
Zinnia: An Expressive and Efficient Tensor-Oriented
Zero-Knowledge Programming Framework

ZHANTONG XUE, Hong Kong University of Science and Technology, China
PINGCHUAN MA

∗
, Hong Kong University of Science and Technology, China and CipherInsight Limited,

China
ZHAOYU WANG, Hong Kong University of Science and Technology, China
SHUAI WANG

∗
, Hong Kong University of Science and Technology, China and CipherInsight Limited,

China

Zero-knowledge proofs (ZKPs) are cryptographic protocols that enable a prover to convince a verifier of a
statement’s truth without revealing any details beyond its validity. Typically, the statement is encoded as an
arithmetic circuit, and allows the prover to demonstrate that the circuit evaluates to true without revealing
its inputs. Despite their potential to enhance privacy and security, ZKPs are difficult to write and optimize,
limiting their adoption in machine learning and data science. To address these challenges, we introduce Zinnia,
a zero-knowledge programming framework with high utility, expressiveness and efficiency for tensor-oriented
computation. Zinnia provides a high-level programming language that enables developers to easily write ZKP
programs, and it employs a novel symbolic execution-inspired approach to extracting semantics from these
programs to generate arithmetic circuits. Zinnia supports tensor-oriented computations and provides a rich
set of programming constructs, optimizations, and a powerful static type system for expressing and optimizing
complex logic. We evaluate Zinnia across 25 real-world programming tasks and a user study, comparing it to
existing solutions, including DSLs and zkVMs (Halo2, SP1, and RISC0). Our results demonstrate that Zinnia
outperforms these baselines in utility, expressiveness, and efficiency, with a statistically significant reduction
in development time, 2 − 3× shorter code length, 19.3% smaller circuit size, and up to 245× faster proving time
compared to zkVMs, paving the way for practical ZKP applications in various domains.

1 INTRODUCTION
Zero-knowledge proofs (ZKPs) are cryptographic protocols enabling a prover to convince a verifier
of a statement’s truth without disclosing any details about the statement itself [8]. Typically, the
statement is encoded as an arithmetic circuit, and allows the prover to demonstrate that the circuit
evaluates to true without revealing its inputs. For example, in cryptocurrencies, ZKP has been
used to enhance blockchain efficiency to reduce on-chain smart contract verification costs and
improve throughput by converting Solidity programs into equivalent arithmetic circuits [10] (e.g.,
zkEVM [30]).1 Rather than executing the contract, a blockchain node verifies the circuit-generated
proof which shows that the contract would have executed correctly and is way more efficient than
executing the contract itself.
For most ZKP systems, the process involves generating a proof that an arithmetic circuit C

evaluates to true for a given input 𝑖 and witness𝑤 . The prover generates a proof 𝜋 , and the verifier
checks its validity. Upon verification, the verifier is convinced that the prover knows a witness
𝑤 such that C(𝑖,𝑤) is satisfiable. Typically, C is a set of polynomial equations over finite fields.
However, two major challenges remain: first, arithmetic circuits are difficult to write and debug

∗Corresponding author
1In the context of this paper, unless otherwise specified, we use the term ZKP to refer to zk-SNARKs.

Authors’ addresses: Zhantong Xue, Hong Kong University of Science and Technology, Hong Kong, China, zxueai@cse.ust.hk;
Pingchuan Ma, Hong Kong University of Science and Technology, Hong Kong, China and CipherInsight Limited, Hong
Kong, China, pmaab@cse.ust.hk; Zhaoyu Wang, Hong Kong University of Science and Technology, Hong Kong, China,
zwangjz@cse.ust.hk; Shuai Wang, Hong Kong University of Science and Technology, Hong Kong, China and CipherInsight
Limited, Hong Kong, China, shuaiw@cse.ust.hk.

, Vol. 1, No. 1, Article . Publication date: March 2025.

HTTPS://ORCID.ORG/0009-0000-3419-9431
HTTPS://ORCID.ORG/0000-0001-7680-2817
HTTPS://ORCID.ORG/0009-0009-6892-1264
HTTPS://ORCID.ORG/0000-0002-0866-0308
https://orcid.org/0009-0000-3419-9431
https://orcid.org/0000-0001-7680-2817
https://orcid.org/0009-0009-6892-1264
https://orcid.org/0000-0002-0866-0308

2 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

compared to high-level programming languages, and second, optimizing ZKP performance demands
specialized expertise in cryptography and circuit design.
To simplify arithmetic circuit development, various ZKP languages and compilers have been

introduced. These compilers allow developers to write high-level programs 𝑝 and transform them
into low-level arithmetic circuits C, such that ⟦𝑝⟧⟨𝑥,𝑤⟩ = 𝑦 ⇐⇒ C(⟨𝑥,𝑦⟩ ,𝑤) is satisfiable, where
⟨𝑥,𝑤⟩ represents the public and private inputs, respectively, and 𝑦 is the program’s output.
ZKP compilers generally fall into two categories: zkVM-based solutions and domain-specific

languages (DSLs). zkVMs, such as SP1 [22], RISC Zero [39], and Cairo [33], typically follow a
two-step process: (1) compiling the program into a standard instruction set architecture (ISA),
such as RISC-V, using the established LLVM infrastructure, and (2) converting the ISA instructions
into arithmetic circuits. In contrast, DSLs directly compile high-level programs (written in a DSL)
into arithmetic circuits without an intermediate ISA. However, achieving both efficiency and
expressiveness simultaneously remains challenging with either approach. zkVM-based solutions
excel in expressiveness, which can compile nearly any Rust program into an arithmetic circuit, but
they are optimized for general-purpose use and often lack tensor-specific optimizations. Besides, this
process typically involves an intermediate STARK proof system and a costly translation to SNARK
for on-chain deployment. Conversely, DSLs prioritize efficiency but compromise on expressiveness,
and often lack support for modern programming constructs like branches and loops, as well as
native tensor (or general array) operations.
Given these constraints, developers face a trade-off between expressiveness and performance

when building tensor-oriented ZKP applications. Consequently, they often resort to manually
crafting low-level arithmetic circuits to meet their needs [11, 20]. In this paper, we present Zinnia,
an expressive and efficient zero-knowledge programming framework tailored for tensor-oriented
computations. Zinnia features a DSL that allows developers to write high-level tensor operations
using standard Python syntax, which are then compiled into optimized arithmetic circuits. Recall
that an arithmetic circuit is fundamentally a set of polynomial equations over finite fields. The
primary challenge lies in directly compiling modern programming constructs into static arithmetic
circuits. To overcome this, we adopt a symbolic execution-inspired approach: we interpret program
behavior in the symbolic domain, encode control-flow information (i.e., path conditions) into
symbolic formulas, and generate corresponding arithmetic circuits. Unlike Python, Zinnia enforces
static type checking to ensure tensor operations are well-defined at compile time. To support
this, we design a custom type system and type inference mechanism to precisely define program
behavior within Zinnia. To maintain flexibility akin to Python, Zinnia introduces a variable
shadowing scheme, and allows users to redefine variables within the same scope. Our efforts to
balance expressiveness and performance extend to the implementation. Specifically, we provide
a large suite of built-in functions (e.g., Python native build-in functions, numerical operations,
and tensor operators in the NumPy ecosystem) to facilitate seamless migration and development
of tensor-oriented ZKP applications. For performance, we incorporate quantization for efficient
real-number arithmetic and apply compilation optimizations, such as constant folding, to reduce
the number of generated arithmetic constraints. In summary, we make the following contributions:

• We introduce Zinnia, an expressive and efficient tensor-oriented zero-knowledge program-
ming framework . Zinnia features a DSL that enables developers to use modern programming
constructs (e.g., dynamic control flows) within Python syntax.
• To achieve this, Zinnia adopts a symbolic execution-inspired approach to compile programs
directly into optimized arithmetic circuits. It incorporates a tailored type system and variable
shadowing scheme to balance expressiveness with static typing, alongside a comprehensive
suite of built-in functions, quantization, and compilation optimizations.

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 3

• We evaluate Zinnia against state-of-the-art ZKP frameworks, including zkVMs and DSLs,
across 25 programming tasks spanning diverse applications and a user study. Zinnia demon-
strates a statistically significant reduction in development time, 2 − 3× shorter code length,
19.3% smaller circuit size, and up to 245× faster proving time compared to zkVMs.

2 BACKGROUND AND RELATEDWORK
2.1 Zero-Knowledge Proofs (ZKPs)
ZKPs are cryptographic protocols that allow a prover to convince a verifier of the truth of a
statement without revealing any information beyond its validity [17]. Among these, zk-SNARKs
(Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) are a family of ZKP protocols
that offer succinct proofs for computational statements. These protocols enable the prover to
generate a universal, non-interactive proof that is both concise and efficiently verifiable by the
verifier. Currently, three prominent classes of non-interactive ZKP protocols are under active
development: Groth16 [19], PLONK [9], and STARK [7]. These protocols differ in their arithmetic
circuit representations, proof generation techniques, and underlying threat models. Despite these
distinctions, they all operate over finite fields F𝑝 , based on integers and polynomials. Specifically,
their arithmetic circuits are restricted to addition and multiplication operations, with each protocol
imposing unique constraints on the circuit structure. Note that interactive ZKPs [37, 40], while
significant, are orthogonal to our work and not reviewed here.

2.2 ZKP Library, DSL and VM
Manually constructing arithmetic circuits is tedious and error-prone. To facilitate the development of
ZKPs, various programming frameworks have been introduced, including libraries, domain-specific
languages (DSLs), and virtual machines (VMs). Libraries such as Halo2 [14] and LibSnark [31]
provide programmatic interfaces that allow developers to construct arithmetic circuits declaratively
within general-purpose languages like Rust and C++. More importantly, we introduce DSLs and
VMs that offer alternative approaches to ZKP development below.
cDSLs and pDSLs for ZKP Circuit Generation. DSLs offer higher-level abstractions tailored
specifically for ZKP development, enabling more intuitive circuit design. DSLs for ZKP circuit
generation can be broadly categorized into constraint-based and program-based approaches [5].
Constraint-based DSLs (cDSLs, e.g. Circom [5]) function similarly to declarative libraries, where
users explicitly define constraints that are then compiled into arithmetic circuits. Developers must
also manually handle witness computation — evaluating intermediate values derived from secret
inputs to ensure that circuit constraints are satisfied before generating a proof. Program-based DSLs
(pDSLs, e.g. ZoKrates [15] and Leo [12]) provide a more expressive, high-level programming model,
allowing developers to write programs that are automatically transformed into arithmetic circuits
and witness computations. This approach abstracts many of the low-level details of constraint
management and makes it easier to express complex logic. Despite this simplification, due to the
inherent limitations of static arithmetic circuits, pDSLs often lack support for dynamic control flows
and state transitions (e.g., loops, conditionals) that are common in general programming languages.
Our work falls into the category of pDSLs and aims to address these limitations by providing a
more expressive and efficient programming framework for tensor-oriented computations.
Zero-Knowledge VirtualMachines (zkVMs). zkVMs, such as SP1 [22], Cairo [33], and RISC0 [39],
provide an alternative approach to ZKP development by allowing developers to write programs
in familiar high-level languages like Rust. Instead of manually constructing arithmetic circuits,
zkVMs execute programs within a software emulator of CPU instruction set. Loosely speaking, a
common zkVM workflow involves first running the program to generate an execution trace, which

, Vol. 1, No. 1, Article . Publication date: March 2025.

4 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

Table 1. Conceptual comparison with other solutions (Legend:✓= yes, ×= no, ◦= partially, ⊘= not applicable).

Zi
nn

ia

pD
SL
s

Le
o
[1
2]

Lu
rk

[3
]

Zo
Kr

at
es

[1
5]

ZK
Pr
og
ra
m
m
in
g
Li
br
ar
ie
s
&
cD

SL
s

H
al
o2

[1
4]

Ci
rc
om

[5
]

ZK
VM

s

SP
1
[2
2]

RI
SC

0
[3
9]

Ca
iro

[3
3]

ZK
M
L
Li
br
ar
ie
s

ez
kl

[2
0]

ZK
M
L
[1
1]

Control
Flows

Loops ✓ ✓ ✓ ✓ ◦ ◦ ✓ ✓ ✓ ⊘ ⊘
Loop Control ✓ × ⊘ × ◦ ◦ ✓ ✓ ✓ ⊘ ⊘
Cond. Branch ✓ ◦ ⊘ ◦ ◦ ◦ ✓ ✓ ✓ ⊘ ⊘

UDFs ✓ ✓ ✓ ✓ ◦ ◦ ✓ ✓ ✓ ⊘ ⊘

Tensor
-oriented

Indicing ✓ ✓ × ✓ ◦ ◦ ✓ ✓ ✓ ✓ ✓
Slicing ✓ × × ✓ ◦ × ✓ ✓ ✓ ✓ ✓
Tensors ✓ × × ✓ ◦ ◦ ✓ ✓ ✓ ✓ ✓

Array Manip. ✓ × × × × × × × × ✓ ✓
Array Comp. ✓ × × × × × × × × ✓ ✓

Numerical
Comp.

Real Arith. ✓ × × × ◦ ◦ ✓ ✓ ✓ ✓ ✓
Non-linears ✓ × × × ◦ ◦ ✓ ✓ ✓ ✓ ✓

Type
System

Type Inference ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⊘ ⊘
Var. Shadow. ✓ × × ✓ ✓ × ✓ ✓ ✓ ⊘ ⊘

records the sequence of computational steps (i.e., CPU cycles). A proof is then constructed to verify
that each state transition (i.e., a state consisting of the emulated CPU registers and memory) in the
trace follows the expected program logic. This approach significantly enhances the usability of
ZKP development by enabling developers to leverage existing programming paradigms and tools
with complete control flow capabilities. However, zkVMs comes with a performance overhead due
to the computational cost of CPU emulation and STARK arithmetization, as will be shown in Sec. 7.

