Private SCT Auditing, Revisited

Lena Heimberger”
Graz University of Technology
lena.heimberger@tugraz.at

ABSTRACT

In order for a client to securely connect to a server on the web,
the client must trust certificate authorities (CAs) only to issue cer-
tificates to the legitimate operator of the server. If a certificate is
mis-issued, it is possible for an attacker to impersonate the server
to the client. The goal of Certificate Transparency (CT) is to log
every certificate issued in a manner that allows anyone to audit the
logs for mis-issuance. A client can even audit a CT log itself, but
this would leak sensitive browsing data to the log operator. As a
result, client-side audits are rare in practice.

In this work, we revisit private CT auditing from a real-world
perspective. Our study is motivated by recent changes to the CT
ecosystem and advancements in Private Information Retrieval (PIR).
First, we find that checking for inclusion of Signed Certificate Times-
tamps (SCTs) in a log — the audit performed by clients — is now
possible with PIR in under a second and under 100kb of commu-
nication with minor adjustments to the protocol that have been
proposed previously. Our results also show how to scale audits by
using existing batching techniques and the algebraic structure of
the PIR protocols, in particular to obtain certificate hashes included
in the log.

Since PIR protocols are more performant with smaller databases,
we also suggest a number of strategies to lower the size of the
SCT database for audits. Our key observation is that the web will
likely transition to a new model for certificate issuance. While this
transition is primarily motivated by the need to adapt the PKI to
larger, post-quantum signature schemes, it also removes the need
for SCT audits in most cases. We present the first estimates of how
this transition may impact SCT auditing, based on data gathered
from public CT logs. We find that large scale deployment of the
new issuance model may reduce the number of SCT audits needed
by a factor of 1,000, making PIR-based auditing practical to deploy.

1 INTRODUCTION

Certificates are used to add authenticity to the web by binding a do-
main name to a public key. Modern browsers only trust certificates
issued by selected Certification Authorities (CAs) with a history of
operating faithfully. To help mitigate mis-issuance, major browsers
require every certificate to be logged before being issued by at
least two public Certificate Transparency (CT) logs [1, 2, 32]. This is
intend to add accountability to the certificate issuance process. For
example, it allows a website owner to check if and when a certificate
was issued for their domain name without their approval.

Upon accepting a certificate for publication, the log operator
returns a Signed Certificate Timestamp (SCT), which the server
can then present alongside its certificate to the client. The SCT
acts as a kind of “promise” to the client that the certificate will
eventually be included in the log. Logs are required to furnish proof

“Work partially performed while interning at Cloudflare Research.

Christopher Patton
Cloudflare Research
cpatton@cloudflare.com

Bas Westerbaan
Cloudflare Research
bas@cloudflare.com

of inclusion to auditors within the Maximum Merge Delay (MMD)
window of 24 hours: if a log misses this deadline enough times, then
it will eventually be distrusted by browsers. As of November 2024,
six CT logs have sufficient uptime to be trusted by major browsers.!

Without SCT auditing, browsers would have to trust n—1 out of n
operators to log all certificates they promise to log. This is because
browsers only check for the presence of two SCTs; compromising
two logs is sufficient to convince a client to trust an unlogged
certificate. This is especially problematic given that many logs are
operated by CAs and our goal is to detect mis-issuance by CAs. In
addition, ongoing efforts to make CT logs easier to operate [18]
may lead to more logs being created, which may in turn make it
easier for the attacker to run logs themselves.

1.1 SCT Auditing

To audit an SCT, a client would wait until after the MMD has expired,
then query the log to make sure the certificate was included as
promised. However, directly checking inclusion with the log would
be problematic, since the certificate includes the domain name
visited by the client. Today SCT auditing is done in a very limited
fashion by some browsers on a small fraction of certificates using
differentially private methods [21]. A natural technique for fully
private auditing is Private Information Retrieval (PIR) [15], which
allows users to query a database privately without the database
operator learning the query or the response. Earlier analysis by
Meiklejohn et al. [41] of PIR for SCT auditing concludes this is
impractical.

1.2 This paper

There have been two recent developments in the web public-key
infrastructure that warrant a new look at PIR to tackle the SCT
auditing problem:

First, with the imminent adoption of the new static CT/Sun-
light API [18] and the updates to CT logs, certificates will now
encode the sequence number at which the certificate appears in
the log. This results in a dense database where the keys are consec-
utive sequence numbers, which facilitates much faster and more
PIR-friendly queries. Previously, certificates had to be queried by
hash [27].

The second is a side-effect of the ongoing transition to post-
quantum cryptography. Post-quantum signature schemes are sig-
nificantly larger than currently deployed schemes, which means we
will have to re-engineer certificate issuance to accommodate them.
There are currently a number of proposals under consideration to
rework certificate issuance — most notably Starlit Jellyfish [30] and
Merkle Tree Certificates (MTCs) [11]. These proposals adopt a slow

!Chrome requires a log uptime of 99%. This is fulfilled by Cloudflare, Google,
Let’s Encrypt, Sectigo, TrustAsia and Digicert. https://googlechrome.github.io/
CertificateTransparency/log_list.html

https://orcid.org/0009-0001-9404-7699
https://orcid.org/0000-0002-3195-6238
https://googlechrome.github.io/CertificateTransparency/log_list.html
https://googlechrome.github.io/CertificateTransparency/log_list.html

Preprint ()

issuance approach for the bulk of certificates instead of the tradi-
tional X.509 certificates in use today. In the slow issuance approach,
instead of presenting SCTs, the authenticating party presents a
Merkle tree inclusion proof to a tree root of the log. To make sense
of the authentication path, these distinguished Merkle tree roots
have to be propagated out of band to the user by a trusted party,
e.g., the browser vendor. This propagation takes time, and thus
these slow-issuance certificates cannot be issued immediately. In
addition, not every user will be able to update immediately. These
cases are inevitable, hence it will always be necessary to fallback
to to traditional X.509 certificates and SCTs. There are still ways
reduce the number of signatures in the fallback path [29], but the
SCTs are unavoidable.

In the remainder of this paper, we will refer to X.509 certificates
with SCTs as fast-issuance certificates; and we will use the term slow-
issuance for proposals like MTCs for which SCTs are not required.
We remark that, as of this writing, slow-issuance certificates have
not been deployed. However, it is likely that some slow-issuance
mechanism will be needed to support the post-quantum transition.

1.2.1 Contributions. Taken together, these changes to the web
public-key infrastructure warrant another look at the design space
for private SCT auditing. In this work, we reconsider the practicality
of PIR for this application in light of these changes, as well as
advancements in the underlying cryptography. Our contributions
are as follows:

e We concretize SCT auditing in the context of slow-issuance
certificates, and define three scenarios where fast-issuance
certificates are still necessary. Using publicly available data
from Certificate Transparency logs (CT logs), we derive a
loose upper bound of the probability that a random website
falls back to a fast-issuance certificate. This gives us a basis
for estimating the load a PIR-based auditing service would
need to cope with, as well as the cost for clients using the
service.

o Then, we revisit SCT auditing and define concrete require-
ments for PIR schemes. After giving an overview of the state
of the art, we narrow the PIR schemes down to three concrete
proposals.

e For each proposal, we describe how to restructure the data-
base and/or change CT logs to make these schemes practical
for deployments. We then benchmark implementations of
these candidate PIR protocols against the best-known cur-
rent solution using Bloom filters [27]. Our approach for a
single audit are more efficient in terms of computation and
communication.

o Finally, we discuss how to batch the audit to perform multiple
audits at the cost of a single audit by leveraging the algebraic
structure of the PIR schemes.

2 BACKGROUND AND RELATED WORK

When a user browses a website, they verify the identity based on
the X.509 certificate they receive during the TLS handshake. If the
provided X.509 certificate was issued by a trusted Certification
Authority (CA), the servers identity is deemed secure. It is the CAs
responsibility to diligently check the information presented when
issuing certificates to ensure only the legitimate owner of a domain

L. Heimberger, C. Patton, B. Westerbaan

can obtain a valid certificate for the domain. Should the CA issue
a certificate to someone else, either because the CA is malicious
or makes a mistake, the certificate can be used by an attacker to
intercept, read, and alter the traffic without the user having any
capability to detect the attack. If the mis-issuance gets detected,
then the CA would then be distrusted by browsers. This scenario is
not hypothetical: in 2011, the CA DigiNotar wrongfully issued over
500 certificates, forcing major browsers to remove the CA from
their root store programs.2

2.1 Certificate Transparency

In order to make such incidents easier to detect, Certificate Trans-
parency (CT) requires all certificates to be publicly logged so anyone
can check for the presence of potentially mis-issued certificates.
Domain owners monitor CT logs to ensure the logs do not contain
mis-issued certificates for their domains. When wrongful issuance
is detected, the domain owner can flag the CA for misbehavior
and revoke the certificate [33]. During the certificate issuance pro-
cess, all certificates must be sent to at least two logs. Each log is
required to check the certificate and return a Signed Certificate
Timestamp (SCT) as proof they have seen the certificate and promise
to ingest it into the log within the Maximum Merge Delay (MMD).
The SCT is then returned to the CA, which includes the SCTs in
the final certificate. Users verify these SCTs during the TLS hand-
shake. They may also audit the logs directly to ensure the promise
of inclusion has been fulfilled.

Log Structure and Proofs. CT logs are stored as append-only
Merkle trees. Each hashed certificate forms a leaf node of the tree.
To compute the tree, the leaf nodes are paired and hashed together
to generate the next level of the Merkle tree. This process is repeated
until a final root hash emerges. The Merkle tree log can provide two
proofs: An inclusion proof that proves a specific node is included
in the tree by providing all intermediary nodes to the root node,
and a consistency proof that proves the append-only Merkle tree is
consistent with a verifiable, known root by providing a path to the
new, updated root. In the context of CT, the signed roots that are
distributed are called Signed Tree Heads (STH) [33].

Current Deployment. At the time of writing, most CT logs use an
implementation called Trillian [48]. In October 2024, Tessera [17]
was announced as Trillians successor. Amongst a variety of new
features, Tessera assigns sequence numbers [38] to data entries that
are processed. As a result, each certificate gets a unique sequence
number. Additionally, Tessera supports the StaticCT API [18], a
redesign of the log that ensures there are no unsequenced SCTs,
which is important in case of an incident where SCTs are issued but
the corresponding certificates are not included in the log. StaticCT
now allows immediate sequencing, where a sequence number is
assigned to the certificate immediately, and the records and hashes
are stored in tiles that group several entries at a level of the tree.

