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Abstract. Issuing tokens on Bitcoin remains a highly sought-after goal,
driven by its market dominance and robust security. However, Bitcoin’s
limited on-chain storage and functionality pose significant challenges.
Among the various approaches to token issuance on Bitcoin, client-side
validation (CSV) has emerged as a prominent solution. CSV delegates
data storage and functionalities beyond Bitcoin’s native capabilities to
off-chain clients, while leveraging the blockchain to validate tokens and
prevent double-spending. Nevertheless, these protocols require partici-
pants to maintain token ownership and transactional data, rendering
them vulnerable to data loss and malicious data withholding. In this
paper, we propose UTxO binding, a novel framework that achieves both
robust data availability and enhanced functionality compared to existing
CSV designs. This approach securely binds a Bitcoin UTxO, which pre-
vents double-spending, to a UTxO on an auxiliary blockchain, providing
data storage and programmability. We formally prove its security and
implement our design using Nervos CKB as the auxiliary blockchain.

1 Introduction

Bitcoin’s dominant market share among cryptocurrencies—61% as of March
2025 [6]—and robust security, forged through a decade of battle-tested proof-
of-work consensus [10, 26, 17, 31], have made it an attractive platform for token
issuance since 2011 [11]. Early efforts, including Colored Coins [24], Counter-
party [8], and Omni Layer [23], aimed to leverage Bitcoin’s security by embed-
ding token ownership information directly on the blockchain. However, Bitcoin’s
limited on-chain storage space and restricted programmability hinder its suit-
ability for tokens carrying data and requiring complex transactional logic. These
constraints led to the emergence of alternative platforms like Ethereum [4], co-
founded by Vitalik Buterin, a key contributor to Colored Coins, and specifically
designed to address programmability limitations.

Recognizing the limitations inherent to Bitcoin in on-chain token issuance,
recent years have witnessed a surge in interest in client-side validation (CSV)
⋆ Corresponding author.
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designs. Inspired by Todd [28] and exemplified by the RGB project [9], these
designs store token ownership and transaction data off-chain while embedding
only short commitments for issuance and validation on the Bitcoin blockchain.
Compared to on-chain tokens, CSV designs offer reduced on-chain space con-
sumption and freedom from Bitcoin’s programmability constraints. However,
they also introduce two new challenges. Firstly, the data availability issue arises
from storing ownership and transaction data off-chain. Reliable external stor-
age mechanisms are crucial to ensure this information remains accessible to the
users. Secondly, the client coherence issue stems from the removal of on-chain
enforcement of transactional logic. All users must adhere to the same set of rules
to maintain consensus, which can be challenging to achieve and enforce.

This paper introduces UTxO binding, a novel technique to address the data
availability and client coherence issues inherent in CSV designs. Our approach
leverages an auxiliary UTxO-based blockchain, auxChain for short, to store token
ownership and transaction data and to enforce transactional logic after token is-
suance on Bitcoin. In a UTxO-based blockchain, as in Bitcoin, a user’s assets
are managed as a set of unspent transaction outputs—hence the name UTxO,
rather than a unified account. Each transaction output specifies an amount of
cryptocurrency and the conditions under which that amount can be spent. By
delegating data availability and client coherence to the auxChain, our approach
achieves enhanced programmability compared to Bitcoin and stronger robustness
than prior CSV designs. The core challenge is establishing a secure and verifi-
able binding mechanism: a one-to-one correspondence between a Bitcoin UTxO,
representing token ownership and validity, and a corresponding shadow UTxO
on the auxChain, which stores the associated data. We address this challenge by
proposing a generic framework and demonstrating its feasibility through an in-
stantiation with Nervos CKB [22]—CKB for short—as the auxiliary blockchain.
Our work and contributions are as follows:

Generic UTxO Binding Designs. We address the core challenge through the
following workflow. The Bitcoin token-binding UTxO is generated first, whose
generation transaction commits to its future shadow UTxO. The committed
shadow UTxO can only be generated on auxChain after the Bitcoin transaction
is confirmed. This shadow UTxO must embed information that uniquely identi-
fies its Bitcoin counterpart. We develop this workflow into two generic variants of
UTxO binding: basic UTxO binding, implementable in any UTxO-based block-
chain that supports arbitrary data embedding, which requires users to verify
transactions on both chains, and autonomous UTxO binding, which leverages
an on-chain Bitcoin light client on the auxChain to automate verification. We
formally prove that in our designs, an accepted binding relation is exclusive,
meaning it must be a bijection, unforgeable, meaning it cannot be disrupted or
invalidated by an attacker, and verifiable either by any party with access to both
blockchains, for basic UTxO binding, or by the auxChain’s smart contract, for
autonomous UTxO binding. Consequently, token ownership and transactional
logic are reliably stored and enforced. Our designs thus resolve the critical chal-
lenges of data availability and client coherence in CSV.
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Implementation on Nervos CKB. A practical implementation of autonomous
UTxO binding is deployed on CKB, a UTxO-based blockchain with Turing-
complete smart contracts. Key innovations include structuring transactions to
prioritize token-carrying inputs/outputs and integrating CKB’s native Bitcoin
light client for on-chain verification. Our implementation also strengthens the
protection of benign users’ tokens during Bitcoin reorganization. Performance
metrics highlight efficiency: token transfers incur minimal computational over-
head and collateral costs under 0.75 USD per UTxO. By March 2025, the protocol
supported 581 tokens, with one token, Seal, achieving over 42 000 holders.
Comparative Analysis. We compare UTxO binding against nine other in-
fluential Bitcoin layer-2 protocols based on four key metrics: data storage, pro-
grammability, privacy, and deployment status. The comparison highlights UTxO
binding’s unique combination of security, data availability, and programmabil-
ity, distinguishing it from existing solutions.

2 Token Issuance on Bitcoin

Issuing tokens—fungible or non-fungible—on existing blockchains has become
a common practice, rather than creating a new blockchain for each token. This
approach offers several advantages to issuers, including leveraging the established
security, readily available tools, and large user bases of existing platforms. By
building upon existing infrastructure, issuers can minimize development and
marketing costs, enabling them to concentrate on their core business objectives.

