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Abstract
Since the selection of the National Institute of Standards and Tech-

nology (NIST) Post-Quantum Cryptography (PQC) standardization

algorithms, research on integrating PQC into security protocols

such as TLS/SSL, IPSec, and DNSSEC has been actively pursued.

However, PQC migration for Internet of Things (IoT) communica-

tion protocols remains largely unexplored. Embedded devices in

IoT environments have limited computational power and memory,

making it crucial to optimize PQC algorithms for efficient computa-

tion and minimal memory usage when deploying them on low-spec

IoT devices. In this paper, we introduce KEM-MQTT, a lightweight

and efficient Key Encapsulation Mechanism (KEM) for the Message

Queuing Telemetry Transport (MQTT) protocol, widely used in

IoT environments. Our approach applies the NIST KEM algorithm

Crystals-Kyber (Kyber) while leveraging MQTT’s characteristics

and sensor node constraints. To enhance efficiency, we address

certificate verification issues and adopt KEMTLS [71] to eliminate

the need for Post-Quantum Digital Signatures Algorithm (PQC-

DSA) in mutual authentication. As a result, KEM-MQTT retains its

lightweight properties while maintaining the security guarantees

of TLS 1.3. We identify inefficiencies in existing Kyber implemen-

tations on 8-bit AVR microcontrollers (MCUs), which are highly

resource-constrained. To address this, we propose novel imple-

mentation techniques that optimize Kyber for AVR, focusing on

high-speed execution, reduced memory consumption, and secure

implementation, including Signed LookUp-Table (LUT) Reduction.

Our optimized Kyber achieves performance gains of 81%,75%, and

85% in the KeyGen, Encaps, and DeCaps processes, respectively,

compared to the reference implementation. With approximately 3

KB of stack usage, our Kyber implementation surpasses all state-

of-the-art Elliptic Curve Diffie-Hellman (ECDH) implementations.

Finally, in KEM-MQTT using Kyber-512, an 8-bit AVR device com-

pletes the handshake preparation process in 4.32 seconds, excluding

the physical transmission and reception times.
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1 Introduction
The advancement of quantum computing poses a significant threat

to widely used public-key cryptographic systems such as RSA and

Elliptic Curve Cryptography (ECC)-based Digital Signature Algo-

rithm (DSA) [77, 78]. Currently, quantum computers have reached

127 qubits, and it is expected that within the next 20 years, quantum-

based cryptographic attacks will become a reality [49, 67]. In re-

sponse, the National Institute of Standards and Technology (NIST)

launched the Post-Quantum Cryptography (PQC) standardization

process at PQCrypto 2016, inviting proposals for PQC standards.

In the past year, four algorithms (Crystals-Kyber [9], Crystals-

Dilithium [8], Falcon [63], and SPHINCS+ [35]) were selected as

PQC standards. Among these, Kyber is the sole Key Encapsulation

Mechanism (KEM) for key establishment, while Dilithium, Falcon,

and SPHINCS+ are Digital Signatures Algorithms (DSAs). Initially,

PQC research primarily on cryptanalysis. However, after the Round

3 finalists were announced, the focus shifted toward practical de-

ployment and optimization. Security professionals often raise two

key questions regarding PQC adoption:

• Q1: Is PQC more efficient than ECDH and ECDSA?
• Q2: Is it necessary to migrate to PQC now?

Regarding the first question, performance studies on Kyber in-

dicate that with proper optimization, it can outperform the ellip-

tic curve Diffie-Hellman (ECDH). This efficiency stems from Ky-

ber’s ability to performs modular multiplication at the machine-

word level, making it well-suited for parallel processing. Opti-

mized implementations demonstrate superior performance com-

pared to the latest ECC implementations on platforms such as

Cortex-M4 [2, 33], Cortex-A [14], RISC-V [34], and AVX2 [73], as

well as in TLS 1.3 handshake performance tests [60]. Over the past

eight years, researchers have continuously refined PQC implemen-

tations for embedded devices, introducing new optimization tech-

niques [2, 4, 14, 16, 20, 29, 33, 34, 37, 43]. A key observation is that

architecture-specific optimization is essential: for instance, state-of-

the-art modular multiplication techniques vary across AVX2 [73],

Cortex-A [14], and Cortex-M4 [33]. Without such optimizations,

reference implementations of Kyber impose excessive computa-

tional overhead on Internet of Things (IoT) devices, underscoring

the necessity of tailored approaches for new architectures.

While large-scale quantum computers remain years away, the

second question remains critical. Awell-known concern is the "store
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now, decrypt later" attack [64]. If ECDH is eventually broken by

quantum computers, session keys from past communications could

be recovered-even if forward secrecy was applied [71]. Therefore

transitioning to PQC is imperative. Fortunately, extensive efforts

have already been made to prepare security protocols-including

TLS/SSL [60], SSH [23], and IPSec [10].

Despite these advancements, most existing PQC research has fo-

cused on specific architectures. Studies have primarily targeted em-

bedded devices with 32-bit processors, such as 32-bit Cortex-M3/M4

and RISC-V [2, 4, 16, 33, 34, 84], or high-performance processors like

64-bit ARMv8 [14, 43, 44] and AVX2-based systems [73]. However,

research on architectures with register sizes smaller than 32-bit, in-

cluding 8-bit AVR and 16-bitMSP430, remains limited. Similarly, pre-

vious studies on PQC protocol migration have primarily focused on

security protocols for desktop and server-class processors (x86/64)

or high-performance ARMCortex-A devices [3, 10, 23, 31, 60, 66, 69].

However, low-resource IoT environments require not only protocol

migration but also PQC optimization tailored to constrained hard-

ware. The 8-bit AVR microcontroller features a simple single-stage

pipeline architecture and 32 general-purpose registers, each 8 bits

in size [52]. Although it supports 8-bit multiplication instructions,

the absence of advanced arithmetic units such as a barrel shifter

imposes significant constraints when implementing cryptographic

algorithms [7], especially in comparison to mid-range embedded

systems like the Cortex-M series.

This challenge was highlighted at the 3rd PQC Standardization

Conference [6] and in recent surveys [64], which emphasized the

growing demand for 16-bit processors (MSP430) and 8-bit micro-

controllers (AVR) while noting the lack of PQC research for these

platforms. Currently, 32-bit ARM processors dominate the high-

performance embedded systems market due to their computational

power and mature software ecosystem. However, 8-bit AVR micro-

controllers remain widely used in cost-sensitive, ultralow-power

applications, such as sensor nodes, industrial control systems, and

home automation [5, 56]. The simplicity of AVR architecture en-

ables predictable execution timing and lower power consumption,

making it preferable for power-constrained deployments [17, 65].

In large-scale sensor networks deployed in physically inaccessible

environments—such as military applications or wildfire detection—

low-cost, low-power architectures are essential, and 8-bit AVR re-

mains a viable solution [41, 42]. However, there have been few

reported PQC implementations on small sensor nodes like 8-bit

AVR [18, 37], despite their potential vulnerability as weak links

once quantum computers become practical. Currently, answering

the first question for AVR is infeasible. Since PQCrypto 2016, im-

plementations of the NIST PQC algorithms have not been able to

efficiently run on 8-bit AVR microcontrollers [37]. For example, the

ATmega4808 core of the AVR-IoT WG Development board, com-

monly used as a sensor node, has only 6 KB of SRAM and 48 KB

of flash memory [52]. Thus, it is crucial to first determine whether

PQC, with its larger key and ciphertext sizes, is even viable in

such resource-constrained environments [39]. Additionally, proto-

col memory requirements must be assessed, and PQC should not

be prohibitively slow compared to ECDH/ECDSA.

The second question must be framed differently for AVR. As

demonstrated by the Padding Oracle On Downgraded Legacy En-

cryption (POODLE) attack [25, 54], failing to migrate AVR-based

systems to PQC could create downgrade attack vectors, even if

servers adopt PQC. Ensuring PQC compatibility on resourced-

constrained devices mitigates future downgrade attacks targeting

these endpoints. While some may argue that 8-bit AVR should be

phased out, this would be an extreme solution.

This paper addresses both key questions for 8-bit AVR sensor

nodes, the most resource-constrained embedded devices. First, we

propose the KEM-MQTT protocol, demonstrating that PQC proto-

col migration is practically feasible on 8-bit AVR. KEM-MQTT uses

only Kyber to perform mutual authentication without certificates

and provides security properties such as confidentiality, integrity,

and non-repudiation. This is the first practical PQC migration on

8-bit AVR, designed for IoT environments. Furthermore, we demon-

strate the feasibility of implementing Kyber on 8-bit AVR, showing

that Kyber can be implemented more securely and efficiently than

ECDH with minimal memory usage.

Contributions. We summarize our main contributions below:

• Presenting KEM-MQTT for Quantum-Secure WSNs on AVR :
We have concluded that it is practically impossible to imple-

ment even highly optimized versions of Dilithium, Falcon, and

SPHINCS+ on AVR. To ensure non-repudiation, we adopted the

KEMTLS [28, 71, 72] approach instead of using PQC-DSA. By

considering the characteristics of MQTT and AVR sensor nodes,

we addressed the issue of certificate verification and ultimately

proposed a new protocol called KEM-MQTT. KEM-MQTT main-

tains the security properties of TLS 1.3 and additionally provides

mutual authentication. The handshake of KEM-MQTT (HKDF,

AEAD, etc.) was manually implemented with hand-written as-

sembly, excluding physical transmission and reception.

• Presenting the first Kyber implementations on AVR :
We applied the streaming method proposed in [16] to Kyber,

implementing all security levels of Kyber with approximately

3KB of stack usage. After thoroughly reviewing and directly im-

plementing state-of-the-art modular multiplication techniques

proposed in various architecture, we concluded that they are not

suitable for the 8-bit AVR environment. Consequently, we pro-

pose Kyber implementation methodologies, including the Signed

LookUp-Table (LUT) Reduction techniques for modular multi-

plication, to surpass ECDH. As a result, compared to the latest

P-256-based ephemeral ECDH implementation, the Kyber-512

implementation with the same security level is 37.5% faster (re-

ducing execution time by 1.5 seconds). Additionally, Kyber-768,

a mid-term security measure, guarantees performance nearly

identical to the P-256-based ephemeral ECDH. Our technique is

readily adaptable to ML-KEM [58] and requires no significant

modifications.

• Presenting protocol-friendly Kyber software on AVR :
We propose a Prehashed Public-Key technique to accelerate Ky-

ber’s encapsulation in KEM-MQTT and a flexible LUT placement

strategy for adapting to different AVR board configurations. Ad-

ditionally, we introduce three implementation methodologies.

(i) High-Speed: The optimization methods used for NTT-based

polynomial multiplication in state-of-the-art implementations

are either inefficient or difficult to apply in the AVR environment.



An Optimized Instantiation of Post-Quantum MQTT protocol on 8-bit AVR Sensor Nodes ASIA CCS 2025, August 25–29, 2025, Hanoi, Vietnam

To overcome this, we employ Karatsuba multiplication and the

GS butterfly technique, while also introducing a new approach

called crossed-butterfly.

(ii) Low-Memory: Based on [16], we present a method to imple-

ment Kyber on AVR with minimal memory usage.

(iii) Secure Implementation: All our code meets constant-time re-

quirements for cryptographic algorithms. Additionally, to counter

power-based side-channel attacks, we adopt the masking tech-

nique proposed in [75] for the Authenticated Encryption with

Associated Data (AEAD).

Code. Our source code is publicly available at https://github.com/

whYBeKim/Crystals-Kyber-on-AVR

Organization. In Section 2, we review related work and examine

the direction of PQC migration for 8-bit AVR. Section 3 introduces

the necessary background knowledge. In Section 4, we propose the

new KEM-MQTT protocol, and in Section 5, we introduce a novel

modular reduction for Kyber (Signed LUT reduction) optimized for

the 8-bit AVR environment. Section 6 presents a protocol-friendly

Kyber implementation.

2 Related Works and Problem Statements
This section examines security protocols used in Wireless Sensor

Networks (WSNs) (cf. Section 2.1) and reviews quantum-secure

protocols currently under study for various embedded platforms (cf.

