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ABSTRACT
Distributed SNARKs enable multiple provers to collaboratively gen-

erate proofs, enhancing the efficiency and scalability of large-scale

computations. The state-of-the-art distributed SNARK for Plonk,

Pianist (S&P ’24), achieves constant proof size, constant amortized

communication complexity, and constant verifier complexity. How-

ever, when proving the Rank-One Constraint System (R1CS), a

widely used intermediate representation for SNARKs, Pianist must

perform the transformation from R1CS into Plonk before proving,

which can introduce a start-up cost of 10× due to the expansion

of the statement size. Meanwhile, existing distributed SNARKs for

R1CS, e.g., DIZK (USENIX Sec. ’18) and Hekaton (CCS ’24), fail to

match the superior asymptotic complexities of Pianist.

We propose Soloist, an optimized distributed SNARK for R1CS.

Soloist achieves constant proof size, constant amortized commu-

nication complexity, and constant verifier complexity, relative to

the R1CS size 𝑛. Utilized with ℓ sub-provers, its prover complexity

is 𝑂 (𝑛/ℓ · log(𝑛/ℓ)). The concrete prover time is ℓ× as fast as the
R1CS-targeted Marlin (Eurocrypt ’20). For zkRollups, Soloist can
prove more transactions, with 2.5× smaller memory costs, 2.8×
faster preprocessing, and 1.8× faster proving than Pianist.

Soloist leverages an improved inner product argument and a new

batch bivariate polynomial commitment variant of KZG (Asiacrypt

’10). To achieve constant verification, we propose a new prepro-

cessing method with a lookup argument for unprescribed tables,

which are assumed pre-committed in prior works. Notably, all these

schemes are equipped with scalable distributed mechanisms.

1 INTRODUCTION
Zero-knowledge proofs [30] enable privacy-preserving verifica-

tion of statements without leaking sensitive witnesses. A specific

type of zero-knowledge proof, the zero-knowledge succinct non-

interactive argument of knowledge (zk-SNARK) [32, 47], provides

a small proof size and efficient verification sublinear to the witness

size. Benefiting from the practical performance, zk-SNARKs have

been deployed in many applications such as blockchain [8, 42, 60].

Prover time, onemain efficiencymeasure of SNARKs, is currently

a critical bottleneck, especially for large-scale computations. Many

efforts have been made to reduce prover time asymptotically and
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concretely, mainly at the scheme level [17, 31, 62]. Distributed

SNARKs [42, 59, 60] simultaneously employs multiple sub-provers

for collaborative proof generation. Each sub-prover handles partial

witness, improving both prover efficiency and scalability.

SNARKs typically target some variants of the circuit satisfia-

bility problem, exemplified by Rank-1 constraint system (R1CS)

in [9, 18, 53] and Plonk in [17, 26, 27], both widely used in practice.

Plonk is more friendly to non-linear functions (although R1CS can

describe them as well [56]), while R1CS can handle addition gates

for free [56]. Also, there exist efficient compilers to transform vari-

ous programs into R1CS, such as Circom [21]. Currently, SNARKs

targeting R1CS and Plonk cannot be converted to each other with-

out significant overhead. Some SNARKs for R1CS like Groth16 [32]

do not support Plonk. Meanwhile, proving R1CS statements us-

ing a Plonk-targeted SNARK may be costly due to the statement

transformation. For example, to prove zkRollup transactions with

261, 833 constraints encoded as an R1CS, Pianist [42] transforms it

into a Plonk with 2, 544, 486 constraints, which incurs at least 10×
overhead as the prover time is quasi-linear to the constraint.

There also exist a few distributed SNARKs for R1CS. However,

these schemes, e.g., DIZK [59] and Hekaton [52], are less efficient

asymptotically than the Plonk-targeted Pianist (Table 1). This inef-

ficiency would impact the performance of numerous R1CS-based

applications like blockchain [8, 42], zero-knowledge virtual ma-

chine [50], verifiable fully homomorphic encryption [57], and zero-

knowledge machine learning [1], where, notably, R1CS may be a

more appropriate or even the only feasible choice [3, 8, 50, 57].

Such a state of affairs makes us wonder:

Can we build a more efficient distributed SNARK for R1CS?

Challenges. Compared with Plonk handling size-𝑛 vectors, R1CS

is more complex for handling size-𝑛 × 𝑛 sparse matrices with 𝑂 (𝑛)
non-zero entries. There is a line of SNARKs for R1CS adopting

different approaches, but may face challenges in achieving efficient

distributed proofs. For example, Ligero-based works [2, 10] arrange

the witness into a matrix. The prover operates over all rows, and

then columns. Assigning sub-provers with independent rows can

be natural for distribution, but sub-provers require to communicate

these rows for column-wise operations, leading to a linear commu-

nication complexity. SNARKs from univariate sum-check [9, 18, 20]

reduce R1CS to proving the sum of some polynomial evaluated over

a domain. A possibly feasible method is to split a large sum-check
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instance into multiple independent ones, and then run an amortized

sum-check [9] to aggregate them. However, the verifier must know

all of the claimed sums for each sum-check, leading to logarithmic

proof size and verification in the number of sub-provers. Indeed,

Hekaton [52] follows a similar “split-then-aggregate” idea but uses

aggregated SNARK, leading to such a proof size and verification.

Building distributed SNARKs from multilinear sum-check [29] may

be feasible following [39, 60], but their proof size and verification

are logarithmic due to the multilinear sum-check.

1.1 Results and Techniques
Main contribution. We build Soloist, a Scalable and Optimized

Low-overhead SNARK for rank-One constraint system via dISTri-

bution (cf., Table 1). Soloist supports general computations while

deVirgo [60] is limited to data-parallel circuits. It has the same

complexities as the Plonk-based Pianist [42], and is better than Hy-

perPianist [39] and Cirrus [58]. Compared with other SNARKs for

R1CS, Soloist outperforms DIZK [59] in prover and communication

complexities, and beats Hekaton [52] in proof size and verifier time.

We implement our scheme. Experiments show good scalability

of Soloist, i.e., the prover time decreases linearly as the number of

provers increases. Soloist has a prover time of 30s for an R1CS with

2
25

constraints when using 32 sub-provers, which is 40× as fast

as Marlin [18], a non-distributed SNARK for R1CS with the same

complexities. When proving a zkRollup circuit of 3, 072 transactions

written in R1CS, our scheme features a prover time of 400s when

utilizing 32 provers, which outperforms Pianist with a 1.8× speedup.
Anew (distributed) IOP for R1CS. Like [17, 42, 60], we follow the

“distributed polynomial interactive oracle proof (PIOP) + distributed

polynomial commitment scheme (PCS)” approach to build Soloist.
Leveraging the challenges above, we need to construct a new IOP

for R1CS, which is expected to be distributed-friendly. We build

such a (distributed) IOP by reducing R1CS into inner products and

entry-wise products. Specifically, we split a large inner product

into the sum of multiple independent smaller inner products, and

transform a large entry-wise product into multiple independent

smaller entry-wise products. The latter is then reduced to inner

products via random linear combination. Sub-provers can then take

partial vectors as inputs to invoke inner product proofs for large

vectors, hence improving the efficiency and scalability.

Improved and distributed IPA with constant proof size. Our
distributed IOP for R1CS, reduced into inner products, features a

linear proof size. For proof size optimization, we need an inner prod-

uct PIOP with constant proof size. Current inner product PIOPs can

not be efficient in all aspects, and we propose an improved PIOP,

leading to an improved inner product argument (IPA) when instan-

tiated with the KZG PCS [35]. Table 2 compares such IPAs. Our

IPA features the smallest proof size, fewest PCS commitments, and

fewest FFTs in prover. It may benefit various IPA-based protocols

like range proofs [13, 65], PCSs [64], and SNARKs [10, 66].

To build the PIOP, we observe that IPAs from Laurent polynomi-

als [14, 55] require fewer FFTs as they see vectors as polynomial

coefficients instead of evaluations. In contrast, IPAs from univariate

sum-check [9, 18] involve fewer PCS commitments and smaller

proof size due to fewer low-degree tests. We achieve the best of

Table 1: Distributed SNARKs for size-𝑛 =𝑚ℓ statements and
ℓ sub-provers, each holding a size-𝑂 (𝑚) witness

Scheme Circuit Prover Comm. Proof size Verifier

deVirgo Parallel 𝑂 (𝑚 log𝑚) 𝑂 (𝑛) 𝑂 (log2 𝑛)𝑂 (log2 𝑛)
Pianist

Plonk

𝑂 (𝑚 log𝑚) 𝑂 (ℓ) 𝑂 (1) 𝑂 (1)
HyperPianist

Cirrus

𝑂 (𝑚 log |F |
log𝑚

) 𝑂 (ℓ log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛)

DIZK

R1CS

𝑂 (𝑚 log
2𝑚) 𝑂 (𝑛) 𝑂 (1) 𝑂 (1)

Hekaton 𝑂 (𝑚 log𝑚) 𝑂 (ℓ) 𝑂 (log ℓ) 𝑂 (log ℓ)
Soloist 𝑂 (𝑚 log𝑚) 𝑂 (ℓ) 𝑂 (1) 𝑂 (1)
1
Comm. denotes the communication overhead among all sub-provers.

2
All the schemes, if for general computations, e.g., R1CS or Plonk, require trusted

setups and/or trusted preprocessing, otherwise the verifier time is linear due to

reading the statement and performing public computation.

3
The sub-prover time is over field F. The super-linear terms can stem from dis-

tributed FFTs [59] - 𝑂 (𝑚 log
2𝑚) , FFTs - 𝑂 (𝑚 log𝑚) , and group multi-scalar

exponentiations -𝑂 (𝑚 log |F|
log𝑚

) where log |F | = 𝜔 (log𝑚) [31].

Table 2: (Distributed) Inner product arguments for size-𝑚ℓ

vectors, all with trusted structured reference string (SRS),
and 𝑂 (1) proof size over group G and field F

Scheme SRS size #Coms #FFT Proof size

Marlin [18] 𝑚ℓ 5 5 5 |G|, 5 |F|
Dark [14] 𝑚ℓ 5 3 6 |G|, 6 |F|
SZ22 [55] 2𝑚ℓ 6 3 6 |G|, 6 |F|
Ours 𝑚ℓ 4 3 4 |G|, 4 |F|
Below is the distributed IPAs, assuming ℓ sub-provers

Scheme Prover Comm. Proof size Verifier

Trivial 𝑂 (𝑚 log𝑚) 𝑂 (ℓ) 𝑂 (ℓ) 𝑂 (ℓ)
Ours 𝑂 (𝑚 log𝑚) 𝑂 (ℓ) 𝑂 (1) 𝑂 (1)
We do not compare IPAs featuring (poly-)log proof size [13, 15, 38, 64]

both worlds, and build our PIOP from univariate sum-check with

coefficient-based polynomials. It stems from a newly explored rela-

tion between inner product and univariate sum-check.

We extend our IPA to the distributed setting (Table 2), achieving

a constant proof size unrelated to the number of sub-provers. This

helps to build a distributed SNARK for R1CS with constant proof

size. Its core idea is using Lagrange polynomials to transform the

univariate sum-check of the sum of multiple univariate polynomial

multiplications into a two-time univariate sum-check of bivariate

polynomial multiplications. Our approach for the reduction of proof

size may be of interest in other SNARK applications.

Distributed preprocessing. Equipped with the distributed IPA,

our distributed SNARK features a constant proof size, but with

a linear verifier complexity, which stems from computation re-

lated to linear-size public statements. We reduce it to constant via

preprocessing similar to [18, 53]. As we use a new PIOP from in-

ner products instead of from univariate or multilinear sum-check

in these non-distributed schemes, we need a new preprocessing

scheme, and further need to equip it with a distributed mechanism.
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Table 3: (Distributed) batch PCSs using KZG or mKZG for
opening 𝑡 points on 𝑡 size-𝑛 =𝑚ℓ committed polynomials

Scheme Poly. Open Proof size Verifier

BDF
+
20 [11] Uni. 𝑂 (𝑛) G 2 |G| 𝑂 (𝑡) G, 2 𝑃

HyperPlonk [17] Mul. 𝑂 (𝑡𝑛) G 𝑂 (log 𝑡𝑛) |G| 𝑂 (log 𝑡𝑛) 𝑃
Ours Biv. 𝑂 (𝑛) G 𝑡 + 4 |G| 𝑂 (𝑡) G, 4 𝑃
Ours-variant Biv. 𝑂 (𝑛) G 4 |G|, 𝑡 + 1 |F| 𝑂 (𝑡) G, 5 𝑃
Below is the distributed batch bivariate PCS, assuming ℓ provers

Scheme Open Comm. Proof size Verifier

Pianist [42] 𝑂 (𝑡𝑚) G 𝑂 (ℓ𝑡) 2𝑡 |G| 𝑂 (𝑡) 𝑃
Ours 𝑂 (𝑚) G 𝑂 (ℓ𝑡) 𝑡 + 4 |G| 𝑂 (𝑡) G, 4 𝑃
We only count the main costs. Pairing operations 𝑃 are more expensive than group

ones G, which are more expensive than field ones F. Also, group element size |G | can
be 3× larger than field |F | . For a 𝜇-variate polynomial with degree bound 𝑑 of each

variable, its polynomial size is 𝑑𝜇
. The transformation from Univariate polynomials

into Multivariate or Bivariate ones is not straightforward. Typically, 𝑡 is a small

constant when employed in SNARKs [17, 18], while 𝑛 is linear to the size of statement.

We face several challenges. One of these is that the verifier needs

evaluations on some polynomials determined by both the pub-

lic R1CS matrices and the verifier’s challenges. This is usually

achieved by PCSs. Unfortunately, as the online challenges can-

not be known by the indexer in the preprocessing phase, directly

seeing the challenge as polynomial variables leads to a super-linear

prover complexity for committing and opening the polynomials.

Inspired by Marlin [18], we re-describe the matrices using low-

degree encoded polynomials defined by the non-zero entries. We

then build an equivalent relation to compute these polynomial eval-

uations from encoded polynomials. A subsequent challenge arises

as the relation involves non-linear functions. A typical approach

for non-linear functions is lookup table arguments, which prove

that every element in committed vectors exists in a table. However,

most existing lookup arguments [23, 25, 49, 63] assume a correctly

pre-constructed table, while our table is determined by online chal-

lenges, and directly checking the table requires a linear verifier

complexity. We build an efficient online table validity check relying

on the table properties. Our approach may inspire other lookup

arguments where the tables cannot be pre-determined.

Beyond this, we extend the univariate lookup argument [33] to

support bivariate and distributed scenarios, and reduce the master

prover of distributed lookup argument from linear to the R1CS size

into sub-linear by table decomposition. See Section 4.3 for details.

Distributed batch bivariate KZG. Our PIOP requires opening

multiple points on multiple bivariate polynomials, and directly

invoking the mKZG [46] incurs a large overhead. We need a batch

PCS for bivariate polynomials with constant proof size, but most

previous schemes focus on univariate polynomials [11, 18, 27],

or multilinear polynomials with logarithmic proof size [17]. The

only exception is Boomy [37], but it does not support multiple

polynomials. Also, only a special case achieves constant proof size.

We propose such a batch bivariate KZG (cf., Table 3). Opening

totally 𝑡 points on 𝑡 polynomials requires a proof size of 𝑡 + 4
group elements, in contrast to the trivial 2𝑡 and the logarithmic

one in HyperPlonk [17]. If the 𝑌 -dimension evaluation points are

the same as in Soloist, we propose a PCS variant (“ours-variant” in

Table 3) reducing the proof size to 3 group elements plus 𝑡 + 1 field
elements. Also, we generalize our PCS into distributed, preserving

the proof size and verifier complexity like the distributed PCS in

Pianist [42]. However, due to the batch method, our distributed PCS

has better prover complexity, proof size, and verifier complexity

when handling distinct points on multiple polynomials.

We build our PCS following the main idea in the univariate batch

KZG [11], which transforms the evaluation validity of each poly-

nomial into a quotient equation with a common multiple of the

denominators, and then aggregate these equations into one by ran-

dom linear combination. However, generalizations from univariate

to bivariate are challenging due to the non-uniform denominators

in quotient equations and the nonexistence of common quotient

factors for linear combination. We resolve these two problems by

padding the evaluation points into a Cartesian product and intro-

ducing an auxiliary polynomial. The auxiliary polynomial is also

important for the distributed PCS, which makes it possible to split

the computation held by sub-provers independently.

1.2 Related Work
Inner product arguments. IPAs can be constructed from vari-

ous techniques, such as discrete-log [12, 13] and Reed-Solomon

codes [64]. They can be trustless, but have at least a logarithmic

proof size. There is also a line of IPAs from “PIOP + PCS”. Such IPAs

have modularity by modifying the underlying PCSs with distinct

trade-offs. If using KZG, they can achieve a constant proof size.

Appendix A recalls two IPAs from univariate sum-check [9] and

Laurent polynomials [14, 55].

Distributed SNARKs. There are two kinds of distributed SNARKs.
One category [19, 28, 43, 45] delegates the proof generation to

multiple servers with privacy via secret sharing. As the size of

shared witness are the same as the whole one, achieving proof

acceleration can be challenging.

Another category, which we focus on, considers one prover

utilizing multiple machines to accelerate proof generation. The

original DIZK [59] distributes R1CS-targeted Groth16 [32] with

distributed algorithms for basic operations like group multi-scalar

exponentiations and FFTs. However, the distributed FFT leads to

linear communication costs and has increased total time complexity.

Subsequent works [39, 42, 52, 60] share a common idea: splitting

a large statement into multiple smaller statements (required to be

somewhat independent), assigning each to a sub-prover, and ag-

gregating sub-proofs into a final proof. Most of them follow the

“distributed PIOP + distributed PCS” approach. The efficiency can be

different according to the underlying PIOP and PCS. DeVirgo [60]

uses hash-based PCSs [64] and features a linear communication

complexity. HyperPianist [39] and Cirrus [58] reduces it to loga-

rithmic. They also eliminate the FFTs in prover via PIOPs from

multilinear sum-check [17, 61]. However, the sub-prover complex-

ity is still super-linear in field operations due to group multi-scalar

exponentiations, and the proof size or verifier complexity is logarith-

mic. Pianist [42] uses bivariate PIOPs and PCSs to achieve constant

proof size and constant amortized communication complexity, but

it incurs additional overhead when applied to R1CS-based applica-

tions. Hekaton [52], using a different proof aggregation approach,
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has constant amortized communication, but the proof size and ver-

ifier time are linear to the sub-prover number. Further, it requires a

circuit-specific setup instead of a universal one [18, 27, 42].

2 PRELIMINARIES
We use bold lowercase letters like 𝒂 ∈ F𝑛 for size-𝑛 vectors, and 𝑎𝑖
is the 𝑖-th element of 𝒂. For vectors 𝒂, 𝒃 , ⟨𝒂, 𝒃⟩ and 𝒂 ◦ 𝒃 denote the

inner product and entry-wise product of 𝒂 and 𝒃 , respectively. Capi-
talized letters like𝐴 represent matrices on F, and𝐴[𝑖] is its 𝑖-th col-

umn. Denote the set {1, 2, . . . , 𝑛} by [𝑛]. 𝑓 ∈ F𝑚 [𝑋 ] means univari-

ate polynomials 𝑓 (𝑋 ) with a degree bound𝑚, and 𝑔 ∈ F𝑚,ℓ [𝑋,𝑌 ]
represents bivariate polynomial 𝑔(𝑋,𝑌 ) with degree bounds𝑚 over

𝑋 and ℓ over 𝑌 . we sometimes use 𝑓 , 𝑔 for simplicity if 𝑋,𝑌 are

explicit. We use FFT(𝑑,𝑚) for an FFT for polynomial evaluations

(or IFFT for polynomial interpolations) for a degree-𝑑 polynomial

on a size-𝑚 multiplicative subgroup, which costs 𝑂 (𝑚 log𝑑) field
operations. Given a subgroup L = (𝜂0, . . . , 𝜂ℓ−1), denote 𝐿𝑖 (𝑌 ) =
𝜂𝑖−1

ℓ ·
𝑌 ℓ−1
𝑌−𝜂𝑖−1 as the 𝑖-th Lagrange polynomial s.t. 𝐿𝑖 (𝜂𝑖−1) = 1 and

for 𝑘 ∈ [ℓ] ∧ 𝑘 ≠ 𝑖 − 1, 𝐿𝑖 (𝜂𝑘 ) = 0. All bivariate polynomials are

defined using {𝐿𝑖 (𝑌 )}, e.g., 𝑓 (𝑋,𝑌 ) =
∑
𝑖∈[ℓ ] 𝑓𝑖 (𝑋 )𝐿𝑖 (𝑌 ).

For bilinear groups with pairing 𝑒 : G1 ×G2 → G𝑇 , denote 𝑥 ·𝑔𝑖
by [𝑥]𝑖 for 𝑥 ∈ F and G𝑖 generated by 𝑔𝑖∈{1,2} .

R1CS. Given public 𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 ∈ F𝑚ℓ×𝑚ℓ
, an R1CS [9] instance

R1CS(F,𝑚ℓ, 𝑛, 𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 ;𝒘, 𝒂, 𝒃, 𝒄) is satisfied if there exists vec-

tors𝒘, 𝒂, 𝒃, 𝒄 ∈ F𝑚ℓ
such that 𝑃𝑎𝒘 = 𝒂, 𝑃𝑏𝒘 = 𝒃, 𝑃𝑐𝒘 = 𝒄, 𝒂 ◦ 𝒃 = 𝒄 .

We denote its size by𝑛 = 𝑂 (𝑚ℓ), where𝑛 = max{| |𝑃𝑎 | |, | |𝑃𝑏 | |, | |𝑃𝑐 | |}
and | |𝐴| | means the number of non-zero entries in matrix 𝐴.

Interactive oracle proof (IOP). IOP is a multi-round interactive

proof where the verifier sends a challenge and the prover replies

with an oracle in each round. The verifier can query entries on it.

PIOP [18] is an IOP variant where all P’s oracles are polynomials.

2.1 Interactive Argument
An interactive argument for anNP relationR is a tuple of algorithms

(G,P,V). G represents a public parameter generation algorithm.

P andV represent a PPT prover and verifier, respectively.P tries to

convinceV the existence of w s.t. (x, w) ∈ R for a public statement

x through multiple rounds of interaction. An interactive argument

of knowledge (AoK) further allows w to be efficiently extractable

by an extractor.

Definition 1 (Interactive argument of knowledge). (G,P,V)
is an interactive argument of knowledge for R if it satisfies:

• Completeness. For every pp and all (x, w) ∈ R,
Pr[⟨P(w),V⟩(pp, x) = 1] = 1.

• Knowledge soundness. For any PPT P∗, there exists an expected

polynomial time extractor EP∗ such that for all pp, the following
probability is negl(𝑛) (𝜆):

Pr[⟨P∗ (),V⟩(pp, x) = 1, (x, w) ∉ R | w← EP
∗
(pp, x)] .

EP∗ means E has access to the randomness of P∗.
A public-coin interactive AoK can be transformed into non-interactive

via the standard Fiat-Shamir transformation. A SNARK for R1CS is

a non-interactive AoK with succinctness such that the proof size is

poly(𝜆, log𝑛) and the verifier complexity is poly(𝜆, |x|, log𝑛).

2.2 Polynomial Commitment Scheme
Definition 2 (PCS [31]). A PCS for polynomial 𝑓 with security

parameter 𝜆, variate 𝜇, and variate-degree bound 𝑑 is defined by a

tuple of algorithms or protocols.

• pp← Gen(1𝜆, 𝑑, 𝜇): takes the security parameter 𝜆, 𝜇, 𝑑 ; generates

public parameter pp.

• 𝐶 ← Com(pp, 𝑓 ): takes 𝑓 and outputs commitment 𝐶 .

• 𝑏 ← Eval(pp,𝐶, 𝒙, 𝑦; 𝑓 ) is an interactive argument. Both P and

V hold the commitment 𝐶 , the scalar 𝑦, and the evaluation point 𝒙 .
P attempts to convinceV that there exists 𝑓 with bounded size 𝑑𝜇

corresponding to 𝐶 and 𝑓 (𝒙) = 𝑦.V outputs 𝑏 ∈ {0, 1} at the end.
In addition, a PCS requires:

• Completeness. For any 𝑓 with pp← Gen(1𝜆, 𝑑, 𝜇), commitment

𝐶 ← Com(pp, 𝑓 ), and 𝑓 (𝒙) = 𝑦, Pr[Eval(pp,𝐶, 𝒙, 𝑦; 𝑓 ) = 1] = 1.

•Knowledge soundness. Eval is an AoK for the following NP relation

REval (pp) given pp← Gen(1𝜆, 𝑑, 𝜇):
(𝐶, 𝒙, 𝑦; 𝑓 ) : Eval(pp,𝐶, 𝒙, 𝑦; 𝑓 ) = 1 ∧𝐶 = Com(pp, 𝑓 ) ∧ 𝑓 (𝒙) = 𝑦.

