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ABSTRACT

Distributed SNARKSs enable multiple provers to collaboratively gen-
erate proofs, enhancing the efficiency and scalability of large-scale
computations. The state-of-the-art distributed SNARK for Plonk,
Pianist (S&P ’24), achieves constant proof size, constant amortized
communication complexity, and constant verifier complexity. How-
ever, when proving the Rank-One Constraint System (R1CS), a
widely used intermediate representation for SNARKs, Pianist must
perform the transformation from R1CS into Plonk before proving,
which can introduce a start-up cost of 10X due to the expansion
of the statement size. Meanwhile, existing distributed SNARKSs for
RICS, e.g., DIZK (USENIX Sec. *18) and Hekaton (CCS ’24), fail to
match the superior asymptotic complexities of Pianist.

We propose Soloist, an optimized distributed SNARK for R1CS.
Soloist achieves constant proof size, constant amortized commu-
nication complexity, and constant verifier complexity, relative to
the R1CS size n. Utilized with ¢ sub-provers, its prover complexity
is O(n/t - log(n/f)). The concrete prover time is £X as fast as the
R1CS-targeted Marlin (Eurocrypt ’20). For zkRollups, Soloist can
prove more transactions, with 2.5X smaller memory costs, 2.8X
faster preprocessing, and 1.8x faster proving than Pianist.

Soloist leverages an improved inner product argument and a new
batch bivariate polynomial commitment variant of KZG (Asiacrypt
’10). To achieve constant verification, we propose a new prepro-
cessing method with a lookup argument for unprescribed tables,
which are assumed pre-committed in prior works. Notably, all these
schemes are equipped with scalable distributed mechanisms.

1 INTRODUCTION

Zero-knowledge proofs [30] enable privacy-preserving verifica-
tion of statements without leaking sensitive witnesses. A specific
type of zero-knowledge proof, the zero-knowledge succinct non-
interactive argument of knowledge (zk-SNARK) [32, 47], provides
a small proof size and efficient verification sublinear to the witness
size. Benefiting from the practical performance, zk-SNARKs have
been deployed in many applications such as blockchain [8, 42, 60].

Prover time, one main efficiency measure of SNARKSs, is currently
a critical bottleneck, especially for large-scale computations. Many
efforts have been made to reduce prover time asymptotically and
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concretely, mainly at the scheme level [17, 31, 62]. Distributed
SNARKSs [42, 59, 60] simultaneously employs multiple sub-provers
for collaborative proof generation. Each sub-prover handles partial
witness, improving both prover efficiency and scalability.
SNARKS typically target some variants of the circuit satisfia-
bility problem, exemplified by Rank-1 constraint system (R1CS)
in [9, 18, 53] and Plonk in [17, 26, 27], both widely used in practice.
Plonk is more friendly to non-linear functions (although R1CS can
describe them as well [56]), while R1CS can handle addition gates
for free [56]. Also, there exist efficient compilers to transform vari-
ous programs into R1CS, such as Circom [21]. Currently, SNARKSs
targeting R1CS and Plonk cannot be converted to each other with-
out significant overhead. Some SNARKSs for R1CS like Groth16 [32]
do not support Plonk. Meanwhile, proving R1CS statements us-
ing a Plonk-targeted SNARK may be costly due to the statement
transformation. For example, to prove zkRollup transactions with
261, 833 constraints encoded as an R1CS, Pianist [42] transforms it
into a Plonk with 2, 544, 486 constraints, which incurs at least 10X
overhead as the prover time is quasi-linear to the constraint.
There also exist a few distributed SNARKs for R1CS. However,
these schemes, e.g., DIZK [59] and Hekaton [52], are less efficient
asymptotically than the Plonk-targeted Pianist (Table 1). This inef-
ficiency would impact the performance of numerous R1CS-based
applications like blockchain [8, 42], zero-knowledge virtual ma-
chine [50], verifiable fully homomorphic encryption [57], and zero-
knowledge machine learning [1], where, notably, R1CS may be a
more appropriate or even the only feasible choice [3, 8, 50, 57].
Such a state of affairs makes us wonder:

Can we build a more efficient distributed SNARK for R1CS?

Challenges. Compared with Plonk handling size-n vectors, R1CS
is more complex for handling size-n X n sparse matrices with O(n)
non-zero entries. There is a line of SNARKs for R1CS adopting
different approaches, but may face challenges in achieving efficient
distributed proofs. For example, Ligero-based works [2, 10] arrange
the witness into a matrix. The prover operates over all rows, and
then columns. Assigning sub-provers with independent rows can
be natural for distribution, but sub-provers require to communicate
these rows for column-wise operations, leading to a linear commu-
nication complexity. SNARKSs from univariate sum-check [9, 18, 20]
reduce RICS to proving the sum of some polynomial evaluated over
a domain. A possibly feasible method is to split a large sum-check



instance into multiple independent ones, and then run an amortized
sum-check [9] to aggregate them. However, the verifier must know
all of the claimed sums for each sum-check, leading to logarithmic
proof size and verification in the number of sub-provers. Indeed,
Hekaton [52] follows a similar “split-then-aggregate” idea but uses
aggregated SNARK, leading to such a proof size and verification.
Building distributed SNARKSs from multilinear sum-check [29] may
be feasible following [39, 60], but their proof size and verification
are logarithmic due to the multilinear sum-check.

1.1 Results and Techniques

Main contribution. We build Soloist, a Scalable and Optimized
Low-overhead SNARK for rank-One constraint system via dISTri-
bution (cf’, Table 1). Soloist supports general computations while
deVirgo [60] is limited to data-parallel circuits. It has the same
complexities as the Plonk-based Pianist [42], and is better than Hy-
perPianist [39] and Cirrus [58]. Compared with other SNARKs for
RICS, Soloist outperforms DIZK [59] in prover and communication
complexities, and beats Hekaton [52] in proof size and verifier time.

We implement our scheme. Experiments show good scalability
of Soloist, i.e., the prover time decreases linearly as the number of
provers increases. Soloist has a prover time of 30s for an R1CS with
2% constraints when using 32 sub-provers, which is 40x as fast
as Marlin [18], a non-distributed SNARK for R1CS with the same
complexities. When proving a zkRollup circuit of 3, 072 transactions
written in R1CS, our scheme features a prover time of 400s when
utilizing 32 provers, which outperforms Pianist with a 1.8 speedup.

A new (distributed) IOP for R1CS. Like [17, 42, 60], we follow the
“distributed polynomial interactive oracle proof (PIOP) + distributed
polynomial commitment scheme (PCS)” approach to build Soloist.
Leveraging the challenges above, we need to construct a new IOP
for R1CS, which is expected to be distributed-friendly. We build
such a (distributed) IOP by reducing R1CS into inner products and
entry-wise products. Specifically, we split a large inner product
into the sum of multiple independent smaller inner products, and
transform a large entry-wise product into multiple independent
smaller entry-wise products. The latter is then reduced to inner
products via random linear combination. Sub-provers can then take
partial vectors as inputs to invoke inner product proofs for large
vectors, hence improving the efficiency and scalability.

Improved and distributed IPA with constant proof size. Our
distributed IOP for R1CS, reduced into inner products, features a
linear proof size. For proof size optimization, we need an inner prod-
uct PIOP with constant proof size. Current inner product PIOPs can
not be efficient in all aspects, and we propose an improved PIOP,
leading to an improved inner product argument (IPA) when instan-
tiated with the KZG PCS [35]. Table 2 compares such IPAs. Our
IPA features the smallest proof size, fewest PCS commitments, and
fewest FFTs in prover. It may benefit various IPA-based protocols
like range proofs [13, 65], PCSs [64], and SNARKSs [10, 66].

To build the PIOP, we observe that IPAs from Laurent polynomi-
als [14, 55] require fewer FFTs as they see vectors as polynomial
coefficients instead of evaluations. In contrast, IPAs from univariate
sum-check [9, 18] involve fewer PCS commitments and smaller
proof size due to fewer low-degree tests. We achieve the best of
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Table 1: Distributed SNARKSs for size-n = m¢ statements and
¢ sub-provers, each holding a size-O(m) witness

Scheme ‘Circuit‘ Prover ‘ Comm. ‘Proof size‘ Verifier
deVirgo Paralle] O(mlogm)| O(n) |0(log?n)|0(log? n)
P o[22 D0 LoD o)
og
Cirrus O(m Tog m ) |0(£1ogn)| O(log n) | O(log n)
DIZK O(mlog? m)| O(n) 0o(1) 0(1)
Hekaton RICS |[O(mlogm)| O(f) |O(log¢) |O(log?)
Soloist O(mlogm)| O(¢) o(1) o(1)

! Comm. denotes the communication overhead among all sub-provers.

2 All the schemes, if for general computations, e.g., R1CS or Plonk, require trusted
setups and/or trusted preprocessing, otherwise the verifier time is linear due to
reading the statement and performing public computation.

3 The sub-prover time is over field F. The super-linear terms can stem from dis-
tributed FFTs [59] - O(mlog® m), FFTs - O(mlogm), and group multi-scalar

Y8IFl ) here log |F| = w(logm) [31].

exponentiations - O (m 15 o m

Table 2: (Distributed) Inner product arguments for size-m?
vectors, all with trusted structured reference string (SRS),
and O(1) proof size over group G and field F

Scheme ‘ SRS size ‘ #Coms ‘ #FFT ‘ Proof size
Marlin [18] m¢t 5 5 5|Gl, 5 |F|
Dark [14] mt 5 3 6|Gl, 6 |F|
SZ22 [55] 2me 6 3 6|Gl, 6 [F]
Ours mt 4 3 4|G|, 4 |F|
Below is the distributed IPAs, assuming ¢ sub-provers
Scheme Prover | Comm. | Proof size | Verifier
Trivial O(mlogm) | O(¢) o(t) o(?)
Ours O(mlogm)| O(¢) o(1) o(1)

We do not compare IPAs featuring (poly-)log proof size [13, 15, 38, 64]

both worlds, and build our PIOP from univariate sum-check with
coefficient-based polynomials. It stems from a newly explored rela-
tion between inner product and univariate sum-check.

We extend our IPA to the distributed setting (Table 2), achieving
a constant proof size unrelated to the number of sub-provers. This
helps to build a distributed SNARK for R1CS with constant proof
size. Its core idea is using Lagrange polynomials to transform the
univariate sum-check of the sum of multiple univariate polynomial
multiplications into a two-time univariate sum-check of bivariate
polynomial multiplications. Our approach for the reduction of proof
size may be of interest in other SNARK applications.

Distributed preprocessing. Equipped with the distributed IPA,
our distributed SNARK features a constant proof size, but with
a linear verifier complexity, which stems from computation re-
lated to linear-size public statements. We reduce it to constant via
preprocessing similar to [18, 53]. As we use a new PIOP from in-
ner products instead of from univariate or multilinear sum-check
in these non-distributed schemes, we need a new preprocessing
scheme, and further need to equip it with a distributed mechanism.
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Table 3: (Distributed) batch PCSs using KZG or mKZG for
opening ¢ points on ¢ size-n = mf committed polynomials

Scheme ‘ Poly. ‘ Open ‘ Proof size ‘ Verifier

BDF*20 [11] Uni. |O(n)G 2G| O(t)G,2P
HyperPlonk [17]| Mul. |O(tn) G| O(logtn) |G| | O(logtn) P
Ours Biv. |[O(n)G t+4|G| O(t)G,4P
Ours-variant Biv. |O(n)G |4|G|,t+1]|F|| O(t)G,5P

Below is the distributed batch bivariate PCS, assuming ¢ provers

Scheme Open | Comm. | Proof size Verifier
Pianist [42] O(tm) G| O(¢tt) 2t |G| o(t)pP
Ours O(m)G | O(tt) t+4|G| O(t)G, 4P

We only count the main costs. Pairing operations P are more expensive than group
ones G, which are more expensive than field ones IF. Also, group element size |G| can
be 3% larger than field |F|. For a p-variate polynomial with degree bound d of each
variable, its polynomial size is d¥. The transformation from Univariate polynomials
into Multivariate or Bivariate ones is not straightforward. Typically, ¢ is a small
constant when employed in SNARKSs [17, 18], while n is linear to the size of statement.

We face several challenges. One of these is that the verifier needs
evaluations on some polynomials determined by both the pub-
lic R1CS matrices and the verifier’s challenges. This is usually
achieved by PCSs. Unfortunately, as the online challenges can-
not be known by the indexer in the preprocessing phase, directly
seeing the challenge as polynomial variables leads to a super-linear
prover complexity for committing and opening the polynomials.
Inspired by Marlin [18], we re-describe the matrices using low-
degree encoded polynomials defined by the non-zero entries. We
then build an equivalent relation to compute these polynomial eval-
uations from encoded polynomials. A subsequent challenge arises
as the relation involves non-linear functions. A typical approach
for non-linear functions is lookup table arguments, which prove
that every element in committed vectors exists in a table. However,
most existing lookup arguments [23, 25, 49, 63] assume a correctly
pre-constructed table, while our table is determined by online chal-
lenges, and directly checking the table requires a linear verifier
complexity. We build an efficient online table validity check relying
on the table properties. Our approach may inspire other lookup
arguments where the tables cannot be pre-determined.

Beyond this, we extend the univariate lookup argument [33] to
support bivariate and distributed scenarios, and reduce the master
prover of distributed lookup argument from linear to the R1CS size
into sub-linear by table decomposition. See Section 4.3 for details.

Distributed batch bivariate KZG. Our PIOP requires opening
multiple points on multiple bivariate polynomials, and directly
invoking the mKZG [46] incurs a large overhead. We need a batch
PCS for bivariate polynomials with constant proof size, but most
previous schemes focus on univariate polynomials [11, 18, 27],
or multilinear polynomials with logarithmic proof size [17]. The
only exception is Boomy [37], but it does not support multiple
polynomials. Also, only a special case achieves constant proof size.

We propose such a batch bivariate KZG (cf,, Table 3). Opening
totally ¢ points on ¢ polynomials requires a proof size of t + 4
group elements, in contrast to the trivial 2t and the logarithmic
one in HyperPlonk [17]. If the Y-dimension evaluation points are
the same as in Soloist, we propose a PCS variant (“ours-variant” in

Table 3) reducing the proof size to 3 group elements plus t + 1 field
elements. Also, we generalize our PCS into distributed, preserving
the proof size and verifier complexity like the distributed PCS in
Pianist [42]. However, due to the batch method, our distributed PCS
has better prover complexity, proof size, and verifier complexity
when handling distinct points on multiple polynomials.

We build our PCS following the main idea in the univariate batch
KZG [11], which transforms the evaluation validity of each poly-
nomial into a quotient equation with a common multiple of the
denominators, and then aggregate these equations into one by ran-
dom linear combination. However, generalizations from univariate
to bivariate are challenging due to the non-uniform denominators
in quotient equations and the nonexistence of common quotient
factors for linear combination. We resolve these two problems by
padding the evaluation points into a Cartesian product and intro-
ducing an auxiliary polynomial. The auxiliary polynomial is also
important for the distributed PCS, which makes it possible to split
the computation held by sub-provers independently.

1.2 Related Work

Inner product arguments. IPAs can be constructed from vari-
ous techniques, such as discrete-log [12, 13] and Reed-Solomon
codes [64]. They can be trustless, but have at least a logarithmic
proof size. There is also a line of IPAs from “PIOP + PCS”. Such IPAs
have modularity by modifying the underlying PCSs with distinct
trade-offs. If using KZG, they can achieve a constant proof size.
Appendix A recalls two IPAs from univariate sum-check [9] and
Laurent polynomials [14, 55].