Section 2.2). We then discuss key considerations for applying the

PQC-KEM Kyber to WSNs and outline our approach to achieving

quantum security on 8-bit AVR microcontrollers (cf. Sections 2.3

and 2.4). Finally, we briefly review recent trends in Kyber imple-

mentation on IoT devices (cf. Section 2.5).

2.1 Secure Protocols in WSNs
Advances in low-power technology have enabled WSNs to operate

primarily on resource-constrained platforms such as microcon-

trollers, making them vulnerable to various attacks [41]. Due to

the broadcast nature of wireless communication, WSNs are par-

ticularly exposed to threats such as eavesdropping and tampering,

while their physical exposure increases risks like node capture

and impersonation. Ensuring comprehensive security for micro-

controllers remains a challenge. Over the past two decades, crypto-

graphic techniques have evolved alongside improvements in sensor

node performance. Initially, protocols such as IPSec and TLS were

considered infeasible for sensor networks, leading to the devel-

opment of lightweight alternatives like TinySec [41]. However,

TinySec lacked mechanisms for non-repudiation and key establish-

ment [51]. The proliferation of IoT services has expanded sensor

node applications, increasing interest in scalable publish-subscribe

models such as MQTT [31, 53]. Recently, Hamad et al. [31] analyzed

MQTT’s security features, yet most studies remain focused on con-

ventional cryptographic schemes that are susceptible to quantum

attacks [24, 50, 69].

2.2 WSNs in the Post-Quantum Era
As quantum security becomes increasingly critical, the migration

of security protocols to PQC has emerged as a key research area.

Recent studies have applied PQC to protocols such as IPSec [11],

SSL/TLS [32], and SSH [79], while similar efforts have beenmade for

lightweight protocols like MQTT. In 2020, Agus et al. [3] replaced

RSA with NTRU (N-th degree truncated polynomial ring) in the

MQTT-IoT protocol. The migration was successfully implemented

on a Raspberry Pi, where NTRU outperformed RSA at the same secu-

rity level. Schoffel et al. [69] benchmarked TLS handshake latency

using NIST PQC Round 3 algorithms on MQTT, targeting low-

power Cortex-M4 sensor nodes. Additionally, Rampazzo and Hen-

riques [66] evaluated PQC and hybrid cryptographic approaches

within MQTT. Lukas Malina et al. [49] emphasized the importance

of TLS in securing MQTT but noted its limitations in resource-

constrained environments requiring lower latency. Consequently,

they proposed a PQC-based solution without TLS. These studies in-

dicate that on Cortex-M/A series devices, PQC schemes exhibit per-

formance levels comparable to Elliptic-Curve Cryptography (ECC)-

based schemes. However, most practical PQC migrations have been

conducted on midrange or high-performance microcontrollers (e.g.,

32-bit and 64-bit architectures) [2, 4, 14, 16, 33, 34, 43, 44, 73, 84]. In

contrast, research on smaller sensor nodes, such as 8-bit and 16-bit

devices [76], remains limited, with few reported implementations

of PQC on 8-bit devices. As quantum computing advances, these

smaller devices may become weak links systems, creating poten-

tial security vulnerabilities if the broader computing infrastructure

transitions to PQC.

2.3 8-bit AVR Sensor Nodes
The 8-bit AVR is a modified Harvard architecture-based, reduced

instruction set computing (RISC) single-chip microcontroller [7].

Its smaller register size, compared to other embedded processor

families, makes it particularly suitable for cost-sensitive and low-

power applications. It is widely used in residential sensor-based

products, such as thermostats, fire detectors, and glass break de-

tection systems, and continues to play a significant role in the

sensor node market [5]. Additionally, demand for 8-bit AVR mi-

crocontrollers is expected to grow due to their ability to reduce

the cost of medical devices while maintaining reliable data acqui-

sition [56]. The 8-bit AVR features a simple single-level pipeline

structure and 32 general-purpose registers, each 8-bit in size. The

six most significant registers—denoted as X[r26:r27], Y[r28:r29],
and Z[r30:r31]—function as indirect address register pointers.

These can access 16-bit memory addresses in pairs, with only the

Z[r30:r31] pointer capable of accessing flash memory. A detailed

description of the 8-bit AVR architecture and its instruction set is

provided in Appendix A.

Table 1: Implementations of Public Key Schemes on AVR

Algorithm Work Speed[cc] Stack[B] AVR

ECDH
∗

[61] 29,400 k - ✓

Kyber-512 Ref [40] - 9,576 ✗

Kyber-512

This Work

34,904 k 2,324 ✓
(based [16])

ECDSA
∗

[36] 77,779 k 1,642 ✓

Dilithium2 [37] 150,676 k 12,751 ✗

∗
ECDH [61] uses curve P-256, and ECDSA [36] uses Ed25519
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2.4 Embedding Kyber on AVR for WSNs
Low-power sensor nodes in WSNs typically integrate a single-core

microcontroller with multiple communication and sensor modules

rather than employing System-on-Chip solutions. A representative

example is the AVR-IoT WG Development board, which features

an ATmega4808 core (6KB SRAM, 48KB Flash Memory) and vari-

ous submodules [52]. While the board can utilize the WINC1510

communication module for TLS/SSL support, achieving quantum

security requires moving beyond ECC-based cryptography. Specifi-

cally, implementing PQC schemes such as PQC-KEM and PQC-DSA

in an AVR environment is necessary for authentication and key

establishment.

One potential approach is building OpenSSL-based OQS-TLS on

AVR. However, our experiments show that even with embedded

options enabled, OpenSSL requires at least 16 KB of stack mem-

ory [59], which exceeds AVR’s constraints. While introducing a

PQC submodule similar to the ATECC608A is an option, ASIC devel-

opment involves significant costs and time, making it impractical.

Additionally, integrating an expensive PQC hardware module into a

low-cost AVR platform is inefficient and unlikely to attract industry

adoption. Instead, our goal is to implement PQC directly on the

AVR core and conduct communication simulations based on this

implementation.

Table 1 compares the performance of recent ECDH and ECDSA

implementations on 8-bit AVR. A ✓ indicates successful implemen-

tation, while ✗ denotes failure due to stack issues. Although [61]

does not explicitly report the stack usage of ECDH, its smooth

execution on an ATmega128 (4KB SRAM) suggests that P-256-

based ECDH is feasible. In contrast, ECDSA [36] requires 1,642

bytes of stack memory. More recently, Vincent et al. [37] simulated

Dilithium2 on an 8-bit AVR using IAR AVR WorkBench with a 16

MB SRAM setting. Despite stack optimization, Dilithium 2’s sig-

nature generation and verification require approximately 12 KB

of SRAM, with its basic parameters (𝑝𝑘 , 𝑠𝑘 , 𝑠𝑖𝑔) consuming 6 KB.

Given the total memory usage exceeding 18 KB, executing the full

Dilithium stream on an 8-bit AVR is impractical. One alternative is

storing the public key in flash memory while limiting operations

to signature verification. However, as discussed in [37], Dilithium’s

reliance on 32-bit modular arithmetic makes it significantly slower

on an 8-bit AVR compared to schemes using 16-bit modular arith-

metic. Similarly, Falcon, which involves polynomial multiplications

of degree 512/1024, is not an optimal choice for AVR.

Drawing from the KEMTLS methodology [71], we avoid PQC-

DSA in 8-bit AVR environments, as it demands larger parameters,

increased code size, and higher computational overhead compared

to PQC-KEM. KEMTLS improves performance over standard TLS

1.3 by replacing PQC-DSA with PQC-KEM for authentication. In

this work, we apply KEMTLS to the MQTT protocol without rely-

ing on TLS/SSL. However, Kyber has not yet been implemented in

an AVR environment. Our attempt to port Kyber’s clean reference

code [40] to the ATmega4808 failed due to excessive stack usage

(approximately 10 KB). To address this, we implement Kyber-512

using memory optimization techniques proposed in [16], achieving

a maximum stack usage of 2,324 bytes on the ATmega4808. How-

ever, as shown in Table 1, Kyber-512 is significantly slower than

ECDH [61] at the same security level on an 8-bit AVR. Applying

KEMTLS may further widen this performance gap. To mitigate this,

we propose quantum-secure KEM-MQTT for AVR sensor nodes,

demonstrating that Kyber can operate faster than ECDH without

increasing stack requirements.

2.5 Kyber implementation on IoT Devices
Since Kyber’s introduction in 2017, research on its optimization has

intensified, Particularly following NIST’s selection of Cortex-M4 for

performance evaluation in the PQC competition [2, 4, 6, 16, 33, 64].

Kyber’s core operation, polynomial-based matrix-vector multiplica-

tion, initially focused on reducing memory footprint and efficiently

porting reference code to Cortex-M4. Thanks to extensive research,

highly optimized Kyber implementations now exist [33]. Studies

have also explored PQC implementations on Cortex-M0/M3 [1] and

higher-tier architectures such as Cortex-A [14, 43, 44]. However,

matrix-vector multiplication techniques differ across architectures,

necessitating a tailored approach for 8-bit AVR.

Table 2: State-of-the-art implementation techniques for Ky-
ber across Various Architectures

Modular Arithmetic Platform AVR

Solinas [83] HW (FPGA) ✗

Plantard [33, 34, 85] Cortex-M4, RISC-V ✗

Montgomery [73] AVX2, x86/64 ✗

Barrett [14] Cortex-A ✗

Implementation Skills Platform AVR

Merging Layer [2, 4] ✗

CT-CT butterfly [2, 73] ✗

Streaming Coefficient [16] Almost all ✓

Better Accumulation [2] △
Asymmetric Multiplication [14] △
✓: Suitable for AVR, ✗: Inefficient on AVR, △: Depends on board spec

Table 2 presents the state-of-the-art optimization techniques for

Kyber implementations across various platforms. An ✗ indicates

inefficiency on AVR, while a ✓ denotes suitability. Unlike modular

arithmetic methods, implementation techniques listed in the second

section of the table can be applied to most software platforms. A △
signifies that while a technique is applicable, it may increase stack

usage, requiring caution. From a modular arithmetic perspective,

we introduce a new reduction method (cf. Section 5), and from

an implementation perspective, we propose a protocol-friendly

methodology (cf. Section 6).

3 Preliminaries
3.1 MQTT
The MQTT architecture is based on a publish-subscribe model,

involving three key entities: publisher, broker, and subscriber. The

publisher, sometimes referred to as the client is typically a sensor

node in IoT environments, while the broker acts as a gateway,

tracking subscriptions and managing message distribution. The

publisher sends sensor-generated data, such as temperature or heart

rate, to the broker, which then forwards it to subscribers based
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Publisher A

Publisher B

Publisher C

MQTT Broker

Data base

Subscriber 1

Subscriber 2

Subscriber 3

Publish : “On”

Topic : “LED”

Publish : “67%”

Topic : “Moisture”

Publish : “21°C”

Topic : “Temp”

Sub → Topic : “LED”

Sub → Topic : “Moisture”

Sub → Topic : “Temp”

Pub → Topic : “On”

Pub → Topic : “67%”

Pub → Topic : “21°C”

Figure 1: An example MQTT network

on specified topics. While a single node can function as both a

publisher and a subscriber, resource-constrained IoT devices often

subscribe to only a few topics or none at all [31]. Figure 1 illustrates

an example of MQTT interactions. Notably, pure MQTT lacks built-

in security features. As discussed in Sections 2.2 and 2.1, research

has proposed methods to achieve authentication, confidentiality,

and integrity [24, 31, 50, 69]. Most security implementations rely

on the TLS/SSL protocol stack.