It has been proven if the PCS satisfies knowledge soundness,

then the compiled interactive argument from “PIOP + PCS” also

inherits this knowledge property [14, 40, 42].

2.3 Low-Degree Tests
Low-Degree Tests (LDTs) enable a prover to prove that the de-

gree 𝑑 of some polynomial 𝑓 satisfies 𝑑 ≤ 𝐷 for public 𝐷 , given

size-𝐷 system parameters. LDTs are important in several recent zk-

SNARKs [9, 16, 18, 20, 51]. Some schemes, like fast Reed-Solomon

interactive oracle proofs of proximity [7], are born to be LDTs (with

proximity). A general LDT can be achieved by “PIOP + PCS”, and

we recall the PIOP in [16]. Given oracle 𝑓 , the prover sends a poly-

nomial oracle 𝑓 ′ (𝑋 ) = 𝑓 (𝑋 ) ·𝑋𝐷−𝑑
. The verifier then queries 𝑓 , 𝑓 ′

at random 𝛼 , and accepts iff 𝑓 ′ (𝛼) = 𝑓 (𝛼) · 𝛼𝐷−𝑑 . The soundness
error is 𝐷/|F| by the Schwartz-Zippel lemma.

2.4 Univariate Sum-check
Given a polynomial 𝑓 ∈ F𝑑 [𝑋 ], an order-𝑚 multiplicative subgroup

H, and a claimed sum 𝑦, the univariate sum-check PIOP [9] allows

to prove

∑
𝑥∈H 𝑓 (𝑥) = 𝑦. WLOG, assume 𝑑 > 𝑚. To complete this,

the prover P computes polynomials 𝑔 ∈ F𝑚−1 [𝑋 ] and ℎ(𝑋 ) s.t.
𝑓 (𝑋 ) = 𝑋 · 𝑔(𝑋 ) + 𝑦/𝑚 + 𝑍H (𝑋 ) · ℎ(𝑋 ), where 𝑍H is a degree-

𝑚 vanishing polynomial s.t. 𝑍H (𝑥) = 0 for all 𝑥 ∈ H. P sends

polynomials oracles 𝑔, ℎ to the verifierV , who then queries 𝑓 , 𝑔, ℎ

at random 𝛼 to check the validity. The prover and verifier also run

LDT to prove the low-degree property of 𝑔.

3 NEW PIOPS FOR INNER PRODUCTS
An inner product PIOP proves ⟨𝒇 , 𝒔⟩ = 𝑦 for vectors 𝒇 , 𝒔 ∈ F𝑚 and

public 𝑦 ∈ F. We assume 𝒇 and 𝒔 are secret, while extending one to

be public is natural. Appendix A recalls two typical inner product
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Protocol 1 (Improved inner product PIOP). A prover P has wit-

ness𝒇 , 𝒔 ∈ F𝑚 .P and the verifierV hold𝑦 ∈ F, and amultiplicative

coset H with order𝑚. P proves toV it holds that ⟨𝒇 , 𝒔⟩ = 𝑦.

1. P → V : polynomial oracles 𝑓 (𝑋 ), 𝑠′ (𝑋 ) by Equation (2).

2. V → P: a random 𝑢 ∈ F/{0}.
3. P → V : polynomial oracles 𝑔′ (𝑋 ), ℎ(𝑋 ) by Equation (3).

4. V : queries 𝑓 (𝛼), 𝑠′ (𝛼), 𝑔′ (𝛼), ℎ(𝛼) at random 𝛼 ∈ F. Compute

𝑍H (𝛼), and accept iff Equation (3) holds when 𝑋 = 𝛼 .

PIOPs from univariate sum-check and Laurent polynomials. The

former features fewer oracles and queries due to fewer LDTs, while

the latter uses coefficient-based polynomials to achieve fewer FFTs.

We combine the advantages and present a new univariate sum-

check for inner products using coefficient-based polynomials. Specif-

ically, given size-𝑚 vectors 𝒇 , 𝒔, we find the following result

⟨𝒇 , 𝒔⟩ = 𝑦 ⇔
∑︁
𝑥∈H

𝑓 (𝑥)𝑠 (𝑥−1) =𝑚 · 𝑦, (1)

where 𝑓 , 𝑠 are coefficient-based polynomials defined by coefficients

𝒇 , 𝒔, respectively. We prove Equation (1) in Appendix ??.
A direct univariate sum-check for Equation (1) fails as 𝑠 is evalu-

ated on fractions 𝑥−1. To transform it into a standard polynomial,

our first attempt is to rewrite Equation (1) as

∑
𝑥∈H 𝑓 (𝑥) · 𝑥𝑚 ·

𝑠 (𝑥−1) =𝑚𝑦. This holds because for any 𝑥 ∈ H, 𝑥𝑚 = 1. Unfortu-

nately, the degree of 𝑋𝑚𝑠 (𝑋 −1) is𝑚, which introduces larger-size

system parameters and new LDTs for 𝑓 . Instead, we use a degree-

(𝑚 − 1) polynomial 𝑠′ (𝑋 ) equal to 𝑠 (𝑋 −1) anywhere on H. Given
𝑠 (𝑋 −1) = 𝑠0 + 𝑠1𝑋 −1 + · · · + 𝑠𝑚−1𝑋 1−𝑚

, we let

𝑠′ (𝑋 ) = 𝑋𝑚 ·
∑︁

𝑖∈[𝑚]
(𝑠𝑖−1 · 𝑋 −𝑖+1) − 𝑠0𝑋𝑚 + 𝑠0 . (2)

Now Equation (1) can be rewritten as

∑
𝑥∈H 𝑓 (𝑥) · 𝑠′ (𝑥) = 𝑚 ·

𝑦, which can be converted into a standard univariate sum-check.

𝑓 (𝑋 ) · 𝑠′ (𝑋 ) = 𝑋 · 𝑔(𝑋 ) + 𝑦 + 𝑍H (𝑋 )ℎ(𝑋 ).
We next eliminate the LDT inspired by [51, §E]. Given a challenge

𝑢, by multiplying (𝑋 − 𝑢). The sum-check can be written as

𝑓 (𝑋 ) · 𝑠′ (𝑋 ) · (𝑋 −𝑢) = 𝑋 ·𝑔′ (𝑋 ) + (𝑦 +𝑍H (𝑋 )ℎ(𝑋 )) · (𝑋 −𝑢), (3)
where deg(𝑔′) < 𝑚. Given a size-𝑚 parameter, the LDT is free.

We propose our inner product PIOP in Protocol 1.

Theorem 1. Protocol 1 is an inner product PIOP. The oracle num-

ber and proof size are 4. The soundness error is 2𝑚/|F|, The prover
complexity is 6FFT(𝑚,𝑚)+𝑂 (𝑚). The verifier complexity is𝑂 (log𝑚).

Proof. Completeness. Completeness holds by Equation (1)

and univariate sum-check. Below we prove Equation (1).

By definition, the possible terms in
ˆ𝑓 (𝑋 )𝑠 (𝑋 −1) include {𝑋 −𝑚+1,

𝑋 −𝑚+2, . . . , 𝑋𝑚−1}. We then prove

for any 𝑖 ∈ [−𝑚 + 1,𝑚 − 1]/{0},
∑︁
𝑥∈H

𝑥𝑖 = 0. (4)

AsH is of order𝑚, for any 𝑖 , it holds (𝜔𝑖 )𝑚 = 1. Hence, (𝜔𝑖 )𝑚 −1 =
(𝜔𝑖 − 1) ((𝜔𝑖 )𝑚−1 + (𝜔𝑖 )𝑚−2 + · · · + (𝜔𝑖 )0) = 0. For any 𝑖 ∈ [−𝑚 +
1,𝑚−1]/{0}, as𝜔𝑖 ≠ 1, we have (𝜔𝑖 )𝑚−1 + (𝜔𝑖 )𝑚−2 + · · ·+ (𝜔𝑖 )0 =∑

𝑗∈[0,𝑚−1] (𝜔 𝑗 )𝑖 = 0, which exactly proves Equation (4).

Soundness. To prove soundness, we first introduce an auxiliary

equation.

𝑓 (𝑋 ) · 𝑠′ (𝑋 ) = 𝑋 · 𝑔(𝑋 ) + 𝑦 + 𝑍H (𝑋 )ℎ(𝑋 ) . (5)

Equation (1)⇔ Equation (5) is due to the fact that∀𝑥 ∈ H, 𝑠′ (𝑥) =
𝑠 (𝑥−1) and the validity of Equation (2). Equation (1) is then equiv-

alent to Equation (5) due to univariate sum-check. Equation (5)

⇒ Equation (3) directly holds by setting 𝑔′ (𝑋 ) = (𝑋 − 𝑢)𝑔(𝑋 ).
Equation (5) ⇐ Equation (3): Since all the sum terms in Equa-

tion (3), except for 𝑋𝑔′ (𝑋 ), are divisible by 𝑋 − 𝑢 and 𝑢 ≠ 0, then

(𝑋 − 𝑢) divides 𝑔′ (𝑋 ). Dividing Equation (3) by (𝑋 − 𝑢), we have
𝑔′ (𝑋 )/(𝑋 − 𝑢) = 𝑔(𝑋 ) satisfies Equation (5) and is of size at most

𝑚 − 1. Hence, the soundness error is only related to random 𝛼 , and

is 2𝑚/|F| due to Schwartz-Zippel lemma.

Complexity. The oracle number, query size, and verifier complex-

ity hold directly. The prover requires 4 FFT(𝑚,𝑚) for obtaining
size-2𝑚 evaluations of 𝑓 , 𝑠′ and 2 FFT(𝑚,𝑚) for computing polyno-

mial 𝑓 · 𝑠′. The prover computation other than this is 𝑂 (𝑚). □

4 DISTRIBUTED PIOPS FOR R1CS

4.1 Reducing R1CS into Inner Product PIOPs
We transform an R1CS described in Section 2 into three linear

constraints and one quadratic constraint:

- Witness𝒘, 𝒂 ∈ F𝑚ℓ
satisfy 𝑃𝒘 = 𝒂 for public 𝑃 ∈ F𝑚ℓ×𝑚ℓ

.

- Witness vectors 𝒂, 𝒃, 𝒄 ∈ F𝑚ℓ
satisfy 𝒂 ◦ 𝒃 − 𝒄 = 0.

Testing linear constraints.We use the classic Freivalds’ algorithm

to transform the linear constraints into inner product constraints.

Given a random challenge vector 𝒓 ∈ F𝑚ℓ
, this constraint can be

transformed into (𝒓⊤𝑃)𝒘 = 𝒓⊤𝒂. For distribution, we split a size-𝑚ℓ

inner product into the sum of ℓ size-𝑚 inner products. Taking the

left hand as an example, we sequentially split the size-𝑚ℓ vector

𝒑′ = 𝒓⊤𝑃 and 𝒘 into ℓ sub-vectors, leading to matrices 𝑃 ′ and
𝑊 of size 𝑚 × ℓ such that the 𝑖-th column (i.e., 𝑃 ′ [𝑖] and𝑊 [𝑖])
corresponds to the 𝑖-th sub-vectors. The linear constraint is then

reduced into

∑
𝑖∈[ℓ ] ⟨𝑃 ′ [𝑖],𝑊 [𝑖]⟩ =

∑
𝑖∈[ℓ ] ⟨𝐴[𝑖], 𝑅 [𝑖]⟩, where 𝐴[𝑖]

and 𝑅 [𝑖] have similar meanings as 𝑃 ′ [𝑖] and𝑊 [𝑖].
To prove this inner product equation, a direct approach is seeing

𝑊 [𝑖], 𝑃 ′ [𝑖], 𝐴[𝑖], 𝑅 [𝑖] as coefficient-based polynomials 𝑓𝑊 [𝑖 ] , 𝑓𝑃 ′ [𝑖 ] ,
𝑓𝐴[𝑖 ] , 𝑓𝑅 [𝑖 ] respectively, and invoking Protocol 1 to prove∑︁

𝑥∈H

∑︁
𝑖∈[ℓ ]

𝑓𝑃 ′ [𝑖 ] (𝑥) 𝑓 ′𝑊 [𝑖 ] (𝑥) =
∑︁
𝑥∈H

∑︁
𝑖∈[ℓ ]

𝑓𝐴[𝑖 ] (𝑥) 𝑓𝑅 [𝑖 ] (𝑥−1), (6)

where 𝑓 ′
𝑊 [𝑖 ] is a standard polynomial modified by 𝑓𝑊 [𝑖 ] like modi-

fying 𝑠 into 𝑠′ as in Equation (2), which involves 4 sets of polynomial

oracles. We next eliminate the oracle 𝑓𝑅 [𝑖 ] via structured challenge

𝒓 , i.e., (𝑟0, . . . , 𝑟𝑚ℓ−1). As the coefficient of 𝑓𝐴[𝑖 ] is 𝐴[𝑖], for 𝑖 ∈ [ℓ],
we have ⟨𝐴[𝑖], 𝑅 [𝑖]⟩ = 𝑟 (𝑖−1)𝑚 ⟨𝐴[𝑖], 𝒓⟩ = 𝑟 (𝑖−1)𝑚 𝑓𝐴[𝑖 ] (𝑟 ). Now by

Equation (1), it suffices to prove using 3 sets of oracles:∑︁
𝑥∈H

∑︁
𝑖∈[ℓ ]

𝑓𝑃 ′ [𝑖 ] (𝑥) · 𝑓 ′𝑊 [𝑖 ] (𝑥) =𝑚 ·
∑︁
𝑖∈[ℓ ]

𝑟 (𝑖−1)𝑚 · 𝑓𝐴[𝑖 ] (𝑟 ) . (7)

Testing quadratic constraints. Similar to testing linear constraints,

we transform a size-𝑚ℓ entry-wise product into ℓ size-𝑚 entry-wise

products to achieve distribution. Split 𝒂, 𝒃, 𝒄 into ℓ sub-vectors,
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arrange them into matrices, and define 𝐴[𝑖], 𝐵 [𝑖],𝐶 [𝑖] as the 𝑖-

th sub-vector. The quadratic constraint is then transformed into

∀𝑖 ∈ [ℓ], 𝐴[𝑖] ◦ 𝐵 [𝑖] = 𝐶 [𝑖]. We next reduce it into inner prod-

ucts via random linear combination. Given a challenge vector 𝒔 =
(𝑠0, . . . , 𝑠𝑚−1), the constraint becomes ∀𝑖 ∈ [ℓ], ⟨𝐴[𝑖] ◦ 𝐵 [𝑖], 𝒔⟩ =
⟨𝐶 [𝑖], 𝒔⟩. To prove it, we transform equivalently ⟨𝐴[𝑖] ◦ 𝐵 [𝑖], 𝒔⟩
into ⟨𝐴[𝑖] ◦ 𝒔, 𝐵 [𝑖]⟩, and then use a random linear combination to

transform the ℓ inner products into one by reusing the challenge 𝑠 ,

i.e.,

∑
𝑖∈[ℓ ] 𝑠

𝑚 (𝑖−1) ⟨𝐴[𝑖] ◦ 𝒔, 𝐵 [𝑖]⟩ = ∑
𝑖∈[ℓ ] 𝑠

𝑚 (𝑖−1) · ⟨𝐶 [𝑖], 𝒔⟩. As
the exponent of 𝑠 in each term varies, the soundness does not affect.

Now, the length of 𝒔 equals 𝒓 in testing linear constraints. We

can further reuse 𝒓 to replace 𝒔 as these challenges are generated
in the same round after the verifier receiving secret polynomial

oracles. Following Protocol 1, the quadratic constraint becomes∑︁
𝑥∈H

∑︁
𝑖∈[ℓ ]

𝑟𝑚 (𝑖−1) 𝑓𝐴[𝑖 ] (𝑟𝑥) 𝑓 ′𝐵 [𝑖 ] (𝑥) =𝑚
∑︁
𝑖∈[ℓ ]

𝑟𝑚 (𝑖−1) 𝑓𝐶 [𝑖 ] (𝑟 ) . (8)

Reducing one polynomial oracle.With these methods, we can

build 4 univariate sum-check relations for R1CS. For R1CS(F,𝑚ℓ, 𝑃𝑎,

𝑃𝑏 , 𝑃𝑐 ;𝒘, 𝒂, 𝒃, 𝒄), 𝑣 ∈ {𝑎, 𝑏, 𝑐} and 𝑉 ∈ {𝐴, 𝐵,𝐶}, we prove∑︁
𝑥∈H

∑︁
𝑖∈[ℓ ]

𝑓𝑃 ′𝑣 [𝑖 ] (𝑥) 𝑓
′
𝑊 [𝑖 ] (𝑥) =𝑚

∑︁
𝑖∈[ℓ ]

𝑟 (𝑖−1)𝑚 𝑓𝑉 [𝑖 ] (𝑟 ),∑︁
𝑥∈H

∑︁
𝑖∈[ℓ ]

𝑟 (𝑖−1)𝑚 𝑓𝐴[𝑖 ] (𝑟𝑥) 𝑓 ′𝐵 [𝑖 ] (𝑥) =𝑚
∑︁
𝑖∈[ℓ ]

𝑟 (𝑖−1)𝑚 𝑓𝐶 [𝑖 ] (𝑟 ) .
(9)

In the above, two polynomial oracles for secret vector 𝒃 are needed,

i.e., 𝑓 ′
𝐵 [𝑖 ] and 𝑓𝐵 [𝑖 ] . We eliminate the oracle 𝑓 ′

𝐵 [𝑖 ] by constructing a

virtual 𝑓 ′
𝐵 [𝑖 ] from 𝑓𝐵 [𝑖 ] . According to Equation (2), for any query 𝑟 ,

𝑓 ′
𝐵 [𝑖 ] (𝑟 ) = 𝑟𝑚 · 𝑓𝐵 [𝑖 ] (𝑟−1) + (1 − 𝑟𝑚) · 𝑓𝐵 [𝑖 ] (0). Then, the verifier
can obtain 𝑓 ′

𝐵 [𝑖 ] (𝑟 ) by querying 𝑓𝐵 [𝑖 ] (𝑟−1) and 𝑓𝐵 [𝑖 ] (0).

4.2 Distributed PIOP with Constant Proof Size
To construct a distributed PIOP for R1CS, a direct approach is to as-

sign the 𝑖-th sub-prover P𝑖 with {𝑓 ′𝑊 [𝑖 ] , 𝑓𝐴[𝑖 ] , 𝑓
′
𝐵 [𝑖 ] , 𝑓𝐶 [𝑖 ] }𝑖∈[ℓ ] and

invoke Equation (9). However, the proof size is at least 𝑂 (ℓ) as the
verifier queries 𝑂 (1) evaluations on each of the 𝑂 (ℓ) polynomials.

This section reduces the proof size into constant.We first propose

Lemma 1, which shows the equivalence of: 1) the sum of multiple

univariate polynomial multiplications; 2) constant-number bivari-

ate polynomial multiplications summed over a Lagrange-domain.

Lemma 1. Given order-𝑚 and order-ℓ multiplicative cosets H and

L, for any univariate polynomials 𝑓
(1)
𝑖

, 𝑓
(2)
𝑖
∈ F𝑚 [𝑋 ], we have∑

𝑦∈L 𝑓
(1) (𝑋,𝑦) 𝑓 (2) (𝑋,𝑦) = ∑

𝑖∈[ℓ ] 𝑓
(1)
𝑖
(𝑋 ) 𝑓 (2)

𝑖
(𝑋 ), and further∑

𝑥∈H
∑

𝑦∈L 𝑓
(1) (𝑥,𝑦) 𝑓 (2) (𝑥,𝑦) = ∑

𝑥∈H
∑
𝑖∈[ℓ ] 𝑓

(1)
𝑖
(𝑥) 𝑓 (2)

𝑖
(𝑥),

where 𝑓𝑗 (𝑋,𝑌 ) =
∑
𝑖∈[ℓ ] 𝑓

( 𝑗 )
𝑖
(𝑋 )𝐿𝑖 (𝑌 ). This can be naturally ex-

tended to cases with more polynomial multiplications or additions.

Proof of Lemma 1. Denote the elements inL by (1, 𝜂, . . . , 𝜂ℓ−1).
By the property of Lagrange polynomials, we have

∑
𝑦∈L 𝑓

(1) (𝑋,𝑦)
=
∑
𝑖∈[ℓ ] 𝑓

( 𝑗 )
𝑖
(𝑋 ). This is because for any 𝑖, 𝑘 ∈ [ℓ] and any 𝑘 ≠ 𝑖 ,

only 𝐿𝑖 (𝜂𝑖−1) = 1 and 𝐿𝑘 (𝜂𝑖−1) = 0.

Figure 1: Visualization of the distributed sum-check

Further, for

∑
𝑦∈L 𝑓

(1) (𝑋,𝑦) 𝑓 (2) (𝑋,𝑦) and 𝑖, 𝑗 ∈ [ℓ] s.t. 𝑖 ≠ 𝑗 ,

the cross term 𝐿𝑖 (𝑦)𝐿𝑗 (𝑦) = 0 for all 𝑦 ∈ L. Then, we have∑︁
𝑦∈L

𝑓 (1) (𝑋,𝑦) 𝑓 (2) (𝑋,𝑦) =
∑︁
𝑦∈L

∑︁
𝑖∈[ℓ ]

𝑓
(1)
𝑖
(𝑋 ) 𝑓 (2)

𝑖
(𝑋 )𝐿2𝑖 (𝑦)

=
∑︁
𝑖∈[ℓ ]

𝑓
(1)
𝑖
(𝑋 ) 𝑓 (2)

𝑖
(𝑋 ).

The first equation in Lemma 1 hence follows.

Summing this equation over H, we have∑︁
𝑥∈H

∑︁
𝑦∈L

𝑓 (1) (𝑥,𝑦) 𝑓 (2) (𝑥,𝑦) =
∑︁
𝑥∈H

∑︁
𝑖∈[ℓ ]

𝑓
(1)
𝑖
(𝑥) 𝑓 (2)

𝑖
(𝑥) .

The above proof naturally holds for more polynomials, includ-

ing both more polynomial multiplications and more polynomial

additions. □

We start by introducing auxiliary polynomials 𝑅𝑖 (𝑋 ) = 𝑋 𝑖−1
and

𝑅(𝑋,𝑌 ) = ∑
𝑖∈[ℓ ] 𝑅𝑖 (𝑋 )𝐿𝑖 (𝑌 ) to describe relations in Equation (9)

uniformly. Assume sub-prover P𝑖 holds 𝑓 (1)𝑖
, 𝑓
(2)
𝑖

, 𝑓
(3)
𝑖

. By moving

the right hand into the left, Equation (9) can be described as∑︁
𝑥∈H

∑︁
𝑖∈[ℓ ]

𝑓
(1)
𝑖
(𝑥) 𝑓 (2)

𝑖
(𝑥)𝑅𝑖 (𝑧1) − 𝑓

(3)
𝑖
(𝑟 )𝑅𝑖 (𝑧2) = 0 (10)

In Equation (7), 𝑅𝑖 (𝑧1) is not needed, 𝑟 = 𝑟 or 𝑟−1, and 𝑧2 = 𝑟𝑚 . In

Equation (8), 𝑓
(1)
𝑖
(𝑥) = 𝑓𝐴[𝑖 ] (𝑟𝑥), and 𝑧1 = 𝑧2 = 𝑟𝑚 .

Define 𝑓𝑖 (𝑋 ) = 𝑓
(1)
𝑖
(𝑋 ) 𝑓 (2)

𝑖
(𝑋 )𝑅𝑖 (𝑧1)−𝑓 (3)𝑖

(𝑟 )𝑅𝑖 (𝑧2) as the 𝑖-th
summed polynomial in Equation (10). For 𝑗 ∈ [3], define polynomi-

als 𝑓 ( 𝑗 ) (𝑋,𝑌 ) = ∑
𝑖∈[ℓ ] 𝑓

( 𝑗 )
𝑖
(𝑋 )𝐿𝑖 (𝑌 ). Define bivariate polynomial

𝑓 (𝑋,𝑌 ) = 𝑓 (1) (𝑋,𝑌 ) 𝑓 (2) (𝑋,𝑌 )𝑅(𝑧1, 𝑌 ) − 𝑓 (3) (𝑟, 𝑌 )𝑅(𝑧2, 𝑌 ).
Two times of sum-check. By the univariate sum-check over

Equation (10), there exist 𝑔1 ∈ F𝑚−1 [𝑋 ], ℎ1 (𝑋 ) s.t.
∑
𝑖∈[ℓ ] 𝑓𝑖 (𝑋 ) =

𝑋 ·𝑔1 (𝑋 ) +𝑍H (𝑋 )ℎ1 (𝑋 ). Given a challenge 𝛼 , it can be checked by∑
𝑖∈[ℓ ] 𝑓𝑖 (𝛼) = 𝛼 · 𝑔1 (𝛼) + 𝑍H (𝛼)ℎ1 (𝛼). This is the first univariate

sum-check, corresponding to Step 2. in Protocol 3.

