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Abstract. Deep learning-based side-channel analysis has become a pop-
ular and powerful option for side-channel attacks in recent years. One of
the main directions that the side-channel community explores is how to
design efficient architectures that can break the targets with as little as
possible attack traces, but also how to consistently build such architec-
tures. In this work, we explore the usage of the JumpReLU activation
function, which was designed to improve the robustness of neural net-
works. Intuitively speaking, improving the robustness seems a natural
requirement for side-channel analysis, as hiding countermeasures could
be considered adversarial attacks.
In our experiments, we explore three strategies: 1) exchanging the activa-
tion functions with JumpReLU at the inference phase, training common
side-channel architectures with JumpReLU, and 3) conducting hyperpa-
rameter search with JumpReLU as the activation function. While the
first two options do not yield improvements in results (but also do not
show worse performance), the third option brings advantages, especially
considering the number of neural networks that break the target. As
such, we conclude that using JumpReLU is a good option to improve
the stability of attack results.

Keywords: Side-Channel Analysis · Deep Learning · JumpReLU.

1 Introduction

Side-channel analysis (SCA) is a class of cryptanalytic attack techniques that
exploit the physical implementation of cryptographic algorithms to extract sen-
sitive information, such as cryptographic keys. Differing from traditional crypt-
analysis that focuses on the mathematical properties of algorithms, side-channel
attacks leverage unintentional information leakage from a device’s physical char-
acteristics during operation. These attacks can exploit different sources of leak-
age, including power consumption [18], electromagnetic emissions [11], timing [19],
or even sound [12]. If a device is not sufficiently resistant to SCA, an adversary
can measure its leakage and use statistical analysis methods to recover secrets.

SCA attacks can be divided into two categories [26]:

1. Non-profiling: also called direct attacks, where the adversary collects mea-
surements from the device under attack and uses statistical methods to infer
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the secret information. Examples of this attack category include simple anal-
ysis, differential analysis [18], and mutual information analysis [13].

2. Profiling: also called two-stage attacks, the adversary has a clone (or very
similar) device to the device to be attacked. Then, the attacker uses this clone
device to perform multiple cryptographic executions with different keys and
inputs to create a training set and learn a statistical model from side-channel
leakages. Next, in the attack phase, this model is used against the target
device. If the model provides satisfactory generalization, the attacker can
recover secrets from the target device. The most well-known and powerful
profiling method, from an information-theoretic perspective, is the template
attack [4]. It is based on the Bayesian rule and the assumption that the
measurements are mutually independent among the features given the target
class [1, 4].

In recent years, deep learning-based approaches have emerged as a pow-
erful alternative that can often surpass template attacks in performance [25].
In particular, multilayer perceptron (MLP) and convolutional neural networks
(CNNs) have been widely explored and shown to be effective in recovering se-
crets from implementations protected with countermeasures [2,34]. Finding high-
performing neural network architectures is frequently challenging as it involves
selecting from a long list of hyperparameters. From these hyperparameters, in
the side-channel analysis domain, the activation function is normally selected
to be either ReLU or SeLU. ReLU is the most commonly used activation func-
tion, mainly due to its simplicity and effectiveness. Despite research on novel
activation functions specifically designed for side-channel analysis, such as the
proposal by Knežević et al. [17], ReLU remains a standard choice. However, this
does not mean that more suitable activation functions cannot be designed.

In the field of adversarial learning, Erichson et al. [8] presented the JumpReLU
activation function. The authors describe it as a very simple and inexpensive
strategy that can be used to “retrofit” a previously trained network to improve
its resilience to adversarial attacks (i.e., attacks on machine learning that aim
to cause misclassification of the machine learning algorithm). In deep learning
side-channel analysis, traces capture noise, and implementation countermeasures
can be seen as a manipulation to deceive the model into making incorrect pre-
dictions. Thus, the natural questions that arise are: Can JumpReLU be used to
improve model accuracy in the SCA domain? Can JumpReLU be used as in [8]
on already-trained models to enhance their accuracy? Which threshold value
should be used? Can we expect randomly generated models to perform better
using JumpReLU instead of ReLU and SeLU?