3.2 KEMTLS

AVR(Client) Server

...

static(Kyber𝑠 ) : 𝑝𝑘𝑠 , 𝑠𝑘𝑠
(𝑝𝑘𝑎, 𝑠𝑘𝑎) ← Keygen

𝑝𝑘𝑎−−−−→
𝑐𝑡𝑎←−−−− (𝑠𝑠𝑎, 𝑐𝑡𝑎) ← Encaps(𝑝𝑘𝑎)

𝑠𝑠𝑎 ← Decaps(𝑐𝑡𝑎, 𝑠𝑘𝑎)
(𝑠𝑠𝑠 , 𝑐𝑡𝑠 ) ← Encaps(𝑝𝑘𝑠 )

𝑐𝑡𝑠−−−−→
ss← (𝑠𝑠𝑎 | |𝑠𝑠𝑠 ) 𝑠𝑠𝑠 ← Decaps(𝑐𝑡𝑠 , 𝑠𝑘𝑠 )

ss← (𝑠𝑠𝑎 | |𝑠𝑠𝑠 )
...

Figure 2: High-level overview of the handshake phase on
KEM-TLS, using Kyber for server authentication [28]

KEMTLS, based on TLS 1.3, employs a KEM for both key estab-

lishment and authentication. This approach enables unilaterally

authenticated (server-side) key establishment without requiring

additional round trips [71]. Unlike traditional TLS 1.3, KEMTLS

allows the client to send its first encrypted application data without

caching or predistributing the server’s public key, maintaining the

same number of handshake round trips. A high-level overview of

the KEMTLS handshake is shown in Figure 2, where the client is

replaced by an AVR for illustration. KEMTLS consists of two KEMs:

KEMe for ephemeral key exchange and KEMs for implicit authenti-

cation. Both can be instantiated using the same algorithm (in this

case, Kyber). A recent benchmark study on KEMTLS in embedded

environments [28] demonstrated that, on a Cortex-M4, KEMTLS

reduced handshake time by up to 38% compared to TLS 1.3 while

also reducing peak memory usage. Additionally, KEMTLS-PDK has

been proposed for embedded devices with predistributed keys [72].

A complete outline of KEMTLS-PDK, where the client holds the

server’s static public key, is provided in Appendix D.

Table 3: Kyber Parameter sets

Security 𝑛 𝑘, ℓ 𝑞 pk[B] sk[B] ct[B]

Kyber-512 1 256 2 3329 800 1632 768

Kyber-768 3 256 3 3329 1184 2400 1088

Kyber-1024 5 256 4 3329 1568 3168 1568

3.3 Crystals-Kyber
Kyber is the only Key Encapsulation Mechanism (KEM) algorithm

selected by NIST and its security is based on Module Learning

With Errors (Module-LWE) problem. Since characteristic of Module-

LWE-based Kyber, each element in a matrix and a vector is a poly-

nomial over Ring 𝑅𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑛+1) where𝑛 = 256 and 𝑞 = 3329.

The public matrix A exhibits a size of ℓ × ℓ , while the secret vector s
and noise vector e each possess a size of ℓ×1. For security levels 1, 3,
and 5, the corresponding values of ℓ are 2, 3, and 4, respectively. The

polynomial in A has coefficients less than 𝑞, and the polynomials in

s and e have very small coefficients. Table 3 shows parameter set of

Kyber. Kyber’s Public Key Encryption (PKE) consists of three opera-

tions: Key generation, Encryption, and Decryption, and Kyber-KEM

utilizes Kyber-PKE with Fujisaki-Okamoto transform for providing

IND-CCA2 security. Except for the random sampling based on hash

function, the core operation of each Kyber-PKE algorithm is either

matrix by vector multiplication (A ◦ s) or vector by vector multi-

plication (ŝ𝑇 ◦ u). For example, multiplication with a ℓ × ℓ matrix

and a ℓ × 1 vector requires ℓ2 polynomial multiplications (vector by

vector multiplication requires ℓ polynomial multiplications). The

details of the Kyber description can be found in the Kyber specifica-

tion document [9]. For the complete pseudocode structure of Kyber

PKE, please refer to Algorithm 4, 3, and 5 in Appendix E. Please see

Appendix F for the KEM algorithms. The core operation of Kyber,

polynomial multiplication, is implemented using NTT. For a brief

explanation of NTT, please refer to Appendix B.

3.4 Modular Arithmetic
Kyber’s 16-bit polynomial elements result in 32-bit multiplications,

necessitating reduction by 𝑞 using nonconstant-time division op-

erations. To mitigate timing-based side-channel attacks, efficient

constant-time reduction methods are essential. The following sub-

sections review existing modular reduction algorithms, both un-

signed and signed, in lattice-based cryptography.

3.4.1 Unsigned Modular Reduction Methods. Before NIST’s PQC
competition, various lattice-based cryptosystemswere implemented

on 8-bit AVR MCUs [48, 74]. Liu et al. [48] introduced an efficient

modular reduction method for NTT-based polynomial multiplica-

tion, employing a Shift-Add-Multiply-Subtract-Subtract (SAMS2)

technique for approximate reduction. This method estimates ⌊𝑐/𝑞⌋
using shifts and arithmetic operations, making it suitable for integer

division with specific 𝑞 values. However, it may require an addi-

tional subtraction for final reduction due to its unsigned range. Seo
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et al. [74] enhanced this approach by introducing a Lookup-Table

(LUT) method that replaces quotient computation with predefined

remainders. Unlike cache-based methods, this approach is resis-

tant to cache-timing attacks on 8-bit AVR MCUs, which lack cache

memory (cf. Figure 3).

c1 c0c2c3

LUT#2 LUT#1

(k2, k1, k0 )     13»
u0 9«

(k2, k1, k0 ) mod 𝟐𝟏𝟑

(c1, c0)

(s1, s0)

(t1, t0)

(k2, k1, k0 )

(u0 )

(d1, d0 )

(w1, w0)

(r1, r0)

[add]

[add]

[add]

[sub]

12 3

6

4 5

7

Figure 3: Unsigned LUT reduction for 𝑞 = 7681, blue box
means each step, step 1,2: LUT access; step 3: addition; step 4,5:
shifting; step 6: modulo; step 7: addition and subtraction [74]

3.4.2 Modular Reduction Methods used in Kyber. As efficient and

constant-time reduction algorithms, Montgomery method [55] and

Barrett method [13] have been widely used for efficient modular

reduction in public key cryptosystems. In addition, recently an

improved Plantard reduction has been proposed and applied to

Kyber [62]. The algorithms for each method can be found in the

Appendix H. In the context of lattice-based cryptography using

small prime 𝑞, the signed Montgomery method (Algorithm 12) and

signed Barrett method (Algorithm 13) were proposed [73] and have

been applied to the implementations of Kyber and Dilithium. Signed

reduction is denoted by mod
± 𝑞 and 𝑐 mod

± 𝑞 reduces into (−𝑞
2
,
𝑞
2
).

The core principle of each method is replacing division by 𝑞 with

shift operations which can be efficiently computed on computing

devices. The unsigned LUT-based reduction method from [74] has

been considered as being the fastest on AVR MCUs. However, the

underlying 𝑞 = 7681 in their implementation is different from the

𝑞 = 3329 in Kyber. Furthermore, after Seo et al.’s method [74], it

has been shown that signed versions of several reduction methods

[2, 4, 73] contribute to much-improved performance of Kyber on

several devices on 32-bit ARM, 64-bit ARMv8, and x86-64-bit CPUs.

Thus, it is necessary to fill this research gap by answering the

questions: which reduction method among the unsigned LUT-based

method and signed reduction methods gives the best performance

on 8-bit AVR MCUs and whether there is a new method providing

better performance compared with existing methods.

4 Proposed Secure MQTT Protocol on AVR
4.1 Security Goal
In MQTT, communication occurs among three entities, but recent

research on PQC-based MQTT has primarily focused on higher-

performance IoT devices, such as 64-bit Raspberry Pi and Apple

Silicon, rather than resource-constrained 8-bit AVR [49, 68]. The

study in [68] proposed a theoretical application of KEMTLS but did

not conduct practical experiments or address migration challenges

such as certificatemanagement and authentication.Meanwhile, [49]

explored the migration of certificates to PQC but focused on scenar-

ios involving high-performance IoT devices, where a single device

could act as both a publisher and a subscriber. However, resource-

constrained AVR sensor nodes are typically deployed in physically

insecure environments in large numbers, often ranging from tens to

hundreds. These nodes generally function solely as publishers, with

the broker managing them [41, 42]. The study in [49] employed

PQC-DSA for publisher authentication, but as discussed in Sec-

tion 2.4, PQC-DSA is impractical for AVR environments. Therefore,

we simplify the AVR-based scenario based on several assumptions

and apply the KEMTLS methodology as follows:

• Only Publisher: The AVR device functions exclusively as a

publisher and communicates only with the broker.

• Broker Authentication: KEMTLS provides implicit server-to-

client authentication when the client sends its first application

data. Similarly, we achieve implicit authentication for the broker

using KEM, while explicit authentication is established upon

receiving the key confirmation message.

• Publisher Authentication: TLS typically performs only server-

side authentication. To prevent sensor node impersonation byma-

licious attackers, explicit authentication for the publisher is nec-

essary without relying on PQC-DSA. By applying the KEMTLS

methodology, we achieve authentication in MQTT using only

KEM, ensuring mutual authentication.

• Confidentiality and Integrity: Published data and handshake

messages are encrypted using Authenticated Encryption (AE).

which ensures both confidentiality and integrity. Additionally,

we allow the transmission of associated data, including the pub-

lisher’s ID (id𝑃 ) and topic (𝑇 ), which are protected using the Au-

thenticated Encryption with Associated Data (AEAD) algorithm.

While the associated data itself is not encrypted, its integrity is

guaranteed.

• No Certificates: In TLS 1.3, certificates verify the server’s long-

term key, but when embedded devices communicate with a lim-

ited set of preknown servers, predistributing the server’s static

key is a viable alternative. This is known as the Predistributed

Key (PDK) or cached-key scenario [70]. Certificates can also be

distributed via DNS [38], though this is suboptimal for MQTT

environments. Given that AVR-based sensor nodes communicate

exclusively with the broker, they can store the broker’s public key

(pk𝐵 ) in flash memory before deployment. Similarly, the broker is

assumed to know the AVR-based sensor node’s public keys (pk𝑃 ).
In this model, the broker is considered a semitrusted entity.

In summary, our goal is to apply the KEMTLS methodology to

achieve confidentiality, integrity, and mutual authentication. The

keys exchanged during the handshake must be indistinguishable

from random keys, ensuring forward secrecy—even if long-term

keys are compromised; deriving secret keys. The assumption that

the publisher and broker know each other’s long-term keys is rea-

sonable in a PDK scenario, as the broker must register each sensor

node before deployment. If a new publisher is introduced with

higher computational capabilities than an AVR, standard certificate-

based public-key authentication can be employed [72]. Therefore,

in our scenario, the AVR does not need to verify pk𝐵 ’s certificate,
nor does the broker need to send it. Instead, the broker must reliably

identify the public key of each sensor node.
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Figure 4: Sketch of KEM-MQTT with proactive client authen-
tication

Publisher (AVR) Broker

static (KEM𝑃 ) pk𝑃 , sk𝑃 ,id𝑃 static (KEM𝐵 ) pk𝐵, sk𝐵
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4.2 Quantum Secure KEM-MQTT Protocol
Figure 4 illustrates the overall KEM-MQTT process. KEM-MQTT is

based on KEMTLS-PDK [72], a variant of KEMTLS that leverages

the PDK scenario. KEMTLS-PDK reduces the amount of transmitted

data during the handshake compared to TLS 1.3. Similarly, KEM-

MQTT explicitly authenticates both the publisher and broker with-

out requiring additional round trips. While the TLS-PDK scenario

allows the client to bypass server certificate validation using cached

information [70], this approach was not widely adopted prequan-

tum due to the relatively short length of classical certificates [82].

However, in the postquantum setting, skipping certificate valida-

tion is highly advantageous for AVR-based devices, particularly

given the impracticality of PQC-DSA. As a result, in KEM-MQTT,

the broker does not send pk𝐵 to the AVR; Instead, the publisher

sends its public key (pk𝑃 ) to the broker.