Let𝑇2 = 𝛼𝑔1 (𝛼)+𝑍H (𝛼)ℎ1 (𝛼). By Lemma 1we have

∑
𝑖∈[ℓ ] 𝑓𝑖 (𝛼)

=
∑

𝑦∈L 𝑓 (𝛼,𝑦) = 𝑇2. As 𝛼 has been fixed, 𝑓 (𝛼,𝑌 ) is a degree-(ℓ−1)
univariate polynomial over 𝑌 , and can be invoked in the univariate

sum-check again. Hence, there exist 𝑔2 ∈ Fℓ−1 [𝑌 ], ℎ2 (𝑌 ) s.t.
𝑓 (𝛼,𝑌 ) = 𝑌 · 𝑔2 (𝑌 ) +𝑇2/ℓ + 𝑍L (𝑌 )ℎ2 (𝑌 ) . (11)

This is the second univariate sum-check, as in Step 4. of Protocol 3.

Scalability and constant proof size. The above procedure is scal-
able with constant proof size. Assume the 𝑖-th proverP𝑖 holds 𝑓𝑖 (𝑋 ).
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After receiving the challenge 𝑟 ,P𝑖 can build a distributed sum-check

by dividing 𝑍H (𝑋 ) s.t. 𝑓𝑖 (𝑋 ) = 𝑋 ·𝑔1,𝑖 (𝑋 ) +𝑇1,𝑖 +𝑍H (𝑋 )ℎ1,𝑖 (𝑋 ). P𝑖
then sends oracles 𝑔1,𝑖 , ℎ1,𝑖 to P0. Next, P0 can compute the aggre-

gated oracles 𝑔1 =
∑
𝑖∈[ℓ ] 𝑔1,𝑖 and ℎ1 =

∑
𝑖∈[ℓ ] ℎ1,𝑖 .

1
Completeness

holds by the uniqueness of polynomial division.

Given the challenge 𝛼 , as P𝑖 holds 𝑓𝑖 (𝑋 ), she can compute

𝑔1,𝑖 (𝛼), ℎ1,𝑖 (𝛼), 𝑓𝑖 (𝛼) locally. P𝑖 sends these evaluations to P0. Next,
P0 computes𝑇2 and 𝑓 (𝛼,𝑌 ) =

∑
𝑖∈[ℓ ] 𝑓𝑖 (𝛼)𝐿𝑖 (𝑌 ). Now,P0 can com-

pute 𝑔2 (𝑌 ), ℎ2 (𝑌 ), and run the sum-check in Equation (11) locally.

In the query phase, the verifierV queries 𝑔1 (𝛼), ℎ1 (𝛼) for the
first-time sum-check, and queries 𝑓 (𝛼, 𝛽), 𝑔2 (𝛽), ℎ2 (𝛽) for the second-
time sum-check. The proof size is hence 𝑂 (1), non-related to ℓ .

We visualize the above procedure in Figure 1. We find that each

sub-prover only handles degree-𝑂 (𝑚) polynomials, and P0 only
handles degree-𝑂 (ℓ) polynomials. The scalability hence follows.

Decomposing large-degree polynomials. We discuss the de-

grees of ℎ2 in Equation (11). For linear constraints in Equation (7),

𝑅(𝑧1, 𝑌 ) is not needed, so deg(ℎ2) ≤ ℓ − 2. However, for quadratic
constraints in Equation (8), 𝑅(𝑧1, 𝑌 ) is needed and deg(ℎ2) ≥ 2ℓ −3.
If using size-2ℓ system parameters, additional LDTs for secret poly-

nomials like 𝑓 (𝛼,𝑦) would be required. We decompose ℎ2 uniquely

into ℎ
2,low, ℎ2,high ∈ Fℓ [𝑌 ] s.t. ℎ2 (𝑌 ) = ℎ

2,low (𝑌 ) + 𝑌 ℓ · ℎ
2,high (𝑌 ).

Now we can still use size-ℓ system parameters.

The formal protocol.We propose the formal distributed PIOP for

R1CS in two protocols. Given the original R1CS sub-witness vectors

𝑊 [𝑖], 𝐴[𝑖], 𝐵 [𝑖],𝐶 [𝑖] of P𝑖 , Protocol 2 describes how to generate

corresponding sub-polynomials 𝑓 ′
𝑊 [𝑖 ] , 𝑓𝐴[𝑖 ] , 𝑓

′
𝐵 [𝑖 ] , 𝑓𝐶 [𝑖 ] locally and

how to generate collaboratively the bivariate polynomial oracles

𝑓 ′
𝑊
(𝑋,𝑌 ), 𝑓𝐴 (𝑋,𝑌 ), 𝑓 ′𝐵 (𝑋,𝑌 ), 𝑓𝐶 (𝑋,𝑌 ). Protocol 3 proves R1CS, as-

suming each sub-prover is assigned these secret sub-polynomials.

R1CS involves 4 sum-check relations as in Equation (9), where

The first three relations are similar. For simplicity, Protocol 3 dis-

cusses two relations: a general linear constraint 𝑃𝑣𝒘 = 𝒗 (𝑣 can

belong to {𝑎, 𝑏, 𝑐}) and a quadratic constraint 𝒂 ◦𝒃 = 𝒄 . Introducing
more relations is natural. For multiple sum-checks (2 in Protocol 3)

and the formal R1CS with more linear constraints, we follow Au-

rora [9] to combine them into one sum-check using random linear

combination (𝑠 in Protocol 3).

Theorem 2. Protocol 3 is a distributed PIOP. For size-𝑚ℓ R1CS, the

sub-prover complexity is𝑂 (𝑚 log𝑚), the master prover complexity is

𝑂 (ℓ log ℓ), the proof size and amortized communication complexity

are 𝑂 (1), and the verifier complexity is 𝑂 (𝑚ℓ).

Proof of Theorem 2. Completeness.The completeness of the

transformation from the R1CS instance into Equation (9) holds

following that of linear constraint tests and quadratic constraint

tests in Section 4.1. Starting from Equation (9), completeness holds

due to the amortized univariate sum-check [9] to prove multiple

sum-check relations at one time, and the technique to reduce LDT

number in Basilisk [51].

1
We assume the additive-homomorphic oracle size is𝑂 (1) . Also, assume an oracle can

be obtained from the sum of ℓ oracles in𝑂 (ℓ ) time. Looking ahead, we use univariate

and bivariate KZG [35, 46] with these properties to instantiate polynomial oracles.

Protocol 2 (Distributed secret polynomial oracle generation).
Suppose an R1CS instance (F,𝑚ℓ, 𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 ;𝒘, 𝒂, 𝒃, 𝒄). Split secret
vectors𝒘, 𝒂, 𝒃, 𝒄 into ℓ sub-vectors, and denote the 𝑖-th sub-vector as
𝑊 [𝑖], 𝐴[𝑖], 𝐵 [𝑖],𝐶 [𝑖]. Suppose sub-provers P1, . . . ,Pℓ and master

prover P0. For 𝑖 ∈ [ℓ], P𝑖 is assigned with𝑊 [𝑖], 𝐴[𝑖], 𝐵 [𝑖],𝐶 [𝑖].
Provers distributedly generate oracles of secret bivariate polynomials

𝑓 ′
𝑊
, 𝑓𝐴, 𝑓

′
𝐵
, 𝑓𝐶 ∈ F𝑚,ℓ [𝑋,𝑌 ]. For 𝑖 ∈ [ℓ] and𝑈 ∈ {𝑊,𝐴, 𝐵,𝐶}:

1. P𝑖 computes coefficient-based 𝑓𝑈 [𝑖 ] or 𝑓 ′
𝑈 [𝑖 ] ∈ F𝑚 [𝑋 ] from

𝑈 [𝑖], where 𝑓𝑈 [𝑖 ] (𝑋 ) =
∑

𝑗∈[𝑚] 𝑈 [𝑖] 𝑗 · 𝑋 𝑗−1
, and 𝑓 ′

𝑈 [𝑖 ] (𝑋 ) =∑
𝑗∈[𝑚] 𝑋

𝑚 (𝑈 [𝑖] 𝑗 ·𝑋 1− 𝑗 )−𝑈 [𝑖]1 ·𝑋𝑚+𝑈 [𝑖]1 like Equation (2).
2. P𝑖 sends the oracle 𝑓𝑈 [𝑖 ] (𝑋 ) to P0. P0 computes the oracle

𝑓𝑈 (𝑋,𝑌 ) =
∑
𝑖∈[ℓ ] 𝑓𝑈 [𝑖 ] (𝑋 )𝐿𝑖 (𝑌 ). 𝑓 ′𝑈 (𝑋,𝑌 ) is similar.

Soundness. Checking 𝑃𝑣𝒘 = 𝒗 by introducing a random challenge

𝒓 holds a soundness error of (𝑚ℓ)/|F|. Checking 𝒂 ◦𝒃 = 𝒄 by check-
ing

∑ℓ
𝑖=1 𝑟

𝑚 (𝑖−1) ⟨𝐴[𝑖] ◦ 𝒔, 𝐵 [𝑖]⟩ = ∑ℓ
𝑖=1 𝑟

𝑚 (𝑖−1) ⟨𝐶 [𝑖], 𝒔⟩ for 𝑖 ∈ [ℓ]
has a soundness error bounded by (𝑚ℓ)/|F|. Using 𝑠 to combine

multiple sum-check relations has a soundness error of 1/|F|. Check-
ing the two equations over 𝑋 = 𝛼 , 𝑌 = 𝛽 has a soundness error of

2ℓ/|F|, 2𝑚/|F|, 3ℓ/|F|, respectively. By the union bound argument,

the total soundness error is (2𝑚 + 2ℓ + 2𝑚ℓ)/|F|.
Complexity. We present the complexity analysis below.

Sub-prover. The time complexity of P𝑖 is 𝑂 (𝑚) for running Proto-
col 2 to compute

ˆ𝑓𝑈 [𝑖 ] (𝑋 ) or ˆ𝑓 ′
𝑈 [𝑖 ] (𝑋 ). Assume each𝑚 column of

the (sparse) 𝑃𝑣 has 𝑂 (𝑚) non-zero entries.
2
Then, P𝑖 spends 𝑂 (𝑚)

time to compute the𝑂 (𝑚) non-zero entries on 𝒓⊤𝑃𝑣 and ˆ𝑓𝑃 ′𝑣 [𝑖 ] (𝑋 ).
Computing 𝑔1,𝑖 , ℎ1,𝑖 costs𝑂 (𝑚 log𝑚) time. Computing and sending

𝑂 (1) evaluations on degree-𝑚 univariate polynomials costs 𝑂 (𝑚)
time. Hence, the total sub-prover complexity is 𝑂 (𝑚 log𝑚).
Master prover. The prover complexity of P0 is 𝑂 (ℓ) for computing

oracles 𝑓𝑈 (or 𝑓 ′
𝑈
) and 𝑔2, ℎ2. Given evaluations in Step 4.a, P0 re-

quires𝑂 (ℓ) time to obtain size-ℓ polynomial evaluations in Step 4.b.

Then, P0 interpolates these polynomials via IFFT to obtain the poly-

nomials {𝑓𝑗 (𝛼,𝑌 )}. Hence, computing 𝑔2, ℎ2 costs 𝑂 (ℓ log ℓ) time.

In addition, computing oracles 𝑔1, ℎ1 from {𝑔1,𝑖 , ℎ1,𝑖 } costs 𝑂 (ℓ)
time. Therefore, the total master prover complexity is 𝑂 (ℓ log ℓ).
Proof size.The involved polynomial oracles include 𝑓 ′

𝑊
(𝑋,𝑌 ), 𝑓𝐴 (𝑋,𝑌 ),

𝑓 ′
𝐵
(𝑋,𝑌 ), 𝑓𝐶 (𝑋,𝑌 ), 𝑔1, ℎ1, 𝑔2, ℎ2,low, ℎ2,high, costing𝑂 (1). The proof

size comes from values in Step 5., costing 𝑂 (1).
Communication complexity. The communication between P𝑖 and
P0 includes: 1) oracles 𝑓 ′

𝑊
(𝑋,𝑌 ), 𝑓𝐴 (𝑋,𝑌 ), 𝑓 ′𝐵 (𝑋,𝑌 ), 𝑓𝐶 (𝑋,𝑌 ); 2)

oracles 𝑔1,𝑖 (𝑋 ), ℎ1,𝑖 (𝑋 ); 3) 𝑂 (1) evaluations on ˆ𝑓𝑃 ′𝑣 [𝑖 ] ,
ˆ𝑓 ′
𝑊 [𝑖 ] ,

ˆ𝑓𝑉 [𝑖 ] ,
ˆ𝑓𝐴[𝑖 ] (𝑋 ), ˆ𝑓𝐵 [𝑖 ] (𝑋 ), ˆ𝑓𝐶 [𝑖 ] (𝑋 ), and 𝑅𝑖 (𝑋 ). Assuming the oracle size

is 𝑂 (1), the amortized communication complexity is 𝑂 (1).

2
This is feasible as, taking 𝑃𝑎 as an example, the non-zero entry number of each

column describes the times that one specific wire acts as gate left inputs, which is

constant typically. If not, we can introduce more constraints and variables to achieve

this. Further, computing the inner product over finite field is concretely faster compared

with other operations such as FFTs and multi-scalar exponentiations.
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Protocol 3 (Distributed PIOP for R1CS). Secret inputs: P𝑖 holds
𝑓 ′
𝑊 [𝑖 ] , 𝑓𝑉 [𝑖 ] , 𝑓𝐴[𝑖 ] , 𝑓

′
𝐵 [𝑖 ] , 𝑓𝐶 [𝑖 ] ∈ F𝑚 [𝑋 ] after running Protocol 2.

Public inputs: oracles of 𝑓 ′
𝑊
, 𝑓𝑉 , 𝑓𝐴, 𝑓

′
𝐵
, 𝑓𝐶 ∈ F𝑚,ℓ [𝑋,𝑌 ].

Statement: The provers proves toV that: 1) given a public matrix

𝑃𝑣 ∈ F𝑚ℓ×𝑚ℓ
, there exists secret vectors𝒘, 𝒗 ∈ F𝑚ℓ

s.t. 𝑃𝑣𝒘 = 𝒗; 2)
there exists secret vectors 𝒂, 𝒃, 𝒄 ∈ F𝑚ℓ

s.t. 𝒂 ◦ 𝒃 = 𝒄 .

1. (a) V : send challenges 𝑟, 𝑠,𝑢1 ∈ F to P0, who transfers to P𝑖 .
(b) V : computes 𝒓 = (𝑟0, . . . , 𝑟𝑚ℓ−1) and 𝒓⊤𝑃𝑣 = 𝒗. Arrange

𝒗 into matrix 𝑃 ′𝑣 ∈ F𝑚×ℓ s.t. 𝑃 ′𝑣 [𝑖] = (𝑣 (𝑖−1)𝑚+1, . . . , 𝑣𝑖𝑚).
Compute 𝑓𝑃 ′𝑣 (𝑋,𝑌 ) =

∑
𝑖∈[ℓ ] 𝑓𝑃 ′𝑣 [𝑖 ] (𝑋 )𝐿𝑖 (𝑌 ).

2. Provers compute and send polynomial oracles 𝑔1, ℎ1 ∈ F𝑚 [𝑋 ]
of the first-round univariate sum-check toV .

(a) P𝑖 : computes public 𝑓𝑃 ′𝑣 [𝑖 ] ∈ F𝑚 [𝑋 ] from 𝑃𝑣 [𝑖].
(b) P𝑖 : computes polynomials 𝑓1,𝑖 , 𝑓2,𝑖 , 𝑓𝑖 ∈ F𝑚 [𝑋 ] s.t.

𝑓1,𝑖 (𝑋 ) = 𝑓𝑃 ′𝑣 [𝑖 ] (𝑋 ) 𝑓
′
𝑊 [𝑖 ] (𝑋 ) − 𝑅𝑖 (𝑟

𝑚) 𝑓𝑉 [𝑖 ] (𝑟 ),
𝑓2,𝑖 (𝑋 ) = 𝑅𝑖 (𝑟𝑚) 𝑓𝐴[𝑖 ] (𝑟𝑋 ) 𝑓 ′𝐵 [𝑖 ] (𝑋 ) − 𝑅𝑖 (𝑟

𝑚) 𝑓𝐶 [𝑖 ] (𝑟 ) .

Let 𝑓𝑖 (𝑋 ) = 𝑓1,𝑖 (𝑋 ) + 𝑠 · 𝑓2,𝑖 (𝑋 ).
(c) P𝑖 : computes 𝑔1,𝑖 (𝑋 ), ℎ1,𝑖 (𝑋 ) by dividing 𝑍H (𝑋 ) s.t.
(𝑋 −𝑢1) 𝑓𝑖 (𝑋 ) = 𝑋 ·𝑔1,𝑖 (𝑋 ) + (𝑋 −𝑢1)𝑇1,𝑖 + (𝑋 −𝑢1)𝑍H (𝑋 )ℎ1,𝑖 (𝑋 ) .

P𝑖 sends polynomial oracles 𝑔1,𝑖 , ℎ1,𝑖 to P0.
(d) P0: computes oracles 𝑔1 =

∑
𝑖∈[ℓ ] 𝑔1,𝑖 and ℎ1 =

∑
𝑖∈[ℓ ] ℎ1,𝑖 .

3. V sends challenges 𝛼,𝑢2 ∈ F to P0, who transfers to P𝑖 .
4. Provers compute and send polynomial oracles𝑔2, ℎ2,low, ℎ2,high ∈
Fℓ [𝑌 ] of the second-round univariate sum-check toV .

(a) P𝑖 : computes and sends 𝑓𝑃 ′𝑣 [𝑖 ] (𝛼), 𝑓
′
𝑊 [𝑖 ] (𝛼), 𝑓𝑉 [𝑖 ] (𝑟 ),

𝑓𝐴[𝑖 ] (𝑟𝛼), 𝑓 ′𝐵 [𝑖 ] (𝛼), 𝑓𝐶 [𝑖 ] (𝑟 ), 𝑅𝑖 (𝑟
𝑚) to P0.

(b) P0: computes 𝑓𝑃 ′𝑣 (𝛼,𝑌 ), 𝑓
′
𝑊
(𝛼,𝑌 ), 𝑓𝑉 (𝑟, 𝑌 ), 𝑓𝐴 (𝑟𝛼,𝑌 ), 𝑓 ′𝐵 (𝛼,

𝑌 ), 𝑓𝐶 (𝑟, 𝑌 ), 𝑅(𝑟𝑚, 𝑌 ).Let 𝑓 (𝛼,𝑌 ) = 𝑓1 (𝛼,𝑌 ) + 𝑠 𝑓2 (𝛼,𝑌 ) s.t.
𝑓1 (𝛼,𝑌 ) = 𝑓𝑃 ′𝑣 (𝛼,𝑌 ) 𝑓

′
𝑊 (𝛼,𝑌 ) − 𝑅(𝑟

𝑚, 𝑌 ) 𝑓𝑉 (𝑟, 𝑌 ),
𝑓2 (𝛼,𝑌 ) = 𝑅(𝑟𝑚, 𝑌 ) · (𝑓𝐴 (𝑟𝛼,𝑌 ) 𝑓 ′𝐵 (𝛼,𝑌 ) − 𝑓𝐶 (𝑟, 𝑌 )) .

(c) P0: computes 𝑔2, ℎ2,low, ℎ2,high ∈ Fℓ [𝑌 ] by dividing 𝑍L s.t.

𝑓 (𝛼,𝑌 ) = 𝑌/(𝑌 −𝑢2) ·𝑔2 (𝑌 ) +𝑇2/ℓ +𝑍L (𝑌 ) (ℎ2,low +𝑌 ℓ ·ℎ
2,high),

(12)

where 𝑇2 = 𝛼𝑔1 (𝛼) + (𝛼 − 𝑢1)𝑍H (𝛼)ℎ1 (𝛼).
5. (a) V : queries 𝑔1 (𝛼), ℎ1 (𝛼) to compute𝑇2. Pick a random 𝛽 ∈ F.
(b) V : computes 𝑓𝑃 ′𝑣 (𝛼, 𝛽), 𝑅(𝑟

𝑚, 𝛽). Query 𝑓 ′
𝑊
(𝛼, 𝛽), 𝑓𝑉 (𝑟, 𝛽),

𝑓𝐴 (𝑟𝛼, 𝛽), 𝑓 ′𝐵 (𝛼, 𝛽), 𝑓𝐶 (𝑟, 𝛽). Query 𝑔2, ℎ2,low, ℎ2,high at 𝛽 .

(c) V : computes 𝑓 (𝛼, 𝛽). Accept iff Equation (12) holds at 𝑌 = 𝛽 .

Verifier complexity. The verifier complexity is𝑂 (𝑚ℓ) due to comput-

ing 𝑓𝑃 ′𝑣 (𝛼, 𝛽) and 𝑅(𝑟
𝑚, 𝛽). The verifier computation other than this

is 𝑂 (log𝑚 + log ℓ) for computing 𝑍H (𝛼), 𝑍L (𝛽), respectively. □

4.3 Distributed PIOP with Sublinear Verifier
Protocol 3 has a linear verifier complexity due to evaluating linear-

size public polynomials 𝑓𝑃 ′𝑣 (𝑋,𝑌 ) related to public matrix 𝑃𝑣 . This

section reduces it to sublinear via preprocessing.

In the preprocessing phase, an indexer I encodes the public

matrices into oracles, and the verifier V takes these oracles as

inputs of the online phase. P then proves to V the evaluation

validity of 𝑓𝑃 ′𝑣 (𝛼, 𝛽). Recall that 𝑃
′
𝑣 = 𝒓𝑃𝑣 , and hence 𝑓𝑃 ′𝑣 (𝑋,𝑌 )

is determined by both the public matrix 𝑃𝑣 and the challenge 𝒓 .
However, I can not know the online challenge 𝒓 ahead. A direct

approach is to introduce an additional variant 𝑍 to describe 𝒓 in
𝑓𝑃 ′𝑣 [𝑖 ] (𝑋 ) to construct 𝑓𝑃 ′𝑣 [𝑖 ] (𝑋,𝑍 ). However, the polynomial size

would be𝑚2
, incurring a 𝑂 (𝑚2) sub-prover complexity.

We letI encode the public sparsematrices by low-degree univari-

ate polynomials row, col, val, representing the row indexes, column

indexes, and values of the non-zero entries in the matrices. Now

the encoding polynomials are only of sizes 𝑂 (𝑚ℓ), linear to the

R1CS size. Below we show how to construct 𝑓𝑃 ′𝑣 (𝛼, 𝛽) relying on

the encoding polynomials and to prove its validity distributedly.

Algebraic preliminaries. For a sparse matrix 𝑃𝑣 ∈ F𝑚ℓ×𝑚ℓ
, split

it into ℓ sub-matrices 𝑃
(1)
𝑣 , . . . , 𝑃

(ℓ )
𝑣 ∈ F𝑚ℓ×𝑚

s.t. 𝑃
(𝑖 )
𝑣 [ 𝑗] = 𝑃𝑣 [(𝑖 −

1)ℓ+ 𝑗] for 𝑗 ∈ [𝑚]. Define a size-𝑚̃ multiplicative subgroupMwith

generator𝜃 s.t.𝑚̃ = max{| |𝑃 (𝑖 )𝑣 | |}, i.e., themaximumnon-zero entry

number among all 𝑃
(𝑖 )
𝑣 . Define polynomials {val𝑖 } ∈ F𝑚̃ [𝑋 ] s.t.

val𝑖 (𝜃 𝑗−1) is the value of the 𝑗-th non-zero entry in 𝑃
(𝑖 )
𝑣 . The non-

zero entries are assumed in some canonical order (e.g., row-wise or

column-wise). Similarly, define polynomials row𝑖 ∈ F𝑚̃ [𝑋 ] (resp.,
col𝑖 ) s.t. row𝑖 (𝜃 𝑗−1) (resp., col𝑖 (𝜃 𝑗−1)) is the row (resp., column)

index (counting from 0) of the 𝑗-th non-zero entry in 𝑃
(𝑖 )
𝑣 . If 𝑗 >

| |𝑃 (𝑖 )𝑣 | |, set val𝑖 (𝜃 𝑗−1) = 0. row, col, val suffice to describe a matrix.

Define polynomials val(𝑋,𝑌 ) = ∑
𝑖∈[ℓ ] val𝑖 (𝑋 )𝐿𝑖 (𝑌 ), and similar

for col(𝑋,𝑌 ), row(𝑋,𝑌 ). Define 𝐿(𝑋,𝑌 ) = ∑
𝑖∈[ℓ ] 𝐿𝑖 (𝑋 )𝐿𝑖 (𝑌 ).

Remark 1. After splitting the R1CS public matrix P𝑣 into sub-

matrices, the non-zero entries of each sub-matrix may not be even.