Bitcoin, renowned as the first, most influential, and arguably most secure
blockchain, has consistently attracted token issuance projects. While numer-
ous endeavors have aimed to achieve this on the Bitcoin blockchain [13], none
have achieved widespread success. Many of these Bitcoin-based token issuance
projects offer limited functionalities, while others remain in development with
uncertain prospects for a near-term launch. As a result, CoinMarketCap [7], a
prominent platform for tracking cryptocurrencies, lists only 116 tokens within
the Bitcoin ecosystem as of March 2025. In stark contrast, the Ethereum, Solana,
and BNB Smart Chain ecosystems involve 4201, 2365, and 4284 tokens, respec-
tively. Next, we briefly overview Bitcoin’s transaction structure and examine
these Bitcoin-based token issuance protocols, emphasizing both their strengths
and weaknesses.

2.1 Bitcoin’s Transaction Structure

Bitcoin transactions record value transfers between users. Each transaction com-
prises inputs and outputs. Inputs reference previous outputs, which represent the
sender’s received funds, while new outputs specify the destinations of the funds.
A previous output is identified by its transaction ID (txid)—the SHA256 hash of
the transaction data that generated the output, and an index, the index number
of the output within that transaction, starting with zero. A new output consists
of a value—its worth in satoshis, the smallest unit of Bitcoin, and a script defining
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the spending conditions. The most common script is “P2PKH addr”, where P2PKH
signifies “pay to public key hash” and addr specifies the receiver’s address, i.e.,
the hash of the receiver’s public key. When the output is spent, the receiver’s full
public key P and their signature on the complete transaction, generated with the
corresponding private key, must be provided as parameters. The set of unspent
transaction outputs (UTxOs) defines the ownership of all bitcoins.

Beyond simple value transfers, Bitcoin’s scripting system enables arbitrary
data embedding. Unless specified otherwise, we define “data embedding” and
“embedded in the data field” as information provided during UTxO creation,
and “parameters” as information provided during UTxO spending. The opcode
OP_RETURN marks an output as unspendable, allowing up to 80 bytes of arbitrary
data within the script after it.

Bitcoin’s Taproot upgrade [29] allows a selection of spending conditions,
where satisfying any one authorizes UTxO spending. This upgrade introduces
a new address format, the Taproot address, encoded from a tweaked public key
Pt = P+H(P || root) ·G. Here, G is a public generator point of an elliptic curve,
P is a public key of the Schnorr signature with corresponding private key p,
satisfying P = pG, H is a hash function, and root is a Merkle root. The Merkle
tree associated with root presents each alternative spending script as a leaf. Pt’s
corresponding private key is thus pt = p + H(P || root). Revealing and fulfilling
any single leaf authorizes the transaction. During UTxO spending, the owner
provides, in addition to Pt, either a corresponding signature signed with pt, or
P and a Merkle authentication path with respect to a leaf, via a witness field
attached to the transaction. All alternative conditions remain secret.
Designing a Token Issuance Protocol. A token issuance protocol design
comprises two distinct components: the token carrier, which defines how to en-
code the type, value, and ownership of tokens, and the token contract, which
defines the transaction logic, including initial issuance, transaction rules, and,
optionally, decentralized applications that utilize the token. These components
roughly correspond to Bitcoin’s UTxO and Bitcoin Script—Bitcoin’s native pro-
gramming language used to specify spending conditions, respectively. The key
challenges in designing the token carrier and token contract are determining
where to store the extra data and how to enforce the logic, respectively.

2.2 Non-CSV Designs

On-Chain Tokens. These protocols store all relevant data on the Bitcoin block-
chain. They differ in how they repurpose existing Bitcoin fields to implement the
token carrier, given Bitcoin’s lack of a native mechanism for on-chain data stor-
age. For example, Colored Coins [24] embeds the token carrier in the nSequence
field of UTxOs, which accommodates 4 bytes. Counterparty [8] and Omni Layer
[23] store token data after the OP_RETURN field, which allows up to 80 bytes.
Ordinals. Ordinals leverages Taproot by chunking data within the Merkle tree
leaves corresponding to a Taproot address, effectively expanding token carrier
capacity to 4 MB. Although these data are verifiable using the Taproot address,
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most of them reside off the Bitcoin blockchain. Consequently, Ordinals is not an
on-chain token design.
Limitations. On-chain token protocols implement token carriers within Bit-
coin’s UTxO and transaction structures. These structures are intentionally space-
limited to prevent excessive bandwidth and storage costs on Bitcoin network
participants. Conversely, Ordinals leverages external storage, introducing data
availability concerns.

Colored Coins and Ordinals enforce their token contracts through Bitcoin’s
consensus, which offers limited programmability. Mitigating this limitation hinges
on the development of advanced smart contract frameworks like BitVM [3, 12],
which are currently in their conceptual stages. Counterparty and Omnilayer en-
force token contracts on the client side, introducing client coherence concerns.
These concerns are further discussed in Sec. 2.3.

2.3 Client-Side Validation
Recognizing the limitations of early attempts, recent years have seen a surge
in CSV protocols. Inspired by Todd [28], these designs offload token carrier to
the client side, while embedding concise commitments on the Bitcoin blockchain
for transaction ordering and verification. Consequently, users must store their
transaction history locally. As on-chain enforcement of the token contract is no
longer feasible, enforcement shifts to the client side, removing constraints im-
posed by Bitcoin’s programmability. RGB [9], the earliest and most influential
CSV protocol, was initially proposed in 2018 and has undergone continuous re-
visions. Following the approach of Ordinals, Taproot Assets [21] leverages the
Taproot upgrade for its token carrier. Intmax2 [25] and Shielded CSV [15] fur-
ther enhance these designs by incorporating zero-knowledge proofs and advanced
cryptographic signature schemes to compress on-chain data and enhance users’
privacy. Next, we detail four challenges inherent to CSV protocols.
Data Availability. CSV protocols require users to maintain their full trans-
action history; data loss results in token loss. This places a heavier burden on
ordinary users than private key management. While private keys typically re-
quire a one-time backup as mnemonic phrases, CSV users must back up their
latest transaction history each time they send or receive tokens.