In this paper, we provide answers to these questions by performing a com-
prehensive list of experiments with the well-known SCA datasets.
In summary, our main contributions are:

1. We verify whether JumpReLU can be used in already-trained SCA models
to increase their performance.

2. We show how performance is affected when an existing architecture is taken
and its activation function is replaced with JumpReLU.
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3. We provide experimental results of which threshold range provides the best
performance.

4. We provide a benchmark between random models using ReLU, SeLU, and
JumpReLU.

2 Background

2.1 Deep Learning SCA

Deep learning techniques, particularly neural networks, enhance SCA by elimi-
nating the need for extensive pre-processing or manual feature engineering [3,15].
By training models on large datasets of captured leakages, attackers can improve
their ability to recover secret keys even from countermeasure-protected (mask-
ing [20] and hiding [21]) devices, making this approach a growing concern [10].

Deep learning-based SCA (DLSCA) is a profiling attack defined as a classi-
fication problem. The output classes are specified using the target intermediate
variable and leakage model. In the DLSCA profiling step, a set X contains Np

measurements along with their counterparts plain/ciphertexts and keys collected
from the clone device and is used to train the deep neural network. In the attack
phase, the trained model is used to classify Na measurements from the target
device. The output probabilities of the neural network for each class are used
to rank the most probable key. For each key candidate, a score Sk is calculated
using the formula:

Sk =

Na∑
i=1

log p(xi, cj). (1)

Here, Na is the number of measurements in the attack set, and p(xi, cj) repre-
sents the probability that a measurement xi belongs to class cj . The keys are
then sorted according to their scores. The key with the highest score is con-
sidered the most likely key used for the cryptographic operation on the target
device. The guessing entropy (GE) and the required number of attack traces
(NT) can be defined using the score vector in Eq. (1). Suppose the correct key
(k⋆) used in the cryptographic operation is ranked at the position rth among all
possible keys. This position is called the rank of (k⋆). The guessing entropy is
the average rank of k⋆ in multiple experiments. The required number of attack
traces (NT) is the average minimum number of measurements needed for the
model to place k⋆ in the first position (where GE = 0) [30].

2.2 Datasets

For this work, two well-known publicly available datasets were used, namely the
ASCAD dataset [2] in its fixed-key and variable-key variants. These datasets
were captured from EM measurements while executing a software-protected
AES implementation running on an 8-bit AVR architecture microcontroller AT-
Mega8415. The implementation is protected with the first-order masking, where
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the masks for the first two bytes in the AES state during the first round are
fixed to 0, i.e., are not protected. As such, the target byte for this work is always
the third byte. For the fixed-key version, the 700 points of interest preselected
by the dataset authors are used. The dataset consists of a total of 60000 traces:
50000 training traces and 10000 test traces. For the variable-key version, the
1400 points of interest preselected by the dataset authors are used. The dataset
consists of a total of 300000 traces: 200000 training traces and 100000 test traces.

2.3 Activation Functions

Activation functions are an essential component of neural networks, introducing
non-linearity. They enable the learning of complex patterns and relationships
in data. Without activation functions, a neural network would be equivalent to
a single-layer model, regardless of the number of layers, limiting its ability to
capture complicated dependencies. Activation functions help determine how neu-
rons respond to inputs and control the flow of gradients during backpropagation,
affecting convergence speed and overall training stability [6].

ReLU The Rectified Linear Unit (ReLU) activation function is a widely used
non-linear function in artificial neural networks [22, 29], particularly in deep
learning models. It is defined by:

g(z) = max{0, z}. (2)

ReLU is the default recommendation in modern neural networks [14].

SeLU The Scaled Exponential Linear Units (SeLU) [16] activation function is
defined by:

f(x) = λ

{
x, if x > 0.

α(ex − 1), if x ≤ 0,
(3)

with α ≈ 1.6733 and λ ≈ 1.0507.

JumpReLU The JumpReLU [9] (Jump Rectified Linear Unit) activation func-
tion is a variant of the standard ReLU function with a jump discontinuity, yield-
ing piece-wise continuous functions. It introduces a positive threshold parameter
κ such that the neuron remains inactive until its input exceeds κ. The magnitude
of the jump κ is a parameter the user must define.