Distributed SNARKS. There are two kinds of distributed SNARKs.
One category [19, 28, 43, 45] delegates the proof generation to
multiple servers with privacy via secret sharing. As the size of
shared witness are the same as the whole one, achieving proof
acceleration can be challenging.

Another category, which we focus on, considers one prover
utilizing multiple machines to accelerate proof generation. The
original DIZK [59] distributes R1CS-targeted Groth16 [32] with
distributed algorithms for basic operations like group multi-scalar
exponentiations and FFTs. However, the distributed FFT leads to
linear communication costs and has increased total time complexity.
Subsequent works [39, 42, 52, 60] share a common idea: splitting
a large statement into multiple smaller statements (required to be
somewhat independent), assigning each to a sub-prover, and ag-
gregating sub-proofs into a final proof. Most of them follow the
“distributed PIOP + distributed PCS” approach. The efficiency can be
different according to the underlying PIOP and PCS. DeVirgo [60]
uses hash-based PCSs [64] and features a linear communication
complexity. HyperPianist [39] and Cirrus [58] reduces it to loga-
rithmic. They also eliminate the FFTs in prover via PIOPs from
multilinear sum-check [17, 61]. However, the sub-prover complex-
ity is still super-linear in field operations due to group multi-scalar
exponentiations, and the proof size or verifier complexity is logarith-
mic. Pianist [42] uses bivariate PIOPs and PCSs to achieve constant
proof size and constant amortized communication complexity, but
it incurs additional overhead when applied to R1CS-based applica-
tions. Hekaton [52], using a different proof aggregation approach,



has constant amortized communication, but the proof size and ver-
ifier time are linear to the sub-prover number. Further, it requires a
circuit-specific setup instead of a universal one [18, 27, 42].

2 PRELIMINARIES

We use bold lowercase letters like a € F" for size-n vectors, and a;
is the i-th element of a. For vectors a, b, {a, b) and a o b denote the
inner product and entry-wise product of a and b, respectively. Capi-
talized letters like A represent matrices on F, and A[i] is its i-th col-
umn. Denote the set {1,2,...,n} by [n]. f € Fp[X] means univari-
ate polynomials f(X) with a degree bound m, and g € Fp, ¢[X, Y]
represents bivariate polynomial g(X, Y) with degree bounds m over
X and ¢ over Y. we sometimes use f, g for simplicity if X,Y are
explicit. We use FFT(d, m) for an FFT for polynomial evaluations
(or IFFT for polynomial interpolations) for a degree-d polynomial
on a size-m multiplicative subgroup, which costs O(mlogd) field
operations. Given a subgroup L = (1°,...,7/™1), denote L;(Y) =

ni! yl—1 . . i—1
- as the i-th Lagrange polynomial s.t. Li(n'~") = 1 and

7 Y-yl
forke[(]nk+i-1, L,—(;]k) = 0. All bivariate polynomials are
defined using {L;(Y)}, e.g., f(X.Y) = Xie[e) i(X)Li(Y).

For bilinear groups with pairing e : Gy X G, — Gr, denote x - g;
by [x]; for x € F and G; generated by g;e (1,2} -

R1CS. Given public Pg, P, P; € FmfXmt an R1CS [9] instance
R1CS(F, mt, n, Py, Py, Pe;w,a, b, c) is satisfied if there exists vec-
torsw, a, b, ¢ € F™ such that Puw = a, Pyw =b,Pew =c,aob =c.
We denote its size by n = O(m¢), where n = max{||Pg||, ||Pp|l, ||Pc||}
and ||A|| means the number of non-zero entries in matrix A.

Interactive oracle proof (IOP). IOP is a multi-round interactive
proof where the verifier sends a challenge and the prover replies
with an oracle in each round. The verifier can query entries on it.
PIOP [18] is an IOP variant where all #’s oracles are polynomials.

2.1 Interactive Argument

An interactive argument for an NP relation R is a tuple of algorithms
(G, P.V). G represents a public parameter generation algorithm.
P and V represent a PPT prover and verifier, respectively. P tries to
convince V the existence of w s.t. (x,w) € R for a public statement
x through multiple rounds of interaction. An interactive argument
of knowledge (AoK) further allows w to be efficiently extractable
by an extractor.

DEFINITION 1 (INTERACTIVE ARGUMENT OF KNOWLEDGE). (G, P, V)

is an interactive argument of knowledge for R if it satisfies:
o Completeness. For every pp and all (x,w) € R,
Pr[{#(w), V) (pp,x) = 1] = 1.

o Knowledge soundness. For any PPT P*, there exists an expected
polynomial time extractor &% such that for all pp, the following
probability is negl(n) (1):

Pr[(P*0, V) (pp.x) = 1 (x,w) & R |w — &7 (pp.x)].
E®" means & has access to the randomness of P*.

A public-coin interactive AoK can be transformed into non-interactive
via the standard Fiat-Shamir transformation. A SNARK for RICS is
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a non-interactive AoK with succinctness such that the proof size is
poly(A,log n) and the verifier complexity is poly (4, |x|,log n).

2.2 Polynomial Commitment Scheme

DEeFINITION 2 (PCS [31]). A PCS for polynomial f with security
parameter A, variate j1, and variate-degree bound d is defined by a
tuple of algorithms or protocols.

o pp — Gen(1%,d, y): takes the security parameter A, u, d; generates
public parameter pp.

o C — Com(pp, f): takes f and outputs commitment C.

o b — Eval(pp,C, x,y; f) is an interactive argument. Both P and
V hold the commitment C, the scalary, and the evaluation point x.
P attempts to convince V that there exists f with bounded size d*
corresponding to C and f(x) = y. V outputs b € {0, 1} at the end.

In addition, a PCS requires:

e Completeness. For any f with pp «— Gen(1%,d, 1), commitment
C « Com(pp, f), and f(x) =y, Pr[Eval(pp,C,x,y; f) = 1] = 1.

e Knowledge soundness. Eval is an AoK for the following NP relation
Reval (pp) given pp « Gen(1%,d, p):

(C.x,y; f) - Eval(pp, C,x,y; f) = 1 A C = Com(pp, f) A f(x) = y.

It has been proven if the PCS satisfies knowledge soundness,
then the compiled interactive argument from “PIOP + PCS” also
inherits this knowledge property [14, 40, 42].

2.3 Low-Degree Tests

Low-Degree Tests (LDTs) enable a prover to prove that the de-
gree d of some polynomial f satisfies d < D for public D, given
size-D system parameters. LDTs are important in several recent zk-
SNARKS [9, 16, 18, 20, 51]. Some schemes, like fast Reed-Solomon
interactive oracle proofs of proximity [7], are born to be LDTs (with
proximity). A general LDT can be achieved by “PIOP + PCS”, and
we recall the PIOP in [16]. Given oracle f, the prover sends a poly-
nomial oracle f/(X) = f(X) - XP~?. The verifier then queries f, f’
at random @, and accepts iff f/(a) = f(«) - aP~4_The soundness
error is D/|F| by the Schwartz-Zippel lemma.

2.4 Univariate Sum-check

Given a polynomial f € F;[X], an order-m multiplicative subgroup
H, and a claimed sum vy, the univariate sum-check PIOP [9] allows
to prove ), f(x) = y. WLOG, assume d > m. To complete this,
the prover # computes polynomials g € Fy,—1[X] and h(X) s.t.
fX) = X-9(X) +y/m+ Zg(X) - h(X), where Zy is a degree-
m vanishing polynomial s.t. Zg(x) = 0 for all x € H. P sends
polynomials oracles g, h to the verifier V, who then queries f, g, h
at random « to check the validity. The prover and verifier also run
LDT to prove the low-degree property of g.

3 NEW PIOPS FOR INNER PRODUCTS

An inner product PIOP proves (f, s) = y for vectors f,s € F™ and
public y € F. We assume f and s are secret, while extending one to
be public is natural. Appendix A recalls two typical inner product
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Protocol 1 (Improved inner product PIOP). A prover P has wit-
ness f,s € F™. P and the verifier’V holdy € F, and a multiplicative
coset H with order m. P proves toV it holds that (f,s) = y.

1. P — V: polynomial oracles f(X), s’ (X) by Equation (2).

2. V- P:arandomu € F/{0}.

3. P — V:polynomial oracles g’ (X), h(X) by Equation (3).

4. V:queries f(a),s’(a), g’ («), h(«) at random a € F. Compute

Zu(a), and accept iff Equation (3) holds when X = a.

PIOPs from univariate sum-check and Laurent polynomials. The
former features fewer oracles and queries due to fewer LDTs, while
the latter uses coefficient-based polynomials to achieve fewer FFTs.

We combine the advantages and present a new univariate sum-
check for inner products using coefficient-based polynomials. Specif-
ically, given size-m vectors f, s, we find the following result

(fsy=ye ) fsG=my M
x€H
where f, s are coeflicient-based polynomials defined by coefficients
f, s, respectively. We prove Equation (1) in Appendix ??.

A direct univariate sum-check for Equation (1) fails as s is evalu-
ated on fractions x 1. To transform it into a standard polynomial,
our first attempt is to rewrite Equation (1) as ) eq f(x) - x™ -
s(x~1) = my. This holds because for any x € H, x™ = 1. Unfortu-
nately, the degree of X™s(X 1) is m, which introduces larger-size
system parameters and new LDTs for f. Instead, we use a degree-
(m — 1) polynomial s’ (X) equal to s(X~1) anywhere on H. Given
sS(X D) =sg+ 51X T4+ 51X, we let

s(X)=X™- Z (sic1 - X~ = 5oX™ + 5. ®)
ie[m]
Now Equation (1) can be rewritten as Y, e f(x) - s"(x) = m -
y, which can be converted into a standard univariate sum-check.
FOO-5'(X) = X - g(X) +y+ Zu(XOh(X).

We next eliminate the LDT inspired by [51, §E]. Given a challenge

u, by multiplying (X — u). The sum-check can be written as
fX)-s"(X) (X -u) =X -¢'(X) + (y+ Zu(X)h(X)) - (X —u), (3)
where deg(g’) < m. Given a size-m parameter, the LDT is free.

We propose our inner product PIOP in Protocol 1.

THEOREM 1. Protocol 1 is an inner product PIOP. The oracle num-

ber and proof size are 4. The soundness error is 2m/|F|, The prover
complexity is 6FFT(m, m)+O(m). The verifier complexity is O(log m).

Proor. Completeness. Completeness holds by Equation (1)
and univariate sum-check. Below we prove Equation (1).
By definition, the possible terms in £ (X)§(X 1) include {X~*1,
X—m+2 X™=1} We then prove
for any i € [-m+ 1,m —1]/{0}, in =0. 4)
xeH
As H is of order m, for any i, it holds (")™ = 1. Hence, (0))™ -1 =
(@ =)&) 1+ ()™ 2+ + (0')%) = 0. Forany i € [-m +
1,m—1]/{0},as 0’ # 1, we have (') 1+ (")™ 2+ -+ (") =
Yjefo,m-1](@’)! = 0, which exactly proves Equation (4).

Soundness. To prove soundness, we first introduce an auxiliary
equation.

fX)-s"(X) =X g(X) +y + Zu(X)h(X). ®)

Equation (1) & Equation (5) is due to the fact that Vx € H, s’ (x) =
s(x~1) and the validity of Equation (2). Equation (1) is then equiv-
alent to Equation (5) due to univariate sum-check. Equation (5)
= Equation (3) directly holds by setting ¢’ (X) = (X — u)g(X).
Equation (5) < Equation (3): Since all the sum terms in Equa-
tion (3), except for Xg¢’ (X), are divisible by X — u and u # 0, then
(X — u) divides ¢’ (X). Dividing Equation (3) by (X — u), we have
g (X)/(X —u) = g(X) satisfies Equation (5) and is of size at most
m — 1. Hence, the soundness error is only related to random «, and
is 2m/|F| due to Schwartz-Zippel lemma.

Complexity. The oracle number, query size, and verifier complex-
ity hold directly. The prover requires 4 FFT(m, m) for obtaining
size-2m evaluations of f,s” and 2 FFT(m, m) for computing polyno-
mial f - s’. The prover computation other than thisis O(m). O

4 DISTRIBUTED PIOPS FOR R1CS
4.1 Reducing R1CS into Inner Product PIOPs

We transform an R1CS described in Section 2 into three linear
constraints and one quadratic constraint:

- Witness w, a € F™ satisfy Pw = a for public P € Fm*mt,
- Witness vectors a, b, ¢ € F™ satisfyaob —c = 0.

Testing linear constraints. We use the classic Freivalds’ algorithm
to transform the linear constraints into inner product constraints.
Given a random challenge vector r € F™  this constraint can be
transformed into (r T P)w = r T a. For distribution, we split a size-m¢
inner product into the sum of ¢ size-m inner products. Taking the
left hand as an example, we sequentially split the size-m¢ vector
p’ = r"P and w into ¢ sub-vectors, leading to matrices P’ and
W of size m X £ such that the i-th column (i.e., P’[i] and W[i])
corresponds to the i-th sub-vectors. The linear constraint is then
reduced into ;e[ (P'[il, WIi]) = ie[e)(Ali], R[i]), where A[i]
and R[i] have similar meanings as P’ [i] and W [i].

To prove this inner product equation, a direct approach is seeing
Wil P’ [i], A[i], R[] as coefficient-based polynomials fyy|;1, fpr[ 1,
fa[i]> fri] respectively, and invoking Protocol 1 to prove

DD O =D Y @ e (7, (©)

xeHie[¢] xeHie[t]
where f‘:v[l.] is a standard polynomial modified by fiy[;) like modi-
fying s into s” as in Equation (2), which involves 4 sets of polynomial
oracles. We next eliminate the oracle fp[;) via structured challenge
r,ie., (rO, . ..,rmf—l). As the coefficient offA[,-] is A[i], for i € [¢],
we have (A[i], R[i]) = r=D™(A[i],r) = r=DM £ (r). Now by
Equation (1), it suffices to prove using 3 sets of oracles:

DU S @ - g G =me M ). )

xeHie[t] ie[f]

Testing quadratic constraints. Similar to testing linear constraints,
we transform a size-m¢ entry-wise product into ¢ size-m entry-wise
products to achieve distribution. Split a, b, ¢ into ¢ sub-vectors,



arrange them into matrices, and define A[i], B[i],C[i] as the i-
th sub-vector. The quadratic constraint is then transformed into
Vi € [£],Ali] o B[i] = C[i]. We next reduce it into inner prod-
ucts via random linear combination. Given a challenge vector s =
(s9,...,s™1), the constraint becomes Vi € [¢], (A[i] o B[i],s) =
(Cli], s). To prove it, we transform equivalently (A[i] o B[i],s)
into (A[i] o s, B[i]), and then use a random linear combination to
transform the ¢ inner products into one by reusing the challenge s,
iie, Ticpe) sS™UV(AL] 0 8, Blil) = Tiefey sV - (Clil s). As
the exponent of s in each term varies, the soundness does not affect.
Now, the length of s equals r in testing linear constraints. We
can further reuse r to replace s as these challenges are generated
in the same round after the verifier receiving secret polynomial
oracles. Following Protocol 1, the quadratic constraint becomes

DY g 0 f 0 =m Y D f (). 9)

xeHie[e] ie[¢]

Reducing one polynomial oracle. With these methods, we can
build 4 univariate sum-check relations for R1CS. For R1CS(F, m¢, Py,
Py, Pe;w,a,b,c),v € {a,b,c} and V € {A, B,C}, we prove

D f @ fy ) =m Y MR (),

xeHie[f] ieft] )
2 2 T A 0 S o = m D T oy ),
xcH ie[e] iele]

In the above, two polynomial oracles for secret vector b are needed,
ie., ff’f[i] and fg[;]. We eliminate the oracle fl;[i] by constructing a
virtual ff’;[i] from fp[;]. According to Equation (2), for any query r,
fé[l.] (ry=rm -fB[l-](r_l) +(1=r™) - fg[i](0). Then, the verifier
can obtain fé[i] (r) by querying fp[;] (r~1) and fB1i1(0).