This situation could be addressed via a globally accessible backup mechanism.
However, maintaining such a backup is challenging, as evidenced by the various
attempts within the Ethereum ecosystem to address their own data availability
issues. Delegating backup responsibilities to third parties inherently grants them
the power to censor information and exert control over the system. For instance,
following a security breach in June 2024, the Ethereum project Linea temporarily
suspended operations to prevent further financial loss by halting its sequencer—
a trusted entity responsible for collecting Linea’s transaction data [20]. This
operation, though benign, revealed that such data centers constitute a single
point of failure for the system. Conversely, solutions that eliminate this single
point of failure typically involve a committee of nodes [27, 1, 18] and additional,
often expensive, mechanisms to guarantee their honesty [2].
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Peer Discovery. Transmitting transaction history data to the recipient poses a
further challenge. Protocol designers face undesirable choices. Directly sending
data to the recipient necessitates disclosing their IP address, which raises privacy
concerns and increases vulnerability to DoS attacks. Alternatively, broadcasting
data over a dedicated P2P network consumes significant resources, as the history
expands linearly with time.
Client Coherence. Existing CSV protocols require all users to execute identi-
cal validation rules, typically achieved by running the same client version. This
presents challenges for rule updates and impacts client diversity, which is gener-
ally considered crucial for blockchain protocol security [19]. Furthermore, due to
the difficulty of maintaining coherent validation rules, existing protocols employ
simple rules to minimize vulnerabilities. As of March 2025, all four aforemen-
tioned CSV designs are restricted to simple token transfers without programma-
bility support. Specifically, Taproot Assets, Intmax2, and Shielded CSV do not
include programmability in their roadmaps. This limitation is likely not coin-
cidental. Taproot Assets, aiming for native support by most Bitcoin clients, is
constrained by Bitcoin’s programmability. Intmax2 and Shielded CSV, already
employing complex cryptographic tools, could experience further performance
degradation with added programmability. Only RGB’s architecture envisions
expressive programmability via AluVM. However, like BitVM, AluVM remains
in early development with no imminent release.
State Integrity. A token maintains state integrity when its complete ownership
is committed to the Bitcoin blockchain. On-chain tokens inherently satisfy state
integrity, as all ownership information resides on-chain. CSV users, however, lack
access to the full token ledger. Therefore, a proof of state integrity is essential.
Without such a proof, users cannot be certain that malicious actors are prevented
from generating tokens through undefined methods or presenting multiple valid
versions of the transaction history. Existing designs lack this proof.

3 Preliminaries

We now present the preliminaries necessary for understanding UTxO binding.
We begin with a description of the RGB protocol, the foundation of our design.
Originally proposed by Orlovsky and Zucco in 2016, the RGB protocol is the
earliest CSV design and, as of March 2025, remains highly influential due to
its relative simplicity and flexibility. Following this, we provide an overview of
Nervos CKB’s Cell model, the platform underlying our implementation.

3.1 RGB Protocol

In RGB, each token unit must be bound to a Bitcoin UTxO, known as the token-
binding UTxO. A token-binding UTxO is indistinguishable from an ordinary
Bitcoin UTxO until it is spent; it contains no token-specific information. The
token is considered spent when its binding UTxO is spent.



Solving Data Availability Limitations in CSV with UTxO Binding 7

Issuance. Issuing an RGB token involves designating an existing Bitcoin UTxO,
owned by the issuer, as the genesis UTxO. This genesis UTxO—a special token-
binding UTxO—represents the token’s initial supply. The token’s complete is-
suance policy and its schema, i.e., the token contract, are defined off-chain, e.g.,
on its website, and agreed upon by all users of the token.

Transaction. Transferring a token is more complex. Let Alice be the sender and
Bob the receiver. Assume Alice has demonstrated to Bob that σA, Alice’s UTxO,
is bound to a sufficient quantity of tokens. We will later explain how Alice accom-
plishes this. Alice must also demonstrate two further points to Bob: First, Alice
has not previously transferred the tokens associated with σA. This is evident as
σA remains unspent. Second, Bob is the legitimate recipient. Alice demonstrates
this through the following interactive token transfer protocol. First, Bob (1) se-
lects σB = (txidB, indexB), one of his existing Bitcoin UTxOs, as the receiving
token-binding UTxO, (2) computes a seal SB = H(txidB, indexB, saltB) where H
is a hash function and saltB is a random number, and (3) sends SB to Alice.
The random number prevents Alice from learning σB from SB by enumerating
all Bitcoin UTxOs. Upon receiving SB, Alice (1) generates an RGB transaction
TxA→SB , a cryptographic proof transferring tokens to the UTxO sealed in SB,
(2) computes CTx = H(TxA→SB), a commitment to the RGB transaction, (3)
spends σA in a Bitcoin transaction whose first output (index 0) embeds CTx after
OP_RETURN , and (4) sends TxA→SB to Bob. Bob verifies the correct construc-
tion and embedding of CTx in the Bitcoin transaction spending σA. Successful
verification convinces Bob that he has received the tokens. Note that only Bob
knows that the tokens are now bound to σB. Alice retains her bitcoins associated
with σA, as they are transferred to other outputs of the Bitcoin transaction. She
can no longer transfer the tokens to anyone else because σA is spent.

To demonstrate to Bob that σA is a token-binding UTxO with the required
balance, Alice provides Bob with (1) the sequence of token-binding UTxOs from
the token’s genesis UTxO to the UTxO(s) that sent tokens to σA, (2) the cor-
responding salts used to compute their seals, and (3) the complete history of
RGB transactions among these UTxOs. This allows Bob to verify the full trans-
action history related to σA. If any seal, transaction, or commitment in its his-
tory is invalid, σA is invalid. When Bob transfers the tokens to Carol, he adds
σB = (txidB, indexB) to the list of token-binding UTxOs, saltB to the salt list,
and TxA→SB to the transaction history, and repeats the token transfer protocol.

Limitations. RGB suffers from the previously mentioned data availability, peer
discovery, and client coherence issues. Regarding state integrity, while the default
setting is generally considered correct, no formal proof or argument is provided
to demonstrate why all acceptable schemas and future updates maintain it.

Some advantages claimed by RGB proponents are overstated or unrealized.
The recipient privacy—the receiver’s token-binding UTxO remains unknown to
others—is temporary, as it is eventually revealed to subsequent recipients. The
programmability of AluVM remains conceptual, with no development progress
in years. While RGB reduces on-chain storage costs by using constant-size com-
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mitments for RGB transactions, the limited number of inputs and outputs in
most Bitcoin transactions suggests that the throughput gain is modest.

Furthermore, RGB incurs greater costs than an ordinary blockchain transac-
tion in two ways. First, the protocol’s interactive nature—requiring the receiver
to compute and send the seal—increases communication overhead and limits its
applicability. Second, the history of transactions associated with a token grows
over time and can eventually comprise a substantial portion of RGB’s full ledger.

3.2 Nervos CKB Cells and Scripts

We chose CKB for our implementation for two reasons. First, its UTxO-based
model allows a direct correspondence with Bitcoin UTxOs. Second, its Turing-
complete virtual machine supports complex cryptographic operations. Specifi-
cally, an off-the-shelf Bitcoin light client is available on CKB, enabling on-chain
verification of Bitcoin transaction embedding. While not strictly necessary for
UTxO binding, this simplifies our threat model and implementation.

