀 ; CU=99𝐾 ; TM: Accuracy 80.0% ↑, 𝑛 = 256; 𝑛𝑡𝑜𝑡 = 3482)

FedBuff 6.55 92.26 N/A N/A

AsyncDPSecAgg > 7𝑑. 395.93 N/A N/A

Buffalo 77.98 390.01 1786 1.20

Table 4: Costs of execution time and bandwidth consumption,

under various FL tasks. ↑means that higher is better and ↓
lower is better.

the verification step for aggregation integrity, which is not present

in AsyncDPSecAgg.

We also evaluate the per-buffer average number of updated

model parameters, which corresponds to Avg = ⌊𝜌 · 𝑑⌋, and the

input storage cost in MegaBytes (MB). Buffalo consistently shows

savings, especially when applied to the SENT140 task and its under-

lying ML model. On average, 1786 elements are considered in the

model hashing instead of 1.2𝑀 . Such a difference is primarily due

to the underlying embedding layers since the latter are designed to

process high-dimensional, typically sparse, data [17].

Figure 5 shows the computation costs of the two hash functions

𝐻 (using Eq. 1) and 𝐻inc (using Eq. 2). In Figure 5 (a), the number

of assistants is equal to 𝑘 = 60, while varying the input sparsity

parameter 𝜌 of the model in {0.01, 0.1, 0.5}. In Figure 5 (b), for each

of the three datasets, we use a specific average input sparsity Avg

= ⌊𝜌 · 𝑑⌋, as detailed in Table 4. In Figure 5 (a), we vary the input

sparsity parameter 𝜌 while keeping the input size fixed at 𝑑 = 10
5
.

We see that using 𝐻inc enhances the computational performance

compared to employing 𝐻 . In Figure 5 (b), we directly use the

average sparsity parameter specific to each task along with their

respective inputs. We notice a clear performance improvement of

at least 4× by using 𝐻inc compared to hashing with 𝐻 .

(a) (b)

Figure 5: Computation costs of the hash functions 𝐻inc w.r.t.

Eq. 2 (green) and 𝐻 w.r.t. Eq. 1 (crossed-orange). The input

dimension is fixed to 𝑑 = 10
5
and the buffer size to 𝑛 = 2

6
.
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8 CONCLUSION

We introduced Buffalo, a SA protocol for BAsyncFL. To achieve

asynchronicity, Buffalo uses lattice-based techniques for input

protection and the participation of assistants to help the server

construct on-the-fly secret aggregation keys. Buffalo also offers

verification mechanisms to ensure aggregation integrity. Our eval-

uation, through theoretical analysis and implementation based on

real-world datasets, shows the efficiency and practicality of our

solution. Future work will extend our threat model to include mali-

cious clients attempting to poison the global model, by considering

robust client input validation.

ACKNOWLEDGMENTS

We thank the CODASPY reviewers for their comments. We also

thank Dario Pasquini for his assistance with model inconsistency

and Hari Sreedhar for his help in the development of the REPLACE-

BG federated dataset. This work has been supported by the French

government, through the 3IA Côte d’Azur Investments in the Future

project managed by the National Research Agency (ANR) with the

reference number ANR-23-IACL-0001, by the TRAIN project ANR-

22-FAI1-0003-02, the project number ANR-23-CPJ1-0060-01, the

ANR JCJC project Fed-BioMed 19-CE45-0006-01, and the ANR CPJ

project ANR-23-CPJ1-0060-01.

REFERENCES

[1] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, Janno Siim, and Michal

Zajkac. 2019. DL-Extractable UC-Commitment Schemes. InApplied Cryptography
and Network Security. 385–405.

[2] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Polychro-

niadou. 2022. Prio+: Privacy preserving aggregate statistics via boolean shares.

In International Conference on Security and Cryptography for Networks. Springer,
516–539.

[3] Martin R Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness

of learning with errors. Journal of Mathematical Cryptology 9, 3 (2015), 169–203.