Looking ahead, our prover complexity is 𝑂 (𝑚̃ log𝑚̃). Although 𝑚̃ =

𝑂 (𝑚), the uneven sub-matrices may lead to large concrete 𝑚̃ and

worsens the performance. To solve this problem, we observe that the

non-zero entries in R1CS matrices represent the left, right, or output

wires of circuit gates. Given a fixed circuit, the entries’ locations are

only determined by gate indexes, which can be manually adjusted.

Hence, the indexer, delegated by the verifier to do the matrix-related

public computation, can adjust these locations to build more even

sub-matrices. We propose such an algorithm in Appendix B.

Main idea. The verifier needs 𝑓𝑃 ′𝑣 (𝛼, 𝛽) =
∑
𝑖∈[ℓ ] 𝑓𝑃 ′𝑣 [𝑖 ] (𝛼)𝐿𝑖 (𝛽) in

Protocol 3. Thanks to our coefficient-based representations, we have

𝑓𝑃 ′𝑣 [𝑖 ] (𝑋 ) =
∑
𝑥∈M val𝑖 (𝑥)𝑟 row𝑖 (𝑥 )𝑋 col𝑖 (𝑥 )

. Further, 𝑓𝑃 ′
𝑉
(𝛼, 𝛽) =∑

𝑥∈M
∑
𝑖∈[ℓ ] val𝑖 (𝑥)𝑟 row𝑖 (𝑥 ) ·𝛼col𝑖 (𝑥 )𝐿𝑖 (𝛽). By Lemma 1, we have

𝑓𝑃 ′𝑣 (𝛼, 𝛽) =
∑︁
𝑥∈M

∑︁
𝑦∈L

val(𝑥,𝑦) · 𝑟 row(𝑥,𝑦) · 𝛼col(𝑥,𝑦) · 𝐿(𝛽,𝑦) . (13)

Suppose bivariate polynomials𝐴, 𝐵 ∈ F𝑚̃,ℓ [𝑋,𝑌 ] defined by {𝑟 row(𝑥,𝑦) ,
𝛼col(𝑥,𝑦) }𝑥∈M,𝑦∈L, respectively. Now, Equation (13) becomes

𝑓𝑃 ′𝑣 (𝛼, 𝛽) =
∑︁
𝑥∈M

∑︁
𝑦∈L

val(𝑥,𝑦) · 𝐴(𝑥,𝑦) · 𝐵(𝑥,𝑦) · 𝐿(𝛽,𝑦). (14)
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By Lemma 1, we further have

𝑓𝑃 ′𝑣 (𝛼, 𝛽) =
∑︁
𝑥∈M

∑︁
𝑖∈[ℓ ]

val𝑖 (𝑥) · 𝐴𝑖 (𝑥) · 𝐵𝑖 (𝑥) · 𝐿𝑖 (𝛽) . (15)

Indeed, for all 𝑥 ∈ M, we exactly have 𝐴𝑖 (𝑥) = 𝑟 row𝑖 (𝑥 ) , 𝐵𝑖 (𝑥) =
𝛼col𝑖 (𝑥 ) . Taking the first as an example, this is because, by definition

for all 𝑥 ∈ M and 𝑦 ∈ L, it holds that 𝐴(𝑥,𝑦) = 𝑟 row(𝑥,𝑦) . Setting
𝑦 = 𝜂𝑖−1, then 𝐴(𝑥,𝑦) = 𝐴𝑖 (𝑥) = 𝑟 row(𝑥,𝑦) = 𝑟 row𝑖 (𝑥 )

.

Similar to Equation (10), Equation (15) can be proved distribut-

edly. The sub-prover P𝑖 run a first-time univariate sum-check over

𝑋 for target polynomial val𝑖 (𝑋 ) · 𝐴𝑖 (𝑋 ) · 𝐵𝑖 (𝑋 ) · 𝐿𝑖 (𝛽). Given the

challenge𝛼 ,P𝑖 andP0 collaboratively run a second-time sum-check

over 𝑌 for target polynomial val(𝛼,𝑌 ) · 𝐴(𝛼,𝑌 ) · 𝐵(𝛼,𝑌 ) · 𝐿(𝛽,𝑌 ).
One problem remains to check the validity of non-linear func-

tions 𝐴(𝑋,𝑌 ), 𝐵(𝑋,𝑌 ) given their oracles. This is typically handled

by lookup arguments. Taking the column as an example, we can

prove {(col(𝑥,𝑦), 𝐵(𝑥,𝑦))}𝑥∈M,𝑦∈L ⊆ {(𝑘 − 1, 𝛼𝑘−1)}𝑘∈[𝑚] . How-
ever, building the lookup arguments can be challenging in four

aspects. We delve into these challenges and give solutions below.

4.3.1 Checking the table validity online. We start by handling the

simpler univariate lookup relation about 𝑃𝑣 [𝑖]’s column

{(col𝑖 (𝑥), 𝐵𝑖 (𝑥))}𝑥∈M ⊆ {( 𝑗 − 1, 𝛼 𝑗−1)} 𝑗∈[𝑚] (16)

Here, col𝑖 , 𝐵𝑖 ∈ F𝑚̃ [𝑋 ] such that {𝐵𝑖 (𝑥) = 𝛼col𝑖 (𝑥 ) }𝑥∈M.
Most lookup arguments [23, 25, 63] assume a trusted party to

commit the table prescribedly. However, our table {( 𝑗−1, 𝛼 𝑗−1)} 𝑗∈[𝑚] ,
is determined by the online challenge 𝛼 . Then, a direct verifier com-

plexity to check the table is linear to the table size.

To solve this problem, we modify our tables with a special struc-

ture to allow an online table validity check with sublinear veri-

fication. Assume 𝜔 is the generator of H, we can transform the

Equation (16) into {(𝜔col𝑖 (𝑥 ) , 𝐵𝑖 (𝑥))}𝑥∈M ⊆ {(𝜔 𝑗−1, 𝛼 𝑗−1)} 𝑗∈[𝑚] .
Define 𝑇col ∈ F𝑚 [𝑋 ] s.t. 𝑇col (𝜔 𝑗−1) = 𝛼 𝑗−1

. As 𝑇col includes all

the table information, the prover can send a polynomial oracle of

𝑇col to the verifier, who then check the table validity by checking

the evaluation validity of𝑇col. To complete this, our key observation

is that it suffices to prove the following equations:

𝑇col (1) = 1, 𝑇col (𝜔𝑥) = 𝛼 ·𝑇col (𝑥), for𝑥 ∈ {𝜔 𝑗 } 𝑗∈[0,𝑚−2] . (17)

A typical approach for the latter relation is to show the existence of

𝑞, which is the division polynomial of 𝑝 (𝑋 ) = 𝑇col (𝜔𝑋 ) − 𝛼𝑇col (𝑋 )
divided by

∏
𝑗∈[0,𝑚−2] (𝑋 −𝜔 𝑗 ). However, it incurs a new oracle 𝑞.

We observe that the degree-(𝑚 − 1) polynomial 𝑝 (𝑋 ) equals
to zero on 𝑚 − 1 distinct points, where 𝑥 ∈ {𝑤 𝑗 } 𝑗∈[0,𝑚−2] . If
there exists a degree-(𝑚 − 1) polynomial 𝑝′ (𝑋 ) built from 𝑝 (𝑋 ) s.t.
𝑝′ (𝜔𝑚−1) = 0 and 𝑝′ (𝜔 𝑗 ) = 𝑝 (𝜔 𝑗 ) for 𝑗 ∈ [0,𝑚 − 2], then 𝑝′ (𝑋 ) is
a zero polynomial. We introduce the auxiliary public Lagrange poly-

nomial 𝐿𝑚 ∈ F𝑚 [𝑋 ] to build 𝑝′ from 𝑝 . Specifically, 𝐿𝑚 (𝑥) = 0 for

𝑥 ∈ {𝜔 𝑗 } 𝑗∈[0,𝑚−2] and 𝐿𝑚 (𝜔𝑚−1) = 1, and any point on 𝐿𝑚 (𝑋 )
can be computed in logarithmic time. Equation (17) then becomes:

for all 𝑥 ∈ H, it holds that𝑇col (𝜔𝑥) = 𝛼 ·𝑇col (𝑥) +𝐿H,𝑚 (𝑥) · (1−𝛼𝑚).
As 𝑇col, 𝐿H,𝑚 ∈ F𝑚−1 [𝑋 ], we have

𝑝′ (𝑋 ) = 𝑇col (𝜔𝑋 ) − 𝛼 ·𝑇col (𝑋 ) − 𝐿H,𝑚−1 (𝑋 ) · (1 − 𝛼𝑚) (18)

is a zero polynomial. This can be checked by querying a random

point on𝑇col (𝑋 ) and checking if 𝑝′ (𝑋 ) is zero at this point. Further,
our method does not require any new polynomial oracle.

4.3.2 Building double-dimension lookup PIOP. We use the lookup

PIOP in logup [33] to build our scheme. Lemma 2 recalls this PIOP.

Lemma 2 ([33]). {𝑎𝑖 }𝑖∈[𝑚̃] ⊆ {𝑏 𝑗 } 𝑗∈[𝑚] iff there exists a sequence
{𝑛 𝑗 } 𝑗∈[𝑚] where 𝑛 𝑗 ∈ [0, 𝑚̃] s.t.

∑
𝑖∈[𝑚̃]

1

𝑋+𝑎𝑖 =
∑

𝑗∈[𝑚]
𝑛 𝑗

𝑋+𝑏 𝑗
.

Here, 𝑛 𝑗 describes the number of elements in {𝑎𝑖 }𝑖∈[𝑚̃] equaling 𝑏 𝑗 .

The PIOP above is for one-dimension relation, while Equation (16)

is double-dimension. For a two-dimension relation {(𝑎𝑖 , 𝐴𝑖 )}𝑖∈[𝑚̃] ⊆
{(𝑏 𝑗 , 𝐵 𝑗 )} 𝑗∈[𝑚] , given a challenge 𝛽 , the prover can show {𝛽 · 𝑎𝑖 +
𝐴𝑖 }𝑖∈[𝑚̃] ⊆ {𝛽 · 𝑏 𝑗 + 𝐵 𝑗 } 𝑗∈[𝑚] . If some (𝑎𝑘 , 𝐴𝑘 ) ∉ {(𝑏 𝑗 , 𝐵 𝑗 )}, then
𝛽 · 𝑎𝑘 +𝐴𝑘 ∈ {𝛽 · 𝑏 𝑗 + 𝐵 𝑗 } holds with an error probability of𝑚/|F|.

With this generalization at hand, we prove Equation (16). Define

polynomial 𝑏𝑖 ∈ F𝑚̃ [𝑋 ] s.t. 𝑏𝑖 (𝑥) = 𝜔col𝑖 (𝑥 )
for all 𝑥 ∈ M. Define

𝑛col ∈ F𝑚 [𝑌 ] s.t. 𝑛(𝜔 𝑗−1) equals how many times col𝑖 (𝑥) = 𝑗 − 1,
or 𝑏𝑖 (𝑥) = 𝜔 𝑗−1

for 𝑥 ∈ M. Now, we prove Equation (16) by∑︁
𝑥∈M

1

𝑋 + 𝛽 · 𝑏𝑖 (𝑥) + 𝐵𝑖 (𝑥)
=

∑︁
𝑦∈H

𝑛col (𝑦)
𝑋 + 𝛽 · 𝑦 +𝑇col (𝑦)

. (19)

To prove Equation (19), given a challenge 𝛾 , the prover can show

its validity at a random 𝛾 . Define 𝑓1, 𝑓2 ∈ F𝑚̃ [𝑋 ] s.t. {𝑓1 (𝑥) =
1

𝛾+𝛽 ·𝑏𝑖 (𝑥 )+𝐵𝑖 (𝑥 ) }𝑥∈M and {𝑓2 (𝑦) = 𝑛col (𝑦)
𝛾+𝛽 ·𝑦+𝑇col (𝑦) }𝑦∈H. The prover

sends polynomial oracles of 𝑓1, 𝑓2 to the verifier. Then, Equation (19)

becomes a univariate sum-check, i.e.,

∑
𝑥∈M 𝑓1 (𝑥) =

∑
𝑦∈H 𝑓2 (𝑦).

The remaining issue is how to prove the validity of 𝑓1, 𝑓2 given

their oracles , which can be solved by a standard zero check [27].

For example, for 𝑓2, the prover can show the existence of 𝑞2 (𝑌 ) s.t.

𝑓2 (𝑌 ) · (𝛾 + 𝛽 · 𝑌 +𝑇col (𝑌 )) − 𝑛col (𝑌 ) = 𝑞2 (𝑌 )𝑍H (𝑌 ). (20)

4.3.3 Achieving distribution. The PIOP above is non-distributed.

We nowprove themodified lookup relation {(𝜔col(𝑥,𝑦) , 𝛼col(𝑥,𝑦) )} ⊆
{(𝜔 𝑗−1,𝑇col (𝜔 𝑗−1))} distributedly. Assume that the sub-prover P𝑖
holds col𝑖 (𝑋 ). By definition, she can compute 𝑏𝑖 (𝑋 ) and 𝐵𝑖 (𝑋 )
s.t. {𝑏𝑖 (𝑥) = 𝜔col𝑖 (𝑥 ) }𝑥∈M and {𝐵𝑖 (𝑥) = 𝛼col𝑖 (𝑥 ) }𝑥∈M. Define
𝑏 (𝑋,𝑌 ) =

∑
𝑖∈[ℓ ] 𝑏𝑖 (𝑋 )𝐿𝑖 (𝑌 ) and 𝐵(𝑋,𝑌 ) =

∑
𝑖∈[ℓ ] 𝐵𝑖 (𝑋 )𝐿𝑖 (𝑌 ).

By definition, 𝑏 (𝑥,𝑦) = 𝜔col(𝑥,𝑦)
and 𝐵(𝑥,𝑦) = 𝛼col(𝑥,𝑦) for any

𝑥 ∈ M and 𝑦 ∈ L. Define 𝑛col ∈ F𝑚̃ [𝑌 ] s.t. 𝑛col (𝜔 𝑗−1) equals the
times of {col(𝑥,𝑦)}𝑥∈M,𝑦∈L = 𝑗 − 1. Equation (19) becomes∑︁

𝑥∈M,𝑦∈L

1

𝛾 + 𝛽 · 𝑏 (𝑥,𝑦) + 𝐵(𝑥,𝑦) =
∑︁
𝑦∈H

𝑛col (𝑦)
𝛾 + 𝛽 · 𝑦 +𝑇col (𝑦)

. (21)

Let 𝑓1,𝑖 ∈ F𝑚̃ [𝑋 ] s.t. 𝑓1,𝑖 (𝑥) = 1

𝛾+𝛽 ·𝑏𝑖 (𝑥 )+𝐵𝑖 (𝑥 ) for 𝑥 ∈ M. De-

fine 𝑓1 (𝑋,𝑌 ) =
∑
𝑖∈[ℓ ] 𝑓1,𝑖 (𝑋 )𝐿𝑖 (𝑌 ). By definition, we have for any

𝑥 ∈ M and 𝑦 ∈ L, 𝑓1 (𝑥,𝑦) = 1

𝛾+𝛽 ·𝑏 (𝑥,𝑦)+𝐵 (𝑥,𝑦) . Hence, the sum-

check relation becomes

∑
𝑥∈M,𝑦∈L 𝑓1 (𝑥,𝑦) =

∑
𝑦∈H 𝑓2 (𝑦). By the

univariate sum-check and the low-degree properties of 𝑓1 and 𝑓2,

we stress that it suffices to prove 𝑚̃ℓ 𝑓1 (0, 0) = 𝑚𝑓2 (0), which can

be distributedly proved similar to Equation (10) by Lemma 1.

However, given the oracle of 𝑓1 (𝑋,𝑌 ), the verifier has to check

its validity, which can be challenging due to the lack of (distributed)
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Figure 2: Visualization of the distributed lookup PIOP

zero-check for bivariate polynomials. To see this, although there ex-

ists𝑞1, 𝑞2 s.t. 𝑓1 (𝑋,𝑌 ) (𝛾+𝛽 ·𝑏 (𝑋,𝑌 )+𝐵(𝑋,𝑌 ))−1 = 𝑞1 (𝑋,𝑌 )𝑍M (𝑋 )
+ 𝑞2 (𝑋,𝑌 )𝑍L (𝑌 ), the degrees of 𝑞1, 𝑞2 are larger than𝑚ℓ , and gen-

erating 𝑞1, 𝑞2 distributedly may be hard.

We find that to prove {𝑓1 (𝑥,𝑦) = 1

𝛾+𝛽 ·𝑏 (𝑥,𝑦)+𝐵 (𝑥,𝑦) }𝑥∈M,𝑦∈L, it
suffices to prove that for all 𝑦 ∈ L, there exists 𝑞𝑖 (𝑋 ) such that

𝑓1 (𝑋,𝑦) · (𝛾 + 𝛽 ·𝑏 (𝑋,𝑦) +𝐵(𝑋,𝑦)) − 1 = 𝑞1,𝑖 (𝑋 )𝑍M (𝑋 ). For P𝑖 , we
have 𝑦 = 𝜂𝑖−1. By the definition of 𝑓1, 𝑏, 𝐵, we further have

𝑓1,𝑖 (𝑋 ) · (𝛾 + 𝛽 · 𝑏𝑖 (𝑋 ) + 𝐵𝑖 (𝑋 )) − 1 = 𝑞1,𝑖 (𝑋 )𝑍M (𝑋 ), (22)

which can be handled by P𝑖 locally. Inspired by [11], we use random
linear combination of 𝑟 to reduce the validity of ℓ quotient relations

of all sub-provers in Equation (22) into the existence of 𝑞1 (𝑋 ) s.t.∑︁
𝑖∈[ℓ ]

𝑟 𝑖−1 ·
(
𝑓1,𝑖 (𝑋 ) · (𝛾+𝛽 ·𝑏𝑖 (𝑋 )+𝐵𝑖 (𝑋 ))−1

)
= 𝑞1 (𝑋 )𝑍M (𝑋 ) . (23)

By definition, 𝑞1 (𝑋 ) =
∑
𝑖∈[ℓ ] 𝑟

𝑖−1 · 𝑞1,𝑖 (𝑋 ). Define 𝑅(𝑋,𝑌 ) =∑
𝑖∈[ℓ ] 𝑋

𝑖−1𝐿𝑖 (𝑌 ). By Lemma 1, Equation (23) is equivalent to∑︁
𝑦∈L

𝑅(𝑟,𝑦) (𝑓1 (𝑋,𝑦) (𝛾 + 𝛽 ·𝑏 (𝑋,𝑦) + 𝐵(𝑋,𝑦)) − 1) = 𝑞1 ·𝑍M . (24)

By Schwartz-Zippel lemma, the verifier can pick a random 𝑋 = 𝛿

and check its validity. After fixing a 𝛿 , this become a univariate sum-

check over 𝑌 . Note that the computation of bivariate polynomials

like 𝑓1 (𝛿,𝑦) can be distributed similar to Equation (10) by Lemma 1.

Combining Sections 4.3.1- 4.3.3, we present the lookup PIOP for

columns in Protocol 4. Figure 2 presents a visualization.

Theorem 3. Protocol 4 is a distributed lookup PIOP. The prover

complexity of P0 is 𝑂 (𝑚 log𝑚 + ℓ). The prover complexity of P𝑖 is
𝑂 (𝑚̃ log𝑚̃). The proof size and amortized communication complexity

are 𝑂 (1). The verifier complexity is 𝑂 (log𝑚ℓ), and can be 𝑂 (1)3.

Proof of Theorem 3. Completeness holds directly. For sound-

ness, if some (𝑏 (𝑥,𝑦), 𝐵(𝑥,𝑦)) ∉ {(𝜔 𝑗−1, 𝛼 𝑗−1)} 𝑗∈[𝑚] for some

𝑥 ∈ M and 𝑦 ∈ L, then for the random challenge 𝛽 picked by the

verifier, with a probability of at most𝑚/|F|, 𝛽 · 𝑏 (𝑥,𝑦) + 𝐵(𝑥,𝑦) ∈
{𝛽 · 𝜔 𝑗−1 + 𝛼 𝑗−1} 𝑗∈[𝑚] . For 𝑚̃ℓ instances, the soundness error is

at most 𝑚̃𝑚ℓ/|F| by the union bound argument. The soundness

3
The𝑂 (log𝑚ℓ ) verifier complexity due to computing public vanishing polynomials

can be further reduced to𝑂 (1) pairings via polynomial delegation similar to [18, 27, 42].

Notably, the𝑂 (log𝑚ℓ ) field operations are concretely faster than𝑂 (1) pairings.

error for checking the validity of 𝑇col, 𝑓2, 𝑓1 is at most (2𝑚̃ℓ)/|F| ac-
cording to the Schwartz-Zippel lemma. For the validity check of 𝑓1,

according to Lemma 3 [11], with at most a soundness error of ℓ/|F|,
there exists 𝑓

1,𝑘,𝑘∈[ℓ ] s.t. 𝑍M ∤ 𝑓1,𝑘 while

∑
𝑖∈[ℓ ] 𝑟

𝑖−1 𝑓1,𝑖 | 𝑍M.

Lemma 3 ([11]). Fix 𝐹1, . . . , 𝐹𝑘 ∈ F𝑑 [𝑋 ]. Fix 𝑍 ∈ F𝑑 [𝑋 ] that
decomposes to distinct linear factors over F. Suppose for some 𝑖 ∈ [𝑛],
𝑍 ∤ 𝐹𝑖 . Then, except with probability 𝑘/|F| over the choice of random
𝛾 ∈ F, it holds that 𝑍 ∤ 𝐺 =

∑𝑘
𝑗=1 𝛾

𝑗−1 · 𝐹 𝑗 .

We next prove the equivalence of∑︁
𝑥∈M

∑︁
𝑦∈L

𝑓1 (𝑥,𝑦) =
∑︁
𝑥∈L

𝑓2 (𝑥) and 𝑚̃ℓ 𝑓1 (0, 0) =𝑚𝑓2 (0).

By Lemma 1, we have∑︁
𝑥∈M

∑︁
𝑦∈L

𝑓1 (𝑥,𝑦) =
∑︁
𝑥∈M

∑︁
𝑖∈[ℓ ]

𝑓1,𝑖 (𝑥) .

As deg(𝑓1,𝑖 ) < 𝑚̃, by the univariate sum-check, this sum equals

𝑚̃ ·
∑︁
𝑖∈[ℓ ]

𝑓1,𝑖 (0) = 𝑚̃ ·
∑︁
𝑦∈L

𝑓1 (0, 𝑦) .

Again as the 𝑌 -degree of 𝑓1 is less than ℓ , again by the univariate

sum-check, we have

𝑚̃ ·
∑︁
𝑦∈L

𝑓1 (0, 𝑦) = 𝑚̃ℓ · 𝑓1 (0, 0).

Similarly,

∑
𝑥∈L 𝑓2 (𝑥) =𝑚 · 𝑓2 (0). The equivalence hence holds.

Complexity. For the master prover, computing the polynomials

𝑇col, 𝑓2, 𝑞2 requires𝑂 (𝑚 log𝑚) time, and computing the polynomial

oracles 𝑓1, 𝑞1, 𝑔5, ℎ5,low, ℎ5,high needs 𝑂 (ℓ) time. For the sub-prover,

computing oracles 𝑓𝑖,1, 𝑞1,𝑖 costs 𝑂 (𝑚̃ log𝑚̃) time. The proof size

includes 11 oracles and 15 polynomial evaluations.

The verifier’s overhead includes: 1) time-𝑂 (ℓ2) computation for

computing 𝑅(𝑟, 𝜁 ); 2) time-𝑂 (log𝑚ℓ) computation for 𝐿H,𝑚−1 (𝛿),
𝑍M (𝛿), 𝑍L (𝜁 ). These polynomial evaluations can be delegated by

the provers. The verifier complexity is then reduced to 𝑂 (1). Note
that these at most introduces an additional overhead of 𝑂 (ℓ) for
provers, and do not affect the prover complexities. □

4.3.4 Building lookup PIOP for the row relation. We have built

a distributed lookup PIOP for the column relation. Now we con-

struct a PIOP for row, i.e., {(row(𝑥,𝑦), 𝐴(𝑥,𝑦))}𝑥∈M,𝑦∈L ⊆ {(𝑘 −
1, 𝑟𝑘−1)}𝑘∈[𝑚ℓ ] . These meanings can be found in Equation (14).