Central to CKB’s architecture is the Cell model, an enhanced UTxO frame-
work designed to address the limitations of Bitcoin’s UTxO model. We provide a
brief overview here and refer readers to the official documentation for a detailed
description [30]. Each UTxO, termed a cell, is identified by its transaction ID
and output index, as in Bitcoin. Each cell comprises four fields: capacity, data,
lock script, and type script. Capacity specifies the cell’s allocated storage space,
while data stores arbitrary key-value pairs up to that capacity. Cell behavior is
governed by programmable scripts, categorized as lock scripts and type scripts.
The lock script defines the spending conditions, which must be satisfied when
the cell is used as input, thus enforcing ownership, similar to Bitcoin’s script.
The type script offers greater flexibility, defining conditions that must be sat-
isfied when the cell is used as input and/or output. For example, a type script
might specify that “the transaction generating this cell is valid only if one of its
input cells has a capacity exceeding 1 MB.” In contrast to Bitcoin, where scripts
lack access to transaction outputs, CKB scripts possess full transaction visibil-
ity. Consequently, covenants, which are constraints on transaction outputs [14,
16], can be enforced within either script.

CKB scripts employ code abstraction: each script comprises (1) a code_hash
field, referencing the actual smart contract code stored in a previous cell’s data
field, and (2) an args field providing transaction-specific parameters. The invo-
cation of code stored within a previous cell’s data field does not destroy that cell.
For instance, a lock script implementing the secp256k1 signature scheme refer-
ences the algorithm’s code binaries via its code_hash, while the owner’s public
key is included in args when the cell is spent. To unlock the lock script and
spend the UTxO, the owner must provide a valid signature generated using the
corresponding private key. This signature is appended to the block containing
the transaction in its witness field, as in Bitcoin. Unlike Bitcoin, where parame-
ters are only provided to transaction inputs, both lock and type scripts in CKB
also accept parameters when the cell acts as an output. As output lock scripts
are not executed, their parameters are accessible when the cell is spent.
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CKB natively supports diverse token types, each uniquely identified by a
token ID. Typically, both the token type and its associated contract are defined
as smart contract code, which is then referenced by all cells holding that token as
the type script. Our implementation adheres to this convention: the type script
identifies the token type and verifies that it is issued through UTxO binding.

4 UTxO Binding

Our key idea is to employ an auxiliary blockchain, called auxChain, to store
the token carrier and enforce the token contract. A token transfer is valid only
if confirmed on both Bitcoin and auxChain. Leveraging a blockchain network,
which exhibits greater robustness than a collection of clients managing a token,
effectively resolves all four challenges inherent in CSV designs. Data availability
is ensured, as it is persistently stored by the auxChain’s full nodes. The token
contract is enforced by the auxChain’s consensus, guaranteeing client coherence.
The peer discovery dilemma is resolved: only the most recent transaction, instead
of the entire transaction history, requires broadcasting within the auxChain’s
P2P network, and the recipient’s IP address remains concealed. Finally, the
public transaction ledger eliminates the need for state integrity proof.

The key challenge is maintaining a one-to-one correspondence between Bit-
coin’s and auxChain’s token-binding UTxOs, preventing the forgery or invali-
dation of such a UTxO on either chain. This section presents UTxO binding, a
generic design addressing this challenge. We begin with the threat model and
desired properties, then present two variants of our design.
Remark. Adopting an auxChain differs fundamentally from issuing tokens on
a sidechain, a blockchain designed for bidirectional bitcoin transfers. CSV de-
signs aim to issue tokens directly on the Bitcoin blockchain and commit every
transaction to it. These objectives are analogous to those of rollups, an approach
infeasible on Bitcoin. A sidechain-based token, however, is issued only on the
sidechain and secured by it, failing to achieve these core objectives.

4.1 Threat Model

Given that Bitcoin is selected as a token issuance platform for its security, we as-
sume that every Bitcoin transaction becomes irreversible after a sufficient num-
ber of blocks are mined following the block containing the transaction. This
assumption allows us to broadcast the Bitcoin transaction first, and broadcast
the corresponding auxChain transaction only after the former is confirmed. Like
other CSV protocols, our protocol relies on the principle that each Bitcoin UTxO
can be spent only once by its owner. Furthermore, we do not utilize Bitcoin to
enforce token-specific transactional logic, such as verifying transaction confirma-
tion on the auxChain.

The auxChain natively supports multiple assets, identified with unique to-
ken IDs, and can embed all token-related data as key-value pairs within the
corresponding output. Its smart contract is sufficiently expressive to enforce the
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token contract. We do not rely on the irreversibility of auxChain blocks. Even if
an adversary conducts a consensus attack and forks the auxChain, token own-
ership remains unaffected, because the adversary cannot forge a valid shadow
transaction. Several UTxO-based blockchains, including Cardano [5], Ergo, and
Nervos CKB, meet these requirements.

The issuer honestly constructs token issuance transactions on both chains.
The sender can initiate transactions on both chains and operates consistently
across both blockchains to prevent token loss. Sending conflicting transactions
in UTxO binding is equivalent to sending assets to unspendable addresses. The
receiver securely provides receiving addresses on both chains to the sender. Un-
like RGB, UTxO binding can be non-interactive: after providing the addresses,
the receiver does not need to be online to receive the tokens. Moreover, UTxO
binding does not require the receiver to possess an existing Bitcoin UTxO.

If the auxChain offers an on-chain Bitcoin light client, only auxChain access
is required to verify the token transaction. Otherwise, the receiver must access
both chains to verify the transaction.

The attacker aims to break the binding between a Bitcoin transaction and
its corresponding shadow transaction, double-spend tokens, or invalidate token
ownership. The attacker can observe all public blockchain data and transactions
propagated across the P2P networks. Upon receiving an honest transaction, the
attacker may construct and confirm transactions on both blockchains before
the honest transaction is confirmed. However, the attacker cannot break the
ownership locks on either blockchain.

We stress that this threat model introduces no additional assumptions be-
yond prior CSV designs. The auxChain merely provides an extra layer of pro-
tection for data availability, client coherence, and state integrity, facilitating
the receiver’s verification. Crucially, Bitcoin and auxChain do not need to be
synchronized: token transfer remains valid as long as the shadow transaction is
eventually confirmed, even after the Bitcoin token-binding UTXO is spent, if
the receiver is convinced of the transaction’s validity.

