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Abstract—Formal methods are becoming an important tool for
ensuring correctness and security of cryptographic constructions.
However, the support for certain advanced proof techniques,
namely rewinding, is scarce among existing verification frame-
works, which hinders their application to complex schemes such
as multi-party signatures and zero-knowledge proofs.

We expand the support for rewinding in EasyCrypt by
implementing a version of the general forking lemma by Bellare
and Neven. We demonstrate its usability by proving EUF-CMA
security of Schnorr signatures.

Index Terms—computer-aided cryptography, formal verifica-
tion, EasyCrypt, rewinding, forking, Schnorr

I. INTRODUCTION

Although provable security has gradually become a de facto
standard in cryptography, it is long known that it is not a silver
bullet that can rule out all attacks [15]. One of the leading
problems is that security proofs are difficult to read and verify.
As a result, they do not receive sufficient attention during the
review process and subtle errors may stay unnoticed.

Several methods of structuring security proofs, such as the
game-based technique [20], have been developed to reduce
the effort required to both create and check such proofs, yet
human verification will always be error-prone. This idea led
to the development of computer-aided cryptography, which
strives to apply formal verification techniques to security [6].

Despite the recent successes in this field — e.g., fixing
and mechanizing security proofs for new post-quantum sig-
nature schemes, Dilithium [4] and XMSS [5] — there remain
some classical results that seem to evade formal verification.
Unforgeability of Schnorr signatures is one of them. This
contrasts with the renewed interest in this construction and
the number of novel Schnorr-based schemes (such as EdDSA,
MuSig [18], and FROST [17]), particularly in the active area
(as witnessed by NIST’s call for proposals [9]) of multi-party
threshold cryptography.

The likely reason for this discrepancy is that security
reductions for Schnorr-like schemes commonly rely on forking
of the hypothetical adversary — a special case of rewinding
which is a technique that was not implemented by any cryp-
tographic verification framework up until recently [12].

In this work, we build on the recent advancements in
formalization of rewinding and address the described gap
by implementing a general forking lemma in EasyCrypt and
reproducing the well-known result on the security of simple
Schnorr signatures. By doing so, we hope to pave the way

for applying formal methods to more advanced constructions
that previously appeared beyond reach — incl. some threshold
schemes and zero-knowledge proofs (see Section V-B for
more details). All EasyCrypt scripts are publicly available on
GitHub1.

II. RELATED WORK

Zain formally verified three signature schemes related to
Schnorr using EasyCrypt [22] — EDL, CM, and GJKW. As
the author explains, one of the reasons behind this choice was
that all constructions feature a tight security reduction and do
not require the forking lemma.

Several groups of authors formalized properties of zero-
knowledge Σ-protocols and applied the results to the interac-
tive Schnorr identification protocol; various verification frame-
works were employed, e.g., CryptHOL [10], CertiCrypt [7], or
EasyCrypt [13]. As far as we know, none of these works cov-
ered the properties of non-interactive protocols, or signature
schemes obtained from interactive ones via the Fiat-Shamir
transformation.

The rewinding technique was first implemented in Easy-
Crypt by Firsov and Unruh [12]. As this is the starting point
of our work, we comment on it in more detail in Section III-B.

A partially overlapping work on forking is being carried
out by Tuma and Hopper [21]. They develop an entirely new
cryptographic verification framework, called VCVio, which
they embed in the Lean programming language / theorem
prover. Its focus is on design-level computational security (see
the survey of computer-aided cryptography [6]) with emphasis
on reasoning about oracles. To demonstrate its power, the
authors use it to prove a variant of the forking lemma and show
unforgeability of signatures constructed by the Fiat-Shamir
heuristic.

To compare our work with that of Tuma and Hopper, we
first note that our goal is to incorporate the forking technique
into an established framework, EasyCrypt, instead of creating
a new one. While the defining features of VCVio could prove
useful in some settings, at the moment, EasyCrypt undoubtedly
has an advantage in terms of the number of generic modular
definitions and results available, which makes it easier to
apply to new schemes. Moreover, EasyCrypt’s Hoare logics
(discussed in Section III-A) seem to be a key ingredient

1https://github.com/jjanku/fsec
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for taming more complex proofs; given the novelty, it is
again unclear how VCVio will fare in this direction without
them. Also importantly, existing infrastructure allows us to
transfer security guarantees from EasyCrypt onto an optimized
implementation in Jasmin (see [3] and Section V-B); VCVio
lacks a similar feature.

Regarding finer details, we observe that both our forking
lemma and that in VCVio are loosely based on the hand-
written general forking lemma by Bellare and Neven [8].
However, our result fully reproduces the probability bound
from the original work and is better roughly by a factor of
Q, the number of random oracle queries the forked algorithm
makes. This stems from the fact that the authors of VCVio
guess the forking point before running the algorithm for the
first time, whereas we determine the forking point based on
the result of the first execution.

Finally, we apply the forking lemma directly to the Schnorr
signature scheme while Tuma and Hopper analyze the generic
Fiat-Shamir transformation of a Σ-protocol with the necessary
properties. This difference seems insignificant as the proofs are
very similar and each work could be easily extended to cover
the missing part.

To the best of our knowledge, there is no other formalization
of the forking lemma and the security analysis of Schnorr
signatures (in EasyCrypt or in other verification frameworks).

III. PRELIMINARIES

First, we introduce the basics of EasyCrypt. Then, we
recall the rewinding technique and summarize the existing
formalization this work builds upon.