Tiled Logs. Tiles split the data structure of the Merkle tree into
fixed-size chunks in Tessera and StaticCT. Each tile contains exactly
256 hashes. The tiles are addressed by the tuple (I, i) consisting of
the Merkle tree level [and the i*" index of the tile at level . Tiles

2https://en.wikipedia.org/w/index.php?title=DigiNotar&oldid=1162693847

https://en.wikipedia.org/w/index.php?title=DigiNotar&oldid=1162693847

Private SCT Auditing, Revisited

at level 0 contain leaf hashes. The levels above contain the hashes
of the full tiles below [18]. Tiled logs are significantly cheaper to
operate [16, 28] as the tiles can be cached and the inclusion proof
is computed by the client. Previously, the server would retrieve all
hashes in the path of a certificate, compute an inclusion proof and
return it to the user. Tiled logs use the fact that tiles are immutable
once complete and shift the computation of the proof to the user.
Now, the server only retrieves the tiles with the intermediary nodes
in the tree, which can be easily cached, and returns them to the
user, who computes the inclusion proof themselves.

2.2 Private SCT Auditing

In the current ecosystem, an adversary controlling two CT logs and
a CA may serve a malicious certificate without immediate detection
by the browser. Therefore, auditing that a received certificate has
indeed been included in the log is important to detect an attack
and flag misbehavior, especially in a scenario where the malicious
certificate is only delivered to a small group of selected users. Meik-
lejohn et al.s SoK on SCT auditing [41] splits audit process into two
parts: The reporting phase, where the SCT is collected and reported
to some auditing infrastructure, and the querying phase that can
be carried out by anyone who receives the SCT. While reporting
an SCT is the duty of the user that received the certificate, auditing
that the log is append-only and globally consistent can be done by
anyone, most likely the browsers backend auditing infrastructure.
This separation is important as reporting SCTs directly to the log
leaks the sensitive browsing history of the user to the log.

For the audit, Meiklejohn et al’s SoK [41] requires both a proof
of consistency between a known Signed Tree Head (STH) and the
current STH of the Merkle tree and a proof of inclusion from the
known tree head to the STH. The consistency proof is necessary
to prove the append-only property of the log. A malicious log may
craft a special STH per user, causing a split view where several
different tree heads are valid for the same certificate. This can only
be detected with auditing.? Performing an audit with a user-specific
STH can link an audit to a website visit by a specific user. Even
auditing with an honest STH may contain significant information
in terms of the number of log records it represents. [41]. To mitigate
this concern, we argue in Section 4 that public logging of the SCT
is sufficient, as the domain owner would be alerted of fraudulent
behavior. A non-cryptographic strategy for SCT auditing leveraging
the Tor browser infrastructure suggests collecting a random subset
of certificates and sending them, after a time delay to mask the
browsing behavior, to CT logs for logging [19].

Currently, six CT logs are publicly available and have the re-
quired uptime to be considered trusted. Most of them are run by
CAs. In contrast, Firefox trusts 177 root certificates from 72 CAs?,
and Chrome trusts 134 certificates from 63 CAs®. Safari trusts 159
root certificates from 73 CAs. A certificate needs two SCTs accord-
ing to browser policy. This number cannot be increased too much
as that would lead to a large overhead in certificate sizes. Ongoing
efforts to enable easier operation of CT logs (see Section 2.1, Tiled

3An alternative is gossiping, but they have not been deployed widely https:/
emilymstark.com/2020/07/20/certificate-transparency-a-birds-eye-view.html
4https://hg.mozilla.org/releases/mozilla-beta/file/tip/security/nss/lib/ckfw/builtins/
certdata.txt, retrieved on 2024-10-14

Shttp://g.co/chrome/root-store/

Preprint ()

Logs) may lead to the creation of more logs, which means crafting
a forged certificate may also become easier. As a result, auditing
SCTs will be even more relevant.

2.3 SCT Auditing Proposals

An earlier SoK by Meiklejohn et al. [41] on SCT auditing identified
five distinct proposals for SCT auditing with potential for near-term
deployability. However, PIR was excluded from this category due
to the absence of sequence numbers associated with the SCTs in
the 2022 Trillian implementation.

2.3.1 Direct querying. , where the audit is performed with either
the log or the auditor directly. Performing the audit with the log
leaks the browsing behavior and assumes that the user can trust
the log. In contrast, performing the audit with the auditor directly
introduces a trust assumption with the auditor.

2.3.2 Proxying. the request through one or multiple servers that
forward the request to the logs. The SoK identifies proxying as the
most performant solution. The main problem with this approach
is that it assumes that the proxy and the log do not collude, which
does not hold in practice, as the log and the auditing infrastructure
are likely run by the same entity. It also introduces a third party
in the connection, which makes the audit more complicated and
introduces possibilities of interference.

2.3.3 Querying via DNS. is a proposal by Google to use TXT records
in internal resolvers to perform an audit. Since the resolver already
knows that the user browses a website, no additional information is
revealed when the DNS server performs the SCT audit. The request
is made with the leaf hash of the SCT. The response from the DNS
server uses special records and contains the inclusion proof.

While the protocol was deployed in 2015, deployment was stopped
soon after. The reasons for this were “abnormally high failure
rates” [23] where the reliance on Google servers meant “tying
the two (DNS and CT) together unnecessarily, with grave privacy
concerns”. Auditing was also only possible for a short time after a
certificate was received, as the request for an inclusion proof needs
to go through the same resolver used to resolve the hostname to
avoid another resolver learning which website was visited.

2.3.4 Local Mirorring. of all logs on the user. This solution is tech-
nologically simple and privacy-preserving, but mirrors even just
the SCT hashes mean 96GB storage on the user for the 1.5 billion
current active certificates with two active SCTs. The list needs to
be updated regularly. Adding 340,000 new certificates per hour®
requires hourly updates of 22MB. In a scenario where slow-issuance
certificates are deployed widely and only 0.1% of the domains need
SCTs, the storage and update overhead would be more manageable,
but the SCTs would only be issued for certificates where the propa-
gation of MTC tree heads is too slow. To avoid leaking browsing
behaviour by requesting a specific MTC tree head, we would need
another solution.

2.3.5 Private Set Membership (PSM). allows the user to learn whether
an entry is in a list held by a server, learning nothing beyond the
yes/no statement. The PSM proposal for SCT auditing is similar to

®Number of precertificates per hour according to MerkleTown, February 2025.

https://emilymstark.com/2020/07/20/certificate-transparency-a-birds-eye-view.html
https://emilymstark.com/2020/07/20/certificate-transparency-a-birds-eye-view.html
https://hg.mozilla.org/releases/mozilla-beta/file/tip/security/nss/lib/ckfw/builtins/certdata.txt
https://hg.mozilla.org/releases/mozilla-beta/file/tip/security/nss/lib/ckfw/builtins/certdata.txt
http://g.co/chrome/root-store/

Preprint ()

the protocol used for compromised credential checking (C3) [3, 46].
The user queries a partial prefix of the hash to retrieve a bucket
containing the postfixes of hashes that start with the queried prefix.
If the SCT is not in the bucket, the user reports the SCT.

Querying only the hashes may result in an integrity problem,
as a malicious log may store certificates in buckets that are not in
the log. The mitigation for this attack is to add inclusion proofs to
the k-anonymous buckets, which adds communication overhead.
Meiklejohn et al’s SoK [41] suggests adopting the same threat
model as in C3: the user trusts a third party, e.g. a browser vendor,
to maintain a complete list of certificates. The PSM protocol is
performed with the trusted third party instead of the log, which
removes the need for inclusion proofs.

The protocol is k-anonymous for covert adversaries and therefore
only allows a limited number of audits, and not full auditing. As
described in Section 2.4, limited SCT auditing with PSM is currently
deployed in Chrome. These proposals all provide different degrees
of privacy, all of which fall short of what PIR can provide in theory.
However, they were also all devised to cope with the rate of SCT
auditing entailed by todays X.509 certificates.

2.4 SCT Auditing in Practice: Google Chome

Most major browsers (e.g., Firefox [32], Safari [1], Chrome [2], and
Brave [40]) require at least two SCTs from distinct, trusted logs to
validate a certificate. However, among these, only Chrome actively
audits SCTs.

To start, Chrome stores valid SCTs from certificates of popu-
lar websites. In addition, the browser collects unknown SCTs to
find indicators of misbehavior. Initially, users had to opt into SCT
auditing and sharing their browser history by enabling it in the
Enhanced Safe Browsing options. Chrome 90 started to perform
k-anonymous SCT auditing by default, auditing each TLS connec-
tion with a probability of 0.1%. To provide k-anonymity, the query
contains the hash prefix of the SCTs tree leaf, to which the server
replies with the set of known hash postfixes that start with this
prefix. If the postfix is not in the set, the SCT is reported.

The connection has to be plausible to be revealed to the auditing
logic, which in the context of Safe Browsing means it belongs to
an organization, a public DNS record, or another realistic source to
avoid privacy leakage. In practice, only publicly trusted roots are
audited.” Some users may enable Enhanced Safe Browsing, which
sends all SCTs directly to the Safe Browsing Infrastructure, without
anonymization. If a user opts out of Safe Browsing, no data is shared
with the Safe Browsing Infrastructure.

To circumvent DoS, Chrome sends SCT auditing reports with a
persist-and-retry mechanism for lookup queries. The mechanism
tries to send the report at most 15 times, first spread over 30 minutes
and then several days [47], until it is successful. While the logic
prevents large-scale blocking, a targeted attack is still realistic.
Blocking updates also stops SCT audits, as Chrome stops checking
SCTs after the browser has not been updated for 70 days [21].

2.5 Private Information Retrieval

Private Information Retrieval (PIR) [15] is a two-party protocol
for database record retrieval that gives query privacy to the user,

"https://groups.google.com/a/chromium.org/g/ct-policy/c/FddjjCNIrLo

L. Heimberger, C. Patton, B. Westerbaan

meaning the server does not learn anything about the users query.
A significant challenge for PIR for CT was that Trillian (see Sec-
tion 2.1) did not distinguish between sequencing and including an
entry. As a result, the lookup would have required using the hashed
certificate. This, in turn, means the database needs to be prepro-
cessed in a manner that makes them expensive to update. In 2024,
Tessera, the direct successor of Trillian, along with the new Stat-
icCT protocol (see Section 2.1), introduced sequence numbers to CT
logs. Now, the lookup can query the sequence number and retrieve
a hash of the certificate or Merkle tree leaf hash. The second chal-
lenge was that performant PIR protocols for SCT auditing required
at least two perfectly synchronized servers to ensure security and
performance [31, 39]. Recent advances in PIR [27] demonstrate that
synchronization is no longer necessary. Combined with the intro-
duction of sequencing numbers, which simplifies lookups, these
recent developments make cryptographically secure PIR-based SCT
auditing more efficient than current differentially private audits.