4.2 Desired Properties

As argued, with UTxO binding, establishing a secure one-to-one correspondence
between Bitcoin and shadow transactions naturally addresses data availability,
peer discovery, client coherence, and state integrity issues. We now define the
desired properties for this secure one-to-one correspondence. When the auxChain
does not offer an on-chain Bitcoin light client, UTxO binding should satisfy the
following properties:

Exclusive Binding. Each Bitcoin token-binding UTxO σ corresponds to ex-
actly one valid shadow UTxO σ′ in auxChain. Conversely, σ′ corresponds
exclusively to σ.

Unforgeability. An attacker cannot invalidate token-binding UTxOs or disrupt
token transactions.
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Public Verifiability. In the event of a token contract violation, such as double-
spending or over-issuing, any party with access to both blockchains can iden-
tify the offending transactions.

Exclusive binding ensures that neither the sender nor an attacker can create
multiple valid Bitcoin or shadow UTxOs to confuse the receiver. Unforgeability
prevents attackers from double-spending or invalidating tokens. Public verifia-
bility is stronger than the local verifiability of other CSV designs, where receivers
can only verify the absence of over-issuing or double-spending concerning their
own tokens. Both of our variants achieve these properties.

Exclusive binding alone is insufficient for security. Consider the following
RGB variant. Instead of using the hash of the RGB transaction TxA→SB as the
commitment CTx, we define CTx = H(TxA→SB ||r), where r is a random number.
We prescribe that the first auxChain UTxO embedding r becomes the receiver’s
shadow UTxO. The total ordering of auxChain ensures exclusive binding: each
random number corresponds to only one earliest UTxO on each chain. However,
this design fails to achieve unforgeability, as it enables a frontrunning attack.
Upon observing the shadow transaction containing r, an attacker can submit
a competing transaction that also embeds r and confirm it before the honest
transaction. This effectively locks the receiver’s tokens on the auxChain.

When auxChain provides an on-chain Bitcoin light client, we can replace
public verifiability with a stronger property:

Contractual Integrity. If a shadow UTxO σ′ is valid, then the corresponding
Bitcoin token-binding UTxO σ adheres to the token contract.

This implies that only auxChain access is required for transaction verifica-
tion. Our second variant, Autonomous UTxO Binding, achieves this property.

4.3 Basic UTxO Binding

When the auxChain does not offer an on-chain Bitcoin light client, the receiver
provides addresses on both blockchains to the sender and requires access to both
blockchains for token transaction verification.
Issuance. Similar to RGB, the token issuer designates an existing Bitcoin UTxO
as the genesis UTxO. No information embedding is necessary within this genesis
UTxO. Subsequently, the issuer creates a transaction on auxChain with a shadow
genesis UTxO. This shadow genesis UTxO specifies: (1) the token contract, in-
cluding its issuance policy and transactional logic within its smart contract, and
(2) its token ID, along with the Bitcoin genesis UTxO’s transaction ID and out-
put index in its data field. This action is equivalent to issuing the token on the
auxChain, a function natively supported, with the added information of the Bit-
coin genesis UTxO. From this point forward, the token contract is enforced as a
covenant by the auxChain’s consensus. The issuer then announces both UTxOs
to the community via a trustworthy channel.
Transaction. Let Alice be the sender and Bob the receiver. Alice possesses
a Bitcoin token-binding UTxO σA and its corresponding shadow UTxO σ′

A.



12 Yunwen Liu, Bo Wang, and Ren Zhang

Bitcoin transaction

input 0: 
P2PKH addr
546 sat

input 1: funding
P2PKH addr
22546 sat

auxChain transaction

input 0: ′
P2PKH addr′

1000 tokens
btcAddr = addr

Bitcoin UTxO
spending script
Bitcoin value

output 0: ′ℬ
P2PKH addrℬ′

500 tokens
btcAddr = addrℬ

output 1: ′
P2PKH addr′

500 tokens
btcAddr = addr

shadow UTxO
spending script
token value
[data]

output 0: commitment
OP_RETURN Tx ′

0 sat

output 1: ℬ

P2PKH addrℬ
546 sat

output 2: 
P2PKH addr
546 sat

output 3: change
P2PKH addr
20000 sat

H()

Fig. 1. A pair of transactions illustrating basic UTXO binding, where Alice transfers
500 tokens to Bob and another 500 to Carol. In the Bitcoin transaction, input 1 provides
the 2000-satoshi transaction fee and the additional values of the token-binding UTxOs,
and output 3 receives the remaining bitcoins. We omit the auxChain transaction’s
additional inputs and outputs, listing only those used to compute the commitment. In
autonomous UTXO binding, we replace the auxChain’s spending script with a script
validating the three conditions detailed in Sec. 4.4, and the data field with the txid and
index of the corresponding Bitcoin UTxO.

Verifying Alice’s sufficient token balance is straightforward due to the public
transaction history. Bob has provided Alice with his Bitcoin address addrB and
auxChain address addr′B. In our design, the token-binding UTxO is generated
within the transaction, eliminating Bob’s need to pre-assign an existing Bitcoin
UTxO.

Alice begins by constructing, without broadcasting, an auxChain transac-
tion Tx′A→B that sends tokens to addr′B and including addrB in its data field. She
then computes a commitment CTx′ = H(Tx′A→B). If certain transaction fields re-
main unfixed before confirmation, they can be left blank during the commitment
computation. Next, Alice constructs a Bitcoin transaction that spents σA as the
first input. The first output of the transaction has zero value and embeds CTx′

after OP_RETURN. We can also commit to CTx′ via Taproot, as described in Ap-
pendix A. The second output transfers 546 satoshis—–the minimum transferable
Bitcoin amount–—to addrB. This second output becomes Bob’s token-binding
UTxO σB. Additional funding inputs might be required to cover transaction fees,
and a change output might be necessary to collect the remaining bitcoins. Once
the Bitcoin transaction is confirmed, Alice broadcasts Tx′A→B on the auxChain
network. The output of this transaction becomes Bob’s shadow UTxO σ′

B. Bob
then verifies that the spending transactions of σA and σ′

A commit to both of his
addresses and that the histories of σA and σ′

A are consistent back to the genesis
UTxO and its shadow.

Generalizing these conditions to multiple-input-multiple-output transactions
is straightforward. Replace Tx′A→B with a multiple-input-multiple-output trans-
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action. The transaction inputs consist of an array of ns input shadow UTxOs,
denoted as σ′

sender[], where each element represents a sender. The transaction
outputs consist of an array of nr newly generated shadow UTxOs, denoted as
σ′
receiver[], where each element targets a receiver by embedding the correspond-

ing Bitcoin address in its data field. The corresponding Bitcoin transaction’s
inputs must include all Bitcoin token-binding UTxOs, σsender[], that correspond
to the input shadow UTxOs as the first ns inputs. Additionally, it must include
all newly generated token-binding UTxOs as the second to (nr + 1)-th outputs,
maintaining the same order as in the shadow transaction.