A. EasyCrypt

EasyCrypt is an interactive proof assistant tailored for
formal verification of cryptographic proofs. It consists of three
main components: a general-purpose expression language, a
module language for specifying security games, and a set of
logics for reasoning about them. We briefly illustrate the key
concepts of each component on the following code snippet:

type log_t = bool list.

op dbool : bool distr.

module type Adv = {
proc guess() : bool

}.

module B : Adv = {
var log : log_t

proc guess() : bool = {
var b : bool;
b←$ {0,1}; (* uniform *)
log ← log ∥ [b];
return b;

}
}.

module Game(A : Adv) = {
var won : bool

proc play() = {

var b0, b1 : bool;
b0←$ dbool;
b1 ← A.guess();
won ← b0 = b1;

}
}.

a) Expression Language: This is a typed functional
language. Types and operators are built-in (bool, =) or user-
defined (log_t, dbool) and can be abstract (dbool) or
concrete (log_t). From the built-in type constructors, we
point out distr which creates a type of discrete probability
(sub)distributions over the supplied type (dbool is a distri-
bution over bool). Evaluation of all EasyCrypt expressions
is guaranteed to terminate, operators thus correspond to total
functions.

b) Module Language: Unlike the expression language,
the module language is imperative. There are standard state-
ments such as assignments, procedure calls, or while loops.
Additionally, one can assign a value at random from a given
distribution using ←$. Statements must be grouped into pro-
cedures, which must belong to modules.

Modules can be standalone (B) or parametrized (Game) by
an abstract module (A), typically an oracle or an adversary,
of a specified type (Adv). Module types are akin to interfaces
that declare the procedures that the module must implement.
A trivial method of interface inheritance is available using the
include keyword.

Apart from procedures, modules may include global vari-
ables. These are not private and may be accessed by other
modules. Accordingly, we define the set glob M of global
variables2 of a module M, as the union of global variables
declared inside M and the set of variables M may read / write
during a call to one of its procedures (i.e., glob Game(B)
contains B.log).

An execution of a module’s procedure is defined relative to
a memory m, which defines the contents of all module’s global
variables. The state of a variable in a memory can be queried
using curly braces (e.g., Game.won{m} or (glob B){m}).
To compare states across two memories 1 and 2, a shorthand
is available (={B.log} is equivalent to B.log{1} =
B.log{2}).

c) Logics: EasyCrypt features three basic logics to rea-
son about module properties: classical Hoare Logic (HL),
probabilistic HL (pHL), and probabilistic relational HL
(pRHL). Judgments in the given logic are denoted by the
keyword hoare, phoare, and equiv respectively and
take the following common form: procedure(s) :
precondition =⇒ postcondition. Here, the condi-
tions may refer to global variables; moreover, the keywords
arg and res reference arguments and return values of
the procedure(s) in question. (For pRHL, a side / memory
specifier, {1} or {2}, is necessary to determine the procedure
execution we are interested in. For pHL, a probability bound
is additionally needed.)

2Technically, this is a type.



To prove general mathematical facts (about operators) and
connect judgments from the specialized logics (about mod-
ules), the so-called ambient logic is provided. Using it, we
can state axioms (which are assumed to be true) and prove
lemmas. Both can be parametrized (incl. by memories).

Formulas in the ambient logic can also contain probability
expressions: Pr[procedure(args) @ m : event].
The semantics is the probability of event when executing
procedure with the provided args from initial memory m.
In event, the res keyword is again permitted.

Note that for clarity, we slightly deviate from EasyCrypt’s
syntax. In particular, we omit some types and typecasts (%r),
use ligatures (∧ instead of /\), replace some operators (←
instead of <@), simplify memory notation (italicized m instead
of &m), etc. Readers familiar with EasyCrypt should have no
trouble mapping our notation to the original one.

More information on EasyCrypt can be found in the Easy-
Crypt reference manual [11]. All limitations of EasyCrypt that
are discussed in this paper apply to version 2025.03 (the latest
release available to us at the time of writing).

B. Rewinding

Rewinding is a common cryptographic proof technique that
generally proceeds as follows:

1) run a given program / adversary A for some time (typi-
cally until it requires some input from the environment),

2) save A’s state,
3) finish the execution of A,
4) restore A’s state,
5) run A again till completion
6) (optionally repeat steps 4-5).

The idea behind rewinding is that we can extract some
useful information from the multiple related outputs of A
or (eventually) obtain an output that is otherwise suitable
for us. Importantly, since the adversary has no knowledge of
being rewound, its success probability can be constant over all
individual runs.

The above paradigm can be applied to the forking lemma as
well. For this reason, we based our work on the existing Easy-
Crypt formalization of rewinding by Firsov and Unruh [12].
Its short description follows.

To start, the authors first had to define what it means for
a program to be rewindable. In pen-and-paper proofs, this
capability is almost never introduced formally. In EasyCrypt,
however, it is necessary to use the module types to explicitly
require that a given module provides a rewinding interface:

type state_t.

module type Rewindable = {
proc getState() : state_t
proc setState(st : state_t) : unit

}.

Moreover, one has to axiomatize that an implementation of
the above interface behaves as the procedure names suggest.
Formally, a Rewindable module R should satisfy the fol-
lowing properties:

1) there exists some injective function f from glob R to
state_t;

2) the procedure getState terminates, has no side-
effects, and returns f gR when invoked in state gR
: glob R;

3) the procedure setState terminates and sets the state
of R to gR when called with an argument st such that
st = f gR.

