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ABSTRACT
In a social key recovery scheme, users back up their secret keys

(typically using Shamir’s secret sharing) with their social connec-

tions, known as a set of guardians. This places a heavy burden

on the guardians, as they must manage their shares both securely

and reliably. Finding and managing such a set of guardians may

not be easy, especially when the consequences of losing a key are

significant.

We take an alternative approach of social recovery within a com-

munity, where each member already holds a secret key (with possi-

bly an associated public key) and uses other community members

as their guardians forming a mutual dependency among themselves.

Potentially, each member acts as a guardian for upto (𝑛 − 1) other
community members. Therefore, in this setting, using standard

Shamir’s sharing leads to a linear (𝑂 (𝑛)) blow-up in the internal

secret storage of the guardian for each key recovery. Our solution

avoids this linear blowup in internal secret storage by relying on a

novel secret-sharing scheme, leveraging the fact that each member

already manages a secret key. In fact, our scheme does not require

guardians to store anything beyond their own secret keys.

We propose the first formal definition of a social key recovery

scheme for general access structures in the community setting. We

prove that our scheme is secure against any malicious and adaptive

adversary that may corrupt up to 𝑡 parties. As a main technical

tool, we use a new notion of secret sharing, that enables (𝑡 + 1)
out of 𝑛 sharing of a secret even when the shares are generated

independently – we formalize this as bottom-up secret sharing

(BUSS), which may be of independent interest.

Finally, we provide an implementation benchmarking varying

the number of guardians both in a regional, and geo-distributed

setting. For instance, for 8 guardians, our backup protocol takes

around 146-149 ms in a geo-distributed WAN setting, and 4.9-5.9

ms in the LAN setting; for recovery protocol, the timings are ap-

proximately the same for the WAN setting (as network latency

dominates), and 1.2-1.4 ms for the LAN setting.

1 INTRODUCTION
Cryptography plays a crucial role in securing and authenticating

data in the digital space by providing mathematically proven guar-

antees. However, virtually all such guarantees crucially rely on

keeping the underlying secret key secure and available, both at the
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same time. In the blockchain space, due to its fundamental reliance

on cryptography, creating secure and reliable (that is available when

needed) wallet services, for storing keys, has garnered substantial

attention [10, 17] in the past few years.

Storing secret keys in wallets securely and reliably turns out

to be remarkably challenging. Among many a primary challenge

is, unlike passwords, keys can not be reset easily. For example, if

certain funds are “locked” with respect to a particular public-key,

such that a transaction requires a signature using the correspond-

ing secret-key, then those funds are lost forever if the secret key

cannot be recovered. It is estimated that USD 140 billions worth of

BTC is unrecoverable due to lost secret keys [26]! Therefore, many

existing wallets support a backup option, either via mnemonic

pass phrases [14], which one may write down in a secure place,

or splitting the key [11, 19] using simple secret sharing (such as

Shamir’s [23]) and storing the shares in different devices – each

share must be secured with another authentication mechanism,

such as passwords. But even for those solutions (also called cold [12]

or hardware wallets [29]) incidental memory erasure or losing pass-

words (or a combination)
1
may happen realistically invoking a loss

of funds. In fact, in scenarios involving permanent disappearance,

such as the death or disability of the key-owner, a similar loss of

funds can take place.

Many of these issues are mitigated in social recovery solutions,

which, as laid out by Buterin [8], carry substantial benefits in terms

of usability and reliability without compromising security. In a

social recovery scheme, a key-owner uses parties from her social

circle, also known as guardians, to back up her secret key. A typical

recovery access structure can be (𝑡 +1)-out-of-𝑛 threshold, where 𝑛

guardians are used for backup and any (𝑡 + 1) of them are required

to recover the key. This setting will be secure as long as at most 𝑡

of the shares are captured, by collusion or otherwise. Importantly,

in the event of a permanent disappearance of the key-owner, e.g.

demise, the legitimate nominee can coordinate with any (𝑡 + 1)
guardians to recover the secret key and thus inherit any asset locked

with the key.

However, the security and reliability aspects of the social recov-

ery approach crucially relies on the guardians. An ideal guardian

should be technologically adept, trustworthy, and reliable. Finding

1
In [8], a real-world example was given for a Bitcoin developer Stefan Thomas, who had

three backups entities – an encrypted USB stick, a Dropbox account and a Virtualbox

virtual machine. However, he accidentally erased two of them and forgot the password

of the third, forever losing access to 7,000 BTC (worth $125, 000 at the time).
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a set of guardians all of whom posses these attributes to a reason-

able degree may not be easy. Importantly, since the guardians do

not have any stake (barring just helping the key owner) with the

existing approaches, it may be too optimistic to assume that they

would store the shares both securely and reliably.

Motivated by this, we put forward a new community-based model
for social recovery. Our model considers a community of secret-key

holders (e.g., users of cryptocurrency), such that everyone can use

(a subset of) the other community members as their guardians. In

return, they are also expected to serve as guardians for other parties.

This creates an ecosystem of mutual dependence, in that there is a

clear motivation for each member to store the shares of other key

owners securely and reliably, with the hope that the other members

would also return the favor.

Using a simple (𝑡 + 1)-out-𝑛 secret sharing in this model, how-

ever, incurs new issues, as we elaborate next: let sk𝑖 is party 𝑃𝑖 ’s

secret key, which is a 256-bit string. A secret sharing of sk𝑖 would
generate 𝑛 shares 𝜎𝑖,1, 𝜎𝑖,2, . . . 𝜎𝑖,𝑛 , where 𝜎𝑖, 𝑗 belongs to guardian

𝑃 𝑗 – each 𝜎𝑖, 𝑗 is also a 256 bit string. Now, in the community setting,

everyone would potentially use other members as guardians, and

hence it is expected that party 𝑃 𝑗 may have to serve as a guardian

for𝑚 different key-owners. In that scenario, 𝑃 𝑗 has to manage𝑚

different shares securely and reliably. The requirement of securely

and reliably many shares (scales with 𝑂 (𝑚)) becomes challenging

for the members, and even worse, this may end up discouraging

users from joining the community.

To resolve this issue we propose a new solution, in that, parties

do not need to store any additional data beyond their own secret

key securely and reliably. Our main idea is to leverage the fact that

each user already maintains a secret-key, and the shares would be

derived from that without hurting security. In fact, our protocol is

quite general and works beyond the community setting: as long as

each guardian can manage a single secret key, there is no need to
store any additional information, regardless of the number of key

owner the guardian supports.

1.1 Our Contribution
In short, our contributions are:

• We introduce the concept of community-based social recov-

ery.We formalize the correctness and security definitions of

community-based social key recovery schemes in a stand-

alone simulation-based framework [9, 16]. Intuitively, our

definition ensures that no computationally bounded adver-

sary, which corrupts parties (maliciously and adaptively)

satisfying some access structure is able to distinguish be-

tween a real world where the actual protocol is run and

an ideal world, where the honest party’s responses are

computed without their secret inputs. To the best of our

knowledge, this is the first formalization of any social key

recovery scheme.

• We design a simple protocol for community-based social

key recovery. Each owner’s key can be backed up with a

subset of the rest of the community members, denoted as

guardians. The guardians do not have to store anything

in addition to their own key. For recovery, any (𝑡 + 1)
guardians must help correctly for a pre-defined threshold 𝑡 .

The scheme supports every party to back up their respec-

tive keys with (a subset of) everyone else, without needing

to store anything apart from their own secret key – this

establishes an ecosystem of mutual dependence without

additional overhead. Our protocol is secure (with abort)

against any malicious and adaptive corruption up to 𝑡 par-

ties. We also emphasize that both our backup and recov-

ery protocols require only a single round trip interaction

in a star network, with the key-owner in the center, and

guardians sending a single message, without requiring any

synchronization among themselves – in fact, the guardians

do not require to know each other.
2

• The main technical tool, we rely upon, is a new type of

secret sharing scheme, which supports independent shares

for a (𝑡 + 1)-out-of-𝑛 threshold access structure – given

a secret, and (𝑛 − 1)-many independently chosen shares,

one can produce a (set of) public values, such that during

reconstruction, any (𝑡 + 1) of the shares and the public

values can be combined to reconstruct the secret. This type

of secret sharing has been used recently by Baird et al. [3]

to design multiverse threshold signatures. In this paper we

formalize this as bottom-up secret sharing (BUSS) with an

adaptive simulation security definition – this may be of

independent interest.