4.2 Distributed PIOP with Constant Proof Size

To construct a distributed PIOP for R1CS, a direct approach is to as-
sign the i-th sub-prover $; with {fév[i]’fA[i]:fé[iny[i] Yie[e] and
invoke Equation (9). However, the proof size is at least O() as the
verifier queries O(1) evaluations on each of the O(¢) polynomials.

This section reduces the proof size into constant. We first propose
Lemma 1, which shows the equivalence of: 1) the sum of multiple
univariate polynomial multiplications; 2) constant-number bivari-
ate polynomial multiplications summed over a Lagrange-domain.

LEmMA 1. Given order-m and order-t multiplicative cosets H and
L, for any univariate polynomials fi(l),fi(z) € Fn[X], we have
Zyer FO P (X) = Siere £ O£ (X0, and further
Zrer Zyer FD 6 9)f P (0y) = Seer Diee) £ 0P (),

where fi(X,Y) = Xic[e] fl.(j)(X)Li(Y). This can be naturally ex-
tended to cases with more polynomial multiplications or additions.

PRrROOF OF LEMMA 1. Denote the elementsin L by (1,7,...,7¢71).

By the property of Lagrange polynomials, we have %, 1. f W (x, Y)
= Yiele] fi(j) (X). This is because for any i,k € [¢] and any k # i,
only Li(n*~1) = 1and L (5*~1) = 0.
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To prove Yyep Diepe fi(x) =T
Verifier’s inputs: oracle f(X,Y)
P; Po v

9160, hy i (X) < fi(X)/Zu(X) first sum-check over X
oracles g;, h; oracles gy, by
a

a

+——=———  second sum-check over Y +———%=—— picka €F
[i(@), 91,6(0), 71,i(@) £ (a, vy  fi(a) oracles g, hy pick B € F
92(Y), hy(Y) < f(a,Y)/Zo(Y) query f(a, £), g1(a),
91(@) < gy,1(a), hy(@) « hy (@) hi(a), 92(B), h2(B)

91 < G < hyi

Figure 1: Visualization of the distributed sum-check

Further, for ZyeLf(l)(X, y)f(z)(X, y)and i, j € [£] st.i # J,
the cross term L;(y)L;(y) = 0 for all y € L. Then, we have
DX Py =3 > V0 0L )

yel yelie[¢]
1 2
= > V0012 0.
ie[f]
The first equation in Lemma 1 hence follows.
Summing this equation over H, we have

DO VenfPEy =2 > A @),

xeH yel xeHie[¢f]

The above proof naturally holds for more polynomials, includ-
ing both more polynomial multiplications and more polynomial
additions. O

We start by introducing auxiliary polynomials R; (X) = X*~! and
R(X,Y) = Yie[e) Ri(X)L;(Y) to describe relations in Equation (9)
uniformly. Assume sub-prover $; holds fi(l), fi(z), fi(3). By moving
the right hand into the left, Equation (9) can be described as

D3 Y @FP Rz - P (Ri(z2) =0 (10)
xeHie[t]
In Equation (7), R;(z1) is not needed, r = r or r~1, and z5 = r™. In
Equation (8), fi(l) (%) = fa[i(rx), and z; = z5 = r™.

Define £ (X) = £ (X) £ (O Ri (1)~ £ (r)Ri (22) as the i-th
summed polynomial in Equation (10). For j € [3], define polynomi-
als f(j) (X.Y) = Ziele) fi(]) (X)L;(Y). Define bivariate polynomial
FXY) = FOEN O X YIRELY) = O (1 V)R(z2. V).
Two times of sum-check. By the univariate sum-check over
Equation (10), there exist g1 € F—1[X], h1(X) s.t. Yie[) i(X) =
X - g1(X) + Zg(X)h1(X). Given a challenge «, it can be checked by
Ziefe) fila) = a - g1(a) + Zg(a)h1(@). This is the first univariate
sum-check, corresponding to Step 2. in Protocol 3.

LetT; = ag1(a@)+Zg(a)hi(a). By Lemma 1 we have 3¢, fi(@)
= 2yeL f(a,y) = To. As a has been fixed, f(a, Y) is a degree-(£—1)
univariate polynomial over Y, and can be invoked in the univariate
sum-check again. Hence, there exist g2 € Fp—1[Y], h2(Y) s.t.

flaY) =Y g2(Y) + T/t + ZL(Y)ha(Y). (11)
This is the second univariate sum-check, as in Step 4. of Protocol 3.

Scalability and constant proof size. The above procedure is scal-
able with constant proof size. Assume the i-th prover #; holds f; (X).
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After receiving the challenge r, P; can build a distributed sum-check
by dividing Zg (X) s.t. fi(X) = X -91,i(X) +T1,i + Zg(X)h1,i(X). P;
then sends oracles g1 ;, h1,; to Po. Next, Py can compute the aggre-
gated oracles g1 = Y] g1,i and b1 = Yie(q) hy;.! Completeness
holds by the uniqueness of polynomial division.

Given the challenge «, as P; holds f;(X), she can compute
g1,i(@), hy,i(a), fi(a) locally. P; sends these evaluations to Py. Next,
Po computes Tz and f(a, Y) = Xje[¢) fi@)Li(Y). Now, Pp can com-
pute g2(Y), h2(Y), and run the sum-check in Equation (11) locally.

In the query phase, the verifier V queries g; (a), hi (@) for the
first-time sum-check, and queries f(«a, f8), g2(f), ha(p) for the second-
time sum-check. The proof size is hence O(1), non-related to ¢.

We visualize the above procedure in Figure 1. We find that each
sub-prover only handles degree-O(m) polynomials, and Py only
handles degree-O(¥) polynomials. The scalability hence follows.

Decomposing large-degree polynomials. We discuss the de-
grees of hy in Equation (11). For linear constraints in Equation (7),
R(z1,Y) is not needed, so deg(hz) < ¢ — 2. However, for quadratic
constraints in Equation (8), R(z1, Y) is needed and deg(h2) > 2¢-3.
If using size-2¢ system parameters, additional LDTs for secret poly-
nomials like f(a,y) would be required. We decompose hz uniquely
into hy jow, hohigh € Fe[Y] s.t. ha(Y) = hyjow (Y) + Y' - hypigh (Y).
Now we can still use size-f system parameters.

The formal protocol. We propose the formal distributed PIOP for
RI1CS in two protocols. Given the original R1CS sub-witness vectors
W il, Ali], B[i], C[i] of P;, Protocol 2 describes how to generate
corresponding sub-polynomials fv'v[i], fari fé[i], feriy locally and
how to generate collaboratively the bivariate polynomial oracles
Fir ), fa(XY), fR(X, Y), fo(X, Y). Protocol 3 proves R1CS, as-
suming each sub-prover is assigned these secret sub-polynomials.

R1CS involves 4 sum-check relations as in Equation (9), where
The first three relations are similar. For simplicity, Protocol 3 dis-
cusses two relations: a general linear constraint P,w = v (v can
belong to {a, b, c}) and a quadratic constraint a o b = ¢. Introducing
more relations is natural. For multiple sum-checks (2 in Protocol 3)
and the formal R1CS with more linear constraints, we follow Au-
rora [9] to combine them into one sum-check using random linear
combination (s in Protocol 3).

THEOREM 2. Protocol 3 is a distributed PIOP. For size-mf RICS, the
sub-prover complexity is O(mlog m), the master prover complexity is
O(tlog?), the proof size and amortized communication complexity
are O(1), and the verifier complexity is O(m?).

Proor oF THEOREM 2. Completeness. The completeness of the
transformation from the R1CS instance into Equation (9) holds
following that of linear constraint tests and quadratic constraint
tests in Section 4.1. Starting from Equation (9), completeness holds
due to the amortized univariate sum-check [9] to prove multiple
sum-check relations at one time, and the technique to reduce LDT
number in Basilisk [51].

'We assume the additive-homomorphic oracle size is O(1). Also, assume an oracle can
be obtained from the sum of ¢ oracles in O(¢) time. Looking ahead, we use univariate
and bivariate KZG [35, 46] with these properties to instantiate polynomial oracles.

Protocol 2 (Distributed secret polynomial oracle generation).
Suppose an RICS instance (F, m¢, Py, Py, Pc;w, a, b, ). Split secret
vectorsw, a, b, ¢ into £ sub-vectors, and denote the i-th sub-vector as
W i], Ali], B[i], C[i]. Suppose sub-provers P1, ..., Pr and master
prover Py. Fori € [£], P; is assigned with W[i], A[i], B[i], C[i].
Provers distributedly generate oracles of secret bivariate polynomials
f‘;v,fA,fé,fc € Fpe[X,Y]. Fori € [£] andU € {W, A, B,C}:

1. Pi computes coefficient-based fy ;) or fl,][i] € Fn[X] from
ULil, where fii1(X) = 5 jem ULl - XL, and £, (X) =
Yje[m) X™(U[i];-X*"7)=U[i]1-X™+U[i]1 like Equation (2).

2. P; sends the oracle fyr[;)(X) to Po. Po computes the oracle
for(X,Y) = Sieqe) fora COLi(Y). £ (X, Y) is similar

Soundness. Checking P;w = v by introducing a random challenge
r holds a soundness error of (mf)/|F|. Checking a o b = ¢ by check-
ing ¥¢_ rm=D(A[i] s, B[i]) = X¢_, rmU=1(C[i],s) for i € [£]
has a soundness error bounded by (m?f)/|F|. Using s to combine
multiple sum-check relations has a soundness error of 1/|F|. Check-
ing the two equations over X = @, Y = f has a soundness error of
2¢/|E|, 2m/|F|, 3¢/|F|, respectively. By the union bound argument,
the total soundness error is (2m + 2¢ + 2m¢) /|F|.

Complexity. We present the complexity analysis below.
Sub-prover. The time complexity of #; is O(m) for running Proto-
col 2 to compute f;U[i] (X) or ];I,J[i] (X). Assume each m column of
the (sparse) P, has O(m) non-zero entries.” Then, P; spends O(m)
time to compute the O(m) non-zero entries on r ' P, and fer1i1(X).
Computing g1 ;, h1,; costs O(mlog m) time. Computing and sending
O(1) evaluations on degree-m univariate polynomials costs O(m)
time. Hence, the total sub-prover complexity is O(mlogm).
Master prover. The prover complexity of Py is O(¢) for computing
oracles fy (or f{;) and gz, hz. Given evaluations in Step 4.a, Py re-
quires O(£) time to obtain size-¢ polynomial evaluations in Step 4.b.
Then, Py interpolates these polynomials via IFFT to obtain the poly-
nomials {fj(e,Y)}. Hence, computing gs, hy costs O(¢log f) time.
In addition, computing oracles g1, h1 from {g1,, h1,;} costs O(¢)
time. Therefore, the total master prover complexity is O(¢log ¢).
Proof size. The involved polynomial oracles include fv,V (X, Y), fa(X,Y),
FEXY), fo(X,Y), g1, b1, 2, Ba jows B2 high» costing O(1). The proof
size comes from values in Step 5., costing O(1).

Communication complexity. The communication between $; and
Po includes: 1) oracles fi,,(X,Y), fa(X,Y), f5(X,Y), fo(X,Y); 2)
oracles g1,;(X), h1,;(X); 3) O(1) evaluations on fp;[i],f‘:v[i],fv[i],
fA[i] (X), me X), fcm (X), and R;(X). Assuming the oracle size
is O(1), the amortized communication complexity is O(1).

’This is feasible as, taking P, as an example, the non-zero entry number of each
column describes the times that one specific wire acts as gate left inputs, which is
constant typically. If not, we can introduce more constraints and variables to achieve
this. Further, computing the inner product over finite field is concretely faster compared
with other operations such as FFTs and multi-scalar exponentiations.



Protocol 3 (Distributed PIOP for R1CS). Secret inputs: P; holds
f‘:V[iyfV[i]:fA[i]:fé[iJ>fC[i] € F,, [X] after running Protocol 2.
Public inputs: oracles of fy,, v, fa. fg fc € Fme[X, Y].
Statement: The provers proves to V that: 1) given a public matrix
P, € F™MXmt there exists secret vectorsw,v € F™ s.t. Pow = v; 2)
there exists secret vectors a,b,c € F™ st.aob =c.
1. (a) V: send challengesr,s,u; € F to Py, who transfers to P;.
(b) V:computesr = (r°...,r™1) and r P, = v. Arrange
v into matrix P, € F™¢ st P/[i] = @(i=1)m+1> - - - Vim)-
Compute fp; (X, Y) = Xiere fpy i1 (X Li(Y).
2. Provers compute and send polynomial oracles g1, h1 € Fry [X]
of the first-round univariate sum-check toV.
(@) Pi: computes public fp:|;] € Fm[X] from Pyl[i].
(b) Pi: computes polynomials fi;, fo,i, fi € Fm[X] s.t.
F1iX) = for 11O fiy 11 OO = Ri(r™) fyr i (1),
foi(X) = Ri(r™) fagi) (rX) fg 17 (X) = Ri(r™) fepa (r).-
Let £i(X) = i(X) +5 - foi(X).
(c) Pi: computes g1,;(X), h1,i(X) by dividing Zyy(X) s.t.
(X —u) fi(X) = X-91,;(X) + (X —u1) T, + (X —u1) Zg (X) ha,i (X).
P; sends polynomial oracles g1, h1,; to Po.
(d) Po: computes oracles g1 = Yje[¢] 91,i and h1 = Yie[e] hri-
3. V sends challenges a,uz € F to Py, who transfers to P;.

4. Provers compute and send polynomial oracles g2, hy jow, ho,high €
Fe[Y] of the second-round univariate sum-check to V.

(@) Pi: computes and sends fp|;] (a),f‘;v[i] (@), frpi (1),
Jari (ra), fgp 1 (@), feri (r), Ri(r™) to Po.

(b) Po: computes fpr (. Y), fi,, (@, Y), fy (1, Y), fa(re, Y), fi(,
Y), fe(r,Y),R(r™,Y).Let f(a,Y) =fi(a,Y) +sfo(e, Y) s.t.
fi(eY) = fp (. Y) fry (@, Y) = RC™,Y) fy (r, Y),
fo(a,Y) =R(™Y) - (fa(re, Y) fg(a, Y) = fo(r,Y)).

(c) Po: computes ga, hy jows hz high € Fe[Y] by dividing Zy, s.t.

f@Y)=Y/(Y—up) ga(Y) +To/t+ZL(Y) (hyow + Y - By high).
(12)
where Tp = agi(a) + (¢ — u1) Zg(a)hi ().
5. (a) V:queries g1(a), hi(a) to compute Ty. Pick a random f§ € F.
(b) V: computes fp (a, B), R(r'™, f). Query f‘:l,((l, B), fv (r, B),
fa(ra, p), fg(a. ), fo(r, B). Query ga, ha lows hz high at p-
(c) V:computes f(a, p). Accept iff Equation (12) holds at Y = f.