J(z) = zH(z − κ) =

{
0, if z ≤ κ.

z, if z > κ.
(4)

Here, H denotes the discrete Heaviside unit step function. The JumpReLU ac-
tivation function introduces robustness and an additional amount of sparsity,
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Fig. 1: JumpReLU activation function.

controlled via the jump value κ. Thus, JumpReLU suppresses small positive sig-
nals. We depict the operation of the JumpReLU activation function in Figure 1.

When presented, JumpReLU was proposed as a strategy to improve resilience
to adversarial attacks. Moreover, it was concluded that it can be used in models
already trained using ReLU. In this scenario, it provides a trade-off between
robustness and classification accuracy, which the user can control in a post-
training stage by tuning the threshold value κ.

Another application where JumpReLU has shown improved results versus
other activation functions is in sparse autoencoders for language models. Here,
JumpReLU enables more faithful reconstructions than competing methods, such
as Gated or TopK Sparse AutoEncoders [27].

3 Related Work

Since the work of Maghrebi et al. [20], where the first published results of deep
learning techniques applied to the domain of side-channel analysis are presented,
multiple research works have been published. Those works showcase the impor-
tance of hyperparameter tuning and how identifying high-performing models can
be challenging due to the large number of hyperparameters that must be con-
sidered. As such, multiple works considered how to find high-performing neural
network architectures efficiently, see, e.g., [24, 30,32–34].

Regarding the impact of activation functions, Benadjila et al. [2] have stud-
ied the effect of the activation function on the performance of the neural net-
work, and they reported that their best results were obtained with ReLU, tanh,
and softsign (a variation of tanh), but they chose ReLU due to its state-of-
the-art results and because its computation time is lower than the other two
functions. Knežević et al. [17] used evolutionary algorithms to evolve new acti-
vation functions for side-channel analysis. Their experiments with the ASCAD
database showed that this approach is highly effective compared to results ob-
tained with standard activation functions and that it can match the state-of-the-
art results from the literature. The authors evaluated two leakage models (the
Hamming Weight (HW) and Identity (ID) models) and MLP and CNN archi-
tectures. Moreover, Do et al. [5] analyzed the effect of the activation function in
MLP- and CNN-based deep learning models for non-profiled side-channel anal-
ysis. For their MLP-based models, using the ELU activation function provided
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better performance than ReLU in fighting against noise generation-based hiding
countermeasures.

4 Experimental Setup

4.1 Neural Network Topologies

We use two well-known neural network topologies that are common choices in
DLSCA: Multilayer Perceptron (MLP) is a basic type of neural network
with an input layer, one or more hidden layers, and an output layer. The input
layer receives training data that passes through fully connected hidden layers
before reaching the output. In classification tasks, the output layer represents
different classes. MLP learns patterns in the data by adjusting its weights using
gradient descent and backpropagation.

Convolutional Neural Network (CNN) is another type of neural net-
work designed to process structured data. It includes convolutional layers that
detect important features using small filters (kernels). These layers are followed
by activation functions and pooling layers, which help reduce complexity while
keeping essential information. Finally, one or more fully connected layers process
the extracted features for the final output.

4.2 Datasets and Leakage Model

In our experiments, we consider two publicly available datasets: ASCAD-Fixed
and ASCAD-Variable and their desynchronized 50 and 100 versions.3
Both datasets are provided using measurements from a software implementa-
tion of AES-128. The implementation is protected with Boolean masking. Since
the first and second bytes are masked with zero, and the sensitive variable leaks
in the first order, we target the third byte. The target platform is an 8-bit AVR
microcontroller (ATmega8515), and the measurements are the electromagnetic
emanations (EM) from the target [2]. In ASCAD-Fixed, there are 50000 traces
for training, all with the same key, and 10000 traces for attack. The traces have
700 features, an interval that includes most leaky time samples considering the
Sbox output as a sensitive variable.
In ASCAD-Variable, there are 200000 traces for training with the key changing
randomly for every trace and 100000 traces for attack (we use 100000 traces for
training and 10000 traces for attack from this dataset). The traces have 1400
features. The key is fixed when measuring the attack traces for both datasets.
In the desynchronized versions of both datasets, each trace is shifted using a
random variable of 0 to N [0], where N [0] = 50 for ASCAD-Fixed and ASCAD-
Variable denotes desynchronization of 50, and N [0] = 100 for ASCAD-Fixed and
ASCAD-Variable denotes desynchronization of 100.