• To demonstrate practicality we perform extensive bench-

marking, varying the tools (such as the types of elliptic

curves and hash functions) and the number of guardians

both in a regional, and geo-distributed setting. For instance,

with standard hash functions, for 8 guardians, our backup

protocol takes around 146-149 ms in a geo-distributedWAN

setting (with a network delay of 138 ms), and 4.9-5.9 ms

in the intra-regional LAN setting; for recovery protocol,

the timings are approximately the same for WAN setting

(as communication latency dominates), and 1.2-1.4 ms for

the LAN setting. We also provide more optimized num-

bers with multi-threading that enhances the performances

significantly (see Section 7 for details).

Additionally, we discuss a few extensions of our key recovery

scheme to accommodate settings where a guardian may update

their secret key, or maintain a separate “guardian-key” in addition

to its signing key. We further demonstrate that our scheme can

be made to work on top of most cold wallets, such as Ledger [15],

Trezor [29], where the guardians store their secret keys in the cold

wallet and use that only for producing deterministic signatures.

1.2 Technical Overview
Let us first describe our community setting, in that there are 𝑁

parties 𝑃1, . . . , 𝑃𝑁 pairwise connected via secure and authenticated

channels. Also we assume a reliable public storage, e.g. a bulletin

board. We assume that each party 𝑃𝑖 holds a key sk𝑖 generated by

executing a key-generation algorithm (sk𝑖 , pk𝑖 ) ← KeyGen(1𝜆),

2
As elaborated by Buterin [8], guardians not knowing each other intuitively reduces

the possibility of collusion. In our community setting consisting of 𝑁 members, a key

owner can use any subset (say, of size 𝑛) of the members as her guardians. So there

are

(𝑁
𝑛

)
many such possibilities, which means guessing the set of guardians has a low

probability of success for adequately chosen 𝑛, for instance, 𝑛 = 𝑁 /2
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(a) Party 𝑃1’s key backup with 𝑃2, 𝑃3, and 𝑃4
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(b) Party 𝑃1’s key recovery with 𝑃2 and 𝑃3

Figure 1: Workflow of our social key recovery scheme (𝑛 = 4, 𝑡 = 1) where 𝐵 = {2, 3, 4} and 𝑅 = {2, 3}. We denote the shares
as {𝜎1, 𝑗 } 𝑗∈{2,3,4} and the public point as 𝜑1. Algorithm Recon reconstructs the secret sk1 using the public point 𝜑1 and shares
(𝜎1,2, 𝜎1,3) and matches it with pk

1
.

where 𝜆 is a security parameter.
3
The public keys are published

on the bulletin board in the beginning and serve as identities. For

simplicity we use integers 𝑖 ∈ [𝑁 ] to represent party 𝑃𝑖 ’s identity.

Also, fix a threshold 𝑡 (as a parameter) and assume that every party

uses exactly 𝑛 − 1 > 𝑡 (𝑛 < 𝑁 ) other parties as guardians – our pro-

tocol also works if each key-owner chooses a different 𝑛 satisfying

𝑛 − 1 > 𝑡 .

Now, when 𝑃𝑖 wishes to backup her secret key sk𝑖 (for which a

public key pk𝑖 is publicly known), she selects a set 𝐵 ⊆ [𝑁 ] \ {𝑖}
of 𝑛 − 1 guardians {𝑃 𝑗 } 𝑗∈𝐵 . As mentioned earlier, a simple (𝑡 + 1)-
out-of-𝑛 secret sharing using a 𝑡-degree polynomial would yield

to a share 𝜎𝑖, 𝑗 (for guardian 𝑃 𝑗 ), which is uncorrelated with 𝑃 𝑗 ’s

own secret key sk𝑗 . Our goal is to use sk𝑗 to derive 𝜎𝑖, 𝑗 for any

𝑖 instead. At first glance, this looks hard, because deriving each

𝜎𝑖, 𝑗 from independently sampled sk𝑗 ’s would lead to independent

shares 𝜎𝑖, 𝑗 ’s – in general this leads to a 𝑛-out-of-𝑛 (or additive)

secret sharing. However, here we use a technique recently used

by Baird et al. [3]. The idea is to first derive {𝜎𝑖, 𝑗 } 𝑗∈[𝑛−1] indepen-
dently (deterministically using corresponding sk𝑗 ), which together

with the key-owner’s secret sk𝑖 defines an (𝑛 − 1)-degree poly-

nomial. Nevertheless, making another (𝑛 − 𝑡 − 1) points on the

polynomial public reduces the “effective threshold” of the system to

(𝑡 + 1). These additional points would be derived via interpolation

by the key-owner 𝑃𝑖 herself, once she gets back all {𝜎𝑖, 𝑗 } 𝑗∈𝐵 , and
then those points will be made public.

4
A couple of issues still

3
For example, this can be a key generation algorithm of BLS signature, where pk = 𝑔sk

for a group generator 𝑔. Also we note that, our scheme works even if parties use

different KeyGen, as long as the key pair satisfies certain basic conditions, as described

in Section 6. For simplicity, in this paper, we consider that every party executes the

same KeyGen.
4
We observe that for each backup session a fresh set of (𝑛 − 𝑡 − 1) public points are
generated. Storing all of these on the blockchain would require spending substantial

remain: (i) a guardian 𝑃 𝑗 must ensure that 𝜎𝑖, 𝑗 does not leak any

information about sk𝑗 ; (ii) the (𝑛 − 𝑡 − 1) public points must be

computed on inputs that are different from any input corresponding

to 𝜎𝑖, 𝑗 . The first issue is fixed by using the following derivation

𝜎𝑖, 𝑗 := H(𝑖, sk𝑗 ) (alternatively 𝜎𝑖, 𝑗 := H(pk𝑖 , sk𝑗 )) – assuming H is

a random oracle this gives no information about sk𝑗 , as long as sk𝑗
is hard to compute given pk𝑖 (for example, the public key in BLS

signature [7] and ECDSA signature this is true due to the hardness

of computing discrete log). The second issue is resolved by using

negative evaluation points −1,−2, . . . ,−(𝑛 − 𝑡 − 1), akin to Baird et

al. [3]. The overall backup protocol can be summarized as follows:

• The key-owner 𝑃𝑖 chooses a set 𝐵 ⊆ [𝑁 ] \ {𝑖} and reaches

out to the guardians 𝑃 𝑗 for all 𝑗 ∈ 𝐵.
• Each guardian 𝑃 𝑗 , on receiving the request, computes𝜎𝑖, 𝑗 :=

H(𝑖, sk𝑗 ) and sends that back to 𝑃𝑖 .

• 𝑃𝑖 , on receiving {𝜎𝑖, 𝑗 } 𝑗∈𝐵 , computes a (𝑛 − 1)-degree poly-
nomial 𝑓𝑖 (over a field, where the secrets sk𝑖 lie) by setting:

𝑓𝑖 (0) = sk𝑖 and for all 𝑗 ∈ 𝐵: 𝑓𝑖 ( 𝑗) = 𝜎𝑖, 𝑗 . Then it evaluates

𝑓𝑖 (−1), 𝑓𝑖 (−2), . . . , 𝑓𝑖 (−(𝑛 − 𝑡 − 1)) and publishes them.

Given the above protocol, the recovery protocol works simply

by requiring the key-owner 𝑃𝑖 to interact with (𝑡 + 1) guardians
{𝑃 𝑗 } 𝑗∈𝑅 for 𝑅 ⊆ 𝐵 and |𝑅 | = 𝑡 + 1 as follows:

• 𝑃𝑖 reaches out to any (𝑡 + 1) guardians {𝑃 𝑗 } 𝑗∈𝑅 .
• Each guardian recomputes 𝜎𝑖, 𝑗 := H(𝑖, sk𝑗 ) and sends back.

• On receiving (𝑡 + 1) shares {𝜎𝑖, 𝑗 } 𝑗∈𝑅 , 𝑃𝑖 interpolates sk𝑖 :=
𝑓𝑖 (0) using 𝑛 distinct evaluation points combining these

(𝑡 + 1) evaluation points 𝑓𝑖 ( 𝑗) := 𝜎𝑖, 𝑗 and (𝑛 − 𝑡 − 1) public
evaluation points 𝑓𝑖 (−1), 𝑓𝑖 (−2), . . . , 𝑓𝑖 (−(𝑛− 𝑡 − 1)). In the

gas cost, which scales linearly with the number of backups. Instead, one may just put

a hash of the points, and store the point themselves off-chain.
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end it checks whether sk𝑖 is the correct key with respect to

public pk𝑖 .