From a postquantum certificate perspective, a Dilithium2 signa-

ture requires approximately 2 KB, while a Kyber-512 public key is

800 bytes. This means the broker would require at least 3 KB of

buffer space per node. If certificates were further expanded, mem-

ory requirements would increase significantly. In a scenario where

hundreds of AVR-based wildfire detection sensors are deployed in

remote areas, requiring the broker to store all sensor nodes’ cer-

tificates would impose a significant burden. To address this, we

propose that the broker stores a 32 bytes hash of the public key.

This provides an explicit authentication mechanism for pk𝑃 . Since
the broker already knows id𝑃 and pk𝑃 prior to sensor deployment,

storing all public keys is unnecessary. Instead, the broker can dif-

ferentiate sensor nodes using their public-key hashes, effectively

replacing certificates with hash values.

In KEM-MQTT, the publisher securely transmits its public key

(pk𝑃 ) and identifier (id𝑃 ) to the broker by encapsulating it with pk𝐵
and using the shared secret. This process is analogous to a client

sending authentication information to a server during a TLS 1.3

handshake. KEM-MQTT achieves mutual authentication in a single

round trip. In TLS 1.3, the server is authenticated upon receiving the

first message from the client. Similarly, in KEM-MQTT, the broker

is explicitly authenticated through key confirmation information

included in the first message, completing authentication after one

round trip.

Additionally, KEM-MQTT allows the broker (server) to send data

to the publisher (client) immediately after mutual authentication,

as in TLS 1.3 and KEMTLS-PDK. Since KEM-MQTT is based on the

KEMTLS-PDK model, it inherits critical security properties such

as forward secrecy, explicit authentication, and key-use guaran-

tees, all of which can be formally proven using the KEMTLS-PDK

Multistage-secure proof methodology [72]. The detailed security

proofs of KEM-MQTT, including reduction-based security proofs

and Tamarin Prover verification [72], are left for future work.

5 Proposed Signed LUT Reduction for Kyber
This section presents optimization strategies for Kyber on an 8-bit

AVR. Our approach focuses on reducing both multiplication and

addition results. We implemented both of our proposed methods

and existing ones in AVR assembly and found that our methods

achieved the best performance.

5.1 Design of Signed LUT Reduction
The proposed Signed LUT reduction (SLR) method for modulus

𝑞 = 3329 is described in Algorithm 1, with a high-level overview

shown in Figure 5. In this method, 𝑐3, 𝑐2, and the upper 4-bits

of 𝑐1 are reduced to fit within the lower 12-bit of 𝑐 . Algorithm1

operates on a 28-bit input range (𝑐 ∈(−𝑞215, 𝑞215)), corresponding
to the signed Montgomery method [73], and produces a 14-bit

output (𝑟 ∈(−𝑞, 213)), matching the output size of the unsigned

LUT reduction method [74]. Instead of fine-tuning the input and

output bit ranges, we focus on accelerating reduction with minimal

instructions. Our experiments show that generating a 12-bit output

incurs a higher computational cost than a 14-bit output. On 8-bit

AVRMCUs, input data 𝑐 is represented as four 8-bit words. However,

since 𝑐 ∈ (−𝑞215, 𝑞215), the actual data is stored within 28-bits, with
the upper 4-bits serving as a sign-bit extension.

We introduce two LookUp-Tables (LUT#1 and LUT#2), where

each LUT produces a signed 12-bit output from an 8-bit signed or

unsigned input. We build LUT#1 for reference to (𝑐2 · 216) mod
±𝑞

∈ (−𝑞
2
,
𝑞
2
) (step 1 of Figure 5). We construct the input data to LUT#2

by combining the lower 4-bit of 𝑐3 and the upper 4-bits of 𝑐1 (step 2).
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After that, we build LUT#2 for reference to ((𝑐
3[3] | | · · · | |𝑐3[0] )𝑠𝑏 ·

2
24 + (𝑐

1[7] | | · · · | |𝑐1[4] )𝑏 · 212) mod
±𝑞 ∈ (−𝑞

2
,
𝑞
2
) (step 3). These

two LUTs can be precomputed because the values in them are

constant. The SLR involves division into word units but does not

require bit shift, thereby eliminating the need for additional costs.

We considered various methods for applying LUTs and, after careful

calculation of the output range and estimation of operational costs,

confirmed that the approach depicted in Figure 5 is themost optimal.

The proof of the correctness of the SLR method is as follows. Since

the input data is less than 32-bit, experimental verification does not

take long to verify all cases with a personal laptop.

Theorem. Let𝑞 = 3329 be an oddmodulus of Kyber, thenAlgorithm 1
is correct for input data 𝑐 = 𝑐3 · 224 + 𝑐2 · 216 + 𝑐1 · 28 + 𝑐0, where
𝑐 ∈ (−𝑞215, 𝑞215).

Proof of Theorem. To prove the correctness of Algorithm 1,

we need to show that there is an equivalence relation between 𝑟

and 𝑐 on modulus 𝑞 (𝑟 ≡ 𝑐 mod
±𝑞); and, to show that the final result

𝑟 is in (−𝑞, 213).
First, using the linearity of modular arithmetic, we prove the

modulo congruence over 𝑞. After that, we prove the range of 𝑟 is

well fit through signed representation.

(1) We are going to prove modulo congruence by explaining the

generation of LUT#1 and LUT#2. First, 𝑐 can be expressed in

four words (8-bit) as follows:

𝑐 ≡ (𝑐3 · 224 + 𝑐2 · 216 + 𝑐1 · 28 + 𝑐0) mod
±𝑞

𝑐 ≡ (𝑐3 · 224 + 𝑐1 · 28 + 𝑐0 + (𝑐2 · 216) mod
±𝑞

𝑢

) mod
±𝑞

𝑐 ≡ (𝑐3 · 224 + 𝑐1 · 28 + 𝑐0 + LUT#1
𝑢

) mod
±𝑞 (5)

As shown in first step of Algorithm 1, 𝑢 = 𝑐2 · 216 mod
±𝑞

can be replaced by LUT#1. Therefore, we can show 𝑐 ≡
(𝑐3 · 224 + 𝑐1 · 28 + 𝑐0 + LUT#1) mod

± 𝑞.
(2) For 𝑐 = 𝑐3 · 224 +𝑐2 · 216 +𝑐1 · 28 +𝑐0, Let 𝑐𝑖 be (𝑐𝑖 [7] ∥ 𝑐𝑖 [6] ∥
· · · | |𝑐𝑖 [0] ) (𝑠𝑏 ) with 𝑖 ∈ [0, 3], here, 𝑠𝑏 means signed binary

representation. Since 𝑐 ∈ (−𝑞215, 𝑞215), 𝑐 can actually be rep-

resented as 28-bit with signed representation. Therefore, the

27
𝑡ℎ

bit from LSB (Least Significant Bit) of 𝑐 is an extended

sign-bit. Finally, Equation 5 can be re-written as follows:

𝑐 ≡ ((𝑐
3[3] | | · · · | |𝑐3[0] )𝑠𝑏 · 224

+ 𝑐1 · 28 + 𝑐0 + LUT#1
𝑢

) mod
±𝑞 (6)

Please note that (𝑐
3[3] | | · · · | |𝑐3[0] )𝑠𝑏 and 𝑐1 can be repre-

sented as 𝑐1 = (𝑐1[7] | | · · · | |𝑐1[4] )𝑏 · 24 + (𝑐1[3] | | · · · | |𝑐1[0] )𝑏 .
Let LUT#2 be ((𝑐

3[3] | | · · · | |𝑐3[0] )𝑠𝑏 ·224+(𝑐1[7] | | · · · | |𝑐1[4] )𝑏 ·
2
12)) mod

±𝑞. Then, referring to 𝑣 in step 2 of Algorithm 1,

Equation 6 can be simply derived as follows:

𝑟 ≡ 𝑐 ≡ (LUT#2
𝑣

+ LUT#1
𝑢

+ (𝑐
1[3] | | · · · | |𝑐1[0] )𝑏 · 28 + 𝑐0) mod

±𝑞 (7)

Therefore, for signed input 𝑐 ∈ (−𝑞215, 𝑞215), it is equivalent
to 𝑟 ≡ 𝑐 mod

±𝑞.

(3) Since 𝑢 and 𝑣 are signed integers, LUT#1 and LUT#2 are in

(−𝑞
2
,
𝑞
2
). Note that each LUT returns a 12-bit reference result

value for an 8-bit input. Because (𝑐
1[3] | | · · · | |𝑐1[0] )𝑏 ·28+𝑐0)

is an unsigned integer, so the range is greater than 0 and less

than 2
12
. Putting this together, we show that the ranges of

input and output are correct as follows:

Since − 𝑞
2

< LUT#1

𝑢

, LUT#2
𝑣

<
𝑞

2

and

0 ≤ (𝑐
1[3] | | · · · | |𝑐1[0] )𝑏 · 28 + 𝑐0 < 2

12,

we have − 𝑞 < 𝑟 < 2
12 + 𝑞 < 2

13 . (8)

□

Algorithm 1 Signed LUT reduction for Kyber

Input: 𝑐 = 𝑐3 · 224 + 𝑐2 · 216 + 𝑐1 · 28 + 𝑐0, for 𝑐 ∈ (−𝑞215, 𝑞215),
with 𝑐𝑖 := (𝑐𝑖 [7] ∥ 𝑐𝑖 [6] ∥ · · · | |𝑐𝑖 [0] )𝑏 (𝑠𝑏 ) , 𝑖 ∈ [0, 3]
(𝑠𝑏 means signed binary representation),

all outputs of LUT#1 and LUT#2 in (−𝑞
2
,
𝑞
2
)

Output: 𝑟 ≡ 𝑐 mod
±𝑞, where 𝑟 ∈ (−𝑞, 213)

1: 𝑢 = (𝑐2 · 216) mod
±𝑞 ⊲ 𝑢 =LUT#1

2: 𝑣 = ((𝑐
3[3] | | · · · | |𝑐3[0] )𝑠𝑏 · 224
+(𝑐

1[7] | | · · · | |𝑐1[4] )𝑏 · 212)) mod
±𝑞 ⊲ 𝑣 =LUT#2

3: 𝑟 = 𝑢 + 𝑣 + (𝑐
1[3] | | · · · | |𝑐1[0] )𝑏 · 28 + 𝑐0

4: return 𝑟

c0c2c3

LUT#2

LUT#1

c1

[add]combine

accumulation

1

2

3 4

Figure 5: Proposed signed LUT reduction for 𝑞 = 3329, step 1
and 3: accessing LUT; step 2: combining parts to be reduced;
step 4: accumulating remainders

5.2 Design of Signed Small LUT Reduction

Algorithm 2 Signed Small LUT reduction for Kyber

Input: The signed integer 𝑎 = 𝑎1 · 28 + 𝑎0, for 𝑎 ∈ [−215, 215)
Output: 𝑟 ≡ 𝑎 mod

±𝑞, where 𝑟 ∈ (−𝑞
2
, 211)

1: 𝑢 = (𝑎1 · 28) mod
±𝑞 ⊲ LUT#3, 𝑢 ∈ (−𝑞

2
,
𝑞
2
)

2: return 𝑟 = 𝑢 + 𝑎0

We introduce a fast method for reducing 16-bit inputs, termed

signed small LUT reduction (SSLR, cf. Algorithm 2). On an 8-bit

AVR environment, a 16-bit input (𝑎) is represented as two bytes.
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Using a LUT (LUT#3), we first reduce the upper byte 𝑎 (𝑎1 · 28) to
the range (−𝑞

2
,
𝑞
2
). Then, we add the lower byte 𝑎 (𝑎0) to obtain

the output 𝑟 , which remains within 12-bit value due to the bound

( 𝑞
2
+ 255) < 2

11
. The correctness of SSLR follows directly from the

same reasoning used in the SLR case. Although SSLR produces a

slightly wider range of output values compared to Barrett reduction,

it maintains the same input and output bit sizes. This minor increase

in range does not necessitate additional reductions in the overall

Kyber implementation.

