
Is Your Bluetooth Chip Leaking Secrets via RF
Signals?

Yanning Ji
KTH Royal Institute of Technology

Stockholm, Sweden
yanning@kth.se

Elena Dubrova
KTH Royal Institute of Technology

Stockholm, Sweden
dubrova@kth.se

Ruize Wang
KTH Royal Institute of Technology

Stockholm, Sweden
ruize@kth.se

Abstract—In this paper, we present a side-channel attack on the
hardware AES accelerator of a Bluetooth chip used in millions
of devices worldwide, ranging from wearables and smart home
products to industrial IoT. The attack leverages information
about AES computations unintentionally transmitted by the chip
together with RF signals to recover the encryption key. Unlike
traditional side-channel attacks that rely on power or near-field
electromagnetic emissions as sources of information, RF-based
attacks leave no evidence of tampering, as they do not require
package removal, chip decapsulation, or additional soldered
components. However, side-channel emissions extracted from
RF signals are considerably weaker and noisier, necessitating
more traces for key recovery. The presented profiled machine
learning-assisted attack can recover the full encryption key from
90,000 traces captured at a one-meter distance from the target
device, with each trace being an average of 10,000 samples per
encryption. This is a twofold improvement over the correlation
analysis-based attack on the same AES accelerator.

I. INTRODUCTION

Internet-of-Things (IoT) devices are expected to form the
backbone of tomorrow’s networked, information-driven world.
Ensuring the security of these devices at all levels, including
the physical implementation, is crucial for their dependable
operation, protection of sensitive data, and maintaining user
trust. However, an increasing number of side-channel attacks
on physical implementations of cryptographic algorithms in
IoT devices, such as [1]–[8], indicate that the devices may not
be sufficiently protected. This is largely due to the economic
hurdles associated with physical device security assurance.
The inclusion of countermeasures against side-channel attacks
involves trade-offs with the primary design objectives, such as
size, performance, and power dissipation. These resources are
typically limited in the IoT devices.

Side-channel attacks have been recognized as a realistic
threat after the seminal works of Paul Kocher on timing
analysis [9] and differential power analysis [10]. Since then,
methods exploiting timing variations, power, or near-field
electromagnetic (EM) emissions as information sources have
been extensively studied. Less explored is the possibility to
recover information from RF signals, discovered by Camurati
et al. [4] in 2018. In a mixed-signal chip, sharp current changes
in the digital logic can affect the analog part through substrate
coupling effects. These changes can modulate the amplitude
of the carrier signal and thus be unintentionally transmitted
along with the RF signals. By demodulating the RF signals

at specific frequencies, the information about computations in
the digital part can potentially be recovered.

RF-based side-channel attacks are more covert than power-
based or near-field EM-based attacks because RF signals can
be captured from significantly greater distances. For example,
in RF side-channel attacks on software implementations of
AES demonstrated in [5, 7], RF signals were captured at a
distance of 15 meters from the target device. Additionally, RF
side-channel attacks leave no evidence of tampering as they
require no package removal, chip decapsulation, or soldering
of additional components.

However, the RF side-channel emissions are more difficult
to exploit due to their weak and noisy nature. RF side-
channel attacks require specialized equipment and rely on
post-processing techniques to improve the signal-to-noise ratio
(SNR), which is essential for ensuring that the variations
due to the data-dependent part of cryptographic operations
are distinguishable from the noise [11]. For example, in the
RF side-channel attacks on software implementations of AES
presented in [4] and [5], 500 and 1,000 samples per encryption,
respectively, were averaged to increase the SNR. In the RF
side-channel attack on the hardware AES accelerator described
in [12], 10,000 samples per encryption were averaged.
Contributions: In this paper, we present a profiled machine
learning-assisted RF side-channel attack on the hardware AES
accelerator in the nRF52832 Bluetooth Low Energy (BLE)
system-on-chip (SoC) [13] which operates in Counter with
CBC-MAC authenticated encryption mode. To recover the full
encryption key, the presented attack requires 90,000 traces
captured at a one-meter distance from the target device,
with each trace being an average of 10,000 samples per
encryption, and up to 224 key enumerations. This is a two-
fold improvement over the previous non-profiled correlation
analysis-based RF side-channel attack on the same hardware
AES accelerator [12] which requires 180,000 traces, each
being an average of 10,000 samples, and up to 242.8 key
enumerations.