In state-of-the-art, PIR-based, SCT-auditing [27], the user queries
the auditing infrastructure with a certificate hash and gets a 1-
bit response indicating whether the hash is in the set of known
SCT hashes. The known SCTs are hashed into a Bloom filter that
hashes the SCT hash into multiple indices into the table and sets
the corresponding bit in the filter. During the audit, the user lo-
cally computes the index and privately retrieves the bit from the
server. Since the filter is known, an adversary could compute a col-
lision string. Therefore, the SCT auditing infrastructure initializes
several Bloom filters that are computed using independent hash
functions. The user queries the filters at random. Using a large
enough number of Bloom filters, the false positive rate drops to
50%, which is tolerable if we perform wider auditing. Concretely,
we would need to audit at least twice as much to get the same level
of security as for the differentially private lookup currently used in
Chrome (see Section 2.4).

New certificates require recomputations of the Bloom filters on
the server side. In addition, the audit can only tell if a certain hash
is known or not, which should not be a problem when a collision-
resistant hash function is used. A more natural approach is to query
a sequence number and get the hashed certificate as a response. This
eliminates the false positives from the probabilistic data structure
and requires minimal preprocessing on the server side, but the
256-bit records would be significantly larger than the 1-bit records.

3 SLOW ISSUANCE CERTIFICATES

Todays ubiquitous elliptic curve signatures are very small: a P-256
signature is only 65 bytes. In stark contrast, post-quantum signa-
tures are typically much larger: an ML-DSA-44 signature requires
2.4kB. There are many signatures involved in a TLS handshake.
Using ML-DSA-44 as a drop-in replacement will add more than
14kB. Today, over half of non-resumed HTTP/3 connections handle
at least a single request, transferring fewer than 8kB from server
to user in total [52]. Earlier experiments from the CDN Cloudflare
show that handshakes would be 60% slower [50]. Chromes prod-
uct manager calls drop-in ML-DSA-44 undeployable [5]. For the
transition to a post-quantum ecosystem, Chrome [44] formulated
several design principles, including for size: adding 2kB is very
painful, but plausible, but adding around 7kB is implausible unless

https://groups.google.com/a/chromium.org/g/ct-policy/c/FddjjCNIrLo

Private SCT Auditing, Revisited

a cryptographically relevant quantum computer (CRQC) is tangibly
imminent. The same article considers switching to a Non-X.509 PKL.

3.1 The Problem of SCTs and Post-Quantum
Certificates

Today in the web PKI, every certificate issued can be used immedi-
ately. The immediate issuance poses several challenges, including
necessitating SCT audits and a number of signatures, which make
certificates large when post-quantum signatures are necessary for
authentication. To address the challenges, there are several pro-
posals [11, 30] to give up immediate issuance. The majority of
certificates would then be slow-issuance certificates that require
some time before they can be used.

Slow-issuance certificates avoid the need for SCTs by encoding
a proof of inclusion in a CT log directly in the certificate. When
receiving the certificate, the proof has to be verified. This has al-
ready been suggested in RFC 6962-bis [33], Section 7.1.2. There are
two possible ways of embedding the inclusion proof: using fast
embedding, where the proof is fetched by the CA as soon as the
certificate is in the log, and slow embedding, where the CAs await
the MMD for the inclusion proof before issuing the certificate [41].
Shortening the MMD to remove the SCT is not possible, even when
including the certificate in the log immediately and adding a Merkle
Tree authentication path to the SCT itself. This moves the problem
of SCT auditing to auditing the corresponding STH.

Slow-issuance certificates are small. For example, if all certifi-
cates today were issued by one CA, a Merkle Tree Certificate would
still be well below 1,000 bytes. In addition, the slow issuance pro-
posal is more positive for privacy, as the new tree heads propagate
as a part of the protocol. Actively querying for STHs can have a
negative effect on privacy due to the small number of certificates
represented by an STH as mentioned in Section 2.2.

In a world where slow-issuance certificates are the norm, there
are two possible ways of getting a certificate: a slow-issuance sce-
nario where the certificate is requested in due time before it is used,
and the tree head can be distributed to the user before the certificate
starts to be valid, and a second, less likely fast-issuance certificate
when slow issuance certificates are too slow. Two examples of slow
issuance certificates are Merkle Tree Certificates (MTCs) [11] and
Starlit Jellyfish [30]. We discuss them in Appendix A.1. There are a
small number of possibilities where certificates need to be published
immediately, in less than a minute. We discuss them in Section 3.2,
and estimate the probability for the scenarios in Section 3.4.

3.2 Scenarios for Immediate Issuance

To estimate a slow issuance ecosystem, we find that in three sce-
narios a certificate would be needed immediately.

3.2.1 Brand new domains: A domain that did not exist previously.
This is experienced exactly once for each domain. Domains usually
take some time to become popular, e.g., all of the 100 most-visited
domains existed before 2022 (see Section 3.4.2). Most new domains
may not experience high traffic right away. In a slow-issuance
ecosystem, a significant portion of new domains could use slow
issuance if their certificates are requested sufficiently in advance.

Preprint ()

3.2.2 Validity gaps: A configuration error or manual certificate
renewal could result in a certificate expiring without an immediate
replacement. In a world where slow issuance is standard, a fast-
issuance certificate bridges the time between discovering the error
and issuing a slow issuance certificate. The analogous error in
todays certificate transparency system is a faulty configuration of
automatic renewals or forgotten manual renewals of certificates.

3.2.3 Urgent re-issuance: When a domain is moved without suffi-
cient notice, it needs a new certificate immediately. An example of
urgent re-issuance is a domain that switches its provider on short
notice because it is under a DDoS attack. The list above should
cover the most plausible scenarios, but may not be exhaustive.
When switching to slow-issuance certificates, like MTCs, regular
renewals become more important. Ideally, all domain operators
would opt for a well-configured automatic renewal process, elimi-
nating the validity gap case.

3.3 User Support

Slow-issuance users can roughly be divided into three categories
depending on their support level for slow issuance certificates.

Reliable users supporting slow issuance certificates with a reli-
able update mechanism. They would obtain new tree heads in a
regular frequency, for instance every six hours, and rarely fallback
to fast issuance. In contrast, unreliable users support slow issuance
certificates without a reliable update mechanism. They would ex-
perience more frequent fallbacks, especially when a slow issuance
certificate is relatively new. The probability of fallback would de-
crease inversely with the age of the certificate. Finally, a group of
users without slow issuance certificate support will always require a
fallback to X.509 certificates with SCTs.

3.3.1 User Staleness. In the first and second case, a user becomes
stale when they do not update their tree heads regularily. They may
fall back to using the legacy fast-issuance certificates until they
receive the most up-to-date tree heads. An example of a situation
where the user can be online but not updated is a restrictive fire-
wall configuration or a captive portal. Problems with restricting
configurations exist today and are addressed by a retry and persist
mechanism (see Section 2.4). After the situation is resolved, the
browser can request the new tree heads immediately.

3.3.2 User Support. In the third case, the user has yet to support
slow-issuance certificates. In the meantime, the fallback mechanism
needs to be used, i.e., X.509 certificates with SCTs. While browsers
are reasonably regularly updated, the users may decline updates for
an indefinite time. We expect updates for slow-issuance certificate
support to be rolled out more than 70 days in advance, which is
compliant with Chromes auditing policy (see Section 2.4).

3.4 Estimating a Slow-Issuance Ecosystem

Without an established slow-issuance ecosystem, it is impossible
to know how many users will be reliable and how many will be
unreliable. The concrete distribution of domains needing the fall-
back mechanism will likely also affect the update frequency. Over
time, the third category of unreliable users will hopefully shrink
when a slow-issuance ecosystem is deployed. In this paper, we will
not focus on user behaviour, as the concrete access patterns to the

Preprint ()

SCT database are oblivious. The overall number of queries to the
database will be determined by the number of audits per user. Right
now, the only audits performed by users are limited to three in
Chrome, so it is difficult to give estimates. However, we discuss
strategies to group audits into a single query in Section 7.

The server behavior is more clear. Assuming that current X.509
certificates are simply replaced with slow-issuance certificates
where possible and fast-issuance certificates otherwise, we present
the first estimate of a slow-issuance ecosystem. The resulting up-
per bound can help to facilitate decisions in the final design of
slow-issuance certificates. We use data from public CT logs and
the criteria from Section 3.2 to obtain a loose upper bound on how
many certificates would need fast issuance. Overall, we find that
0.1% of the domains would need a fallback mechanism, using the
conservative assumption that it takes three days to propagate the
Merkle tree heads to clients.

3.4.1 Sampling Method. We use two datasets for our estimations.
The first dataset contains certificates from random domains. Specif-
ically, we include domains where the sipHash64[8] of one of the
DNS names is congruent to zero modulo 10,000. The certificate va-
lidity spans 2.5 years, with their notAfter value ranging between
2022-01-01 and 2024-08-03. This random domains dataset contains
616,142 certificates corresponding to 123,773 unique domains.

A single website may have multiple valid URLs. For example,
the domain abc.xyz also appear as *.abc.Xxyz or www.abc.xyz.
However, the sipHash64 used in the sampling method will only
match one of these variations, introducing a significant number of
false positives in our sample. In addition, our datasets may omit
certain valid certificates. Consequently, our analysis offers only an
approximate upper bound. The issue became evident in our analysis
of validity gaps for misconfigurations in Section 3.4.3. Most domains
have only one gap, which suggests our random domain analysis
can be a loose upper bound at best. The duplicates could be detected
with manual analysis, which is infeasible due to the large number of
certificates, or querying logs directly with the possible subdomains,
which would be very time-consuming.

The second dataset consists of certificates from 75 of the top 100
domains.® The remaining 25 domains, primarily Content Delivery
Networks (CDNs), do not issue certificates. This top domains dataset
contains 36,375 certificates.

3.4.2 Brand New Domains. To estimate how many new domains
are created per fallback period, we measure the number of new
domains added daily. These domains require the fallback mecha-
nism until the new tree head is propagated to all relaying parties.
To distinguish new domains from established ones, we analyze
the timestamps of all certificates associated with each domain and
order them chronologically. If the earliest timestamp is later than
2022-01-01, the domain is classified as new. Otherwise, it is consid-
ered established. This cutoff date was chosen because the dataset is
incomplete before this period. In any case, extending the timeframe
would be counterproductive, as our analysis indicates a steady rise
in the number of new domains.

All top domains in our dataset existed before 2022-01-01. In
the randomly sampled dataset, the most significant daily change

81dentified from https:/radar.cloudflare.com/domains.