While the proposed SLR and SSLR methods notably improve

performance over existing signed reduction methods, they rely on

lookup tables, which could be seen as a drawback. However, this

issue is mitigated as follows: Our method requires additional LUTs

containing double-word values—SLR uses two LUTs, while SSLR
requires one. Each LUT occupies 0.5 KB (16-bit× 256), amounting to

a total memory of 1.5 KB. These LUTs are stored in flash memory, as

8-bit AVRMCUs typically have ample flash memory (48 KB) relative

to their RAM size (6 KB). Storing the LUTs in flash consumes only

3.15% of available flash memory. If all LUTs were allocated to the

stack, SLR and SSLR would achieve execution times of 23 and 9

cycles, respectively. These configurations are particularly relevant

for specific security levels or when additional SRAM is installed

on the AVR board. Detailed memory placement strategies for LUTs

are discussed in Section 6.

5.3 Comparison to Existing Reduction Methods
Table 4 presents the cycle counts for various modular reduction

methods on an 8-bit AVR device. For a fair comparison, we im-

plemented all existing reduction methods using handwritten AVR

assembly, and minimizing unnecessary operations. Appendix G

provides the AVR code for 𝑆𝐿𝑅 and 𝑆𝑆𝐿𝑅. Our SLR and SSLR ap-

proaches outperform all previous methods proposed for Kyber.

While our methods slightly expand the output range compared

to conventional arithmetic, no additional reductions are required

within Kyber’s implementation.

Table 4: Cycle counts for modular reduction on 8-bit AVR

Variant Type Modular Arithmetic cycle count

32-bit

reduction

Unsigned Solinas [83] 77

Signed Plantard [33] 56

Unsigned LookUp-Table [74] 40

Signed Montgomery [73] 32

Signed LookUp-Table (SLR)† 27

Signed LookUp-Table (SLR)‡ 23

16-bit

reduction

Signed Barrett [73] 33

Signed LookUp-Table (SSLR)† 11

Signed LookUp-Table (SSLR)‡ 9

†
: placing LUTs in flash memory,

‡
: placing LUTs in stack

5.3.1 Unsigned Arithmetic. The unsigned LUT reduction for modu-

lus 7681, which is 13-bit, utilizes the 2
13 ≡ 2

9−1 mod 7681 to output

a reduced result of 14-bit. However, Kyber’s modulus𝑞 = 3329 is rep-

resented by summing consecutive powers of 2 (𝑞 = 2
12−29−28 +1).

Therefore, rather than using the linearity of the modulus to narrow

the output range, it is more effective to design the signed LUT re-

duction with only simple operations to increase the speed. With a

simplified approach that only utilizes LUT references and accumu-

lative operations, our SLR achieves huge performance improvement

(27 cycles compared to 40 cycles of unsigned LUT reduction) while

preserving the same size of input and output as unsigned LUT

reduction. Note that it is required to reduce intermediate results

when computing NTT conversion (or inverse NTT conversion) con-

sisting of 7 layers since the output of LUT methods is 14-bit. The

method of Seo et al. [74] used a modular addition/subtraction-based

approach, which is costly. In the case of our approach using signed

representation, this process can be efficiently handled.

5.3.2 Signed Arithmetic. The existing signed methods have been

tailored to ARM-based MCUs providing plenty of powerful instruc-

tions such as multiply-and-accumulate, halfwords multiply, dou-

bling multiply, and so on. Since the instruction set of 8-bit AVR is

much simpler than that of 32-bit/64-bit ARM-based MCUs, the ex-

isting signed methods require an increased number of instructions

when implemented on 8-bit AVR. For example, 16-bit signed multi-

plication requires 17 clock cycles which are computed just 1 clock

cycle onARM-basedMCUs. Furthermore, there are nomultiply-and-

accumulate-like instructions on 8-bit AVR MCUs. There is another

limitation that makes existing signed reduction methods inefficient

on 8-bit AVR. Also, in order to perform signed multiplication in

AVR, the upper byte of the 16-bit coefficient needs to be stored in

the 16th register or higher, and the multiplication result is output

in [r0:r1]. In the case of signed Montgomery and signed Barrett

methods, they are related to multiplication using additional con-

stants 𝑞 and 𝑞−1, which require additional data movement between

registers. In the case of the signed Plantard method, it requires

32-bit × 16-bit multiplication, which results in inefficient execution

in 8-bit AVR MCUs. Our proposed SLR does not require any signed

multiplication, but utilizes addition, bit-wise operation, and load

instructions, which makes it more efficient than the existing signed

reduction methods. Typically, Barrett reduction is used when re-

ducing 16-bit operation in Kyber. However, as discussed from [33],

since Barrett reduction requires 𝑣 bit-shift operation where 𝑣 is

not a multiple of the word size (8-bit), it is more inefficient than

Plantard method. Furthermore, signed Barrett reduction requires

two 16-bit signed multiplication which is inefficient. Our SSLR re-

places the use of signed Barrett reduction with efficient LUT-based

operations.

6 Proposed Protocol-friendly Implementation
6.1 Placing LUTs in Stack (Option)
In previous research, various methodologies were discussed to re-

duce stack usage during signature generation in the Dilithium [15,

29]. Unlike Dilithium [8], Kyber does not require consideration of

vector regeneration since it does not have a rejection-loop. Conse-

quently, by streaming the public matrix A and error e as proposed
in [16], each KEM API can be operated sufficiently within 8KB

SRAM. From a more practical standpoint, we opt for the strategy

of placing 1.5KB of LUTs on the stack implementing Kyber-512.

Even with an additional 1.5KB of stack based on Kyber-512, the 𝑝𝑘

(800 bytes), 𝑠𝑘 (1,632 bytes), 𝑐𝑡 (768 bytes), and 𝑠𝑠 (32 bytes) can be
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maintained in 8KB SRAM. Analogous to the strategy of pre-hashing

the public key, in the case of simple connections where the bro-

ker’s public key is pre-loaded into flash memory, this can be more

smoothly applied. By positioning the LUTs on the stack, the lpm
instruction can be converted into an ld instruction, resulting in a

one-cycle benefit. Unlike Asymmetric Multiplication [14], where

the stack usage varies by security level, the same amount of stack

usage can be maintained at all security levels, allowing for a more

flexible selection depending on the various protocol. Finally, Plac-

ing LUT on stack, 𝑆𝐿𝑅 and 𝑆𝑆𝐿𝑅 can be implemented in 23 cycles

and 9 cycles on AVR environment, respectively.

6.2 Using Pre-hashed Public Key
Assuming that pk𝐵 is known, the hash value of pk𝐵 can be stored in

flash memory. This hashed public key is 32 bytes, allowing the pro-

cess of hashing the broker’s public key in Kyber.CCAKEM Encaps

(cf. Algorithm 7) to be skipped. Specifically, Line 2 of Algorithm 7,

(𝐾, 𝑟 ) := G(𝑚 | | H(𝑝𝑘)), is accelerated. This strategy can be directly

applied to our KEM-MQTT.

6.3 High-Speed Implementation
In general, speed and memory are in a trade-off relationship. There-

fore, we chose not to adopt methods from state-of-the-art imple-

mentations, such as storing repeated calculations (Asymmetric

multiplication [14]) or computing accumulations in larger buffers

(Better Accumulation [2]). Instead, we focused on optimizing for

performance by leveraging the characteristics of AVR. The fol-

lowing three implementation strategies accelerate Kyber’s entire

scheme without using additional stack memory.

First, while modular multiplication on Cortex-M4 requires 2

cycles, our 𝑆𝐿𝑅 on AVR takes 23 cycles, despite being the fastest

method available. To improve this, we introduced the Karatsuba

method in point-wise multiplication, reducing one multiplication

(17 cycles) and replacing it with cheaper addition/subtraction oper-

ations (2 cycles).

Second, we did not apply the CT butterfly to iNTT as done

in [2, 14, 33]. The offset distance in AVR is limited to 32 bytes, and

using the CT butterfly would introduce complex offset calculations

for the twiddle-factor. Additionally, it would require an extra 1KB

for storing the twiddle-factor for ring-twisting. Through extensive

handwritten assembly, we confirmed that GS butterfly performs

better. Similar to montgomery reduction, we use 𝑆𝑆𝐿𝑅 to call coef-

ficient reductions only in two layers of iNTT.

Third, since the ldd instruction has a maximum offset displace-

ment of 64, we aligned the lower byte address of polynomials to 0x00

(attribute((aligned(256))) to allow access to up to 32 coeffi-

cients from the starting address. Without this alignment, additional

instructions are required to handle the 16-bit address calculations

within the NTT loop. For example, accessing data beyond 64 bytes

would require the adc instruction for offset calculation. Addition-

ally, we reduced one offset calculation per loop by considering that

one of the butterfly input addresses could serve as the input ad-

dress for the next butterfly within the inner NTT loop. We call this

approach the crossed-butterfly (code in Appendix I).

6.4 Low-Memory Implementation
The reference code of Kyber-512 and Kyber-1024 respectively re-

quire approximately 10KB and 20KB of stack memory [9]. While

implementations on various AVR-based boards are feasible at short-

term security levels, memory optimization becomes essential when

considering mid-to-long-term security levels and real-world pro-

tocol scenarios. We apply the streaming approach for Kyber, as

proposed in [16], to our implementation to its fullest extent. This

method processes the public matrix A, required in the KeyGen, En-

Caps, and DeCaps processes, via streaming without pre-allocating

stack space. This approach is feasible under the assumption that the

public matrix A already exists in the NTT domain. However, since

the secret vector s requires NTT operations, at least one polynomial

space is necessary. Consequently, the actual computation proceeds

using only two polynomials, considering the space for accumula-

tion. This approach allows all security levels of Kyber to utilize

approximately 3KB of stack only. Additionally, our methodology

enables flexible storage of LUTs in the stack and flash memory,

depending on the board. Fundamentally, flash memory, typically

sized in the tens of KB, is not a major concern in AVR.

6.5 Secure Implementation
Constant-time implementation is essential for defeating timing

attack, a kind of side channel analysis using timing leakage [26].

Particularly, small sensor nodes can be physically captured and ana-

lyzed with side channel analysis. To prevent timing leakage, it needs

to eliminate conditional branches and memory accesses depending

on secret information. In our implementation approach, we convert

all branching statements to execute in constant time. We meticu-

lously examine the compilation results of each algorithm, manually

identifying and addressing any branches in the assembler code.

Following the method proposed in [80], we rigorously inspect and

rectify areas where cycle fluctuations may occur. Regarding cache-

timing attacks, a kind of enhanced timing attack using sophisticated

microarchitectural cache hierarchy and operations of the target de-

vice [26], AVR devices, which operate in a cache-less environment,

are not affected. Therefore, our approach, which employs LUT, is

applicable without risk. From a power analysis countermeasure

perspective, we refer to the AES-GCM implementation method-

ology with 128-bit security in [75] for countering power-based

side-channel attacks. Unfortunately, the implementation in [75] is

not open-sourced, so we implement it with handwritten assembly

and apply it with the AEAD algorithm.

7 Experimental Results
7.1 Benchmarking Setup
We benchmarked the implementation using Microchip Studio.
For Kyber-512, the target device was the ATmega4808, which has

6KB of RAM and 48KB of flashmemory. Performancemeasurements

for Kyber-768 and Kyber-1024were conducted on the ATmega1280p,

which has 8KB of SRAM. Although each API is implemented within

3KB of memory, the ATmega4808 lacks sufficient stack space to

store essential parameters. The code was compiled using avr-gcc,
provided by Microchip Studio, with the -O3 optimization flag.

The key schedule for KEM-MQTT follows the same structure as
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TLS 1.3, with one minor modification: we reuse the SHA-3 function

used in Kyber and implement it as HKDF. To verify correctness, we

experimentally re-evaluated the mathematical proof of the signed

(Small) LUT reduction presented in Section 5.1. Additionally, we

validated the correctness of our Kyber implementation using the

Known Answer Test (KAT) from the NIST Round 3 submission

(https://github.com/pq-crystals/kyber/tree/main/ref/nistkat).