We also analyze the SNR of RF side-channel emissions.
While prior work has noted that they are considerably noisier
than power traces and near-field EM emissions, no quantitative
analysis of these side channels has been performed. We
address this gap by estimating the SNR of RF side-channel
emissions from the hardware AES accelerator in the nRF52832

Fig. 1: Simplified block diagram of nRF52832 SoC.

SoC and comparing it to the SNR of power traces from an
FPGA implementation of AES. This result is important in its
own right.
Paper organization: The rest of this paper is organized as
follows. Section II gives background information. Section III
defines the adversary model. Section IV describes the equip-
ment used for trace acquisition. Section V presents the noise
reduction process. In Section VI, the SNR of RF side-channel
emissions is estimated. Section VII describes the key recover
attack and experimental results. Section VIII concludes the
paper and discusses open problems.

II. BACKGROUND

This section gives background on nRF52832 BLE SoC,
CCM protocol, and machine learning (ML)-assisted analysis.

A. nRF52832 BLE SoC

The device nRF52832 is a general-purpose system-on-chip
(SoC) consisting of an ARM Cortex-M4 CPU and a nRF52
Series 2.4GHz transceiver which supports multiple protocols
including BLE, NFC, ANT and 2.4GHz proprietary proto-
col [13].

Fig. 1 shows a simplified structure of the nRF52832 system,
which includes components that are relevant to our exper-
iments only. The ARM Cortex-M4 processor with floating-
point unit has a 32-bit instruction set and operates at 64MHz.
The RAM can be accessed by the CPU and other modules
through an AHB multi-layer interconnect.

The CCM module, compliant with Bluetooth standards,
employs AES-128 hardware accelerator operating at 16MHz.
The CCM module shares AES-128 with the ECB module,
but has a higher priority. The module utilizes EasyDMA,
an easy-to-use direct memory access module, to load key,
nonce, and handle data transfer for encryption and Message
Authentication Code (MAC) operations.

The clock control system contains a 64MHz on-chip os-
cillator, a 64MHz crystal oscillator with an external 32MHz
crystal, and the HFCLK controller that provides to the sys-
tem a 64MHz CPU clock and three peripheral clocks with
frequencies of 1MHz, 16MHz, and 32MHz.

The radio block includes a 2.4GHz radio receiver and
transmitter compatible with 1 Mbps and 2 Mbps BLE modes.

The CCM module and radio can be configured to work
synchronously.

B. CCM protocol

Counter with Cipher Block Chaining-Message Authentica-
tion Code (CCM) is an algorithm that provides both confiden-
tiality and authenticity of data. CCM utilizes symmetric key
block cipher algorithms such as AES [14].

The CCM specification consists of two mechanisms: the
Counter mode (CTR) for data encryption, and the Cipher
Block Chaining technique to produce the MAC (CBC-MAC)
for authenticity verification. The generation-encryption pro-
cess to produce the encrypted message m and MAC T follows
the steps described below. The term l(x) stands for the length
of x in bytes.

1) Produce the blocks B0, ..., Bn using nonce N of size
15 − L bytes, associated data a of size l(a) bytes and
message m of size l(m), where n = u + ⌈(l(m)/16)⌉,
u depends on l(a), and L is the length of length field
in bytes.