L. Heimberger, C. Patton, B. Westerbaan

occurred on 2023-11-27, when 216 certificates were seen for the first
time, representing 0.15% of the domains. On a typical day, a median
of 95 new certificates is observed in our dataset, covering 0.07%
of domains. Since this is a one-in-a-thousand sample, we estimate
that around 95,000 domains are added each day. Our findings align
closely with Let’s Encrypts reported growth statistics.” Between
January 2022 and August 2024, the number of registered domains
active increased from 90 million to 137.5 million, corresponding
to an average of approximately 52,000 certificates per day. Let’s
Encrypts market share fluctuates between 45% (October 18%) and
68% (October 27t"), with a median market share of 58%.10 Overall,
Let’s Encrypt has issued approximately 70% of all the certificates
observed in our analysis.

3.4.3 Validity Gaps. A certificate may expire without a new, valid
certificate immediately replacing it, leading to errors for users at-
tempting to access the domain. The slow issuance proposals cru-
cially rely on automation to mitigate these oversights, especially
given the shorter certificate lifetimes. Using our dataset, we estimate
the distribution of such oversights by taking all validity periods
and checking if they are continious. For the top domains, we found
no expiry after cross-checking our dataset with the certificate data-
base https://crt.sh. Due to the size of our dataset, cross-checking
was not performed for the randomly sampled domains. However,
our analysis estimates an upper bound of 3.11% for domain expiry,
excluding domains for which we only observed a single certificate.

Figure 1 shows the time it takes for a domain to replace an
expired certificate with a valid one if there is a validity gap. During
our analysis, we observed that several certificates have gaps of
only a few seconds. For example, a domain had a certificate that
expired at 23:59:59 and replaced it with a new certificate to take its
place that is valid from 00:00:00 for the next day, just one second
later. This would most likely not become an error. To refine our
analysis, we assume that automatic renewals are in place when
the new certificate is valid less than 10 seconds after the expiry of
the old certificate. Correcting these configurations would remove
the need for a fallback mechanism. This adjustment lowers the
failure probability for the randomly sampled domains to 3.03%.
Over the 2.5 years covered by the data set, on average 0.003% of
all websites had an expired certificate on any give date. Assuming
the incident with the invalid certificate lasts for three days, the
probability increases to 0.01%.

3.4.4 Moving Domains due to an attack. When a certificate remains
active for a long time but is replaced by a new certificate from a
different CA, this may indicate an unplanned domain move. In
case of an unplanned move, the new certificate is typically used
immediately, while the old certificate is left to expire, as certificate
revocation is rare [51]. To estimate renewal patterns and identify
indicators of unplanned domain moves, we plot the overlap in
lifetimes between consecutive certificates, considering cases where
the CA changes and where it does not. Figure 2 shows a clear
trend in renewal patterns: most certificates are renewed 14, 30,
or 90 days before their expiration. This pattern provides a basis
for distinguishing planned from unplanned domain moves. If a

https://letsencrypt.org/stats/#, October 2024
Numbers from Issuance per day by Certificate Authority section of MerkleTown.

https://radar.cloudflare.com/domains
https://crt.sh
https://letsencrypt.org/stats/#

Private SCT Auditing, Revisited

Domains without valid certificates

Number of domains without certificate in timeframe

0 200 400 600 800
Time without valid certificate in days

Figure 1: Time (in days) a domain is without a valid certificate.

A majority of certificates are renewed within 24 hours of
expiry, hinting at a wrong configuration.

domain switches CAs and renews its certificate 14, 30, or 90 days
before expiry, we classify the domain move as planned. Adding a
tolerance window of +24 hours results in a probability of 0.01% for
an unplanned domain move.

Accounting for backup certificates is also important for these
statistics. We classify a certificate as a backup certificate if two
certificates have the same validity start time, and both CAs are
accepted as a potential follow-up CA. Additionally, if we find an
overlapping certificate from the same issuer with at least a second of
overlap with the current certificate, we assume the move is planned
and do not count it as a fallback case. Otherwise, we categorize
the move as unplanned, indicating that we would need the fallback
mechanism.

3.4.5 Probability of a Fallback. To conclude, assuming it takes
three days for an MTC tree head to propagate, under a million
fast-issuance certificates, which would make up around 0.07% of
all certificates, are needed at any given time. They are composed of
the following number of fast-issuance certificates:

® 300,000 from validity gaps,
e 285,000 from brand new domains, and
® 300,000 from unplanned domain moves.

We hope that the validity gap case disappears over time. In this
case, the database with SCTs for fallback certificates size shrinks
from 2197 to 2191,

4 TOWARDS FULLY PRIVATE AUDITING

To evaluate PIR for SCT auditing and to compare the existing
schemes, we first establish a set of common criteria for PIR schemes
in the context of SCT auditing.

4.0.1 Lookup requirements. We significantly relax the require-
ments for the lookup itself. The initial proposal for PIR with SCT

Preprint ()

Overlap in days of certificate lifetimes

800001 -—- same CA

different CA

——

70000 -

60000 -

50000 -

40000 -

30000 A

20000 A

10000 -

Number of domains with the same overlap

L

1

\
)

N

4

\
\
AY
<
>

(]

i

1

/

i/

(]

(]

(]

(]

(]

v
4

(]

(]

1]

\J

l

\

o
L
Y

0 20 40 60 80 100
Overlap of lifetime between two certificates for a domain

Figure 2: The overlap of a lifetime between two certificates
is the time where a domain has two valid certificates. In the
graph, we can see clear spikes at 14, 30, and 90 days that
indicate an automatic renewal of certificates.

auditing [39] stores membership proofs in a PIR database. Follow-
up work [31] proposes retrieving an inclusion proof from the log
instead for improved practicality. However, providing the inclusion
proof opens the protocol for an attack by a fully malicious log [41],
as an inclusion proof can be computed relative to a specific STH.
This creates a direct mapping between the STH and certificates,
requiring users to verify the consistency between the STH and a
previously known, trusted STH. The verification process necessi-
tates revealing the STH to the auditing infrastructure, which in
turn reveals the query.

We propose an alternative: performing a private lookup with
a trusted third party, such as the browsers infrastructure. This
approach is reasonable, given that a certain amount of trust is
already placed in the browser. A similar relaxation was suggested in
Meiklejohn et al’s SCT auditing SoK [41]. By trusting the browsers
infrastructure, the lookup process can be simplified to verify the
inclusion of an SCT and confirm it has been seen previously by the
infrastructure. This reduces the problem to a straightforward hash
lookup of the SCT by its sequence number. The lookup is queried by
sequence number. The response can be either a 256-bit hash of the
certificate or a single bit (sequence number is known/unknown),
as we will discuss in Section 5.

4.0.2 Database preprocessing. Some PIR schemes rely on a per-user,
data-independent preprocessing phase to get a more efficient online
phase [13, 27]. However, with approximately five billion potential
daily users, and frequent database updates, only minimal per-user
preprocessing is feasible. In contrast, user-independent preprocess-
ing of the database is more practical, as it can be performed near-
real-time during database updates. An example of user-independent
preprocessing is arranging the database in a structure optimized for
efficient computations, such as a multiplication-friendly layout. In
contrast, PIR schemes using hints perform per-user preprocessing.

Preprint ()

4.0.3 Batching. Ideally, SCT audits should be performed before
completing the TLS handshake since “any harm that would come
from a mis-issued, improperly-attested certificate” [9] is prevented.
For practicality, a retrospective batched lookup performed once per
day is acceptable. PIR schemes often include batching mechanisms
to amortize the high communication cost. For SCT auditing, a sim-
plified batching approach, such as returning the sum of several
records, may be sufficient. We show state-of-the-art PIR schemes
in Table 1, and discuss batching strategies in Section 7.

Batching techniques may also lower both the server computation
cost and overall communication cost when taking the distribution of
popular domains into account [34]. At the cost of client-side storage,
distributional PIR can reduce the server computation by a factor of
12 and a factor of 3 for communication by keeping distinguishing
between popular and unpopular domains

4.0.4 Communication. Building on previous work [27], we assume
the average user performs around 1,000 TLS connections per day.
Each handshake of these connections requires 2.5 to 5kB of com-
munication. The differentially private PIR lookup in Chrome [21]
takes 240kB. Since we want to be strictly better, a daily fractional
increase of 100kB for batched SCT auditing is acceptable. Inmediate
auditing at the time of the TLS connection brings more value and
thus more communication is acceptable. There are no sharp limits,
but doubling TLS handshake traffic (2.5kB) would be unpalatable.

A PIR audit needs to have strictly better, or sublinear, commu-
nication complexity than downloading the entire database to be
acceptable. Depending on the exact auditing setting, this may be
plausible, as an important consideration is timing: In a fast is-
suance setting (see Appendix A.1), the database would need to
be updated frequently, for example once a second. The PIR online
phase nonetheless needs to be better than updating a list of trusted
tree heads of SCTs on SCT encounters.

4.0.5 Computation. Again, we follow the assumption of Meikle-
john et al’s SoK [41] that the user is on a commodity laptop or
a mobile phone. The server-side computational demands are less
clearly defined. One core-second per user per day would require
about a thousand 64-core servers in full use, which incurs a substan-
tial but potentially acceptable multi-million dollar yearly cost. As
discussed in the previous paragraph, these costs are easier to justify
with immediate auditing. In addition, some proposals, namely the
Bloom filter proposal [27], require regular database updates that
recompute the database format. We want to minimize this overhead.

4.0.6 Reusing key material. In many PIR schemes, the users pub-
lic key is relatively large compared to subsequent queries and re-
sponses. For daily batched lookups, reusing the users public key
is acceptable. For immediate auditing, reusing key material intro-
duces privacy concerns, as it could reveal when the user performs
TLS handshakes. A potential mitigation are randomized delays
to obscure timing correlations, a method previously proposed for
proxy-based SCT auditing in the Tor browser [19]. The problem
is further exacerbated if immediate auditing is only required for
fast-issuance certificates, as that also leaks that the user visited a
website requiring a fast-issuance certificate. This can be ameliorated
somewhat by having the user use multiple public keys, each limited
to a small number of uses.

L. Heimberger, C. Patton, B. Westerbaan

4.1 PIR: State of the Art

Modern PIR schemes are based on lattices. The standard PIR proto-
col queries the database by performing an oblivious Matrix-Vector
multiplication between the database matrix and a basis vector indi-
cating the index of the database item to be retrieved. The form of
the database and the query depend on the concrete PIR scheme. We
now discuss the state of the art and the applicability of the schemes
to SCT auditing. Since the publication of Meiklejohn et al’s SoK [41]
in 2022, PIR schemes have significantly improved. First, SimplePIR
and DoublePIR [27] demonstrated that performant PIR is feasible
with a single server. Further developments have reduced the online
communication significantly [13] and eliminated the preprocessing
from the protocol [26, 36], until the resulting protocol was almost
as performant as the protocol with preprocessing for very small
records [43].