2.3 Zero-Knowledge Machine Learning
As a closely related field, zero-knowledge machine learning (ZKML) aims to leverage ZKPs to enable
secure and privacy-preserving machine learning applications. ZKML allows a model owner to prove
the correctness of the inference process without disclosing the model weights. Several initiatives,
such as ZKML [11, 35], ezkl [20] and ZEN [16], have explored the integration of ZKPs with machine
learning. They have introduced specialized and hand-crafted circuit to accelerate machine learning
primitives, e.g., the ReLU activation function, matrix multiplication, and convolutional layers. Our
solution, Zinnia, is designed to complement these libraries by providing a more expressive and
efficient programming framework with automatically-optimized tensor-oriented computations.

3 MOTIVATION AND RESEARCH OVERVIEW
3.1 Limitations of Existing Work
We present a conceptual comparison of Zinnia with other solutions in Table 1 and highlight key
language features that are desirable yet currently lacking. Modern programming languages provide
a rich set of control flow constructs, such as loops, conditional branches, and user-defined functions.
However, both pDSL and cDSL solutions often lack full support for these constructs. For example,
Leo [12] does not support loop control statements like break and continue, while Lurk relies on
functional recursion to implement loops. This limitation arises from the challenge of encoding
control flow logic into arithmetic circuits, which restricts the expressiveness of these languages.
Efficient handling of structured data is also critical for data processing tasks. For instance, Python
(with NumPy) offers convenient array access and manipulation features, allowing developers
to use slicing for element access and perform advanced array computations. Such capabilities,
however, are typically absent in existing ZKP solutions. Similarly, numerical computations are
fundamental to data science tasks, yet most existing solutions focus on integer arithmetic and lack

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 5

input_int x
input_int y
mov sum 0
cmp x 0
jeq SKIP_ADD
add sum x
add sum y

SKIP_ADD:
cmp sum y
assert_eq

Pseudo Assembly Program
x = input_int()
y = input_int()
sum = 0
if x != 0:
 sum = x + y
assert sum == y

High-Level ProgramSymbolic Comp. StmtsPseudo Declarative ZKP Program

x = input_int()
y = input_int()
sum = 0
inv = (x != 0) ? (1 / x) : 0
c = x * inv
constrain inv * x == c
tmp = x + y
constrain x + y == tmp
sum_new = c*tmp+(1-c)*sum
constrain c*tmp+(1-c)*sum == sum_new
constrain sum_new == y ZinniaCCTranslator

Traditional
Compiler

Fig. 1. An Illustrative Example of Zinnia’s Compilation Approach. Comparison of Zinnia’s compilation

for static representation of dynamic control flows versus compilation for Turing-complete machines.

native support for real-number operations. Non-linear functions (e.g., sqrt, exp) are particularly
difficult to express in these frameworks. Finally, a flexible type system is essential for developing
concise and expressive code. Automatic type inference and variable shadowing, common in modern
programming languages and zkVMs, are not ubiquitous in existing DSL solutions.

While zkVMs address many of these shortcomings by emulating a full CPU, they incur significant
overhead due to this emulation layer and are not optimized for data-intensive, tensor-oriented
computations. In contrast, ZKML libraries provide specialized circuits for tensor operations and
numerical computations but fall short in supporting general control flow constructs. Zinnia aims
to bridge this gap by introducing a program-based DSL that prioritizes usability and expressiveness
while preserving computational efficiency.

3.2 Research Overview and Technical Contributions
Study Scope. The aforementioned limitations of existing solutions motivate our research direc-
tions, which are centered around enhancing the usability, expressiveness, and efficiency of ZKP
development. We particularly focus on supporting data-intensive, tensor-oriented operations and
numerical computations (e.g. real-numbers and non-linear functions). This is important and timely,
as these capabilities are essential for various machine learning and data analysis tasks, which are
increasingly being applied in privacy-preserving settings. Zinnia aims for software developers
and machine learning practitioners, who are not cryptography experts, to write ZKP programs
with significantly less effort and time compared to existing solutions.2 Today, these tasks are often
challenging and time-consuming due to the lack of high-level programming abstractions and the
need to manually construct arithmetic circuits. Notice that we do not aim to replace zkVMs, which
are suitable for general-purpose ZKP systems, but rather to complement them by providing a more
efficient and expressive alternative for data-intensive computations.
Direct Compilation of Dynamic Control Flows. Zinnia features compiling dynamic control
flows to static arithmetic circuits. High-level programming languages, such as Python and Rust,
provide a rich set of control flow constructs. As aforementioned, zkVMs support these control-flow
constructs at the cost of an additional emulation layer. In Zinnia, we advocate for a direct compila-
tion approach of these constructs to static arithmetic circuits while alleviating the performance
overhead associated with zkVMs. We anticipate that this approach will not only enhance the
usability and expressiveness of ZKP development but also maintains the efficiency of SNARK-based
systems by avoiding emulation overhead in zkVMs.
Despite the promising prospects of direct compilation, the transformation of dynamic control

flows to static arithmetic circuits is non-trivial. To understand it, we present an illustrative example

2In other words, we do not require users of Zinnia to understand the underlying cryptographic protocols.

, Vol. 1, No. 1, Article . Publication date: March 2025.

6 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

in Figure 1. In this example, when being compiled directly to assembly program (rightmost side
of Figure 1), the control flow can be easily represented by multiple jump instructions. However,
when compiled to arithmetic circuits (leftmost side of Figure 1), representing such control flow
(which is often dynamic and runtime-dependent) poses a fundamental challenge. This is because
arithmetic circuits, which encode computations as a fixed directed acyclic graph, does not provide
jump instructions where we cannot inherently accommodate the dynamic nature of control flows.
One key insight of our approach draws upon symbolic execution [4, 21], a program analysis

technique that systematically explores all feasible execution paths using symbolic rather than
concrete values. By encapsulating the dynamic semantics of high-level programs within a unified
static representation, Zinnia effectively consolidates execution paths into a single static arithmetic
circuit. For instance, as depicted in Figure 1, our methodology leverages symbolic execution to
capture the path conditions of conditional branches and employs a symbolic selection expression
𝜎 (𝑐, 𝑥,𝑦) = 𝑐𝑥 + (1 − 𝑐)𝑦 to compactly represent conditional assignments (i.e., if c then x
else y) in the generated circuits. This symbolic representation ensures that the generated circuit
accurately reflects the original program’s behavior. Those representations can be easily compiled
into arithmetic circuits, thereby bridging the gap. Shortly in Section 5, we will provide a principled
formalism for this approach that recursively compiles the control flow constructs into arithmetic
circuits; and in Sec. 7, our empirical evaluation validates its superiority over zkVMs with at least
25.4% and 5.0% advantages in proving and verifying times, respectively.
Usability and Expressiveness. As shown in Table 1, Zinnia provides a comprehensive set
of control flow constructs. This enables developers to articulate complex computational logic
in a familiar and intuitive manner. Moreover, by incorporating advanced tensor-oriented and
numerical computation functionalities, Zinnia features the ever first support for data-intensive,
tensor-oriented computations in ZKP development. The type system of Zinnia further enhances
the development workflow by promoting concise and expressive code. We view these features as
essential for offering high usability and expressiveness in ZKP development. As will be shown
in Sec. 7, Zinnia supports a wide range of real applications that are frequently encountered in
practice yet challenging to implement using existing solutions, including machine learning, data
analysis, and cryptographic protocols. Human study in Sec. 7 further validates the usability and
expressiveness of Zinnia by demonstrating that developers can write complex ZKP programs with
significantly less effort and time compared to existing solutions.
Efficiency. Zinnia offers high computational efficiency, generating compact and optimized arith-
metic circuits. This can be attributed to the direct compilation paradigm and the integration of a suite
of compiler Intermediate Representation (IR)-level optimizations. Apparently, the direct compilation
paradigm can principally eliminate the performance overhead associated with zkVMs, as it directly
compiles dynamic control flows to static arithmetic circuits. We perform further optimizations (e.g.,
constant folding and symbolic state simplification) over the intermediate symbolic representation
to reduce redundant operations and streamline the overall circuit structure. Moreover, a direct
compilation methodology alone does not yield the optimal circuits. Similar to standard program
compilation pipeline, it necessitates optimization passes to reduce redundant operations and stream-
line the overall circuit structure. To this end, we follow the pipeline of traditional compilers and
introduce an IR to represent the computation statements in the static single assignment (SSA) form.
On top of this IR, we implement data flow analysis and a suite of standard optimization passes,
such as constant propagation, dead-code elimination, and common subexpression elimination
detailed in Sec. 5. As we will demonstrate in Sec. 7, Zinnia outperforms existing solutions in both
constraint count and proving time, achieving a 19.3% reduction in constraint count and a 4.9%
reduction in proving time compared to the Halo2 baseline. Our ablation study further highlights
the impact of these optimizations, showing a 46.0% increase in constraint count when they are

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 7

removed. Additionally, Zinnia’s direct compilation approach proves to be faster than the fastest
zkVMs over 25.4× in proving time and over 5.0× faster in verification time.

4 THE ZINNIA PROGRAMMING FRAMEWORK

Python Lexer and Parser

The ZinniaCC

ZinniaIR (Symbolic-
Computation Statements)

IR Optimizers

Optimized ZinniaIR

Built-in IR-source Translator

Target Backend and Prover

Target Backend Compiler

Zinnia

zk-SNARKs Circuit

 zk-SNARKs Prover

The Proof Verifier

zk-SNARKs Verifier

Abstract Syntax Tree

zk-SNARKs Proof

Zinnia
Source
Code

Target
Code

Inputs

The Zinnia Framework Core

Workflow

zk-SNARK Based ZKP Backends

Python-like Syntax ZinniaCC API

High-Level Prog. Built-in Func & Op.

User Interface

ZinniaCCPython Lexer&Parser

Zinnia IR IR Optimizers

Core

Halo2 TranslatorCircom Translator

FP ArithmeticRange Checks

Circuit Synthesizer

Zinnia Architecture

Fig. 2. The Architecture and Workflow Diagram of Zinnia.

Zinnia Architecture. The architectural design of Zinnia, depicted in Figure 2, is structured
into three primary layers: the User Interface, the Zinnia Core, and the Circuit Synthesizer. At the
topmost layer, the Zinnia’s User Interface provides a Python-compatible syntax for developing
ZKP programs. It enables users to write high-level Zinnia programs with dynamic control-flow
constructs (e.g., branching and looping) and user-defined functions. As detailed in Sec. 6, Zinnia
implements a set of commonly-used built-in functions and tensor operators from the Python and
NumPy ecosystems, enhancing usability for data science and machine learning tasks.

With the user-written program, the Core layer parses the program, constructs the abstract syntax
tree (AST), and symbolically executes it to generate an Intermediate Representation (ZinniaIR).
The IR represents the program’s computations symbolically in SSA form, on which optimization
techniques are applied to minimize the number of IR statements and enhance performance.
Finally, the Circuit Synthesizer layer generates low-level source code for target backends from

ZinniaIR, including Halo2 [14] (with experimental support for Circom [5]). This layer also imple-
ments real number arithmetic and supports range checks such that certain intrinsic functions in
IR can be represented in an efficient and compact form. The generated code is then passed to the
respective backends to produce arithmetic circuits for the zk-SNARKssystem.
ZinniaWorkflow.As depicted in the right side of Figure 2, Zinnia can be smoothly integrated into
existing development pipelines for privacy purposes. Users, such as data scientists and developers
in a privacy-sensitive domain, can write Zinnia programs for their privacy-preserving machine
learning and data analytics tasks. The ZinniaCC compiler translates these programs into ZinniaIR,
which is then optimized by IR Optimizers. The Circuit Synthesizer generates backend-specific
code, which is compiled into arithmetic circuits by the target backend (e.g. Halo2). Then, with the
compiled circuits, users can provide witness inputs to generate proofs and verification keys with
the help of a ZKP prover. Lastly, the generated proofs can be verified a ZKP verifier. Notice that
both the prover and verifier systems are not part of the Zinnia framework. Currently, Zinnia
supports the widely adopted Halo2 prover and verifier systems [14]. However, Zinnia is designed
to be backend-agnostic, with the flexibility to support additional ZKP systems in the future (e.g.,
experimental support is provided for Circom [5]).

, Vol. 1, No. 1, Article . Publication date: March 2025.