2) Set Y0 = E(K,B0).
3) For i = 1, ..., n, set Yi = E(K,Bi).
4) Set T = MSB(M,Yn) to be a MAC of size M bytes.
5) Generate the counters Ctr0, ..., Ctrk, where k =

⌈(l(m)/16)⌉.
6) For i = 0, ..., k, set Si = E(K,Ctri).
7) Set keystream S = S1||...||Sk.
8) Return C = Cm||CT , where Cm = (m ⊕

MSB(l(m), S)) and CT = (T ⊕MSB(M,S0)).
In the description above, E(x, y) denotes block cipher en-
cryption function encrypting message y using the key x, and
MSB(x, y) denotes the x most significant bytes of y.

According to the specification [14], the nonce N should be
unique for each message m for a given key K.

C. ML-assisted analysis

ML-assisted side-channel analysis leverages ML algorithms
to assess side-channel leakage [15, 16]. It can be carried out
in profiled and non-profiled settings.

In the profiled setting [16] which we use in this paper,
an ML model, such as a neural network, is trained on a
labeled set of power traces captured from a profiling device
identical to the target device. The labels represent some
key-dependent intermediate values within the cryptographic
algorithm implemented on the device.

A neural network N learns to map a trace T ∈ Rp into a
score vector S = N (T) ∈ {0, 1, . . . , c − 1}, where p is the
number of data points in T , c is the number of different labels
(classes), and R is the set of real numbers. The ith element of
the score vector S, si, represents the probability that the label
of T , l(T), is equal to i ∈ {0, 1, . . . , c− 1}:

si = Pr[l(T) = i].

Once trained, the model N is applied to traces from the
target device to predict the intermediate values of the cryp-
tographic algorithm which are represented by the labels. The

Fig. 2: Equipment used in the experiments.

effectiveness of profiled attacks relies on the model’s ability
to generalize from the profiling traces to the traces from the
target device.

Non-profiled attacks directly analyze the traces from the
target device without prior knowledge of the key [17]. In
this setting, unsupervised learning methods are employed to
find patterns in the traces that correspond to different values
of intermediate variables on interest. For instance, k-means
clustering can be used to group the traces according to
different subkey values.

III. ADVERSARY MODEL

We assume that the adversary is a clever outsider lacking
proprietary information regarding the specific implementation
details of the hardware AES accelerator in the target device.

The adversary has physical access to the target device and
is equipped with the necessary tools to collect the device’s RF
side-channel emissions during the execution of the AES-CCM
algorithm. The adversary has control over both the message
m and the nonce N used in AES-CCM encryption. Message
control allows the adversary to perform repeated encryptions,
enabling averaging of multiple samples, and to compute the
keystream S1 from the ciphertext Cm of m as S1 = Cm⊕m.
Nonce control is necessary for verifying the recovered key by
using a known plaintext-ciphertext pair (Ctr1, S1), since N is
a part of Ctr1.

Additionally, it is assumed that the adversary has access to
profiling devices, identical to the target device, which is used
for capturing traces for profiling.

The goal of the adversary is to recover the key of the
hardware AES accelerator in the target device.

IV. EQUIPMENT

The equipment used in our experiments is shown in Figs. 2
and 3. It consists of a USRP-2944R software-defined radio
(SDR), six nRF52832 chips mounted on a Nordic Semiconduc-
tor nRF52 DK development board (four for profiling and two
for attacks), a Sonnet 10G thunderbolt driver, a coaxial cable
with a 10dB attenuator connecting the target device to the SDR
and a grid parabolic antenna TL-ANT2424B with 24dBi gain.

Fig. 3: Setup for RF signals acquisition by antenna.

We use the nRF5_SDK_14.2.0_17b948a development kit
for the radio setup.

The USRP-2944R SDR [18] serves as the receiver. RF
signals are demodulated at the center receiving frequency
of fc = fBluetooth + n · fAES, where n is a positive integer,
fBluetooth = 2.4 GHz is the Bluetooth channel center frequency
and fAES = 16 MHz is the AES accelerator clock frequency.