Verifier complexity. The verifier complexity is O(m¢) due to comput-
ing fp; (@, ) and R(r™, B). The verifier computation other than this
is O(log m + log ¢) for computing Zy(a), Z1,(p), respectively. O

4.3 Distributed PIOP with Sublinear Verifier

Protocol 3 has a linear verifier complexity due to evaluating linear-
size public polynomials fp; (X, Y) related to public matrix P,. This
section reduces it to sublinear via preprocessing.
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In the preprocessing phase, an indexer 7 encodes the public
matrices into oracles, and the verifier V takes these oracles as
inputs of the online phase. # then proves to V the evaluation
validity of fp: (o, B). Recall that P, = rP,, and hence fp; (X, Y)
is determined by both the public matrix P, and the challenge r.
However, 7 can not know the online challenge r ahead. A direct
approach is to introduce an additional variant Z to describe r in
fpy1i1(X) to construct fpr[;)(X, Z). However, the polynomial size
would be m?, incurring a O(m?) sub-prover complexity.

Welet I encode the public sparse matrices by low-degree univari-
ate polynomials row, col, val, representing the row indexes, column
indexes, and values of the non-zero entries in the matrices. Now
the encoding polynomials are only of sizes O(m¢), linear to the
R1CS size. Below we show how to construct fp; (a, ) relying on
the encoding polynomials and to prove its validity distributedly.
Algebraic preliminaries. For a sparse matrix P, € F™X™ gplit
it into £ sub-matrices Pz(,l), c Pf,f) e Fmtxm gy, Plgi) []1 =Pyl (i -
1)¢+ j] for j € [m]. Define a size-m multiplicative subgroup M with
generator 6 s.t. i = max{| |Pz§l) [}, i.e., the maximum non-zero entry
number among all Pz(,i). Define polynomials {val;} € Fy[X] s.t.
val;(6771) is the value of the j-th non-zero entry in Pz(,i) . The non-
zero entries are assumed in some canonical order (e.g., row-wise or
column-wise). Similarly, define polynomials row; € F;; [X] (resp.,
col;) s.t. row; (6771) (resp., col;(6771)) is the row (resp., column)
index (counting from 0) of the j-th non-zero entry in P,Ei). Ifj>
||PZ(,l) [, set val;(87=1) = 0. row, col, val suffice to describe a matrix.
Define polynomials val(X,Y) = ¥ ;e[ vali(X)Li(Y), and similar
for col(X, Y), row(X, Y). Define L(X,Y) = X;e(¢) Li(X)Li(Y).

Remark 1. After splitting the R1CS public matrix P, into sub-
matrices, the non-zero entries of each sub-matrix may not be even.
Looking ahead, our prover complexity is O(mlogm). Although m =
O(m), the uneven sub-matrices may lead to large concrete m and
worsens the performance. To solve this problem, we observe that the
non-zero entries in RICS matrices represent the left, right, or output
wires of circuit gates. Given a fixed circuit, the entries’ locations are
only determined by gate indexes, which can be manually adjusted.
Hence, the indexer, delegated by the verifier to do the matrix-related
public computation, can adjust these locations to build more even
sub-matrices. We propose such an algorithm in Appendix B.

Main idea. The verifier needs fp; (&, ) = Yie(e] fp;[i] (@) Li () in
Protocol 3. Thanks to our coefficient-based representations, we have
foy[i(X) = Zxens vali(x)rovi ) xeoli®) Further, fpr (o, ) =
2xeM Zie[e] val; (x)rrowi () . aCOIi(")Li(ﬁ), By Lemma 1, we have

fo @)= D D val(xy) - oY) g0l Y) (g y). (13)

xeM yelL

Suppose bivariate polynomials A, B € Fy;, ;[ X, Y] defined by {rrow(x.y)
acol(xy) }xeM, yeL, respectively. Now, Equation (13) becomes

fo ()= > val(xy) - A(x,y) - B(x,y) - L(By).  (19)

xeM yelL
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By Lemma 1, we further have

fo@p =Y > valix) - Aix) - Bi(x) - Li(p).  (15)

xeMie[¢]

Indeed, for all x € M, we exactly have A;(x) = rrowi (%) By (x) =
a®®'i(¥)_Taking the first as an example, this is because, by definition
for all x € M and y € L, it holds that A(x,y) = r"¥(*Y)_ Setting
y =11, then A(x,y) = A;j(x) = prow(xy) = prow;(x),

Similar to Equation (10), Equation (15) can be proved distribut-
edly. The sub-prover P; run a first-time univariate sum-check over
X for target polynomial val; (X) - A;(X) - Bi(X) - Li(f). Given the
challenge a, $; and Py collaboratively run a second-time sum-check
over Y for target polynomial val(e,Y) - A(a,Y) - B(e, Y) - L(B, Y).

One problem remains to check the validity of non-linear func-
tions A(X,Y), B(X,Y) given their oracles. This is typically handled
by lookup arguments. Taking the column as an example, we can
prove {(col(x, ), B(x, y)) hxersyer. € {(k = 1, @) }ee ). How-
ever, building the lookup arguments can be challenging in four
aspects. We delve into these challenges and give solutions below.

4.3.1 Checking the table validity online. We start by handling the
simpler univariate lookup relation about P, [i]’s column

{(coli(x). Bi(x))}xems € {(j = L&/ )} jem (16)

Here, col;, B; € Fj;[X] such that {B;(x) = ali Y

Most lookup arguments [23, 25, 63] assume a trusted party to
commit the table prescribedly. However, our table {(j—1, 2/ ~1)} jelm]s
is determined by the online challenge @. Then, a direct verifier com-
plexity to check the table is linear to the table size.

To solve this problem, we modify our tables with a special struc-
ture to allow an online table validity check with sublinear veri-
fication. Assume o is the generator of H, we can transform the
Equation (16) into { (o), Bi(x)) }xem € {(&/ &™)} jepm)-

Define Tof € Fp[X] s.t. Teo) (07 ™1) = a/ 1. As T, includes all
the table information, the prover can send a polynomial oracle of
Teol to the verifier, who then check the table validity by checking
the evaluation validity of T;.,|. To complete this, our key observation
is that it suffices to prove the following equations:

Teol(1) =1, Teo(wx) = a - Teoi(x), forx € {wj}je[o,m—z]- (17)

A typical approach for the latter relation is to show the existence of
q, which is the division polynomial of p(X) = Teo(wX) — aTo (X)
divided by [Tje[0,m—2] (X — w'). However, it incurs a new oracle g.

We observe that the degree-(m — 1) polynomial p(X) equals
to zero on m — 1 distinct points, where x € {Wj}je[o,m—z]- If
there exists a degree-(m — 1) polynomial p’ (X) built from p(X) s.t.
" (0™ 1) = 0and p’ (/) = p(w) for j € [0, m - 2], then p’ (X) is
a zero polynomial. We introduce the auxiliary public Lagrange poly-
nomial Ly, € Fy,[X] to build p’ from p. Specifically, L, (x) = 0 for
x € {wf }ielom-2] and Lm (0™ 1) = 1, and any point on Ly, (X)
can be computed in logarithmic time. Equation (17) then becomes:
for all x € H, it holds that Too(wx) = - Teo (%) + Lig m (x) - (1— ™).
As Teol, Ly m € Frn—1[X], we have

P'(X) = Teo(@0X) = a - Teol(X) = Lgm-1(X) - (1= a™)  (18)

is a zero polynomial. This can be checked by querying a random
point on T, (X) and checking if p” (X) is zero at this point. Further,
our method does not require any new polynomial oracle.

4.3.2 Building double-dimension lookup PIOP. We use the lookup
PIOP in logup [33] to build our scheme. Lemma 2 recalls this PIOP.

LemmA 2 ([33]). {ai}icm] C {bj}je[m) iff there exists a sequence
{nj}je(m) where nj € [0,m] s.t. Yic[m] #al = Ylje[m] )%jbj
Here, nj describes the number of elements in {a;};c[] equaling b;.

The PIOP above is for one-dimension relation, while Equation (16)
is double-dimension. For a two-dimension relation {(ai, Ai) };e[m] €
{(bj,Bj)} je[m)> given a challenge 3, the prover can show {f - a; +
Ai}ie[rh] C{B-b;j +Bj}j€[m]~ If some (a, Ag) ¢ {(bj, Bj)}, then
f-ap + Ay € {B-bj+Bj} holds with an error probability of m/|F|.

With this generalization at hand, we prove Equation (16). Define
polynomial b; € F;[X] s.t. bi(x) = @i (*) for all x € M. Define
Neol € Fm[Y] s.t. n(w/~1) equals how many times col;(x) = j — 1,
or bi(x) = /™! for x € M. Now, we prove Equation (16) by

Z 1 _ Z neol (Y)
X+ f-bi(x) + Bi(x) X+B-y+Tol(y)

xeM yeH

(19)

To prove Equation (19), given a challenge y, the prover can show
its validity at a random y. Define fi, o € F;[X] st {fi(x) =

v e and (B(0) = iy ) yes. The prover

sends polynomial oracles of fi, f; to the verifier. Then, Equation (19)
becomes a univariate sum-check, i.e., X e fi(x) = X yen f2(y).

The remaining issue is how to prove the validity of fi, f> given
their oracles , which can be solved by a standard zero check [27].
For example, for f2, the prover can show the existence of g2(Y) s.t.

L) (y+B-Y +To1(Y)) = neoi(Y) = q2(Y) Zu(Y).  (20)

4.3.3 Achieving distribution. The PIOP above is non-distributed.
We now prove the modified lookup relation {(weo!xy) geollxy))y ¢
{(0/71, Tooj (@ ~1))} distributedly. Assume that the sub-prover P;

holds col;(X). By definition, she can compute b;(X) and B;(X)

st {bi(x) = @i} g and {Bi(x) = a®i®)} . Define

b(X,Y) = Zier) bi(X)Li(Y) and B(X,Y) = Zje[s) Bi(X)Li(Y).
By definition, b(x,y) = @ ¥ and B(x,y) = a®'*Y) for any

x € Mand y € L. Define ngy| € Fj;,[Y] s.t. neo) (/1) equals the

times of {col(x, y) }xem,yeL = j — 1. Equation (19) becomes

Z 1 _ Z ncol(y)
y+B-b(x,y) +B(x,y) y+B-y+To(y)

xeM,yell yeH

(21)

Let fi; € Fpl[X] st f1,i(x) = m for x € M. De-
fine f1(X,Y) = Xie[e) f1,i(X)Li(Y). By definition, we have for any
X € Mandy (S L,ﬁ(x,y) = m
check relation becomes 2 ep yerL f1(x, y) = Xyem f2(y). By the
univariate sum-check and the low-degree properties of fi and f;,
we stress that it suffices to prove mffi (0,0) = mf2(0), which can
be distributedly proved similar to Equation (10) by Lemma 1.

Hence, the sum-

However, given the oracle of fi(X,Y), the verifier has to check
its validity, which can be challenging due to the lack of (distributed)
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Figure 2: Visualization of the distributed lookup PIOP

zero-check for bivariate polynomials. To see this, although there ex-
istsq1, g2 s.t. AX,Y)(y+B-b(X,Y)+B(X,Y))-1 = q1(X,Y)Zp(X)
+q2(X,Y)Z(Y), the degrees of q1, g are larger than m?, and gen-
erating q1, g2 distributedly may be hard.

We find that to prove {fi(x,y) = m}xemyeb it
suffices to prove that for all y € L, there exists g;(X) such that
HXy) - (y+F-b(X,y) +B(X,y)) -1 = qu,i(X) Z (X). For Pi, we
have y = 17’_1. By the definition of fi, b, B, we further have

friX) - (y+ B - bi(X) + Bi(X)) - 1= q1i(X)Zm(X),  (22)

which can be handled by P; locally. Inspired by [11], we use random
linear combination of r to reduce the validity of £ quotient relations
of all sub-provers in Equation (22) into the existence of ¢q; (X) s.t.

DT (i (X)- (y+B-bi(X)+Bi (X)) =1) = q1(X) Z(X). (23)

ie[f]

By definition, q1(X) = Xie[s] ri=1 . q1;(X). Define R(X,Y) =
Yiele] X'~1L;(Y). By Lemma 1, Equation (23) is equivalent to

D REYAOGCY)(r+B-b(Xy) +BXy) — 1) = g1 Z. (24)
yel

By Schwartz-Zippel lemma, the verifier can pick a random X = §
and check its validity. After fixing a d, this become a univariate sum-
check over Y. Note that the computation of bivariate polynomials
like fi (8, y) can be distributed similar to Equation (10) by Lemma 1.

Combining Sections 4.3.1- 4.3.3, we present the lookup PIOP for
columns in Protocol 4. Figure 2 presents a visualization.

THEOREM 3. Protocol 4 is a distributed lookup PIOP. The prover
complexity of Py is O(mlog m + £). The prover complexity of P; is
O(mlogm). The proof size and amortized communication complexity
are O(1). The verifier complexity is O(log m¢), and can be O(1)°.

Proor oF THEOREM 3. Completeness holds directly. For sound-
ness, if some (b(x,y), B(x,y)) ¢ {(wj’l,aj’l)}je[m] for some
x € M and y € L, then for the random challenge f picked by the
verifier, with a probability of at most m/|F|, § - b(x,y) + B(x,y) €
{B-ol 1+ aj’l}je[m]. For mf instances, the soundness error is
at most mm{/|F| by the union bound argument. The soundness

3The O(log m¢) verifier complexity due to computing public vanishing polynomials
can be further reduced to O (1) pairings via polynomial delegation similar to [18, 27, 42].
Notably, the O(log m?) field operations are concretely faster than O(1) pairings.
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error for checking the validity of T, f2, fi is at most (2m¢)/|F| ac-
cording to the Schwartz-Zippel lemma. For the validity check of fi,
according to Lemma 3 [11], with at most a soundness error of £/|F|,

there exists fi k ke[¢] St Zm 1 fix while Xieg) T A | Z

LEmMA 3 ([11]). Fix Fy,...,F € Fy[X]. Fix Z € Fy[X] that
decomposes to distinct linear factors over E. Suppose for some i € [n],
Z & Fj. Then, except with probability k /|F| over the choice of random
y € F, it holds that Z 1 G = Zi?:l yi ! - Fj.

We next prove the equivalence of

D D itk =) x) and @efi(0,0) = mf(0).

xeM yelL xel

By Lemma 1, we have

DDAy =D > .

xeM yelL xeMie(¢]

As deg(fi,i) < m, by the univariate sum-check, this sum equals

e Y fia(0) = Y fi(0.y).
ie[f]

yel

Again as the Y-degree of fi is less than ¢, again by the univariate
sum-check, we have

- Zﬁ(o,y) =1t - £,(0,0).

yell
Similarly, . cp. f2(x) = m - f2(0). The equivalence hence holds.

Complexity. For the master prover, computing the polynomials
Teols f2, g2 requires O(mlog m) time, and computing the polynomial
oracles fi, q1, g5, hs jow, hs high needs O(£) time. For the sub-prover,
computing oracles f; 1, q1,; costs O(mlogm) time. The proof size
includes 11 oracles and 15 polynomial evaluations.

The verifier’s overhead includes: 1) time-O(¢2) computation for
computing R(r, {); 2) time-O(log mf) computation for Ly ,,—1(5),
Zn(6), Z1,({). These polynomial evaluations can be delegated by
the provers. The verifier complexity is then reduced to O(1). Note
that these at most introduces an additional overhead of O(¢) for
provers, and do not affect the prover complexities. O

4.3.4 Building lookup PIOP for the row relation. We have built
a distributed lookup PIOP for the column relation. Now we con-
struct a PIOP for row, i.e., {(row(x,y), A(x,y)) }xem,yeL S {(k -
1, rk_l)}ke[m[]. These meanings can be found in Equation (14).