Figure 1 provides a workflow of our scheme for the case where

𝑛 = 4 and 𝑡 = 1. Party 𝑃1 first creates a backup of key sk1 by

interacting with parties 𝑃2, 𝑃3, and 𝑃4, as illustrated in Figure 1a.

The public evaluation shares 𝜑1 are published on the bulletin board.

In the event of key loss, party 𝑃1 can interact with 𝑡 + 1 parties i.e.
𝑃2 and 𝑃3 in this example, and the public bulletin board to recover

the key, as shown in Figure 1b.

Let us remark a few important things about our protocols: first,

note that as long as adversary corrupts at most 𝑡 parties then it gets

𝑡 shares. Given (𝑛−𝑡−1) public points, the adversary knows at most

(𝑛 − 1) evaluation points, insufficient to recover any information

about sk𝑖 . Second, if 𝑃 𝑗 works as a guardian for different key owners
𝑖1, . . . , 𝑖𝑚 , all shares 𝜎𝑖1, 𝑗 = H(𝑖1, sk𝑗 ), . . . , 𝜎𝑖𝑚, 𝑗 = H(𝑖𝑚, sk𝑗 ) are
uncorrelated and independent as long as sk𝑗 is hidden, assuming H

is a random oracle. Thirdly, 𝜎𝑖, 𝑗 does not leak anything about sk𝑗
as long as sk𝑗 is hard to predict given pk𝑗 , due to random oracle

properties of H as well. Furthermore, here the guardians do not

need to know each other, as 𝐵 is never made public – as mentioned

in [8], this reduces the chance of collusion, as first they need to

figure out the set 𝐵. We note that, in our protocol, during recovery

a key-owner must remember the backup set 𝐵, as she needs to

reach out to a (𝑡 + 1) size subset of that set. This is relatively easy

information to remember, as also pointed out in [8], and plausibly

is necessary too.

Malicious security comes virtually for free. This is because, a

malicious key-owner can only hurt herself, and thus can not do

worse than a semi-honest key-owner. A malicious guardian may

send arbitrary computation at either the backup or recovery phase.

But that would still leave enough entropy to the secret. An incon-

sistent behavior, such as sending different values at the time of

backup and recovery would yield a faulty recovery of sk𝑖 . But since
this is checked against the public key pk𝑖 at the very last step of

the recovery protocol, the key-owner would be able to catch this

behavior and abort. However, the key-owner would not be able to

identify the cheater as our protocol does not support identifiable

abort – we leave that as an interesting open question for the future.

Our protocol can be proven secure against adaptive corruption,

where the adversary may corrupt parties at any time during the

execution. The main challenge to achieve this, with respect to a

simulation-based definition, such as ours, is the following scenario:

the simulator simulates an honest party 𝑃 𝑗 ’s response, say 𝜎𝑖, 𝑗 in a

backup protocol initiated by a corrupt key-owner 𝑃𝑖 , without its

secret key sk𝑗 , and then later 𝑃 𝑗 gets corrupted leaking the entire

secret state of 𝑃 𝑗 – at that point, the simulator (who now also obtains

sk𝑗 ) needs to ensure that the leaked secret state is consistent with

the prior responses. This is handled by programming the random

oracle to 𝜎𝑖, 𝑗 := H(𝑖, sk𝑗 ) adaptively. In another scenario, when

a key-owner 𝑃𝑖 gets adaptively corrupt, after a backup session,

then too such programming is needed. However, now the simulator

needs to ensure that the public points, published during the backup

session, are consistent with the secret key sk𝑖 . In this case, the

simulator just samples uniform random (and hence independent)

evaluations for public points. Since not more than 𝑡 corruptions

are allowed, even an unbounded adversary does not obtain more

than (𝑡 +1) points (it can obtain sk𝑖 from pk𝑖 by, for example, brute-

force). Once sk𝑖 is available, the honest party’s responses to the

prior backup session, available in the secret state of 𝑃𝑖 , needs to be

computed via interpolation (this is in contrast to the actual protocol,

where honest shares are computed independently, and public points

are interpolated). But, due to the properties of secret sharing, the

two procedure are identical, as long as up to 𝑡 parties are (adaptively)

corrupt. We formalize this secret sharing scheme as bottom up secret
sharing (see Section 5), and formalize this security requirement as

perfect adaptive simulation security. This formalization maybe of

independent interest.

1.3 A Domino Effect for variable thresholds
In this paper, we only consider a fixed 𝑡 for our design, though

our definition allows arbitrary access structures. We notice an

interesting feature for variable threshold access structure in our

protocol, which is akin to the so-called domino effect. Let us con-

sider an access structure where each party 𝑃𝑖 has threshold 𝑡𝑖 , and

𝑡𝑖+1 = (𝑡𝑖 +1). Now, if the adversary corrupts (𝑡1 +1) parties, then it

may obtain the secret key of 𝑃1 since in our protocol, given a secret

key, all corresponding shares can be computed deterministically.

So, now it has (𝑡1 + 2) = (𝑡2 + 1) secret keys. Again, it may well be

possible now that those (𝑡2 + 1) keys are sufficient to recover the

secret key of 𝑃2. Continuing like this one may end up recovering

all secrets just by corrupting 𝑡1 + 1 parties. However, in our defini-

tion, this does not show up because we do not allow corruption of

more than 𝑡1 parties. Also note that, if parties have more unknown

variables, such as passwords, or other hidden randomnesses, such

effects can be mitigated, at least partially. We leave further explo-

ration of variable threshold access structure as an interesting future

work.

1.4 Roadmap
We present the related works in the literature in Section 2. We

present the necessary preliminaries in Section 3. We formally de-

fine Social Key recovery in Section 4. Then we define and con-

struct BUSS in Section 5. Using BUSS we construct our Social Key

Recovery protocol in Section. 6. We also implement our scheme.

We benchmark in both regional and geo-distributed settings and

present evaluations in Section 7. Finally, we briefly describe a num-

ber of extensions in Section 8.

2 RELATEDWORK
Smart-contract based Social Recovery [8, 20]. In [8] Buterin refers

to a social key recovery protocol, that is operated via a smart con-

tract, which is executed when a recovery is initiated by the key-

owner, the guardians sign a special transaction that recovers the

fund. However, this is a non-cryptographic solution, and the orig-

inal secret key is not recovered. In contrast, our solution enables

the key-owner to recover the original secret-key, which may be

used for any desired purpose, subsequently. So, from that perspec-

tive, our solution is more general and uses cryptography instead of

relying on the smart-contract’s capability. The only functionality

we need from the blockchain is to support an immutable bulletin

board that would store the public points, or their hashes, reliably.

A similar solution was proposed in [20], which additionally uses
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encryption of shares where the decryption key is further split into

shares. Nevertheless, this also enables recovering funds instead of

secret keys. Also, both of these solutions suffer from scalability

issues in our community setting where the same guardian is used

by many key-owners.

There are other key-recovery / account recovery designs that

consider mainly a client-server setting, in that servers are typically

assumed to store secret information per user, can do much heavier

computation than the clients, and also are available during recovery.

Those solutions are not directly compatible in our social recovery

setting in a community but may offer new technical insights for

future adaptation. We discuss a few of them below.

CoinbaseWaaS: Key-recovery usingMPC [17]. Recently in awhitepa-
per [17], Lindell describes a key recovery solution for Coinbase’s

wallets-as-a-service orWaaS. The whitepaper describes two designs

for key-recovery using interactive protocols without formalization.

In the first design, the secret key is encrypted
5
, then uploaded in the

cloud and the decryption key is stored in a secure enclave. Together,

the ciphertext and decryption key are sufficient to recover the wal-

let key. In their second design, the decryption key is split into two

additive shares, one held by the wallet-owner (i.e. key-owner) in the

cloud and one held by Coinbase server – as stated in the whitepa-

per, this design is easier to use and has more resilience against loss

because the user does not need to store any information on their

local device. Nevertheless, the designs are not really compatible

with the social recovery paradigm, because they fundamentally rely

on existence (and availability) of a reliable server maintained by

Coinbase, that receives and stores back-up information from each

user and participates in signing every transaction from the user.

Compared to that, our design relies on a community with an access

structure, that can be any (𝑡 + 1) of the whole set of guardians.