8 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

Program 𝑃 ::= 𝜖 | 𝑠; 𝑃
Statement 𝑠 ::= 𝑠1; 𝑠2 | 𝑒 | if 𝑒 : 𝑠1 else : 𝑠2 | if 𝑒 : 𝑠

| for 𝑖𝑑 in 𝑒 : 𝑠 | while 𝑒 : 𝑠 | continue | break | pass
| return 𝑒 | assert 𝑒 | 𝑖𝑑 ← 𝑒 | 𝑒1 [𝑒2] ← 𝑒3 | 𝑠 input | 𝑠func

Func. Declare 𝑠func ::= 𝑖𝑑func (𝑖𝑑1 : 𝑡1, 𝑖𝑑2 : 𝑡2, . . . , 𝑖𝑑𝑁 : 𝑡𝑁) → 𝑡𝑟 : 𝑠
Input Stmt. 𝑠 input ::= input_public(𝑖𝑑, 𝑡) | input_private(𝑖𝑑, 𝑡) | input_hashed(𝑖𝑑, 𝑡)

Literal 𝑐 ::= INTEGER | FLOAT | True | False | None
Type 𝑡 ::= Integer | Boolean | Float | None | Tensor[𝑡, (𝑒1, 𝑒2, . . . , 𝑒𝑁)]

| List[𝑡1, 𝑡2, . . . , 𝑡𝑁] | Tuple[𝑡1, 𝑡2, . . . , 𝑡𝑁]
Expression 𝑒 ::= 𝑖𝑑 | 𝑐 | 𝑡 | 𝑒1 ⊗ 𝑒2 | ⊙ 𝑒 | 𝑒1 [𝑒2] | [𝑒1, 𝑒2, . . . , 𝑒𝑁]

| (𝑒1, 𝑒2, . . . , 𝑒𝑁) | 𝑖𝑑 (𝑒1, 𝑒2, . . . , 𝑒𝑁) | 𝑜𝑝 (𝑒1, 𝑒2, . . . , 𝑒𝑁)
Binary Op. ⊗ ::= + | − | ∗ | /| % | ∗∗ | @ | // | and | or
Unary Op. ⊙ ::= + | − | not

Built-in Op. 𝑜𝑝 ::= list | tuple | range | iter | get_item | new | hash | . . .
Identifier 𝑖𝑑 ::= IDENTIFIER

Fig. 3. The Syntax of Zinnia.

Zinnia Language. The Zinnia DSL is specifically designed to simplify the development of ZKP
programs within the zk-SNARKs context. By offering dynamic control-flow constructs and built-in
functions, Zinnia seeks to provide both efficiency and a programming environment that is familiar
to developers. We present the syntax of our DSL in Figure 3, which is generally compatible with
Python and NumPy conventions, making the language both familiar and intuitive for programmers,
data engineers, and machine learning practitioners. In other words, Zinnia programs are also valid
Python programs, but not vice versa. To make the resulting circuit manageable and efficient for
ZKP systems, we make a few modifications and restrictions as follows.
First, Zinnia requires explicit type annotations for the parameters and return values of all

functions, which allow us to decide suitable circuit representations at compile time. Second, Zinnia
supports a limited set of base types in comparison to Python, including Integer, Float, Boolean,
and None. However, characters, strings, and bytes are not supported as the mainstream applications
of ZKP systems do not require them and representing string/byte manipulation in circuits is very
costly. Likewise, Zinnia do not offer support for advanced data structures such as dictionaries and
sets. When these base types or data structures are needed, we recommend users to preprocess the
data before feeding it into Zinnia. Third, since Zinnia has to be compiled into static arithmetic
circuits, it does not support dynamic memory allocation. In that sense, users must declare the size
of tensors and arrays at compile time. Finally, a ZKP program typically requires a set of public
inputs, private inputs, and hashed inputs. In Zinnia, we offer Public/Private/Hashed for handy
annotations, which will be used by the compiler to determine the visibility of the inputs.

In summary, the DSL is tailored to provide a familiar and expressive programming environment
for developing ZKP programs. In the next section, we will show how to compile programs written
in this DSL into arithmetic circuits using the ZinniaCC compiler.

5 THE ZINNIA CIRCUIT COMPILER (ZINNIACC)
As noted in Sec. 3, ZinniaCC employs a symbolic execution-inspired approach to translating
dynamic program logic into the static arithmetic circuits required for SNARKs. Below, we first
introduce the symbolic state managed by ZinniaCC in Sec. 5.1, which maintains the program’s
state symbolically. Then, in Sec. 5.2, we introduce the operational semantics of our DSL and show
how ZinniaCC constructs static, fixed-flow computation statements based on the symbolic state,
which is represented by ZinniaIR and would be translated into declarative ZKP programs including

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 9

Frame

Environment () (Linked List of Frames)

Program
Frame

The Symbolic State () Symbolic Computation
 Statements

Symbolic Memory

Frame
Var Table Symbolic Path Conditions Sets

Other Frame-specific
Additional Info

Fig. 4. Components of ZinniaCC’s Symbolic State. This figure uses E to denote symbolic expressions,

L for memory locations, op for computational operators, and 𝑖𝑑 for identifiers. Further notations will be

explained as the components are detailed.

libraries and cDSLs. Finally, we discuss the type system of ZinniaCC with built-in types, static
typing mechanism, and type inference capabilities with variable shadowing feature in Sec. 5.3.

5.1 The Symbolic State
In a typical program execution, the “state” represents the values of all variables, the program counter,
and the program memory. The state evolves as the program executes, and reflects the program’s
control flow and data manipulation [32]. In a similar vein, Zinnia maintains a state at compile time
while it is symbolic in nature. As shown in Figure 4, the symbolic state includes Environment (E),
Symbolic Memory (M), and Computation Statements Set (C). In a nutshell, the Environment models
the program’s scope and control flow, which allows ZinniaCC to track the program’s state without
concrete inputs. The Symbolic Memory maps memory addresses to symbolic expressions, and
the Computation Statements Set packs all symbolic expressions as the compilation result. In the
following, we elaborate on each component of the symbolic state. The symbolic state is illustrated
in Figure 4, and we will detail each component below.
Environment E. The environment E models the program’s scope and is structured as a linked
list of frames [1]. It resolves variable names and tracks the program’s control flow. Each frame
represents a distinct scope of the program. With a sequence of linked frames, ZinniaCC can
navigate through the program’s scopes and ensure accurate variable resolution.
Frame. Frames are data structures that represent program scopes. Each frame represents a distinct
scope and contains a variable table (𝜏), which maps variable names to their corresponding memory
locations. Additionally, each frame stores path conditions that must be satisfied for the program to
reach the point represented by that frame. The parent frame of the current frame is denoted as Ê.
Zinnia defines several frame types, including ProgramFrame, IfFrame, LoopFrame, and FuncFrame.
ProgramFrame is the root-level frame, which includes a table (Λ) of user-defined functions and a
public inputs set P. IfFrame and LoopFrame store the condition expressions for the corresponding
control flow constructs. FuncFrame stores the function’s return type (𝑡ret) and a list of return values
with corresponding conditions (R). When resolving a variable, ZinniaCC searches the current
frame first, then recursively searches parent frames until the variable is found or the top-level
frame is reached.
Path Condition. Path conditions [4], stored within frames, are symbolic expressions that must
evaluate to true for the program to reach a specific point. They capture the control flow of the
program. Zinnia supports several types of path conditions: if conditions (𝜋if), break conditions (𝜋brk),
continue conditions (𝜋cont), and return conditions (𝜋ret). The overall condition, 𝜋E = (∧E∈𝜋E

if
E) ∧

(∧E∈𝜋E
brk∪𝜋

E
cont∪𝜋E

ret
¬E) is formed by combining the if conditions with the negated break, continue,

, Vol. 1, No. 1, Article . Publication date: March 2025.

10 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

and return conditions. While 𝜋if represents the condition for the if statement to be executed, 𝜋brk,
𝜋cont, and 𝜋ret represent the conditions associated with loops and functions to be skipped. Thus,
path conditions in 𝜋brk, 𝜋cont, and 𝜋ret are negated to express an expression that must be true for the
program to reach the current point. Additionally, an assertion condition (𝜋asrt) enables or disables
assertions, requiring it to be true for assertions to be active.
Variable Table 𝜏 . Each frame contains a variable table, a mapping from variable names to their
memory locations. The set of all variables within environment E is denoted as 𝜏E, and the memory
location of variable 𝑖𝑑 is denoted as 𝜏E

𝑖𝑑
.

Symbolic Computation Statements C. The computation statements set C represents the com-
pilation result, a list of symbolic computations that are evaluated using concrete values during
zk-SNARKs circuit proving and verified as arithmetic constraints during zk-SNARKs circuit verify-
ing. These computation statements serve as intermediate representations, generated throughout
the compilation process, and the final set forms the output of the compilation. We formulate
accumulated statements as C as an integral part of the symbolic state to reflect the accumulated
compilation result.
Symbolic Memory M and Memory Model. The symbolic memory M is a mapping from memory
addresses to symbolic expressions. It is crucial for handling built-in in-place functions (e.g. the
set_item function for supporting subscript assign 𝑖𝑑 [𝑒] ← 𝑒), which modify the symbolic expres-
sions of input variables. A symbolic evaluator without memory who evaluates expressions and
statements recursively in a stateless manner would not be capable of such modifications.
We employ a sound memory model to manage the symbolic memory access and update [13].

To do so, pointer aliasing, specifically within array indexing operations, is addressed through
multiplexing (conditional selection). Consider pointers pa and pb that may alias. Upon updating
the value referenced by pa, a multiplexing operation updates all potential locations pointed to by
pa with a conditional expression: the new value if the location’s index equals pa, and the existing
value otherwise. Subsequently, accessing the value referenced by pb employs a similar multiplexing
operation, selecting the appropriate value based on the equality between the location’s index and
pb. This methodology ensures sound and accurate propagation of updates within the symbolic
memory, effectively managing pointer aliasing. It however do not incur a significant overhead per
our observation, as the number of multiplexing operations is bounded by the number of memory
locations, which is typically small in ZKP programs and limited to array indexing operations.

5.2 Computation Statement Generation
We now present how ZinniaCC symbolically captures program behavior and subsequently gen-
erates computation statements that reflect this behavior within the circuit. Specifically, we will
delineate ZinniaCC’s symbolic evaluations of expressions, handling of symbolic inputs, and process-
ing of various control flow constructs and other non-control flow statements through operational
semantics. Finally, we discuss user-defined functions as a key feature in high-level programming
languages and how ZinniaCC handles them.
Notations. To formalize our program semantics, we use E,C,M to denote the symbolic state,
where E is the environment, C is the computation statements set, and M is the symbolic memory.
Then, we use inference rules denoted as E,C,M ⊢ {𝑒} ⇓ E′,C′,M′, ⟨L, E, 𝜃⟩. This notation denotes
how ZinniaCC processes a program construct {𝑒}, transitioning from symbolic states E, C, M
to E′, C′,M′. Each expression evaluates to ⟨L, E, 𝜃⟩, where L is the memory location, E is the
symbolic expression, and 𝜃 is the type mutable indicator. Type consistency, which is used to support
variable shadowing, enforced by 𝜃 ∈ {†, ‡} and the type mutable indicator function Θ, is detailed
in Subsection 5.3. This triplet is omitted for program constructs without an evaluation result.

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 11

5.2.1 Expression Evaluation. As depicted in Figure 5, ZinniaCC evaluates expressions, including
variable references, literals, and operators, into symbolic expressions. In Var-Load-Expr, we evalu-
ate a variable reference by first looking up the variable’s memory location in the environment and
symbolic memory, then retrieving the corresponding symbolic expression, and finally computing
the type mutable indicator for this identifier. In Literal-Expr, we evaluate a literal by directly
assigning the literal value to a new memory location and updating the memory. In Binary-Expr,
we evaluate a binary expression by recursively evaluating the left and right operands, then applying
the corresponding operator to the operands’ symbolic expressions. A new memory location is
obtained, and the result is stored in the memory. In Unary-Expr, the evaluation process is similar
to Binary-Expr, but for unary operators.

Var-Load-Expr
𝑖𝑑 ∈ 𝜏E L = 𝜏E

𝑖𝑑
𝜃 = ΘE

𝑖𝑑
M(L) = E

E,C,M ⊢ {𝑖𝑑} ⇓ E,C,M, ⟨L, E, 𝜃⟩

Literal-Expr
L = |M| M′ = M[L ↦→ 𝑐]

E,C,M ⊢ {𝑐} ⇓ E,C,M′, ⟨L, 𝑐, †⟩

Binary-Expr
E0,C0,M0 ⊢ {𝑒1} ⇓ E1,C1,M1, ⟨L1, E1, 𝜃1⟩ E1,C1,M1 ⊢ {𝑒2} ⇓ E2,C2,M2, ⟨L2, E2, 𝜃2⟩

E′ = E1 ⊗ E2, L3 = |M2 | M3 = M2 [L3 ↦→ E′]
E0,C0,M0 ⊢ {𝑒1 ⊗ 𝑒2} ⇓ E2,C1 ∪ C2 ∪ {E′ ← E1 ⊗ E2},M3, ⟨L3, E′, †⟩

Unary-Expr
E,C,M ⊢ {𝑒1} ⇓ E1,C1,M1, ⟨L1, E1, 𝜃1⟩ E2 = ⊙ E1 L2 = |M1 | M2 = M1 [L2 ↦→ E2]

E,C,M ⊢ {⊙ 𝑒} ⇓ E1,C1 ∪ {E1 ← ⊙ E2},M2, ⟨L2, E2, †⟩

Fig. 5. Operational Semantics for Expression Evaluations.

5.2.2 Symbolic Input. ZinniaCC handles symbolic inputs by assigning symbolic representations
for each input variable. Based on the nature of arithmetic circuits, we define three types of input
statements as shown in Figure 6. Input-Stmt (Public) is used for inputting public variables, which
are known to both the prover and verifier. We store the corresponding symbolic expressions in the
public inputs set P within the environment. Input-Stmt (Private) is used for inputting private
variables, which are known only to the prover. Input-Stmt (Hashed) is used for inputting hashed
variables, which are hashed before being input to the circuit. We insert additional hash computations
to ensure the correctness of the hashed inputs. The hash value is treated as a public input. In these
input statements, we use 𝛼𝑡

𝑖𝑑
to denote the symbolic input for variable 𝑖𝑑 with type 𝑡 .