7.2 Performance Result of NTT/iNTT
The performance analysis of the components of the NTT-based

polynomial multiplication, which is the core operation of Kyber,

is presented in Table 5. Through the high-speed performance of

𝑆𝐿𝑅 and 𝑆𝑆𝐿𝑅, along with register scheduling and offset operations

optimized for the characteristics of 8-bit AVR, we achieved per-

formance improvements in both NTT and iNTT. Additionally, the

application of 𝑆𝐿𝑅 and Karatsuba multiplication contributed to the

enhancement of basemul performance. Finally, compared to the

naively ported implementation based on [16], our highly optimized

implementation shows performance improvements of 98 (111)%,

67 (71)%, and 106 (120)% in NTT, basemul, and iNTT, respectively,

when LUT is placed in flash memory (stack).

Table 5: Cycle counts for NTT/iNTT and single basemul

Implementation NTT basemul iNTT

This work 58,364 319 67,792

(Signed LUT‡) (+111%) (+71%) (+120%)
This work 62,204 328 72,398

(Signed LUT†) (+98%) (+67%) (+106%)
This work 123,363 547 149,4778

(based [16]) (-) (-) (-)

†
: placing LUTs in flash memory,

‡
: placing LUTs in stack

7.3 Performance Result of Kyber
Table 7 shows the cycle counts and stack usage of the Kyber imple-

mentation in an 8-bit AVR environment. The strategy of placing

the LUT in the stack (⋄), considering the board specifications, is

applied only to Kyber-512. Through the 𝑆𝐿𝑅 and 𝑆𝑆𝐿𝑅 techniques

proposed in Section 3, and the protocol-friendly implementation

methods proposed in Section 5, Kyber is optimized to the limit

in the AVR environment. Compared to the naive implementation

based on [15], we accelerated the Keygen, Encapsulation, and De-

capsulation processes of Kyber by more than 70% across all security

levels (marked with ★†). By pre-hashing and storing the broker’s

public key and placing the LUT in the stack (marked with ★⋄ ‡),
Kyber-512 achieves performance improvements of 82%, 101%, and

86% in Keygen, Encapsulation, and Decapsulation, respectively.

7.4 Performance Comparison with ECDH
Table 6 presents a comparison between ECDH and Kyber. With the

sophisticated field arithmetic approach proposed in [47], optimiza-

tion research for scalar multiplication implementations began in

earnest. Ephemeral ECDH, which consists of two scalar multiplica-

tions, is implemented on the NIST Curve using the window method

Table 6: Comparison of Key establishment performance be-
tween Ephemeral ECDH and Kyber on 8-bit AVR MCUs,
1,000 cc is denoted by k and s means a second. Kyber-512 is
comparable to some ECDH configurations while being resis-
tant to post-quantum attacks.

Work Security 𝑘 · 𝑃 𝑙 ·𝑄 ECDH(cc) ECDH(s)

[81] GF(𝑝), 160 9,920k 10,80k 20,720k 2.81

[46] GF(𝑝), 160 15,100k 16,960k 32,060k 4.35

[46] GF(𝑝), 192 21,370k 21,370k 42,740k 5.79

[47] GF(𝑝), 192 3,460k 8,620k 12,080k 1.63

[30] GF(𝑝), 224 n/a 17,520k 24,550k
⊕

3.33
⊕

[86] GF(𝑝), 256 n/a 25,380k 35,560k
⊕

4.82
⊕

[61] GF(𝑝), 256 n/a 20,980k 29,400k
⊕

3.98
⊕

variant Kyber-512(s) Kyber-768(s) Kyber-1024(s)

This (★⋄ ‡) 2.49 - -

This - 3.87 (★⋄ †) 6.02 (★†)
This [16] (★) 4.73 7.30 11.14

★, ⋄, †, and ‡: same as Table 7, ⊕: a roughly measured

and requires performing scalar multiplications for both the fixed

point 𝑃 and random point 𝑄 . The research in [86] and [61] does

not provide performance results for Ephemeral ECDH; therefore,

we estimate the Ephemeral ECDH performance based on these pa-

pers. While the ATmega4808 is capable of operating at a maximum

frequency of 20 MHz, much of the ECDH research has focused on

the 7.37 MHz of the ATmega128. For fairness, we benchmark Kyber

at this same frequency. The state-of-the-art implementation in [61]

focuses on the NIST Curve P-256, which provides a security level

equivalent to Kyber-512. Our implementation of Kyber-512 reduces

the key establishment time by roughly 1.5 seconds compared to

[61]. More impressively, our Kyber-768 variant, despite its enhanced

security, manages to achieve faster key establishment times than

the state-of-the-art P-256-based ECDH implementation in [61].

Table 8: Average handshake times in second for mutually
authenticated KEM-MQTT experiments (Excluding the phys-
ical transmission time during handshake). Also, We report
the maximummemory peak during the handshake.

KEM-MQTT

Publisher sent req. Publisher recv. resp.

speed stack[B] speed stack[B]

Kyber-512

(★⋄ †)
13,876k

5,726

17,957k

5,184

1.88s 2.44s

★, ⋄, and †: same as Table 7

7.5 KEM-MQTT Communication Requirements
To evaluate the handshake process, we simulate anMQTT publisher

establishing a secure connection with a broker and transmitting

an encrypted message. The experiment is conducted with a pay-

load size of 256 bits, excluding the fixed and variable headers. The

payload consists of a 64-bit timestamp (𝑡 ), a 64-bit topic (𝑇 ), and

https://github.com/pq-crystals/kyber/tree/main/ref/nistkat
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Table 7: Cycle counts (cc) and stack usage (bytes) for all security level of Kyber on 8-bit AVR MCUs. 1,000 cc is denoted by k.

Implementation Variant

Kyber-512 Kyber-768 Kyber-1024

cc stack[B] cc stack[B] cc stack[B]

This work
(Signed LUT)

★⋄ ‡

K

5,253k

3,720 - - - -

(+82%)

E

6,402k

3,808

9,694k

4,308

14,974k

4,828

(+101%) (+101%) (+99%)

D

6,706k

3,720 - - - -

(+86%)

This work
(Signed LUT)

★†

K

5,290k

2,220

8,608k

2,736

13,640k

3,256

(+81%) (+81%) (+80%)

E

7,385k

2,308

11,169k

2,808

16,946k

3,328

(+75%) (+75%) (+76%)

D

6,763k

2,324

10,250k

2,824

15,773k

3,352

(+85%) (+85%) (+80%)

This work
(based [16])

★

K 9,541k 2,220 15,554k 2,736 24,433k 3,256

E 12,879k 2,308 19,500k 2,808 29,347k 3,328

D 12,484k 2,324 18,796k 2,824 28,377k 3,352

★: based on the stack optimize version of [16], ⋄: pre-hased 𝑝𝑘 in flash memory, †: placing LUTs in flash memory, ‡: placing LUTs in stack

128-bit data (𝑑) (cf. Figure 4). Table 8 shows the actual time taken

during the KEM-MQTT handshake process, excluding the physi-

cal transmission time. Although the ATmega4808 can operate at

up to 20MHz, it runs at 7.37MHz to avoid confusion with Table 6.

The measurement includes the time required for KEM (Kyber-512),

key-schedule, AEAD, and packet generation. The key-schedule pro-

cess is implemented identically to the key schedule in TLS 1.3, as

described in Appendix C. As mentioned in section 6.5, we imple-

ment AEAD using handwritten assembly.When the publisher sends

the initial message to the broker (Publisher sent req.), it takes ap-

proximately 1.88 seconds, and an additional 2.44 second before the

broker receives the message and sends application data (Publisher

recv. resp.). During the handshake, the maximum stack usage was

measured at 5,726 bytes.

7.6 Energy Consumption
The AVR-IOT WG DEVLOPMENT board is equipped with an AT-

mega4808 microcontroller clocked at 20MHz and powered by a 3.3V

battery. According to [52], this processor consumes an average of

5mA of current during cryptographic operations when powered

at 3V. Based on this data, we can easily evaluate the energy con-

sumption during the overall communication encryption process.

Previous implementations of ECC on 8-bit AVR show that scalar

multiplication on a 160-bit twisted Edwards curve requires 19.0mJ,

while 192-bit scalar multiplication consumes 30.4mJ [19]. For FPGA

implementations, a 192-bit scalar multiplication consumes 1.623mJ

when using a single ALU [12], and a SW/HW co-design implemen-

tation consumes 119mJ per scalar multiplication [22]. When the

ATmega4808 operates at 7.32MHz and consumes an average of

5mA during cryptographic operations, the energy consumed for

31,833,391 clock cycles during the KEM-MQTT handshake is ap-

proximately 71.75mJ. Considering that Kyber operates with fewer

cycles than conventional ECDH and consumes less energy com-

pared to known hardware accelerators on AVR, our implementation

presents a reasonable software-based PQC solution for 8-bit AVR

environment.

8 Conclusion and Future Work
The transition to Post-Quantum Cryptography (PQC) is gaining

momentum today. Partially driven by concerns over "store now,

decrypt later" attacks, the migration to PQC is already underway

before fully fault tolerant quantum computers become widely avail-

able. Most research indicates that PQC is competitive with exist-

ing cryptography methods (e.g. ECDH and ECDSA) and can be

implemented within certain constraints. However, many papers

emphasize that transitioning to PQC is not just about replacing

algorithms, and particularly with PQC-DSA, there can be costs in

terms of increased memory consumption and latency.In embedded

environment, research on PQC migration has primarily focused on

devices like Cortex-M4, where highly optimized PQC implementa-

tions exist. In contrast, migrating PQC to more constrained devices

like 16-bit MSP430 and 8-bit AVR remains unclear.

In this paper, we highlighted the lack of NIST PQC migration

research on the 8-bit AVR platform over the past eight years and

demonstrated that state-of-the-art implementation techniques are

inefficient in AVR environments. Consequently, we pushed the per-

formance of Kyber, a PQC standard, to its limits by introducing a

novel modular multiplication method, achieving an efficient im-

plementation on AVR with minimal stack usage. Additionally, we

implemented a wireless sensor network communication protocol

called KEM-MQTT. Drawing inspiration from the KEMTLS method,

we enhanced the security of MQTT without using PQC-DSA. By

successfully migrating PQC to the most resource-constrained de-

vices, we have opened the door for future research into applying

PQC to other protocols such as Bluetooth and Wi-Fi, as well as to
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other low-power devices beyond AVR. For example, 16-bit MSP430,

with more available resources than AVR, may offer a more accessi-

ble path forward. Our work provides insights into the feasibility

of PQC implementation in resource-constrained environments and

paves the way for future studies aimed at enhancing security in

embedded devices.
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A 8-bit AVR Assembly Instructions Set

Table 9: AVR Assembly Instructions [42, 45]

Asm Operands Description Operation cc

dec Rd Decrement Rd ← Rd-1 1

clr Rd Clear register Rd ← Rd⊕Rd 1

eor Rd, Rr Exclusive OR Rd ← Rd⊕Rr 1

andi Rd, K Logical And with Constant Rd ← Rd⊕K 1

add Rd, Rr Add without Carry Rd ← Rd+Rr 1

adc Rd, Rr Add with Carry Rd ← Rd+Rr+C 1

sub Rd, Rr Sub without Carry Rd ← Rd-Rr 1

sbc Rd, Rr Sub with Carry Rd ← Rd-R-C 1

mul Rd, Rr Multiply Unsigned R0:R1 ← Rd×Rr 2

muls Rd, Rr Multiply Signed R0:R1 ← Rd×Rr 2

mulsu Rd, Rr Multiply Signed with Unsigned R0:R1 ← Rd×Rr 2

mov Rd, Rr Copy Register Rd ← Rr 1

movw Rd, Rr Copy two Register Rd:Rd+1 ← Rr:Rr+1 1

ldi Rd, K Load Immediate Rd ← K 1

ld Rd, X Load Indirect Rd ← (X) 2

ldd Rd, X+K Load Indirect with displacement Rd ← (X + K) 2

lpm Rd, Z Load Program(flash) memory Rd ← (Z) 3

st X, Rr Store Indirect (X) ← Rr 2

The AVR environment has a total of 130 instructions, and memory

access instructions (ld) require 2 cycles (lpm instruction requires

3 cycles for flash memory access), while common arithmetic, in-

cluding 1-bit shift operations such as add, adc, sub, and sbc, only
require 1 cycle. The multiply instruction (mul, muls, and mulsu)
takes 2 cycles, and the result is stored in [r0:r1]. The AVR environ-

ment does not support 16-bit unit multiplication as an instruction;

thus, users need to implement it directly with some combination of

AVR instructions. For a description of the AVR command set used

in this paper, please see Table 9. lsl/lsr logically shifts an 8-bit

value left/right by one bit. asr performs an arithmetic 1-bit right-

shift. Each of the above instructions takes one cycle. Excluding the

early AVR architectures like the ATtiny series, which possesses

byte-sized Static RAM (SRAM), the AVR microcontrollers primarily

accommodate multiplication instructions via a dedicated hardware

multiplication unit. There are some limitations when implement-

ing signed multiplication of 16-bit operations in Kyber. The 8-bit

AVR MCUs have a mulsu instruction that supports multiplication

between signed and unsigned values and a muls instruction that

can perform multiplication between signed words. The product of

the multiplication is always returned in [r0:r1]. mul multiplies

two unsigned 8-bit values, while muls multiplies two signed 8-bit

values. mulsu multiplies 8-bit signed and unsigned values. These

multiplication instructions take two cycles. Unlike mul, which al-

lows all registers as operands, both muls and mulsu mandate the

use of registers within the [r16:r31] range as operands.