Furthermore, the guardians are not relied upon to store backup

information, such as ciphertexts or random shares, from the user –

they only store their own secret keys. Moreover, they only need to

interact with the user during back-up and recovery – so the internal

secret storage of a guardian does not increase with the number of

supported backups.

Account Recovery for a Privacy-Preserving Web Service [18]. Ac-
count recovery with a server has been considered in a privacy-

preserving setting, where the account information, such as user

names, passwords, or even the security questions must be hidden

from the server. This solution uses cryptographic techniques such

as oblivious PRFs along with rate limiters to ensure privacy but

relies on the user remembering the information such as passwords,

security questions, etc, and relies on external servers.

There are many more key / account recovery approaches, e.g.

off-chain backup using 2FA [2], pre-signed transactions [25] which

are applicable in settings that are even more different from ours.

For a comprehensive study we refer to the SoK [10]. There are

protocols [2] that rely on cloud services and allows the user to

backup-recover their keys via 2-factor authentication methods. In

the BitGo recovery scheme [5] the user generates a backup key and

main wallet key. The user needs to store a “keycard” that contains

an encrypted version of the main and backup key. To recover funds

5
In more detail, the wallet key is split into two shares, and both shares are encrypted.

the user produces the keycard combined with a user passphrase and

other personal inputs to build a transaction that sends the account

funds to a new address. There are other [6] recovery schemes that

allow funds recovery. The schemes of Sequence [22] and Torus [28]

also generate multiple keys during the account creation. These keys

are used to recover the account upon loss of the main signing key.

Zengo [30] creates secret shares of the wallet key and stores one

share on the user’s device and the other share is stored securely

(encrypted under the Zengo public key) with the Zengo servers.

To execute a transaction, both secret shares are used to sign. To

recover the key, the user needs to authenticate itself via biometrics

and then recover the key using the two shares.

Login using Web2 methods: Mysten Lab’s ZKLogin [24], Aptos
KeyLess [1]. In these two very similar designs, the high-level idea is

to use Web2 authentication methods to enable Web3 authentication.

The biggest benefit of these approaches is that the user can just be a

nativeWeb2 user, without ever requiring to manage any key. So, the

need for any wallet is totally dispensed with. While we recognize

that these approaches would indeed be greatly useful to bring more

Web2 user onboard to Web3 ecosystems, they still rely on servers

controlled by large-scale corporations such as Google and hence is

not really compatible with the decentralization paradigm of Web3.

So, any social recovery approach, including our approach may be

viewed as a complementary solution for a community where users

are already native to the Web3 ecosystem.

Adept Secret Sharing [4]. Bellare, Dai and Rogaway proposed the

notion of adept secret sharing in [4]. In addition to the standard

guarantee such as privacy, adept secret sharing offers new proper-

ties such as authenticity and error correction. Their authenticity

notion guarantees that a party can verify whether a reconstructed

secret is correct or not. This is achieved by storing a commitment of

the secret in a reliable public storage ahead of time, and then check

with that after reconstruction. Looking ahead, our social recovery

scheme achieves malicious security in a similar way by checking

with the public key which is essentially a commitment of the se-

cret key, though we do not include this property in our notion of

bottom-up secret sharing. Moreover, their construction uses a PRF

to generate the coefficients of the secret polynomials, whereas our

construction (Section 5.1) uses a hash function to define the evalu-

ation points of the secret polynomial. Nevertheless, despite some

technical similarities, they did not consider a bottom-up approach.

3 NOTATION AND PRELIMINARIES
Notations. We use N to denote a set of positive integers, and [𝑛]

to denote the set {1, . . . , 𝑛} for any 𝑛 ∈ N. We denote the security

parameter by 𝜆 ∈ N. A set 𝑋 = {𝑥1, . . . , 𝑥𝑛} is denoted as 𝑥 [𝑛] or
{𝑥𝑖 }𝑖∈[𝑛] . For any subset 𝑆 ⊂ [𝑛], 𝑥𝑆 or {𝑥𝑖 }𝑖∈𝑆 denotes the subset

of 𝑋 containing all 𝑥𝑖 ’s such that 𝑖 ∈ 𝑆 . A ordered tuple (𝑥1, . . . , 𝑥𝑛)
is denoted by vector notation ®𝑥 [𝑛] or (𝑥𝑖 )𝑖∈[𝑛] . Similarly for any

subset 𝑆 of [𝑛], ®𝑥𝑆 and (𝑥𝑖 )𝑖∈𝑆 are defined.

Every algorithm takes 𝜆 as an input, even if not always men-

tioned explicitly; all definitions work for sufficiently large choice of

𝜆. We use negl to denote a negligible function, which is defined to be
a function 𝑓 : N→ R, such that for every polynomial 𝑝 , there exists

an 𝑛 ∈ N such that for all 𝜆 > 𝑛, it holds that 𝑓 (𝜆) < 1/𝑝 (𝜆). We
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use 𝑦 := 𝐷 (𝑥) to denote a deterministic computation and 𝑦 := 𝑥 for

assignment. Randomized computations are denoted as 𝑦 ← 𝑅(𝑥).
The symbol ⊥ denotes undefined value, or invalidity.

We model computationally bounded adversaries by probabilistic

polynomial time (PPT) algorithms. We also consider our adversaries

to be interactive algorithms A, which can be rigorously modeled

as interactive Turing machines. An algorithmA with oracle access

to an oracle O is denoted as AO(·) . We say a particular problem

is computationally hard to imply that for any PPT adversary, the

probability of solving a random instance of that problem is bounded

by negl(𝜆).

Adversarial Model. We consider adaptive and malicious PPT ad-

versaries. By malicious we mean that the adversary can behave

arbitrarily in the protocol. Looking ahead, security against mali-

cious adversary basically comes for free, as a malicious adversary,

at best, can invoke an abort. Adaptive adversaries can corrupt par-

ties at any time during the execution – this model of corruption is

much more realistic than a weaker static adversarial model, where

the corrupted set of parties does not change since the start of the

execution. Handling adaptive security in our protocol is more chal-

lenging. We also assume there is no erasure, so any party’s secret

state can only be appended, but not deleted – in this setting adap-

tive corruptions are particularly difficult to analyze, because in a

simulation any honest party’s secret state at any point must be

“explained” consistently with respect to prior messages, if that party

gets corrupted at a later point during the execution. Note that the

“no erasure” assumption does not contradict the essence or utility

of a key recovery protocol, because recovery takes place rather

infrequently, typically for accidental deletion / loss of the secret

key.

4 DEFINITION
In this section we present our formal definitions. Note that, the so-

cial recovery scheme defined below does not require the guardians

to remember any secret back-up information other than their own a

priori generated sk using KeyGen. It suffices for the back-up proce-

dure Π
Back

to produce only public back-up information pub. Also,
we define the scheme for a setting when there is a single KeyGen.
But it is straightforward to extend to a setting with multiple party-

specific key-generation procedures.

Definition 4.1 (Social Key Recovery Scheme (SKR)). Consider 𝑁

parties 𝑃1, . . . , 𝑃𝑁 , and define an access structure 𝔄 which consists

of pair of sets (𝐵, 𝑅) such that 𝐵 ⊆ [𝑁 ] and 𝑅 ⊆ 𝐵. We assume with-

out loss of generality that each party 𝑃𝑖 has an established public

identity-𝑖 .6 Let KeyGen be a key generation algorithm, which pro-

duces a pair of keys (sk, pk) ← KeyGen(1𝜆). Then a social recovery
scheme ΠSKR between 𝑁 parties 𝑃1, . . . , 𝑃𝑁 for KeyGen and access

structure 𝔄 consists of a triple of protocols (ΠInit,ΠBack
,ΠRec) ex-

ecuted among a subset of the parties in the following order: first

ΠInit is executed by all parties; then each party may initiate an

instance of Π
Back

once with a subset of parties in 𝐵 ⊆ [𝑁 ]; finally
once 𝑃𝑖 has finished executing ΠBack

, it can initiate ΠRec arbitrarily

many times. The protocols have the following syntax:

6
For example the generated public key can serve as an identity. Without loss of

generality we denote the identity of 𝑃𝑖 simply by an integer-𝑖 .

• ΠInit. In this protocol, a party 𝑃𝑖 locally generates a key

pair (sk𝑖 , pk𝑖 ) either computing (sk𝑖 , pk𝑖 ) ← KeyGen(1𝜆)
or using another algorithm, specified by the protocol.