Input-Stmt (Public)
E = 𝛼𝑡

𝑖𝑑
L = |M| M′ = M[L ↦→ E]

E,C,M ⊢ {input_public(𝑖𝑑, 𝑡)} ⇓
E[𝑖𝑑 ↦→ L],C,M′, ⟨L, E, †⟩

Input-Stmt (Private)
E = 𝛼𝑡

𝑖𝑑
L = |M| M′ = M[L ↦→ E]

E,C,M ⊢ {input_private(𝑖𝑑, 𝑡)} ⇓
E[𝑖𝑑 ↦→ L,P← P ∪ {E}],C,M′, ⟨L, E, †⟩

Input-Stmt (Hashed)
E = 𝛼𝑡id L = |M| Ehash = 𝛼

Hashed[𝑡]
𝑖𝑑

E[𝑖𝑑 ↦→ L],C,M[L ↦→ E] ⊢ {hash(𝑖𝑑)} ⇓ E′,C′,M′⟨L′, E′, 𝜃⟩
E,C,M ⊢ {input_hashed(𝑖𝑑, 𝑡)} ⇓ E′ [P← P ∪ {Ehash}],C′ ∪ {E′ ≡ Ehash},M′, ⟨L, E, †⟩

Fig. 6. Operational Semantics for Symbolic Inputs.

, Vol. 1, No. 1, Article . Publication date: March 2025.

12 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

If-Else-Stmt
E,C,M ⊢ {𝑒1} ⇓ E1,C1,M1, ⟨L, E, 𝜃⟩

IfFrame(E1, E),C1,M1 ⊢ {𝑠1} ⇓ E2,C2,M2
IfFrame(Ê2,¬E),C2,M2 ⊢ {𝑠2} ⇓ E′,C′,M′

E,C,M ⊢ {if 𝑒1 : 𝑠1 else : 𝑠2} ⇓ Ê′,C′,M′

If-Stmt
E,C,M ⊢ {𝑒1} ⇓ E1,C1,M1, ⟨L, E, 𝜃⟩

IfFrame(E1, E),C1,M1 ⊢ {𝑠1} ⇓ E′,C′,M′

E,C,M ⊢ {if 𝑒1 : 𝑠1} ⇓ Ê′,C′,M′

For-In-Stmt
E,C,M ⊢ {iter(𝑒)} ⇓ E∗,C0,M0, {⟨L1, E1, 𝜃1⟩, . . . , ⟨L𝑖 , E𝑖 , 𝜃𝑖 ⟩, . . . , ⟨L𝑁 , E𝑁 , 𝜃𝑁 ⟩}

E0 = LoopFrame(E∗) E𝑖−1 [𝑖𝑑 ↦→ L𝑖 , 𝜋cont ← ∅],C𝑖−1,M𝑖−1 ⊢ {𝑠} ⇓ E𝑖 ,C𝑖 ,M𝑖 , where 𝑖 ∈ {1, 2, . . . , 𝑁 }
E,C,M ⊢ {for 𝑖𝑑 in 𝑒 : 𝑠} ⇓ Ê𝑁 ,C𝑁 ,M𝑁

While-Stmt
E0 = LoopFrame(E) E𝑖−1,C𝑖−1,M𝑖−1 ⊢ {𝑒} ⇓ E′𝑖−1,C

′
𝑖−1,M

′
𝑖−1, ⟨L𝑖 , E𝑖 , 𝜃𝑖 ⟩

E′𝑖−1 [𝜋cont ← ∅, 𝜋brk ← 𝜋brk ∪ 𝜋 ∪ {E𝑖 }],C′𝑖−1,M
′
𝑖−1 ⊢ {𝑠} ⇓ E𝑖 ,C𝑖 ,M𝑖 , where 𝑖 ∈ {1, 2, . . . , 𝜇}

E,C,M ⊢ {while 𝑒 : 𝑠} ⇓ Ê𝜇 ,C𝜇 ,M𝜇

Continue-Stmt
InLoop(E)

E,C,M ⊢ {continue} ⇓
E[𝜋cont ← 𝜋cont ∪ 𝜋],C,M

Break-Stmt
InLoop(E)

E,C,M ⊢ {break} ⇓
E[𝜋brk ← 𝜋brk ∪ 𝜋],C,M

Pass-Stmt

E,C,M ⊢ {pass} ⇓ E,C,M

Return-Stmt
InFunc(E) E,C,M ⊢ {𝑒} ⇓ E′,C′,M′, ⟨L, E, 𝜃⟩ E∗ = 𝜋E Γ(E) = 𝑡E

ret
E′′ = UpdateBreakConditionsRecursively(E′ [𝜋ret ← 𝜋ret ∪ 𝜋,R← R ∪ (E∗, E)], E∗)

E,C,M ⊢ {return 𝑒} ⇓ E′′,C′,M′

Fig. 7. Operational Semantics for Control Flow Constructs.

5.2.3 Control Flow Statements. The methods to capture every execution result expressed by control
flows are a crucial part of ZinniaCC. We present how ZinniaCC handles conditional flows using
the semantic rules in Figure 7.
Conditional Branch. If-Else-Stmt evaluates the condition expression 𝑒1 to obtain the symbolic
expression for the branching condition. It then creates a new frame using the IfFrame function,
storing the condition expression in the frame’s path condition. ZinniaCC then evaluates the
statements in the true branch. Subsequently, another new IfFrame is created for the false branch,
and the statements in the false branch are evaluated. The path condition for the false branch is the
negation of the condition expression. If-Stmt is similar to If-Else-Stmt without the false branch.
Specifically, ZinniaCC will skip infeasible branches for the seek of speeding up our compilation if
the symbolic condition is evaluated to be always unsatisfiable.
Loop. Loops are another essential control flow constructs which will be unrolled into fixed-flow
computations in Zinnia. In For-In-Stmt, We use the operator iter(𝑒) to evaluate the iterable
object and obtain the symbolic expressions for each element. By nature, the number of iterations is
known for a For-In-Stmt loop since we are working with a statically typed language. We create
a new LoopFrame to store the loop’s path condition, update the mapping for the identifier, and
evaluate the loop body for each iteration. For While-Stmt, we also create a new LoopFrame to
store the loop’s path condition and evaluate the loop body until the condition is false or the loop is
broken. For each iteration, we update the break condition with the evaluation result of the loop
condition 𝑒 . However, as arithmetic circuits are static, we must ensure that the loop terminates
within a fixed number of iterations. As the halting problem is undecidable [34], we track the number

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 13

Assert-Stmt
E,C,M ⊢ {𝑒} ⇓ E′,C′,M′, ⟨L, E, 𝜃⟩ E∗1 = 𝜋E E∗2 = 𝜋E

asrt
E,C,M ⊢ {assert 𝑒} ⇓ E′,C′ ∪ {¬(E∗1 ∧ E∗2) ∨ E},M′

Assign (New)
𝑖𝑑 ∉ 𝜏E E,C,M ⊢ {𝑒} ⇓ E′,C′,M′, ⟨L, E, 𝜃⟩

E,C,M ⊢ {𝑖𝑑 ← 𝑒} ⇓ E′ [𝑖𝑑 ↦→ L],C′,M′

Assign (Existing, Mut)
𝑖𝑑 ∈ 𝜏E † = ΘE

𝑖𝑑
E,C,M ⊢ {𝑒} ⇓ E′,C′,M′, ⟨L, E, 𝜃⟩

E,C,M ⊢ {𝑖𝑑 ← 𝑒} ⇓ E′ [𝑖𝑑 ↦→ L],C′,M′

Assign (Existing, Immut)
𝑖𝑑 ∈ 𝜏E ‡ = ΘE

𝑖𝑑
L = 𝜏E

𝑖𝑑
E = M(L) E,C,M ⊢ {𝑒} ⇓ E′,C′,M′, ⟨L′, E′, 𝜃⟩ E∗ = 𝜋E

Γ(E) = Γ(E′) E′′ = 𝜎 (E∗, E′, E) L′′ = |M′ | M′′ = M′ [L′′ ← E′′]
E,C,M ⊢ {𝑖𝑑 ← 𝑒} ⇓ E′ [𝑖𝑑 ↦→ L′′],C′ ∪ {E′′ ← 𝜎 (E∗, E′, E)},M′′

Fig. 8. Operational Semantics for Non-Control Flow Statements.

of iterations and break the loop with a warning notifying the user if the number of iterations
exceeds a predefined limit 𝜇, which is a user configurable parameter. For each of these two loop
constructs, we clear the continue condition set 𝜋cont each iteration.
Loop Control Statement. Loop Control Statements, such as break and continue, are used to alter
the control flow of a program. Continue-Stmt obtains the path condition for the current program
execution point, 𝜋E, and adds the condition to the continue condition set 𝜋cont. Break-Stmt is
similar to Continue-Stmt, but adds the condition to the break condition set 𝜋brk. Pass-Stmt does
not alter the control flow and is used as a placeholder for empty blocks.
Return. Zinnia’s design allows for the definition of user-defined functions, which can be called
within the program. The return statement is used to return a value from a function or to terminate
the function’s execution. In Return-Stmt, we evaluate the return expression 𝑒 to obtain the
symbolic expression for the return value. We then check the return type of the function, where
Γ(E) denotes the inferred type for the symbolic expression. We update the return values set R with
the symbolic return value and its corresponding symbolic condition. Finally, we update the break
conditions 𝜋brk recursively and the return condition 𝜋ret to ensure that the following computations
within this function are skipped.

5.2.4 Non Control Flow Statements. Handling non-control flow statements, specifically assertions
and assignments, is not trivial, as they may introduce side effects to the program’s state. We now
discuss how ZinniaCC processes these statements based on the path condition in the symbolic
state. We present the semantic rules for non-control flow statements in Figure 8.
Assertions. In typical programs, assertions are used to enforce certain constraints during program
execution. In the context of zk-SNARKs circuits, assertions are used to apply additional arithmetic
constraints. In Assert-Stmt, we obtain the path condition 𝜋E for the current program execution
point and the assertion enable condition 𝜋asrt from the environment. We also evaluate the test
expression 𝑒 to obtain the symbolic expression E for this assertion statement. Hence, we construct
a logical implication statement from these three symbolic expressions, namely 𝜋E ∧ 𝜋asrt → E.
This logical implication is simplified as ¬(𝜋E ∧ 𝜋asrt) ∨ E and added to the set C.
Assignments. Assignments are used to update the value of a variable, which updates the program’s
state. We separate the rules for assignment into three categories. Assign (New) is straightforward;
as this variable is not defined before, we trivially evaluate the expression and update the variable
table. However, when assigning to an existing variable, we must consider the path condition and
the type consistency. In Assign (Existing, Mut), where we are able to alter the type of this variable,

, Vol. 1, No. 1, Article . Publication date: March 2025.

14 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

we simply update the variable table with the new symbolic expression without considering the
path condition. In Assign (Existing, Immut), where the type of this variable is immutable, we
checks the type equality between the existing and the new value and use the selection function
𝜎 to select the correct value based on the path condition. Notably, the type mutable indicator 𝜃
here, computed by the function Θ, determines whether the type of a given variable can be modified.
Further details are provided in Sec. 5.3, where we will also revisit those assign statements.

5.2.5 User-Defined Functions. Zinnia supports user-defined functions, which can be called within
the program. In Figure 9, Function-Invoke handles function calls. We first look up the corre-
sponding function in the functions set Λ to retrieve the function definition. Then, we create a
new FuncFrame to store the function’s return type, return values, and the corresponding symbolic
conditions. We use 𝜋E ∧ 𝜋E

asrt as the assertion enable condition for all assertions within the scope
of this function. The types of the arguments are verified against the function’s signature, and then
the function body is evaluated. After that, we build a nested selection expressions using 𝜎 over all
possible return values based on the return values and corresponding conditions stored in R. Finally,
we update the symbolic state to exit the function and provide the function’s symbolic return value
to the caller. Notably, Zinnia supports recursion and nested function calls, where we will raise an
error if we cannot determine the recursion depth at compile time or it exceeds a predefined limit.

Function-Invoke
E,C,M ⊢ {new(𝑡𝑟)} ⇓ E0,C0,M0, ⟨Lret, Eret0 , †⟩ {𝑖𝑑func ↦→ (𝑖𝑑1 : 𝑡1, 𝑖𝑑2 : 𝑡2, . . . , 𝑖𝑑𝑀 : 𝑡𝑀) → 𝑡𝑟 : 𝑠} ∈ ΛE

E𝑖−1,C𝑖−1,M𝑖−1 ⊢ {𝑒𝑖 } ⇓ E𝑖 ,C𝑖 ,M𝑖 , ⟨L𝑖 , E𝑖 , 𝜃𝑖 ⟩, where 𝑖 ∈ {1, 2, . . . , 𝑁 } ∀𝑖 ∈ {1, 2, . . . , 𝑁 }, Γ(E𝑖) = 𝑡𝑖

𝑁 = 𝑀 ChipEnv(E𝑁 , 𝑡𝑟 , 𝜋
E ∧ 𝜋E

asrt),C𝑁 ,M𝑁 ⊢ {𝑠} ⇓ Eleave,Cleave,Mleave
∀(Erc𝑗 , E

rv
𝑗) ∈ RE where 1 ≤ 𝑗 ≤ |RE |, Eret𝑗 = 𝜎 (Erc𝑗 , E

rv
𝑗 , E

ret
𝑗−1) ∧1≤𝑘≤ |RE | Erc𝑘 = True

Cresult = Cleave ∪ {∀(Erc𝑗 , E
rv
𝑗) ∈ RE where 1 ≤ 𝑗 ≤ |RE |, Eret𝑗 = 𝜎 (Erc𝑗 , E

rv
𝑗 , E

ret
𝑗−1)}

E,C,M ⊢ {𝑖𝑑func (𝑒1, 𝑒2, ..., 𝑒𝑁)} ⇓ Êleave,Cresult,Mleave [Lret ↦→ Eret|RE |], ⟨L
ret, Eret|RE | , †⟩

Fig. 9. Operational Semantics for User-Defined Functions.