[4] Grazia Aleppo, Katrina J Ruedy, Tonya D Riddlesworth, Davida F Kruger, Anne L

Peters, Irl Hirsch, Richard M Bergenstal, Elena Toschi, Andrew J Ahmann, Viral N

Shah, et al. 2017. REPLACE-BG: a randomized trial comparing continuous glucose

monitoring with and without routine blood glucose monitoring in adults with

well-controlled type 1 diabetes. Diabetes care 40, 4 (2017), 538–545.
[5] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn, Mariana

Raykova, and Cathie Yun. 2023. ACORN: input validation for secure aggregation.

In 32nd USENIX Security Symposium (USENIX Security 23). 4805–4822.
[6] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and

Mariana Raykova. 2020. Secure single-server aggregation with (poly) logarithmic

overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. 1253–1269.

[7] James Bell-Clark, Adrià Gascón, Baiyu Li, Mariana Raykova, and Phillipp Schopp-

mann. 2024. Willow: Secure Aggregation with One-Shot Clients. Cryptology
ePrint Archive (2024).

[8] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. 1994. Incremental cryptog-

raphy: The case of hashing and signing. In Advances in Cryptology—CRYPTO’94:
14th Annual International Cryptology Conference Santa Barbara, California, USA
August 21–25, 1994 Proceedings 14. Springer, 216–233.

[9] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-

tical Secure Aggregation for Privacy-Preserving Machine Learning (CCS ’17).
Association for Computing Machinery, New York, NY, USA, 1175–1191.

[10] Kallista A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi,

H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and

Jason Roselander. 2019. Towards Federated Learning at Scale: System Design.

CoRR abs/1902.01046 (2019).

[11] Baturalp Buyukates, Jinhyun So, Hessam Mahdavifar, and Salman Avestimehr.

2022. LightVeriFL: Lightweight and Verifiable Secure Federated Learning. In

Workshop on Federated Learning: Recent Advances and New Challenges (in Con-
junction with NeurIPS 2022).

[12] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
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A SHAMIR SECRET SHARING

A 𝑡-out-of-𝑛 Shamir Secret Sharing (SS) scheme [41], defined in a

field F𝑝 , where 𝑝 is a prime number, consists of two PPT algorithms:

• {(𝑢, [𝑠]𝑢 )}𝑢∈U ←SS.Share(𝑠, 𝑡,U): Let 𝑡 be the reconstruc-
tion threshold and 𝑛 be the number of the clients in the setU. This

algorithm splits a secret 𝑠 ∈ F𝑝 into 𝑛 shares [𝑠]𝑢 ∈ F𝑝 , each of

them for one client 𝑢 ∈ U. Note that each 𝑢 is an element of F𝑝 ,
representing each client uniquely. The algorithm first generates a

polynomial 𝑝 (𝑥) of uniformly random coefficients and degree 𝑡 − 1
such as 𝑝 (0) = 𝑠 . It then computes 𝑝 (𝑢) = [𝑠]𝑢 for all 𝑢 ∈ U.

• 𝑠 ←SS.Recon({(𝑢, [𝑠]𝑢 )}𝑢∈U′ , 𝑡): This algorithm reconstructs

the secret 𝑠 ∈ F𝑝 using at least 𝑡 shares. It is required thatU′ ⊆ U
and |U′ | ≥ 𝑡 . The algorithm uses the Lagrange interpolation to

compute the value 𝑝 (0) = 𝑠 as follows (all operation are in the field

F𝑝 ):

𝑠 =
∑︁
𝑢∈U′

𝜆𝑢 [𝑠]𝑢 where 𝜆𝑢 =
∏

𝑢∈U′\{𝑢}

𝑣

𝑣 − 𝑢

Packed SS Variant. A packed variant of the SS scheme can be con-

structed as follows [18]. Let us consider the case of generating 𝑛

shares from a secret vector ®𝑠 ∈ F𝑙𝑝 where 𝑙 < 𝑛. Let 𝑡 be the re-

construction threshold and 𝑛 − 𝑙 − 𝑡 be the dropout tolerance. We

construct a polynomial of degree 𝑙 + 𝑡 − 1 with the 𝑙 secret vector

inputs and 𝑡 random masks in F𝑝 as coefficients. The polynomial

evaluations on 𝑛 distinct non-zero points in F𝑝 yield the 𝑛 shares

of the SS scheme.