B Number Theoretic Transform (NTT)
NTT is one variation of DFT and enables efficient polynomial

multiplication in Galois Field. Commonly, the Chinese Remain-

der Theorem (CRT) and the Fast Fourier Transform (FFT) algorithm

are applied for an efficient NTT implementation, utilizing only

O(𝑛 log𝑛) operations. Through the CRT algorithm, one can gen-

erate an isomorphic mapping of Negacyclic NTT Z𝑞 [𝑋 ]/(𝑋𝑛 −
1)→∏

𝑖 Z𝑞 [𝑋 ]/(𝑋 −𝜔2𝑖+1
2𝑛
) for 𝑖 = 1, 2, · · · , 𝑛−1, when iterated log

𝑛 times, fully decomposes an 𝑛 − 1 degree polynomial into 𝑛 single

coefficients. Each iteration is commonly referred to as an NTT layer,

where the result of the 𝑗-th layer is the remainder of any polyno-

mial a 𝑓 mod (𝑋 2
𝑗−1 ± 𝜔2𝑖+1

2𝑛
) for some 𝑖 . The polynomial elements

of Kyber belong to Z𝑞 [𝑋 ]/(𝑋𝑛 + 1) with 𝑞 = 3329 and 𝑛 = 256,

and since there is no 512-th root of unity within the modulus 3329,

Kyber employs an incomplete Negacyclic NTT. In other words, an

NTT with 7 layers using the primitive 256-th root of unity𝜔 = 17 is

actually implemented, eventually decomposing into a first-degree

polynomial. Through the NTT, the original polynomial 𝑋 256 + 1 is
decomposed as follows:

𝑋 256 + 1 =
127∏
𝑖=0

(𝑋 2 − 𝜔2𝑖+1
2𝑛 ) =

127∏
𝑖=0

(𝑋 2 − 𝜔2𝑏𝑟7 (𝑖 )+1
2𝑛

)

In here𝑏𝑟7 (𝑖) for 𝑖 ∈ {0, · · · 127} is the bit reversal of the unsigned 7-
bit integer 𝑖 . Finally, in Kyber, any polynomial 𝑓 ∈ 𝑅𝑞 is represented
as follows by the NTT:

𝑓 mod (𝑋 2 − 𝜔2𝑏𝑟7 (0)+1), · · · , 𝑓 mod (𝑋 2 − 𝜔2𝑏𝑟7 (127)+1)

To compute the NTT layers efficiently, butterfly operations, typ-

ically used in FFT, are utilized. Generally, the Cooley-Tukey (CT)

butterfly [21] is used in the NTT and the Gentleman-Sande (GS)

butterfly [27] is used in the iNTT.

C Part of the TLS 1.3 key schedule

Figure 6: Part of the TLS 1.3 key schedule computations [82]
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D Sketch of KEMTLS-PDK with proactive client
authentication [72]

Client) Server

static (KEM𝑐 ) pk𝐶 , sk𝐶 static (KEM𝑆 ) pk𝑆 , sk𝑆
knows pk𝑆
(pk𝑒 , sk𝑒 ) ← KEM𝑒 .Keygen()
(ss𝑆 , ct𝑆 ) ← KEM𝑆 .Encaps(pk𝑆 )

𝐾𝑆 ← KDF(ss𝑆 )
pk𝑒 , ct𝑆 ,AEAD𝐾𝑆

(cert[pkC])

ss𝑆 ← KEM𝑆 .Decaps(ct𝑆 , sk𝑆 )
(ss𝑒 , ct𝑒 ) ← KEM𝑒 .Encaps(pk𝑒 )
(ss𝐶 , ct𝐶 ) ← KEM𝐶 .Encaps(pk𝐶 )
ct𝑒

ss𝑒 ← KEM𝑒 .Decaps(ct𝑒 , sk𝑒 )
𝐾1 ← KDF(ss𝑒 | |ss𝑆 )

AEAD𝐾1
(ct𝐶 )

ss𝐶 ← KEM𝐶 .Decaps(ct𝐶 , sk𝐶 )
𝐾2, 𝐾

′
2
, 𝐾
′′
2
, 𝐾
′′′
2
← KDF(ss𝑒 | |ss𝑆 | |ss𝐶 )

AEAD𝐾2
(key confirmation)

AEAD𝐾 ′
2

(application data)

AEAD𝐾 ′′
2

(key confirmation)

AEAD𝐾 ′′′
2

(application data)

E Kyber.CPAPKE Algorithm

Algorithm 3 Kyber.CPAPKE Enc [9]

Input: 𝑝𝑘 = ( ˆb, 𝜌), message 𝜇 in 𝑅𝑞 , seed 𝑐𝑜𝑖𝑛 ∈ {0, · · · , 255}32
Output: Ciphertext (u′, ℎ)
1: Â← GenMatrixA(𝜌)

2: s′ ← SampleVec(𝑐𝑜𝑖𝑛, 0)

3: e′ ← SampleVec(𝑐𝑜𝑖𝑛, 1)

4: e′′ ← SampleVec(𝑐𝑜𝑖𝑛, 2)

5: t̂← NTT(s′)
6: u← iNTT(Â ◦ t̂) + e′

7: v̂← iNTT(v̂𝑇 ◦ t̂) + e′′ + 𝜇
8: return (u′ = Compress(u), ℎ = Compress(v′))

Algorithm 4 Kyber.CPAPKE KeyGen [9, 33]

Output: 𝑝𝑘 = (
ˆb, 𝜌), 𝑠𝑘 = ŝ

1: 𝑠𝑒𝑒𝑑 ← {0, · · · , 255}32
2: 𝜌, 𝜎 ←SHAKE256(64, 𝑠𝑒𝑒𝑑)

3: Â← GenMatrixA(𝜌)

4: s ← SampleVec(𝜎, 0)

5: e ← SampleVec(𝜎, 1)

6:
ˆb← Â ◦ NTT(s) + NTT(e)

7: return 𝑝𝑘 = (
ˆb, 𝜌), 𝑠𝑘 = 𝑠

Algorithm 5 Kyber.CPAPKE Dec [9]

Input: Ciphertext 𝑐 = (u′, ℎ), secret key 𝑠𝑘 = ŝ
Output: Message 𝜇 ∈ 𝑅𝑞
1: u← Decompress(u′)
2: v′ ← Decompress(ℎ)

3: return 𝜇 = v′−iNTT(ŝ𝑇 ◦ NTT(u))

F Kyber.CCAKEM Algorithm

Algorithm 6 Kyber.CCAKEM Keygen [9]

Output: Public key 𝑝𝑘

Output: Secret key 𝑠𝑘

1: 𝑧 ← B32

2: (𝑝𝑘, 𝑠𝑘′) := Kyber.CPAPKE keygen()
3: 𝑠𝑘 := (𝑠𝑘′ | |𝑝𝑘 | |H(𝑝𝑘) | |𝑧)
4: return (𝑝𝑘, 𝑠𝑘)

Algorithm 7 Kyber.CCAKEM Encaps [9]

Input: Public key 𝑝𝑘

Output: Ciphertext 𝑐

Output: Shared key 𝐾

1: 𝑚 ←H(B32
)

2: (𝐾, 𝑟 ):= G(𝑚 | |H(𝑝𝑘))
3: 𝑐 := Kyber.CPAPKE Enc(𝑝𝑘,𝑚, 𝑟)

4: 𝐾 :=KDF(𝐾 ||H(𝑐))

5: return (𝑐, 𝐾 )

Algorithm 8 Kyber.CCAKEM Decaps [9]

Input: Ciphertext 𝑐

Input: Secret key 𝑠𝑘

Output: Shared key 𝐾

1: 𝑝𝑘 := 𝑠𝑘 + 12 · 𝑘 · 𝑛/8, ℎ := 𝑠𝑘 + 24 · 𝑘 · 𝑛/8 + 32
2: 𝑧 := 𝑠𝑘 + 24 · 𝑘 · 𝑛/8 + 64,𝑚′ := Kyber.CPAPKE Dec(𝑐, 𝑠𝑘)

3: (𝐾 ′, 𝑟 ) :=G(𝑚′ | |ℎ)
4: 𝑐′ := Kyber.CPAPKE Enc(𝑝𝑘,𝑚′, 𝑟 ′)
5: if 𝑐 = 𝑐′ then
6: return (𝐾 := KDF(𝐾

′ | |H(𝑐))
7: else
8: return (𝐾 := KDF(𝑧||H(𝑐))

9: end if
10: return 𝐾
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Algorithm 9 Signed LUT reduction

Input: 32-bit c = (c3 | |c2 | |c1 | |c0) with c ∈ (−𝑞215, 𝑞215),
8-bit tmphi, tmplo, imm, LUT#1, LUT#2

Output: 16-bit r = (r1 | |r0) with r ∈ (−𝑞, 213)

⊲ step 2 of Figure 5

1: mov r30, c3
2: andi r30, 0x0F
3: mov imm, c1
4: andi imm, 0xF0

⊲ step 3

5: eor r30, imm
6: andi c1, 0x0F
7: ldi r31, hi8(LUT#2hi)
8: lpm tmphi, Z
9: ldi r31, hi8(LUT#2lo)
10: lpm tmplo, Z
11: add c0, tmplo
12: adc c1, tmphi

⊲ step 1

13: mov r30, c2
14: ldi r31, hi8(LUT#1hi)
15: lpm c3, Z
16: ldi r31, hi8(LUT#1lo)
17: lpm c2, Z

⊲ step 4

18: add c2, c0
19: adc c3, c1
20: return r1 = c3 and r0 = c2

G Codes of Signed (Small) LUT reduction
Algorithm 9 presents our SLR code for 8-bit AVR MCUs. For refer-

ring to 8-bit units, we divided each LUT#𝑛, 𝑛 ∈ [0, 3], into an upper

byte LUT(LUT#nℎ𝑖 ) and a lower byte LUT (LUT#n𝑙𝑜 ). All LUTs

are aligned on 256 bytes and stored in flash memory. As the lower

address of the LUT is zero, the address calculation to reference

the LUT can be done with only a single mov (1 cycle) and lpm (3

cycles) instruction. Therefore, step 1 of Figure 5, which refers to

LUT#1, consists of 5 instructions (9 cycles) on AVR MCUs. Steps

2 and 3 consist of generating 8-bit input data and referring to the

LUT#2. Finally, step 4 is accumulating and returning the referenced

value. Therefore, our SLR method can be implemented on an 8-bit

AVR environment at a total cost of 27 cycles. Although it is the

same 14-bit (−𝑞, 213) output size as unsigned LUT reduction (40

cycles) [74], SLR has faster than unsigned LUT reduction.