As the token contract is enforced by auxChain’s consensus, the clients’ only
remaining task is a consistency check between the Bitcoin and auxChain trans-
actions. This check is indispensable because without an on-chain Bitcoin light
client, a shadow transaction might be confirmed despite the absence of its cor-
responding Bitcoin transaction, or even if it corresponds to a different receiver.
In such cases, as in any other CSV designs, the receiver must not deem the
transaction settled. Our second variant relieves the receiver of this burden.

4.4 Autonomous UTxO Binding

When the auxChain offers an on-chain Bitcoin light client, the receiver provides
a Bitcoin address to the sender and requires only auxChain access for token
transaction verification.
Issuance. Token issuance is nearly identical to the previous design, with some
additional spending conditions in shadow genesis UTxOs. These conditions,
which apply to all shadow UTxOs, will be specified later.
Transaction. Let Alice be the sender and Bob the receiver. Alice possesses a
Bitcoin token-binding UTxO σA with address addrA. The corresponding shadow
UTxO is σ′

A. She intends to transfer valueB tokens to Bob, whose Bitcoin address
is addrB.

The main workflow mirrors the previous design. Alice constructs a commit-
ment CTx′ and embeds it after OP_RETURN of the first output of σA’s spend-
ing transaction. The second output σB transfers 546 satoshis to addrB. Upon
confirmation of the spending transaction, Alice reveals the commitment in a
corresponding auxChain transaction, creating the shadow UTxO σ′

B. This de-
sign differs from the previous one in the commitment’s content and the shadow
UTxOs’ spending conditions.

The commitment CTx′ is defined as H(σ′
A, 1, valueB). The number “1” indi-

cates that a single output, i.e., the second one, is a token-binding UTxO. We
specify the commitment’s content to highlight the exclusion of both auxChain
and Bitcoin addresses. The Bitcoin address is omitted because it will be commit-
ted within the second output of the Bitcoin transaction. The auxChain address
is unnecessary due to the specialized spending conditions outlined below.

Beyond the token-specific contract, the shadow genesis UTxO defines spend-
ing conditions applicable to all shadow UTxOs, ensuring the proper expenditure
of their associated Bitcoin UTxOs. These conditions are:
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Condition 1. The corresponding Bitcoin token-binding output is spent with
commitment CTx′ , and the Bitcoin transaction is confirmed.

Condition 2. The full content of commitment CTx′ is reconstructible from the
shadow UTxO’s spending transaction and is computed correctly. This verifi-
cation process includes checking the correct specification of the spent shadow
UTxO(s) and the token value(s) of the newly generated shadow UTxO(s).

Condition 3. The newly generated shadow UTxO(s) must replicate the spend-
ing conditions of the current one.

Condition 1 is validated through the on-chain Bitcoin light client. This re-
quires the following: (1) the full Bitcoin transaction is stored on auxChain, and
(2) the shadow UTxO spending script can access the txid and index of its Bitcoin
correspondence. The method by which the Bitcoin transaction is supplied to
the auxChain varies depending on the specific auxChain implementation. The
Bitcoin token-binding output’s txid and index can be conveyed either as a data
entry or output parameter during the creation of the shadow UTxO, or as an in-
put parameter during its spending. With access to the Bitcoin transaction, the
spending script can extract the list of newly generated Bitcoin token-binding
UTxOs and their corresponding addresses, including addrB, and bind them with
their shadow UTxOs for further reference. Consequently, there is no need to
explicitly transfer addrB to the auxChain. Since the entire transactional logic re-
sides on the auxChain, Bob only needs to verify the existence of a valid shadow
UTxO on the auxChain. This shadow UTxO must contain amount valueB of the
desired token, and reference a Bitcoin output that targets addrB at the correct in-
dex of the Bitcoin transaction, which is also recorded on the auxChain. Notably,
σ′
A is not secured by Alice’s public key; any entity possessing the commitment

content can construct this transaction.
To generalize these conditions to multiple-input-multiple-output transactions,

we replace σ′
A with an array of ns senders σ′

sender[], the number 1 with the num-
ber of receivers nr, and valueB with an array of output values valuereceiver[].
All newly generated shadow UTxOs must specify the same spending conditions.
The corresponding Bitcoin transaction’s inputs must include all Bitcoin token-
binding UTxOs, σsender[], as the first ns inputs. Additionally, it must include
all newly generated token-binding UTxOs as the second to (nr + 1)-th outputs,
maintaining the same order as in the shadow transaction.

5 Security Evaluation

Theorem 1. Both UTxO binding designs achieve exclusive binding.

Proof. Since the issuer is honest, the Bitcoin genesis UTxO and the shadow gen-
esis UTxO are exclusively bound. Assume all existing UTxO pairs are exclusively
bound, and we will prove that any newly generated pairs, if they pass the validity
checks, are also exclusively bound.

Valid transactions come in pairs. Each Bitcoin token-binding UTxO’s spend-
ing transaction corresponds to exactly one auxChain transaction, because the
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involved shadow UTxOs can be spent only once. This also holds in the reverse
direction.

If a transaction pair is accepted by the public (basic UTxO binding) or the
auxChain (autonomous UTxO binding), then the following arguments hold: (1)
the first output of the Bitcoin transaction commits to the auxChain transaction;
(2) each shadow output maps to exactly one Bitcoin output. Our design ensures
the second condition by mandating the i-th shadow output maps to the (i+1)-th
output of the Bitcoin transaction. In basic UTxO binding, further assurance is
provided by the embedding of a Bitcoin address within the output’s data field.

Consider any shadow output σ′
B of the auxChain transaction. By argu-

ment (2) above, it maps to a unique Bitcoin output, denoted as σB, with address
addrB. Conversely, starting from this Bitcoin output σB, argument (1) dictates
that its generation transaction and the embedded commitment uniquely identify
an auxChain output. Since the Bitcoin transaction, the auxChain transaction,
and its commitment must align for the transaction pair to be accepted, this
identified auxChain output must be σ′

B. Therefore, we have proven the exclusive
binding between any pair of new UTxOs.

By induction, all accepted pairs exhibit exclusive binding.

Theorem 2. Both UTxO binding designs achieve unforgeability.