7
Each

party 𝑃𝑖 publishes pk𝑖 . An execution is denoted by:

( ®pk[𝑁 ] , ®sk[𝑁 ] ) ← ΠInit (1𝜆, 1𝑁 )
Once this is completed, the below protocols may be exe-

cuted by each party 𝑃𝑖 with the same public input
®pk[𝑁 ] .

• Π
Back

: In this protocol, a key owner 𝑃𝑖 who wishes to back

up her secret key sk𝑖 interacts with a set of guardians

{𝑃 𝑗 } 𝑗∈𝐵 . Each guardian 𝑃 𝑗 uses secret key sk𝑗 . The proto-
col concludes with a public back-up string pub𝑖 . We denote

such execution by:

pub𝑖 ← Π
Back
(𝑖, 𝐵, ®pk𝐵, ®sk𝐵∪{𝑖 } )

• ΠRec: If 𝑃𝑖 wishes to recover sk𝑖 using a recovery set 𝑅, she

runs this protocol without any secret input with a set of

guardians {𝑃 𝑗 } 𝑗∈𝑅 , each of which uses their secret key sk𝑗 .
In addition, pub𝑖 may be used by all parties. At the end of

this protocol, the key-owner may receive a private output

sk𝑖 (or ⊥ if unsuccessful). One such execution is denoted

as:

sk𝑖/⊥ ← ΠRec (𝑖, 𝑅, ®pk𝑅, pub𝑖 , ®sk𝑅)
Correctness. For correctness we require that for any sufficiently large

𝜆, any 𝑖 ∈ [𝑁 ], any (𝐵, 𝑅) ∈ 𝔄:

Pr

[
sk𝑖 ← ΠRec (𝑖, 𝑅, ®pk𝑅 , pub𝑖 , ®sk𝑅 )

����� ( ®pk[𝑁 ] , ®sk[𝑁 ] ) ← ΠInit (1𝜆, 1𝑁 ) ;

pub𝑖 ← Π
Back
(𝑖, 𝐵, ®pk𝐵 , ®sk𝐵∪{𝑖} )

]
= 1

Security. For the security ofΠSKR for a givenKeyGen and𝔄, we need

that for any sufficiently large 𝜆 ∈ N there exists a PPT simulator S
in the ideal world, such that for any 𝑁 and any PPT adversary A
we have that:

RealA (1𝜆, 1𝑁 ,𝔄,KeyGen,ΠSKR) ≈𝐶

IdealS,A (1𝜆, 1𝑁 ,𝔄,KeyGen,ΠSKR).
The experiments are described below, where we denote the set of

corrupted parties at any point as 𝐶 and the set of honest parties as

𝐻 = [𝑁 ] \𝐶 . At any point, the adaptive adversary may corrupt an

honest party and then gets full control of that party and its secret

state.

RealA (1𝜆, 1𝑁 ,𝔄,KeyGen,ΠSKR):

• Initialize 𝐶 := ∅ and a list 𝐿 := ∅.
• Run ( ®pk[𝑁 ] , ®sk[𝑁 ] ) ← ΠInit (1𝜆, 1𝑁 ) and give ®pk[𝑁 ] to the

adversarywith oracle access:AOCor ( ·),OBack ( ·),ORec ( ·),ORO ( ·) .
• When A returns an output OutA , output (OutA ,OutH)

whereOutH is the output of all honest parties. Each honest

party’s output is undefined, until that party initiates ΠRec.

If that execution succeeds then the output is defined to be

the recovered secret key, sk𝑖 , otherwise it is defined to be

⊥. If no such session is ever initiated, then the output stays

undefined at the end.

7
It is also possible that a party sets either or both of the keys to ⊥. In our protocol,

however, we consider each party executes a standardKeyGen, e.g. for specific signature
schemes.
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IdealA,A (1𝜆, 1𝑁 ,𝔄,KeyGen,ΠSKR):

• Initialize 𝐶 := ∅ and a list 𝐿 := ∅.
• Run ( ®pk[𝑁 ] , ®sk[𝑁 ] ) ← ΠInit (1𝜆, 1𝑁 ) and give ®pk[𝑁 ] to the

adversarywith oracle access:ASCor ( ·),SBack ( ·),SRec ( ·),SRO ( ·) .
• When A returns an output OutA , output (OutA ,OutH)

and stop, where OutH is defined below within SRec.
Here ORO is a random oracle and SRO is the random oracle sim-

ulated by the simulator. The rest of the oracles are defined below,

where we highlight the part where it differs in case of simulator by

blue.

OCor (𝐶′)/SCor (𝐶′):

• Update 𝐶 := 𝐶 ∪𝐶′. Run CorCheck𝔄 (𝐿,𝐶), if it returns 1,
then abort.

• If not, then for each 𝑖 ∈ 𝐶′, give the secret state of party
𝑃𝑖 to A. For SCor, instead give

®sk𝐶′ to S, who sends a

simulated secret state to A.

OBack (𝑖, 𝐵)/SBack (𝑖, 𝐵):

• If there is an entry (𝑖, ∗, ∗) ∈ 𝐿, then skip.

• Else run pub← Π
Back
(𝑖, 𝐵, ®pk𝐵, ®sk𝐵∪{𝑖 } ) using the honest

parties 𝑃𝐻 and allowing A to control the corrupt parties

𝑃𝐶 . For SBack, let S control the honest parties without
®sk𝐻

– A still controls the corrupt parties.

• Then store (𝑖, 𝐵, pub) into 𝐿.
• Run CorCheck𝔄 (𝐿,𝐶), if it returns 1, then abort.

ORec (𝑖, 𝑅)/SRec (𝑖, 𝑅):

• If there is no entry (𝑖, ∗, ∗) in 𝐿, then skip.

• Else retrieve (𝑖, 𝐵, pub) from𝐿 and runΠRec (𝑖, 𝑅, ®pk𝑅, pub, ®sk𝑅)
using the honest parties 𝑃𝐻 and allowing A to control the

corrupt parties 𝑃𝐶 . For SRec, let S control the honest par-

ties without
®sk𝐻 –A still controls the corrupt parties. Also,

the honest party’s output vector OutH is defined within

SRec.
The following predicate CorCheck𝔄 checks whether it is pos-

sible for the adversary to recover an honest party’s key trivially

through corrupting more than what is allowed.

CorCheck𝔄 (𝐿,𝐶):

• If there exists an (𝑖, 𝐵, pub) ∈ 𝐿 and 𝑅 ⊆ 𝐶 for which 𝑖 ∈ 𝐻
and (𝐵, 𝑅) ∈ 𝔄 then return 1. Otherwise, return 0.

Remark 4.1. Here for simplicity we assume that the backup protocol
is executed only once by each party. In reality it can be executed
multiple times. Our definition can be extended to that easily. Looking
ahead, our construction (given in Section 6), would need some simple
changes to make it work in that setting. In particular, a unique session
id, which, in combination with the party id, should be used in place
of only party id.

Remark 4.2. We stress that our protocol captures security with abort,
in that a malicious adversary (in our case, can also be adaptive) can
define the honest party’s output to be abort. This is captured formally
by our definition by including all honest party’s outputs in the variable
OutH . At the beginning each honest party’s output stays undefined.
For every honest party-𝑖 , that initiates a recovery protocol ΠRec, if a
recovery succeeds, then a correct output, namely sk𝑖 is included into

OutH . If the recovery fails, then the output is defined to be ⊥. The
simulated oracle SRec handles this case in the proof.

5 BOTTOM-UP SECRET SHARING
Consider a set of 𝑁 parties 𝑃1, . . . , 𝑃𝑁 , where each party 𝑃𝑖 has an

established identity denoted simply by 𝑖 ∈ [𝑁 ]. We formalize a

secret-sharing scheme for a (𝑡 + 1)-out-of-(𝑛 − 1) access structure,
(first used in [3] to construct multiverse threshold signatures, albeit

without any formalization), that allows each party to choose their

shares independently of the other parties’ shares and even of the

secret.