In order to compare with the proposed SLR method, as previ-

ously mentioned in Section 5.3 using Table 4, we implemented

hand-written assembly code for Montgomery reduction presented

in [73]. Montgomery reduction (Algorithm 10) requires two 16-bit

multiplications. In addition, modulus 𝑞 of Kyber and 𝑞−1 mod 2
16

must be kept in registers for implementation, with modulus 𝑞 held

Algorithm 10 Montgomery reduction

Input: 32-bit c = (c3 | |c2 | |c1 | |c0)
with c ∈ (−𝑞215, 𝑞215),
8-bit qlo, qhi, qinvhi, qinvlo,
32-bit tmp = (t3 | |t2 | |t1 | |t0),
8-bit zero

Output: 16-bit r = (r1 | |r0),
with r ∈ (−𝑞, 𝑞)

1: mul c0, qinvlo ⊲ 𝑡 = (𝑐1 | |𝑐0) · 𝑞−1
2: movw r0, r0
3: mul c1, qinvlo
4: add r1, r0
5: mul c0, qinvhi
6: add r1, r0
7: mulsu r1, qhi ⊲ 𝑡 = 𝑡 · 𝑞
8: movw t2, r0
9: mul r0, qlo
10: movw t0, r0
11: mulsu r1, qlo
12: sbc t3, zero
13: add t1, r0
14: adc t2, r1
15: adc t3, zero
16: mul r0, qhi
17: add t1, r0
18: adc t2, r1
19: adc t3, zero
20: sub c0, t0 ⊲ 𝑐 = 𝑐 − 𝑡
21: sbc c1, t1
22: sbc c2, t2
23: sbc c3, t3
24: movw r0, c2
25: clr zero
26: return r1 and r0

in high-level registers (r16 and above) for signed multiply instruc-

tions (mulsu or muls). Montgomery reduction method requires an

additional movw instruction to move the result and clr instruction

to initialize the carry register on an 8-bit AVR environment. In sum-

mary, the signed Montgomery reduction implementation requires

32 cycles, whereas the SLR implementation only takes 27 cycles.

In order to compare with the proposed SLR method, as previ-

ously mentioned in Section 5.3 using Table 4, we implemented

hand-written assembly code for Montgomery reduction presented

in [73]. Montgomery reduction (Algorithm 10) requires two 16-bit

multiplications. In addition, modulus 𝑞 of Kyber and 𝑞−1 mod 2
16

must be kept in registers for implementation, with modulus 𝑞 held

in high-level registers (r16 and above) for signed multiply instruc-

tions (mulsu or muls). Montgomery reduction method requires an

additional movw instruction to move the result and clr instruction

to initialize the carry register on an 8-bit AVR environment. In sum-

mary, the signed Montgomery reduction implementation requires

32 cycles, whereas the SLR implementation only takes 27 cycles.
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Algorithm 11 Signed small LUT reduction

Input: 16-bit c = (c1 | |c0), with c ∈ [−215, 215),
8-bit zero, LUT#3

Output: 16-bit r = (r1 | |r0), with r ∈ (−𝑞
2
, 211)

1: mov r30, c1
2: ldi r31, hi8(LUT#3hi)
3: lpm c1, Z
4: ldi r31, hi8(LUT#3lo)
5: lpm tmp, Z
6: add c0, tmp
7: add c1, zero
8: return r1 = c1 and r0 = c0

Algorithm 11 presents the code for SSLR, which is used for mod-

ular reduction of 16-bit coefficient. In the same way as Algorithm 2,

the upper byte of the input data is used to reference the LUT#3

and obtain 12-bit reduced data with (−𝑞
2
, 211). On 8-bit AVR MCUs,

SSLR can be implemented with only 11 clock cycles. Barrett reduc-

tion has a smaller output range than SSLR. However, it requires
two signed multiplications, similar to the Montgomery reduction.

Also, since the Barrett constant should be held in the upper register

(r16 and above), the actual implementation of the Barrett reduction

costs about 35 clock cycles. By replacing the Barrett reduction with

SSLR, we can save 24 clock cycles for the modular reduction of the

16-bit coefficient. Since SSLR has a slightly wider output range than

Barrett reduction, it requires additional steps in the packing process

of Kyber.

H Previous Modular Arithmetic for Kyber

Algorithm 12 Signed Montgomery reduction [73]

Input: 𝑐 = 𝑎 · 𝑏 such that 𝑐 = 𝑐1𝛽 + 𝑐0 and 𝑐 ∈ (− 𝛽
2
𝑞,
𝛽
2
𝑞),

where 𝛽 = 2
16

if 𝑞 < 2
16
, the odd modulus 𝑞 ∈ (0, 𝛽

2
)

Output: 𝑟 ≡ 𝑎𝑏𝛽−1 mod 𝑞, 𝑟 ∈ (−𝑞, 𝑞)
1: 𝑚 = 𝑐0 · 𝑞−1 mod

±𝛽 ⊲ signed low product

2: 𝑡1 = ⌊𝑚 · 𝑞/𝛽⌋ ⊲ signed high product

3: 𝑟 = 𝑐1 − 𝑡1
4: return 𝑟

Signed Montgomery reduction is given by Algorithm 12 and the

constant 𝛽 is typically set to 𝑙-bit word size such that the modulus 𝑞

fits in one word. It replaces division with multiplication, shift, and

subtraction operations. Note that in the case of subtraction, only

the high part (𝑐1 − 𝑡1) of subtraction is required. Since the result

𝑟 of Algorithm 12 is in the range of (−𝑞, 𝑞), it does not need to be

unsigned.

Algorithm 13 Signed Barrett reduction [14, 73]

Input: 𝑞 with 0 < 𝑞 <
𝛽
2
, and 𝑎 with 𝑎 ∈ [− 𝛽

2
,
𝛽
2
), where 𝛽 = 2

16

Output: 𝑟 ≡ 𝑎 mod 𝑞, 𝑟 ∈ [0, 𝑞]
1: 𝑣 ← ⌊ 2

log(𝑞)−1 ·𝛽
𝑞 ⌋ ⊲ precomputed

2: 𝑡 ← ⌊ 𝑎𝑣

2
log(𝑞)−1 ·𝛽 ⌋ ⊲ signed high product

3: 𝑡 ← 𝑡𝑞 mod 𝛽 ⊲ signed low product

4: 𝑟 ← 𝑎 − 𝑡
5: return 𝑟

Barrett reduction [13] replaces the computation of ⌊𝑐/𝑞⌋ re-
quiring a division with an approximated quotient computation

⌊(𝑐 · 𝜆)/𝑅)⌋ requiring efficient shift operation where 𝜆 = ⌊𝑅/𝑞⌋ is a
precomputed constant, with 𝑅 = 2

𝑙
. Algorithm 13 is signed Barrett

method [73] used by Kyber reference code and note that the input

𝑎 can be signed value and the result 𝑟 is in the range of 0 ≤ 𝑟 ≤ 𝑞.

Algorithm 14 Improved Plantard reduction [33]

Input: 𝑐 = 𝑎 · 𝑏, where 𝑎, 𝑏 ∈ [−𝑞2𝛼 , 𝑞2𝛼 ], 𝑞 < 2
𝑙−𝛼−1, and

𝑞′ = 𝑞−1mod
±
2
2𝑙

Output: 𝑟 = 𝑐 (−2−2𝑙 ) mod
±𝑞, where 𝑟 ∈ (−𝑞

2
,
𝑞
2
)

1: 𝑟 = [([[𝑐𝑞′]
2𝑙 ]𝑙 + 2𝛼 )𝑞]

𝑙

2: return 𝑟

The basic idea of Plantard reduction [62] is similar to Mont-

gomery reduction, aiming to find a value of 𝑡 such that (𝑡𝑞 − 𝑎𝑏)
is divisible by 𝑅 = 2

2𝑙
. Ultimately, it should satisfy (𝑡𝑞 − 𝑎𝑏)−2𝑙 ≡

𝑎𝑏 (−2−2𝑙 ) mod 𝑞. Recently, an improved version of Plantard multi-

plication was proposed in [33] for Cortex-M4, extending themethod

to a signed system and expanding the input range (Algorithm 14).

The improved Plantard reduction method provides a range 2
𝛼

times larger ([−𝑞222𝛼 , 𝑞222𝛼 ]) compared to Montgomery reduc-

tion, while maintaining half of the output range (−𝑞
2
,
𝑞
2
). Leverag-

ing Cortex-M4’s smulwb and smlabb instructions, and when one

of the operands is constant, only two multiplications occur during

the modular multiplication process.

I Crossed Butterfly
Applying the merging strategy on an 8-bit AVR environment is

not practical due to the high cost of offset calculation and the lim-

ited number of registers available. Instead of applying the merging

strategy, we choose a way to reduce the offset calculation cost

in the NTT inner loop. Since the maximum offset displacement

of the ldd instruction is 64, we can access up to 32 coefficients

from the starting address. Therefore, for efficient offset calcula-

tion, we align the address lower byte of the polynomial to 0x00

(attribute((aligned(256))). If it is not aligned, an additional

instruction occurs in the NTT inner loop. For instance, when access-

ing data with more than 64 bytes, we need to use the adc instruction
for offset calculation. By aligning the address of the polynomial,

we remove the carry operation that occurs in the inner loop. Also,

for efficient offset calculation, we propose a technique called Cross

access for CT and GS butterfly.
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Algorithm 15 Crossed (CT) butterfly

Input: 16-bit a = (a1 | |a0), b = (b1 | |b0)
16-bit zetas = (𝜁ℎ𝑖 | |𝜁𝑙𝑜 ),
16-bit r = (r1 | |r0),
32-bit tmp = (t3 | |t2 | |t1 | |t0)

Output: 16-bit a = (a + b𝜁 ), 16-bit b = (a − b𝜁 )
1: ld b0 (a0), X+
2: ld b1 (a1), X
3: ldd a0 (b0), Y
4: ldd a1 (b1), Y+1
5: mc_mlsu16x16 ⊲ tmp = b × zetas
6: Signed_LR ⊲ r = Signed_LR(tmp)
7: movw b0, a0
8: add a0, r0
9: adc a1, r1
10: sub b0, r0
11: sbc b1, r1
12: dec r26
13: st X+, b0 (a0)
14: st X+, b1 (a1)
15: st Y+, a0 (b0)
16: st Y+, a1 (b1)

Algorithm 16 CT butterfly on AVR

Input: 16-bit a = (a1 | |a0),
16-bit b = (b1 | |b0),
16-bit zetas = (𝜁ℎ𝑖 | |𝜁𝑙𝑜 ),
16-bit r = (r1 | |r0),
32-bit tmp = (t3 | |t2 | |t1 | |t0)

Output: 16-bit a = (a + b𝜁 ),
16-bit b = (a − b𝜁 )

1: ld a0, X+
2: ld a1, X
3: ldd b0, Y
4: ldd b1, Y+1
5: mc_mlsu16x16 ⊲ tmp = b × zetas
6: Signed_LR ⊲ r = Signed_LR(tmp)
7: movw b0, a0
8: add a0, r0
9: adc a1, r1
10: sub b0, r0
11: sbc b1, r1
12: dec r26
13: st X+, a0
14: st X+, a1
15: st Y+, b0
16: st Y+, b1

In CT butterfly, the address registers X and Y are the starting

addresses for the polynomial. In the NTT inner loop, the starting

address is incremented by the inner segment length of the layer.

For example, at the end of the first branch of the inner loop in the

second layer of NTT, the addresses of X and Y increase by 128 (64

coefficients). Therefore, the starting address of the second branch

is to add 128 to X and Y. At this time, a calculation cost of 2 cycles

are occurred for each address. We consider that the ending address

of Y in the first branch is the same as the starting address of X in

the second branch, reducing the offset calculation from two to one

per branch. That is, in the example above, when the first branch

ends, Y is maintained as the start address of the next branch, and

twice the original offset (256) is added to the address of X. We call

this memory access approach Cross access. Therefore, one can use

Algorithm 16 and Algorithm 15 alternately during the NTT layer.
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