In the rest of this paper, all Rewindable modules are
expected to satisfy the listed conditions; we omit them for
brevity in the formulation of our lemmas. We also note that
this assumption does not weaken our results; see the discussion
in the original work [12].

The final step is to fix the point at which the module R
should be rewound. To model this, the authors additionally
assume that the execution of R is divided into two procedures,
init and run. This is necessary because in EasyCrypt
procedures are always executed in one go.

Once the rewinding interface is specified, it is possible to
straightforwardly translate the initial informal description of
rewinding into an EasyCrypt module:

module Rewinder(R : Rewindable) = {
(* Two runs of R, with rewinding. *)
proc run2(i) = {
var st, r0, r1, r2;
r0 ← R.init(i);
st ← R.getState();
r1 ← R.run(r0);
R.setState(st);
r2 ← R.run(r0);
return ((r0, r1), (r0, r2));

}

(* Single run of R. *)
proc run(i) = {
var r0, r1;
r0 ← R.init(i);
r1 ← R.run(r0);
return (r0, r1);

}
}.

Listing 1. Rewinder module

A key result of Firsov and Unruh about the Rewinder
module that we will utilize in Section IV-D intuitively states
the following: if R succeeds once (its output satisfies some
predicate P), then it should also succeed the second time after
rewinding3. Formally:

lemma rewinding_lemma m P i :
Pr[Rewinder(R).run2(i) @ m : P res.1 ∧ P res.2] ≥
Pr[Rewinder(R).run(i) @ m : P res] ˆ 2

Listing 2. Rewinding lemma

The proof of this lemma relies on Jensen’s inequality and
probabilistic reflection, the ability to reason about denotational
semantics of EasyCrypt modules [12].

3This result is less trivial than it might seem at first. Notice that the right-
hand side of the inequality talks about probability of a full execution (i.e.,
initialization followed by the run procedure) while the probability on the
left-hand side is with respect to a single initialization and two independent
runs from the initialized state.



IV. FORKING LEMMA

In this section, we start by presenting the pen-and-paper
formulation of the general forking lemma by which this work
is inspired. In the following subsections, we describe our
formalization and notable differences compared to the original
work. At the end, we show how we specialize the general result
for the common use-case with a random oracle.

A. Pen-and-Paper Formulation

The original forking lemma was formulated by Pointcheval
and Stern [19]. However, we have decided to focus on a later
variant of the lemma, the General Forking Lemma by Bellare
and Neven [8]. The reason for this choice is two-fold. Firstly,
the original statement deals specifically with digital signatures
in the random oracle model. By opting for the generalized
lemma, we hope to broaden the applicability of our work,
potentially beyond signatures. Secondly, the modular nature of
the latter lemma makes it arguably more amenable to formal
verification.

The essence of the forking lemma, which Bellare and Neven
capture in the generalized version, can be described as follows.
We consider an algorithm A that solves a certain problem.
Importantly, it receives from the environment a sequence of
values sampled at random — whether as a result of interactions
with an oracle or as part of its input — and the solution it
outputs (if any) is based on one of the obtained values, say
at index j. The goal is to obtain from A two solutions that
would be related but based on two distinct values. To achieve
it, we run A once, generate part of the sequence starting at
index j anew (preserving the rest) and run A for a second time,
hoping A derives its second solution again from the j-th value
which differs from the first one. The lemma then bounds the
probability that we succeed:

Lemma 1 (General Forking Lemma [8]). Fix an integer q ≥ 1
and let A be a randomized algorithm that takes an input i ∈ I
together with a sequence of values h0, . . . , hq−1 ∈ H , uses
random coins ω ∈ Ω, and returns a number j from the range
0 ≤ j < q on success or −1 on error and an auxiliary
output a ∈ A.

Next, consider the algorithm below:

ForkerA(i)

ω ←$ Ω // random coins

h0, . . . , hq−1 ←$ H // oracle responses

(j, a)← A(i, h0, . . . , hq−1; ω)

if j = −1 then

return (−1, ϵ, ϵ)
h′
j , . . . , h

′
q−1 ←$ H

(j′, a′)← A(i, h0, . . . , hj−1, h
′
j , . . . , h

′
q−1; ω)

if j = j′ ∧ hj ̸= h′
j then

return (j, a, a′)

else

return (−1, ϵ, ϵ)

Finally, for an input i ∈ I , let us define the accepting
probability acc(i) of A and the success probability frk(i)
of ForkerA:

acc(i) = Pr[0 ≤ j < q : (j, a)←$ A(i, h0, . . . , hq−1; ω)],

frk(i) = Pr[0 ≤ j < q : (j, a, a′)←$ ForkA(i)];

where in the former, the probability is taken over the choice
of h0, . . . , hq−1 and ω.

Then for every input i ∈ I , we have:

frk(i) ≥ acc(i) ·
(
acc(i)

q
− 1

|H|

)
.

Readers familiar with the original work may notice that
an important part of the statement, averaging over different
inputs i, is omitted here. For presentation purposes, we address
this issue later in Section IV-F.

B. Adversary Model

One may observe that the algorithm ForkerA does not quite
match the definition of rewinding that we gave earlier in
Section III-B — indeed, the state of A is never saved (nor
restored). Instead, the algorithm A is run twice from the
beginning on related inputs and with the same random tape ω.

To unify the two views on rewinding, suppose that A uses
the provided values h0, . . . , hq−1 one by one (this is also the
typical setting). In that case, since the inputs i, the first j values
h, and the random tapes are equal, the second execution of
A can diverge from the first one only after A consumes the
value h′

j . Therefore, running A as ForkerA does is equivalent
to rewinding A, in the sense of Section III-B, to the state
before it asks for hj .