3 The datasets can be found here.

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/
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We use the Identity (ID) leakage model, where we assume that the exact
value of the sensitive variable is leaking. Using divide-and-conquer4 strategy and
targeting the Sbox output (8 bits) of the first round as the sensitive variable,
there are 256 possible classes with the ID leakage model.

4.3 Analysis Methodology

This study examines how the use of JumpReLU affects the performance of
DLSCA. To clarify this, we investigate two different scenarios.

1. We explore whether substituting the activation function in well-known archi-
tectures with JumpReLU can potentially enhance their performance. This is
explored in two settings:
– Substitution of the activation function on an already trained model, i.e.,

JumpReLU is used only at the inference phase.
– Substitution of the activation function and training of the model, i.e.,

JumpReLU is employed during both the training and inference phases.
2. We investigate whether the average performance of random CNN and MLP

models for DLSCA is better using JumpReLU compared to the other acti-
vation functions.

In the following, we introduce the steps required for each scenario.
In the first scenario, we would like to see if replacing the activation function of
well-known architectures with JumpReLU results in improving the performance
of those models. To verify this, our methodology is straightforward. We take the
following steps:

– Acquiring baseline models: We start by training ten models using the
architectures reported in previous works. Training is done using identical
hyperparameters and datasets to ensure comparable results. The models we
used are listed in Table 1. We call them “baseline models”. The activation
functions in these architectures are either ReLU or SeLU, but none use
JumpReLU. The works listed in Table 1 reported one or more CNN and/or
MLP neural networks for at least one of the datasets in Section 4.2. Table 1
shows what kind of model has been reported for which dataset in each work.

– Record the baseline model’s performance: After training each model
and using that model to attack, we use guessing entropy and the required
number of traces (NT) to report that model’s performance for the target
dataset the model was developed for.

– Re-training models with JumpReLU: Once more, we need to train the
baseline models. This time, we keep all the hyperparameters as before and
only replace the models’ activation function with JumpReLU. As mentioned
in Section 2.3, JumpReLU has its own hyperparameter, κ, which should be
tuned for each neural network. To do this tuning, we examine five thresholds

4 Divide-and-conquer strategy is a strategy to recover a long key by retrieving its
smaller parts separately
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Table 1: The list of works/architectures we consider in our experiments. We
depict ∗ if the work reported a well-performing CNN and • if the work reported
a well-performing MLP.
Covered datasets ASCAD-Fixed ASCAD-Variable

N [0] = 0 N [0] = 50 N [0] = 100 N [0] = 0 N [0] = 50 N [0] = 100

[2] ∗, • ∗, • ∗, • ∗, • ∗, • ∗, •
[34] ∗ ∗ ∗
[32] ∗ ∗ ∗

for each baseline model. We train each model with five different values for
κ, κ ∈ {0.001, 0.002, 0.003, 0.004, 0.005}. The tuned model with the best
performance is denoted the “JumpReLU-equivalent model”.

– Report the JumpReLU-equivalent models performance: The last
step is to report the performance of the models with the JumpReLU acti-
vation function and compare it with the performance of the original ones.
The hypothesis is to verify whether replacing previously found good models’
activation functions with JumpReLU improves their performance.

In the second scenario, we would like to see if using JumpReLU can im-
prove the performance of the models on average. To evaluate this, we compare
the average performance of a number of neural networks using two common
activation functions (ReLU and SeLU being randomly selected for each neural
network combination of hyperparameters) against their performance when their
activation function is fixed to JumpReLU. The methodology for comparing per-
formance is described in the following steps.

– Acquiring baseline models: We generate 500 neural networks of the spe-
cific topology (MLP or CNN) using a random search. The searching ranges
for hyperparameters of MLP and CNN are listed in Table 2. These ranges
are chosen based on those reported in the previous works [7, 23, 34]. Since
those 500 neural networks are generated randomly, many of them cannot
decrease GE. Then, we only select the models that reached GE = 0 within
4000 attack traces as the “baseline models”.