Different from the size-m columns, the table size of the row is
m¢. As our lookup PIOP has a sub-prover complexity linear to the
table size, this would lead to a O(m?) sub-prover complexity, which
is not acceptable. To tackle this, we split the size-m¢ table into two
size-\/m¢ tables. As the number of sub-provers, i.e., ¢, is usually
smaller than m, it holds that Vmf < m. Now the provers handle 2
size-O(m) tables, reducing the sub-prover complexity to O(m).

Specifically, define the split polynomials rowjoy,;, roWhigh; €
Fy;, [ X] mapping M to [0, Vme—1]. Let row; (x) = rowhigh,i(x)\/w+
row|oy, i (x) for any x € M. By definition, this split is unique. Define
rowhigh (X, Y) = Xie[e] roWhigh,i (X)Li(Y) and rowjoy (X, Y) simi-
larly. Then we have prow(X.Y) — (rm)mwhigh(x’y) < pTOWiow (XY)



Soloist: Distributed SNARKSs for Rank-One Constraint System

Assume bivariate polynomials Apigh, Ajow € Fi ¢ [X, Y] defined

by {(rVmyrosen (00} i ey and (Vs (990} iy yer, respec-
tively. Then, fp; («, f) in Equation (13) can be finally written as

Z val(x,y) - Anigh (%, Y) - Alow (X, y) - B(x,y) - L(B,y). (25)
xeM,yell

Also, {(row(x,y), A(x. y))}xem,yer. € {(k = L")} gepme), the
lookup relation, is transformed into two sub-relations

{roWhigh (%, ¥), Anigh (X, 9) bxen yer, € {(k — 1, (rV™)< 1))

{rowiow (x, y), Ajow (x, y)}xEM,ye]L c{(k-1, rk_l},

which can be proved similar to the column relation.

Batch lookup PIOP. Protocol 4 can be extended to a batch version.
For multiple relations with the same table, we can use the same
T¢ol- Further, to prove the validity of multiple f; »(Y) for t sets
of polynomials {T col, M col ke[¢]» We can combine relations in
Equation (20) using a random linear combination with challenge v:

Z Uk_l 'fk,Z(Y)(Y"',B' Y+Tk,col(Y)) _nk,col(Y) = q2(Y)Z(Y).
ke(t]

Similarly, for multiple fi ; (X,Y) for t sets of bivariate polynomi-
als {br(X,Y), Bk (X, Y)}xe[s] as in Equation (24), let fi1(X,y) =
R(ry) - (Ai(X.y) - (y+B-b(X,y) + B(X,y)) — 1) We use a random

linear combination with challenge v to prove

DT R i (G y) = 1(8) 214 (9).

yel ke[t]

According to [11], if any polynomial does not divide q; or g2, then
with a soundness error of t/|F|, the random linear combination of
this polynomials does not divide g1 or g2. Now, only 2 polynomials
q1(X), g2(Y) are required instead of t polynomials.

Putting everything together. Using the lookup PIOP in Protocol 4,
we can modify the PIOP for R1CS in Protocol 3 to achieve a sublinear
verifier complexity. We present it in Protocol 5.

Protocol 5 is a combination of the PIOP for R1CS without prepro-
cessing in Protocol 3 and the lookup PIOP in Protocol 4. The security
and complexity properties inherit from these two protocols.

THEOREM 4. Protocol 5 is a distributed PIOP for R1CS. The sub-
prover complexity is O(mlogm), and the master prover complexity
is O(¢log ¢ + mlog m). The proof size and amortized communication
complexity are O(1). The verifier complexity can be O(1).

Distributed preprocessing. The preprocessing phase can be dis-
tributed similar to the proving phase. This is reasonable as the
verifier is assumed to delegate the public computation to a trusted
indexer, who is expected to be powerful in computational resources.
Also, the preprocessing can be time-consuming in practice. In Mar-
lin [18], the indexer time is nearly the same as the prover time.

In Protocol 5, the indexer needs to compute degree-(, £) bivari-
ate polynomials and degree-m univariate polynomials. The former
can be handled distributedly similar to Protocol 2. The latter costs
O(mlogm) time and can be handled directly. Hence, given ¢ ma-
chines, the sub-machine complexity of indexer is O(mlog m), and
the master-machine complexity is O(£log £ + mlogm).

Protocol 4 (Distributed lookup PIOP for column). Public inputs:
public a. Order-m multiplicative subgroup M, Order-t multiplica-
tive subgroup L. Generator w of order-m subgroup H.

Secret inputs: {coli(X)}ie[¢], cOl(X,Y) = Xjeqe) coli(X)Li(Y).

Statement: The prover proves to V the validity of Equation (16).

Offline phase:

1. Indexer I computes {bj(X)}ic[p st bi(x) = weoli(x)
for x e M. Compute b(X,Y) = e[ bi(X)Li(Y). Sim-
ilarly, compute B;j(X) and B(X,Y). Compute R(X,Y) =
Siere) X'TLi(Y).

2. T computes polynomial neo) € B [Y] s.t. neoj(w/~1) equals the
times of col(x,y) = j— 1 forx e Mandy € L.

3. T sends ncy(Y) to Po, sends col;(X), bi(X), Bi(X) to P;, and
sends the oracles of b(X,Y), B(X,Y), n¢o|(Y) to V.

Online phase:

1. Po: computes table-related T.q) € Fpy [ X] s.t. Teo) (/1) = /71
for j € [m]. Send the polynomial oracle Teo to V.

2. V: sends challenges B,y € F to Py, who transfers to P;.

3. Provers compute and send polynomial oracles f5, fi toV. The
lookup relation is reduced to relations of fi, f> as in Equation (21).

(@) Po: computes fo € Fpy[Y] s.t. {f2(y) = #&yj(y)}yg]}ﬂ.

(b) Pi: computes fi1 € F[X] st fi1(x) = mfor
x € M. Send polynomial oracle f; 1(X) toV.
(c) Po: computes the oracle fi (X, Y) = Yjere) fi1 (X)Li(Y).
4. V:sends a random challenge r € F to Py, who transfers to P;.
5. Provers compute and send polynomial oracles q1,q2 to V.
(a) Po: computes qa € Fr [Y] according to Equation (20).
(b) Pi: computes q1,; € Fj;, [X] according to Equation (22). Send
polynomial oracle q1,;(X) to Po.
(c) Po: computes the oracle q1(X) = Xie| ri1. q1,i(X).
6. V: sends a random challenge § € F to Py, who transfers to P;.
7. Po: computes and sends oracles gs, hs jow, hs high € Fe[Y] to V.
These are used to prove the validity of fi as in Equation (24).
P; first sends R;(r), f1,:(), bi(6), Bi(5), q1,i(5) to Po. Po then
compute polynomials gs, hs jow, hs high S-
R(Y)-fi(8,Y)(y+B-b(5Y)+B(S,Y)) —R(r,Y) =
Ygs(Y) +q1(8)Z11(8) /€ + Z1(Y) (s ow (Y) + 8 hs high (V).
8. (a) V: checks table validity. Query T.o|(w5), Teo[(8), Teol(1).
Check if Equation (18) holds and Teo (1) = 1.
(b) V: checks the validity of fo(Y). Query f2, neo, q2 at 8, and
check if Equation (20) holds.
(c) V: checks the walidity of fi(X,Y). Pick a random

{ € F. Query fi,b,B at (6,{). Query R(r,{). Query
q1, 955 hs lows s high at {. Check if Step 7. holds.

(d) V: checks the validity of lookup relation as in Equation (21).
Query f1(0,0), 2(0). Check if mtfi(0,0) = mf2(0).
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Protocol 5 (Distributed PIOP for R1CS with sublinear verifier). Suppose the same setting as Protocol 2. Suppose an indexer I .

Offline phase:

1. I:reads the public matrix Py. Compute 3 sets of polynomials {val;, col;, rowpigh i, roWiow,i }ie[¢] € Fim[X]. These polynomials describe the
information of the i-th sub-matrix Py[i]. Compute bivariate polynomials val(X,Y), col(X,Y), rowhigh (X, Y), row|ow (X, Y).

2. I: computes neols Mrow,highs Mrow,low € Fm [X], which count the evaluation frequency of {col(x, y), rowhigh (x, y), rowow (X, y) }xeM, yeL-

3. I: computes polynomials aro, high,i (X): @row,low,i(X)s beol,i(X) € F[X] defined by {o0"Whighi (X)_(yroWiowi (X) g0l (X)y 0 Compute
bivariate polynomials row,high (X,Y), Growlow (X, Y), beol (X, Y) € Fpgy o[ X, Y]

4. I: computes bivariate polynomials R(X,Y) = ¥ ;e[ Ri(X)Li(Y) and L(X,Y) = Xje[) Li(X)Li(Y), where R;(X) = X1

Online phase:

Input: P; holds univariate polynomials over X, including: valj, coli, rowhigh i» FOWiow,is Grow,high,i> Grow,low,is Pcol,i> Ris Li-

Po holds univariate polynomials over Y, including: neol, Nrow,high> Mrow,low-

V holds bivariate polynomial oracles val, ayow,highs @row,lows beols L, R- V' holds polynomial oracles over Y, including neol, Nrow,highs "row,low-

This protocol is a modification of to Protocol 3. Below we only describe the changes made to Protocol 3.
1. In Step 2., provers additionally computes and sends toV the oracles Apigh, Alow € Fr ¢ [X, Y] and oracles Tyigh, Tiow € Fm[X].

(a) Pi: computes Apigh,is Alow,i € Frn[X] defined by {(rm)mwhighvi(x), rroWiowi (X)) 1o Send oracles Ahigh,i (X), Alow,i (X) to V.
(b) Po: computes oracles Apigh (X, Y) = Xie[r] Anigh,i (X)Li(Y) and Ajow (X, Y) = Xic[¢] Alow,i (X)Li(Y).
(c) Po: computes Thigh, Tiow € Fm[X] s.t. Thigh(wj’l) = (r‘W)j’l and Tigw (w/ ™) = 1771 for j € [m].
2. In Step 4., provers additionally computes and sends toV the oracle B € Fy, /[ X, Y] and oracle Too| € Fry[X].
(a) Pi: computes B; € Fy;[X] defined by {ai ()Y n. Send oracle B;(X) to Py.
(b) Po: computes oracles B(X,Y) = ¥;c[,] Bi(X)Li(Y).
(c) Compute Tpo) € Fr[X] s.t. Teo1 (/™) = /71 for j € [m].
3. In Step 5., after receiving B, the provers compute and sends fp; (a, B) to V. Provers and verifiers then prove its evaluation validity.
(a) P and V: invoke the first seven steps of Protocol 4 to prove the validity of Apigh, Alow- B. They should satisfy for x € M,y € L, it

holds that {(brow,high ( y):Ahigh ( y))} < {((‘)k_l’ (rm)k—l)}ke[m]’ {(brow,low(x) y)>A|ow(xs y))} < {(wk—l’ rk_l)}ke[m],
and {(beoi (%, ), B(x,y))} € {(w/71, aj’l)}jelmj‘ At the end, ‘V receives univariate polynomial oracles q1 € F;;[X], g2 € F[Y], and
multiple polynomial oracles fi € Fpp, [X, Y], fo € Fp[Y].
(b) V:sends a random challenge us € F to Py.
(c) Provers compute and send polynomial oracles gs, {hs j} jc[3] € Fs[X] of the third-round univariate sum-check to V.
(i) Po: transfers challenge us to P;.
(ii) Pi: computes polynomials g3 i, {hsj i} je[3] € Fm[X] by dividing Zyg(X) of Equation (25) s.t.

(X = u3) - vali(X) - Anigh;i(X) - Atow,i(X) - Bi(X) - Li(B) = X - g3,4(X) + (X = u3) - Ty /i + (X —u3) - Zyg(X) ) XU™™hg 5(X).
Jjel3]
Send polynomial oracles g3 ;, {h3,j,,~}jE [3] to Po.

(iii) Po: computes oracles g3 = Yie[¢] 93,i and hs j = Yic[e] hs,ji for j € [3].
(d) V:sends random challenges § € F,u4 € F to Py.
(e) Provers compute and send polynomial oracles ga, {h4 j} jc(4] € Fe[Y] of the fourth-round univariate sum-check to V.

(i) Po: transfers & and uy to P;.
(ii) Pi: computes and sends val;(3), Anigh,i (), Alow,i (), Bi (), Li () to Po.
(iii) Po: computes val(6,Y), Apigh (3, Y), Ajow (8, Y), B(8,Y), L(B, Y) Compute ga, {ha j} je[4] Such that

(6 = us) (Y = ug) - val(8, ) Apigh(8, Y) Aty (8, Y)B(8,Y) - L(B,Y) = Y - ga(Y) + (Y = ua)Ta /€ + (Y —ug) ZL(Y) > YYD Chy(Y), (26)
Jjel4]
(f) V outputs accept if and only if all the following checks pass:
(i) Pick a random { € . Invoke Step 8. of Protocol 4 to verify the validity of Apjgh (X, Y), Ajow (X, Y), B(X, Y).
(i) Query g5(8), (ks ;(8)) ye[). Compute Ty = 8- g5(8) + (5. us) - fy () + (5 ~ 5) 235 (8) (s 1 (3) + 57 o(8) + 677h 3(5).
(iii) Queryval(6, ), Anigh (3, ), Alow (8, ), B(6,£), L(B, {), 9a({), {ha,j({)} je[4]- Check if Equation (26) holds whenY = {.
(iv) Different from Step 5. in Protocol 3, query R(r™, B) instead of computing it himself. Invoke Step 5. using the evaluation fp (a, f5).
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5 CONSTRUCTION OF DISTRIBUTED SNARK
5.1 Batch Bivariate KZG

Protocols 3 and 5 require opening multiple points on multiple bivari-
ate polynomials. We use bivariate KZG as the PCS for its constant
proof size and verification. However, directly running it incurs a
large overhead. We propose a batch bivariate KZG for efficiency.

Building a batch bivariate KZG can be challenging even given a
novel univariate batch approach as in [11], which we recall below.
Given a set S C F of size t, denote Zs as the vanishing polynomial
on S. To prove the validity of {f(a)}4es, the prover and verifier
compute a public polynomial r € F;[X] s.t. r(a) = f(«) for all a.
Then, the prover shows the existence of polynomial h(X) s.t.

fX) -r(X) = h(X) - Zs(X). (27)

However, the bivariate case can be more complex. For example,
to prove f (a1, 1), f(az, f2), we can also build a bivariate r, but the
quotient relation turns: there exists bivariate polynomials p, g s.t.

FXY)=r(X,Y) = p(X,Y) - (X=a1) (Y=P2)+q(X, Y)-(X—a2) (Y- f1).

For more evaluations points, such as an additional f(as, f3), it
seems necessary to use more bivariate polynomials instead of two.

Suppose the evaluation points are (a1, f1), . . . (ar, Br). For sim-
plicity, assume each a or f is distinct. Let R = {a1,..., o} and
S ={p1,-...,P:}. To construct a uniform quotient equation, we en-
large the evaluation points as R X S, or say, {(a, )} qeRr ges- Under
this convention, the validity of all {f(a, f)}qcpr ges is equivalent
to the existence of bivariate polynomials p and g s.t.