5.3 Type System
We now describe Zinnia’s type system by introducing the built-in types, the static typing design and
type inference, and how we ensure type consistency while offering variable shadowing flexibility.

5.3.1 Built-in Types. To offer developers the convenience of working with Zinnia using different
types and making their programs more expressive, we support several built-in types, including
integers (as field element), floats (as real numbers), and booleans as basic types, and lists, tuples,
and tensors as composite types. Zinnia’s composite types are constructed from basic types and can
be nested to form complex data structures. We distinguish between composite types with different
lengths or shapes, as knowing the lengths and shapes allows us to generate the correct number of
arithmetic constraints needed for the corresponding computations.

5.3.2 Static Typing and Type Inference. Zinnia is designed as a statically typed language, which
requires the type of each variable and expression to be known at compile time [29]. The rationale
behind the static typing design is that arithmetic circuits are static in nature; hence, the type of each
computation expressed in the program must also be statically known. Additionally, Zinnia allows
writing programs without explicit type annotations for each variable declaration. While this design
decision simplifies working with Zinnia, it also makes type inference a vital component in Zinnia’s
design. Type inference is the process of automatically inferring the type of each symbolic expression

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 15

during compilation [32]. In Zinnia, the type inference process is denoted by the function Γ(E),
where E is the symbolic expression to be inferred. A comprehensive set of type inference rules
has been developed, and while detailed, they are largely consistent with those found in standard
programming language literature. For brevity, we omit their full presentation here.

5.3.3 Variable Shadowing and Type Consistency. Although Zinnia is a statically typed language,
we offer developers the flexibility of variable shadowing: the ability to change the type of a variable
after it has been declared. This is drawn from the inspiration from languages like Rust, which
allows developers to shadow variables by re-declaring them with the same name, not necessarily
in the nested scope. This flexibility allows developers to write more expressive programs and work
with Zinnia with ease. Suppose that a variable is declared as an empty list, and later in the program,
we fill this list with a for loop. Since lists of different lengths are considered as different types in
Zinnia, the type of this variable will change at each iteration. Without the flexibility to alter the
type binding of this variable, developers would need to find workarounds, such as declaring a list
with a fixed length, which would make the program less readable and harder to maintain.

This flexibility, however, introduces the challenge of maintaining type consistency. Since a vari-
able’s type may change after declaration, it can become dependent on path conditions, potentially
causing inconsistencies. Thus, we must ensure type consistency across all execution paths. In
Figure 10, the type of ary changes from a length-1 list to a length-6 list when x equals 0. The only
distinction between the two programs is how x is defined. In the type-consistent program (left), x is
a constant 0, ensuring the condition in ary’s assignment is known at compile time, maintaining type
consistency. In the type-inconsistent program (right), x is an input integer, making the condition
dependent on runtime input, leading to type inconsistency across execution paths and resulting in
a type inference error during compilation.

x = 0
ary = [0]
if x == 0:
 ary = ary + [1, 2, 3, 4, 5]
assert sum(ary) == 15

Type-Consistent Program

x = input_int()
ary = [0]
if x == 0:
 ary = ary + [1, 2, 3, 4, 5]
assert sum(ary) == 15

Type-Inconsistent Program

Type Inference

Fig. 10. Example Illustrating Type-Consistent and Type-Inconsistent Programs.

The challenge is to identify and report all type inconsistencies during type inference. To address
this, we introduce type mutability indicators, 𝜃 , associated with each symbolic expression in
memory but hidden from developers. 𝜃 can be † (mutable) or ‡ (immutable), tracking whether a
variable’s type can change.

Sec. 5.2.4 already discussed how ZinniaCC handles assignments w.r.t. the path condition. How-
ever, when assigning to an existing variable, we must also consider type consistency. With the
help of type mutable indicators, we can tell whether this variable can be shadowed or not. In
Assign (Existing, Mut), the indicator is calculated as † (mutable), indicating that there are no
other possible execution paths that might read the old value of this variable so we can change the
type of this variable. In Assign (Existing, Immut), the indicator is calculated as ‡ (immutable).
In this case, the variable cannot be shadowed as there exists an execution path referencing this
variable and we must use the selection expression 𝜎 to select the correct value for this variable
based on the path condition.

, Vol. 1, No. 1, Article . Publication date: March 2025.

16 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

Algorithm 1: The Type Mutable Indicator Function ΘE
𝑖𝑑

Input: variable identifier 𝑖𝑑 , environment E
Output: type mutable indicator 𝜃 ∈ {†, ‡}

1 if E is IfFrame then
2 if 𝑖𝑑 ∈ E.var_table then
3 return † ; // MUTABLE: this variable is defined in the current frame

4 if

∧
E∈𝜋E

if
E then

5 return ΘÊ
𝑖𝑑

; // INHERIT: the if condition is always true

6 return ‡ ; // IMMUTABLE otherwise

7 if E is LoopFrame then
8 if

∧
E∈𝜋E

cont∪𝜋E
brk
¬E then

9 if 𝑖𝑑 ∈ E.var_table then
10 return † ; // MUTABLE: defined in the current frame and the iteration is guaranteed

11 return ΘÊ
𝑖𝑑

; // INHERIT: this iteration is guaranteed to run

12 return ‡ ; // IMMUTABLE: we cannot guarantee this iteration will run

13 if 𝑖𝑑 ∈ E.var_table then
14 return † ; // MUTABLE: the variable is defined in the current frame

15 return ΘÊ
𝑖𝑑

; // INHERIT

Alg. 1 presents the type mutable indicator function ΘE
𝑖𝑑
, which determines whether a variable’s

type can be altered. The core idea behind this algorithm is to check whether there exists any
execution path referencing the value before the assignment. Generally, if a variable is defined
within the current scope, it is consider mutable. Specially, if the path condition is not statically
known, all variables are considered immutable. If the variable is defined in a parent scope, the
mutable indicator is inherited from the parent scope only when the path condition is statically
known to be true, otherwise it is considered immutable.

This variable shadowing design and the use of type mutable indicators ensures that the type of
each variable is consistent across all possible execution paths and also provides the flexibility for
developers to change the type of the variable when it does not lead to type inconsistency issues.

6 IMPLEMENTATION
We implement Zinnia in Python with about 20K LoC. Zinnia works as a source-to-source compiler
where developers write high-level tensor operations in Python and compile them into optimized
arithmetic circuits. Below, we introduce several key design considerations and implementation
details.

6.1 Built-in Functions and Real Number Arithmetic

Table 2. Built-in functions and tensor operators in Zinnia.

Python
Builtins

Functions range, any, all, sum, pow, abs, . . .
Castings bool, int, float, list, tuple

Indicing & Slicing set_item, get_item
Numerical Computations math.log, math.sqrt, math.exp, . . .

Tensor-
oriented

Manipulations np.stack, np.concat, np.transpose, . . .
Creations np.asarray, np.ones, np.zeros, np.eye, . . .

Computations np.matmul, np.dot, np.argmax, np.argmin, np.add, . . .

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 17

To align with Python and NumPy programming conventions, we implement and optimize nearly
all built-in functions and tensor operators from the Python and NumPy ecosystem in Zinnia (see
Table 2). This design enables developers to seamlessly migrate their existing Python/NumPy code
to Zinnia without needing to reimplement these functions.
Real-number arithmetic [26] is a cornerstone of modern computing systems, particularly for

tensor operations. However, supporting real numbers in ZKP systems is challenging, as arithmetic
circuits are inherently restricted to finite fields with integer-based operations. In zkVMs, real-
number arithmetic relies on costly software emulation of floating-point operations using the RV32I
instruction set. In other DSLs, such support is typically absent. Following the approach of popular
ZKML frameworks [11, 16, 20, 35], we adopt a fixed-point representation in Zinnia to approximate
real numbers. This method is significantly more efficient than emulation-based floating-point
arithmetic in ZKP systems. As a result, Zinnia enables efficient real-number arithmetic operations
at the cost of slight deviations from standard floating-point behavior. Having said that, to achieve
behavior equivalent to standard real-number operations, we anticipate future work incorporating
emulation techniques similar to those used in zkVMs.

6.2 IR, Optimizations, and Backends
As delineated in Sec. 5, Zinnia employs a symbolic execution approach to compile high-level
programs into a set of computation statements, denoted as C. To systematically encapsulate
those computation statements, we design the Zinnia IR (ZinniaIR). ZinniaIR consists of a set
of computational instructions, each representing a single constrained computation. Control flow
instructions are excluded, as they are managed by the ZinniaCC. ZinniaIR is formulated in the SSA
form, which enables the application of optimization and transformation techniques drawn from
existing compiler literature. In our current implementation, Zinnia provides a suite of optimizations
based on ZinniaIR to minimize the number of generated arithmetic constraints, including constant
folding, dead code elimination, and common subexpression elimination [2].

Zinnia functions as a source-to-source compiler, translating program as inputs into sources for
SNARK libraries and cDSLs. Our implementation primarily targets PLONK arithmetic circuits using
the Halo2 backend while we also provide experimental support for Groth16 using Circom [5].

7 EVALUATION
We conduct an evaluation of Zinnia and aim to answer the following research questions:
• RQ1: Expressiveness and Usability. Is Zinnia expressive in implementing real-world zero-
knowledge applications, and how does it compare to existing zkVM systems in terms of usability?
• RQ2: Optimization Effectiveness. Compared to SNARK-native libraries & low-level cDSLs,
how do the optimizations implemented in Zinnia impact constraint count and performance?
• RQ3: Superiority against zkVM. Compared to zkVM systems with similar expressiveness and
usability, how superior is Zinnia, as a SNARK-native system, in proving and verifying time?
To answer RQ1, we manually implement 25 programming tasks from various domains using

Zinnia, Halo2, RISC0, and SP1, respectively, and compare the complexity of the code. Then, we
further conduct a user study to understand the developers’ workloads when using Zinnia and Cairo,
a zkVM system known for its usability. To address RQ2, we compare it against the vanilla Halo2
system. Recall that Zinnia is built on top of Halo2, and the baseline comparison helps us understand
the impact of the optimizations enabled by Zinnia. Finally, to address RQ3, we compare Zinnia
against two zkVM systems, RISC0 and SP1, to understand the performance advantages of Zinnia’s
SNARK-native approach over zkVM architectures. Below, we first introduce the experimental setup
and then present the results for each research question in turn.

, Vol. 1, No. 1, Article . Publication date: March 2025.

18 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

7.1 Experimental Setup

Table 3. Programming tasks in the evaluation (# denotes the problem ID in the respective platform).

MLAlgo LeetCode DS-1000 Crypt
➀ Neuron; ➁ K-Means; Array DP Graph Math Matrix #296 #330 #387 #453 #501 ➀ Poseidon Hash;
➂ Linear-Regression #204 #832 #740 #1137 #3112 #997 #492 #2125 #73 #2133 #309 #360 #418 #459 #510 ➁ Baby Jubjub ECC

Datasets. We prepare 25 programming tasks (detailed in Table 3) from four sources: MLAlgo,
LeetCode, DS-1000 and Crypt.MLAlgo consists three machine learning tasks: Neuron, K-Means,
and Linear Regression. LeetCode (LC) consists of ten programming tasks randomly selected from
LeetCode [25] and covers five categories (Array, Dynamic Programming, Graph, Math, Matrix),
with two difficulty levels (one easy, one medium) per category. DS-1000 consists of ten data science
tasks randomly sampled from DS-1000 [23], a corpus of 1000 data science tasks in Python. Crypt
consists of two cryptographic tasks: Baby Jubjub ECC [6] and Poseidon Hash [18]. In summary, the
above programming tasks cover a wide range of computational workloads that are representative in
real-world ZKP application scenarios. Based on these tasks, we implement the same algorithms in
Zinnia, Halo2, RISC0, and SP1, respectively, to support our evaluation below. The implementations
are cross-verified to ensure correctness.
User Study. We recruit six participants with Python and Rust programming expertise and no
prior experience with ZKP-related systems. The participants are divided into two groups: the
Zinnia Group and the Cairo Group. As a baseline, Cairo is a zkVM system that compiles Rust
programs into zkSNARK circuits at the cost of higher performance overhead. We refrain from using
low-level frameworks like Halo2 in the user study as these systems come with a steep learning
curve and are not likely for participants to understand within the study’s timeframe. Participants
are provided with introductory learning materials for their respective systems and are required to
take a quiz to demonstrate their understanding and be eligible for the study. After passing the quiz,
participants are asked to implement three elementary programming tasks in Zinnia and Cairo
within 60 minutes, respectively. The tasks include ➀ testing whether a given number is prime,
➁ calculating staircase climbing combinations, and ➂ determining path existence in a directed
graph represented as a matrix. Task completion time and correctness are measured to evaluate
usability. During the study, participants are allowed to use online resources to simulate real-world
development scenarios.
Environment. All experiments are conducted on a server with dual Intel(R) Xeon(R) Gold 6444Y
CPUs @ 3.60GHz and 256GB RAM. Multithreading (64 threads) is enabled and all baselines run
with its default configurations.