Aside from the 16 MHz clock used by the AES accelerator,
the target device also uses a 64 MHz CPU clock for other
operations, including constructing the preamble before each
encryption. We use the preambles for trace alignment. To
capture both AES encryption and preamble information, we
set n = 8. While we tested other multiples of fAES, the best
results were achieved with n = 8.

The sampling rate is set to 50 MHz, resulting in 3.125 data
points per AES accelerator clock cycle.

V. NOISE REDUCTION

Noise reduction is crucial for the success of side-channel
analysis. It is well-known that the SNR should be sufficiently
high to ensure that the variations due to the data-dependent
part of the cryptographic operation are distinguishable from
the noise [11].

According to the square root scaling law [19], the SNR of
an averaged signal grows proportionally to the square root of
the number of averaged samples. Thus, to increase the SNR,
one can repeat the same encryption multiple times and average
the traces. As we mentioned earlier, 500 and 1,000 traces of
the same encryption were averaged in the RF side-channel
emissions-based attacks on software implementations of AES
presented in [4] and [5], respectively.

However, the square root scaling law assumes that the
averaged samples are perfectly independent and that noise
is purely random, which is not the case in practice. In our
experiments, we typically observe a slower improvement in
SNR as more samples are averaged compared to the ideal case.
This slowdown may due to factors such as correlated noise,
errors in the measurement process, imperfect synchronization,
etc. Thus, in practice, there are constraints on how much SNR
can be effectively improved through averaging.

To estimate when the improvement in SNR levels off as
more samples are averaged, using a coaxial cable, we capture
from a profiling nRF52832 device three sets of traces: T1K ,
T10K , and T100K for 2,800 different nonces and messages
selected at random, using a fixed key selected at random.
Each trace in T1K , T10K , and T100K is computed using 1,000,
10,000, and 100,000 averaged samples, respectively. We then
perform correlation analysis using the Hamming weight of a
byte of the keystream S1 as a leakage model.

Fig. 4 shows the results for the sixth byte of S1 (the
byte position is selected at random). For T1K , the maximum
Pearson correlation coefficient is r = 0.4417, while for T10K

and T100K , it is r = 0.7429 and r = 0.8230, respectively.
We can see that, as the number of repetitions increases from
1,000 to 10,000, r improves by a factor of 1.68. However, the
improvement slows down as the number of repetitions grows
to 100,000; in this case, r increases only 1.11 times. According
to [20], the correlation coefficients are related to the SNR as:

r ≈ 1√
1 + 1

SNR

(1)

Hence, 1.11 times growth of r translates into roughly 1.7
increase of SNR. This is considerably smaller that the expected
improvement of

√
10 ≈ 3.16.

We conclude that repeating the same encryption 10,000
times strikes a good balance between trace capture time and
noise reduction. A further SNR improvement of 1.68 times
does not seem to justify a tenfold increase in the time required
to capture traces with 100,000 repetitions1.

VI. SNR ESTIMATION

Previous works have noted that RF side-channel emissions
are considerably noisier than power traces and near-field EM
emissions [4, 5, 7]. However, no quantitative comparison of
these side channels has been performed. In this section, we
estimate the SNR of RF side-channel emissions from the
hardware AES accelerator in the nRF52832 and compare it
to the SNR of power traces from an FPGA implementation of
AES from the popular ChipWhisperer victim library [21].

For power traces and near-field EM emissions, prior studies
suggest that an SNR in the range of 0.1 to 1 (expressed as
a ratio of the signal power to the noise power) is generally
necessary for successful correlation analysis. For instance,
Tiri and Verbauwhede [22] show that the SNR needs to be
higher than 0.1 for correlation analysis to be effective. Brier
et al. [23] demonstrate that the effectiveness of correlation
analysis improves significantly when the SNR is above 0.2.
Mangard, Oswald, and Popp [11] provide empirical evidence
suggesting that a minimum SNR of 0.1 to 0.2 is often
required for successful correlation analysis. Clearly, the mini-
mum threshold for SNR which guarantees correlation analysis
success can vary depending on the specific implementation.