– JumpReLU equivalent models: With the same topologies generated for
the baseline models we verify if by using JumpReLU would have provided
better results for this random model, and validate against five different values
for κ, κ ∈ {0.001, 0.002, 0.003, 0.004, 0.005}.

– The average performance of baseline models: We use “AVERAGE_GE”
and “AVERAGE_NT” to represent the average performance of baseline mod-
els. The “AVERAGE_GE” is the average over GE that MLP or CNN base-
line models can reach in an attack set with 4000 attack traces. The “AV-
ERAGE_NT” is the average over the required number of attack traces that
MLP or CNN baseline models need to reach GE = 0.



JumpReLU Activation Function in DLSCA 9

Table 2: Searched range of MLP and CNN hyperparameters. For both MLP and
CNN dense layers, we used the ranges shown in Dense layers part of Table 2.

Hyperparameters Range
MLP dense layers

Number of neurons [10, 30, 50, 70, 90, 120, 150, 200, 250, 300, 400, 500]
Number of layers [2, 8], step = 1

CNN convolution and dense layers

Number of neurons in dense layer [50, 100, 150, 200, 300, 400, 500]
Number of dense layers [2, 4], step = 1
Number of convolution layers [2, 4], step = 1
Kernel size [4, 20], step = 2
Number of filters [4, 24], step = 4
ith layer filter size ((i − 1)thfilter_size)2

Pooling “Average”, “Max”
Pooling size [2, 10], step = 2
Pooling stride [2, 10], step = 2

Learning hyperparameters

Optimizer “Adam”
Weight initialization “random_uniform”, “he_uniform”,

“glorot_uniform”,
Activation function “ReLU”, “SeLU”
Batch size [128, 256, 512]
Learning rate [1e − 3, 5e − 4, 1e − 4, 5e − 5, 1e − 5]
Epochs 100

– Re-training models with JumpReLU: In step one, we generated two
pools of MLP and CNN neural networks, each pool with 500 different mod-
els. Now, we replace the activation function of those models with JumpReLU
and re-train them for κ ∈ {0.001, 0.002, 0.003, 0.004, 0.005} jumping thresh-
olds. Then, we consider the best-acquired performance as the performance
of that model when using JumpReLU. Again, the considered metrics are GE
and NT. The tuned baseline model with the best performance is called the
“JumpReLU-equivalent model.”

– The average performance of JumpReLU-equivalent models: The
AVERAGE_GE and the AVERAGE_NT are calculated as performance
metrics for the models that reached GE = 0 in each pool. We compare the
AVERAGE_GE and AVERAGE_NT of the baseline and the JumpReLU-
equivalent models. This way, the influence of using JumpReLU on DLSCA
performance can be observed.

5 Experimental Results

5.1 Baseline Models

Retrofit To answer if the behavior observed by Erichson et al., where JumpReLU
can be used to “retrofit” already trained models, is also true for SCA, we used two
architectures described in [2]: MLPbest and CNNbest. For both architectures, ten
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models were trained for each dataset with each N [0] using its original activation
function (ReLU), and at the inference moment, ReLU and JumpReLU were used.
As there is no previous data on which threshold range κ would provide the best
performance, three different sets of values were tested Sa = {0.001k | k ∈ [1..9]},
Sb = {0.01k | k ∈ [1..9]} and Sc = {0.1k | k ∈ [1..9]}.

MLPbest-based models only achieved generalization on the ASCAD-Fixed
dataset with N [0] = 0. All CNNbest-based models achieved generalization on
both datasets and with the three evaluated N [0] values.

The experimental results show that using JumpReLU at inference time with
the already-trained models did not provide any relevant performance variation.
When the value of κ was from Sa or Sb, the performance of the models was
almost identical to that of ReLU; for κ values in Sc equal to or greater than
0.5, the performance was even slightly worse than with ReLU. These results are
consistent across both datasets and the three N [0] corresponding values.