Proof. By assumption, the token issuance is successful. For a newly accepted
pair of transactions, assuming its entire transaction history is unforgeable, we
will prove that the new pair is also unforgeable.

In basic UTxO binding, the attacker cannot forge either transaction, as both
are signed by the same sender, who maintains consistency to prevent token loss.
Similarly, in autonomous UTxO binding, the attacker cannot forge the Bitcoin
transaction, as the sender signs it. This transaction commits to the number
of receivers, their Bitcoin addresses and values, preventing the attacker from
double-spending, over-issuing, or invalidating any tokens.

By induction, all accepted pairs are unforgeable.

Theorem 3. Both UTxO binding designs achieve public verifiability.

Proof. The genesis transaction pair is accessible and verifiable through reliable
channels. By examining all descendants of the shadow genesis transaction, we
can reconstruct the complete list of shadow transactions and shadow UTxOs. For
each shadow transaction, its corresponding Bitcoin transaction can be located
by computing the commitment and searching the Bitcoin blockchain. As the full
transaction details and the entire token contract reside on the auxChain, we can
verify the correct construction of all transactions.

Theorem 4. Autonomous UTxO binding achieves contractual integrity.

Proof. Since all evaluation rules for exclusive binding and unforgeability are
enforced by the auxChain’s smart contract, autonomous UTxO binding achieves
contractual integrity.
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6 Implementation on CKB

We implemented autonomous UTxO binding on CKB and launched the protocol
in April 2024. Our implementation1 leverages CKB’s on-chain Bitcoin light client
and its robust feature set. This section details our implementation and presents
its performance metrics.

6.1 Implementing Autonomous UTxO Binding

We detail our implementation by first specifying the storage of key data to
ensure accessibility by validating scripts and unforgeability, and then describing
our workflow and validation logic.
Key Data Structures. For every CKB transaction with ns inputs and nr

outputs carrying UTxO binding tokens, we mandate that these token-carrying
inputs and outputs must occupy the first positions in the transaction. Other
inputs and outputs, such as funding inputs providing storage capacity and change
outputs collecting remaining storage, must be listed after the token-carrying
inputs and outputs. Additionally, we require that each CKB transaction and
each Bitcoin transaction involves at most one token type. The commitment of
this transaction is computed as

CTx′ = H(ns||nr||ckb_tx.inputs[0 : ns]||ckb_tx.outputs_raw[0 : nr]) ,

where ckb_tx.inputs[0 : ns] are the token-carrying inputs, and ckb_tx.outputs_raw[0 :
nr] are the token-carrying outputs without their lock script args fields. The Bit-
coin transaction committing CTx′ is constructed as described in Sec. 4.4.

The confirmation of this Bitcoin transaction finalizes its txid. An entry
btc_utxo = (txid, index) is then added to each shadow output’s args as a lock
script parameter. We prescribe that a shadow output with index i (0 ≤ i ≤
nr − 1) must point to the Bitcoin output with index i+ 1. This btc_utxo entry
is accessed by the shadow transaction’s input lock script and when the shadow
UTxO is spent. The shadow transaction’s input lock script retrieves the Bitcoin
transaction and its corresponding inclusion proof from the CKB transaction’s
witness. This design choice is motivated by the principle that, for benign senders,
the btc_utxo exhibits greater persistence than the corresponding Bitcoin block.
As a result, our implementation offers enhanced protection against transient
Bitcoin reorganization, as detailed in Appendix B.
Main Workflow and Validation Scripts. The main workflow follows Sec. 4.4,
with two additional steps between broadcasting the Bitcoin and CKB transac-
tions. Specifically, after the Bitcoin transaction is deemed irreversible, the sender
(1) adds the btc_utxo entry to each shadow output’s args, and (2) uploads the
Bitcoin transaction to the CKB Bitcoin light client. For the light client to accept
1 The source code for RGB++, a multi-component project, is available at https:

//github.com/utxostack. It encompasses features beyond those outlined here.
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the transaction as authentic, the sender might provide supplementary informa-
tion, such as a series of block headers to validate the proof of work and a Merkle
proof confirming the transaction’s inclusion in a block. Although we refer to “the
sender” for simplicity, these steps can be performed by any party with access
to the Bitcoin blockchain. Once completed, the sender broadcasts the shadow
transaction.

All UTxOs carrying a token must use the same type script, which identifies
the token. This ensures token ID uniqueness and enforces the token contract.
It also ensures that all token-carrying UTxOs reference the same code_hash in
their lock script, thereby satisfying Condition 3 in Sec. 4.4. The logic of this lock
script is detailed below.

The lock script contains the main complexity. A lock script is executed only
when its UTxO is used as the transaction’s input, that is, when the shadow UTxO
is spent. To spend a shadow UTxO σ′

A, its lock script fetches (1) its Bitcoin UTxO
σA from its btc_utxo entry in args, which is supplied when σ′

A is generated, and
(2) Tx, the spending transaction of σA from the btc_utxo entry of any newly
generated shadow UTxO. The script then verifies the following conditions. First,
σA is among the inputs of Tx unless Tx is an issuance transaction, validating
Condition 1. Second, it recomputes CTx′ from the current transaction and checks
whether it matches the commitment in Tx, validating Condition 2. Third, all
newly generated shadow UTxOs embed Tx in their btc_utxo entry, and their
index values are correctly numbered. The shadow UTxO is spendable if all three
conditions are met.

6.2 Performance Metrics

By March 2015, less than a year after our mainnet launch, 581 tokens has been
issued. Of these, eight tokens has over a thousand holders. The most widely
adopted token, Seal, has 42 560 holders and a peak of 1 883 transactions within
24 hours.
Computational Costs. The execution times of our type and lock scripts are
negligible, as they involve only string comparisons and hash operations that
scale linearly with the length of the Bitcoin and CKB transactions. The primary
complexity lies in proving the authenticity of the Bitcoin transaction to the
on-chain Bitcoin light client, which requires accessing the Bitcoin blockchain.
However, fetching a Bitcoin transaction and its associated data consumes far
less resource than running a Bitcoin full node, a requirement often imposed by
other CSV protocols.
Collaterals and Transaction Fees. To be spendable, each Bitcoin token-
binding UTxO must carry 546 satoshis, equivalent to less than 0.5 USD as of
March 2025. Each shadow UTxO occupies 158 bytes of storage on CKB, costing
less than 0.74 USD. These collaterals are locked with the tokens and are not
spent. The transaction fee for a Bitcoin transaction, which varies with its size,
typically remains within 2 USD. The CKB transaction fee is less than 0.01 USD.
The Bitcoin transaction and its corresponding inclusion proof are conveyed to
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Data storage Programmability Privacy Deployment
Colored Coins, Omni
Layer, Counterparty Bitcoin 7 public 3