Although it should be possible to formalize both approaches
to forking using EasyCrypt4, we argue that the state-saving
model is considerably more practical than the other model
that fixes randomness. This is because EasyCrypt’s module
language is inherently stateful and probabilistic. For example,
we cannot declare a deterministic abstract module.

One solution could be to limit ourselves to the functional
expression language and model the rewound programs as
operators (op; a total function). However, by that, we would
give up on a significant proving power of EasyCrypt, such
as the relational Hoare logic. Alternatively, we could let
users of our forking theory prove that the provided modules
are deterministic. But this poses a significant burden and is
currently again a use-case out of the scope of EasyCrypt.

Moreover, both discussed workarounds would likely lead to
loss of generality as distributions in EasyCrypt are discrete
and pre-sampling the random coins for A would therefore
force us to bound the amount of randomness A can use.
Consequently, some almost-surely terminating programs (e.g.,
relying on rejection sampling), would be inexpressible in this
model.

For the reasons above, we decided to further explore the
state-saving model. This introduces a new challenge — how

4Though there may be further obstacles that we are currently unaware of.



do we save the state at the right time? The method outlined
in Section III-B cannot record the state of a module mid a
procedure call, it merely serializes the global variables of a
module (not local). Hence if we wish to obtain the state of A
before it consumes the j-th input value h, we must decompose
the computation of A such that it yields control back to the
caller before accessing hj — similarly to how we split the
computation of module R in Section III-B into procedures
init and run. But since we learn the value of j only after
A finishes, we require A to stop before processing each next
value h. This leads us to the following interface for A:
type query_t, resp_t.

type in_t, out_t.

module type Stoppable = {
proc init(i : in_t) : query_t
proc continue(r : resp_t) : query_t
proc finish(r : resp_t) : out_t

}.

To mentally map A to Stoppable, think of query_t
as the unit type, resp_t as H , in_t as I , and out_t as
({0, . . . , q − 1} ∪ {−1})×A.

To generate the responses (values of type resp_t) for a
Stoppable module, we will use a module of the type below
(the concrete module will be listed in a later section):
module type Oracle = {
proc get(q : query_t) : resp_t

}.

The computation of any Stoppable module can then be
naturally expressed using a Runner module:
(* Number of queries. *)
const Q : {int | 1 ≤ Q} as Q_pos.

module Runner(S : Stoppable, O : Oracle) = {
proc run(i : in_t) : out_t = {
var o : out_t;
var q : query_t;
var r : resp_t;
var c : int;

q ← S.init(i);
c ← 1;

while (c < Q) {
r ← O.get(q);
q ← S.continue(r);
c ← c + 1;

}

r ← O.get(q);
o ← S.finish(r);

return o;
}

}.

It can be shown by structural induction that any EasyCrypt
module (with a run procedure) making a bounded number of
oracle queries can be equivalently written as a composition of
some Stoppable module and the Runner module.

We also wish to emphasize here that since the Runner
module expresses the decomposed computation of a

Stoppable module as a single procedure, it enables us to use
the Stoppable module as an ordinary module; in particular,
we do not have to modify the definitions of standard security
notions in any way, as we shall see in Section V-A.

To conclude the discussion on the two different algorithm
models, we can observe that both imply certain restrictions to
the user in EasyCrypt. Despite that, we believe that the model
we chose is superior to the other one, as it imposes only a
syntactic restriction (implemented interface) as opposed to a
semantic one (determinism and extracted randomness).

C. Forking Module

With the issue of rewinding being resolved in the previous
section, we are now ready to formalize the forking algorithm
in EasyCrypt.

We begin by specifying which modules can be forked. A
Forkable module must implement the Rewindable as
well as Stoppable interface so that its state can be queried
at the appropriate times:

module type Forkable = {
include Rewindable
include Stoppable

}.

Here, the Stoppable type is a clone of the one defined
in Section IV-B where type out_t = int * aux_t (cf.
the output of A in Lemma 1).

We will consider an execution of a Forkable module
successful iff the index it outputs is in range:

op success (j : int) : bool = 0 ≤ j < Q.

As alluded to before, we also have to define the response
generator, or the oracle, for the Stoppable module. Follow-
ing the General Forking Lemma 1 which generates values h
independently ofA, we use a module that disregards the output
(query) of the Stoppable module and always samples a
fresh response. We call this oracle a Forgetful Random Oracle
(FRO):

op [lossless uniform] dresp : resp_t distr.

module FRO : Oracle = {
proc get(q : query_t) : resp_t = {
var r : resp_t;
r←$ dresp;
return r;

}
}.

At this point, the definition of the forking module is
straightforward, the main structure copies that of ForkerA:

module Forker(F : Forkable) = {
var j1, j2 : int
var log1, log2 : log_t list
var r1, r2 : resp_t

(* First full run of F. *)
proc fst(i : in_t) : out_t * (log_t list) *

(state_t list) = {
(* ... *)
c ← 1;
while (c < Q) {



st ← F.getState();
sts ← sts ∥ [st];
r ← Log(FRO).get(q);
q ← F.continue(r);
c ← c + 1;

}
(* ... *)

}

(* Second partial run of F. *)
proc snd(q : query_t, c : int) : out_t * (log_t

list) = {
(* ... *)
while (c < Q) {

(* ... *)
c ← c + 1;

}
(* ... *)

}

proc run(i : in_t) : int * aux_t * aux_t = {
var sts : state_t list;
var st : state_t;
var j : int;
var a1, a2 : aux_t;
var q : query_t;

((j1, a1), log1, sts) ← fst();
(q, r1) ← nth witness log1 j1;

(* Rewind. *)
st ← nth witness sts j1;
F.setState(st);

((j2, a2), log2) ← snd(q, j1 + 1);
log2 ← (take j1 log1) ∥ log2;
r2 ← (nth witness log2 j1).2;

j ← if success j1 ∧ j1 = j2 ∧ r1 ̸= r2
then j1 else -1;

return (j, a1, a2);
}

}.