While most PIR schemes benchmark against databases contain-
ing millions of records, the records are usually at least 256 bytes
large. In contrast, SCT auditing requires much smaller records of 32
bytes or even a single bit, as discussed for the lookup requirements
in Section 4, but a vastly larger database with at least 3 billion!?,
or 2313, records. We discuss approaches to make the database size
more manageable in Section 5.2 and Section 7.

PIR schemes can be categorized by the encryption scheme used
to ensure privacy for the queries. The encryption either uses fully
homomorphic encryption (FHE) or the Learning-With-Errors (LWE)
problem. We now discuss both in the context of SCT auditing.

4.1.1 PIR from Fully Homomorphic Encryption. FHE allows arith-
metic operations on ciphertexts, where operations performed on
encrypted data correspond directly to the same operations on the
corresponding plaintext data. For example, given a field element x,
encrypting it enc(x), multiplying it with another field element y,
and then decrypting the result is equivalent to multiplying y with
the unencrypted field element, such that dec(enc(x)y) = xy.
SealPIR [7], introduced in 2018, uses the SEAL homomorphic
encryption library [45], which uses the BFV scheme [12, 25] to
encrypt the ciphertexts. Using BFV in privacy-preserving protocols
is common, for example in Apples private caller ID protocol [4].
SealPIR encrypts the index of the record that the PIR scheme should
retrieve. The index is obliviously expanded to a vector where all in-
dices are 0 except for the provided index on the server. For databases
with entries so large that they do not fit in a single plaintext SEAL
PIR offers two solutions: Either expanding multiple ciphertexts and
concatenating them, or representing the database as a d-dimensional
hypercube. In the hypercube representation, the dimension d sig-
nificantly expands the database capacity. For example, for a lattice
dimension N = 4096, increasing d from 1 to 2 changes the database
representation from a vector to a matrix, allowing the database size
to expand from 4096 to 16.7 million entries. Expanding to d = 3
allows up to over 68 billion database entries. However, this comes at
an online cost, as a ciphertext is needed per dimension to correctly
address the ciphertext, which in turn means that Server-side com-
putation gets more expensive with each dimension increase, as the
ciphertext expansion factor increases after processing each dimen-
sion. In addition, the database is padded with dummy plaintexts if

11n November 2024, 1.5 billion active certificates were counted by Cloudflares Merkle
Town https://ct.cloudflare.com/. Each certificate has at least two SCTs.

https://ct.cloudflare.com/

Private SCT Auditing, Revisited

the database does not perfectly fit in the hypercube. To better fit
the database into the dimension, a hyperrectangle representation
can be used instead.

Recent refinements add computation-communication tradeoffs
to the SealPIR protocol [6] using additive recursion steps. The recur-
sion compresses the secret key upload and download and improves
oblivious query expansion techniques. Spiral [42] reduces the on-
line cost by a factor of over 10X in comparison to SealPIR. Its online
query size is independent of the database size, and the response
size grows slowly with the size of the database. Spirals small online
communication comes at the cost of large public parameters and
higher computational cost, as the preprocessing cost of a query
grows linear with the database size.

For databases with smaller records, Respire [13] adapts Spirals
methods, but uses a subgroup for the query and the response and
incorporates modulus switching to fix the noise growth. In addition,
Respire supports dimension reduction. While Respire achieves the
smallest communication overhead, it requires per-user storage in
the form of a user rotation key that makes the schemes impractical
for SCT auditing given the large user base.

4.1.2 PIR from Learning-With-Errors. PIR schemes based on LWE
and its ring variant RLWE encrypt a base vector indicating the index
and offer tradeoffs for communcation and computation: LWE en-
ables faster computation, but RLWE elements are smaller, enabling
more efficient communication. Over the past two years, a number
of new schemes emerged that are promising for SCT auditing.

SimplePIR [27] shows efficient PIR can be achieved using a large,
precomputed hint matrix as a reusable query key that is uploaded
to the server before starting the queries. A drawback is that the
hint in SimplePIR is several hundred megabytes large. DoublePIR,
introduced in the same paper, reduces the size of the hint by adding
a recursion step, at the cost of a higher per-query communica-
tion. However, updating the database requires updating the corre-
sponding row of the hint, which may involve transmitting several
megabytes per update.

FrodoPIR [20], developed concurrently with SimplePIR and Dou-
blePIR, eliminates the hint by preprocessing the database on the
server side without interacting with the user. Arithmetically, Sim-
plePIR and FrodoPIR are very similar, but FrodoPIR formats the
database as a row vector while SimplePIR formats the database as
a square matrix to balance the user up- and download. As a result,
the public parameters of FrodoPIR are significantly smaller than
in SimplePIR, but FrodoPIR requires more online communication
than SimplePIR.

HintlessPIR [35] and TiptoePIR [26] remove the need for a hint
from SimplePIR by embedding the users secret key into the query
and evaluating it homomorphically on the server. This approach in-
creases the communication complexity, as the plaintext space of the
outer RLWE scheme needs to be large enough to fit the ciphertext of
the inner LWE scheme. The main difference between the TiptoePIR
and HintlessPIR is in the performance and the database representa-
tion. TiptoePIR uses a column-major matrix-vector multiplication
but has higher communication and computation requirements than
HintlessPIR, which formats the database as a square matrix. Overall,
removing the preprocessing from SimplePIR by using HintlessPIR
instead increases online communication by a factor of four.

Preprint ()

Finally, YPIR [43] improves hint packing by using the Chen-Dai-
Kim-Song algebraic packing transformation [14] instead of boot-
strapping. For small database records, YPIR has a slightly higher
upload size than HintlessPIR, but outperforms HintlessPIR in ev-
ery other metric. In terms of communication, YPIR does not quite
outperform DoublePIR because extra key material is sent for key-
switching but has the best communication complexity without
preprocessing at the time of writing.

5 DOWNSIZING THE DATABASE

The communication and computation complexity of PIR schemes
shrink significantly with the database size. In contrast, the ecosys-
tem seems to be growing steadily. A common approach to han-
dle large databases is to split, or shard, the database into multiple
smaller, independent databases. Logs are currently sharded into
epochs between six months and a year.'> We now propose two
ways to shard the SCT auditing database even further. The first one
is inherent in the StaticCT structure, where entries are combined
in 256 item large tiles that can be privately retrieved. The second
proposal extends the idea of using the structure of the Merkle Tree
by adding distinguished roots that are published in epochs rather
than tree size.

5.1 Sharding by Structure: Tiled Logs

StaticCT, and, internally, Tessera, group entries into tiles for easier
caching (see Section 2.1). Instead of auditing the entire database,
the PIR lookup can verify whether a specific tile has been included
in the tree by recomputing the tile and auditing the corresponding
entry at the tile above, for example at level 1 instead of level 0.
Auditing higher levels in the tree significantly cuts down the tree
size. Each level higher in the tile hierarchy reduces the database
size by a factor of 8. For example, auditing at level 1 reduces the
tree size from 2313 to a more managable 2233

To ensure the SCT has been included in the tree, the other 255
entries of the tile are needed to compute the hash of the parent tile.
The hashes of these entries can be obtained in one of two ways:
Either including the remaining entries directly in the PIR response,
or embedding the hashes of the remaining entries within the certifi-
cate. The first proposal increases the response size by 8,192 bytes
per level, while the second proposal increases the certificate size by
8,192 bytes per level and slows down the time until a certificate can
be used, as the tile has to be filled before the certificate is issued.

5.2 Sharding by Epoch: STH Discipline

The high-level idea of canonical STH computation is that logs peri-
odically, for example once per second!? , compute a new canonical
STH of all certificates they received in the meantime. The audit is
then performed with the canonical STH instead of the STH of the
full log. This significantly reduces the size of the database.
Auditing relative to an STH that is published periodically by a
log, where each certificate is audited with respect to a canonical
STH for which the log has an inclusion proof, has previously been
proposed as STH discipline [9]. The SCT audit now performs against

2https://ct.cloudflare.com/logs
13Chrome currently accepts static CT logs only if they have an MMD of less than a
minute [37], and considered 10 seconds or less as an MMD [22].

https://ct.cloudflare.com/logs

Preprint ()

L. Heimberger, C. Patton, B. Westerbaan

Table 1: An overview of relevant criteria for SCT auditing using state-of-the-art PIR schemes, taken from the original papers.

Criteria SealPIR [6, 7] HintlessPIR [36] Respire [13] DoublePIR [27] YPIR [43]
Encryption FHE LWE FHE LWE LWE
Simple Updates X X

No per-user storage X X

No Hints X X

Dedicated support for small records X

Dedicated batching X

Potential candidate X X

the canonical STH instead of the overall tree root. Adjusting the
database structure significantly reduces the database size for the
PIR computation, which becomes proportional to the frequency of
computing the distinguished roots rather than the total number of
certificates.

For example, with a certificate validity of 90 days and canonical
STHs computed every second, there would be less than 223 active
canonical STHs at any given time. To optimize the database size
even further, we propose computing an additional, daily root after
24 hours. This approach reduces the number of active roots even
further while enabling near-instant auditing. This shrinks the data-
base to 86,489 records at any time, as there are 86,400 seconds in a
day. There are three possiblities to obtain the authentication path
in this setting:

(1) A first certificate immediately contains an authentication
path to the root published every second. The same certificate
is modified to contain an authentication path to a daily root
later.

(2) The certificate initially only includes the first authentication
path, and is replaced with a second certificate that contains
the authentication path to the daily root.

(3) The certificate immediately includes the first authentication
path via a separate extension. The daily authentication path
to the daily root is added and included at a later point by the
server.

The first and second approach require updating the certificate at a
later point, which makes the third approach a bit more appealing.
The main deployment challenge for this approach is to determine a
realistic period for computing and distributing canonical STHs. In
addition, CT logs would need to add a new endpoint to retrieve the
distinguished roots list.

6 BENCHMARKS

We measure the performance of implementations of the candidate
schemes from Table 1 with set sizes for tiles and STH discipline
in Table 2. The programs are run on Ubuntu 22.04 with a fixed-
frequency AMD Ryzen 9 7900X 12-Core Processor with 125 GB
RAM. The benchmark baseline is the state-of-the-art Bloom filter
approach with YPIR(plain YPIR)' that retrieves a 1-bit record from
a database with 231> entries. The same database with 256-bit entries
times out or is impossible for all considered PIR schemes.