1It takes 2.5 hours to capture 1,000 traces with 10,000 repetitions and 25
hours to capture 1,000 traces with 100,000 repetitions.

Fig. 4: Correlation coefficients for traces with different differ-
ent numbers of averaged samples. The Hamming weight of a
byte of keystream S1 is used as a leakage model.

For traces captured by coaxial cable, correlation analysis
using the last round S-box input Hamming weight as a leakage
model results in maximum correlation coefficients for different
subkeys in the range of 0.015-0.082 (mean 0.033). Thus, from
equation (1), for r in this range, we get an SNR in the range of
0.0002-0.0068 (mean 0.0011). This is two orders of magnitude
lower than the 0.1-1.0 SNR range recommended by prior work
for power- and near field EM-based correlation analysis.

To compare the estimated SNR with SNRs in side-channel
attacks on other hardware implementations of AES, we per-
form correlation power analysis of the popular FPGA im-
plementation of AES-128 from the ChipWhisperer victim
library [21], using a CW305 Artix-7 XC7A100T FPGA as
the target board. As a leakage model, we use the Hamming
weight of the ith S-box input in the last round XORed with
jth byte of the keystream S1, where j = ShiftRows−1(i)
for i, j ∈ {0, 1, . . . , 15} (called LastroundStateDiff()
in CW Analyser tool [21]) as it is known to be effective
for that AES implementation. Approximately 2,000 traces
are sufficient to recover all subkeys. The mean maximum
correlation coefficient for all subkeys is 0.125, resulting in a
mean SNR of 0.1587. This is 144 times higher than the mean
SNR of the nRF52832 AES accelerator.

Since the number of traces required for a successful corre-
lation analysis-based attack, Ntr, is related to the correlation
coefficient, r, as Ntr ≈ c

r2 , where c is a constant dependent
on the implementation [20], by substituting eq. (1) into this
formula, we can estimate that an attack on the nRF52832 AES
accelerator requires approximately two orders of magnitude
more traces than the attack on the FPGA implementation of
AES from [21]. This estimate aligns with the 180,000 traces
used in the correlation analysis-based RF side-channel attack
on the nRF52832 AES accelerator reported in [12].

TABLE I: Time required for profiling and attack stages.

Profiling stage Attack stage

Training
trace

capture

Neural
network
training∗

Attack
trace

capture

Key
enumeration∗∗

224

750 hrs 21.6 hrs 225 hrs 0.17 sec
∗On a PC with an Intel Core i7-1370P CPU with a 64GB RAM.

∗∗On a high-end GPU performing 100M encryptions per second [24].

VII. KEY RECOVERY ATTACK

A. Profiling stage

a) Profiling dataset collection: Traces for training neural
networks are collected from four profiling devices via a coaxial
cable using the setup described in Section IV.

The profiling devices perform AES-CCM encryption of
randomly selected 128-bit messages, each with a unique nonce
and key, also selected at random. For each message, the same
encryption is repeated 10,000 times and the side-channel emis-
sions recovered by demodulating the RF signals are averaged
to produce a single trace. The traces are synchronized on the
fly by matching the preamble with a template. This is repeated
to collect a total of 300,000 traces from the four profiling
devices, with the entire trace capture taking 750 hours.

b) Trace post-processing: Once the traces are collected,
each trace T = (τ1, . . . , τn) ∈ Rn is scaled to the form T ′ =
(τ ′1, . . . , τ

′
n) ∈ Rn by applying min-max scaling (also known

as variance scaling [25]):

τ ′i =
τi − τmin

τmin − τmax
,

where τmin and τmax are the minimum and the maximum
data points in T , for all i ∈ {1, . . . , n}. This is important
because antenna-captured traces, which we use for attacks,
have a larger variance in amplitude than cable-captured trace
used for profiling. Analyzing antenna-captured traces without
min-max scaling does not result in an effective attack.