7.2 RQ1: Expressiveness and Usability
To evaluate the expressiveness of Zinnia, we implement the 25 programming tasks from the
datasets in Sec. 7.1 and compare the code complexity against Halo2, RISC0, and SP1. All methods
are capable of implementing these tasks. We report the maximal control flows and the average
LoC in Table 4. These tasks involve complex control flows with loops and conditionals, with the
most complex case consisting of 5 nested loops, and multiple conditional statements. Programming
such tasks are inherently challenging in low-level systems like Halo2, while Zinnia significantly
simplifies the process. In particular, Zinnia delivers 2–3× shorter code than the baseline systems
on average, with a peak reduction of over 6× for DS-1000 tasks. The rationale is multi-fold: first,
Zinnia inherits Python’s high-level syntax that simplifies the expression of complex control flows,
compared to Rust in RISC0/SP1 or the low-level constraints in Halo2; second, Zinnia provides a

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 19

Table 4. Code implementations report.

Dataset M
LA

lg
o

Le
et
Co

de

D
S-
10
00

Cr
yp

t

Max.
Ctrl.
Flows

Loops 5 5 4 0
Brk/Cont 0 1 1 0
Branches 1 3 1 0

Avg.
LoC

Zinnia 24.0 13.0 5.90 15.0
Halo2 67.0 42.5 31.5 62.5
SP1 72.0 48.0 36.7 57.0
RISC0 67.0 39.1 31.7 48.5

Table 5. Task completion time and correctness.

Participant Time (in minutes) Correctness Tot.
T1 T2 T3 T1 T2 T3 Time

Zinnia
Group

P1 15 8 18 ✓ ✓ ✓ 41
P2 12 6 25 ✓ ✓ ✓ 43
P3 5 7 10 ✓ ✓ ✓ 22

Zinnia Avg. 10.67 7.00 17.67 100% 100% 100%

Cairo
Group

P4 5 13 45 ✓ ✓ ✓ 63
P5 16 13 60 ✓ ✓ × 89
P6 11 15 60 ✓ ✓ × 86

Cairo Avg. 10.67 10.33 55.00 100% 100% 33.3%

rich set of built-in operators and tensor operations that streamline programming, reducing the need
for manual circuit construction, which is particularly beneficial for data science tasks in DS-1000.
We further conducted a case study to demonstrate the expressiveness of Zinnia, highlighting

three representative examples in Figure 11 (with additional cases detailed in the Appendix Sec. A).
Case A showcases Zinnia’s implementation of LC-#492, a programming problem requiring dynamic
control flow to determine rectangle dimensions with minimal length-width difference, using
for loops with conditional branches to break the loop upon finding the correct answer. Case B
illustrates Zinnia’s implementation of linear regression by gradient descent, leveraging built-in
tensor operations with slicing operations that mimic NumPy, such as np.dot and np.sum, while
its native support for real-number arithmetic simplifies computation. Case C demonstrates a UDF
for primality testing, enabling reusable components for repetitive tasks and supporting early
termination via return statement. Notably, all cases showcase Zinnia’s static type system with
type inference, where users annotate types for inputs while types for intermediate values are
inferred automatically. These cases collectively highlight Zinnia’s expressiveness in handling
dynamic control flow, tensor operations, real-number arithmetic, UDFs and a flexible type system.

@zk_circuit # indicates a circuit

def construct_rect(

 area: int, e_l: int, e_w: int

):

 w = area

 for i in range(1, 1001):

 if area % i == 0:

 w = i

 if i * i >= area:

 break

 # [some code omitted for brevity]

 assert a_l == e_l and a_w == e_w

A: Construct the Rectangle (LC #492)
@zk_chip # indicates a UDF

def is_prime(number: int) -> bool:

 assert 0 <= number <= 10000

 if number < 2:

 return False

 for i in range(2, 101):

 if i * i > number:

 return True

 if number % i == 0:

 return False

 return True

@zk_circuit # indicates a circuit

def linreg(data: NDArray[float, 10, 3]):
 X, y = data[:, :-1], data[:, -1]

 weights = np.zeros(X.shape[1])
 bias, m = 0.0, float(X.shape[0])
 for _ in range(100):

 preds = np.dot(X, weights) + bias
 errs = preds - y

 dw = (1.0 / m) * np.dot(X.T, errs)
 db = (1.0 / m) * np.sum(errs)
 weights -= 0.02 * dw

 bias -= 0.02 * db
 # [following code omitted ...]

C: Primality Test UDF (User Study T1)B: Train a Linear Regression (MLAlgo)

Fig. 11. A Study on Representative Cases using Zinnia.

We further launch a user study to evaluate the usability of Zinnia. We compare the completion
time and correctness of the tasks between Zinnia and Cairo. Here, Cairo serves as a baseline due to
its established usability in the zkVM landscape. We report the program correctness and completion
time for each participant in Table 5, and the correctness is determined by passing all test cases.
Compared to Cairo, participants using Zinnia exhibit a trend of faster task completion (p-value
≤ 0.05 with Mann-Whitney U Test), especially for Tasks 2 and 3. In terms of program correctness,
most tasks were successfully implemented by our participants. However, Participants 5 and 6 from

, Vol. 1, No. 1, Article . Publication date: March 2025.

20 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

the Cairo Group were unable to complete Task 3 within the allocated time. Feedback from the Cairo
Group indicated that they found it challenging to work with Cairo’s arrays, which only support
appending and front-removal operations, as well as converting between field elements and usize in
Rust, both of which contributed to their difficulty in completing Task 3.

Answer to RQ1: Zinnia is expressive and capable of implementing a wide range of ZKP appli-
cations with significantly shorter code than baseline systems. The user study further validates
its usability with reduced task completion times and improved correctness compared to Cairo.

7.3 RQ2: Optimization Effectiveness
To understand the impact of our optimizations, we measure the following metrics: ❶ proving and
verifying time, and ❷ constraint reductions. The constraint count serves as a proxy for circuit
size and complexity, which directly impacts proving and verifying time. We collect these metrics
from ten independent runs per task and implementation and report the average result. We first
study the improvement over hand-crafted circuits in Halo2, and then perform an ablation study to
understand the contribution of Zinnia’s optimizations.
Figure 12 illustrates the constraint reductions achieved by Zinnia compared to Halo2 for each

task along with the corresponding proving and verifying time. In terms of constraint reductions,
Zinnia consistently outperforms Halo2 across various tasks. On average, Zinnia reduced the
number of constraints by 19.3%, with a peak reduction of 98.7% for LC-#3112.

ML
Al

go
··

Ne
ur

on
ML

Al
go

··
KM

ea
ns

ML
Al

go
··

Li
nR

eg
LC

-A
rr

ay
··

#2
04

LC
-A

rr
ay

··
#8

32
LC

-D
P·

··
··

#7
40

LC
-D

P·
··

·#
11

37
LC

-G
ra

ph
·#

31
12

LC
-G

ra
ph

··
#9

97
LC

-M
at

h·
··

#4
92

LC
-M

at
h·

·#
21

25
LC

-M
at

ri
x·

·#
73

LC
-M

at
ri

x#
21

33
DS

10
00

··
··

#2
96

DS
10

00
··

··
#3

09
DS

10
00

··
··

#3
30

DS
10

00
··

··
#3

60
DS

10
00

··
··

#3
87

DS
10

00
··

··
#4

18
DS

10
00

··
··

#4
53

DS
10

00
··

··
#4

59
DS

10
00

··
··

#5
01

DS
10

00
··

··
#5

10
CR

YP
T·

··
··

·E
CC

CR
YP

T·
Po

se
id

on

0

25

50

75

100

N
o.

 o
f C

on
st

ra
in

ts
 (%

)

Halo2 Baseline

ML
Al

go
··

Ne
ur

on
ML

Al
go

··
KM

ea
ns

ML
Al

go
··

Li
nR

eg
LC

-A
rr

ay
··

#2
04

LC
-A

rr
ay

··
#8

32
LC

-D
P·

··
··

#7
40

LC
-D

P·
··

·#
11

37
LC

-G
ra

ph
·#

31
12

LC
-G

ra
ph

··
#9

97
LC

-M
at

h·
··

#4
92

LC
-M

at
h·

·#
21

25
LC

-M
at

ri
x·

·#
73

LC
-M

at
ri

x#
21

33
DS

10
00

··
··

#2
96

DS
10

00
··

··
#3

09
DS

10
00

··
··

#3
30

DS
10

00
··

··
#3

60
DS

10
00

··
··

#3
87

DS
10

00
··

··
#4

18
DS

10
00

··
··

#4
53

DS
10

00
··

··
#4

59
DS

10
00

··
··

#5
01

DS
10

00
··

··
#5

10
CR

YP
T·

··
··

·E
CC

CR
YP

T·
Po

se
id

on

10 2

3 × 10 34 × 10 3
6 × 10 3

Ve
ri

fy
in

g
Ti

m
e

(m
s)

 P
ro

vi
ng

 T
im

e
(s

)

100

Zinnia Constraints (%) Optimized Constraints (%) Zinnia Halo2

Fig. 12. Constraint Reductions, Proving & Verifying Time for Zinnia and Hand-Crafted Circuits in
Halo2. On average, Zinnia reduces the constraints and proving time by 19.3% and 4.9%, respectively. The

verifying time is nearly the same.

To elucidate the mechanisms underlying constraint reductions achieved by Zinnia’s optimiza-
tion, we conduct a detailed analysis of several test cases. In LC-#204, which implements a prime
number counting algorithm, a significant reduction in constraints is observed (68.6%). This re-
duction stems from the constant folding optimization, which identifies and replaces redundant
computations with precomputed values. Given that the number of primes below a fixed limit is a
constant, it replaces the computationally intensive sieve algorithm with the precomputed result.
Similarly, for LC-#3112, as an implementation of the Floyd-Warshall algorithm, the optimizer
eliminates redundant computations by caching and reusing intermediate results. This effectively
reduces the constraints by avoiding repeated calculations of shortest paths. A related optimization
is observed in LC-#2125, where a brute-force laser counting algorithm is streamlined through
the elimination of repeated calculations. In DS-1000#510, a data science task involving tensor
operations, the optimizer addresses redundant zero checks. Specifically, it identifies and optimizes

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 21

repeated checks for zero rows and columns within the tensor. Across these benchmarks, Zinnia’s
optimizers consistently identifies and addresses optimization opportunities, including constant
computation, redundant calculation elimination, and dead code removal, which collectively con-
tribute to substantial reductions. We also investigate several cases where Zinnia’s optimizations
are less effective (e.g., Neuron, K-Means, LC-#492), typically involving complex control flows or
data dependencies that lack specific patterns the optimizer can exploit, while for the remaining
less effective cases, we identify that the manual implementations are already optimized, leaving
little room for the optimizers to further reduce.
We also compare proving and verifying time against baseline system. In zk-SNARKs systems,

these metrics are crucial for performance, where proving/verifying time denotes the time to generate
a proof of this program, and the time to validate the proof, respectively. Given that proving time is
typically orders of magnitude greater than verifying time and highly computationally intensive, it is
often the more critical metric. Since constraint count serves as a proxy for circuit size and constraint
complexity, Zinnia’s constraint reductions directly influence these time. As demonstrated, Zinnia
consistently achieves a lower proving time compared to the baseline across most tasks (4.9% on
average). However, the verifying time are comparable, with both Zinnia and the baseline exhibiting
very short durations (less than 5 milliseconds). Consequently, discerning significant differences in
the verifying time is challenging, as they are likely overshadowed by other system-level factors.

ML
Al

go
··

Ne
ur

on
ML

Al
go

··
KM

ea
ns

ML
Al

go
··

Li
nR

eg
LC

-A
rr

ay
··

#2
04

LC
-A

rr
ay

··
#8

32
LC

-D
P·

··
··

#7
40

LC
-D

P·
··

·#
11

37
LC

-G
ra

ph
·#

31
12

LC
-G

ra
ph

··
#9

97
LC

-M
at

h·
··

#4
92

LC
-M

at
h·

·#
21

25
LC

-M
at

ri
x·

·#
73

LC
-M

at
ri

x#
21

33
DS

10
00

··
··

#2
96

DS
10

00
··

··
#3

09
DS

10
00

··
··

#3
30

DS
10

00
··

··
#3

60
DS

10
00

··
··

#3
87

DS
10

00
··

··
#4

18
DS

10
00

··
··

#4
53

DS
10

00
··

··
#4

59
DS

10
00

··
··

#5
01

DS
10

00
··

··
#5

10
CR

YP
T·

··
··

·E
CC

CR
YP

T·
Po

se
id

on

0

50

100

150

N
o.

 o
f C

on
st

ra
in

ts
 (%

)

Halo2 Baseline

600

625

ML
Al

go
··

Ne
ur

on
ML

Al
go

··
KM

ea
ns

ML
Al

go
··

Li
nR

eg
LC

-A
rr

ay
··

#2
04

LC
-A

rr
ay

··
#8

32
LC

-D
P·

··
··

#7
40

LC
-D

P·
··

·#
11

37
LC

-G
ra

ph
·#

31
12

LC
-G

ra
ph

··
#9

97
LC

-M
at

h·
··

#4
92

LC
-M

at
h·

·#
21

25
LC

-M
at

ri
x·

·#
73

LC
-M

at
ri

x#
21

33
DS

10
00

··
··

#2
96

DS
10

00
··

··
#3

09
DS

10
00

··
··

#3
30

DS
10

00
··

··
#3

60
DS

10
00

··
··

#3
87

DS
10

00
··

··
#4

18
DS

10
00

··
··

#4
53

DS
10

00
··

··
#4

59
DS

10
00

··
··

#5
01

DS
10

00
··

··
#5

10
CR

YP
T·

··
··

·E
CC

CR
YP

T·
Po

se
id

on

101

3 × 100
4 × 100
6 × 100

Ve
ri

fy
in

g
Ti

m
e

(m
s)

 P
ro

vi
ng

 T
im

e
(s

)

100

Zinnia (Optimized) Zinnia (Unoptimized) Zinnia (Optimized) Halo2 Zinnia (Unoptimized)

Fig. 13. Ablation Study of Zinnia Optimizers. The figure on the left shows the constraint reductions /

increases while the figure on the right shows the proving and verifying time without optimizers.