B HYBRID SECURITY PROOF

To prove security of Buffalo, we follow the standard simulation-

based paradigm. In particular, we show that the view of any attacker

against the protocol can be simulated using only the input of the

corrupted parties and the protocol output. Intuitively, this means

that corrupted parties learn nothing more than their inputs and the

intended protocol leakage (i.e. the aggregated input in our case). We

prove our protocol in the random oracle model for the active model

(the security in the honest-but-curious setting follows directly) since

the security of the JL scheme relies on the hash function being seen

as a random oracle. We assume that the adversary controls a set C
of corrupted clients inU. The set of the assistants is K and the set

of honest assistants is K \ (K ∩ C) such that |K \ (K ∩ C)| > 2𝑘
3
.

Given 𝑛, 𝑘, 𝑡, 𝜆 and the set C of adversarial parties, we define

A as a probabilistic polynomial-time algorithm that denotes the

“next-message” function of adversarial parties [9]. This function

allows parties in C to dynamically select their inputs at any round

of the protocol execution as well as the list of clients.

We define a simulated execution, represented by a simulator

SU,K,𝑡,𝜆,ID
𝜉

C (A) (denoted as S for short), through several mod-

ifications to the real execution of the protocol, represented by

REALU,K,𝑡,𝜆C (A, ®𝑥U\C) (denoted as REAL for short), such that two

subsequent hybrids are computationally indistinguishable. REAL ex-
hibits the combined views of the adversarial parties in the protocol

execution such that their messages and honest clients’ aborts are

chosen using A.

A enables to dynamically set the subset of honest clients for

which the server learns their local model aggregation. Therefore,

this aggregation cannot be provided for a fixed subset of clients as

input to S. Instead, S will make a single query to an ideal func-

tionality ID (seen as a random oracle) that allows it to learn the

aggregation for a dynamically chosen subset of honest clients, such

that the number of honest clients in this set is larger than a certain

lower bound 𝜉 .

Informally, the functionality ID (denoted as F 𝑆𝑒𝑐𝑉𝑒𝑟𝐴𝑔𝑔 in [19,

47]) allows each client to send its input and the adversary to decide

the client set of inputs to be aggregated. Given the true aggregate ®𝑥
for the user inputs the adversary decides, ID enables the adversary

to specify which aggregated value to send to each client. If the

adversary asks the functionality to send an aggregate ®𝑥 ′ ≠ ®𝑥 to

client 𝑢, then the functionality marks that client as “cheated” and

sends ®𝑥 ′ to user 𝑢. Finally, each user can query the functionality

to determine whether it has been cheated. Note that all parties

and A have access to the random oracle. More details about this

functionality F 𝑆𝑒𝑐𝑉𝑒𝑟𝐴𝑔𝑔 can be found in [19, 47].

Hybrid
0
. Let C ⊆ U be any subset of adversarial parties (server

and clients) such that there are strictly less than 𝑡 adversarial

assistants. This hybrid is distributed exactly as the joint view

of A in REAL, that is the joint view of the parties in C in a

real execution.

Hybrid
1
. In this hybrid, the simulator emulates the real execution.

S knows all the inputs {®𝑥𝑢,𝜏𝑢 }𝑢∈U\C of the honest parties

and runs a full execution of the protocol with A, including

a simulation of the random oracle “on the fly”, the secure

communication channel establishment and the setup phase.

Thus, the adversarial view is the same as in Hybrid
0
.

Hybrid
2
. In this hybrid, given any pair of honest client/assistant

𝑢 ∈ U and 𝑖 ∈ K , the messages between 𝑢 and 𝑖 are en-

crypted before and decrypted after being given to A, using

an uniformly random key rather than the one obtained from

KA.agree(𝑝𝑝𝐾𝐴, 𝑐𝑆𝐾𝑢 , 𝑐𝑃𝐾
𝑖
) = KA.agree(𝑝𝑝𝐾𝐴, 𝑐𝑆𝐾

𝑖
, 𝑐𝑃𝐾𝑢 ).

The security of the Diffie-Hellman key agreement KA under

the Decisional Diffie-Hellman assumption ensures that this

hybrid is indistinguishable from Hybrid
1
.

Hybrid
3
. In this hybrid,S aborts ifAmanages to deliver amessage

to an honest client 𝑢 on behalf of another honest assistant 𝑖

during Round 1, such that the message is different from the

message that S has given toA in that phase and that the de-

cryption of this message does not fail (using the proper key).