Afterwards, we extract five intervals of traces, p = 10
data points each, containing the last round of the encryptions
of Ctr0, Ctr1, B0, B1, and B2, and take their union to
create the training dataset. It is important to point out that
this optimization is possible only during the profiling stage,
when the encryption key is known, and hence any intermediate
variable for any encryption can be computed.

c) Neural network training: Using the resulting set of
1,500,000 traces, we train 3×16 multilayer perceptron (MLP)
neural networks of type Ni : Rp → {0, 1, . . . , 255}, where
p = 10. The input value of the ith S-box in the last round is
used as a label for traces during the training of Ni. For each
i, three MLPs, each with three dense layers, are trained and
combined in an ensemble using plurality voting2. Different
size of dense layers (1024 × 512 × 256 and 512 × 512 ×
256), type of normalization layers (BatchNormalization and

2In plurality voting, the option with the most votes wins. If no option
receives more votes than the others, the decision is undefined.

LayerNormalization), and optimizers (Nadam and AdamW)
are used to minimize the chance of common errors in the
model’s predictions.

Table I shows that it takes 21.6 hours to train 48 neural
networks on a PC with an Intel Core i7-1370P CPU and 64GB
of RAM.

B. Attack stage

Traces for the attack are collected under two settings:
1) In close physical proximity to the device using a coaxial

cable, and
2) At a one-meter distance from the device using an

antenna, in an office environment (see Fig. 3).
For each setting, we capture two sets of 90,000 traces from two
nRF52832 devices (different from devices used for profiling)
for different fixed keys selected at random. Similarly to the
profiling stage, each group of 10,000 samples representing
the same encryption are averaged and saved as a single trace.
Then, the min-max scaling is applied.

The attack is performed on encryption of the counter
Ctr1. In the CCM mode, the keystream S1 representing the
encrypted Ctr1 is used as a pad to encrypt the first 128-bit
message block. Hence, an attacker who uses the device under
attack for the encryption of known messages can determine
S1 by computing Cm ⊕m, where Cm is the ciphertext of m.
Ctr0 cannot be used for this purpose because S0 is used as a
pad to encrypt the MAC which is unknown to the attacker.

The interval containing the last round of the Ctr1 encryption
is given as input to the neural networks Ni trained at the
profiling stage to predict the input value of the ith S-box in
the last round, state9[i], for all i ∈ {0, 1, . . . , 15}. A byte
of the round key RK10 is then recovered as RK10[j] =
S1[j] ⊕ Sbox(state9[i]), where RK10[j] and S1[j] are jth
bytes of RK10 and S1, respectively, and j = ShiftRows(i)
for j ∈ {0, 1, . . . , 15}. Finally, the original key K is derived
from RK10 using the reverse key expansion algorithm.

To decide the best Ni prediction for state9[i] in an attack
involving multiple traces, the cumulative probability of score
vectors for each trace is computed. The prediction with the
maximum cumulative probability over all possible byte values
{0, . . . , 255} is selected.

C. Experimental results

Table II shows the results for n = 90, 000 traces with
10,000 averaged samples captured by cable and antenna for
two different keys. For each subkey i, for i ∈ {0, . . . , 15}, the
position of the correct subkey in the ordered list of subkey
predictions by Ni, called rank, is listed. If the rank is zero,
the recovered subkey is correct. Table II shows the average
rank of the three models in the ensemble (rounded).

We can see that the number of incorrectly recovered subkeys
of RK10 ranges from zero to three.

a) Enumeration for full key recovery: To recover the
full key RK10, we enumerate 256 possible values of the
subkeys for which all three models in the ensemble give
different predictions. Given k such subkeys, we construct an

TABLE II: Results of ML-assisted analysis using the last round S-box input value as a leakage model.