Different from the size-𝑚 columns, the table size of the row is

𝑚ℓ . As our lookup PIOP has a sub-prover complexity linear to the

table size, this would lead to a𝑂 (𝑚ℓ) sub-prover complexity, which

is not acceptable. To tackle this, we split the size-𝑚ℓ table into two

size-

√
𝑚ℓ tables. As the number of sub-provers, i.e., ℓ , is usually

smaller than𝑚, it holds that

√
𝑚ℓ < 𝑚. Now the provers handle 2

size-𝑂 (𝑚) tables, reducing the sub-prover complexity to 𝑂 (𝑚).
Specifically, define the split polynomials rowlow,𝑖 , rowhigh,𝑖 ∈

F𝑚̃ [𝑋 ]mappingM to [0,
√
𝑚ℓ−1]. Let row𝑖 (𝑥) = rowhigh,𝑖 (𝑥)

√
𝑚ℓ+

rowlow,𝑖 (𝑥) for any 𝑥 ∈ M. By definition, this split is unique. Define

rowhigh (𝑋,𝑌 ) =
∑
𝑖∈[ℓ ] rowhigh,𝑖 (𝑋 )𝐿𝑖 (𝑌 ) and rowlow (𝑋,𝑌 ) simi-

larly. Then we have 𝑟 row(𝑋,𝑌 ) = (𝑟
√
𝑚ℓ )rowhigh (𝑋,𝑌 ) · 𝑟 rowlow (𝑋,𝑌 )

.
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Assume bivariate polynomials 𝐴high, 𝐴low ∈ F𝑚̃,ℓ [𝑋,𝑌 ] defined
by {(𝑟

√
𝑚ℓ )rowhigh (𝑥,𝑦) }𝑥∈M,𝑦∈L and {𝑟 rowhigh (𝑥,𝑦) }𝑥∈M,𝑦∈L, respec-

tively. Then, 𝑓𝑃 ′𝑣 (𝛼, 𝛽) in Equation (13) can be finally written as∑︁
𝑥∈M,𝑦∈L

val(𝑥,𝑦) · 𝐴high (𝑥,𝑦) · 𝐴low (𝑥,𝑦) · 𝐵(𝑥,𝑦) · 𝐿(𝛽,𝑦) . (25)

Also, {(row(𝑥,𝑦), 𝐴(𝑥,𝑦))}𝑥∈M,𝑦∈L ⊆ {(𝑘 − 1, 𝑟𝑘−1)}𝑘∈[𝑚ℓ ] , the
lookup relation, is transformed into two sub-relations

{rowhigh (𝑥,𝑦), 𝐴high (𝑥,𝑦)}𝑥∈M,𝑦∈L ⊆ {(𝑘 − 1, (𝑟
√
𝑚ℓ )𝑘−1)}

{rowlow (𝑥,𝑦), 𝐴low (𝑥,𝑦)}𝑥∈M,𝑦∈L ⊆ {(𝑘 − 1, 𝑟𝑘−1},

which can be proved similar to the column relation.

Batch lookup PIOP. Protocol 4 can be extended to a batch version.

For multiple relations with the same table, we can use the same

𝑇col. Further, to prove the validity of multiple 𝑓𝑘,2 (𝑌 ) for 𝑡 sets
of polynomials {𝑇𝑘,col, 𝑛𝑖,col}𝑘∈[𝑡 ] , we can combine relations in

Equation (20) using a random linear combination with challenge 𝑣 :∑︁
𝑘∈[𝑡 ]

𝑣𝑘−1 · 𝑓𝑘,2 (𝑌 ) (𝛾 + 𝛽 ·𝑌 +𝑇𝑘,col (𝑌 )) −𝑛𝑘,col (𝑌 ) = 𝑞2 (𝑌 )𝑍H (𝑌 ) .

Similarly, for multiple 𝑓𝑘,1 (𝑋,𝑌 ) for 𝑡 sets of bivariate polynomi-

als {𝑏𝑘 (𝑋,𝑌 ), 𝐵𝑘 (𝑋,𝑌 )}𝑘∈[𝑡 ] as in Equation (24), let 𝑓𝑘,1 (𝑋,𝑦) =
𝑅(𝑟,𝑦) ·

(
𝑓1 (𝑋,𝑦) · (𝛾 + 𝛽 · 𝑏 (𝑋,𝑦) + 𝐵(𝑋,𝑦)) − 1

)
We use a random

linear combination with challenge 𝑣 to prove∑︁
𝑦∈L

∑︁
𝑘∈[𝑡 ]

𝑣𝑘−1 · 𝑓𝑘,1 (𝑋,𝑦) = 𝑞1 (𝛿)𝑍M (𝛿).

According to [11], if any polynomial does not divide 𝑞1 or 𝑞2, then

with a soundness error of 𝑡/|F|, the random linear combination of

this polynomials does not divide 𝑞1 or 𝑞2. Now, only 2 polynomials

𝑞1 (𝑋 ), 𝑞2 (𝑌 ) are required instead of 𝑡 polynomials.

Putting everything together.Using the lookup PIOP in Protocol 4,
we canmodify the PIOP for R1CS in Protocol 3 to achieve a sublinear

verifier complexity. We present it in Protocol 5.

Protocol 5 is a combination of the PIOP for R1CS without prepro-

cessing in Protocol 3 and the lookup PIOP in Protocol 4. The security

and complexity properties inherit from these two protocols.

Theorem 4. Protocol 5 is a distributed PIOP for R1CS. The sub-

prover complexity is 𝑂 (𝑚 log𝑚), and the master prover complexity

is𝑂 (ℓ log ℓ +𝑚 log𝑚). The proof size and amortized communication

complexity are 𝑂 (1). The verifier complexity can be 𝑂 (1).

Distributed preprocessing. The preprocessing phase can be dis-

tributed similar to the proving phase. This is reasonable as the

verifier is assumed to delegate the public computation to a trusted

indexer, who is expected to be powerful in computational resources.

Also, the preprocessing can be time-consuming in practice. In Mar-

lin [18], the indexer time is nearly the same as the prover time.

In Protocol 5, the indexer needs to compute degree-(𝑚̃, ℓ) bivari-
ate polynomials and degree-𝑚 univariate polynomials. The former

can be handled distributedly similar to Protocol 2. The latter costs

𝑂 (𝑚 log𝑚) time and can be handled directly. Hence, given ℓ ma-

chines, the sub-machine complexity of indexer is 𝑂 (𝑚 log𝑚), and
the master-machine complexity is 𝑂 (ℓ log ℓ +𝑚 log𝑚).

Protocol 4 (Distributed lookup PIOP for column). Public inputs:

public 𝛼 . Order-𝑚̃ multiplicative subgroupM, Order-ℓ multiplica-

tive subgroup L. Generator 𝜔 of order-𝑚 subgroup H.
Secret inputs: {col𝑖 (𝑋 )}𝑖∈[ℓ ] , col(𝑋,𝑌 ) =

∑
𝑖∈[ℓ ] col𝑖 (𝑋 )𝐿𝑖 (𝑌 ).

Statement: The prover proves toV the validity of Equation (16).

Offline phase:
1. Indexer I computes {𝑏𝑖 (𝑋 )}𝑖∈[ℓ ] s.t. 𝑏𝑖 (𝑥) = 𝜔col𝑖 (𝑥 )

for 𝑥 ∈ M. Compute 𝑏 (𝑋,𝑌 ) =
∑
𝑖∈[ℓ ] 𝑏𝑖 (𝑋 )𝐿𝑖 (𝑌 ). Sim-

ilarly, compute 𝐵𝑖 (𝑋 ) and 𝐵(𝑋,𝑌 ). Compute 𝑅(𝑋,𝑌 ) =∑
𝑖∈[ℓ ] 𝑋

𝑖−1𝐿𝑖 (𝑌 ).
2. I computes polynomial 𝑛col ∈ F𝑚 [𝑌 ] s.t. 𝑛col (𝜔 𝑗−1) equals the

times of col(𝑥,𝑦) = 𝑗 − 1 for 𝑥 ∈ M and 𝑦 ∈ L.
3. I sends 𝑛col (𝑌 ) to P0, sends col𝑖 (𝑋 ), 𝑏𝑖 (𝑋 ), 𝐵𝑖 (𝑋 ) to P𝑖 , and

sends the oracles of 𝑏 (𝑋,𝑌 ), 𝐵(𝑋,𝑌 ), 𝑛col (𝑌 ) toV .

Online phase:
1. P0: computes table-related𝑇col ∈ F𝑚 [𝑋 ] s.t.𝑇col (𝜔 𝑗−1) = 𝛼 𝑗−1

for 𝑗 ∈ [𝑚]. Send the polynomial oracle 𝑇col toV .

2. V : sends challenges 𝛽,𝛾 ∈ F to P0, who transfers to P𝑖 .
3. Provers compute and send polynomial oracles 𝑓2, 𝑓1 to V . The

lookup relation is reduced to relations of 𝑓1, 𝑓2 as in Equation (21).

(a) P0: computes 𝑓2 ∈ F𝑚 [𝑌 ] s.t. {𝑓2 (𝑦) = 𝑛col (𝑦)
𝛾+𝛽 ·𝑦+𝑇col (𝑦) }𝑦∈H.

(b) P𝑖 : computes 𝑓𝑖,1 ∈ F𝑚̃ [𝑋 ] s.t. 𝑓𝑖,1 (𝑥) = 1

𝛾+𝛽 ·𝑏𝑖 (𝑥 )+𝐵𝑖 (𝑥 ) for
𝑥 ∈ M. Send polynomial oracle 𝑓𝑖,1 (𝑋 ) toV .

(c) P0: computes the oracle 𝑓1 (𝑋,𝑌 ) =
∑
𝑖∈[ℓ ] 𝑓𝑖,1 (𝑋 )𝐿𝑖 (𝑌 ).

4. V : sends a random challenge 𝑟 ∈ F to P0, who transfers to P𝑖 .
5. Provers compute and send polynomial oracles 𝑞1, 𝑞2 toV .

(a) P0: computes 𝑞2 ∈ F𝑚 [𝑌 ] according to Equation (20).

(b) P𝑖 : computes 𝑞1,𝑖 ∈ F𝑚̃ [𝑋 ] according to Equation (22). Send

polynomial oracle 𝑞1,𝑖 (𝑋 ) to P0.
(c) P0: computes the oracle 𝑞1 (𝑋 ) =

∑
𝑖∈[ℓ ] 𝑟

𝑖−1 · 𝑞1,𝑖 (𝑋 ).
6. V : sends a random challenge 𝛿 ∈ F to P0, who transfers to P𝑖 .
7. P0: computes and sends oracles 𝑔5, ℎ5,low, ℎ5,high ∈ Fℓ [𝑌 ] toV .

These are used to prove the validity of 𝑓1 as in Equation (24).

P𝑖 first sends 𝑅𝑖 (𝑟 ), 𝑓1,𝑖 (𝛿), 𝑏𝑖 (𝛿), 𝐵𝑖 (𝛿), 𝑞1,𝑖 (𝛿) to P0. P0 then
compute polynomials 𝑔5, ℎ5,low, ℎ5,high s.t.

𝑅(𝑟, 𝑌 ) · 𝑓1 (𝛿,𝑌 )
(
𝛾 + 𝛽 · 𝑏 (𝛿,𝑌 ) + 𝐵(𝛿,𝑌 )

)
− 𝑅(𝑟, 𝑌 ) =

𝑌𝑔5 (𝑌 ) + 𝑞1 (𝛿)𝑍M (𝛿)/ℓ + 𝑍L (𝑌 ) (ℎ5,low (𝑌 ) + 𝛿ℓℎ5,high (𝑌 )).

8. (a) V : checks table validity. Query 𝑇col (𝜔𝛿),𝑇col (𝛿),𝑇col (1).
Check if Equation (18) holds and 𝑇col (1) = 1.

(b) V : checks the validity of 𝑓2 (𝑌 ). Query 𝑓2, 𝑛col, 𝑞2 at 𝛿 , and

check if Equation (20) holds.

(c) V : checks the validity of 𝑓1 (𝑋,𝑌 ). Pick a random

𝜁 ∈ F. Query 𝑓1, 𝑏, 𝐵 at (𝛿, 𝜁 ). Query 𝑅(𝑟, 𝜁 ). Query
𝑞1, 𝑔5, ℎ5,low, ℎ5,high at 𝜁 . Check if Step 7. holds.

(d) V : checks the validity of lookup relation as in Equation (21).

Query 𝑓1 (0, 0), 𝑓2 (0). Check if 𝑚̃ℓ 𝑓1 (0, 0) =𝑚𝑓2 (0).
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Protocol 5 (Distributed PIOP for R1CS with sublinear verifier). Suppose the same setting as Protocol 2. Suppose an indexer I.
Offline phase:

1. I: reads the public matrix 𝑃𝑣 . Compute 3 sets of polynomials {val𝑖 , col𝑖 , rowhigh,𝑖 , rowlow,𝑖 }𝑖∈[ℓ ] ∈ F𝑚̃ [𝑋 ]. These polynomials describe the

information of the 𝑖-th sub-matrix 𝑃𝑣 [𝑖]. Compute bivariate polynomials val(𝑋,𝑌 ), col(𝑋,𝑌 ), rowhigh (𝑋,𝑌 ), rowlow (𝑋,𝑌 ).
2. I: computes 𝑛col, 𝑛row,high, 𝑛row,low ∈ F𝑚 [𝑋 ], which count the evaluation frequency of {col(𝑥,𝑦), rowhigh (𝑥,𝑦), rowlow (𝑥,𝑦)}𝑥∈M,𝑦∈L.
3. I: computes polynomials 𝑎row,high,𝑖 (𝑋 ), 𝑎row,low,𝑖 (𝑋 ), 𝑏col,𝑖 (𝑋 ) ∈ F𝑚̃ [𝑋 ] defined by {𝜔rowhigh,𝑖 (𝑥 ) , 𝜔rowlow,𝑖 (𝑥 ) , 𝜔col𝑖 (𝑥 ) }𝑥∈M. Compute

bivariate polynomials 𝑎row,high (𝑋,𝑌 ), 𝑎row,low (𝑋,𝑌 ), 𝑏col (𝑋,𝑌 ) ∈ F𝑚̃,ℓ [𝑋,𝑌 ]
4. I: computes bivariate polynomials 𝑅(𝑋,𝑌 ) = ∑

𝑖∈[ℓ ] 𝑅𝑖 (𝑋 )𝐿𝑖 (𝑌 ) and 𝐿(𝑋,𝑌 ) =
∑
𝑖∈[ℓ ] 𝐿𝑖 (𝑋 )𝐿𝑖 (𝑌 ), where 𝑅𝑖 (𝑋 ) = 𝑋 𝑖−1

.

Online phase:
Input: P𝑖 holds univariate polynomials over 𝑋 , including: val𝑖 , col𝑖 , rowhigh,𝑖 , rowlow,𝑖 , 𝑎row,high,𝑖 , 𝑎row,low,𝑖 , 𝑏col,𝑖 , 𝑅𝑖 , 𝐿𝑖 .

P0 holds univariate polynomials over 𝑌 , including: 𝑛col, 𝑛row,high, 𝑛row,low.

V holds bivariate polynomial oracles val, 𝑎row,high, 𝑎row,low, 𝑏col, 𝐿, 𝑅.V holds polynomial oracles over 𝑌 , including 𝑛col, 𝑛row,high, 𝑛row,low.

This protocol is a modification of to Protocol 3. Below we only describe the changes made to Protocol 3.

1. In Step 2., provers additionally computes and sends toV the oracles 𝐴high, 𝐴low ∈ F𝑚̃,ℓ [𝑋,𝑌 ] and oracles 𝑇high,𝑇low ∈ F𝑚 [𝑋 ].
(a) P𝑖 : computes 𝐴high,𝑖 , 𝐴low,𝑖 ∈ F𝑚̃ [𝑋 ] defined by {(𝑟

√
𝑚ℓ )rowhigh,𝑖 (𝑥 ) , 𝑟 rowlow,𝑖 (𝑥 ) }𝑥∈M. Send oracles 𝐴high,𝑖 (𝑋 ), 𝐴low,𝑖 (𝑋 ) toV .

(b) P0: computes oracles 𝐴high (𝑋,𝑌 ) =
∑
𝑖∈[ℓ ] 𝐴high,𝑖 (𝑋 )𝐿𝑖 (𝑌 ) and 𝐴low (𝑋,𝑌 ) =

∑
𝑖∈[ℓ ] 𝐴low,𝑖 (𝑋 )𝐿𝑖 (𝑌 ).

(c) P0: computes 𝑇high,𝑇low ∈ F𝑚 [𝑋 ] s.t. 𝑇high (𝜔 𝑗−1) = (𝑟
√
𝑚ℓ ) 𝑗−1 and 𝑇low (𝜔 𝑗−1) = 𝑟 𝑗−1 for 𝑗 ∈ [𝑚].

2. In Step 4., provers additionally computes and sends toV the oracle 𝐵 ∈ F𝑚̃,ℓ [𝑋,𝑌 ] and oracle 𝑇col ∈ F𝑚 [𝑋 ].
(a) P𝑖 : computes 𝐵𝑖 ∈ F𝑚̃ [𝑋 ] defined by {𝛼col𝑖 (𝑥 ) }𝑥∈M. Send oracle 𝐵𝑖 (𝑋 ) to P0.
(b) P0: computes oracles 𝐵(𝑋,𝑌 ) = ∑

𝑖∈[ℓ ] 𝐵𝑖 (𝑋 )𝐿𝑖 (𝑌 ).
(c) Compute 𝑇col ∈ F𝑚 [𝑋 ] s.t. 𝑇col (𝜔 𝑗−1) = 𝛼 𝑗−1

for 𝑗 ∈ [𝑚].
3. In Step 5., after receiving 𝛽 , the provers compute and sends 𝑓𝑃 ′𝑣 (𝛼, 𝛽) toV . Provers and verifiers then prove its evaluation validity.

(a) P and V : invoke the first seven steps of Protocol 4 to prove the validity of 𝐴high, 𝐴low, 𝐵. They should satisfy for 𝑥 ∈ M, 𝑦 ∈ L, it
holds that {(𝑏row,high (𝑥,𝑦), 𝐴high (𝑥,𝑦))} ⊆ {(𝜔𝑘−1, (𝑟

√
𝑚ℓ )𝑘−1)}

𝑘∈[
√
𝑚ℓ ] , {(𝑏row,low (𝑥,𝑦), 𝐴low (𝑥,𝑦))} ⊆ {(𝜔𝑘−1, 𝑟𝑘−1)}

𝑘∈[
√
𝑚ℓ ] ,

and {(𝑏col (𝑥,𝑦), 𝐵(𝑥,𝑦))} ⊆ {(𝜔 𝑗−1, 𝛼 𝑗−1)} 𝑗∈[𝑚] . At the end,V receives univariate polynomial oracles 𝑞1 ∈ F𝑚̃ [𝑋 ], 𝑞2 ∈ F𝑚 [𝑌 ], and
multiple polynomial oracles 𝑓1 ∈ F𝑚̃,ℓ [𝑋,𝑌 ], 𝑓2 ∈ F𝑚 [𝑌 ].

(b) V : sends a random challenge 𝑢3 ∈ F to P0.
(c) Provers compute and send polynomial oracles 𝑔3, {ℎ3, 𝑗 } 𝑗∈[3] ∈ F𝑚̃ [𝑋 ] of the third-round univariate sum-check toV .

(i) P0: transfers challenge 𝑢3 to P𝑖 .
(ii) P𝑖 : computes polynomials 𝑔3,𝑖 , {ℎ3, 𝑗,𝑖 } 𝑗∈[3] ∈ F𝑚̃ [𝑋 ] by dividing 𝑍M (𝑋 ) of Equation (25) s.t.

(𝑋 − 𝑢3) · val𝑖 (𝑋 ) · 𝐴high,𝑖 (𝑋 ) · 𝐴low,𝑖 (𝑋 ) · 𝐵𝑖 (𝑋 ) · 𝐿𝑖 (𝛽) = 𝑋 · 𝑔3,𝑖 (𝑋 ) + (𝑋 − 𝑢3) ·𝑇3,𝑖/𝑚̃ + (𝑋 − 𝑢3) · 𝑍M (𝑋 )
∑︁
𝑗∈[3]

𝑋 ( 𝑗−1)𝑚̃ℎ3, 𝑗,𝑖 (𝑋 ) .

Send polynomial oracles 𝑔3,𝑖 , {ℎ3, 𝑗,𝑖 } 𝑗∈[3] to P0.
(iii) P0: computes oracles 𝑔3 =

∑
𝑖∈[ℓ ] 𝑔3,𝑖 and ℎ3, 𝑗 =

∑
𝑖∈[ℓ ] ℎ3, 𝑗,𝑖 for 𝑗 ∈ [3].

(d) V : sends random challenges 𝛿 ∈ F, 𝑢4 ∈ F to P0.
(e) Provers compute and send polynomial oracles 𝑔4, {ℎ4, 𝑗 } 𝑗∈[4] ∈ Fℓ [𝑌 ] of the fourth-round univariate sum-check toV .

(i) P0: transfers 𝛿 and 𝑢4 to P𝑖 .
(ii) P𝑖 : computes and sends val𝑖 (𝛿), 𝐴high,𝑖 (𝛿), 𝐴low,𝑖 (𝛿), 𝐵𝑖 (𝛿), 𝐿𝑖 (𝛽) to P0.
(iii) P0: computes val(𝛿,𝑌 ), 𝐴high (𝛿,𝑌 ), 𝐴low (𝛿,𝑌 ), 𝐵(𝛿,𝑌 ), 𝐿(𝛽,𝑌 ) Compute 𝑔4, {ℎ4, 𝑗 } 𝑗∈[4] such that

(𝛿 −𝑢3) (𝑌 −𝑢4) · val(𝛿,𝑌 )𝐴high (𝛿,𝑌 )𝐴low (𝛿,𝑌 )𝐵(𝛿,𝑌 ) · 𝐿(𝛽,𝑌 ) = 𝑌 · 𝑔4 (𝑌 ) + (𝑌 −𝑢4)𝑇4/ℓ + (𝑌 −𝑢4)𝑍L (𝑌 )
∑︁
𝑗∈[4]

𝑌 ( 𝑗−1) ·ℓℎ4, 𝑗 (𝑌 ), (26)

(f) V outputs accept if and only if all the following checks pass:

(i) Pick a random 𝜁 ∈ F. Invoke Step 8. of Protocol 4 to verify the validity of 𝐴high (𝑋,𝑌 ), 𝐴low (𝑋,𝑌 ), 𝐵(𝑋,𝑌 ).
(ii) Query 𝑔3 (𝛿), {ℎ3, 𝑗 (𝛿)} 𝑗∈[3] . Compute 𝑇4 = 𝛿 · 𝑔3 (𝛿) + (𝛿 − 𝑢3) · 𝑓𝑃 ′𝑣 (𝛼, 𝛽)/𝑚̃ + (𝛿 − 𝑢3)𝑍M (𝛿) (ℎ3,1 (𝛿) + 𝛿

𝑚̃ℎ3,2 (𝛿) + 𝛿2𝑚̃ℎ3,3 (𝛿)).
(iii) Query val(𝛿, 𝜁 ), 𝐴high (𝛿, 𝜁 ), 𝐴low (𝛿, 𝜁 ), 𝐵(𝛿, 𝜁 ), 𝐿(𝛽, 𝜁 ), 𝑔4 (𝜁 ), {ℎ4, 𝑗 (𝜁 )} 𝑗∈[4] . Check if Equation (26) holds when 𝑌 = 𝜁 .

(iv) Different from Step 5. in Protocol 3, query 𝑅(𝑟𝑚, 𝛽) instead of computing it himself. Invoke Step 5. using the evaluation 𝑓𝑃 ′𝑣 (𝛼, 𝛽).
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5 CONSTRUCTION OF DISTRIBUTED SNARK

5.1 Batch Bivariate KZG
Protocols 3 and 5 require openingmultiple points onmultiple bivari-

ate polynomials. We use bivariate KZG as the PCS for its constant

proof size and verification. However, directly running it incurs a

large overhead. We propose a batch bivariate KZG for efficiency.

Building a batch bivariate KZG can be challenging even given a

novel univariate batch approach as in [11], which we recall below.

Given a set 𝑆 ⊂ F of size 𝑡 , denote 𝑍𝑆 as the vanishing polynomial

on 𝑆 . To prove the validity of {𝑓 (𝛼)}𝛼∈𝑆 , the prover and verifier

compute a public polynomial 𝑟 ∈ F𝑡 [𝑋 ] s.t. 𝑟 (𝛼) = 𝑓 (𝛼) for all 𝛼 .
Then, the prover shows the existence of polynomial ℎ(𝑋 ) s.t.

𝑓 (𝑋 ) − 𝑟 (𝑋 ) = ℎ(𝑋 ) · 𝑍𝑆 (𝑋 ). (27)

However, the bivariate case can be more complex. For example,

to prove 𝑓 (𝛼1, 𝛽1), 𝑓 (𝛼2, 𝛽2), we can also build a bivariate 𝑟 , but the

quotient relation turns: there exists bivariate polynomials 𝑝, 𝑞 s.t.

𝑓 (𝑋,𝑌 )−𝑟 (𝑋,𝑌 ) = 𝑝 (𝑋,𝑌 )·(𝑋−𝛼1) (𝑌−𝛽2)+𝑞(𝑋,𝑌 )·(𝑋−𝛼2) (𝑌−𝛽1).