Note that the encryption key that 𝑢 and 𝑖 used in Hybrid
2

was randomly chosen. Hence, based on such a message, the

integrity of the ciphertext could be threatened. Since the

underlying encryption scheme is INT-CTXT secure, then

this hybrid is indistinguishable from the previous one.

Hybrid
4
. In this hybrid, the simulator changes all encrypted shares

sent between pairs of honest client/assistant with encryp-

tions of 0. Note thatS still returns the “real” shares inRound

3 as it did before. Since the encryption keys were chosen uni-

formly at random, the IND-CPA security of the underlying

encryption scheme guarantees that Hybrid
4
is indistinguish-

able from Hybrid
3
.

Hybrid
5
. S aborts its execution if the adversary forges a valid

signature 𝜎𝑖 on behalf of any honest assistant 𝑖 on the set

Ubuff, and the verification in Round 3 succeeds. The se-

curity of the underlying signature scheme guarantees that
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forgeries happenwith negligible probability. Hence, Hybrid
5

is indistinguishable from Hybrid
4
. From this hybrid on, hon-

est assistants agree on the (now well-defined) setUbuff of

clients the server declares to have contributed the aggrega-

tion, as well as on the commitments and encrypted masks

of the aggregated inputs.

Hybrid
6
. Let Q ⊆ K be the single set where an honest assistant

receivedUbuff during Round 2 and then received at least 𝑡

valid signatures on it during Round 3. S aborts if A asks

for key shares for some honest client 𝑢 either before the

adversary has received the responses from the honest parties

in Round 3, or after such responses have been received for

𝑢 ∉ Ubuff. In both cases, the JL key 𝑠𝑘𝑢,𝜏𝑢 is information

theoretically hidden from A, and the simulator aborts if A
can guess one of those 𝑠𝑘𝑢,𝜏𝑢 , happening with negligible

probability. Indeed, the values 𝑠𝑘𝑢,𝜏𝑢 are chosen from the

large domain Z𝑁 2 . Thus, the adversarial view is the same as

in Hybrid
5
.

Hybrid
7
. In this hybrid, the simulator aborts if A asks for encryp-

tions of the per-round LWE secret key for some honest client

either before the adversary has received the responses from

the honest parties in Round 3, or after such responses have

been received for 𝑢 ∉ Ubuff. In both cases, the key ®𝑠𝑢,𝜏𝑢
is computationally hidden (from the Hint-RLWE reduction

[5]) from A, and the simulator aborts if A can guess one of

those ®𝑠𝑢,𝜏𝑢 , happening with negligible probability. Indeed,

the values ®𝑠𝑢,𝜏𝑢 are chosen from the large domain Z𝑚𝑞 . Thus,

the adversarial view is the same as in Hybrid
6

Hybrid
8
. In this hybrid, the values ⟨®𝑥𝑢,𝜏𝑢 ⟩ computed byS on behalf

of honest clients and sent to A during the protection phase

are changed with uniformly sampled values such that those

values are independent from the rest of the view. Hence, this

hybrid is indistinguishable from the previous one.

Hybrid
9
. For all 𝑢 ∈ Ubuff \ C, we choose values ®𝑤𝑢,𝜏𝑢 such

that

∑
𝑢∈Ubuff\C ®𝑤𝑢,𝜏𝑢 =

∑
𝑢∈Ubuff\C ®𝑥𝑢,𝜏𝑢 . Since ®𝑠𝑢,𝜏𝑢 and

𝑠𝑘𝑢,𝜏𝑢 are never queried for 𝑢 ∈ Ubuff \ C byA, then in the

view of A, the above values are identically distributed as in

the previous hybrid.

Hybrid
10
. S aborts its execution if the adversary forges a valid

signature 𝜎𝑢,𝜏𝑢 on behalf of any honest client 𝑢 on a commit-

ment 𝑐𝑢,𝜏𝑢 , and the signature verification duringVerification

succeeds. Indistinguishability from the previous hybrid fol-

lows from the unforgeability property of the digital signature

scheme. This ensures that the adversary cannot manipulate

the commitments of honest clients.