This equation suffices for opening the same set of evaluation
points on multiple polynomials, but we still face challenges for
distinct evaluation points. In the univariate case [11], each quo-
tient polynomial is multiplied by some public polynomial, making
them aggregatable by a random linear combination. For example,
to open fi (X), f2(X) on distinct S1, Sp with auxiliary polynomials
r1(X), r2(X), given a random challenge y, we have

(fi—-r)Zs,+y-(fa—r2) - Zs, = (h1 +y - h2) - Zs, Zs,.

This combines h1 (X) and h2(X), leading to a proof size non-related
to the polynomial number. In Equation (28), however, finding such
public polynomials is not straightforward as each equation has two
and possibly different quotient polynomials, i.e., Zr(X) and Zs(Y).

To address this problem, we introduce an auxiliary polynomial
s € Fre[X, Y] st s(a,Y) = f(a,Y) for all @ € R. Further, letr €
Fit[X, Y] sit. r(X, B) = s(X, p) for all § € S. By definition, r(X,Y)
satisfies r(a, f) = f(a, p) for all @ € R and § € S. Further, r(X,Y)
is public and can be computed from all evaluations of f(«, f).

By definition, f(X,Y) — s(X,Y) equals zero on any X = « for
a € R, hence Zg | f —s. Similarly, we have Zs | s —r. we further set
p and q in Equation (28) to be (f—s)/Zg and (s—r)/Zs, respectively.
As f —r = f —s+s—r,Equation (28) can be divided into two parts:
one related to Zg and independent of Zg; the other one related to Zs
and independent of Zg. This enables the combination of quotient

polynomials over X or Y separately. For example, for any two fi, f2,
two s1, 52, two 11,79, two Zg,, Zg,, and two Zg,, Zs,, we have

(i=s1)-Zp,+y-(fa—s2) - Zp, = (p1+V - p2) - ZR, ZR,»
(s1=11) Zs, +y-(s2—712) " Zs, = (q1+Yy " q2) - Zs, Zs,.

Using the evaluation padding and the auxiliary polynomial s,
we follow the techniques in [11] to build a batch bivariate KZG.
We consider n bivariate polynomials {fi (X, Y)}xe[n] With claimed
evaluations fi.(a, f) for all @ € Ry and all § € Sj. For simplicity,
assume for all k € [n], |R| = |Sk| = ¢, and each polynomial is
opened at t? points. Denote T; = Uke[n] Rk and Tz = Uke[n] Sk-
We present the PCS in Protocol 6, and below we give the main idea.

First (in Step 1.), for k € [n], P computes auxiliary secret poly-
nomial s (X, Y) and sends its commitment to V.

Second (in Step 3.), P splits fi. (X, Y) as Py = fr—sg and O = sp—
ri. and handles these two polynomials separately like Equation (29).
Given a random challenge y, for the first half, # multiplies each Py
with an auxiliary polynomial Z7;\g, (X) to allow a random linear
combination of all P;. The combined polynomial is

PXY)= Y T Zp g (X) - P(X Y. (30)
ke[n]
Similarly, £ can compute Q(X, Y), the second-half combined poly-
nomial. By definition, Zg, | Py, hence Z7; | P, and similarly Z7; | Q.
P sends commitments P(X,Y)/Zr, (X) and Q(X,Y)/Zr,(Y).

Third (in Step 5.), P proves to V the validity of P(X,Y) and
Q(X,Y) relying on challenges z; and zz.  builds a polynomial
P’ (X, Y) similar to Equation (30) but modifies Z,\g, (X) as Z7,\g, (21)-
Let Wy (X, Y) = P/(X,Y) - Zg, (z1)P(X, Y) / Z1, (X). As Wi (21, Y) =
0, it holds that (X — z1) | Wy. Similarly, # can build Q’ (X, Y) and
W2(X,Y). Then, it holds that (Y — z3) | W,. P sends commitments
Wi(X,Y)/(X = z1) and Wa (X, V) /(Y = z2).

Finally (in Step 6.), V checks the validity of quotient relations
Wi(X,Y)/(X—z1) and Wo(X,Y)/(Y —zp) at X =cand Y = 7.

THEOREM 5. Protocol 6 is a batch bivariate PCS. Opening t> points
on each of n bivariate polynomials with X -degree of m and Y -degree
of ¢, the opening complexity is O(mf + ntf) group operations plus
O(nmt + nt?) field operations. The proof size is n + 4 group elements.
The verifier complexity is O(n) group operations plus 4 pairings.

Proor oF THEOREM 5. Completeness holds by design. To prove
knowledge soundness, we first recall some additional preliminaries
in Appendix C. We prove the knowledge soundness in the algebraic
group model (AGM), i.e., the existence of an efficient extractor
& s.t. an algebraic adversary A can only win the game with a
probability of negl(n)(A). We kindly refer to [11] for background
about ideal and real pairing checks. We will use the following lemma
for soundness proof.

LEMMA 4 ([11]). Fix subset S ¢ T C F, and g € F4[X]. Then
Zs(X) | 9(X) iff Zr(X) | Zp\s(X) - g(X).

Let A be an algebraic adversary. A begins by outputting com-
mitments cmy,...,cmy, € Gyp. In the AGM, each cmy, is a linear
combination of 22’2’61 Zj:é fri,jlo* T/ ]1. The extractor &, given the
coefficients of {fi ; ;} for some k, outputs a polynomial f; (X,Y) =



Protocol 6 (Batch bivariate KZG).

1. Gen(m,?): for 0,7 € F probably generated by ceremony [8],
output srs = ({[oi’lrj’l]l}ie[m],je[g], [1]1, [1]2, [o]2, [7]2).

2. Com(srs, {fx (X, Y)}):Given fi € Fpm¢[X, Y], compute the com-
mitment cmg = [ fi.(0,7)]1 fork € [n].

Open({cmg}, {Re}, {Sk} {fi (@ Blacry.pes, -
1. P sends commitments to {si}, i.e, cmg, toV.

(a) Compute {ri}re(n] € FrtlX.Y] such that ri(a,f) =
sk (X, ) foralla € Ry and f € Sk.

(b) Compute {sgtre(n] € Fre[X.Y] such that sp(a,Y) =
fi(a,Y) for any a € Ry.. Compute commitments {s;.[o,7]1}
fork € [n].

2. V: sends a random challenge y € F to P.
3. P: computes and sends Uy, Uy to V. Specifically,

(a) For k € [n], compute bivariate polynomials Pr(X,Y),
Qk(X, Y) s.t. P = ﬁc — Sk and Ok =Sk — Ik~

(b) SetTy = Uke[n] Ry. SetTp = Uke[n] Si.. Compute
P(X,Y) = Bken) V7' Zr\Re (X) - Pe(X.Y), and
QX.Y) = Siepn) V' Zrs, (V) - Q(X.Y).

By construction, we have Zg, (X) | Px(X,Y), and hence
Z1,(X) | P(X,Y). Similarly, we have Zr,(Y) | Q(X,Y).
(c) Compute p(X,Y) = P(X,Y)/Zr,(X) and q(X,Y) =
O(X,Y)/Z1,(Y). Compute Uy = [p(0,7)]1,Uz = [q(0, T)]1.
4. V: sends random challenges z1,z5 € F to P.
5. P computes and sends V1 and Va to V.
(a) Compute Wy € Fpy o[ X, Y], Wa € Fsp[X, Y] s.t.
Wi= > Tz (2) - U = 1) - Zn (1) -,
ke[n]

Wo= > T g5, (20) - sk~ ri(21,22)) — Z1, (22) - q.
keln]
By definition, we have (X — z1) | Wy and (Y — z2) | Wa.

(b) Compute W/(X,Y) = Wi(X,Y)/(X - z1) and W, (X,Y) =
Wo(X,Y) /(X — z3). Compute Vi = [WI/(O', 0], V2 =
(W, (0, 7)]1.

6. V:computesri(X,Y) fork € [n]. Compute F; and F, s.t.

Fi = Zpg,(z1) - ( D ¥¥ 7 (emp = emgy) = Zg, (1) - h),
ke[n]

Fy= ' yF Zp s, (z2) (emg = [ri(21,22) 1) = Zp, (22) - U
kelk]

Accept iff
e(Fy, [1]2) = e(V1, [0 = z1]2) A e(F2, [1]2) = e(Va, [7 = 22]2).

Z;’;El Z?;l fk,i’inYj. A also outputs Ry, ..., Rp, S1,...50, T1, T2,

and polynomials rq, ..., rp.

Assume for some k* € [n], we have Zg,. 1 fi — sg= or Zs,. 1
sgx — I'e+. The assumption is feasible as otherwise we have for all

k € [n], there exists py and g s.t. fy =1 = py-Zr, (X) +q - Zs, (Y).

WLOG, assume Zg, . 1 fir =i+ and Zs,. | s+ —rg+. Other cases are
similar. Then, we know from Lemma 4 that Z7,\g,.. (X) (fx+ — sk+)
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is not divisible by Z7, (X). Let

FXY) = Y 20 (0 - (X Y) = s (X, Y)).
ke[n]

Using Lemma 3, we know that except with probability n/|F| over y,
f is not divisible by Zr, (X). Now A outputs Uy = [p’ (0, 7)]1, U2 =
[¢' (0, 7)]1 for some p’, ¢’ € Fpy e[ X, Y] followed by V sending uni-
form z1, z; € F. Since f is not divisible by Z7, (X), for any p’, there
are at most 2m values of z; € Fs.t. f(21,Y) = p’ (21, Y)Zr, (21); and
thus z; of this form chosen by V is with probability of negl(n)(1).

Assume z; is not in this form.  now outputs W, = [Wi(o,7)]1
and W, . According to [11, Lemma 2.2], it suffices to upper bound the
probability that the ideal check corresponding to the real pairing
check in Step 6. Denoting W*(X,Y) =

DT Z R (21) - (G Y) = 51X, V) = Z, (21) - p (X, V).
ke[n]

The ideal check has the form W' (X, Y) = H(X, Y)(X — z1) for the
existence of H(X,Y). It can pass iff W;"(21,Y) = 0, which means
Wl*(zl, Y) = f(21,Y) —p’(21,Y) - Z1,(21) = 0. This a contradiction.

The proof for Zs,. 1 sj — ry~ is similar by setting s (X, Y) as
ri(z1,2z2) in fi (X, Y) corresponding to variable Y, and we omit it
here. In summary, the ideal check can only pass with negl(n)(1)
probability over the randomness of V, which implies the same
thing for the real pairing check.

Complexity. The srs consists of O(m¢) group elements. The com-
mitment generation requires O(n - m¢) group operations.

For the Open protocol, the computation of all s costs O(n - t£)
field operations in total. The computation of all si[o, 7] costs
O(nt¢) group operations. The computation of p € Fp,e[X, Y] and
q € Ft¢[X, Y] costs at most O(nm¢ + nt¢) field operations as each
polynomial is a linear combination of n polynomials. The computa-
tion of Uy and U, costs O(m{ + t£) group operations. The computa-
tion of W; (X, Y) costs O(nm?) field operations. The computation
of V; costs O(mf) group operations. Similarly, the computation
of Wa(X,Y) and V; costs O(nt¢) field operations and O(¢f) group
operations. Hence, the total prover complexity is O(nm¢ + nt?) field
operations O(mf + ntf) group operations. In contrast, the trivial
prover complexity is O(t%n - mf) group operations. Note that n and
t are usually small constants in SNARKs [17] and also in our case.

The proof size is n + 4 group elements, in contrast to the trivial
2t%n group elements. The verifier complexity includes O(n) group
operations due to computing F; and Fz, O(n) group operations for
all [ry (21, 2z2)]1, and 4 pairings. Hence, the total verifier complexity
is O(n) group operations plus 4 pairings. In contrast, the trivial
verifier complexity is O(t?n) pairings. O

Reducing proof size with the same evaluation point over Y.
The evaluations points on bivariate polynomials in Protocol 3 share
the same Y = f. To further reduce the proof size, we propose a PCS
variant specified for same Y-dimension points in Protocol 7. We
present the batch bivariate KZG variant with the same evaluation
points over Y in Protocol 7. Below we discuss the high-level idea.
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Protocol 7 (Batch bivariate KZG evaluated at a single Y = f).

1. Output srs = ({[o" '/ 1 }ic[m) jefe) [1]2: [0]2, [7]2) for
uniform o, T.

2. cmy = [fr(o,7)]1 foreach k € [n].

Open({cmi}, {Ric} B {fie (@, Blaery }):

1. V:sends to P a random challenge y € F.
2. P: computes and sends Q = [q(0)]1 toV forq € Fppy 1, [X]
obtained from Equation (32).
3. V:sends to P a random challengen € F.
4. (a) P:sends fi(n,f),..., fu(n,B) and q(n) toV.
(b) V:sends toP arandom challenge 6 € F.
(c) P:sends toV the Q1 = [q1(0,7)]1,02 = [g2(0,7)]1, 03 =
[g3(a)]1, where q(X) = q(n) = g3(X) - (X = 1), and
D TR X)) =i B) = 1 (X)- (X =) +q2(Y) - (Y=B).
ke[n]
(d) V: accepts iff:
(i) Equation (32) holds when X = n;
(i1) e(Q3, [0 —nl2) = e(Q — [g(M]1. [1]2); .
(iii) e(Q1, [0 =7l2) -e(Qz, [1=1]2) = e(Xke[n) 0  (cmy =
[fic (. B)11), [1]2)-

For any bivariate polynomial f; and points Ry € Ty and S, = {f},
there exists univariate polynomials r; € Fx[X] and g; s.t.

Jie (X, ) = re(X) = qie(X) - Zg, (X), (1)

where ry. is publicly defined by {(«, f. (@, §))}. For multiple fi, ..., fn,
Equation (31) can be batched via random linear combination of y

Z Y (e (X B) = e (00) - Zpy\g, (X)) = q(X) Z7, (X). (32)
ke[n]

To prove it, the prover sends the commitment to g, and the verifier
opens {fi. (1, B) }ke[n]> q(1) for a randomly picked 1, and checks if
Equation (32) holds when X = n. We still need to open evaluations
on each polynomial, but they are evaluated on the same points and
simple to batch via random linear combination. The proof size is
reduced to 4 G; elements and n + 1 F elements. Note that group
elements for bilinear pairing can be 4x larger than field ones.

THEOREM 6. Protocol 7 is a batch PCS as in Definition 2. Opening t
points on each of the n bivariate polynomials with X -degree of m and
Y-degree of £, the prover complexity is O(t + m¢) group operations.
The proof size is 4 group elements plus n+1 field elements. The verifier
complexity is O(n) group operations plus 5 pairings.

Proor. Completeness holds by design. We argue the knowledge
soundness in AGM below. Let A be such an algebraic adversary. A
begins by outputting cmy, ..., cmp, and each cmy is a linear combi-
nation Z;Zal 25;5 fri,jlo't!]1. &, given the coefficients of {f; ; ;}
for some k, outputs a polynomial f;.(X,Y) = Z;’;al Zg;é Siei i XYY
A also outputs Ry, ..., Ry, 5, T1.

Assume for some k* € [n], we have Zg, 1 fi+ — g+, which means
there exists some @ € Ry, fi= (@) # ri«(a). We know from Lemma 4

that Zp\r,. - (fir — rx+) is not divisible by Z7;. Let

FX) = D 0T X B) = (X)) - Zry i (X0

ke[n]

By Lemma 3, except with probability n/|F| over y, f is not divisible
by Z7,(X). Now A outputs Q = [¢'(0)] for some ¢’ € Fp[X].
Given a random 5 € F, for any ¢’ there are at most 2m values of
n € Fst f(n) =q(n)Zr,(n). Thus, picking a 1 of this form for V
is of probability negl(n)(A).