For more evaluations points, such as an additional 𝑓 (𝛼3, 𝛽3), it
seems necessary to use more bivariate polynomials instead of two.

Suppose the evaluation points are (𝛼1, 𝛽1), . . . (𝛼𝑡 , 𝛽𝑡 ). For sim-

plicity, assume each 𝛼 or 𝛽 is distinct. Let 𝑅 = {𝛼1, . . . , 𝛼𝑡 } and
𝑆 = {𝛽1, . . . , 𝛽𝑡 }. To construct a uniform quotient equation, we en-

large the evaluation points as 𝑅 × 𝑆 , or say, {(𝛼, 𝛽)}𝛼∈𝑅,𝛽∈𝑆 . Under
this convention, the validity of all {𝑓 (𝛼, 𝛽)}𝛼∈𝑅,𝛽∈𝑆 is equivalent

to the existence of bivariate polynomials 𝑝 and 𝑞 s.t.

𝑓 (𝑋,𝑌 ) − 𝑟 (𝑋,𝑌 ) = 𝑝 (𝑋,𝑌 ) · 𝑍𝑅 (𝑋 ) + 𝑞(𝑋,𝑌 ) · 𝑍𝑆 (𝑌 ). (28)

This equation suffices for opening the same set of evaluation

points on multiple polynomials, but we still face challenges for

distinct evaluation points. In the univariate case [11], each quo-

tient polynomial is multiplied by some public polynomial, making

them aggregatable by a random linear combination. For example,

to open 𝑓1 (𝑋 ), 𝑓2 (𝑋 ) on distinct 𝑆1, 𝑆2 with auxiliary polynomials

𝑟1 (𝑋 ), 𝑟2 (𝑋 ), given a random challenge 𝛾 , we have

(𝑓1 − 𝑟1) · 𝑍𝑆2 + 𝛾 · (𝑓2 − 𝑟2) · 𝑍𝑆1 = (ℎ1 + 𝛾 · ℎ2) · 𝑍𝑆1𝑍𝑆2 .

This combines ℎ1 (𝑋 ) and ℎ2 (𝑋 ), leading to a proof size non-related
to the polynomial number. In Equation (28), however, finding such

public polynomials is not straightforward as each equation has two

and possibly different quotient polynomials, i.e., 𝑍𝑅 (𝑋 ) and 𝑍𝑆 (𝑌 ).
To address this problem, we introduce an auxiliary polynomial

𝑠 ∈ F𝑡,ℓ [𝑋,𝑌 ] s.t. 𝑠 (𝛼,𝑌 ) = 𝑓 (𝛼,𝑌 ) for all 𝛼 ∈ 𝑅. Further, let 𝑟 ∈
F𝑡,𝑡 [𝑋,𝑌 ] s.t. 𝑟 (𝑋, 𝛽) = 𝑠 (𝑋, 𝛽) for all 𝛽 ∈ 𝑆 . By definition, 𝑟 (𝑋,𝑌 )
satisfies 𝑟 (𝛼, 𝛽) = 𝑓 (𝛼, 𝛽) for all 𝛼 ∈ 𝑅 and 𝛽 ∈ 𝑆 . Further, 𝑟 (𝑋,𝑌 )
is public and can be computed from all evaluations of 𝑓 (𝛼, 𝛽).

By definition, 𝑓 (𝑋,𝑌 ) − 𝑠 (𝑋,𝑌 ) equals zero on any 𝑋 = 𝛼 for

𝛼 ∈ 𝑅, hence 𝑍𝑅 | 𝑓 − 𝑠 . Similarly, we have 𝑍𝑆 | 𝑠 −𝑟 . we further set
𝑝 and𝑞 in Equation (28) to be (𝑓 −𝑠)/𝑍𝑅 and (𝑠−𝑟 )/𝑍𝑆 , respectively.
As 𝑓 − 𝑟 = 𝑓 − 𝑠 + 𝑠 − 𝑟 , Equation (28) can be divided into two parts:

one related to𝑍𝑅 and independent of𝑍𝑆 ; the other one related to𝑍𝑆
and independent of 𝑍𝑅 . This enables the combination of quotient

polynomials over 𝑋 or 𝑌 separately. For example, for any two 𝑓1, 𝑓2,

two 𝑠1, 𝑠2, two 𝑟1, 𝑟2, two 𝑍𝑅1
, 𝑍𝑅2

, and two 𝑍𝑆1 , 𝑍𝑆2 , we have

(𝑓1 − 𝑠1) · 𝑍𝑅2
+ 𝛾 · (𝑓2 − 𝑠2) · 𝑍𝑅1

= (𝑝1 + 𝛾 · 𝑝2) · 𝑍𝑅1
𝑍𝑅2

,

(𝑠1 − 𝑟1) · 𝑍𝑆2 + 𝛾 · (𝑠2 − 𝑟2) · 𝑍𝑆1 = (𝑞1 + 𝛾 · 𝑞2) · 𝑍𝑆1𝑍𝑆2 .
(29)

Using the evaluation padding and the auxiliary polynomial 𝑠 ,

we follow the techniques in [11] to build a batch bivariate KZG.

We consider 𝑛 bivariate polynomials {𝑓𝑘 (𝑋,𝑌 )}𝑘∈[𝑛] with claimed

evaluations 𝑓𝑘 (𝛼, 𝛽) for all 𝛼 ∈ 𝑅𝑘 and all 𝛽 ∈ 𝑆𝑘 . For simplicity,

assume for all 𝑘 ∈ [𝑛], |𝑅𝑘 | = |𝑆𝑘 | = 𝑡 , and each polynomial is

opened at 𝑡2 points. Denote 𝑇1 =
⋃

𝑘∈[𝑛] 𝑅𝑘 and 𝑇2 =
⋃

𝑘∈[𝑛] 𝑆𝑘 .
We present the PCS in Protocol 6, and below we give the main idea.

First (in Step 1.), for 𝑘 ∈ [𝑛], P computes auxiliary secret poly-

nomial 𝑠𝑘 (𝑋,𝑌 ) and sends its commitment toV .

Second (in Step 3.),P splits 𝑓𝑘 (𝑋,𝑌 ) as 𝑃𝑘 = 𝑓𝑘−𝑠𝑘 and𝑄𝑘 = 𝑠𝑘−
𝑟𝑘 and handles these two polynomials separately like Equation (29).

Given a random challenge 𝛾 , for the first half, P multiplies each 𝑃𝑘
with an auxiliary polynomial 𝑍𝑇1\𝑅𝑘 (𝑋 ) to allow a random linear

combination of all 𝑃𝑘 . The combined polynomial is

𝑃 (𝑋,𝑌 ) =
∑︁

𝑘∈[𝑛]
𝛾𝑘−1 · 𝑍𝑇1\𝑅𝑘 (𝑋 ) · 𝑃𝑘 (𝑋,𝑌 ) . (30)

Similarly, P can compute 𝑄 (𝑋,𝑌 ), the second-half combined poly-

nomial. By definition, 𝑍𝑅𝑘 | 𝑃𝑘 , hence 𝑍𝑇1 | 𝑃 , and similarly 𝑍𝑇2 | 𝑄 .

P sends commitments 𝑃 (𝑋,𝑌 )/𝑍𝑇1 (𝑋 ) and 𝑄 (𝑋,𝑌 )/𝑍𝑇2 (𝑌 ).
Third (in Step 5.), P proves to V the validity of 𝑃 (𝑋,𝑌 ) and

𝑄 (𝑋,𝑌 ) relying on challenges 𝑧1 and 𝑧2. P builds a polynomial

𝑃 ′ (𝑋,𝑌 ) similar to Equation (30) butmodifies𝑍𝑇1\𝑅𝑘 (𝑋 ) as𝑍𝑇1\𝑅𝑘 (𝑧1).
Let𝑊1 (𝑋,𝑌 ) = 𝑃 ′ (𝑋,𝑌 ) −𝑍𝑇1 (𝑧1)𝑃 (𝑋,𝑌 )/𝑍𝑇1 (𝑋 ). As𝑊1 (𝑧1, 𝑌 ) =
0, it holds that (𝑋 − 𝑧1) |𝑊1. Similarly, P can build 𝑄 ′ (𝑋,𝑌 ) and
𝑊2 (𝑋,𝑌 ). Then, it holds that (𝑌 − 𝑧2) |𝑊2. P sends commitments

𝑊1 (𝑋,𝑌 )/(𝑋 − 𝑧1) and𝑊2 (𝑋,𝑌 )/(𝑌 − 𝑧2).
Finally (in Step 6.),V checks the validity of quotient relations

𝑊1 (𝑋,𝑌 )/(𝑋 − 𝑧1) and𝑊2 (𝑋,𝑌 )/(𝑌 − 𝑧2) at 𝑋 = 𝜎 and 𝑌 = 𝜏 .

Theorem 5. Protocol 6 is a batch bivariate PCS. Opening 𝑡2 points

on each of 𝑛 bivariate polynomials with 𝑋 -degree of𝑚 and 𝑌 -degree

of ℓ , the opening complexity is 𝑂 (𝑚ℓ + 𝑛𝑡ℓ) group operations plus

𝑂 (𝑛𝑚ℓ + 𝑛𝑡ℓ) field operations. The proof size is 𝑛 + 4 group elements.

The verifier complexity is 𝑂 (𝑛) group operations plus 4 pairings.

Proof of Theorem 5. Completeness holds by design. To prove

knowledge soundness, we first recall some additional preliminaries

in Appendix C. We prove the knowledge soundness in the algebraic

group model (AGM), i.e., the existence of an efficient extractor

E s.t. an algebraic adversary A can only win the game with a

probability of negl(𝑛) (𝜆). We kindly refer to [11] for background

about ideal and real pairing checks.Wewill use the following lemma

for soundness proof.

Lemma 4 ([11]). Fix subset 𝑆 ⊂ 𝑇 ⊂ F, and 𝑔 ∈ F𝑑 [𝑋 ]. Then
𝑍𝑆 (𝑋 ) | 𝑔(𝑋 ) iff 𝑍𝑇 (𝑋 ) | 𝑍𝑇 \𝑆 (𝑋 ) · 𝑔(𝑋 ).

Let A be an algebraic adversary. A begins by outputting com-

mitments cm1, . . . , cm𝑛 ∈ G1. In the AGM, each cm𝑘 is a linear

combination of

∑𝑚−1
𝑖=0

∑ℓ−1
𝑗=0 𝑓𝑘,𝑖, 𝑗 [𝜎𝑖𝜏 𝑗 ]1. The extractor E, given the

coefficients of {𝑓𝑘,𝑖, 𝑗 } for some 𝑘 , outputs a polynomial 𝑓𝑘 (𝑋,𝑌 ) =
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Protocol 6 (Batch bivariate KZG).

1. Gen(𝑚, ℓ): for 𝜎, 𝜏 ∈ F probably generated by ceremony [8],

output srs = ({[𝜎𝑖−1𝜏 𝑗−1]1}𝑖∈[𝑚], 𝑗∈[ℓ ] , [1]1, [1]2, [𝜎]2, [𝜏]2).
2. Com(srs, {𝑓𝑘 (𝑋,𝑌 )}): Given 𝑓𝑘 ∈ F𝑚,ℓ [𝑋,𝑌 ], compute the com-

mitment cm𝑘 = [𝑓𝑘 (𝜎, 𝜏)]1 for 𝑘 ∈ [𝑛].
Open({cm𝑘 }, {𝑅𝑘 }, {𝑆𝑘 }, {𝑓𝑘 (𝛼, 𝛽)𝛼∈𝑅𝑘 ,𝛽∈𝑆𝑘 }):
1. P sends commitments to {𝑠𝑘 }, i.e., cm𝑠𝑘 toV .

(a) Compute {𝑟𝑘 }𝑘∈[𝑛] ∈ F𝑡,𝑡 [𝑋,𝑌 ] such that 𝑟𝑘 (𝛼, 𝛽) =

𝑠𝑘 (𝑋, 𝛽) for all 𝛼 ∈ 𝑅𝑘 and 𝛽 ∈ 𝑆𝑘 .
(b) Compute {𝑠𝑘 }𝑘∈[𝑛] ∈ F𝑡,ℓ [𝑋,𝑌 ] such that 𝑠𝑘 (𝛼,𝑌 ) =

𝑓𝑘 (𝛼,𝑌 ) for any 𝛼 ∈ 𝑅𝑘 . Compute commitments {𝑠𝑘 [𝜎, 𝜏]1}
for 𝑘 ∈ [𝑛].

2. V : sends a random challenge 𝛾 ∈ F to P.
3. P: computes and sends𝑈1,𝑈2 toV . Specifically,

(a) For 𝑘 ∈ [𝑛], compute bivariate polynomials 𝑃𝑘 (𝑋,𝑌 ),
𝑄𝑘 (𝑋,𝑌 ) s.t. 𝑃𝑘 = 𝑓𝑘 − 𝑠𝑘 and 𝑄𝑘 = 𝑠𝑘 − 𝑟𝑘 .

(b) Set 𝑇1 =
⋃

𝑘∈[𝑛] 𝑅𝑘 . Set 𝑇2 =
⋃

𝑘∈[𝑛] 𝑆𝑘 . Compute

𝑃 (𝑋,𝑌 ) = ∑
𝑘∈[𝑛] 𝛾

𝑘−1 · 𝑍𝑇1\𝑅𝑘 (𝑋 ) · 𝑃𝑘 (𝑋,𝑌 ), and
𝑄 (𝑋,𝑌 ) = ∑

𝑘∈[𝑛] 𝛾
𝑘−1 · 𝑍𝑇2\𝑆𝑘 (𝑌 ) ·𝑄𝑘 (𝑋,𝑌 ).

By construction, we have 𝑍𝑅𝑘 (𝑋 ) | 𝑃𝑘 (𝑋,𝑌 ), and hence

𝑍𝑇1 (𝑋 ) | 𝑃 (𝑋,𝑌 ). Similarly, we have 𝑍𝑇2 (𝑌 ) | 𝑄 (𝑋,𝑌 ).
(c) Compute 𝑝 (𝑋,𝑌 ) = 𝑃 (𝑋,𝑌 )/𝑍𝑇1 (𝑋 ) and 𝑞(𝑋,𝑌 ) =

𝑄 (𝑋,𝑌 )/𝑍𝑇2 (𝑌 ). Compute𝑈1 = [𝑝 (𝜎, 𝜏)]1,𝑈2 = [𝑞(𝜎, 𝜏)]1.
4. V : sends random challenges 𝑧1, 𝑧2 ∈ F to P.
5. P computes and sends 𝑉1 and 𝑉2 toV .

(a) Compute𝑊1 ∈ F𝑚,ℓ [𝑋,𝑌 ],𝑊2 ∈ F𝑡,ℓ [𝑋,𝑌 ] s.t.

𝑊1 =
∑︁

𝑘∈[𝑛]
𝛾𝑘−1 · 𝑍𝑇1\𝑅𝑘 (𝑧1) · (𝑓𝑘 − 𝑠𝑘 ) − 𝑍𝑇1 (𝑧1) · 𝑝,

𝑊2 =
∑︁

𝑘∈[𝑛]
𝛾𝑘−1 · 𝑍𝑇2\𝑆𝑘 (𝑧2) · (𝑠𝑘 − 𝑟𝑘 (𝑧1, 𝑧2)) − 𝑍𝑇2 (𝑧2) · 𝑞.

By definition, we have (𝑋 − 𝑧1) |𝑊1 and (𝑌 − 𝑧2) |𝑊2.

(b) Compute𝑊 ′
1
(𝑋,𝑌 ) = 𝑊1 (𝑋,𝑌 )/(𝑋 − 𝑧1) and𝑊 ′

2
(𝑋,𝑌 ) =

𝑊2 (𝑋,𝑌 )/(𝑋 − 𝑧2). Compute 𝑉1 = [𝑊 ′
1
(𝜎, 𝜏)]1,𝑉2 =

[𝑊 ′
2
(𝜎, 𝜏)]1.

6. V : computes 𝑟𝑘 (𝑋,𝑌 ) for 𝑘 ∈ [𝑛]. Compute 𝐹1 and 𝐹2 s.t.

𝐹1 = 𝑍𝑇1\𝑅𝑘 (𝑧1) · (
∑︁

𝑘∈[𝑛]
𝛾𝑘−1 (cm𝑘 − cm𝑠𝑘 ) − 𝑍𝑇1 (𝑧1) ·𝑈1),

𝐹2 =
∑︁

𝑘∈[𝑘 ]
𝛾𝑘−1 · 𝑍𝑇2\𝑆𝑘 (𝑧2) (cm𝑠𝑘 − [𝑟𝑘 (𝑧1, 𝑧2)]1) − 𝑍𝑇2 (𝑧2) ·𝑈2 .

Accept iff

𝑒 (𝐹1, [1]2) = 𝑒 (𝑉1, [𝜎 − 𝑧1]2) ∧ 𝑒 (𝐹2, [1]2) = 𝑒 (𝑉2, [𝜏 − 𝑧2]2) .

∑𝑚−1
𝑖=0

∑ℓ−1
𝑗=0 𝑓𝑘,𝑖, 𝑗𝑋

𝑖𝑌 𝑗
. A also outputs 𝑅1, . . . , 𝑅𝑛 , 𝑆1, . . . 𝑆𝑛 , 𝑇1, 𝑇2,

and polynomials 𝑟1, . . . , 𝑟𝑛 .

Assume for some 𝑘∗ ∈ [𝑛], we have 𝑍𝑅𝑘∗ ∤ 𝑓𝑘∗ − 𝑠𝑘∗ or 𝑍𝑆𝑘∗ ∤
𝑠𝑘∗ − 𝑟𝑘∗ . The assumption is feasible as otherwise we have for all

𝑘 ∈ [𝑛], there exists 𝑝𝑘 and𝑞𝑘 s.t. 𝑓𝑘−𝑟𝑘 = 𝑝𝑘 ·𝑍𝑅𝑘 (𝑋 )+𝑞𝑘 ·𝑍𝑆𝑘 (𝑌 ).
WLOG, assume 𝑍𝑅𝑘∗ ∤ 𝑓𝑘∗ −𝑠𝑘∗ and 𝑍𝑆𝑘∗ | 𝑠𝑘∗ −𝑟𝑘∗ . Other cases are
similar. Then, we know from Lemma 4 that 𝑍𝑇1\𝑅𝑘∗ (𝑋 ) (𝑓𝑘∗ − 𝑠𝑘∗ )

is not divisible by 𝑍𝑇1 (𝑋 ). Let

𝑓 (𝑋,𝑌 ) =
∑︁

𝑘∈[𝑛]
𝛾𝑘−1𝑍𝑇1\𝑅𝑘 (𝑋 ) · (𝑓𝑘 (𝑋,𝑌 ) − 𝑠𝑘 (𝑋,𝑌 )) .

Using Lemma 3, we know that except with probability 𝑛/|F| over 𝛾 ,
𝑓 is not divisible by 𝑍𝑇1 (𝑋 ). NowA outputs𝑈1 = [𝑝′ (𝜎, 𝜏)]1,𝑈2 =

[𝑞′ (𝜎, 𝜏)]1 for some 𝑝′, 𝑞′ ∈ F𝑚,ℓ [𝑋,𝑌 ] followed byV sending uni-

form 𝑧1, 𝑧2 ∈ F. Since 𝑓 is not divisible by 𝑍𝑇1 (𝑋 ), for any 𝑝′, there
are at most 2𝑚 values of 𝑧1 ∈ F s.t. 𝑓 (𝑧1, 𝑌 ) = 𝑝′ (𝑧1, 𝑌 )𝑍𝑇1 (𝑧1); and
thus 𝑧1 of this form chosen byV is with probability of negl(𝑛) (𝜆).

Assume 𝑧1 is not in this form. P now outputs𝑊 ′
1
= [𝑊1 (𝜎, 𝜏)]1

and𝑊 ′
2
. According to [11, Lemma 2.2], it suffices to upper bound the

probability that the ideal check corresponding to the real pairing

check in Step 6. Denoting𝑊 ∗
1
(𝑋,𝑌 ) =∑︁

𝑘∈[𝑛]
𝛾𝑘−1 ·𝑍𝑇1\𝑅𝑘 (𝑧1) · (𝑓𝑘 (𝑋,𝑌 ) − 𝑠𝑘 (𝑋,𝑌 )) −𝑍𝑇1 (𝑧1) · 𝑝

′ (𝑋,𝑌 ) .

The ideal check has the form𝑊 ∗
1
(𝑋,𝑌 ) = 𝐻 (𝑋,𝑌 ) (𝑋 − 𝑧1) for the

existence of 𝐻 (𝑋,𝑌 ). It can pass iff𝑊 ∗
1
(𝑧1, 𝑌 ) = 0, which means

𝑊 ∗
1
(𝑧1, 𝑌 ) = 𝑓 (𝑧1, 𝑌 ) − 𝑝′ (𝑧1, 𝑌 ) ·𝑍𝑇1 (𝑧1) = 0. This a contradiction.

The proof for 𝑍𝑆𝑘∗ ∤ 𝑠𝑘∗ − 𝑟𝑘∗ is similar by setting 𝑠𝑘 (𝑋,𝑌 ) as
𝑟𝑘 (𝑧1, 𝑧2) in 𝑓𝑘 (𝑋,𝑌 ) corresponding to variable 𝑌 , and we omit it

here. In summary, the ideal check can only pass with negl(𝑛) (𝜆)
probability over the randomness of V , which implies the same

thing for the real pairing check.

Complexity. The srs consists of 𝑂 (𝑚ℓ) group elements. The com-

mitment generation requires 𝑂 (𝑛 ·𝑚ℓ) group operations.

For the Open protocol, the computation of all 𝑠𝑘 costs 𝑂 (𝑛 · 𝑡ℓ)
field operations in total. The computation of all 𝑠𝑘 [𝜎, 𝜏]1 costs

𝑂 (𝑛𝑡ℓ) group operations. The computation of 𝑝 ∈ F𝑚ℓ [𝑋,𝑌 ] and
𝑞 ∈ F𝑡,ℓ [𝑋,𝑌 ] costs at most 𝑂 (𝑛𝑚ℓ + 𝑛𝑡ℓ) field operations as each

polynomial is a linear combination of 𝑛 polynomials. The computa-

tion of𝑈1 and𝑈2 costs𝑂 (𝑚ℓ + 𝑡ℓ) group operations. The computa-

tion of𝑊1 (𝑋,𝑌 ) costs 𝑂 (𝑛𝑚ℓ) field operations. The computation

of 𝑉1 costs 𝑂 (𝑚ℓ) group operations. Similarly, the computation

of𝑊2 (𝑋,𝑌 ) and 𝑉2 costs 𝑂 (𝑛𝑡ℓ) field operations and 𝑂 (𝑡ℓ) group
operations. Hence, the total prover complexity is𝑂 (𝑛𝑚ℓ +𝑛𝑡ℓ) field
operations 𝑂 (𝑚ℓ + 𝑛𝑡ℓ) group operations. In contrast, the trivial

prover complexity is𝑂 (𝑡2𝑛 ·𝑚ℓ) group operations. Note that 𝑛 and

𝑡 are usually small constants in SNARKs [17] and also in our case.

The proof size is 𝑛 + 4 group elements, in contrast to the trivial

2𝑡2𝑛 group elements. The verifier complexity includes 𝑂 (𝑛) group
operations due to computing 𝐹1 and 𝐹2, 𝑂 (𝑛) group operations for

all [𝑟𝑘 (𝑧1, 𝑧2)]1, and 4 pairings. Hence, the total verifier complexity

is 𝑂 (𝑛) group operations plus 4 pairings. In contrast, the trivial

verifier complexity is 𝑂 (𝑡2𝑛) pairings. □

Reducing proof size with the same evaluation point over 𝑌 .
The evaluations points on bivariate polynomials in Protocol 3 share

the same 𝑌 = 𝛽 . To further reduce the proof size, we propose a PCS

variant specified for same 𝑌 -dimension points in Protocol 7. We

present the batch bivariate KZG variant with the same evaluation

points over 𝑌 in Protocol 7. Below we discuss the high-level idea.
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Protocol 7 (Batch bivariate KZG evaluated at a single 𝑌 = 𝛽).
1. Output srs = ({[𝜎𝑖−1𝜏 𝑗−1]1}𝑖∈[𝑚], 𝑗∈[ℓ ] , [1]2, [𝜎]2, [𝜏]2) for

uniform 𝜎, 𝜏 .

2. cm𝑘 = [𝑓𝑘 (𝜎, 𝜏)]1 for each 𝑘 ∈ [𝑛].
Open({cm𝑘 }, {𝑅𝑘 }, 𝛽 ; {𝑓𝑘 (𝛼, 𝛽)𝛼∈𝑅𝑘 }):

1. V : sends to P a random challenge 𝛾 ∈ F.
2. P: computes and sends 𝑄 = [𝑞(𝜎)]1 to V for 𝑞 ∈ F𝑚+|𝑇1 | [𝑋 ]

obtained from Equation (32).