Hybrid
11
. S aborts its execution if the adversary forges a valid

signature 𝜎′𝑢,𝜏𝑢 on behalf of any honest client 𝑢 on the pair

(𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 ) of shares, and the signature verification during

Round 2 succeeds. Indistinguishability from the previous

hybrid follows from the unforgeability property of the digital

signature scheme. This ensures that the adversary cannot

manipulate the encrypted masks of honest clients.

Hybrid
12
. In this hybrid, S aborts if there exists an honest client

such that the adversary queriesℎ𝑢,𝜏𝑢 = 𝐻inc ( ®𝑥𝑢,𝜏𝑢 , ®𝑥𝑢,𝜏𝑢−1, ℎ𝑢,𝜏𝑢−1).
In these two hybrids, only the commitment depends on the

concrete value of ℎ𝑢,𝜏𝑢 . Any adversary which can trigger

this abort with non-negligible probability has to guess the

committed value ℎ𝑢,𝜏𝑢 with non-negligible probability be-

fore seeing the valid opening value. This implies an efficient

adversary against the hiding property of the commitment

scheme. Hence, the two hybrids are indistinguishable.

Hybrid
13
. In this hybrid, instead of using the actual hash and wit-

ness masks of honest clients, the simulator samples a random

mask pair (𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 ) and computes the corresponding TEG

ciphertext as ⟨(𝑧𝑢,𝜏𝑢 , 𝑧′𝑢,𝜏𝑢 )⟩. Hence, the view of the adver-

sary is indistinguishable from the previous one since the

distribution of the ciphertexts is computationally indistin-

guishable from what the adversary observed between the

real and ideal worlds by the security of TEG scheme.

Hybrid
14
. For every honest client 𝑢, S replaces the commitment

𝑐𝑢,𝜏𝑢 ← COM.Commit(ℎ𝑢,𝜏𝑢 , 𝑟𝑢,𝜏𝑢 ) with a random value

𝑐𝑢,𝜏𝑢 . S must ensure that the aggregated commitment 𝑐0 can

be opened to the final aggregation. To do so,S defines the set

U′, requests the corresponding aggregated result to the ideal
functionality ID on this set, and obtains the aggregated value
®𝑥 ← LWE.Agg(𝑝𝑝LWE, ®𝑠0, {⟨®𝑥𝑢,𝜏𝑢 ⟩}𝑢∈U′ ). S launches the

extraction and equivocation algorithms of the underlying

commitment scheme to extract the inputs of the corrupted

clients inU′ and to guarantee that each aggregated commit-

ment opens to the aggregated input, respectively.

Hybrid
15
. In this hybrid, the simulator aborts if there exists a pair

of clients 𝑢 and 𝑣 in U′ such that ℎ0,𝑢 ≠ ℎ0,𝑣 , where ℎ0,𝑢
and ℎ0,𝑣 are the aggregated hash values received by 𝑢 and 𝑣

during Verification respectively. Indistinguishability from

the previous hybrid follows from the collision resistance of

the hash function 𝐻inc.

Hybrid
16
. For all 𝑢 ∈ U′ \ C, we choose values ®𝑤𝑢,𝜏𝑢 such that∑
𝑢∈U′\C ®𝑤𝑢,𝜏𝑢 =

∑
𝑢∈U′\C ®𝑥𝑢,𝜏𝑢 . Since ®𝑠𝑢,𝜏𝑢 and 𝑠𝑘𝑢,𝜏𝑢 are

never queried for 𝑢 ∈ U′ \ C by A, then in the view of A,

the above values are identically distributed as in the previous

hybrid.

Hybrid
17
. In this hybrid, S does not receive the inputs of honest

parties. Instead, during Round 3, S submits a query to ID
for the setU′ \C and uses the output to sample the required

elements ®𝑤𝑢,𝜏𝑢 . Indeed, S no longer needs the individual

inputs of honest clients inU′, but requires their sum which

can obtained by querying ID on the input (ready,U′) and
substracting from the response ®𝑥 the partial sum ®𝑥C of the

corrupted clients. This change does not modify the view of

the adversary, making Hybrid
16

and Hybrid
17

indistinguish-

able. As S does not use the inputs of the honest parties, this

concludes the proof.
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