To assess the contribution of Zinnia’s optimizers to performance, we launch an ablation study.
With ZinniaCC’s API, we disable all optimizers and subsequently measure the effects on constraint
count, proving time, and verification time. We report the results in Figure 13. As anticipated,
deactivating the optimizers yields a considerable surge in constraints (46.0% on average), which,
in turn, extends both proving and verification durations (8.5% and 1.9% on average, respectively).
Notably, for the majority of tasks, the constraints exceeded our hand-crafted circuits in Halo2
(the horizontal dotted line in the left-hand plot). For DS-1000#387, the initial circuit contains
1384 constraints, which is 6.2× larger than the hand-crafted circuit in Halo2. After optimization,
the circuit size is on par with the hand-crafted circuit. Likewise, for LC-#3112, the optimizations
trim a considerable amount of unnecessary constraints (98.9%). This ablation study effectively
highlights the indispensable role of Zinnia’s optimizers in reducing constraints and improving
overall performance.

, Vol. 1, No. 1, Article . Publication date: March 2025.

22 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

Answer to RQ2: On a diverse set of ML, progamming, data science and cryptographic tasks,
Zinnia effectively reduce constraints, and consequently, proving and verifying time, compared
to manual circuit implementation in Halo2. The improvement is primarily attributed to Zinnia’s
powerful optimizations that eliminate redundant computations and streamline circuit structures.

7.4 RQ3: Superiority against zkVM

100

101

102

 P
ro

vi
ng

 T
im

e
(s

)

MLA
lgo

··N
eur

on

MLA
lgo

··K
Mea

ns

MLA
lgo

··L
inR

eg

LC-
Arr

ay·
·#2

04

LC-
Arr

ay·
·#8

32

LC-
DP·

···
·#7

40

LC-
DP·

···
#11

37

LC-
Gra

ph·
#31

12

LC-
Gra

ph·
·#9

97

LC-
Mat

h··
·#4

92

LC-
Mat

h··
#21

25

LC-
Mat

rix
··#

73

LC-
Mat

rix
#21

33

DS1
000

···
·#2

96

DS1
000

···
·#3

09

DS1
000

···
·#3

30

DS1
000

···
·#3

60

DS1
000

···
·#3

87

DS1
000

···
·#4

18

DS1
000

···
·#4

53

DS1
000

···
·#4

59

DS1
000

···
·#5

01

DS1
000

···
·#5

10

CRY
PT·

···
··E

CC

CRY
PT·

Pos
eid

on

101

102

103

Ve
ri

fy
in

g
Ti

m
e

(m
s)

Zinnia (zk-SNARK) RISC0 (zk-STARK) SP1 (zk-STARK) SP1 (zk-SNARK)

Fig. 14. Comparison of Proving and Verifying Time for Zinnia against zkVM Solutions. On average,

Zinnia outperforms RISC0, SP1, and SP1’s SNARK prover by 25.4×, 20.3×, and 245.4× in proving time and by

5.0×, 45.1×, and 191.7× in verifying time, respectively.

Following the experimental setup, we compare the proving and verifying time of Zinnia against
RISC0, SP1, and SP1’s SNARK prover. Since both RISC0 and SP1 employ a distinct arithmetic circuit
model, we do not report the constraint count in this RQ. Instead, we focus on the performance
advantages of Zinnia over tools with similar usability but different underlying architectures.
Before proceeding with the results, we recap that key differences exist between zkVM systems

and Zinnia. In a nutshell, zkVM systems compile programs into CPU instructions and simulate
CPU execution to generate proofs. To accommodate this computation model, zkVMs typically
first generate a zk-STARK proof, which is then wrapped in a SNARK proof for compatibility
with blockchains. In contrast, Zinnia directly compiles high-level programs into SNARK-native
arithmetic circuits, which eliminates the need for CPU emulation and proof wrapping, while also
providing strong usability.
Figure 14 compares the proving and verifying time of Zinnia, RISC0 (STARK), SP1 (STARK),

and SP1’s SNARK prover. The results show that zkVM solutions (RISC0, SP1, and SP1’s SNARK
prover) exhibit significantly longer proving and verifying time compared to Zinnia (over 25.4× and
5.0×, respectively). The reason for this disparity is three-fold. First, ZKP systems simulate a CPU to
execute programs and prove the correctness of CPU state transitions. A CPU state incorporates
a large number of registers, memory, program counters, etc., which necessitates a considerable
amount of computation to generate proofs. In contrast, Zinnia directly compiles programs into
arithmetic circuits, which are more amenable to optimization and avoids CPU emulation overhead.
Second, ZKP systems operate on a finite field and only natively support integer arithmetic. As a
result, these systems require considerable overhead to simulate real number arithmetic (floating-
point) using integer arithmetic; while Zinnia alleviates this issue by directly compiling real number
arithmetic into low-cost fixed-point arithmetic circuits. Third, wrapping zk-STARK proofs in zk-
SNARKs introduces additional computational overhead, that further exacerbates the performance
disparity.

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 23

Answer to RQ3: As a SNARK-native system, Zinnia outperforms zkVM solutions like RISC0
and SP1 that rely on CPU emulation for proof generation. Zinnia’s direct compilation paradigm
eliminates the need for CPU emulation and enables additional ZK-friendly optimizations to
achieve superior performance.

8 DISCUSSION AND FUTUREWORK
Scalability. Zinnia employs symbolic execution, which is prone to classic challenges like memory
aliasing and path explosion. We mitigate memory aliasing through multiplexing, which ensures
sound management of symbolic memory access and updates. Path explosion, while a concern, is
manageable in our research context for several reasons. First, Zinnia is tailored as a compiler
for ZKP applications, where programs are typically small with limited execution paths. Second,
arithmetic circuits inherently require encoding all possible execution paths, making path explosion
unavoidable even inmanually designed circuits without symbolic execution. Third, Zinniamitigates
this by pruning infeasible paths via constant propagation, as a best-effort optimization at compile
time. Finally, aligned with prior works [5, 15], Zinnia achieves linear-time compilation complexity
relative to circuit size, which ensures practical compiler efficiency for typical ZKP programs.
Zero-knowledge Program Analysis. A concurrent direction of research is the development of
program analysis tools for ZKP programs/circuits. These tools aim to detect functional bugs [38]
and security vulnerabilities [27, 28, 36], as well as to verify program properties [12, 24]. Zinnia
mitigates potential bugs by abstracting the low-level circuit generation process, which reduces
the likelihood of introducing errors during development time. However, in general, these tools are
complementary to Zinnia and can be integrated to enhance the overall quality of ZKP programs.
FutureWork.We anticipate several directions for future work to improve Zinnia. First, the current
implementation of Zinnia relies on a transpilation paradigm, leveraging existing cDSLs and ZKP
libraries for proof generation and verification. This dependency introduces limitations in achieving
aggressive optimizations, as the abstractions provided by these underlying libraries can impede
low-level control. Furthermore, reliance on external libraries exposes Zinnia to potential bugs or
performance bottlenecks inherent in those dependencies. To mitigate these issues, future work will
focus on developing Zinnia as a self-contained framework capable of native proof generation and
verification, thereby enhancing reliability and potentially improving performance.

Second, the expressiveness of Zinnia will be expanded through the incorporation of a broader
range of tensor operators, non-linear functions, and real number arithmetization schemes. This
extension will enable Zinnia to support a wider array of applications, particularly those involving
complex mathematical computations and machine learning models.
Third, the integration of constraint solvers into the compilation process will be explored. Cur-

rently, ZinniaCC performs symbolic execution, and then mainly employs constant propagation to
identify compile-time constants. However, this method is limited in its ability to resolve complex
expressions, resulting in suboptimal code generation and reduced expressiveness. By incorpo-
rating constraint solvers over symbolic expressions yielded by symbolic execution, ZinniaCC
may perform more sophisticated static analysis, enabling the determination of a broader range of
compile-time constants and thereby improving efficiency and versatility.

Finally, the programming language capabilities of Zinnia will be augmented to include features
such as user-defined data types, string manipulation, and generics. These enhancements will
leverage the power of symbolic execution to reason about program behavior, thereby increasing
the expressiveness and applicability of Zinnia across diverse domains.

, Vol. 1, No. 1, Article . Publication date: March 2025.

24 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

9 CONCLUSION
We introduced Zinnia, a ZKP programming framework designed to address the challenges of
writing and optimizing ZKPs for machine learning and data science. Zinnia’s high-level language,
symbolic execution approach, and tensor-oriented optimizations enable high utility, expressiveness,
and performance improvements over existing solutions. This work demonstrates the potential for
Zinnia to accelerate the adoption of ZKPs across diverse applications.

REFERENCES
[1] Harold Abelson and Gerald Jay Sussman. 1996. Structure and interpretation of computer programs. The MIT Press.
[2] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. 2007. Compilers principles, techniques & tools. pearson Education.
[3] Nada Amin, John Burnham, François Garillot, Rosario Gennaro, Chhi’mèd Künzang, Daniel Rogozin, and Cameron

Wong. 2023. LURK: Lambda, the ultimate recursive knowledge (experience report). Proceedings of the ACM on
Programming Languages 7, ICFP (2023), 259–274.

[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of Symbolic
Execution Techniques. ACM Comput. Surv. 51, 3, Article 50 (May 2018), 39 pages. https://doi.org/10.1145/3182657

[5] Marta Bellés-Muñoz, Miguel Isabel, Jose Luis Muñoz-Tapia, Albert Rubio, and Jordi Baylina. 2022. Circom: A circuit
description language for building zero-knowledge applications. IEEE Transactions on Dependable and Secure Computing
20, 6 (2022), 4733–4751.

[6] Marta Bellés-Muñoz, Barry Whitehat, Jordi Baylina, Vanesa Daza, and Jose Luis Muñoz-Tapia. 2021. Twisted edwards
elliptic curves for zero-knowledge circuits. Mathematics 9, 23 (2021), 3022.

[7] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable, transparent, and post-quantum secure
computational integrity. Cryptology ePrint Archive (2018).

[8] Manuel Blum, Paul Feldman, and SilvioMicali. 1988. Non-interactive zero-knowledge and its applications. In Proceedings
of the twentieth annual ACM symposium on Theory of computing. 103–112.

[9] Sean Bowe, Jack Grigg, and Daira Hopwood. 2019. Recursive proof composition without a trusted setup. Cryptology
ePrint Archive (2019).

[10] Darko Čapko, Srđan Vukmirović, and Nemanja Nedić. 2022. State of the art of zero-knowledge proofs in blockchain.
In 2022 30th Telecommunications Forum (TELFOR). IEEE, 1–4.

[11] Bing-Jyue Chen, Suppakit Waiwitlikhit, Ion Stoica, and Daniel Kang. 2024. Zkml: An optimizing system for ml inference
in zero-knowledge proofs. In Proceedings of the Nineteenth European Conference on Computer Systems. 560–574.

[12] Collin Chin, Howard Wu, Raymond Chu, Alessandro Coglio, Eric McCarthy, and Eric Smith. 2021. Leo: A programming
language for formally verified, zero-knowledge applications. Cryptology ePrint Archive (2021).

[13] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A platform for in-vivo multi-path analysis of
software systems. Acm Sigplan Notices 46, 3 (2011), 265–278.

[14] Electric Coin Co. 2025. halo2. https://github.com/zcash/halo2.
[15] Jacob Eberhardt and Stefan Tai. 2018. ZoKrates - Scalable Privacy-Preserving Off-Chain Computations. In 2018 IEEE

International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). 1084–1091. https:
//doi.org/10.1109/Cybermatics_2018.2018.00199

[16] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. 2021. Zen: An optimizing compiler for verifiable,
zero-knowledge neural network inferences. Cryptology ePrint Archive (2021).

[17] U. Fiege, A. Fiat, and A. Shamir. 1987. Zero knowledge proofs of identity. (1987). https://doi.org/10.1145/28395.28419
[18] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger. 2021. Poseidon: A

new hash function for {Zero-Knowledge} proof systems. In 30th USENIX Security Symposium (USENIX Security 21).
519–535.

[19] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In Advances in Cryptology–EUROCRYPT
2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II 35. Springer, 305–326.