In the above, the procedure fst is a slight modification of
Runner(F, FRO).run where we record the states F goes
through and the responses it receives during its execution.

The procedure snd runs the module F as well with the
difference that it responds to F just Q - j times, i.e., it can
finish the execution of F after it is rewound to the j-th query.

D. Probability Analysis

For the forking algorithm presented in the preceding section,
we prove a direct equivalent of the probability bound from
Lemma 1:

const pr_collision =
1 / (size (to_seq (support dresp))).

lemma pr_fork_success m i :
let pr_runner_succ =

Pr[Runner(F, FRO).run(i) @ m : success res.1] in
let pr_fork_succ =

Pr[Forker(F).run(i) @ m : success res.1] in
pr_fork_succ ≥ pr_runner_succ ˆ 2 / Q -

pr_runner_succ * pr_collision.

Proof Sketch. In spite of the change in the algorithm model,
our formal proof of the forking lemma rather closely copies

the original pen-and-paper proof [8]. The main distinction is
that we invoke the Rewinding lemma (see Listing 2) at an
appropriate time instead of proving an intermediate goal anew.
We therefore only outline the main steps of the proof.

First, we observe that conditioned on success j1, the
success event of the Forker is a conjunction of j1 = j2
and r1 ̸= r2. We can thus bound the Forker’s success
probability as shown below:
pr_fork_success ≥
Pr[Forker(F).run(i) @ m :

success Forker.j1 ∧ Forker.j1 = Forker.j2] -
Pr[Forker(F).run(i) @ m :

success Forker.j1 ∧ Forker.r1 = Forker.r2]

The latter probability in the difference is easy to analyze and
leads to the term pr_runner_succ * pr_collision
in the lemma. We perform a case analysis of the former
probability:
Pr[Forker(F).run(i) @ m :

success Forker.j1 ∧ Forker.j1 = Forker.j2] =
bigi predT (fun j ⇒
Pr[Forker(F).run(i) @ m :

Forker.j1 = j ∧ Forker.j2 = j]
) 0 Q

At this point, we can focus on Pr[Forker(F).run(i)
@ m : Forker.j1 = j ∧ Forker.j2 = j] for a
fixed j. A crucial step of our proof is showing that this
probability remains the same if we modify Forker so that it
always rewinds F to the j-th query:
module SplitForker(F : Forkable) = {

(* Forker.fst that runs F only until the
* first C queries. *)
proc fst_partial(C : int) : query_t * (log_t

list) * (state_t list) = {
(* ... *)

}

(* Forker.snd, but with state recording. *)
proc snd(q : query_t, c : int) : out_t * (log_t

list) * (state_t list) = {
(* ... *)

}

proc fst(C : int) : out_t * (log_t list) *
(state_t list) = {
(* ... *)
(q, log1, sts1) ← fst_partial(C);
(o, log2, sts2) ← snd(q, C);
(* ... *)

}

proc run(i : in_t, j : int) : int * int * aux_t *
aux_t * (log_t list) * (log_t list) = {
(* ... *)
((j1, a1), log1, sts1) ← fst(j + 1);
(* ... *)
(* Rewind to the j-th query. *)
q ← (nth witness log1 j).1;
st ← nth witness sts1 j;
F.setState(st);

((j2, a2), log2, sts2) ← snd(q, j + 1);
(* ... *)

}
}.



Notice that after this change, the SplitForker(F).run
procedure roughly corresponds to Rewinder(R).run2 (see
Listing 1) if we consider fst_partial and snd to be the
init and run procedures of the module R (respectively).
This allows us, after some additional refactoring, to apply
the Rewinding Lemma (Listing 2) and eventually obtain the
inequality below:

Pr[Forker(F).run(i) @ m :
Forker.j1 = j ∧ Forker.j2 = j] ≥

Pr[Runner(F, FRO).run(i) @ m : res.1 = j] ˆ 2

The final step is to undo the case analysis and express the
bound on the sum of probabilities in terms of a single event
again. For that, we use the following lemma:

lemma square_sum (n : int) (f : int → real) :
(1 ≤ n) ⇒
(forall j, 0 ≤ j < n ⇒ 0 ≤ f j) ⇒
bigi predT (fun j ⇒ square (f j)) 0 n ≥
square (bigi predT f 0 n) / n.

The proof is an easy consequence of Jensen’s inequality,
which is present in EasyCrypt’s standard Distr theory5.

E. Property Transfer

In a pen-and-paper setting, the previous section could likely
conclude our discussion of the forking lemma. Here, we need
to do additional work to make the result practically usable. The
problem is that the probability analysis of the success event
alone gives us no information about the side outputs that are
produced.