Definition 5.1 (Bottom-Up Secret Sharing (BUSS)). For 𝑛, 𝑡, 𝑁 ∈ N
such that 𝑡 + 1 ≤ 𝑛 − 1 < 𝑁 , a bottom-up secret sharing scheme for

a (𝑡 + 1)-out-of-(𝑛 − 1) threshold access structure over the set [𝑁 ]
consists of algorithms with the following syntax:

• Share(𝑠, ®𝜎𝐵, 𝐵): Takes as input a secret 𝑠 , (𝑛 − 1) shares ®𝜎𝐵 ,
and the corresponding set of indices 𝐵 ⊆ [𝑁 ] \ {𝑖} such
that |𝐵 | = 𝑛 − 1. Then Share outputs a public value 𝜑 .

• Recon(𝜑, ®𝜎𝑅, 𝑅): Takes as input the public value 𝜑 , (𝑡 + 1)
shares ®𝜎𝑅 , and the corresponding set of indices 𝑅 ⊆ [𝑁 ]
such that |𝑅 | = 𝑡 + 1. Then Recon outputs a secret 𝑠 or

outputs ⊥ if the procedure fails.

Furthermore, the BUSS scheme satisfies the following notions of

correctness and perfect adaptive simulation security.

Correctness. For any secret 𝑠 , any sets 𝑅, 𝐵 such that 𝑅 ⊆ 𝐵 ⊂
[𝑁 ], |𝑅 | = (𝑡 + 1), |𝐵 | = (𝑛 − 1), and any ®𝜎𝐵 :

Pr

[
𝑠 ← Recon(𝜑, ®𝜎𝑅, 𝑅)

�� 𝜑 ← Share(𝑠, ®𝜎𝐵, 𝐵)
]
= 1

Perfect Adaptive Simulation Security. For any unbounded adversary

A, there exists a pair of algorithms (SimShare, SimComb) such
that the following two distributions are identical.

• RealShA :

– Receive (𝑠, ®𝜎𝐶 ,𝐶, 𝐵) from A, such that 𝐶 ⊆ 𝐵, |𝐶 | ≤ 𝑡 ,

and |𝐵 | = (𝑛 − 1).
– Sample ®𝜎𝐵\𝐶 uniformly at random.

– Run 𝜑 ← Share(𝑠, ®𝜎𝐵, 𝐵), and give 𝜑 to A.

– When A queries (Share,𝐶′) for 𝐶′ ⊆ 𝐵 \ 𝐶 , update
𝐶 := 𝐶 ∪𝐶′. If |𝐶 | > 𝑡 , then abort. If not, then give ®𝜎𝐶′
to A.

– Finally give ®𝜎𝐵\𝐶 .
– Output whatever A returns.

• IdealShA :

– Receive (𝑠, ®𝜎𝐶 ,𝐶, 𝐵) from A, such that 𝐶 ⊆ 𝐵, |𝐶 | ≤ 𝑡 ,

and |𝐵 | = (𝑛 − 1).
– Run 𝜑, ®𝜏 ← SimShare(𝐶) and give 𝜑 to A.

– When A queries (Share,𝐶′) for 𝐶′ ⊆ 𝐵 \ 𝐶 , update
𝐶 := 𝐶 ∪𝐶′ and ®𝜎𝐶′ = ®𝜏𝐶′ . If |𝐶 | > 𝑡 , then abort. If not,

then give ®𝜎𝐶′ to A.

– Finally compute ®𝜎𝐵\𝐶 ← SimComb(𝑠, 𝐵,𝐶, ®𝜎𝐶 , 𝜑) and
give ®𝜎𝐵\𝐶 to A.

– Output whatever A returns.

The notion of perfect adaptive simulation security says morally that

the real-world 𝜑 does not reveal any information about 𝑠 or any

party’s shares to the adversary. Note that in IdealShA , SimShare
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computes the public value 𝜑 given only 𝐶 as input, so 𝜑 does not

depend on 𝑠 or on any party’s shares.

Furthermore, we allow the adversary to adaptively corrupt par-

ties by making queries of the form (Share,𝐶′). On such a query,

the adversary learns the shares ®𝜎𝐶′ as long as the total number of

parties that they’ve corrupted remains ≤ 𝑡 .

5.1 Constructing BUSS
We construct a simple BUSS scheme for a (𝑡 + 1)-out-of-(𝑛 − 1)
threshold access structure over a finite field F as follows:

• Share(𝑠, ®𝜎𝐵, 𝐵):
Define a polynomial 𝑓 over F of degree (𝑛 − 1) such that

𝑓 (0) := 𝑠 and for all 𝑗 ∈ 𝐵: 𝑓 ( 𝑗) := 𝜎 𝑗 . Then output 𝜑 :=(
𝑓 (−1), . . . , 𝑓

(
− (𝑛 − 𝑡 − 1)

) )
.

• Recon(𝜑, ®𝜎𝑅, 𝑅):
Parse𝜑 as

(
𝑓 (−1), . . . , 𝑓

(
− (𝑛 − 𝑡 − 1)

) )
. Concatenate these

(𝑛 − 𝑡 − 1) points with the following |𝑅 | = 𝑡 + 1 points:

{𝑓 ( 𝑗) := 𝜎 𝑗 } 𝑗∈𝑅 . Then use Lagrange interpolation to com-

pute the unique polynomial 𝑓 of degree 𝑛 − 1 that passes
through those 𝑛 points. Finally output 𝑠 := 𝑓 (0).

Theorem 5.1 (BUSS Construction). The above construction is a
bottom-up secret sharing scheme according to Definition 5.1.

Proof. We show correctness and perfect adaptive simulation

security separately.

Correctness:The polynomial 𝑓 that is computed by Share(𝑠, ®𝜎𝐵, 𝐵)
has degree (𝑛 − 1), so it is uniquely determined by any 𝑛 points

on the polynomial. Next, Recon knows the value of 𝑓 (𝑥) for every
𝑥 ∈ {−1, . . . ,−(𝑛 − 𝑡 − 1)} ∪ 𝑅. This constitutes 𝑛 points on the

polynomial because |𝑅 | = 𝑡 + 1. Then Recon will reconstruct the

polynomial 𝑓 that was computed by Share, and it will compute the

correct value 𝑠 = 𝑓 (0).
Perfect Adaptive Simulation Security: Let us first construct

SimShare(𝐶) and SimComb(𝑠, 𝐵,𝐶, ®𝜎𝐶 , 𝜑) as follows:

• SimShare(𝐶): Sample 𝜑
$← F𝑛−𝑡−1 and ®𝜏 $← F𝑛−1, and

output (𝜑, ®𝜏).
• SimComb(𝑠, 𝐵,𝐶, ®𝜎𝐶 , 𝜑):

(1) Partition 𝐻 = 𝐵 \𝐶 into two disjoint sets 𝐻 ′ and 𝐻 ′′

such that |𝐻 ′ | = 𝑡 − |𝐶 |. 8

(2) Sample ®𝜎𝐻 ′
$← F𝑡−|𝐶 | .

(3) Use (𝑠, ®𝜎𝐶 , ®𝜎𝐻 ′ , 𝜑) to define 𝑛 points:

(0, 𝑠 ), ( 𝑗, 𝜎 𝑗 ) 𝑗 ∈𝐶∪𝐻 ′ , (−1, 𝜑1 ), . . . , (−(𝑛 − 𝑡 − 1), 𝜑𝑛−𝑡−1 )

Interpolate the unique polynomial 𝑓 of degree 𝑛 − 1
that passes through these points.

(4) For each 𝑗 ∈ 𝐻 ′′, compute 𝜎 𝑗 = 𝑓 ( 𝑗). Then output

®𝜎𝐻 = ®𝜎𝐻 ′ ∪ ®𝜎𝐻 ′′ .
Now, we prove the following claim.

Claim 5.1. The outputs of RealShA and IdealShA are identically
distributed.

Proof. Let𝐶0 be the value of𝐶 at the start of the game (RealShA
or IdealShA ), and let 𝐶1 be the value of 𝐶 at the end, after the ad-

versary’s Share queries. Let us partition 𝐵\𝐶1 into𝐻
′
and𝐻 ′′ such

8
This is possible because |𝐶 | ≤ 𝑡 and 𝑡 + 1 ≤ |𝐵 | . Then |𝐶 ∪𝐻 ′ | = 𝑡 .

that |𝐻 ′ | = 𝑡 − |𝐶1 |. This is possible assuming that |𝐶1 | ≤ 𝑡 . Note

that 𝐵 can be partitioned into (𝐶0,𝐶1\𝐶0, 𝐻
′, 𝐻 ′′).