3. V : sends to P a random challenge 𝜂 ∈ F.
4. (a) P: sends 𝑓1 (𝜂, 𝛽), . . . , 𝑓𝑛 (𝜂, 𝛽) and 𝑞(𝜂) toV .

(b) V : sends to P a random challenge 𝜃 ∈ F.
(c) P: sends toV the 𝑄1 = [𝑞1 (𝜎, 𝜏)]1, 𝑄2 = [𝑞2 (𝜎, 𝜏)]1, 𝑄3 =

[𝑞3 (𝜎)]1, where 𝑞(𝑋 ) − 𝑞(𝜂) = 𝑞3 (𝑋 ) · (𝑋 − 𝜂), and∑︁
𝑘∈[𝑛]

𝜃𝑘−1 · (𝑓𝑘 (𝑋,𝑌 )− 𝑓𝑘 (𝜂, 𝛽)) = 𝑞1 (𝑋 ) · (𝑋−𝜂)+𝑞2 (𝑌 ) · (𝑌 −𝛽) .

(d) V : accepts iff:

(i) Equation (32) holds when 𝑋 = 𝜂;

(ii) 𝑒 (𝑄3, [𝜎 − 𝜂]2) = 𝑒 (𝑄 − [𝑞(𝜂)]1, [1]2);
(iii) 𝑒 (𝑄1, [𝜎 −𝜂]2) · 𝑒 (𝑄2, [𝜏 −𝜂]2) = 𝑒 (∑𝑘∈[𝑛] 𝜃

𝑖−1 (cm𝑘 −
[𝑓𝑘 (𝜂, 𝛽)]1), [1]2).

For any bivariate polynomial 𝑓𝑘 and points𝑅𝑘 ⊂ 𝑇1 and 𝑆𝑘 = {𝛽},
there exists univariate polynomials 𝑟𝑖 ∈ F𝑘 [𝑋 ] and 𝑞𝑖 s.t.

𝑓𝑘 (𝑋, 𝛽) − 𝑟𝑘 (𝑋 ) = 𝑞𝑘 (𝑋 ) · 𝑍𝑅𝑘 (𝑋 ), (31)

where 𝑟𝑘 is publicly defined by {(𝛼, 𝑓𝑘 (𝛼, 𝛽))}. Formultiple 𝑓1, . . . , 𝑓𝑛 ,

Equation (31) can be batched via random linear combination of 𝛾∑︁
𝑘∈[𝑛]

𝛾𝑘−1 · (𝑓𝑘 (𝑋, 𝛽) − 𝑟𝑘 (𝑋 )) · 𝑍𝑇1\𝑅𝑘 (𝑋 ) = 𝑞(𝑋 )𝑍𝑇1 (𝑋 ). (32)

To prove it, the prover sends the commitment to 𝑞, and the verifier

opens {𝑓𝑘 (𝜂, 𝛽)}𝑘∈[𝑛] , 𝑞(𝜂) for a randomly picked 𝜂, and checks if

Equation (32) holds when 𝑋 = 𝜂. We still need to open evaluations

on each polynomial, but they are evaluated on the same points and

simple to batch via random linear combination. The proof size is

reduced to 4 G1 elements and 𝑛 + 1 F elements. Note that group

elements for bilinear pairing can be 4× larger than field ones.

Theorem 6. Protocol 7 is a batch PCS as in Definition 2. Opening 𝑡

points on each of the 𝑛 bivariate polynomials with 𝑋 -degree of𝑚 and

𝑌 -degree of ℓ , the prover complexity is 𝑂 (𝑡 +𝑚ℓ) group operations.
The proof size is 4 group elements plus 𝑛+1 field elements. The verifier

complexity is 𝑂 (𝑛) group operations plus 5 pairings.

Proof. Completeness holds by design. We argue the knowledge

soundness in AGM below. LetA be such an algebraic adversary.A
begins by outputting cm1, . . . , cm𝑛 , and each cm𝑘 is a linear combi-

nation

∑𝑚−1
𝑖=0

∑ℓ−1
𝑗=0 𝑓𝑘,𝑖, 𝑗 [𝜎𝑖𝜏 𝑗 ]1. E, given the coefficients of {𝑓𝑘,𝑖, 𝑗 }

for some 𝑘 , outputs a polynomial 𝑓𝑘 (𝑋,𝑌 ) =
∑𝑚−1
𝑖=0

∑ℓ−1
𝑗=0 𝑓𝑘,𝑖, 𝑗𝑋

𝑖𝑌 𝑗
.

A also outputs 𝑅1, . . . , 𝑅𝑛, 𝛽,𝑇1.

Assume for some 𝑘∗ ∈ [𝑛], we have𝑍𝑅𝑘 ∤ 𝑓𝑘∗−𝑟𝑘∗ , which means

there exists some 𝛼 ∈ 𝑅𝑘 , 𝑓𝑘∗ (𝛼) ≠ 𝑟𝑘∗ (𝛼). We know from Lemma 4

that 𝑍𝑇1\𝑅𝑘∗ · (𝑓𝑘∗ − 𝑟𝑘∗ ) is not divisible by 𝑍𝑇1 . Let

𝑓 (𝑋 ) =
∑︁

𝑘∈[𝑛]
𝜃𝑘−1 (𝑓𝑘 (𝑋, 𝛽) − 𝑟𝑘 (𝑋 )) · 𝑍𝑇1\𝑅𝑘 (𝑋 ).

By Lemma 3, except with probability 𝑛/|F| over 𝛾 , 𝑓 is not divisible

by 𝑍𝑇1 (𝑋 ). Now A outputs 𝑄 = [𝑞′ (𝜎)] for some 𝑞′ ∈ F𝑚 [𝑋 ].
Given a random 𝜂 ∈ F, for any 𝑞′ there are at most 2𝑚 values of

𝜂 ∈ F s.t. 𝑓 (𝜂) = 𝑞(𝜂)𝑍𝑇1 (𝜂). Thus, picking a 𝜂 of this form forV
is of probability negl(𝑛) (𝜆).

Assume we are not in this case. Assume that for some 𝑘∗ ∈ [𝑛],
𝑓𝑘∗ (𝜂, 𝛽) does not equal the claimed 𝑓𝑘 (𝜂, 𝛽). By the randomness of

𝜃 , with a probability of𝑛/|F|,∑𝑘∈[𝑛] 𝜃
𝑘−1 𝑓𝑘 (𝑋,𝑌 )−𝜃𝑘−1 𝑓𝑘 (𝜂, 𝛽) ≠

0. If the ideal check passes, it shows the existence of 𝑞1, 𝑞2, which

means that

∑
𝑘∈[𝑛] 𝜃

𝑘−1 𝑓𝑘 (𝑋,𝑌 ) − 𝜃𝑘−1 𝑓𝑘 (𝜂, 𝛽) = 0. This is a con-

tradiction. Thus the ideal check can only pass with probability

negl(𝑛) (𝜆), which implies the same thing for the real check.

Complexity. The srs and commitment generation are the same as

Protocol 6. Open requires 𝑂 (𝑡 +𝑚ℓ) group operations due to the

degree bound of 𝑞, 𝑞1, 𝑞2 and 𝑞3. The proof size is 4 G1 + (𝑛 + 1) F
elements, in contrast to 𝑛+4G1 elements in Protocol 6. The verifier

complexity is 𝑛 group operations and 5 pairings. □

5.2 Distributed Batch Bivariate PCS
To build a distributed batch bivariate PCS, we recall the idea in

Pianist [42]. In the distributed setting, the prover P𝑖 knows 𝑓𝑖 and
oracles {𝑋 𝑗−1 · 𝐿𝑖 (𝑌 )} 𝑗∈[𝑚] s.t. 𝑓 (𝑋,𝑌 ) =

∑
𝑖∈[ℓ ] 𝑓𝑖 (𝑋 )𝐿𝑖 (𝑌 ). To

compute the quotient bivariate polynomials 𝑝, 𝑞 distributedly, Pi-

anist sets 𝑝 (𝑋,𝑌 ) = (𝑓 (𝑋,𝑌 ) − 𝑓 (𝛼,𝑌 ))/(𝑋 − 𝛼) and 𝑞(𝑋,𝑌 ) =
(𝑓 (𝛼,𝑌 ) − 𝑓 (𝛼, 𝛽))/(𝑌 − 𝛽). By definition, 𝑞 is only related to vari-

able 𝑌 , and can be computed by P0 locally in 𝑂 (ℓ) time. Further, 𝑝

satisfies 𝑝 (𝑋,𝑌 ) = ∑
𝑖∈[ℓ ]

𝑓𝑖 (𝑋 )−𝑓𝑖 (𝛼 )
𝑋−𝛼 · 𝐿𝑖 (𝑌 ). Then, 𝑝 can be com-

puted by P𝑖 computing
𝑓𝑖 (𝑋 )−𝑓𝑖 (𝛼 )

𝑋−𝛼 · 𝐿𝑖 (𝑌 ) and P0 adding them.

We generalize Equation (28) into a distributed version. We still

use 𝑠 ∈ F |𝑅 |=𝑡,ℓ [𝑋,𝑌 ], the auxiliary polynomial in Protocol 6, to

construct quotient polynomials 𝑝 and 𝑞. As 𝑠 (𝛼,𝑌 ) = 𝑓 (𝛼,𝑌 ) for
all 𝛼 ∈ 𝑅, it can be written as 𝑠 (𝑋,𝑌 ) = ∑

𝑗∈[ |𝑅 | ] 𝑓 (𝛼 𝑗 , 𝑌 ) · 𝑁 𝑗 (𝑋 ),
where 𝑁 𝑗 ∈ F |𝑅 | [𝑋 ] is the Lagrange polynomial corresponding to

𝛼 𝑗 . It satisfies 𝑁 𝑗 (𝛼 𝑗 ) = 1 while for other 𝑘 ≠ 𝑗, 𝑘 ∈ 𝑅, it holds that
𝑁 𝑗 (𝛼𝑘 ) = 0. In our case, |𝑅 | is a small constant.

By the properties of𝑁 𝑗 , we have
∑

𝑗∈[ |𝑅 | ] 𝑁 𝑗 (𝑋 ) = 1, and further

𝑝 (𝑋,𝑌 ) · 𝑍𝑅 (𝑋 ) =
∑︁

𝑗∈[ |𝑅 | ]
(𝑓 (𝑋,𝑌 ) − 𝑓 (𝛼 𝑗 , 𝑌 )) · 𝑁 𝑗 (𝑋 )

=
∑︁

𝑗∈[ |𝑅 | ]

( ∑︁
𝑖∈[ℓ ]
(𝑓𝑖 (𝑋 ) − 𝑓𝑖 (𝛼 𝑗 )) · 𝐿𝑖 (𝑌 )

)
· 𝑁 𝑗 (𝑋 )

=
∑︁
𝑖∈[ℓ ]

( ∑︁
𝑗∈[ |𝑅 | ]

(𝑓𝑖 (𝑋 ) − 𝑓𝑖 (𝛼 𝑗 )) · 𝑁 𝑗 (𝑋 )
)
· 𝐿𝑖 (𝑌 ).

As (𝑋 − 𝛼 𝑗 ) | 𝑓𝑖 (𝑋 ) − 𝑓𝑖 (𝛼 𝑗 ) for any 𝑖 ∈ [ℓ] and 𝑍𝑅\𝛼 𝑗
(𝑋 ) | 𝑁 𝑗 (𝑋 ),

it holds that 𝑍𝑅 (𝑋 ) |
∑

𝑗∈[ |𝑅 | ] (𝑓𝑖 (𝑋 ) − 𝑓𝑖 (𝛼 𝑗 )) ·𝑁 𝑗 (𝑋 ) for 𝑍𝑅 (𝑋 ) =
(𝑋 −𝛼 𝑗 ) ·𝑍𝑅\𝛼 𝑗

(𝑋 ). Also, the polynomial

∑
𝑗∈[ |𝑅 | ] (𝑓𝑖 (𝑋 )− 𝑓𝑖 (𝛼 𝑗 )) ·

𝑁 𝑗 (𝑋 ) · 1/𝑍𝑅 (𝑋 ) can be computed by P𝑖 locally. Hence, 𝑝 (𝑋,𝑌 )
can still be computed distributedly. Further, 𝑞 ∈ F |𝑅 |,ℓ−1 [𝑋,𝑌 ] can
be computed by P0 herself in 𝑂 ( |𝑅 | + ℓ) time.
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Protocol 8 (Distributed batch bivariate KZG). Suppose ℓ sub-

provers P1, . . . ,Pℓ and master P0. Given {𝑓𝑘 }𝑘∈[𝑛] ∈ F𝑚,ℓ [𝑋,𝑌 ]
s.t. 𝑓𝑘 (𝑋,𝑌 ) =

∑
𝑖∈[ℓ ] 𝑓𝑘,𝑖 (𝑋 )𝐿𝑖 (𝑌 ), P𝑖 holds {𝑓𝑘,𝑖 }𝑘∈[𝑛] .

1. Gen(𝑚, ℓ): choose the secret 𝜎, 𝜏 ∈ F. Output srs =

({[𝜎ℎ−1𝐿𝑗 (𝜏)]1}ℎ∈[𝑚], 𝑗∈[ℓ ] , [1]2, [𝜎]2, [𝜏]2).
2. DKZG.Com({𝑓𝑘 }, srs): For 𝑘 ∈ [𝑛], P𝑖 sends to P0 cm𝑓𝑘,𝑖 =

[𝑓𝑘,𝑖 (𝜎)𝐿𝑗 (𝜏)]1, who then computes cm𝑘 =
∏

𝑖∈[ℓ ] cm𝑓𝑘,𝑖 .

DKZG.Open({cm𝑘 }, {𝑅𝑘 }, {𝑆𝑘 }, {𝑓𝑘 (𝛼, 𝛽)𝛼∈𝑅𝑘 ,𝛽∈𝑆𝑘 }):
1. Provers compute and sends {cm𝑠𝑘 }𝑘∈[𝑛] toV .

(a) P𝑖 : for all 𝑘 ∈ [𝑛], computes 𝑠𝑘,𝑖 (𝑋 ), {𝑠𝑘,𝑖 (𝛼)}𝛼∈𝑅𝑘 for 𝑠𝑘,𝑖 ∈
F |𝑅𝑘 | [𝑋 ] s.t. for 𝛼 ∈ 𝑅𝑘 , 𝑠𝑘,𝑖 (𝛼) = 𝑓𝑘,𝑖 (𝛼). Compute cm𝑠𝑘,𝑖 =

[𝑠𝑘,𝑖 (𝜎)𝐿𝑖 (𝜏)]1. Send cm𝑠𝑘,𝑖 to P0.
(b) P0: computes cm𝑠𝑘 = [𝑠𝑘 (𝜎, 𝜏)]1 =

∏
𝑖∈[ℓ ] cm𝑠𝑘,𝑖 .

2. V : sends a random challenge 𝛾 ∈ F to P0, who transfers to P𝑖 .
3. Provers compute 𝑈1,𝑈2 as in Step 3., Protocol 6.

(a) P𝑖 : computes 𝑝𝑖 (𝑋 ) = 𝑃𝑖 (𝑋 )/𝑍𝑇1 (𝑋 ) and

𝑃𝑖 (𝑋 ) =
∑︁

𝑘∈[𝑛]
𝛾𝑘−1 · 𝑍𝑇1\𝑅𝑘 (𝑋 ) · (𝑓𝑘,𝑖 (𝑋 ) − 𝑠𝑘,𝑖 (𝑋 )) .

Send [𝑝𝑖 (𝜎)𝐿𝑖 (𝜏)]1 to P0.
(b) P0: computes 𝑈1 =

∏
𝑖∈[ℓ ] 𝑝𝑖 (𝜎)𝐿𝑖 (𝜏)]1. Compute 𝑞(𝑋,𝑌 )

and𝑈2 herself the same as Step 3., Protocol 6.

4. V : sends challenges 𝑧1, 𝑧2 ∈ F to P0, who transfers to P𝑖 .
5. Provers compute and send 𝑉1 and 𝑉2 toV .

(a) P𝑖 : computes𝑊 ′
1,𝑖
(𝑋 ) =𝑊1,𝑖 (𝑋 )/(𝑋 − 𝑧1) where

𝑊1,𝑖 (𝑋 ) =
∑︁

𝑘∈[𝑛]
𝛾𝑘−1 · 𝑍𝑇1\𝑅𝑘 (𝑧1) · (𝑓𝑘,𝑖 − 𝑠𝑘,𝑖 − 𝑍𝑇1 (𝑧1) · 𝑃𝑖 .

Send [𝑊 ′
1,𝑖
(𝜎)𝐿𝑗 (𝜏)]1 to P0.

(b) P0: computes 𝑉1 =
∏

𝑖∈[ℓ ] [𝑊1,𝑖 (𝜎)𝐿𝑖 (𝜏)]1. Compute

𝑊2 (𝑋,𝑌 ) and 𝑉2 according to Step 5., Protocol 6.
6. V : acts the same as Step 6., Protocol 6.

With the high-level idea above, we can build a distributed batch

bivariate KZG, which is presented in Protocol 8. To adapt to our

distributed PIOP for R1CS, we modify the {[𝜏 𝑗−1]1} 𝑗∈[ℓ ] in srs as
{[𝐿𝑗 (𝜏)]1} 𝑗∈[ℓ ] .

Theorem 7. Protocol 8 is a distributed batch bivariate PCS. The

prover complexity of P𝑖 is 𝑂 (𝑚) group and 𝑂 (𝑛𝑚 + 𝑛𝑡) field opera-
tions. The prover complexity of P0 is 𝑂 (ℓ𝑡) group and 𝑂 (ℓ𝑛𝑡) field
operations. The communication per prover is 𝑂 (𝑛) group elements.

The proof size and verifier complexity remain with Theorem 5.

Proof. The security of Protocol 8 follows directly from Proto-

col 6 assuming each sub-prover is honest.

Complexity. The proof size is 𝑛 + 4 group elements, the same

as the non-distributed Protocol 6. The communication per prover

is 𝑂 (𝑛) group elements for sending cm𝑠𝑘,𝑖 for all 𝑘 ∈ [𝑛]. Other
communication per prover is 𝑂 (1) for sending [𝑝𝑖 (𝜎)𝐿𝑖 (𝜏)]1 and
[𝑊 ′

1,𝑖
(𝜎)𝐿𝑖 (𝜏)]1. The verifier complexity is 𝑂 (𝑛) group operations

and 4 pairings, the same as the non-distributed Protocol 6. These

hold directly by count.

Assume |𝑅𝑘 | = |𝑆𝑘 | = 𝑡 for all 𝑘 ∈ [𝑛]. For prover P𝑖 , the
computation of {𝑠𝑘,𝑖 (𝛼)}𝛼∈𝑅𝑘 costs 𝑂 (𝑡𝑛) field operations given

evaluations 𝑓𝑘,𝑖 (𝛼). For 𝑛 polynomials, this costs 𝑂 (𝑛2𝑡) field op-

erations. Computing 𝑠𝑘,𝑖 (𝑋 ) from polynomial interpolation costs

𝑂 (𝑡) field operations. For 𝑛 polynomials, this costs 𝑂 (𝑛𝑡) field op-

erations. Computing {cm𝑠𝑘,𝑖 }𝑘∈[𝑛] needs 𝑂 (𝑛𝑡) group operations.

Computing 𝑝𝑖 (𝑋 ) and [𝑝𝑖 (𝜎)𝐿𝑖 (𝜏)]1 costs 𝑂 (𝑛𝑚) field and 𝑂 (𝑚)
group operations, respectively. This is because 𝑝𝑖 (𝑋 ) is the linear
combination of 𝑛 polynomials with degrees of at most 𝑚. Com-

puting𝑊 ′
1,𝑖
(𝑋 ) and [𝑊1,𝑖 (𝜎)𝐿𝑖 (𝜏)]1 costs 𝑂 (𝑛𝑚) field and 𝑂 (𝑚)

group operations, respectively. Hence, the sub-prover complexity

is 𝑂 (𝑛𝑚 + 𝑛𝑡) field operations plus 𝑂 (𝑚) group operations.

For P0, computing 𝑞(𝑋,𝑌 ) costs𝑂 (𝑡ℓ) field operations. Comput-

ing 𝑈2 costs 𝑂 (𝑡ℓ) group operations. Computing𝑊 ′
2
(𝑋,𝑌 ) need

𝑂 (𝑛𝑡ℓ) field operations. Computing𝑉2 costs𝑂 (𝑡ℓ) group operations.
Hence, the master prover complexity is𝑂 (𝑛𝑡ℓ) field operations plus
𝑂 (𝑡ℓ) group operations.

The complexities show a good scalability of our distributed batch

KZG, as the sub-prover complexity is non-related to ℓ and themaster

prover complexity is non-related to𝑚. □

Similar to how Protocol 8 generalizes Protocol 6, Protocol 7 can

be extended into a distributed scheme. We omit the details here.

5.3 Putting Everything Together
Combining our distributed PIOP for R1CS and the distributed batch

bivariate KZG, we have the following theorem.

Theorem 8. There exists a distributed SNARK. For size-𝑂 (𝑚ℓ)
R1CS utilized with ℓ provers, the sub-prover complexity is𝑂 (𝑚) group
operations plus𝑂 (𝑚 log𝑚) field operations. Choosing one sub-prover
as the master prover, its time complexity is 𝑂 (𝑚 + ℓ) group plus

𝑂 (𝑚 log𝑚 + ℓ log ℓ) field operations. The communication complexity

per prover is 𝑂 (1). The verifier complexity can be 𝑂 (1).

We provide a proof sketch here. Completeness holds directly.

Complexities are implied by Theorem 4 and Theorem 7. For knowl-

edge soundness, it has been proven that if a PCS satisfies knowledge

soundness and a PIOP has soundness, then the compiled interac-

tive argument from “PIOP + PCS” inherits the knowledge sound-

ness [14, 40]. The security proof hence follows from the soundness

of Protocol 5 and the knowledge soundness of Protocol 8.

6 IMPLEMENTATION AND EVALUATION
We implement Soloist using ∼10, 000 lines based on the arkworks

library [4] in Rust. All experiments are run on machines with 16

cores and 256GB of RAM. For distributed schemes, we open 2-32

machines belonging to one cluster, where each machine acts as a

prover. Reported figures are averages over 10 executions.

6.1 Evaluation of IPA and Batch Bivariate KZG
Performance of IPAs.We implement IPAs inMarlin [18], Dark [14],

and our scheme by instantiating corresponding PIOPs with the

batch KZG of Boneh et al. [11]. Figure 3 shows that our IPA has a
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Figure 3: Performance of three inner product arguments from “PIOP + PCS” with constant proof size
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Figure 4: Performance of batch bivariate KZG with random 𝑋 -dimension evaluation points and the same 𝑌 -dimension point

20% faster prover, 5%-80% faster verifier, and 30%-2× smaller proof

size. This benefits from the superior complexities shown in Table 2.

There are also other potential IPAs from “PIOP + PCS” with con-

stant proof size, such as Count [41], SZ22 [55], and Dew [5]. Due

to the lack of open-sourced implementations, we compare them in

theory.Count is an improved univariate sum-check and can be used

to construct IPAs with smaller proof size than Marlin. However, it

requires an SRS at least twice the size of vectors, incurring addi-

tional overhead due to SRS generation and additional low-degree

tests. Similarly, SZ22, an IPA from Laurent polynomials, reduces

a polynomial oracle over Dark but sacrifices the SRS size to twice

of the vectors. Dew is a trustless PCS with constant proof size, but

its security relies on the generic group model, which is viewed as

stronger than our algebraic group model [24].

Performance of batch bivariate KZG. Figure 4 shows the per-
formance of our batch bivariate KZG in Protocol 7 with the same

evaluation point over 𝑌 , which is used in Soloist. We test opening

20 random points, 2 on each of 10 polynomials, or 4 on each of 5

polynomials, with the 𝑌 -degree as 7. These parameters are chosen

or generalized from Soloist. Compared with PST13 [46] for directly

opening all points, ours has a 7-10× faster prover time, 5× faster

verifier time, and a 6-7× smaller proof size. When opening more

points on one polynomial, our schemewould feature a smaller proof

size, which is linear to the polynomial number and non-related to

the point number on each polynomial.

6.2 Evaluation of Distributed SNARKs
We benchmark SNARKs on different circuits, including random

R1CS, zkRollup, and ECDSA verification. The tested performance

includes indexer time, prover time, verifier time, proof size, and

memory costs. The indexer time is the running time of the offline

and circuit-specific preprocessing phase. In the online phase, the

provers and verifier would take some outputs of the preprocessing

Table 4: Memory costs (GBs) of SNARKs for size-225 R1CS

#Prover Costs #Prover Costs #Prover Costs

Marlin-1 246.1 Soloist-2 103.9 Soloist-4 51.9

Soloist-8 26.2 Soloist-16 13.2 Soloist-32 6.9

phase as inputs. The prover time is the slowest running time of all

provers, and we choose one sub-prover as the master prover.