4https://github.com/menonsamir/ypir

We perform all benchmarks with the default configuration of
the PIR scheme, and take the median over 10 runs. The measure-
ments only cover the online time and exclude query-independent
server preprocessing time. We measure SealPIR!> twice with dif-
ferent database representations. Once with d = 1, representing
the database as a vector with fewer elements packed in a plaintext
for padding, which reduces the communication, but increases the
server-side computation significantly. Representing the database as
a hyperrectangle by setting d = 2 gives faster computation at the
cost of increased communication. Heightening the dimension to
d = 3 does not yield performance improvements. YPIR records can
at most be 8 bits large. Combining YPIR with SimplePIR packing
allows database records of 28672 bits or larger. We pack 112 records
in a single database record to account for the larger modulus. E.g.,
for a for the database with 21 records, the model database con-
sists of 414 28672-bit records. Finally, HintlessPIR!® is called with
the preconfigured parameters.

Table 2 shows that YPIR with a Bloom filter ("plain YPIR”) has the
smallest response size overall. However, using other PIR schemes
has better tradeoffs with the request sizes for all our proposals.
Especially SealPIR performs surprisingly well, keeping several in-
stantiations under 100 kB of overall communication with 46 kB per
party for the tile-based embedding strategy, which performs the
audit with the (n — 2)*" tile, going up two levels of tiles in the log
and gives the best performance when the authentication path to
the tile is embedded in the certificate. Retrieving the authentication
path from the database instead is only possible with YPIR, and
gives relatively bad performance, especially on the user side. STH
discipline gives a better performance than tiled embedding with
large records and does not increase the size of the certificates much,
and only requires adding an API endpoint.

7 BATCH AUDITING

The previous section shows how to conduct a single PIR call effi-
ciently enough to perform an SCT audit per day. Auditing 1,000
connections per day at even 46kB per audit, which we deem to be
the lowest number currently possible in Table 2, is still prohibitive.
Currently, Chrome clients audit one in a thousand connections [21].
Moreover, combining STH discipline with slow-issuance certificates
would reduce the audits to a single audit per day on average, as
0.1% of the connections would use the fallback need to be audited.

https://github.com/microsoft/SealPIR
Lohttps://github.com/google/hintless_pir

https://github.com/menonsamir/ypir
https://github.com/microsoft/SealPIR
https://github.com/google/hintless_pir

Private SCT Auditing, Revisited

Preprint ()

Table 2: Benchmarks for SCT auditing databases with |DB| records. 21°-> for tile-based embedding with the (n — 2)t" tile, 217 for

the canonical certificates with a daily new root, 21%7

records of fast-issuance certificates in an MTC ecosystem, 223 for canonical

certificates without daily new roots, and 2% for tile-based embedding with the (n — 1)t tile as a distinguished root. The record
size |r| is either 256 bits when a hash is retrieved or includes a path to another tile. The best result is marked bold, and schemes
that take less than 100 kB of communication or 1 second of computation are grey. Timed-out protocols are excluded.

Database parameters Scheme Request Size Response Size Computation User Computation Server
— 9315
|DI|3||_ 21 plain YPIR 735 kB 12 kB 884 ms 53 ms
r =
SealPIRd =1 46 kB 46 kB 1ms 112 ms
IDB| = 2155 SealPIR d = 2 93 kB 185 kB 1ms 32 ms
[r| = 256 HintlessPIR 370 kB 5.9 MB 7 ms 790 ms
YPIR-SimplePIR 487 kB 12 kB 34 ms 28 ms
SealPIRd =1 - - - -
|DB| = 215> SealPIR d = 2 - - - -
|r| = 131072 HintlessPIR - - - -
YPIR-SimplePIR 932 kB 61 kB 2.2s 197 ms
SealPIRd =1 46 kB 46 kB 1 ms 311 ms
|DB| = 2% SealPIR d = 2 93 kB 186 kB 1ms 60 ms
|r| = 256 HintlessPIR 371 kB 6.0 MB 23 ms 788 ms
YPIR-SimplePIR 487 kB 12 kB 34 ms 26 ms
SealPIRd =1 46 kB 46 kB 1ms 217 ms
|DB| = 2197 SealPIR d = 2 93 kB 186 kB 1ms 48 ms
Ir| = 256 HintlessPIR 373 kB 6.1 MB 47 ms 794 ms
YPIR-SimplePIR 530 kB 12 kB 34 ms 29 ms
SealPIRd =1 325 kB 46 kB 8 ms 18.6 s
|DB| = 2% SealPIR d = 2 93 kB 185 kB 2 ms 15s
|r| = 256 HintlessPIR 383 kB 18.2 MB 127 ms 1.7s
YPIR-SimplePIR 1.4 MB 12 kB 46 ms 66 ms
SealPIRd =1 650 kB 46 kB 16 ms 36.9s
|DB| = 2% SealPIR d = 2 93 kB 186 kB 2 ms 2.8s
[r| = 256 HintlessPIR 389kB 24.3 MB 250 ms 2.3s
YPIR-SimplePIR 2.3 MB 12 kB 59 ms 108 ms

With slow-issaunce certificates widely deployed, it is unlikely that a
client will need to audit more than a handful of fast-issuance certifi-
cates on a given day. Until slow-issuance certificates are deployed,
batching the audits to perform all audits once per day in a single
query amortizes the communication in the same way. Batching in
the context of PIR efficiently packs several queries into a single
ciphertext. This can amortize the cost of PIR by packing multiple
SCT audits into a single private query. Table 1 shows that several
PIR protocols support batching natively.

We observe that for the problem of SCT auditing, we do not
care about the entries themselves, but only about gaining assurance
whether the auditing infrastructure has already seen the certificates
at hand. This observation gives rise to investigating weaker notions
of batching that still allow us to audit several SCTs in a single query
that can be used alongside traditional PIR batching to perform a
larger number of queries in a single PIR protocol call.

7.1 Private Retrieval of Sums of Hashes

Several PIR schemes are straightforward to modify to query the sum
of multiple entries by their indices. The standard vector-multiplication
PIR protocol discussed in the beginning of Section 2.5 is a special
instance of the LinPIR protocol [35] that has been suggested as a
generalization of PIR protocols that allow querying arbitrary lin-
ear combinations of records such that the result of the protocol is
>.; a;iDB;. The user can locally compute the sum of the hashes of
the certificates and compare the result to the PIR response. If they
differ, which could happen when at least one certificate is not in
the database or the database knows a different certificate hash for
a certificate, the user knows that there is a problem with at least
one certificate.

7.1.1 Batching with LWE-based PIR. The LWE protocols from Sec-
tion 4.1.2 encode the index for the query in a vector. A simple
approach to batching is to encode multiple indices in the query
to get the sum of multiple records as a response. However, each
homomorphic addition adds noise to the server response ciphertext.

Preprint ()

When the noise grows too large, the decryption of the server re-
sponse may be incorrect. Lemma 17 of the LinPIR [35] analyzes the
error growth for additive batched evaluation. However, the paper
gives no concrete bounds for the number of entries that can be
sum-batched per request. From the LWE-based PIR protocols, YPIR
supports some batching to answer multiple queries at once, which
may be of independent interest. Since HintlessPIR and YPIR do not
give us the best performance, we leave the concrete sum-batched
instantiation to future work.

7.1.2 Batching with FHE-based PIR. The FHE-based protocols from Sec-

tion 4.1.1 encode the index i of the database record as a polynomial
x!, blind the polynomial, and then perform an oblivious expansion
technique that results in the base vector for the multiplication. The
expansion is a linear operation. To obtain the LinPIR combination
of e.g. three elements i, j, k, the polynomial x! +xJ +xF can be sent
to the server instead. The result is an additive linear combination

of database records.

7.2 Security of Retrieving Sums of Hashes

Without batching, we need our n-bit hash H to be collision-resistant
when checking if the auditing infrastructure already knows of a
certificate hash. When querying multiple hashes in a single PIR
query, we instead need the AdHASH map xi, ..., X — Zliczl H(x;)
to be collision-resistant. The AJHASH map was introduced and
studied by Bellare and Micciancio in [10]. They reduce its collision
security to known hard lattice problems, but were unable to give
guidance on how to translate parameters. Five years later, Wagner
showed [49] there is an algorithm to find collisions in time and

space O(kZﬁH). Wagners attack initially becomes easier with
larger k, but this changes when k > 2 — y/n. Thus we can break
a 16,284 batched query using 256-bit hashes with about 232 time
and space. Wagners attack would need 2! time and space to break
the same 16,284 batched query if we use a 1,808 bit hash. It is
unclear whether Wagners attack is close to optimal. The information
theoretic lower bound is Q(Zﬁ). We can get more assurances and
efficiency by expanding the space of possible parameters.

7.3 Retrieving Signed Sums of Hashes

The straightforward mitigation of Wagners attack is using a hash
function with longer outputs, which potentially makes the PIR
scheme less efficient as the database records become larger. An al-
ternative is to make it harder for the log to respond with a collision
by guessing a query by adding more entropy to it. Instead of query-
ing a vector of 0s and 1s, we can querying for a signed sum. Instead
of retrieving the sum of entries, we propose the user picks ran-
dom coefficients s; € {—1,1} and performs a query for the signed
sum Z{F:l sixj. The user then checks whether the corresponding
signed sum of SCT hashes matches the result. Clearly, for known
signs s;, Wagners attack still applies. Crucially, the attacker does
not know the s; and has to guess them. The attacker need not guess
all of them: only for the subset for which the attacker has prepared
a collision. Even then, the attacker is allowed to get the global sign
wrong. For details see 7.3.1. If we include retries for guessing the

k+lg k+ ¢

sign, the attacker is expected to perform O(2 gk) work.

L. Heimberger, C. Patton, B. Westerbaan

7.3.1 Security analysis querying signed sums. We analyze the secu-
rity of querying signed sums described in 7.3. The attacker can guess
the signs sy, . .., s, of a future audit, and then prepare two lists of
certificates. The certificates in the first list are innocuous, legitimate,
and publicly logged with SCT hashes x1, . . ., x,. The second list con-
tains the certificates that are presented during the active attack shad-
owing the legitimate first list with SCT hashes yy, . . ., yn. Of those,
lets say y; is for the certificate the attacker wants to mis-issue as its
goal. To fool the user, the attacker must ensure .7, s;x; = .7, siy;.
Without loss of generality, we may assume x; # y; for all i: Un-
changed certificates don’t affect the query or attack. Furthermore,
we may assume the attacker uses the smallest collision: there is
no® c A c {1,...,n} with X;cpsixi = 2jen Siyi- Indeed, if
there were, the attacker could restrict their certificates to either A
or {1,...,n} \ A. The attacker has some respite guessing the signs:
if they guess every sign incorrectly, then the user is also fooled,
as — Y sixi = — X siyi

But that is all: if the user instead uses si, oo spe{-1,1} withs' ¢
{s, —s}, then the attackers meddling is discovered. Indeed, reasoning
towards contradiction, assume Y7, six; = Z?z,l s Yi. Combin%ng
with the attackers preparation, we get 3.7, %xi =y, %yi.