Capture
method Key # Device # Rank of RK10 subkey i ∈ {0, 1, . . . , 15} # Enum.

to recover K
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cable Key 1 Device 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Key 2 Device 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Antenna Key 1 Device 1 0 0 0 0 2 0 0 0 5 0 0 0 3 0 0 0 224

Key 2 Device 2 0 25 0 0 3 0 0 0 4 0 0 0 0 0 0 0 224

RK10 for all 28k possible combinations, derive the original
encryption key K from the RK10, and verify K against a
known plaintext-ciphertext pair (Ctr1, S1).

In all cases with non-zero ranks in Table II, the incorrect
predictions of the three models in the ensemble are different.
Hence, we can recover the correct full key in all cases by
performing the number of enumerations listed in the last
column of Table II. The last column of Table I shows the
estimated enumeration time.

VIII. CONCLUSION

We demonstrated a profiled machine learning-assisted side-
channel attack which can recover the full encryption key of
the hardware AES-CCM accelerator in the nRF52832 BLE
SoC from RF signals captured at a one-meter distance from
the target device using two times fewer traces than the state-
of-the-art attack on the same chip [12].

Future work could explore various possibilities to further
reduce the number of traces required for the attack. One option
is to use multiple antennas to create a narrow beam directed
at the target chip to filter out environmental noise [26] in
order to improve the SNR of the received signal. The use
of quantum sensors [27] may also help capture weak signals
in noisy environments with higher precision. In addition,
more sophisticated methods for SNR improvement, such as
denoising traces with autoencoders [28], could be used as an
alternative to averaging multiple repeated measurements.

All the related data and scripts are available at https:
//gits-15.sys.kth.se/yanning/SCA-HWAES.

IX. ACKNOWLEDGMENTS

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation and the Swedish
Civil Contingencies Agency (Grant No. 2020-11632).

REFERENCES

[1] I. Kizhvatov, “Side channel analysis of AVR XMEGA crypto engine,”
in Proceedings of the 4th Workshop on Embedded Systems Security.
ACM, 2009, p. 3.

[2] C. O’Flynn and Z. Chen, “Power analysis attacks against IEEE 802.15.
4 nodes,” in Int. Workshop on Constructive Side-Channel Analysis and
Secure Design. Springer, 2016, pp. 55–70.

[3] E. Ronen, A. Shamir, A. Weingarten, and C. O’Flynn, “IoT goes nuclear:
Creating a ZigBee chain reaction,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 195–212.

[4] G. Camurati, S. Poeplau, M. Muench, T. Hayes, and A. Francillon,
“Screaming channels: When electromagnetic side channels meet radio
transceivers,” in ACM SIGSAC Conf. on Computer and Communications
Security, 2018, pp. 163–177.

[5] G. Camurati, A. Francillon, and F.-X. Standaert, “Understanding scream-
ing channels: From a detailed analysis to improved attacks,” IACR Trans.
on CHES, vol. 2020, no. 3, pp. 358–401, 2020.

[6] R. Wang, H. Wang, and E. Dubrova, “Far field EM side-channel attack
on AES using deep learning,” in Proc. of the 4th ACM Workshop on
Attacks and Solutions in Hardware Security (ASHES’2020), Nov. 2020.

[7] R. Wang, H. Wang, E. Dubrova, and M. Brisfors, “Advanced far field
EM side-channel attack on AES,” in ACM Workshop on Cyber-Physical
System Security. Association for Computing Machinery, 2021, p. 29–39.

[8] J. Guillaume, M. Pelcat, A. Nafkha, and R. Salvador, “Attacking at non-
harmonic frequencies in screaming-channel attacks,” in Int. Conf. on
Smart Card Research and Advanced Appl. Springer, 2023, pp. 87–106.

[9] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Proc. of the 16th Annual Int. Cryptology
Conf. on Advances in Cryptology. Springer, 1996, pp. 104–113.