Substitution Having seen that simply using JumReLU at inference time does
not provide the desired performance gain, we investigate the impact of substitut-
ing the original activation function with JumpReLU. Again, we used MLPbest
and CNNbest based models, but this time, these are trained using JumpReLU.
Concerning model generalization, the results are the same as described in the
previous experiments. However, in this scenario, the value of κ has a more pro-
nounced impact on the performance of the models. Here, κ values from Sa pro-
vide a slight improvement for some models (see Figures 2 and 3), while values
from Sb generally provide worse performance, and finally, values from Sc mostly
lead to models not generalizing. Note that the figures depict the average behavior
in darker lines and the standard deviation by shaded area in the same color.

With the information that JumpReLu can provide a small performance gain
on architectures that already have shown good performance, we proceed to eval-
uate the performance of other architectures that do not use the ReLU function
but SeLU. The tested architectures are from [34] and [32]. Both works used a
technique called One Cycle Policy [31] to choose the learning rate hyperparam-
eter. However, as we want to isolate the effect of substituting the activation
function to JumpReLU, this technique is not used in our experiments, and only
three different learning rate values were used: {0.0005, 0.00025, 0.0001}. The ex-
perimental results show that for these architectures, SeLU presented the best
results, and JumpReLU did not provide any improvement.

5.2 Random Models

Our observations show that substituting the activation function of existing well-
performing architectures with JumpReLU cannot provide a significant advan-
tage. Thus, the remaining scenario where JumpReLU is considered is to find
new well-performing architectures. We explore this scenario by performing a
random model search.
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(a) MLP; N [0]=0; κ=0.001 (b) CNN; N [0]=0; κ=0.004 (c) CNN; N [0]=100; κ=0.003

Fig. 2: ASCAD-Fixed observed performance improvement.

(a) CNN; N [0]=0; κ=0.001 (b) CNN; N [0]=50; κ=0.001 (c) CNN; N [0]=100; κ=0.001

Fig. 3: ASCAD-Variable observed performance improvement.

ASCAD-Fixed The results for the ASCAD-Fixed dataset are given in Table 3.
For MLP-based models, GE = 0 was only reached with N [0] = 0, with 163 mod-
els using ReLU and 104 using SeLU. CNN-based models did reach GE = 0 for
all N [0], with 68 and 52 models for ReLU and SeLU activation functions, respec-
tively. Note that we do not show any results with MLP and desynchronization
as we could not find any architecture breaking the target with the given number
of attack traces.

For JumpReLU, we see that both MLP and CNN architectures reach good
results. More precisely, for CNNs, the threshold variations do not cause many
differences, and all settings are stable: a similar number of models breaking the
target and a similar minimal number of traces to break the target. Moreover,
we observe that breaking a synchronized target is relatively simple, while af-
ter added desynchronization, the task becomes significantly more difficult (with
only a handful of architectures breaking the target). An additional observation
is that CNN with SeLU activation function actually reaches a better best result
(only 2690 attack traces needed vs. 3990 for the case with JumpReLU). Still,
CNNs with SeLU and ReLU do not manage to break the unsynchronized version
with the 100 desynchronization level at all, showcasing that JumpReLU provides
more robustness. On the other hand, for MLP, we see that using JumpReLU al-
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lows for the majority of the tested models to break the target, and the best
results are comparable with the SeLU case (180 vs. 190 attack traces). To con-
clude, JumpReLU allows more architectures to break the target, with minimal
influences from the selected threshold level, and allows comparable results on
the minimal number of attack traces required to break the target.

Table 3: Experimental results for the ASCAD-Fixed dataset. The column Models
denotes the number of models that reached GE equal to 0. N [0] denotes the
desynchronization rate, Arch denotes the architecture type, and AF denotes the
activation function used (in the last layer is always softmax).