In a typical use-case, we would reason the following way:
“If the program F succeeds, its side output a satisfies some
property P; hence if the forker succeeds, both runs of F must
have been successful and thus both auxiliary outputs a1 and
a2 satisfy P.” However, in our formal setting, this is not
trivial as the two runs of F are essentially interleaved (due
to the chosen rewinding approach). We therefore provide the
property_transfer lemma that captures the implication
above:

pred P_in : in_t * glob F.
pred P_out : out_t * (log_t list).

axiom run_prop : hoare[
Runner(F, Log(FRO)).run :
P_in (i, glob F) ∧ Log.log = [] =⇒
P_out (res, Log.log)

].

hoare property_transfer :
Forker(F).run :
P_in (i, glob F) =⇒
let (j, a1, a2) = res in success j ⇒

P_out ((j, a1), Forker.log1) ∧
P_out ((j, a2), Forker.log2).

Moreover, note that the predicate P_out is defined over
out_t * (log_t list) so that we can express proper-
ties of the output with respect to the oracle log. Since the

5https://github.com/EasyCrypt/easycrypt/blob/r2025.03/theories/
distributions/Distr.ec

logs from the two executions share a prefix (see Forker
in Section IV-C), this also allows us to relate the two side
outputs — thereby replicate the reasoning that “because the
values must have been computed before the forking point, they
must be equal in both runs”. This will prove useful later in
Section V-A.

Proof Sketch. Showing that the output from the first run of
F satisfies P_out is trivial. To show the same about the
second output, we would, intuitively, want to use the following
equivalence:

equiv[
<skip> ∼ st ← F.getState(); ...; F.setState(st) :
={glob F} =⇒ ={glob F}

].

The challenge is that we do not a priori know which
getState call is relevant as we record the state multiple
times and choose one only after we obtain the output index j1.

To circumvent this problem, we again rely on case analysis
and the SplitForker module. The proof thus heavily
utilizes the intermediate results of Section IV-D.

For convenience, we also provide a phoare judgment that
combines the probability analysis with the property transfer
and some simple assertions about the two produced oracle
logs; see the full code for details.

F. Averaging over Inputs

Many security games are played by first randomly gener-
ating some parameter (say a key) and only then letting the
adversary attack. As a consequence, if we try to analyze the
success probability of a reduction involving the Forker in
such a game, the pr_fork_success lemma alone (Sec-
tion IV-D) does not suffice — it is concerned with a fixed input
whereas here, we need to average over all possibly generated
inputs.

To enable application of the forking lemma in the described
scenario, we first introduce a module type for input generators:

module type IGen = {
proc gen() : in_t

}.

And then, we create modified versions of the Forker and
Runner modules presented earlier:

module IForker(I : IGen, F : Forkable) = {
(* ... *)
proc fst() : out_t * (log_t list) * (state_t

list) = {
(* ... *)
i ← I.gen();
q ← F.init(i);
(* run F *)

}
(* ... *)

}.

module IRunner(I : IGen, S : Stoppable, O : Oracle)
= {

proc run() : out_t = {
var i, o;
i ← I.gen();
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o ← Runner(S, O).run(i);
return o;

}
}.

For these modules, we prove analogous lemmas as those
presented in Sections IV-D and IV-E (we do not list them
again for brevity).

Proof Sketch. While Bellare and Neven first prove the proba-
bility bound for a fixed input and then solve the average case
via Jensen’s inequality and basic properties of expectation, we
chose a different approach here.

We notice that the Rewinding Lemma (Section III-B, [12])
already involves some averaging, namely over all the different
states the rewound module may end in after running the
init procedure. The proof in Section IV-D therefore goes
through with almost no modifications needed even if we add
the I.gen() call as shown.

Practically, this has the implication that we prove all lemmas
directly for IForker and recover the earlier results by using
a constant input generator.

G. Random Oracle Model

Although the flexibility of the forking lemma in its general
form can be essential to handle more complex cases, we also
implement a specialized version of the lemma for the arguably
more common random oracle setting.

Specifically, we add a new IForkerRO module that pro-
vides the executed module with a standard Lazy Random
Oracle (LRO) — unlike the earlier IForker which provides
a Forgetful Random Oracle (FRO) — and prove the usual
probability bounds.

One notable accommodation we have to make for this setup
is to change the output value type of the forked module. It no
longer makes sense to return an index of a query as repeated
queries need to return the same response, i.e., we cannot freely
generate a new one after the module is rewound. Instead,
we require the forked module to return some queried value;
IForkerRO then rewinds the module to the point where
the value was first queried. This change is reflected in the
definition of the ForkableRO module type.

Proof Sketch. Internally, IForkerRO executes IForker
parametrized by the module F : ForkableRO wrapped in
Red_LRO_FRO. This module creates an overlay above the
FRO oracle that simulates LRO.

Technically, this is achieved by copying all F’s queries,
recording the responses of FRO, and fixing those that would
create an inconsistency in the simulation before passing them
to F6:

module Red_LRO_FRO(F : ForkableRO) : Forkable = {
var q : query_t
var m : log_t list

6Note that we could have also copied only F’s unique queries, i.e., return
from the continue function only when F makes a new query. This approach
appears to be more challenging as it leads to nested while loops once the
Runner module is involved.

(* proc getState(), setState(), finish() *)

proc init(i : in_t) : query_t = {
m ← [];
q ← F.init(i);
return q;

}

proc fix_resp(r : resp_t) : resp_t = {
m ← m ∥ [(q, r)];
(* Return 1st response associated with q. *)
r ← oget (assoc m q);
return r;

}

proc continue(r : resp_t) : query_t = {
r ← fix_resp(r);
q ← F.continue(r);

return q;
}

}.