Assume we are not in this case. Assume that for some k* € [n],
fix (n, B) does not equal the claimed f (7, §). By the randomness of
0, with a probability of n/|F|, X xcn] 05 fi (X, Y)~0K " fi(n, p) #
0. If the ideal check passes, it shows the existence of g1, g2, which
means that Y e[, 0k=1£.(X,Y) — 01 fi.(n, B) = 0. This is a con-
tradiction. Thus the ideal check can only pass with probability
negl(n)(A), which implies the same thing for the real check.

Complexity. The srs and commitment generation are the same as
Protocol 6. Open requires O(t + mf) group operations due to the
degree bound of g, q1, q2 and g3. The proof sizeis4 Gy + (n+1) F
elements, in contrast to n+4 Gy elements in Protocol 6. The verifier
complexity is n group operations and 5 pairings. m]

5.2 Distributed Batch Bivariate PCS

To build a distributed batch bivariate PCS, we recall the idea in
Pianist [42]. In the distributed setting, the prover ; knows f; and
oracles {X/™1 - Li(Y)}je[m] st f(X,Y) = Bie[e) i(X)Li(Y). To
compute the quotient bivariate polynomials p, g distributedly, Pi-
anist sets p(X,Y) = (f(X,Y) - f(a,Y))/(X — ) and q(X,Y) =
(f(a,Y) = f(e, B))/(Y — B). By definition, q is only related to vari-
able Y, and can be computed by Py locally in O(¢) time. Further, p
satisfies p(X,Y) = Xee] W - Li(Y). Then, p can be com-
puted by #; computing W - L;(Y) and Py adding them.

We generalize Equation (28) into a distributed version. We still
use s € Fg|=s¢[X, Y], the auxiliary polynomial in Protocol 6, to
construct quotient polynomials p and q. As s(a,Y) = f(e, Y) for
all @ € R, it can be written as s(X,Y) = ¥ ;¢ r|] f(@}, Y) - Nj(X),
where Nj € F|g|[X] is the Lagrange polynomial corresponding to
aj. It satisfies Nj(ej) = 1 while for other k # j, k € R, it holds that
Nj(ay) = 0.In our case, |R| is a small constant.

By the properties of Nj, we have 3’ jc[|r|] Nj(X) = 1, and further

PCY)-Zp(X) = ) (FX.Y) = f(a; V) - Nj(X)
JElIRI]
= >0 (D) (i)~ fila) - L) - Nj(X)
JElIRI] ie[f]
= 2 (D) (X)) = fil)) - N;(X)) - Li(Y).
ie[e] je[IR[]
As (X - aj) | fi(X) = fi(a;) for any i € [£] and ZR\aj(X) | N;j(X),
it holds that Zr(X) | 2 jeqr)) (fi(X) = fi(a;)) - Nj(X) for Zr(X) =
(X—-aj) “ZR\a; (X). Also, the polynomial }’ ;e[ g (/i (X) —fi(;)) -
N;j(X) - 1/Zr(X) can be computed by #; locally. Hence, p(X,Y)
can still be computed distributedly. Further, g € F|g| ,—1[X, Y] can
be computed by Py herself in O(|R| + ¢) time.



Protocol 8 (Distributed batch bivariate KZG). Suppose ¢ sub-
provers P1,...,Pr and master Po. Given {fi}xe[n] € Fm,e[X, Y]
st fif(X,Y) = Sieqe) fi,i(XLi(Y), Pi holds {ficitre[n]-

1. Gen(m,?): choose the secret o,7 € F. Output srs =

("L (DN hepml jerer: [12: (o] [7]2).

2. DKZG.Com({fi},srs): For k € [n], P; sends to Py g, =
[f,i(0)L;j(7)]1, who then computes cmy = [];e[ cmy, .

DKZG.Open({cmg}, {Re b, {Sk 1 {fk (@ B)aery.pesi D:

1. Provers compute and sends {cms, }re[n] to V.

(a) Pi:forallk € [n], computes sy ;(X), {sk; (@) YaeRr, forsk; €
Fire|[X] st fora € Ry, sgi(a) = fi ;(a). Computecmy, , =
[sk,i(0)Li(7)]1. Send cmg, ; to Po.

(b) Po: computes cmg, = [sg(0,7)]1 = Hie[t’] CMg, ;.

2. V:sends a random challenge y € F to Py, who transfers to P;.
3. Provers compute Uy, Uy as in Step 3., Protocol 6.

(a) Pi: computes p;(X) = Pi(X)/Z1,(X) and

Pi(X)= > Tz g (X0 (i () = s,4(X)).
keln]
Send [pi(a)Li(7)]1 to Po.

(b) Po: computes Uy = [1ie(e) pi(o)Li(7)]1. Compute q(X,Y)
and Uy herself the same as Step 3., Protocol 6.

4. V: sends challenges z1, zo € F to Py, who transfers to P;.
5. Provers compute and send Vi and Vo to V.
(a) P;i: computes Wf,i(X) =W1,i(X)/(X — z1) where

W,i(X) = Z Yo Zg\w (21) - (fiei = Ski = Z1, (21) - P

ke[n]
Send [Wl”i(a)Lj(T)]l to Py.
(b) Po: computes Vi = [lic[r)[Wr,i(0)Li(7)]1. Compute

W2 (X,Y) and Va according to Step 5., Protocol 6.
6. V: acts the same as Step 6., Protocol 6.

With the high-level idea above, we can build a distributed batch
bivariate KZG, which is presented in Protocol 8. To adapt to our
distributed PIOP for R1CS, we modify the {[z/~1]; }je[e] insrs as

{Li(D]1}jere)-

THEOREM 7. Protocol 8 is a distributed batch bivariate PCS. The
prover complexity of P; is O(m) group and O(nm + nt) field opera-
tions. The prover complexity of Py is O(¢t) group and O(¢nt) field
operations. The communication per prover is O(n) group elements.
The proof size and verifier complexity remain with Theorem 5.

Proor. The security of Protocol 8 follows directly from Proto-
col 6 assuming each sub-prover is honest.

Complexity. The proof size is n + 4 group elements, the same
as the non-distributed Protocol 6. The communication per prover
is O(n) group elements for sending cmg, ; for all k € [n]. Other
communication per prover is O(1) for sending [p;(o)L;(7)]1 and
[W{, ;(@)Li(1)]1. The verifier complexity is O(n) group operations
and 4 pairings, the same as the non-distributed Protocol 6. These
hold directly by count.
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Assume |Rr| = |Sg| = t for all k € [n]. For prover #;, the
computation of {s ; (@) }qer, costs O(tn) field operations given
evaluations fi ;(a). For n polynomials, this costs O(n?t) field op-
erations. Computing sy ; (X) from polynomial interpolation costs
O(t) field operations. For n polynomials, this costs O(nt) field op-
erations. Computing {cms, ; }xe[n] needs O(nt) group operations.
Computing p;(X) and [pi(0)Li(7)]1 costs O(nm) field and O(m)
group operations, respectively. This is because p;(X) is the linear
combination of n polynomials with degrees of at most m. Com-
puting Wl”i(X) and [W,;(0)Li(7)]1 costs O(nm) field and O(m)
group operations, respectively. Hence, the sub-prover complexity
is O(nm + nt) field operations plus O(m) group operations.

For Py, computing q(X,Y) costs O(¢¢) field operations. Comput-
ing Uy costs O(t¢) group operations. Computing W, (X,Y) need
O(nt¢) field operations. Computing V5 costs O(t¢) group operations.
Hence, the master prover complexity is O(nt¢) field operations plus
O(t¢) group operations.

The complexities show a good scalability of our distributed batch
KZG, as the sub-prover complexity is non-related to £ and the master
prover complexity is non-related to m. O

Similar to how Protocol 8 generalizes Protocol 6, Protocol 7 can
be extended into a distributed scheme. We omit the details here.

5.3 Putting Everything Together

Combining our distributed PIOP for R1CS and the distributed batch
bivariate KZG, we have the following theorem.

THEOREM 8. There exists a distributed SNARK. For size-O(mf)
RICS utilized with ¢ provers, the sub-prover complexity is O(m) group
operations plus O(mlog m) field operations. Choosing one sub-prover
as the master prover, its time complexity is O(m + £) group plus
O(mlogm+tlog¢) field operations. The communication complexity
per prover is O(1). The verifier complexity can be O(1).

We provide a proof sketch here. Completeness holds directly.
Complexities are implied by Theorem 4 and Theorem 7. For knowl-
edge soundness, it has been proven that if a PCS satisfies knowledge
soundness and a PIOP has soundness, then the compiled interac-
tive argument from “PIOP + PCS” inherits the knowledge sound-
ness [14, 40]. The security proof hence follows from the soundness
of Protocol 5 and the knowledge soundness of Protocol 8.

6 IMPLEMENTATION AND EVALUATION

We implement Soloist using ~10, 000 lines based on the arkworks
library [4] in Rust. All experiments are run on machines with 16
cores and 256GB of RAM. For distributed schemes, we open 2-32
machines belonging to one cluster, where each machine acts as a
prover. Reported figures are averages over 10 executions.

6.1 Evaluation of IPA and Batch Bivariate KZG

Performance of IPAs. We implement IPAs in Marlin [18], Dark [14],
and our scheme by instantiating corresponding PIOPs with the
batch KZG of Boneh et al. [11]. Figure 3 shows that our IPA has a
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Figure 4: Performance of batch bivariate KZG with random X-dimension evaluation points and the same Y-dimension point

20% faster prover, 5%-80% faster verifier, and 30%-2X smaller proof
size. This benefits from the superior complexities shown in Table 2.

There are also other potential IPAs from “PIOP + PCS” with con-
stant proof size, such as Count [41], SZ22 [55], and Dew [5]. Due
to the lack of open-sourced implementations, we compare them in
theory. Count is an improved univariate sum-check and can be used
to construct IPAs with smaller proof size than Marlin. However, it
requires an SRS at least twice the size of vectors, incurring addi-
tional overhead due to SRS generation and additional low-degree
tests. Similarly, SZ22, an IPA from Laurent polynomials, reduces
a polynomial oracle over Dark but sacrifices the SRS size to twice
of the vectors. Dew is a trustless PCS with constant proof size, but
its security relies on the generic group model, which is viewed as
stronger than our algebraic group model [24].

Performance of batch bivariate KZG. Figure 4 shows the per-
formance of our batch bivariate KZG in Protocol 7 with the same
evaluation point over Y, which is used in Soloist. We test opening
20 random points, 2 on each of 10 polynomials, or 4 on each of 5
polynomials, with the Y-degree as 7. These parameters are chosen
or generalized from Soloist. Compared with PST13 [46] for directly
opening all points, ours has a 7-10x faster prover time, 5x faster
verifier time, and a 6-7X smaller proof size. When opening more
points on one polynomial, our scheme would feature a smaller proof
size, which is linear to the polynomial number and non-related to
the point number on each polynomial.

6.2 Evaluation of Distributed SNARKSs

We benchmark SNARKSs on different circuits, including random
R1CS, zkRollup, and ECDSA verification. The tested performance
includes indexer time, prover time, verifier time, proof size, and
memory costs. The indexer time is the running time of the offline
and circuit-specific preprocessing phase. In the online phase, the
provers and verifier would take some outputs of the preprocessing

Table 4: Memory costs (GBs) of SNARKs for size-2%° R1CS

#Prover ‘ Costs H #Prover ‘ Costs H #Prover ‘ Costs

Marlin-1 | 246.1 || Soloist-2 | 103.9 || Soloist-4 | 51.9
Soloist-8 | 26.2 || Soloist-16 | 13.2 || Soloist-32| 6.9

phase as inputs. The prover time is the slowest running time of all
provers, and we choose one sub-prover as the master prover.

Performance on R1CS. Figure 5 and Table 4 compares Soloist and
the non-distributed Marlin [44] on random R1CS adapted from Mar-
lin. The elliptic curve is BLS12-381. We choose the R1CS-targeted
Marlin due to its similarity with Soloist like the constant proof size,
a universal and updatable SRS, and constant verifier complexity.

Soloist shows good scalability. Its indexer time, prover time, and
memory costs decrease linearly with the increase of sub-prover
number. When utilizing ¢ provers, they are 1.5¢x faster, £x faster,
and £x smaller than Marlin, respectively. For a size-225 R1CS, Soloist
costs 29s for proving with 32 provers, using 512 cores in total. Note
that the prover time is end-to-end assuming that each prover holds
the sub-witness of R1CS. The verifier time is 4.6ms, slightly faster
than Marlin’s 6.5ms. The communication per prover is 8KB. Soloist
has a 13KB and 20x larger proof size than Marlin. However, it is
still competitive among distributed SNARKSs as shown below.

Comparisons with other distributed SNARKs. We do not com-
pare DIZK, where a non-distributed prover time for a size-220 R1CS
is over 2,000s [59], which is 60x slower than Marlin and ours. We
fail to compare with Hekaton thoroughly as we do not find any
open-sourced implementation. Still, we can reference the results as
both schemes are implemented using the arkworks library over the
BLS12-381 curve. Different from [39, 42, 60], Hekaton counts the
prover time using the number of total cores instead of the number
of machines, where each core (instead of each machine) acts as
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Figure 5: Comparison of non-distributed Marlin with 1 prover
and Soloist with 2-32 provers for proving R1CS

a sub-prover assigned with a sub-circuit. Hekaton’s prover time,
utilized with 4096 cores, is 16s for circuits with 22° constraints.
Figure 5 has shown the scalability of Soloist; hence, our prover time
in this setting is estimated to be about 58s, i.e., 3.6X slower.

However, Hekaton’s prover time can be sensitive to the circuit
structure, especially the shared wire number of sub-circuits. The
tested circuit in Hekaton has 10% constraints from shared wires,
which may vary in practical applications. Cirrus [58] runs Hekaton
over Pedersen hash function and SHA-256. Given 256 cores, the
prover times of Hekaton for size-22% circuits are 32s or 128s, instead
of the estimated 16s. Then, Soloist is 2X slower to 2X faster.

Besides, Hekaton’s proof size and verification are logarithmic to
the sub-prover count, while Soloist’s are O(1). The only reported
data in Hekaton indicates a 32KB proof size and an 83ms verifier
time, which are 3X larger and 20X slower than ours. Also, Hekaton
incurs a communication overhead of 900KB per prover, 100X larger
than ours. Further, Hekaton needs a circuit-specific setup, while
Soloist only requires a one-time universal setup like [42, 58]. To
sum up, Soloist and Hekaton can be comparable in prover time, but
ours has advantages in all of the other metrics.

Hekaton claims a 3x faster prover time advantage than Pianist.
Hence, Soloist can be slower than Pianist in prover. This is probably
due to Soloist involving more polynomial oracles, especially the
lookup PIOP (Protocol 4) for preprocessing. Despite this, there are
various practical applications more amenable to R1CS. For example,
VKH23 [57], a verifiable fully homomorphic encryption scheme,
shows a clear preference for R1CS over Plonk for efficiency. Groth16-
based schemes like the R1SC0 ZKVM [50] can not use SNARKSs for
Plonk as Groth16 does not support Plonk. Reef [3] and zkPoT [1]
choose R1CS due to the reliance for a specific SNARK [36]. To
further demonstrate this, below we benchmark Soloist on proving
zkRollups originally encoded as R1CS, same as in Pianist.