Write t; = S’;—S; and A = {i; s; = s/}. Note that t; = s; for
all i € A. Thus, by our assumption of minimality, either A = 0
or A ={1,...,n}. In the former case, s’ = —s and in the latter s’ = s.
Contradiction.

8 CONCLUSION

In this paper, we studied the recent developments towards more
private SCT auditing. Recent advances both in the certificate ecosys-
tem and Private Information Retrieval seem to bring wide SCT au-
diting with PIR to the brink of practicality. In particular, we discuss
some novel batching ideas and give guidelines towards a practical
deployment with sharded databases that would enable private SCT
audits in under 100kB per day in Table 2. In addition, we analyzed
and estimated a slow-issuance ecosystem. The results show that
SCT auditing in general, but especially in the context of slow is-
suance, is becoming a lot more plausible. In particular, leveraging
slow issuance certificates like Merkle Tree Certificates or Starlit
Jellyfish can lower the number of SCT audits to one in a thousand
connections, a number that is already close to the current auditing
rate of Chrome.

Future Work. Revisiting SCT auditing, we have shown that SCT
auditing with the web browsers infrastructure and sequence num-
bers is feasible, and techniques like using distinguished roots and
tiles can be leveraged to obtain a fast protocol. We also show how
to batch audits by using the algebraic structure of PIR protocols,
and provided a thorough analysis of batched SCT audits. The per-
formance of batching may be improved by taking the popularity of
domains into account [34].

Relaxing PIR to batched set membership may apply to related
problems such as compromised credential checking [3, 46] and
lookup of a known spam caller ID [4].

Additionally, we discuss how future deployments of slow-issuance
certificates impact the certificate ecosystem, and provide scenarios
where slow issuance is too slow, and discuss how SCTs could be

Private SCT Auditing, Revisited

audited then. To get more accurate numbers on the slow-issuance
fallbacks and the ecosystem in general, a practical deployment test
is necessary. The test results can tighten the bound on the certifi-
cates, and give a more stable bound on fallbacks in Section 3.4.5,
potentially even deriving a lower bound than our estimated 0.1% of
overall connections.

For a complete deployment of PIR-based SCT audits, some prac-
tical challenges are still open: Networks may restrict traffic to the
point that SCT auditing is refused. For example, captive portals tend
to rewrite DNS responses to redirect to their websites and disallow
any traffic. In this case, a non-blocking warning may be necessary,
although there has been some progress in norming captive portals.
We only cover the auditing phase, but give no mechanism for private
reporting of non-included SCTs. Meiklejohn et al’s SoK [41] empha-
sizes that a report needs to include actionable and concrete evidence
of logs misbehavior while preserving the privacy of the reporter, for
example submitting the non-included certificates reveal browsing
history. Even a zero-knowledge proof of non-inclusion [24], where
the auditor proves in zero knowledge that it has a valid SCT and
a valid proof of non-inclusion by showing all leaves between the
two timestamps [24], is not sufficient to prove that the log integrity
failed. Concrete and actionable reports remain an open problem.

ACKNOWLEDGMENTS

We thank Ryan Lemkuhl for a productive discussion about the state
of the art of PIR protocols in the context of SCT auditing. We are
also thankful for Samir Menons comments on efficient instantiation
of YPIR for our usecase. We used Grammarly to spell-check this

paper.

REFERENCES

[1] 2023. Apple’s Certificate Transparency policy. https://support.apple.com/en-
us/103214.

[2] 2024. Chrome Certificate Transparency Policy. https://googlechrome.github.io/
CertificateTransparency/ct_policy.html.

[3] 2024. Have I been pwned? https://haveibeenpwned.com/.

[4] 2024. Live Caller ID Lookup Example. https://github.com/apple/live-caller-id-
lookup-example/.

[5] David Adrian. 2024. Post-quantum cryptography is too damn big. https://dadrian.
io/blog/posts/pqc-signatures-2024.

[6] Asra Ali, Tancréde Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,
Karn Seth, and Kevin Yeo. 2021. Communication-Computation Trade-offs in PIR.
In USENIX Security 2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX
Association, 1811-1828.

[7] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with
Compressed Queries and Amortized Query Processing. In 2018 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, 962-979. https://doi.org/
10.1109/SP.2018.00062

[8] Jean-Philippe Aumasson and Daniel J. Bernstein. 2012. SipHash: A Fast Short-

Input PRE. In INDOCRYPT 2012 (LNCS, Vol. 7668), Steven D. Galbraith and Mridul

Nandi (Eds.). Springer, Berlin, Heidelberg, 489-508. https://doi.org/10.1007/978-

3-642-34931-7_28

Richard Barnes. 2017. STH Discipline & Security Considerations.

//mailarchive ietf.org/arch/msg/trans/Zm4NqyRc7LDsOtV56EchBIT9r4c/.

Mihir Bellare and Daniele Micciancio. 1997. A New Paradigm for Collision-Free

Hashing: Incrementality at Reduced Cost. In EUROCRYPT’97 (LNCS, Vol. 1233),

Walter Fumy (Ed.). Springer, Berlin, Heidelberg, 163-192. https://doi.org/10.

1007/3-540-69053-0_13

David Benjamin, Devon O’Brien, and Bas Westerbaan. 2024. Merkle Tree Certifi-

cates for TLS. Internet-Draft draft-davidben-tls-merkle-tree-certs-03. Internet En-

gineering Task Force. https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-
tree-certs/03/ Work in Progress.

Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switch-

ing from Classical GapSVP. In CRYPTO 2012 (LNCS, Vol. 7417), Reihaneh Safavi-

Naini and Ran Canetti (Eds.). Springer, Berlin, Heidelberg, 868-886. https:

//doi.org/10.1007/978-3-642-32009-5_50

[9

=

https:

[10

—_
o

[12

(13

[14

[18

[19

[21

[22]

[23

[24

[25

™
S

[27

[28

[29

&
=

[31

[32

(33]

[34

[35

Preprint ()

Alexander Burton, Samir Jordan Menon, and David J. Wu. 2024. Respire: High-
Rate PIR for Databases with Small Records. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security, CCS 2024, Salt Lake
City, UT, USA, October 14-18, 2024, Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda,
and David Lie (Eds.). ACM, 1463-1477. https://doi.org/10.1145/3658644.3690328
Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. 2021. Efficient Homomorphic
Conversion Between (Ring) LWE Ciphertexts. In ACNS 21International Conference
on Applied Cryptography and Network Security, Part I (LNCS, Vol. 12726), Kazue
Sako and Nils Ole Tippenhauer (Eds.). Springer, Cham, 460-479. https://doi.org/
10.1007/978-3-030-78372-3_18

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private
Information Retrieval. In 36th FOCS. IEEE Computer Society Press, 41-50. https:
//doi.org/10.1109/SFCS.1995.492461

Russ Cox. 2019. Tiling a Log. https://research.swtch.com/tlog#tiling_a_log.

Al Cutter and Martin Hutchinson. 2024. Introducing Trillian Tessera. trans-
parency.dev presentation. https://transparency.dev/summit2024/tesseratalk.
html.

Al Cutter, Martin Hutchinson, and Filippo Valsorda. 2024. The Static Certificate
Transparency APL. The Community Cryptography Specification Project. c2sp.
org/static-ct-api@v1.0.0.

Rasmus Dahlberg, Tobias Pulls, Tom Ritter, and Paul Syverson. 2021. Privacy-
Preserving & Incrementally-Deployable Support for Certificate Transparency in
Tor. PoPETs 2021, 2 (April 2021), 194-213. https://doi.org/10.2478/popets-2021-
0024

Alex Davidson, Gongalo Pestana, and Sofia Celi. 2023. FrodoPIR: Simple, Scalable,
Single-Server Private Information Retrieval. PoPETs 2023, 1 (Jan. 2023), 365-383.
https://doi.org/10.56553/popets-2023-0022

Joe DeBlasio. 2021. Opt-out SCT Auditing in Chrome. Google
Doc. https://docs.google.com/document/d/16G-Q7iN3kB46GSW 5b-
sfH5MO3nKSYyEb77YsM7TMZGE/.

Joe DeBlasio. 2024. Certificate Transparency Log Policy. https://groups.google.
com/a/chromium.org/g/ct-policy/c/nuJOpwj06QA.

eranm@chromium.org. 2015. Certificate Transparency: Audit logs by checking
SCTs for inclusion. Chromium Issue Tracker. https://issues.chromium.org/issues/
41186110.

Saba Eskandarian, Eran Messeri, Joseph Bonneau, and Dan Boneh. 2017. Cer-
tificate Transparency with Privacy. PoPETs 2017, 4 (Oct. 2017), 329-344. https:
//doi.org/10.1515/popets-2017-0052

Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2012/144. https:
//eprint.iacr.org/2012/144

Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs, and Nickolai
Zeldovich. 2023. Private web search with Tiptoe. In Proceedings of the 29th
symposium on operating systems principles. 396-416.

Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meik-
lejohn, and Vinod Vaikuntanathan. 2023. One Server for the Price of Two:
Simple and Fast Single-Server Private Information Retrieval. In USENIX Security
2023, Joseph A. Calandrino and Carmela Troncoso (Eds.). USENIX Association,
3889-3905.

Jay Hou. 2024. Tile-Based Transparency Logs. https://transparency.dev/articles/
tile-based-logs/.

Dennis Jackson. 2024. Abridged Compression for WebPKI Certificates. Internet-
Draft draft-ietf-tls-cert-abridge-02. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/02/ Work in Progress.
Dennis Jackson. 2024. The design space between CT and KT. transparency.dev
presentation. https://transparency.dev/schedule/ctkthtml.

Daniel Kales, Olamide Omolola, and Sebastian Ramacher. 2019. Revisiting user
privacy for certificate transparency. In 2019 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 432-447.

Dana Keeler. 2025. Certificate Transparency is now enforced in Firefox on desktop
platforms starting with version 135. https://groups.google.com/a/mozilla.org/g/
dev-security-policy/c/OagRKpVirsA/m/Q4c89XG-EAA].

Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency.
RFC 6962. https://doi.org/10.17487/RFC6962

Ryan Lehmkuhl, Alexandra Henzinger, and Henry Corrigan-Gibbs. 2025. Distri-
butional Private Information Retrieval. Cryptology ePrint Archive (2025).