[10] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology – CRYPTO’ 99, M. Wiener, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 388–397.

[11] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Springer, 2007.

[12] Y. Ji, E. Dubrova, and R. Wang, “Screaming channels revisited: Encryp-
tion key recovery from AES-CCM accelerator,” in Proc. of the 2025
IEEE International Symposium on Circuits and Systems (ISCAS).

[13] “nRF52832 product specification,” https://docs.nordicsemi.com/bundle/
ps nrf52832/page/nrf52832 ps.html.

[14] D. Whiting, R. Housley, and N. Ferguson, “Counter with CBC-MAC
(CCM),” Tech. Rep., 2003.

[15] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and J. Vande-
walle, “Machine learning in side-channel analysis: a first study,” Journal
of Cryptographic Engineering, vol. 1, no. 4, p. 293, Oct 2011.

[16] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in Security, Privacy,
and Applied Cryptography Engineering. Springer Int. Publishing, 2016.

[17] B. Timon, “Non-profiled deep learning-based side-channel attacks,”
IACR Cryptology ePrint Archive, Report 2018/196, 2018.

[18] “Usrp-2944 specifications,” https://www.ni.com/docs/en-US/bundle/
usrp-2944-specs/page/specs.html.

[19] G. Marks, “Introduction: Triangulation and the square-root law,” Elec-
toral Studies, vol. 26, no. 1, pp. 1–10, 2007.

[20] F.-X. Standaert, “Introduction to side-channel attacks,” in Secure Int.
Circuits and Systems, I. Verbauwhede, Ed. Springer, 2009, pp. 27–42.

[21] “Tutorial CW305-2 Breaking AES on FPGA,” http://wiki.newae.com/
Tutorial CW305-2 Breaking AES on FPGA.

[22] I. Tiri and I. Verbauwhede, “A logic level design methodology for a
secure DPA resistant ASIC or FPGA implementation,” in Proc. of DATE.
IEEE, 2005, pp. 246–251.

[23] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” LNCS, vol. 3156, pp. 16–29, 2004.

[24] C. Tezcan, “Optimization of advanced encryption standard on graphics
processing units,” IEEE Access, vol. 9, pp. 67 315–67 326, 2021.

[25] A. Zheng and A. Casari, Feature engineering for machine learning:
principles and techniques for data scientists. ” O’Reilly Media, Inc.”,
2018.

[26] A. Goldsmith, Wireless Communications. Cambridge Univ. Press, 2005.
[27] J. M. Boss, K. S. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing

with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp.
837–840, 2017. [Online]. Available: https://www.science.org/doi/abs/
10.1126/science.aam7009

[28] L. Wu and S. Picek, “Remove some noise: On pre-processing of
side-channel measurements with autoencoders,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 389–415, 2020.

https://gits-15.sys.kth.se/yanning/SCA-HWAES
https://gits-15.sys.kth.se/yanning/SCA-HWAES
https://docs.nordicsemi.com/bundle/ps_nrf52832/page/nrf52832_ps.html
https://docs.nordicsemi.com/bundle/ps_nrf52832/page/nrf52832_ps.html
https://www.ni.com/docs/en-US/bundle/usrp-2944-specs/page/specs.html
https://www.ni.com/docs/en-US/bundle/usrp-2944-specs/page/specs.html
http://wiki.newae.com/Tutorial_CW305-2_Breaking_AES_on_FPGA
http://wiki.newae.com/Tutorial_CW305-2_Breaking_AES_on_FPGA
https://www.science.org/doi/abs/10.1126/science.aam7009
https://www.science.org/doi/abs/10.1126/science.aam7009

	Introduction
	Background
	nRF52832 BLE SoC
	CCM protocol
	ML-assisted analysis

	Adversary Model
	Equipment
	Noise Reduction
	SNR Estimation
	Key Recovery Attack
	Profiling stage
	Attack stage
	Experimental results

	Conclusion
	Acknowledgments
	References