Ordinals off-chain 7 public 3

RGB, Taproot Assets off-chain 7 selective 3

Intmax2, Shielded CSV off-chain 7 high 7

Lightning Network off-chain 7 off-chain 3

UTxO Binding Nervos CKB 3 public 3

Table 1. Comparison with other Bitcoin layer 2 protocols.

the lock script as witnesses and, therefore, do not occupy any cell’s capacity or
incur extra fees.
Transaction Confirmation Latency. A transaction is considered final only
after both the Bitcoin and CKB transactions are confirmed. At a minimum, this
process takes approximately 10 minutes, given Bitcoin’s average block time of
10 minutes and CKB’s block time of 8 seconds. However, to mitigate the risk of
blockchain forks, we recommend users wait for six Bitcoin block confirmations,
which extends the confirmation time to around one hour.

7 Comparison with Other Bitcoin Layer 2 Protocols

This section compares UTxO binding with several influential payment protocols,
commonly categorized as Bitcoin layer 2 protocols. To maintain a focused scope,
the comparison is limited to protocols that issue or operate tokens directly on the
Bitcoin blockchain, including those detailed in Sec. 2, alongside the Lightning
Network and UTxO binding. Table 1 provides a detailed comparison of these
protocols using four key metrics.
Data Storage. This metric assesses how transaction data are stored and ac-
cessed. Colored Coins, Omni Layer, and Counterparty store data directly on
the Bitcoin blockchain, which offers limited storage. Ordinals, Taproot Assets,
Intmax2, Shielded CSV, and the Lightning Network store data off-chain, placing
the responsibility on individual users. Consequently, users risk losing tokens if
specific state data is lost. UTxO binding, in contrast, stores data on CKB, which
provides greater storage capacity and enhanced reliability.
Programmability. This metric evaluates the protocol’s support for complex
smart contract logic. All listed protocols, except for RGB which plans to in-
corporate programmability, are limited to basic token transfers. UTxO binding
inherits CKB’s expressive programmability.
Privacy. This metric assesses the level of privacy offered by each protocol. Most
protocols, including UTxO binding, provide weak privacy guarantees due to the
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public nature of transaction data. RGB offers limited recipient privacy, as the re-
ceiver’s token-binding UTxO remains hidden until it is spent. However, spending
the UTxO reveals it, along with its entire transaction history, to the subsequent
receiver. Furthermore, the OP_RETURN output in the spending transaction pub-
licly indicates the presence of a token-binding UTxO among the inputs. Taproot
Assets offers slightly stronger anonymity, as token-binding UTxOs are indis-
tinguishable from other Taproot outputs, thus we categorize them as offering
“selective” disclosure. The Lightning Network provides “off-chain” privacy, as
some transactions occur outside the Bitcoin blockchain, complicating the recon-
struction of the complete transaction history for attackers. Intmax2 and Shielded
CSV offer stronger privacy through encrypting transaction histories. We aim to
enhance privacy in future updates.
Deployment. Most protocols are deployed, with Intmax2 and Shielded CSV
being the exceptions.

8 Conclusion

CSV is the most promising approach to achieving the long-standing goal of issu-
ing tokens on Bitcoin. However, existing designs have failed to gain wide adop-
tion due to issues with data availability, peer discovery, client coherence, and
state integrity. In this paper, we address these limitations by introducing UTxO
binding, which securely links a Bitcoin UTxO to a UTxO on an auxiliary block-
chain. We defined the desired properties and formally proved that our designs
meet these properties. Moreover, to demonstrate its feasibility and efficiency,
we implement our design on CKB. We hope that this design, along with our
implementation, can finally unleash the high demand for Bitcoin-based tokens.
Furthermore, UTxO binding showcases a new direction to enrich Bitcoin’s func-
tionalities and leverage its battle-tested security without modifying the Bitcoin
consensus, which could enable new possibilities for the Bitcoin ecosystem.
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A Committing via Taproot

Our designs explicitly embed the commitment on the Bitcoin blockchain via
OP_RETURN in a dummy output. Alternatively, by leveraging the Taproot up-
grade, we can remove this dummy output and embed the commitment within
the Bitcoin token-binding UTxO. Specifically, we can replace the Bitcoin trans-
action’s receiving address addrB with a Taproot address addrtB, encoded from the
tweaked public key Pt

B = PB+CTx′ ·G, where PB is the public key corresponding
to addrB. The tweaked private key is thus pt

B = pB+CTx′ , where pB is the private
key corresponding to PB. The shadow transaction remains unchanged. Note that
in this case, the Bitcoin token-binding outputs becomes the transaction’s first
to nr-th outputs, rather than the second to (nr + 1)-th.

This commitment approach, compared to using OP_RETURN, presents two ad-
vantages and one disadvantage. First, it conserves Bitcoin on-chain space. Sec-
ond, aligning with Taproot Assets, the token-binding UTxO appears indistin-
guishable from a standard Taproot output. Conversely, it introduces additional
computation in autonomous UTxO binding. Specifically, the auxChain must
verify the proper construction of the Taproot addresses when deriving σB from
σ′
B.
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B Resistance against Bitcoin Reorganization

Our implementation safeguards user assets against transient Bitcoin reorganiza-
tion, also known as forks, because btc_utxo entry used to identify the Bitcoin
token-binding UTxO is persistent after a Bitcoin reorganization. This safeguard
stems from the fact that a Bitcoin reorg affects only the blocks and their cor-
responding inclusion proofs, leaving benign txids unaltered. Since the affected
fields—the block inclusion proof—reside within the CKB transaction’s witness,
which is inaccessible by subsequent transactions, the CKB blockchain remains
unaware of and unaffected by the Bitcoin fork.

Specifically, should the Bitcoin block be invalidated after the CKB transac-
tion’s confirmation, the shadow UTxOs become temporarily unspendable due to
the lack of its txid on the Bitcoin blockchain. The sender can rebroadcast the
Bitcoin transaction within the Bitcoin network. Upon successful confirmation,
the txid will match its prior value. Consequently, the btc_utxo entries on the
CKB blockchain remain unaffected, and the shadow UTxOs become spendable
once more. Conversely, if the sender attempts to double-spend tokens on Bit-
coin, the Bitcoin txid will alter, rendering the shadow UTxOs that commit to
the original btc_utxo unspendable.