Performance of zkRollups. We extract the zkRollup circuit from
Hermez [34], use Circom [21] to compile it into R1CS, and then use
the compiler in Pianist to transform the R1CS into Plonk. The R1CS
has 229, 847 constraints per batch of 3 transactions, and Plonk has
2,215, 685 constraints, both in the same order as Pianist.*

Figure 6 shows the indexer and prover times of Soloist for prov-
ing zkRollups with 2-32 provers, compared with Pianist with 16
or 32 provers. The elliptic curve is BN254. Each prover in Pianist

“#Pianist claims to use an R1CS with 86k constraints per transaction, but we only find
an R1CS with 261k constraints without a proper witness [48]. Thus, we fail to reuse it.
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Figure 6: Comparison of Pianist with 16 or 32 provers and
Soloist with 2-32 provers for zkRollups (in batches of 3)

Table 5: Memory costs (GBs) for zkRollups, where Per #Tx
means the number of transaction batches per sub-prover

Per #Tx ‘ Soloist ‘ Pianist H Per #Tx ‘ Soloist ‘ Pianist

2 | 121 | 30 || 8 | 47 | 115
4 [ 238 | 608 |[ 16 | 93 | 218

Table 6: Performance for non-data-parallel zkRollups

#P | m |Soloist-non-even || m |Soloist-even || Pianist
2 [2%0 200s 21 109s 171s

219 101s 218 54s 87s
8 [218 50s 217 27s 45
16 | 218 49s 216 14s 23s

can handle up to 16 batches of transactions, as the constraint num-
ber would exceed the largest multiplicative subgroup size in the
finite field of BN254 curve. In contrast, Soloist can handle up to 320
batches of transactions per prover given sufficiently large memory.
For concrete efficiency, the indexer and prover times of Soloist are
2.8x and 1.8X faster than Pianist, respectively. We stress that this
does not count the transformation time from R1CS to Plonk. For
other metrics, our verifier time is 3ms, competitive with Pianist’s
2.8ms. The proof size is 10.2KB, 4.5X larger than Pianist’s 2.2KB.
The communication per prover is 6.2KB, 3x larger than Pianist’s
2.1KB. These constant-size overheads can be reduced in an amor-
tized manner, as Soloist can handle more transactions.

Table 5 shows the memory costs of Soloist and Pianist for proving
zkRollups, which are only related to the number of transaction
batches per sub-prover due to the good scalability. As shown, Soloist
has a > 2X smaller memory costs than Pianist. In summary, Soloist
can achieve better performance for R1CS-based applications.

Evaluation of non-data-parallel applications. The circuits in
Figure 6 are data-parallel: each sub-prover independently holds
multiple batches of 3 transactions. We next implement Soloist over
the non-data-parallel circuit: 1 batches of 3 zkRollup transactions.
They have 229, 847 constraints, and the largest number of non-zero
entries in R1CS matrices is ~ 2%°. We implement it on a single
machine, where each prover is utilized with one core.

Table 6 presents the size of m and prover time for zkRollups.
Equipped with the “making-even” algorithm in Section 4.3, the size
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Table 7: Performance for non-data-parallel ECDSA circuits

#P ‘ m ‘ Soloist-non-even H m ‘ Soloist-even H Pianist

2 | 220 200s 219 108s 171s
4 | 2% 193s 218 53s 86s
g | 2% 1925 217 26s 455
16 | 2% 192s 210 13s 23s

of m is optimally minimized, i.e., reduced by £x, and 2-4X smaller
than the uneven R1CS. The prover time is hence reduced by 2-4X,
and is 1.6X faster than Pianist. The “making-even” time is only 0.5s.
This result shows that our “making-even” algorithm can help to
prove arbitrary R1CS well.

Apart from the zkRollup circuit, we also implement Soloist over
the non-data-paralle]l ECDSA verification circuit from Circom [22],
which proves knowledge of a private key corresponding to an
Ethereum address. It has 247, 380 constraints, and the largest num-
ber of non-zero entries in R1CS matrices is ~ 22!, Table 7 presents
the size of m and prover time for this circuit. Equipped with the
“making-even” algorithm, the size of 1 is optimally minimized, i.e.,
reduced by £X, and 2-16X smaller than the uneven R1CS. The prover
time is hence reduced by 2-16x. Besides, the prover time of Soloist
is 1.7x faster than Pianist.

6.3 Comparisons with more distributed
SNARKSs

We present comparisons with more schemes like DeVirgo [60],
HyperPianist [39], and Cirrus [58] for non-R1CS. We conclude that
Soloist is 2-8% slower in prover time, but has 5-100x smaller proof
size and 10-100X smaller communication overhead.

Comparison with DeVirgo. DeVirgo [60] is a distributed SNARK
using FRI-based PCSs [60]. Such PCSs do not require group oper-
ations and can be concretely fast than group-based ones. Hence,
DeVirgo can be faster than Soloist in prover. According to its figures,
proving signatures with 22° constraints utilized with 32 machines
costs 5s, which is 6 faster than ours when proving random R1CS
with constraints of the same number.

However, currently DeVirgo only supports data-parallel circuits,
a special type of arithmetic circuit. In contrast, Soloist supports
RICS, an NP-complete problem. DeVirgo’s proof size is about 1.9MB
according to the reported figures, while ours is around 10KB. De-
Virgo’s communication complexity is linear to the statement size,
and is up to GBs, which is 100x larger than ours and can be limited
in specific applications.

Comparison with HyperPianist and Cirrus. HyperPianst [39]
and Cirrus [58] are distributed SNARKs over the Plonk-targeted
HyperPlonk [17]. Their sub-prover complexities are linear to the
sub-statement, although in group operations and still costing quasi-
linear field operations. According to the reported figures, the prover
time of HyperPianist using mKZG for a size-22> Plonk utilized with
8 sub-provers is 10s over BN254. The prover time over BLS12-381 is
estimated to be 1.4 X 10 = 14s, which is 7.8% faster than ours. The

prover time of Cirrus for a size-22° Plonk utilized with 256 cores is
larger than 32s, which is less than 2x faster ours.

However, Soloist outperforms these two schemes with constant
proof size and amortized communication complexity. The proof
size of HyperPianist is around 40-90KB, 4-9x larger than ours. Its
communication per prover is around 60-120KB, 10-20x larger than
ours. We do not find these two concrete figures of Cirrus.

7 CONCLUSION AND FUTURE WORK

We propose Soloist, a distributed SNARK for R1CS with constant
proof size, verification, and amortized communication. Soloist uses
a new inner-product-based approach to build a distributed PIOP
with constant proof size. It uses the matrix sparsity of R1CS and dis-
tributed lookup arguments to achieve sublinear verification. Soloist
also extends the bivariate KZG into a batch and distributed version.

Future work may develop a more efficient distributed prepro-
cessing to minimize the polynomial oracles. Further, we are con-
sidering to build a distributed SNARK for customizable constraint
system [54], which is efficiently compatible with all existing con-
straint systems such as R1CS, Plonk, and AIR [6].
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A EXISTING PIOPS FOR INNER PRODUCTS

A PIOP for inner products proves (f,s) = y for secret vectors
f,s € F™and public y € F. Below we recall two univariate PIOPs for
inner products from univariate sum-check and Laurent polynomials.
As they both use the LDT PIOP, we first recall it in Lunar [16].

LDTs enable a prover to prove that the degree d of some poly-
nomial f satisfies d < D, given size-D system parameters. Given
oracle f, the prover sends a polynomial oracle f(X) = f(X)-XP~4,
The verifier then queries f, f” at random «, and accepts iff f/(a) =
f(a) - aP~4_The soundness error is D/|F| by the Schwartz-Zippel
lemma.

Univariate sum-check. Such PIOPs [9, 18] compute secret poly-
nomials f,s € Fp,[X] from f, s by polynomial interpolation, and
construct the univariate sum-check relation Y, cp f(x)s(x) =y
on an order-m multiplicative coset H. The relation holds iff there
exists polynomials g € F(,,_1)[X] and h s.t.

fX) - s(X) =X - g(X) +y/m+ Zgz (X)h(X),

where Zy(X) = X™ — 1 is the vanishing polynomial over H. To
prove it, the prover sends polynomial oracles f, s, g, h, and g* for
LDTs as discussed in Section 1.2. The verifier queries f, s, g, h, g*
evaluated at a random a. The verifier computes Zyg(«), and accepts
iff: 1) the equation holds for X = ; 2) deg(g) < m—1;3)deg(f) < m.
Given size-m parameters, the check 3) is free.

For complexities, the oracle number and the query size are both
5 by count, and the prover requires 6 FFT(m, m) to compute f and
s, and 6 FFT(m, m) to compute the polynomial multiplication f - s.

Laurent polynomials. PIOPs [12, 55, 66] from Laurent polyno-
mial construct IPAs by proving the coefficient of some term in a
polynomial is zero. We recall the PIOP in [55] inspired by [12]. For
size-m vectors f and s, set size-m polynomials with coefficients f, s
as f, $, respectively. Then, (f, s) is the coefficient of middle term in
f(X) - X™~1.§(X~1). This can be transformed into the existence
of p(X), ¢(X) such that

FOO - XM 53X = p(X) + X™ Ly + XM g(X),  (33)

where they should satisfy p, q € F(,,,_1) [X]. To prove it, the prover
sends polynomial oracles f ,$,p,q and p*, g* for LDTs. The verifier
queries f,p,q,p*,q" at random « and § at @~ !. The verifier accepts
iff: 1) Equation (33) holds; 2) deg(p), deg(q) < m—1;3) deg(f) < m.
Note that despite §(X 1) is a rational polynomial, the prover could
compute p(X), g(X) by handling X1 - §(x~1).

For the complexity, the oracle number is 5, the query size is 6,
and the prover requires 6 FFT(m, m) to compute f X)x™13(x—1).
The number of FFT is fewer than IPAs from univariate sum-check,
as coefficient-based f ,§ can be obtained directly from f, s.

B MAKING THE SUB-MATRICES “EVEN”

We propose the “making-even” algorithm in Algorithm 1. The
high-level idea is to exchange the locations of columns in each
of Py, Py, P, and make them “even”. The witness value in the wit-
ness vector w is also exchanged correspondingly. Note that if we
exchange P,[i] to the location j, P, and P, are also changed. The

number of non-zero entry in Py, Py, P. can be different. We heuris-
tically adjust the matrix with the most non-zero entries. WLOG,
say this matrix is P,, which is denoted as H in Algorithm 1.

Given the parameter ¢ and the matrix P, sort the number of
non-zero values in each column of the matrix in ascending order to
obtain the set 7. We then assign P, [ 1] to P1, Pa[Z2] to P, ..., and
Py [Z¢] to Pp. Then, we assign Pg[Zr41] to Pr, Pa[Zr42] to Pe—1, ...,
and P, [I2¢] to P1. Repeat the above procedures until each prover
holds m columns.

The above algorithm works well except the first column in
Pg, Py, P, which describes constraints about the witness one, both
known by the prover and the verifier. The problem lies in that the
first column of these matrices may have too many non-zero entries.
To solve this, we find that as this witness is “public”, we can add
the “one” witness to each sub-witness of sub-prover and add one
additional column to sub-provers P, . .., P¢. Then, we can split the
first column in P,, Py, P¢ into ¢ parts in the meaning of non-zero
entry number. For the i-th part, set the corresponding entry as 0 for
P, ..., Pi—1, Pit1, - - ., Pr. As a result, we can also make the first
column “even”.

In Algorithm 1, it suffices to work over size-O(m?) vectors where
each entry describes the non-zero entry number instead of ma-
trices. Hence, the algorithm costs a time complexity of at most
O(m¢log m¢) for sorting.

C ADDITIONAL PRELIMINARIES OF KZG

In this paper, we use univariate or bivariate PCSs from pairing-based
groups, We generalize the PCS definition in [11] from univariate
polynomials to bivariate ones.

DEFINITION 3. A PCS is a triplet (Gen, Com, Open) such that

e Gen(m,{) - Given positive integers m, £, output a structured refer-
ence string (SRS) srs of size m¢£.
e Com(f,srs) - Given a polynomial f € Fp, ¢[X,Y] and an srs of
Gen(m, ?), return a commitment cm to f.
e Open is a public-coin interactive argument. P is given fi,..., fn €
Fme[X,Y]. P and V are both given:
1. m,¢,n andt = poly(A).
2. SubsetsRy,...,Ry and Sy, . ..Sy. For simplicity, assume |Ry| =
|Sg| =t fork € [n]. Let Ty = Uke[n] R and T = UkE[nJ Sk
3. cmy,...,cmy - the KZG commitments to fi, .. ., fn.
4. claimed evaluations of fi.(a, B) for (a, f) € (Ry, Sk)
5. {rx € F1t[X, Y]}ke[n] - the polynomials describing the alleged
correct openings, i.e., having ri.(a, ) = fi.(a, p) foreachk € [t],
a € Rk: ﬁ € Sk.
This interactive argument satisfies:

- Completeness: Fix anyn,t,T1, T, fi,..., fn € Fme[X, Y], {rr €
Fr ¢ [X, Y]}ke[n]- Suppose for each k € [t], cm = Com(f, srs),
and we have Zg, | P(X,Y),Zs, | Qx(X,Y) for fi —rx = Pr+Qx.
Then for an honest P, V outputs accept with probability one.

- Knowledge soundness in the algebraic group model (AGM):
There exists an efficient extractor & s.t. for any algebraic adversary
A and any choice of m, £ = poly(Q), the probability of A winning



Algorithm 1 The “making-even” algorithm for R1CS sub-matrices

Input: Public matrices of an R1CS instance P, Py, P¢

c Fmt’xmt’

Witness w € F™. Number of sub-provers ¢.

Output: The “Evened” distributed R1CS sub-matrices and sub-

14:
15:
16:

witness: Pﬂ(zi),Plgi),Pc(i) e Frix(m+l) 4, (D) where i € [£].

: Count the number of non-zero entries in P,[1], P,[1], P.[1].

These entries denotes the constraints related to the witness
one in w. The witness one is public and known by both prover
and verifier.

. Spliteach of P,[1], Py [1], Pc[1] into £ parts to make the number

of non-zero entries “even”. Generate P[(li) [1],Pl§i) [l],Pc(i) [1]

to describe the split constraints related to one for i € [£]. Also,
(1)
1

non-zero entries can be made “even” almost perfectly.

set w.;”/ = one for i € [£]. As the witness one is public, these

: Find among P,, Py, P; the matrix H with the largest number of

non-zero entries.

: Defineaset I « {2,---,mft}.
: Sort 7 by the number of non-zero entries in H[i] fori € 7.

Time—1 has the most non-zero entries.

Let]<—1
: for i = mf — 1 downto 1 do

k — I;

if | =121 | mod 2 = 0 then
Give Pq[k], Py [k], Pc[k], w to sub-prover ;
je—(j mod?t)+1

else| ™=1=1 | mod 2 =1
Give Pq[k], Py [k], Pc[k], w to sub-prover Pp_ji1
je— (j mod¢)+1

end if

end for

Li et al.

the following game is negl(n)(A) over randomness of A, V, and
Gen.

1. Givensrs = Gen(m, £), A outputscmy,...,cmy € Gy.

2. &, given access to the messages of A during the previous step,
outputs fi, ..., fn € Fme[X, Y].

3. A outputs Ty, To,Rq, ..., Rn, S1, ..

4. A takes the part of P in Open with inputscmy, ..
Rl,...,Rn, 51,...,Sn,r1,...,rn.

5. A wins if V outputs accept, and for some k € [n], Zg, 1
Pk(X, Y) OVZSk 1 Qk(X, Y), orfk # Pr + O.

L Sn,andry, ... .
.emp, 11, Tp,
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