Baiyu Li, Daniele Micciancio, Mariana Raykova, and Mark Schultz. 2024. Hintless
Single-Server Private Information Retrieval. In CRYPTO 2024, Part IX (LNCS,
Vol. 14928), Leonid Reyzin and Douglas Stebila (Eds.). Springer, Cham, 183-217.
https://doi.org/10.1007/978-3-031-68400-5_6

Baiyu Li, Daniele Micciancio, Mariana Raykova, and Mark Schultz-Wu. 2024.
Hintless single-server private information retrieval. In Annual International Cryp-
tology Conference. Springer, 183-217.

Google LLC. 2025. Certificate Transparency Log Policy. https://googlechrome.
github.io/CertificateTransparency/log_policy.html.

Google LLC and Internet Security Research Group. 2025. Trillian Tessera. https:
//github.com/transparency-dev/trillian-tessera.

https://support.apple.com/en-us/103214
https://support.apple.com/en-us/103214
https://googlechrome.github.io/CertificateTransparency/ct_policy.html
https://googlechrome.github.io/CertificateTransparency/ct_policy.html
https://haveibeenpwned.com/
https://github.com/apple/live-caller-id-lookup-example/
https://github.com/apple/live-caller-id-lookup-example/
https://dadrian.io/blog/posts/pqc-signatures-2024
https://dadrian.io/blog/posts/pqc-signatures-2024
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-642-34931-7_28
https://mailarchive.ietf.org/arch/msg/trans/Zm4NqyRc7LDsOtV56EchBIT9r4c/
https://mailarchive.ietf.org/arch/msg/trans/Zm4NqyRc7LDsOtV56EchBIT9r4c/
https://doi.org/10.1007/3-540-69053-0_13
https://doi.org/10.1007/3-540-69053-0_13
https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/03/
https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/03/
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/3658644.3690328
https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/SFCS.1995.492461
https://research.swtch.com/tlog#tiling_a_log
https://transparency.dev/summit2024/tesseratalk.html
https://transparency.dev/summit2024/tesseratalk.html
c2sp.org/static-ct-api@v1.0.0
c2sp.org/static-ct-api@v1.0.0
https://doi.org/10.2478/popets-2021-0024
https://doi.org/10.2478/popets-2021-0024
https://doi.org/10.56553/popets-2023-0022
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/
https://groups.google.com/a/chromium.org/g/ct-policy/c/nuJOpwj06QA
https://groups.google.com/a/chromium.org/g/ct-policy/c/nuJOpwj06QA
https://issues.chromium.org/issues/41186110
https://issues.chromium.org/issues/41186110
https://doi.org/10.1515/popets-2017-0052
https://doi.org/10.1515/popets-2017-0052
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://transparency.dev/articles/tile-based-logs/
https://transparency.dev/articles/tile-based-logs/
https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/02/
https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/02/
https://transparency.dev/schedule/ctkt.html
https://groups.google.com/a/mozilla.org/g/dev-security-policy/c/OagRKpVirsA/m/Q4c89XG-EAAJ
https://groups.google.com/a/mozilla.org/g/dev-security-policy/c/OagRKpVirsA/m/Q4c89XG-EAAJ
https://doi.org/10.17487/RFC6962
https://doi.org/10.1007/978-3-031-68400-5_6
https://googlechrome.github.io/CertificateTransparency/log_policy.html
https://googlechrome.github.io/CertificateTransparency/log_policy.html
https://github.com/transparency-dev/trillian-tessera
https://github.com/transparency-dev/trillian-tessera

Preprint ()

[39] Wouter Lueks and Ian Goldberg. 2015. Sublinear Scaling for Multi-Client Private
Information Retrieval. In FC 2015 (LNCS, Vol. 8975), Rainer Bohme and Tatsuaki
Okamoto (Eds.). Springer, Berlin, Heidelberg, 168-186. https://doi.org/10.1007/
978-3-662-47854-7_10

Francois Marier. 2022. [Security] Add support for Certificate Transparency in

Brave. https://github.com/brave/brave-browser/issues/22482.

[41] Sarah Meiklejohn, Joe DeBlasio, Devon O’Brien, Chris Thompson, Kevin Yeo, and

Emily Stark. 2022. SoK: SCT Auditing in Certificate Transparency. PoPETs 2022,

3 (July 2022), 336-353. https://doi.org/10.56553/popets-2022-0075

Samir Jordan Menon and David] Wu. 2022. Spiral: Fast, high-rate single-server

PIR via FHE composition. In 2022 IEEE Symposium on Security and Privacy (SP).

IEEE, 930-947.

[43] Samir Jordan Menon and David J. Wu. 2024. YPIR: High-Throughput Single-
Server PIR with Silent Preprocessing. In USENIX Security 2024, Davide Balzarotti
and Wenyuan Xu (Eds.). USENIX Association.

[44] Chromium Projects. 2024. Building a Deployable Post-quantum Web PKI. https:

//www.chromium.org/Home/chromium-security/post-quantum-pki-design/.

SEAL 2023. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL.

Microsoft Research, Redmond, WA..

Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage

Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan

Boneh, and Elie Bursztein. 2019. Protecting accounts from credential stuffing

with password breach alerting. In USENIX Security 2019, Nadia Heninger and

Patrick Traynor (Eds.). USENIX Association, 1556-1571.

[47] Chris Thompson. 2020. Retrying and persisting SCT audit reports. Google Doc.

https://docs.google.com/document/d/1YTUzoG6BDF1QIxosaQDp2H51zYY7_

fwHBqNJXSVX80Q).

transparency.dev. 2018. Trillian: General Transparency. Github repository. https:

//github.com/google/trillian.

[49] David Wagner. 2002. A Generalized Birthday Problem. In CRYPTO 2002 (LNCS,

Vol. 2442), Moti Yung (Ed.). Springer, Berlin, Heidelberg, 288-303. https://doi.

org/10.1007/3-540-45708-9_19

Bas Westerbaan. 2021. Sizing up post-quantum signatures. https://blog.cloudflare.

com/sizing-up-post-quantum-signatures/.

[51] Bas Westerbaan. 2024. Revocation Behaviour of Let’s Encrypt. https://github.
com/davidben/merkle-tree-certs/issues/41#issuecomment-2245218105.

[52] Bas Westerbaan and Luke Valenta. 2024. A look at the latest post-quantum
signature standardization candidates. https://blog.cloudflare.com/another-look-
at-pg-signatures/.

[40

[42

[45

[46

[48

[50

A SLOW-ISSUANCE CERTIFICATES

A.1 Merkle Tree Certificates

Merkle Tree Certificates (MTC) [11] starts with the slow issuance
idea, and doubles down on it: it does not just work out the details,
but it also makes bigger changes to the architecture of the PKI, see
Figure 3. To obtain a certificate in MTC, the authenticating party,
who operates a TLS server, requests one with the CA in advance
(1). In MTC a certificate is split into an assertion and a proof. An
informal example of anassertion is ‘public key P is trusted to do
TLS for domain example.com’— it is the certificate without the
signature of the CA. On a set interval, say once an hour, the CA
publishes a new batch of assertions it issued. For each batch, the CA
also computes a Merkle tree. The assertions in each batch have the
same implicit validity, say two weeks. Together with the latest batch,
the CA also publishes a signature on the Merkle tree heads of the
currently valid batches. Now the authenticating party can collect its
certificate (3): it is formed by combining the assertion with a Merkle
tree inclusion proof of the assertion into the batch. A relying party
(browser) cannot make sense of this certificate without knowing
the batch tree heads. This is where the transparency service (TS)
comes in. The TS mirrors (2) the batches and signature of the CA;
checks them for consistency; and passes the batch tree heads to
the relying party (5). A TS could be run by a browser vendor or
another third party. Now, when connecting to the TLS server (6),
the relying party for each CA advertises the sequence number of
the latest batch it knows the tree head for. The authenticating party

L. Heimberger, C. Patton, B. Westerbaan

1. issuance request

»

Auth. Party Certification Authority
'y 3. inclusion proof
2. sign and
6. accepted 7. inclusion proof publish tree
tree heads
A A 4

5. batch tree heads

Relying Party Transparency Service

A

4. mirror tree

A 4

Monitors

Figure 3: Parties and flow in a Merkle Tree certificate deploy-
ment [11]

returns either a MTC certificate if an appropriate one is available
(7) or falls back to X.509. Finally, different TS mirroring the same
CA are checked for consistency by Monitors (4).

https://doi.org/10.1007/978-3-662-47854-7_10
https://doi.org/10.1007/978-3-662-47854-7_10
https://github.com/brave/brave-browser/issues/22482
https://doi.org/10.56553/popets-2022-0075
https://www.chromium.org/Home/chromium-security/post-quantum-pki-design/
https://www.chromium.org/Home/chromium-security/post-quantum-pki-design/
https://github.com/Microsoft/SEAL
https://docs.google.com/document/d/1YTUzoG6BDF1QIxosaQDp2H5IzYY7_fwH8qNJXSVX8OQ/
https://docs.google.com/document/d/1YTUzoG6BDF1QIxosaQDp2H5IzYY7_fwH8qNJXSVX8OQ/
https://github.com/google/trillian
https://github.com/google/trillian
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://github.com/davidben/merkle-tree-certs/issues/41#issuecomment-2245218105
https://github.com/davidben/merkle-tree-certs/issues/41#issuecomment-2245218105
https://blog.cloudflare.com/another-look-at-pq-signatures/
https://blog.cloudflare.com/another-look-at-pq-signatures/

	Abstract
	1 Introduction
	1.1 SCT Auditing
	1.2 This paper

	2 Background and Related Work
	2.1 Certificate Transparency
	2.2 Private SCT Auditing
	2.3 SCT Auditing Proposals
	2.4 SCT Auditing in Practice: Google Chome
	2.5 Private Information Retrieval

	3 Slow Issuance Certificates
	3.1 The Problem of SCTs and Post-Quantum Certificates
	3.2 Scenarios for Immediate Issuance
	3.3 User Support
	3.4 Estimating a Slow-Issuance Ecosystem

	4 Towards fully private Auditing
	4.1 PIR: State of the Art

	5 Downsizing the database
	5.1 Sharding by Structure: Tiled Logs
	5.2 Sharding by Epoch: STH Discipline

	6 Benchmarks
	7 Batch Auditing
	7.1 Private Retrieval of Sums of Hashes
	7.2 Security of Retrieving Sums of Hashes
	7.3 Retrieving Signed Sums of Hashes

	8 Conclusion
	Acknowledgments
	References
	A Slow-issuance certificates
	A.1 Merkle Tree Certificates