N [0] Arch AF Threshold Models Avg NT Min NT
0 cnn SeLU - 52 2202.7 460
0 cnn ReLU - 68 2682.8 570
0 cnn JumpReLU 0.001 118 2289.2 440
0 cnn JumpReLU 0.002 116 2430.6 390
0 cnn JumpReLU 0.003 119 2457.7 430
0 cnn JumpReLU 0.004 115 2437.2 420
0 cnn JumpReLU 0.005 117 2494.5 490
50 cnn SeLU - 3 3123.3 2690
50 cnn ReLU - 1 4000.0 4000
50 cnn JumpReLU 0.002 1 3990.0 3990
100 cnn JumpReLU 0.001 2 3980.0 3970
100 cnn JumpReLU 0.002 2 3860.0 3720
100 cnn JumpReLU 0.005 2 3915.0 3830
0 mlp ReLU - 163 705.1 210
0 mlp SeLU - 104 902.0 180
0 mlp jumpReLU 0.001 344 732.8 220
0 mlp JumpReLU 0.002 344 754.6 210
0 mlp JumpReLU 0.003 334 745.7 210
0 mlp JumpReLU 0.004 337 729.6 230
0 mlp JumpReLU 0.005 334 724.0 190

ASCAD-Variable The results for the ASCAD-Variable dataset are given in
Table 4. With this dataset, for all N [0] values, at least one model reached Ge = 0.
Considering JumpReLU, we can again observe that the threshold level does not
play a significant role. Moreover, as before, JumpReLU allows more architectures
to break the target than ReLU and SeLU. Still, with MLP-based models with
desynchronization levels of 50 and 100, we break the target using SeLU, while we
cannot do it with JumpReLU. However, since there is only one such architecture,
it is difficult to assess the relevance of such a result. For CNNs without desyn-
chronization, we also observe that JumpReLU reduces the minimal number of
attack traces, giving additional advantage to the usage of JumpReLU.
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Table 4: Experimental results for the ASCAD-Variable dataset. The column
Models denotes the number of models that reached GE equal to 0. N [0] denotes
the desynchronization rate, Arch denotes the architecture type, and AF denotes
the activation function used (in the last layer is always softmax).

N [0] Arch AF Threshold Models Avg Min
0 cnn SeLU - 17 2956.5 470
0 cnn ReLU - 29 2656.6 350
0 cnn JumpReLU 0.001 71 2349.4 170
0 cnn JumpReLU 0.002 70 2527.4 210
0 cnn JumpReLU 0.003 69 2463.2 300
0 cnn JumpReLU 0.004 69 2505.8 290
0 cnn JumpReLU 0.005 66 2378.6 240
50 cnn SeLU - 1 3800.0 3800
50 cnn JumpReLU 0.001 1 2930.0 2930
50 cnn JumpReLU 0.003 1 3980.0 3980
100 cnn SeLU - 1 4000.0 4000
100 cnn JumpReLU 0.003 1 4000.0 4000
0 mlp ReLU - 75 2333.2 710
0 mlp SeLU - 42 1670.7 340
0 mlp JumpReLU 0.001 143 2153.7 420
0 mlp JumpReLU 0.002 132 2249.5 480
0 mlp JumpReLU 0.003 131 2346.5 600
0 mlp JumpReLU 0.004 136 2515.8 560
0 mlp JumpReLU 0.005 128 2333.0 700
50 mlp SeLU - 1 3990.0 3990
100 mlp SeLU - 1 4000.0 4000
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6 Conclusions and Future Work

This paper investigates how the JumpReLU activation function can improve
the performance of DLSCA models. Finding performant models remains a sig-
nificant challenge for DLSCA, and the process is still largely reliant on the
designer’s expertise and the computing resources at their disposal, as these fac-
tors determine how much experimentation and fine-tuning can be conducted
within a given timeframe. Finding one model that shows good performance with
a given combination of hyperparameters does not imply that small changes to
any specific hyperparameter will lead to a predictable improvement or degrada-
tion in performance. Hyperparameter tuning is often highly context-dependent,
with interactions between parameters influencing the overall model behavior.
With this in mind and based on our experimental results, we can conclude that
JumpReLU can be considered a promising option when constructing new archi-
tectures for DLSCA. More precisely, we see especially encouraging results when
the JumpReLU is given as one of the options during the hyperparameter tuning.
The architectures with it seem to improve the performance from two aspects:
1) more architectures breaking the target and 2) fewer attack traces required to
break the target for the most performant architectures.

In future work, we plan to explore whether JumpReLU can bring advantages
against other hiding countermeasures like Gaussian noise or jitter. Moreover,
JumpReLU showed very good performance when combined with sparse autoen-
coders [28], which could be another interesting research direction for DLSCA.
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