A key step is to show that the above simulation is indeed
correct, formally:

equiv red_log_fro_lro_equiv :
IRunner(I, Red_LRO_FRO(F), Log(FRO)).run ∼

IRunnerRO(I, F, LRO).run :
={glob I, glob F} ∧ Log.log{1} = [] ∧ LRO.m{2} =

empty =⇒
={glob I, glob F} ∧ ofassoc Log.log{1} = LRO.m{2}.

The rest of the proof involves a simple application of the
general forking lemma.

V. APPLICATIONS

To show that our formalization of the forking lemma is
practical, we apply it in the security analysis of Schnorr
signatures. We also discuss possible future applications.

A. Schnorr Signatures

The Schnorr scheme is a digital signature scheme derived
from the interactive Schnorr identification scheme via the Fiat-
Shamir transformation. Since it was among the first examples
of usage of the original forking lemma by Pointcheval and
Stern [19] and it is still highly relevant today, it presents a
natural first test for our forking lemma.

We start by defining an EasyCrypt module, called
Schnorr, corresponding to the scheme in the random oracle
(RO) model. The definition is given for an arbitrary cyclic
group of prime order order and the RO responses are drawn
from a distribution dchal. As it is otherwise a direct copy of
the well-known pseudocode, we do not list it here and refer
the reader to the Appendix instead (Listing 3).

In the security analysis, we begin with existential un-
forgeability against key-only attacks (EUF-KOA, [14])
and move on to security against chosen message attacks
(EUF-CMA, [14]) next; both results are relative to the
hardness of the discrete logarithm (DL) problem. All men-
tioned notions are formalized in EasyCrypt’s standard library



(in the DigitalSignaturesROM7 and DLog8 theories,
respectively) and we use them without any change9. Our
adversary model includes forkable attackers only (in the sense
of Section IV).

Let us now proceed to the formulation of the first lemma,
which informally says that if an attacker A making at most
QR random oracle queries has non-negligible probability of
forging a signature in the EUF_KOA_ROM game, then the
attacker Red_KOA_DL(A) has non-negligible probability of
solving the DL problem in the Exp_DL experiment, assuming
support dchal is large enough:

lemma schnorr_koa_secure m :
Pr[Exp_DL(Red_KOA_DL(A)).main() @ m : res] ≥

Pr[EUF_KOA_ROM(LRO, Schnorr,
FAdv_KOA_Runner(A)).main() @ m : res] ˆ 2

/ (QR + 1) -
Pr[EUF_KOA_ROM(LRO, Schnorr,

FAdv_KOA_Runner(A)).main() @ m : res]
/ (size (to_seq (support dchal))).

Note that to be able to use A in the EUF_KOA_ROM
game which expects an adversary implementing the forge
procedure, we wrap it in the FAdv_KOA_Runner module
where forge = Runner(A).run.

Proof Sketch. The formal proof copies the classical argument.
First, we build a new Forkable module AdvWrapper(A)
that runs A, verifies the returned forgery, and, if valid, outputs
the critical query related to it (along with the forgery itself
as a side output). From the definition, it follows that the
probability AdvWrapper(A) returns some query is equal to
the probability that A wins the EUF_KOA_ROM game.

Next, we define the DL adversary Red_KOA_DL(A) which
utilizes ForkerRO to rewind AdvWrapper(A) to the crit-
ical query and (hopefully) obtain two related valid signatures
from it. These then suffice to extract the private key because
the proof system underlying Schnorr signatures satisfies spe-
cial soundness.

Finally, we apply the forking lemma to establish the proba-
bility bound on the success of the DL adversary. Here, we wish
to highlight how the property transfer from Section IV-E cru-
cially simplifies the proof. We show that if AdvWrapper(A)
succeeds, then the returned forgery is valid w.r.t. the produced
random oracle log. Property transfer then gives us that if
ForkerRO succeeds, both forgeries are valid, each w.r.t. its
corresponding log. Moreover, from the forking lemma, we
know that these logs share a prefix. Together, this implies that
the two forged signatures are related in a way satisfying the
preconditions of the special soundness extractor. In summary,
the property transfer allows us to focus on a single run of
AdvWrapper(A) and treat the forker as a black box.

As we outlined earlier, our second result deals with
EUF-CMA security. This implies that the adversary A is now

7https://github.com/EasyCrypt/easycrypt/blob/r2025.03/theories/crypto/
DigitalSignaturesROM.eca

8https://github.com/EasyCrypt/easycrypt/blob/r2025.03/theories/crypto/
DLog.ec

9With the exception of renaming DLogExperiment to Exp_DL.

additionally allowed to make up to QS signature queries to the
signature oracle BoundedSO which stops responding after
this limit is reached. It is also worth mentioning how we
provide A with this oracle; we define the adversary type below:
module type FAdv_CMA (SO : SOracle_CMA_ROM) = {
include Stoppable
include Rewindable

}.

As can be seen, we combine the Stoppable interface
with EasyCrypt’s built-in method of oracle access, the two
approaches can be mixed and do not necessarily clash with
each other.
lemma schnorr_cma_secure m :
let pr_cma_succ =
Pr[EUF_CMA_ROM(LRO, Schnorr, FAdv_CMA_Runner(A),

BoundedSO).main() @ m : res] in
let pr_dl_succ =
Pr[Exp_DL(Red_KOA_DL(Red_CMA_KOA(A))).main()

@ m : res] in
pr_cma_succ ≥ QS * (QS + QR) / order ⇒
pr_dl_succ ≥
(pr_cma_succ - QS * (QS + QR) / order) ˆ 2 /
(QR + 1) - 1 / (size (to_seq (support dchal))).