The variables (𝑠, ®𝜎𝐶1
, ®𝜎𝐻 ′ , 𝜑) together define 𝑛 points on the

polynomial 𝑓 . Since 𝑓 has degree (𝑛 − 1), these 𝑛 points uniquely

determine 𝑓 . Then for any (𝑠, ®𝜎𝐶1
, ®𝜎𝐻 ′ ) and 𝜑 , there is a unique

®𝜎𝐻 ′′ such that 𝜑 = Share(𝑠, ( ®𝜎𝐶1
∪ ®𝜎𝐻 ′ ∪ ®𝜎𝐻 ′′ ), 𝐵).

Furthermore, (𝑠, ®𝜎𝐶1
, ®𝜎𝐻 ′ , ®𝜎𝐻 ′′ ) also define 𝑛 points on 𝑓 . So

for any (𝑠, ®𝜎𝐶1
, ®𝜎𝐻 ′ ) and ®𝜎𝐻 ′′ , there is a unique 𝜑 such that 𝜑 =

Share(𝑠, ( ®𝜎𝐶1
∪ ®𝜎𝐻 ′ ∪ ®𝜎𝐻 ′′ ), 𝐵).

In RealShA , ®𝜎𝐵\𝐶0
is sampled uniformly at random. Then 𝜑 is

uniformly random due to the randomness of ®𝜎𝐻 ′′ which is hidden

from the adversary. Furthermore, on each query (Share,𝐶′), A
receives freshly random shares ®𝜎𝐶′ that are independent of their
view so far, or they receive ⊥. Finally, A receives ®𝜎𝐻 ′ , which is

uniformly random and independent of A’s view so far, and ®𝜎𝐻 ′′ ,
which is the unique value for which 𝜑 = Share(𝑠, ( ®𝜎𝐶1

∪ ®𝜎𝐻 ′ ∪
®𝜎𝐻 ′′ ), 𝐵).

In IdealShA , 𝜑 is sampled uniformly at random by SimShare.
Then on each query (Share,𝐶′), A receives ®𝜎𝐶′ = ®𝜏𝐶′ , which was

sampled (as candidate future corruption shares) independently of

the adversary’s view so far, by SimShare. Finally, SimComb samples

®𝜎𝐻 ′ uniformly at random and chooses ®𝜎𝐻 ′′ to be the unique value

for which 𝜑 = Share(𝑠, ( ®𝜎𝐶1
∪ ®𝜎𝐻 ′ ∪ ®𝜎𝐻 ′′ ), 𝐵).

This shows that the distribution of the values provided to A is

the same in RealShA and IdealShA . Then A’s final output will be

identically distributed in both hybrids. □

This concludes the proof of the theorem. □

6 OUR SOCIAL KEY RECOVERY SCHEME
Key Generation. We consider a KeyGen algorithm which gener-

ates a key-pair (sk, pk). KeyGen has the following requirements.

(1) We assume that for every pk there exists a unique sk such

that (pk, sk) are a valid output of KeyGen.
(2) One can efficiently verify whether a given (pk, sk) are a

valid output of KeyGen.
(3) It is hard to guess sk given pk. More formally, we say that

for any PPT adversary A,

Pr

[
A(1𝜆, pk) = sk : (sk, pk) ← KeyGen(1𝜆)

]
≤ negl(𝜆)

Let this hardness assumption be known as PKeyGen.
For example, one may consider keys of the form (pk = 𝑔sk) for

a cyclic group generated by 𝑔 where discrete log is hard – this

is a widely in many schemes, including BLS signatures, Schnorr

signatures, El-Gamal encryptions etc. It is easy to check that this

type of key generation does satisfy all of the above requirements.

We describe our main construction Πcmnty to socially recover

keys for any KeyGen satisfying the above conditions in a com-

munity of 𝑁 parties 𝑃1, . . . , 𝑃𝑁 for a (𝑡 + 1)-out-of-𝑛 threshold

access structure for any 𝑡 < 𝑛 ≤ 𝑁 .
9
We assume a hash func-

tion H : F→ F, modeled as a random oracle. The construction is

provided in Figure 2.

9
We note that the backup set of our access structure is of size (𝑛 − 1) , whereas the
recovery set is of size (𝑡 + 1) . However, we call this access structure (𝑡 + 1)-out-of-𝑛,
as opposed to (𝑡 + 1)-out-of-(𝑛 − 1) because also accounting for the secret, the total

number of secret/share in the system is 𝑛.
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– ΠInit (1𝜆, 1𝑁 ): Each party 𝑃𝑖 :

• Runs (sk𝑖 , pk𝑖 ) ← KeyGen(1𝜆).
• Publishes pk𝑖 and store sk𝑖 .

– Π
Back
(𝑖, 𝐵, ®pk𝐵, ®sk𝑅∪{𝑖 } ) : A party 𝑃𝑖 runs this protocol as a

key-owner with a set of (𝑛 − 1) guardians {𝑃 𝑗 } 𝑗∈𝐵 as follows:

• On request from 𝑃𝑖 each guardian 𝑃 𝑗 computes 𝜎𝑖, 𝑗 :=

H(𝑖, sk𝑗 ) and send that to 𝑃𝑖 .

• The key-owner, on receiving (𝜎𝑖, 𝑗 ) 𝑗∈𝐵 , define 𝑠 := sk𝑖
and compute 𝜑 ← Share(𝑠, (𝜎𝑖, 𝑗 ) 𝑗∈𝐵, 𝐵) and publish

pub := 𝜑 .

– ΠRec (𝑖, 𝑅, ®pk[𝑁 ] , pub, ®sk𝑅): A party 𝑃𝑖 runs this protocol as

a key-owner with a set of (𝑡 +1) guardians {𝑃 𝑗 } 𝑗∈𝑅 as follows:

• On request from 𝑃𝑖 each guardian 𝑃 𝑗 computes 𝜎𝑖, 𝑗 :=

H(𝑖, sk𝑗 ) and sends that to 𝑃𝑖 .

• The key-owner, on receiving (𝜎𝑖, 𝑗 ) 𝑗∈𝑅 , retrieve 𝜑 :=

pub and compute 𝑠 ← Recon(𝜑, (𝜎𝑖, 𝑗 ) 𝑗∈𝑅, 𝑅).
• Then 𝑃𝑖 checks whether (𝑠𝑖 , pk𝑖 ) is a valid key-pair.

If yes then privately output sk𝑖 := 𝑠𝑖 , else output ⊥.

Figure 2: The SKR protocol Πcmnty

Remark 6.1. As mentioned earlier, instead of 𝑖 we could also use
pk𝑖 , and compute 𝜎𝑖, 𝑗 := H(pk𝑖 , sk𝑗 ) instead. This does not change
anything. Also, recall that if multiple back session is executed by the
same key-owner, we need a unique session id sid, which would be used
to derive 𝜎𝑖, 𝑗 := H(sid, pk𝑖 , sk𝑗 ) – this would ensure that the shares
derived in different sessions by the same guardian are uncorrelated
(as long as sk𝑗 is hidden).

Remark 6.2. Note that, for the protocol to work, the public values
pub just needs to be stored reliably, such that, they can be accessed
unaltered whenever needed. We may use immutable bulletin boards
to implement that, though it does not need to be accessed by all
parties, but only the key-owner during recovery. Therefore, just a
reliable storage accessible by the owner may suffice. However, in case
of permanent disappearance, e.g. demise of the owner, it is important
that the public value can be accessed by non-owners to recover the
secret, otherwise the secret will be permanently lost – even if all (𝑛−1)
guardians come together they can not recover the secret, as the secret
polynomial in the BUSS scheme has degree (𝑛 − 1).

Now we analyze our protocol formally. The access structure

𝔗𝑛,(𝑡+1) for which the scheme is secure contains all (𝐵, 𝑅) for which
|𝑅 | = (𝑡 + 1), |𝐵 | = (𝑛 − 1) and 𝑅 ⊆ 𝐵. It immediately extends to 𝐵

of arbitrary size, as long as it is a superset of 𝑅 – we stick to equal

sized 𝐵 for simplicity of exposition.

Theorem 6.1. Let KeyGen be a standard key-generation algorithm
for which PKeyGen holds. Then the protocol Πcmnty among a commu-
nity of𝑁 parties 𝑃1, . . . , 𝑃𝑁 is a secure social key recovery scheme – as
per Definition 4 – for access structure 𝔗𝑛,(𝑡+1) for any 𝑡 + 1 < 𝑛 ≤ 𝑁

against all polynomial-time malicious adaptive adversaries that cor-
rupt ≤ 𝑡 parties.