[20] ZKonduit Inc. 2025. EZKL. https://ezkl.xyz/.
[21] J. C. King. 1976. Symbolic execution and program testing. Commun. ACM 19 (1976), 385–394. Issue 7. https:

//doi.org/10.1145/360248.360252
[22] Succinct Labs. 2025. SP1. https://github.com/succinctlabs/sp1.
[23] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel Fried, Sida

Wang, and Tao Yu. 2023. DS-1000: a natural and reliable benchmark for data science code generation. In Proceedings
of the 40th International Conference on Machine Learning (Honolulu, Hawaii, USA) (ICML’23). JMLR.org, Article 756,

, Vol. 1, No. 1, Article . Publication date: March 2025.

https://doi.org/10.1145/3182657
https://github.com/zcash/halo2
https://doi.org/10.1109/Cybermatics_2018.2018.00199
https://doi.org/10.1109/Cybermatics_2018.2018.00199
https://doi.org/10.1145/28395.28419
https://ezkl.xyz/
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://github.com/succinctlabs/sp1

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 25

27 pages.
[24] Junrui Liu, Ian Kretz, Hanzhi Liu, Bryan Tan, Jonathan Wang, Yi Sun, Luke Pearson, Anders Miltner, Işıl Dillig, and

Yu Feng. 2024. Certifying Zero-Knowledge Circuits with Refinement Types. In 2024 IEEE Symposium on Security and
Privacy (SP). 1741–1759. https://doi.org/10.1109/SP54263.2024.00078

[25] LeetCode LLC. 2025. LeetCode. https://leetcode.com/.
[26] Jean-Michel Muller, Nicolas Brunie, Florent De Dinechin, Claude-Pierre Jeannerod, Mioara Joldes, Vincent Lefèvre,

Guillaume Melquiond, Nathalie Revol, and Serge Torres. 2018. Handbook of floating-point arithmetic. Vol. 1. Springer.
[27] Trail of Bits. 2025. circomspect. https://github.com/trailofbits/circomspect.
[28] Shankara Pailoor, Yanju Chen, Franklyn Wang, Clara Rodríguez, Jacob Van Geffen, Jason Morton, Michael Chu, Brian

Gu, Yu Feng, and Işıl Dillig. 2023. Automated detection of under-constrained circuits in zero-knowledge proofs.
Proceedings of the ACM on Programming Languages 7, PLDI (2023), 1510–1532.

[29] Benjamin C Pierce. 2002. Types and programming languages. MIT press.
[30] Pologon. 2025. Polygon ZK-EVM. https://polygon.technology/polygon-zkevm.
[31] scipr lab. 2025. libsnark. https://github.com/scipr-lab/libsnark.
[32] Robert W Sebesta, Soumen Mukherjee, and Arup Kumar Bhattacharjee. 1999. Concepts of programming languages.

Vol. 7. Addison-Wesley Reading, Massachusetts.
[33] StarkWare. 2025. Cairo. https://github.com/starkware-libs/cairo.
[34] Alan Mathison Turing et al. 1936. On computable numbers, with an application to the Entscheidungsproblem. J. of

Math 58, 345-363 (1936), 5.
[35] Suppakit Waiwitlikhit, Ion Stoica, Yi Sun, Tatsunori Hashimoto, and Daniel Kang. 2024. Trustless audits without

revealing data or models. In Proceedings of the 41st International Conference on Machine Learning. 49808–49821.
[36] Hongbo Wen, Jon Stephens, Yanju Chen, Kostas Ferles, Shankara Pailoor, Kyle Charbonnet, Isil Dillig, and Yu Feng.

2024. Practical Security Analysis of {Zero-Knowledge} Proof Circuits. In 33rd USENIX Security Symposium (USENIX
Security 24). 1471–1487.

[37] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. 2021. Mystique: Efficient conversions for
{Zero-Knowledge} proofs with applications to machine learning. In 30th USENIX Security Symposium (USENIX Security
21). 501–518.

[38] Dongwei Xiao, Zhibo Liu, Yiteng Peng, and Shuai Wang. 2025. Mtzk: Testing and exploring bugs in zero-knowledge
(zk) compilers. In NDSS.

[39] RISC Zero. 2025. RISC Zero. https://github.com/risc0/risc0.
[40] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. 2020. Zero knowledge proofs for decision tree

predictions and accuracy. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
2039–2053.

A CASE STUDY
In this supplementary section, we present more case studies complementing the main paper to
demonstrate the expressiveness of Zinnia. While this showcase is not exhaustive, it highlights key
examples of its capabilities. We provide a brief overview of our case studies in Table 6.

Table 6. Corresponding Case Studies for each Language Feature.

Control Flows UDFs Tensor Operations Numerical Comp. Slice & Index Type Inference Var. Shadowing
A.1 A.1, A.7 A.2, A.3, A.4, A.5 A.2, A.4 A.5, A.6 All Cases A.6

A.1 Case 1: Test Prime Number (User Study Task 1)
In this case study we implemented a ZKP circuit using Zinnia for integer primality checking.
Figure 15 presents a possible implementation. The code defines a function, is_prime, annotated
with @zk_circuit, signifying its compilation into a ZKP circuit. This function takes an integer and
a boolean, representing the number to be tested and the expected primality result, respectively.
Assuming the input is bounded by 10,000, the code initially asserts that numbers less than 2 are not
prime. It then iterates from 2 to 100, checking for divisibility. To ensure computational accuracy, a
break statement terminates the loop when the square of the iterator exceeds the input. This case

, Vol. 1, No. 1, Article . Publication date: March 2025.

https://doi.org/10.1109/SP54263.2024.00078
https://leetcode.com/
https://github.com/trailofbits/circomspect
https://polygon.technology/polygon-zkevm
https://github.com/scipr-lab/libsnark
https://github.com/starkware-libs/cairo
https://github.com/risc0/risc0

26 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

@zk_circuit

def is_prime(number: int, prime: bool):

 assert 0 <= number <= 10000

 if number < 2:

 assert not prime

 else:

 result = True

 for i in range(2, 101):

 if i * i > number:

 break

 if number % i == 0:

 result = False

 assert prime == result

Fig. 15. Zinnia Code for Case Study 1.

@zk_chip

def is_prime(number: int) -> bool:

 assert 0 <= number <= 10000

 if number < 2:

 return False

 for i in range(2, 101):

 if i * i > number:

 return True

 if number % i == 0:

 return False

 return True

@zk_circuit

def test_is_prime(number: int, prime: bool):

 assert is_prime(number) == prime

Fig. 16. Alternative Code using UDF.

demonstrates Zinnia’s ability to handle complex control flows which is not common in current
DSLs and libraries.
To enhance modularity and code reuse, Figure 16 demonstrates an alternative approach using

UDFs which we’ve already discussed in the main paper. The function is_prime encapsulates the
primality check, returning a boolean. The @zk_chip annotation designates this function as a UDF
supported in Zinnia. Similar to traditional programming languages, Zinnia allows users to return
values at any point and immediately exit the function, which is not well-supported in existing
DSLs. This feature allows users to write programs with better program structure, readability, and
maintainability.

A.2 Case 2: Linear Regression (MLAlgo-LinReg)

@zk_circuit

def linear_regression(

 training_x: NDArray[float, 10, 2],

 training_y: NDArray[float, 10],

 testing_x: NDArray[float, 2, 2],

 testing_y: NDArray[float, 2]

):

 weights = np.zeros((training_x.shape[1],))

 bias, m = 0, float(len(training_y))

 for _ in range(100):

 predictions = np.dot(training_x, weights) + bias

 errors = predictions - training_y

 dw = (1.0 / m) * np.dot(training_x.T, errors)

 db = (1.0 / m) * np.sum(errors)

 weights -= 0.02 * dw

 bias -= 0.02 * db

 test_predictions = np.dot(testing_x, weights) + bias

 test_diff = test_predictions - testing_y

 test_error = np.sum(test_diff * test_diff) / len(testing_y)

 assert test_error <= 1.0

Fig. 17. Zinnia Code for Case Study 2.

@zk_circuit

def extract_patches(

 a: NDArray[int, 4, 4],

 result: NDArray[int, 4, 2, 2]

):

 assert a.reshape(

 (a.shape[0]//2, 2, a.shape[1]//2, 2)

).transpose(

 (0, 2, 1, 3)

).reshape((4, 2, 2)) == result

Fig. 18. Zinnia Code for Case Study 3.

@zk_circuit

def calc_entropy(

 X: NDArray[float, 10], ans: float

):

 assert sum(X) == 1.0

 assert ans == np.sum(-X @ np.log2(X.T))

Fig. 19. Zinnia Code for Case Study 4.

This case study highlights Zinnia’s proficiency in numerical computations and tensor operations.
We demonstrate a linear regression model implemented using gradient descent. Figure 17 shows

, Vol. 1, No. 1, Article . Publication date: March 2025.

Zinnia: An Expressive and Efficient Tensor-Oriented Zero-Knowledge Programming Framework 27

the implementation in Zinnia. The code initializes weights and bias, then iteratively updates them
based on the gradient descent formula. The error computation is also included. With the built-in
real number support and tensor operations such as mat-mul, Zinnia simplifies the implementation
of this machine learning task, making it more accessible to users with limited zero-knowledge
programming experience.

A.3 Case 3: Extract Blocks or Patches (DS-1000#387)
This case study showcases Zinnia’s tensor manipulation capabilities. The task involves extracting
image blocks or patches (sampled from DS-1000). Figure 18 demonstrates this using Zinnia’s
built-in tensor operations, specifically np.reshape and np.transpose. By providing these oper-
ators, Zinnia simplifies the implementation of complex multi-dimensional array manipulations,
enhancing both user development ease and code expressiveness.

A.4 Case 4: Calculate Shannon Entropy
In this case we demonstrate Zinnia’s application in calculating the Shannon entropy of a normalized
probability distribution. Figure 19 presents the corresponding code. The function calc_entropy,
annotated with @zk_circuit, accepts a list of floats representing the probability distribution and
the expected entropy as inputs. It utilizes the tensor-oriented operator np.sum and the non-linear
function np.log2 to compute the entropy.

A.5 Case 5: Data Binning (DS-1000 #418)
This case study showcases Zinnia’s tensor operations and slice/index capabilities. The task is to
bin a 2-dim array into equal partitions of a given length (3) and then calculate the mean of each
of those bins. Figure 20 demonstrates the implementation. In order to achieve this, the code uses
combinations of tensor slicing operations combined with np.reshape to manipulate tensors. This
case demonstrates Zinnia’s ability to handle complex tensor operations and slice/index operations.

@zk_circuit

def data_binning(data: NDArray[float, 2, 5], result: NDArray[float, 2, 1]):

 new_data = data[:, ::-1]

 bin_data_mean = new_data[:, :(data.shape[1] // 3) * 3].reshape(

 (data.shape[0], 1, 3)).sum(axis=-1) / 3

 assert result == bin_data_mean

Fig. 20. Zinnia Code for Case Study 5.

A.6 Case 6: Remove All Zero Rows and Columns (DS-1000#510)
This case study demonstrates Zinnia’s variable shadowing feature. The task is to remove all zero
rows and columns from a 2-dim array. Figure 21 shows the implementation, where we append
non-zero information to an empty list using a loop. Recall that lists of different length are treated
as different types in Zinnia, with Zinnia’s variable shadowing feature, users essentially “redefine”
the original variable zero_rows each iteration with new type: a list whose length is 1 more. This
feature allows users to change the type of variables defined in the outer or same scope, making
code implementation more flexible.

A.7 Case 7: Point Addition on Baby Jubjub ECC (Crypt-BabyJubjubECC)
This case showed Zinnia’s ability to handle elliptic curve operations over finite field, specifically
point addition on Baby Jubjub elliptic curve. The code in Figure 22 shows a UDF baby_add that

, Vol. 1, No. 1, Article . Publication date: March 2025.

28 Zhantong Xue, Pingchuan Ma, Zhaoyu Wang, and Shuai Wang

@zk_circuit

def remove_0_rows_cols(

 input: NDArray[int, 5, 6],

 result: NDArray[int, 3, 4]

):

 zero_rows = []

 zero_cols = []

 for i in range(5):

 zero_rows += [all(input[i, :] == 0)]

 for i in range(6):

 zero_cols += [all(input[:, i] == 0)]

 # [The following code omitted for brevity...]

Fig. 21. Zinnia Code for Case Study 6.

@zk_chip

def baby_add(

 x1: int, y1: int, x2: int, y2: int

) -> Tuple[int, int]:

 a = 168700

 d = 168696

 beta = x1 * y2

 gamma = y1 * x2

 delta = (-a * x1 + y1) * (x2 + y2)

 tau = beta * gamma

 x = (beta + gamma) * math.inv(1 + d * tau)

 y = (delta + a * beta - gamma) * math.inv(1 - d * tau)

 return x, y

Fig. 22. Zinnia Code for Case Study 7.

takes two points and returns a new point. To facilitate finite field arithmetic, Zinnia provides
math.inv to compute the inverse of a number on the field. This case demonstrates Zinnia’s ability
to handle advanced cryptographic operations common in ZKP applications.

, Vol. 1, No. 1, Article . Publication date: March 2025.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Zero-Knowledge Proofs (ZKPs)
	2.2 ZKP Library, DSL and VM
	2.3 Zero-Knowledge Machine Learning

	3 Motivation and Research Overview
	3.1 Limitations of Existing Work
	3.2 Research Overview and Technical Contributions

	4 The Zinnia Programming Framework
	5 The Zinnia Circuit Compiler (ZinniaCC)
	5.1 The Symbolic State
	5.2 Computation Statement Generation
	5.3 Type System

	6 Implementation
	6.1 Built-in Functions and Real Number Arithmetic
	6.2 IR, Optimizations, and Backends

	7 Evaluation
	7.1 Experimental Setup
	7.2 RQ1: Expressiveness and Usability
	7.3 RQ2: Optimization Effectiveness
	7.4 RQ3: Superiority against zkVM

	8 Discussion and Future Work
	9 Conclusion
	References
	A Case Study
	A.1 Case 1: Test Prime Number (User Study Task 1)
	A.2 Case 2: Linear Regression (MLAlgo-LinReg)
	A.3 Case 3: Extract Blocks or Patches (DS-1000#387)
	A.4 Case 4: Calculate Shannon Entropy
	A.5 Case 5: Data Binning (DS-1000 #418)
	A.6 Case 6: Remove All Zero Rows and Columns (DS-1000#510)
	A.7 Case 7: Point Addition on Baby Jubjub ECC (Crypt-BabyJubjubECC)