Proof Sketch. As the formulation of the lemma suggests, we
reduce the EUF-CMA setting to the EUF-KOA case. This
is in contrast to some pen-and-paper proofs, which reduce
EUF-CMA directly to DL — our approach is more layered.
It also implies that the proof is uninteresting from the point
of view of forking as we have already applied the lemma
of interest in the preceding proof. This proof does, however,
further show how one can work with Stoppable modules.

We also note that the EUF-CMA-to-EUF-KOA reduction
was formalized as part of a previous work on the Fiat-Shamir
transformation with aborts [4]. Our problem is considerably
simpler as the Schnorr identification scheme always terminates
successfully (with honest parties).

The definition of the reduction can be found in the
Red_CMA_KOA module which resembles the Red_LRO_FRO
module seen in Section IV-G. We again build a certain overlay
over the provided random oracle by replaying A’s queries and
modifying the received responses, if necessary, before passing
them to A. This method enables us to gain control over the
oracle and program it freely as required by the honest verifier
zero knowledge simulator associated to the Schnorr protocol
which we use to respond to A’s signature queries.

It may, of course, happen that the overlay already contains
an entry for the query whose response we need to program and
the simulation fails as a result. We use the fel (Failure Event
Lemma) tactic to bound the probability of this happening
during a run of Red_CMA_KOA(A). Conveniently, this tactic
can be applied to a sequence of statements (as opposed to a
single call to an abstract module); having the execution of A
span across multiple calls (init, continue in a loop, and
finish) therefore poses no significant hurdle.

To conclude the proof, it remains to show that if
A wins EUF_CMA_ROM, then Red_CMA_KOA(A) wins
EUF_KOA_ROM (provided the bad event does not occur).
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Here, the main challenge is that in the former game, the
forgery is verified against a RO which contains queries made
by the signature oracle whereas in the latter game, the overlaid
RO is used which may not be defined for these queries (unlike
the overlay). Ultimately, this difference does not matter as a
forgery for an already signed message is invalid. However,
expressing the relationship between the RO and its overlay
forms a substantial part of the formal proof.

B. Future Work

Given the broad use of the forking lemma, there are multiple
directions in which we could extend our current work.

The most obvious choice is to connect our results on
the security of Schnorr signatures with a prior work on
the interactive Schnorr protocol [2] and hash functions10 in
Jasmin [1], a framework designed for “high-assurance and
high-speed cryptography”. This way, by means of semantics-
preserving extraction of Jasmin to EasyCrypt [3], we could
create a fully verified implementation of the Schnorr signature
scheme. In the same vein, we could also build on the ongoing
Ed25519 Jasmin implementation effort11.

Another option is to test the limits of our formalization
on one of the Schnorr-based multi-party signature schemes
from the recent series of works in this area. Some schemes
apply the forking lemma in non-trivial ways (such as forking
at two different points [18]), while others rely on various
modifications of this lemma [16].

Finally, we could also continue with the formalization
of security properties of zero-knowledge protocols [13] and
generalize the statements from the previous section to the
setting where the Fiat-Shamir transformation is applied to
an arbitrary sigma protocol satisfying special soundness and
honest verifier zero knowledge.

VI. CONCLUSION

This paper introduced the forking technique into EasyCrypt.
We first defined an appropriate model for forkable algorithms.
Next, we formalized a version of the general forking lemma.
Finally, we showed how our result can be used to derive the
standard bound on security of Schnorr signatures.

To our knowledge, no previous work focused on forking
in EasyCrypt. Our work therefore crucially expands what is
in reach of this popular verification framework and we hope
it will serve as a stepping stone towards formal analysis of
new, more involved cryptographic constructions — notably
threshold signatures and zero-knowledge proofs.

10https://github.com/formosa-crypto/libjade
11https://github.com/formosa-crypto/formosa-25519/pull/30
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APPENDIX

(* Import definiton of a cyclic "group" of prime
* "order" with a generator "g" from EasyCrypt’s
* standard library. The type "exp" corresponds to
* ZZ/"order". *)

type com_t = group. (* Commitment *)
type chal_t = exp. (* Challenge *)
type resp_t = exp. (* Response *)
type trans_t = (* Transcript *)

com_t * chal_t * resp_t.

type pk_t = group.
type sk_t = exp.

type msg_t.
type sig_t = com_t * resp_t.

op [lossless uniform] dnonce : exp distr.
op [lossless uniform] dsk : sk_t distr.
op [lossless uniform] dchal : chal_t distr.

op verify (pk : pk_t) (t : trans_t) =
let (com, chal, resp) = t in
g ˆ resp = com * (pk ˆ chal).

module (Schnorr : Scheme_ROM) (RO : Oracle) = {
proc keygen() : pk_t * sk_t = {
var sk, pk;
sk←$ dsk;
pk ← g ˆ sk;
return (pk, sk);

}

proc sign(sk : sk_t, m : msg_t) : sig_t = {
var pk, nonce, com, chal, resp;

pk ← g ˆ sk;
nonce←$ dnonce;
com ← g ˆ nonce;
chal ← RO.get(pk, com, m);
resp ← nonce + sk * chal;

return (com, resp);
}

proc verify(pk : pk_t, m : msg_t, s : sig_t) :
bool = {
var com, resp, chal;

(com, resp) ← s;
chal ← RO.get(pk, com, m);

return verify pk (com, chal, resp);
}

}.

Listing 3. Schnorr signature scheme
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