Performance on R1CS. Figure 5 and Table 4 compares Soloist and
the non-distributed Marlin [44] on random R1CS adapted fromMar-

lin. The elliptic curve is BLS12-381. We choose the R1CS-targeted

Marlin due to its similarity with Soloist like the constant proof size,
a universal and updatable SRS, and constant verifier complexity.

Soloist shows good scalability. Its indexer time, prover time, and

memory costs decrease linearly with the increase of sub-prover

number. When utilizing ℓ provers, they are 1.5ℓ× faster, ℓ× faster,
and ℓ× smaller thanMarlin, respectively. For a size-2

25
R1CS, Soloist

costs 29s for proving with 32 provers, using 512 cores in total. Note

that the prover time is end-to-end assuming that each prover holds

the sub-witness of R1CS. The verifier time is 4.6ms, slightly faster

than Marlin’s 6.5ms. The communication per prover is 8KB. Soloist
has a 13KB and 20× larger proof size than Marlin. However, it is

still competitive among distributed SNARKs as shown below.

Comparisons with other distributed SNARKs. We do not com-

pare DIZK, where a non-distributed prover time for a size-2
20

R1CS

is over 2, 000s [59], which is 60× slower than Marlin and ours. We

fail to compare with Hekaton thoroughly as we do not find any

open-sourced implementation. Still, we can reference the results as

both schemes are implemented using the arkworks library over the

BLS12-381 curve. Different from [39, 42, 60], Hekaton counts the

prover time using the number of total cores instead of the number

of machines, where each core (instead of each machine) acts as



Li et al.

220 221 222 223 224 225

100

101

102

103

In
d
e
x
e
r 

ti
m

e
 (

s
)

Total constraint number

 Marlin - 1  8

 2  16

 4  32

220 221 222 223 224 225
100

101

102

103

P
ro

v
e
r 

ti
m

e
 (

s
)

Total constraint number

 Marlin - 1  8

 2  16

 4  32

Figure 5: Comparison of non-distributedMarlinwith 1 prover
and Soloist with 2-32 provers for proving R1CS

a sub-prover assigned with a sub-circuit. Hekaton’s prover time,

utilized with 4096 cores, is 16s for circuits with 2
29

constraints.

Figure 5 has shown the scalability of Soloist; hence, our prover time

in this setting is estimated to be about 58s, i.e., 3.6× slower.

However, Hekaton’s prover time can be sensitive to the circuit

structure, especially the shared wire number of sub-circuits. The

tested circuit in Hekaton has 10% constraints from shared wires,

which may vary in practical applications. Cirrus [58] runs Hekaton

over Pedersen hash function and SHA-256. Given 256 cores, the

prover times of Hekaton for size-2
25

circuits are 32s or 128s, instead

of the estimated 16s. Then, Soloist is 2× slower to 2× faster.

Besides, Hekaton’s proof size and verification are logarithmic to

the sub-prover count, while Soloist’s are 𝑂 (1). The only reported

data in Hekaton indicates a 32KB proof size and an 83ms verifier

time, which are 3× larger and 20× slower than ours. Also, Hekaton

incurs a communication overhead of 900KB per prover, 100× larger

than ours. Further, Hekaton needs a circuit-specific setup, while

Soloist only requires a one-time universal setup like [42, 58]. To

sum up, Soloist and Hekaton can be comparable in prover time, but

ours has advantages in all of the other metrics.

Hekaton claims a 3× faster prover time advantage than Pianist.

Hence, Soloist can be slower than Pianist in prover. This is probably

due to Soloist involving more polynomial oracles, especially the

lookup PIOP (Protocol 4) for preprocessing. Despite this, there are

various practical applications more amenable to R1CS. For example,

VKH23 [57], a verifiable fully homomorphic encryption scheme,

shows a clear preference for R1CS over Plonk for efficiency. Groth16-

based schemes like the R1SC0 ZKVM [50] can not use SNARKs for

Plonk as Groth16 does not support Plonk. Reef [3] and zkPoT [1]

choose R1CS due to the reliance for a specific SNARK [36]. To

further demonstrate this, below we benchmark Soloist on proving

zkRollups originally encoded as R1CS, same as in Pianist.

Performance of zkRollups. We extract the zkRollup circuit from

Hermez [34], use Circom [21] to compile it into R1CS, and then use

the compiler in Pianist to transform the R1CS into Plonk. The R1CS

has 229, 847 constraints per batch of 3 transactions, and Plonk has

2, 215, 685 constraints, both in the same order as Pianist.
4

Figure 6 shows the indexer and prover times of Soloist for prov-
ing zkRollups with 2-32 provers, compared with Pianist with 16

or 32 provers. The elliptic curve is BN254. Each prover in Pianist

4
Pianist claims to use an R1CS with 86k constraints per transaction, but we only find

an R1CS with 261k constraints without a proper witness [48]. Thus, we fail to reuse it.
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Figure 6: Comparison of Pianist with 16 or 32 provers and
Soloist with 2-32 provers for zkRollups (in batches of 3)

Table 5: Memory costs (GBs) for zkRollups, where Per #Tx
means the number of transaction batches per sub-prover

Per #Tx Soloist Pianist Per #Tx Soloist Pianist

2 12.1 30 8 47 115

4 23.8 60.8 16 93 218

Table 6: Performance for non-data-parallel zkRollups

#P 𝑚̃ Soloist-non-even 𝑚̃ Soloist-even Pianist

2 2
20

200s 2
19

109s 171s

4 2
19

101s 2
18

54s 87s

8 2
18

50s 2
17

27s 45s

16 2
18

49s 2
16

14s 23s

can handle up to 16 batches of transactions, as the constraint num-

ber would exceed the largest multiplicative subgroup size in the

finite field of BN254 curve. In contrast, Soloist can handle up to 320

batches of transactions per prover given sufficiently large memory.

For concrete efficiency, the indexer and prover times of Soloist are
2.8× and 1.8× faster than Pianist, respectively. We stress that this

does not count the transformation time from R1CS to Plonk. For

other metrics, our verifier time is 3ms, competitive with Pianist’s

2.8ms. The proof size is 10.2KB, 4.5× larger than Pianist’s 2.2KB.

The communication per prover is 6.2KB, 3× larger than Pianist’s

2.1KB. These constant-size overheads can be reduced in an amor-

tized manner, as Soloist can handle more transactions.

Table 5 shows thememory costs of Soloist and Pianist for proving
zkRollups, which are only related to the number of transaction

batches per sub-prover due to the good scalability. As shown, Soloist
has a > 2× smaller memory costs than Pianist. In summary, Soloist
can achieve better performance for R1CS-based applications.

Evaluation of non-data-parallel applications. The circuits in
Figure 6 are data-parallel: each sub-prover independently holds

multiple batches of 3 transactions. We next implement Soloist over
the non-data-parallel circuit: 1 batches of 3 zkRollup transactions.

They have 229, 847 constraints, and the largest number of non-zero

entries in R1CS matrices is ∼ 220. We implement it on a single

machine, where each prover is utilized with one core.

Table 6 presents the size of 𝑚̃ and prover time for zkRollups.

Equipped with the “making-even” algorithm in Section 4.3, the size
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Table 7: Performance for non-data-parallel ECDSA circuits

#P 𝑚̃ Soloist-non-even 𝑚̃ Soloist-even Pianist

2 2
20

200s 2
19

108s 171s

4 2
20

193s 2
18

53s 86s

8 2
20

192s 2
17

26s 45s

16 2
20

192s 2
16

13s 23s

of 𝑚̃ is optimally minimized, i.e., reduced by ℓ×, and 2-4× smaller

than the uneven R1CS. The prover time is hence reduced by 2-4×,
and is 1.6× faster than Pianist. The “making-even” time is only 0.5s.

This result shows that our “making-even” algorithm can help to

prove arbitrary R1CS well.

Apart from the zkRollup circuit, we also implement Soloist over
the non-data-parallel ECDSA verification circuit from Circom [22],

which proves knowledge of a private key corresponding to an

Ethereum address. It has 247, 380 constraints, and the largest num-

ber of non-zero entries in R1CS matrices is ∼221. Table 7 presents
the size of 𝑚̃ and prover time for this circuit. Equipped with the

“making-even” algorithm, the size of 𝑚̃ is optimally minimized, i.e.,

reduced by ℓ×, and 2-16× smaller than the uneven R1CS. The prover

time is hence reduced by 2-16×. Besides, the prover time of Soloist
is 1.7× faster than Pianist.

6.3 Comparisons with more distributed
SNARKs

We present comparisons with more schemes like DeVirgo [60],

HyperPianist [39], and Cirrus [58] for non-R1CS. We conclude that

Soloist is 2-8× slower in prover time, but has 5-100× smaller proof

size and 10-100× smaller communication overhead.

Comparison with DeVirgo. DeVirgo [60] is a distributed SNARK

using FRI-based PCSs [60]. Such PCSs do not require group oper-

ations and can be concretely fast than group-based ones. Hence,

DeVirgo can be faster than Soloist in prover. According to its figures,
proving signatures with 2

25
constraints utilized with 32 machines

costs 5s, which is 6× faster than ours when proving random R1CS

with constraints of the same number.

However, currently DeVirgo only supports data-parallel circuits,

a special type of arithmetic circuit. In contrast, Soloist supports
R1CS, an NP-complete problem. DeVirgo’s proof size is about 1.9MB

according to the reported figures, while ours is around 10KB. De-

Virgo’s communication complexity is linear to the statement size,

and is up to GBs, which is 100× larger than ours and can be limited

in specific applications.

Comparison with HyperPianist and Cirrus. HyperPianst [39]
and Cirrus [58] are distributed SNARKs over the Plonk-targeted

HyperPlonk [17]. Their sub-prover complexities are linear to the

sub-statement, although in group operations and still costing quasi-

linear field operations. According to the reported figures, the prover

time of HyperPianist using mKZG for a size-2
25

Plonk utilized with

8 sub-provers is 10s over BN254. The prover time over BLS12-381 is

estimated to be 1.4 × 10 = 14s, which is 7.8× faster than ours. The

prover time of Cirrus for a size-2
25

Plonk utilized with 256 cores is

larger than 32s, which is less than 2× faster ours.

However, Soloist outperforms these two schemes with constant

proof size and amortized communication complexity. The proof

size of HyperPianist is around 40-90KB, 4-9× larger than ours. Its

communication per prover is around 60-120KB, 10-20× larger than

ours. We do not find these two concrete figures of Cirrus.

7 CONCLUSION AND FUTUREWORK
We propose Soloist, a distributed SNARK for R1CS with constant

proof size, verification, and amortized communication. Soloist uses
a new inner-product-based approach to build a distributed PIOP

with constant proof size. It uses the matrix sparsity of R1CS and dis-

tributed lookup arguments to achieve sublinear verification. Soloist
also extends the bivariate KZG into a batch and distributed version.

Future work may develop a more efficient distributed prepro-

cessing to minimize the polynomial oracles. Further, we are con-

sidering to build a distributed SNARK for customizable constraint

system [54], which is efficiently compatible with all existing con-

straint systems such as R1CS, Plonk, and AIR [6].
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A EXISTING PIOPS FOR INNER PRODUCTS
A PIOP for inner products proves ⟨𝒇 , 𝒔⟩ = 𝑦 for secret vectors

𝒇 , 𝒔 ∈ F𝑚 and public𝑦 ∈ F. Belowwe recall two univariate PIOPs for

inner products from univariate sum-check and Laurent polynomials.

As they both use the LDT PIOP, we first recall it in Lunar [16].

LDTs enable a prover to prove that the degree 𝑑 of some poly-

nomial 𝑓 satisfies 𝑑 ≤ 𝐷 , given size-𝐷 system parameters. Given

oracle 𝑓 , the prover sends a polynomial oracle 𝑓 ′ (𝑋 ) = 𝑓 (𝑋 ) ·𝑋𝐷−𝑑
.

The verifier then queries 𝑓 , 𝑓 ′ at random 𝛼 , and accepts iff 𝑓 ′ (𝛼) =
𝑓 (𝛼) · 𝛼𝐷−𝑑 . The soundness error is 𝐷/|F| by the Schwartz-Zippel

lemma.

Univariate sum-check. Such PIOPs [9, 18] compute secret poly-

nomials 𝑓 , 𝑠 ∈ F𝑚 [𝑋 ] from 𝒇 , 𝒔 by polynomial interpolation, and

construct the univariate sum-check relation

∑
𝑥∈H 𝑓 (𝑥)𝑠 (𝑥) = 𝑦

on an order-𝑚 multiplicative coset H. The relation holds iff there

exists polynomials 𝑔 ∈ F(𝑚−1) [𝑋 ] and ℎ s.t.

𝑓 (𝑋 ) · 𝑠 (𝑋 ) = 𝑋 · 𝑔(𝑋 ) + 𝑦/𝑚 + 𝑍H (𝑋 )ℎ(𝑋 ),

where 𝑍H (𝑋 ) = 𝑋𝑚 − 1 is the vanishing polynomial over H. To
prove it, the prover sends polynomial oracles 𝑓 , 𝑠, 𝑔, ℎ, and 𝑔∗ for
LDTs as discussed in Section 1.2. The verifier queries 𝑓 , 𝑠, 𝑔, ℎ, 𝑔∗

evaluated at a random 𝛼 . The verifier computes 𝑍H (𝛼), and accepts
iff: 1) the equation holds for𝑋 = 𝛼 ; 2) deg(𝑔) < 𝑚−1; 3) deg(𝑓 ) < 𝑚.

Given size-𝑚 parameters, the check 3) is free.

For complexities, the oracle number and the query size are both

5 by count, and the prover requires 6 FFT(𝑚,𝑚) to compute 𝑓 and

𝑠 , and 6 FFT(𝑚,𝑚) to compute the polynomial multiplication 𝑓 · 𝑠 .
Laurent polynomials. PIOPs [12, 55, 66] from Laurent polyno-

mial construct IPAs by proving the coefficient of some term in a

polynomial is zero. We recall the PIOP in [55] inspired by [12]. For

size-𝑚 vectors 𝒇 and 𝒔, set size-𝑚 polynomials with coefficients 𝒇 , 𝒔
as

ˆ𝑓 , 𝑠 , respectively. Then, ⟨𝒇 , 𝒔⟩ is the coefficient of middle term in

ˆ𝑓 (𝑋 ) · 𝑋𝑚−1 · 𝑠 (𝑋 −1). This can be transformed into the existence

of 𝑝 (𝑋 ), 𝑞(𝑋 ) such that

ˆ𝑓 (𝑋 ) · 𝑋𝑚−1 · 𝑠 (𝑋 −1) = 𝑝 (𝑋 ) + 𝑋𝑚−1 · 𝑦 + 𝑋𝑚 · 𝑞(𝑋 ), (33)

where they should satisfy 𝑝, 𝑞 ∈ F(𝑚−1) [𝑋 ]. To prove it, the prover
sends polynomial oracles

ˆ𝑓 , 𝑠, 𝑝, 𝑞 and 𝑝∗, 𝑞∗ for LDTs. The verifier
queries

ˆ𝑓 , 𝑝, 𝑞, 𝑝∗, 𝑞∗ at random 𝛼 and 𝑠 at 𝛼−1. The verifier accepts
iff: 1) Equation (33) holds; 2) deg(𝑝), deg(𝑞) < 𝑚−1; 3) deg(𝑓 ) < 𝑚.

Note that despite 𝑠 (𝑋 −1) is a rational polynomial, the prover could

compute 𝑝 (𝑋 ), 𝑞(𝑋 ) by handling 𝑋𝑚−1 · 𝑠 (𝑋 −1).
For the complexity, the oracle number is 5, the query size is 6,

and the prover requires 6 FFT(𝑚,𝑚) to compute
ˆ𝑓 (𝑋 )𝑋𝑚−1𝑠 (𝑋 −1).

The number of FFT is fewer than IPAs from univariate sum-check,

as coefficient-based
ˆ𝑓 , 𝑠 can be obtained directly from 𝒇 , 𝒔.

B MAKING THE SUB-MATRICES “EVEN”
We propose the “making-even” algorithm in Algorithm 1. The

high-level idea is to exchange the locations of columns in each

of 𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 and make them “even”. The witness value in the wit-

ness vector𝒘 is also exchanged correspondingly. Note that if we

exchange 𝑃𝑎 [𝑖] to the location 𝑗 , 𝑃𝑏 and 𝑃𝑐 are also changed. The

number of non-zero entry in 𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 can be different. We heuris-

tically adjust the matrix with the most non-zero entries. WLOG,

say this matrix is 𝑃𝑎 , which is denoted as 𝐻 in Algorithm 1.

Given the parameter ℓ and the matrix 𝑃𝑎 , sort the number of

non-zero values in each column of the matrix in ascending order to

obtain the set I. We then assign 𝑃𝑎 [I1] to P1, 𝑃𝑎 [I2] to P2, . . . , and
𝑃𝑎 [Iℓ ] to Pℓ . Then, we assign 𝑃𝑎 [Iℓ+1] to Pℓ , 𝑃𝑎 [Iℓ+2] to Pℓ−1, . . . ,
and 𝑃𝑎 [I2ℓ ] to P1. Repeat the above procedures until each prover

holds𝑚 columns.

The above algorithm works well except the first column in

𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 , which describes constraints about the witness one, both
known by the prover and the verifier. The problem lies in that the

first column of these matrices may have too many non-zero entries.

To solve this, we find that as this witness is “public”, we can add

the “one” witness to each sub-witness of sub-prover and add one

additional column to sub-provers P2, . . . ,Pℓ . Then, we can split the

first column in 𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 into ℓ parts in the meaning of non-zero

entry number. For the 𝑖-th part, set the corresponding entry as 0 for

P1, . . . ,P𝑖−1,P𝑖+1, . . . ,Pℓ . As a result, we can also make the first

column “even”.

In Algorithm 1, it suffices to work over size-𝑂 (𝑚ℓ) vectors where
each entry describes the non-zero entry number instead of ma-

trices. Hence, the algorithm costs a time complexity of at most

𝑂 (𝑚ℓ log𝑚ℓ) for sorting.

C ADDITIONAL PRELIMINARIES OF KZG
In this paper, we use univariate or bivariate PCSs from pairing-based

groups, We generalize the PCS definition in [11] from univariate

polynomials to bivariate ones.

Definition 3. A PCS is a triplet (Gen,Com,Open) such that

• Gen(𝑚, ℓ) - Given positive integers𝑚, ℓ , output a structured refer-

ence string (SRS) srs of size𝑚ℓ .

• Com(𝑓 , srs) - Given a polynomial 𝑓 ∈ F𝑚,ℓ [𝑋,𝑌 ] and an srs of
Gen(𝑚, ℓ), return a commitment cm to 𝑓 .

• Open is a public-coin interactive argument. P is given 𝑓1, . . . , 𝑓𝑛 ∈
F𝑚,ℓ [𝑋,𝑌 ]. P andV are both given:

1. 𝑚, ℓ, 𝑛 and 𝑡 = poly(𝜆).
2. Subsets 𝑅1, . . . , 𝑅𝑛 and 𝑆1, . . . 𝑆𝑛 . For simplicity, assume |𝑅𝑘 | =
|𝑆𝑘 | = 𝑡 for 𝑘 ∈ [𝑛]. Let 𝑇1 =

⋃
𝑘∈[𝑛] 𝑅𝑘 and 𝑇2 =

⋃
𝑘∈[𝑛] 𝑆𝑘 .

3. cm1, . . . , cm𝑛 - the KZG commitments to 𝑓1, . . . , 𝑓𝑛 .

4. claimed evaluations of 𝑓𝑘 (𝛼, 𝛽) for (𝛼, 𝛽) ∈ (𝑅𝑘 , 𝑆𝑘 )
5. {𝑟𝑘 ∈ F𝑡,𝑡 [𝑋,𝑌 ]}𝑘∈[𝑛] - the polynomials describing the alleged

correct openings, i.e., having 𝑟𝑘 (𝛼, 𝛽) = 𝑓𝑘 (𝛼, 𝛽) for each 𝑘 ∈ [𝑡],
𝛼 ∈ 𝑅𝑘 , 𝛽 ∈ 𝑆𝑘 .

This interactive argument satisfies:

- Completeness: Fix any 𝑛, 𝑡 ,𝑇1,𝑇2, 𝑓1, . . . , 𝑓𝑛 ∈ F𝑚,ℓ [𝑋,𝑌 ], {𝑟𝑘 ∈
F𝑡,,𝑡 [𝑋,𝑌 ]}𝑘∈[𝑛] . Suppose for each 𝑘 ∈ [𝑡], cm𝑘 = Com(𝑓𝑘 , srs),
and we have𝑍𝑅𝑘 | 𝑃𝑘 (𝑋,𝑌 ), 𝑍𝑆𝑘 | 𝑄𝑘 (𝑋,𝑌 ) for 𝑓𝑘 −𝑟𝑘 = 𝑃𝑘 +𝑄𝑘 .

Then for an honest P,V outputs accept with probability one.

- Knowledge soundness in the algebraic group model (AGM):
There exists an efficient extractor E s.t. for any algebraic adversary

A and any choice of𝑚, ℓ = poly(𝜆), the probability ofA winning
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Algorithm 1 The “making-even” algorithm for R1CS sub-matrices

Input: Public matrices of an R1CS instance 𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 ∈ F𝑚ℓ×𝑚ℓ
.

Witness𝒘 ∈ F𝑚 . Number of sub-provers ℓ .

Output: The “Evened” distributed R1CS sub-matrices and sub-

witness: 𝑃
(𝑖 )
𝑎 , 𝑃

(𝑖 )
𝑏

, 𝑃
(𝑖 )
𝑐 ∈ F𝑚ℓ×(𝑚+1) ,𝒘 (𝑖 ) , where 𝑖 ∈ [ℓ].

1: Count the number of non-zero entries in 𝑃𝑎 [1], 𝑃𝑏 [1], 𝑃𝑐 [1].
These entries denotes the constraints related to the witness

one in𝒘 . The witness one is public and known by both prover

and verifier.

2: Split each of 𝑃𝑎 [1], 𝑃𝑏 [1], 𝑃𝑐 [1] into ℓ parts tomake the number

of non-zero entries “even”. Generate 𝑃
(𝑖 )
𝑎 [1], 𝑃

(𝑖 )
𝑏
[1], 𝑃 (𝑖 )𝑐 [1]

to describe the split constraints related to one for 𝑖 ∈ [ℓ]. Also,
set 𝑤

(𝑖 )
1

= one for 𝑖 ∈ [ℓ]. As the witness one is public, these
non-zero entries can be made “even” almost perfectly.

3: Find among 𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 the matrix 𝐻 with the largest number of

non-zero entries.

4: Define a set I ← {2, · · · ,𝑚ℓ}.
5: Sort I by the number of non-zero entries in 𝐻 [𝑖] for 𝑖 ∈ I.
I𝑚ℓ−1 has the most non-zero entries.

6: Let 𝑗 ← 1.

7: for 𝑖 =𝑚ℓ − 1 downto 1 do
8: 𝑘 ← I𝑖
9: if ⌊𝑚𝑙−1−𝑖

ℓ ⌋ mod 2 = 0 then
10: Give 𝑃𝑎 [𝑘], 𝑃𝑏 [𝑘], 𝑃𝑐 [𝑘],𝒘𝑘 to sub-prover P𝑗
11: 𝑗 ← ( 𝑗 mod ℓ) + 1
12: else⌊𝑚𝑙−1−𝑖

ℓ ⌋ mod 2 = 1

13: Give 𝑃𝑎 [𝑘], 𝑃𝑏 [𝑘], 𝑃𝑐 [𝑘],𝒘𝑘 to sub-prover Pℓ− 𝑗+1
14: 𝑗 ← ( 𝑗 mod ℓ) + 1
15: end if
16: end for

the following game is negl(𝑛) (𝜆) over randomness of A,V , and

Gen.

1. Given srs = Gen(𝑚, ℓ), A outputs cm1, . . . , cm𝑛 ∈ G1.
2. E, given access to the messages of A during the previous step,

outputs 𝑓1, . . . , 𝑓𝑛 ∈ F𝑚,ℓ [𝑋,𝑌 ].
3. A outputs 𝑇1,𝑇2, 𝑅1, . . . , 𝑅𝑛, 𝑆1, . . . , 𝑆𝑛 , and 𝑟1, . . . , 𝑟𝑛 .

4. A takes the part ofP inOpenwith inputs cm1, . . . , cm𝑛 ,𝑇1,𝑇2,

𝑅1, . . . , 𝑅𝑛 , 𝑆1, . . . , 𝑆𝑛, 𝑟1, . . . , 𝑟𝑛 .

5. A wins if V outputs accept, and for some 𝑘 ∈ [𝑛], 𝑍𝑅𝑘 ∤
𝑃𝑘 (𝑋,𝑌 ) or 𝑍𝑆𝑘 ∤ 𝑄𝑘 (𝑋,𝑌 ), or 𝑓𝑘 ≠ 𝑃𝑘 +𝑄𝑘 .
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