Proof. To prove the theorem we need to show that for any

adaptive and malicious adversary A, there exists a simulator S

such that the adversary’s interactions with the oracles in the real

world are indistinguishable from its interactions with the simulated

oracles in the ideal world.

We construct the simulator as follows:

The simulator S.
• Secret states:

– The simulator maintains a set 𝑈 which contains ele-

ments of the form (𝑖, sk𝑖 , 𝐵, ®𝜎𝐵, pub𝑖 ) which is essential
part of the secret state of a key owner 𝑃𝑖 from an exe-

cution of backup protocol Π
Back

with the adversary if,

at the time of execution 𝑃𝑖 was an honest party. There

can be partial entries such as (𝑖,⊥, 𝐵, ®𝜎𝐶∩𝐵, pub𝑖 ) . If
𝑃𝑖 gets corrupted at some point, the partial entry is

updated to a complete entry (𝑖, sk𝑖 , 𝐵, ®𝜎𝐵, pub𝑖 ), and is
given to the adversary as part of a secret state. Note

that, if 𝑃𝑖 is corrupt during the execution of Π
Back

,

then no such entry is made to𝑈 .

– The simulator also maintains a set 𝑉 containing en-

tries of the form ( 𝑗, 𝜎𝑖, 𝑗 ). This set is populated when

a backup protocol is executed from an already cor-

rupt key-owner 𝑃𝑖 , and 𝑃 𝑗 was an honest party at that

moment. Note that, elements of this set were already

known to the adversary as transcripts of the backup

protocol even when 𝑃 𝑗 was honest. Nevertheless, since

no erasure is assumed, this should be included in the

state, and would be given to the adversary on corrup-

tion to make the simulation accurate.

– The entire simulated secret state of any party 𝑃𝑖 con-

sists of (𝑖, sk𝑖 , 𝐵, ®𝜎𝐵, pub𝑖 ) and {(𝑖, 𝜎𝑘,𝑖 )}𝑘 . On an adap-
tive corruption 𝑃𝑖 , (sk𝑖 , ( ®𝜎𝐵), {𝜎𝑖,𝑘 }𝑘 ) is handed over

to the adversary.

• Random Oracle:

(1) 𝑅sim (𝑖, 𝑗): 𝑅sim is internally computed and possibly

programmed by S and accepts queries of the form

(𝑖, 𝑗) ∈ [𝑁 ] × [𝑁 ]. Upon receiving query (𝑖, 𝑗), check
if (𝑖, 𝑗) has previously been queried to 𝑅sim. If so, then

give the same response as the previous time. If not,

then sample 𝑦
$← F, store the equation 𝑅sim (𝑖, 𝑗) = 𝑦,

and respond with 𝑦.

(2) SRO (𝑥): Upon a RO query 𝑥 :

(a) Check if (1) 𝑥 = (𝑖, sk) for some 𝑖 ∈ [𝑁 ] and
some key sk, and (2) (sk, pk𝑗 ) is a valid key-pair
for some 𝑗 ∈ [𝑁 ]. If both conditions are satisfied,
then respond with 𝑅sim (𝑖, 𝑗).

(b) If the conditions are not both satisfied, then

check if 𝑥 has been previously queried to𝐻 . If so,

then give the same response as the previous time.

If not, then sample 𝑦
$← F, store the equation

𝐻 (𝑥) = 𝑦, and respond with 𝑦.

• The oracle S
Back
(𝑖, 𝐵) is simulated as follows:

(1) If 𝑖 ∈ 𝐻 , then when the adversary returns (𝜎𝑖, 𝑗 ) 𝑗∈𝐶∩𝐵 ,
then run𝜑𝑖 ← SimShare(𝐶∩𝐵) and publish𝜑𝑖 as pub𝑖 .
Also append (𝑖,⊥, 𝐵, (𝜎𝑖, 𝑗 ) 𝑗∈𝐶∩𝐵, pub𝑖 ) in the set𝑈 .

(2) If 𝑖 ∈ 𝐶 , then on behalf of each honest party 𝑃 𝑗 such

that 𝑗 ∈ 𝐻 ∩𝐵, compute 𝜎𝑖, 𝑗 := 𝑅sim (𝑖, 𝑗), and send 𝜎𝑖, 𝑗
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as party 𝑃 𝑗 ’s response to the adversary. Also append

( 𝑗, 𝜎𝑖, 𝑗 ) to set 𝑉 .

• The oracleSCor (𝐶′) is simulated as follows. For each 𝑖 ∈ 𝐶′,
the simulator receives sk𝑖 and does the following:

(1) It searches for an entry (𝑖,⊥, 𝐵, (𝜎𝑖, 𝑗 ) 𝑗∈𝐵∩𝐶0
, pub𝑖 ) in

𝑈 , where𝐶0 is the value of𝐶 at the time the entry was

created. If found, then:

(a) Let 𝐶1 = 𝐶\𝐶0. For each 𝑗 ∈ 𝐶1, compute 𝜎𝑖, 𝑗 =

𝑅sim (𝑖, 𝑗).
(b) Compute values (𝜎𝑖, 𝑗 ) 𝑗∈𝐵\𝐶 ← SimComb(sk𝑖 ,

𝐵, (𝜎𝑖, 𝑗 ) 𝑗∈𝐵∩𝐶 , pub𝑖 ). For each 𝑗 ∈ 𝐵 \ 𝐶 , pro-
gram 𝑅sim (𝑖, 𝑗) := 𝜎𝑖, 𝑗 .

(c) Update the entry in𝑈 as (𝑖, sk𝑖 , 𝐵, (𝜎𝑖, 𝑗 ) 𝑗∈𝐵, pub𝑖 ).
Finally, send (sk𝑖 , (𝜎𝑖, 𝑗 ) 𝑗∈𝐵, {𝜎𝑖,𝑘 }𝑘 ) toA as the

secret state, where {𝜎𝑖,𝑘 }𝑘 are all entries (if no

such entry is found, skip this) {(𝑖, 𝜎𝑖,𝑘 )} with the
same 𝑖 , retrieved from 𝑉 .

(2) If such an entries are not found in𝑈 or 𝑉 , then send

sk𝑖 as the only secret state.

• The oracle SRec (𝑖, 𝑅) is simulated as follows.

(1) If 𝑖 ∈ 𝐻 , then no non-trivial information is sent to the

adversary. However, based on whether the recovery

succeeds or not it needs to define 𝑖’s output within

OutH . Therefore, it receives the responses𝜎𝑖, 𝑗 for each
corrupt 𝑗 ∈ 𝑅 ∩𝐶 from the adversary. For each honest

guardian 𝑗 ∈ 𝑅 ∩ 𝐻 , compute 𝜎𝑖, 𝑗 = 𝑅sim (𝑖, 𝑗). Then
it recovers 𝑠 ← Recon(𝜑𝑖 , ®𝜎𝑅, 𝑅) where 𝜑𝑖 is obtained
from𝑈 . It verifies whether 𝑠 is consistent with pk𝑖 . If
yes, then define the output of party-𝑖 with OutH to be

𝑠 , otherwise define it to be ⊥.
simulation is trivial, as nothing is sent to the adversary

(because the final output is private).

(2) If 𝑖 ∈ 𝐶 , then for each honest guardian 𝑗 ∈ 𝑅 ∩ 𝐻 ,

compute 𝜎𝑖, 𝑗 = 𝑅sim (𝑖, 𝑗) and send 𝜎𝑖, 𝑗 to 𝑃𝑖 .

Now for any given honest party 𝑗 ∈ [𝐻 ], let us define a bad event,

E 𝑗Bad, to be when A queries SRO on (𝑖, sk𝑗 ) for any 𝑖 ∈ 𝐶 . Next,
let EBad = ∪𝑗E 𝑗Bad. We argue that this happens with negligible

probability in the lemma stated below.

Lemma 6.1. For any PPT adversary A, the probability of EBad
happening is negligible in 𝜆, as long as the problem PKeyGen is com-
putationally hard.

Proof. In the reduction the challenger for PKeyGen samples

(sk∗, pk∗) ← KeyGen(1𝜆) and gives pk∗ to the reduction. The re-

ductions simulate the ideal world experiment IdealA with (sk∗, pk∗) =
(sk𝑗∗ , pk𝑗∗ ) for a uniform random 𝑗∗ ∈ [𝑁 ] as follows:

(1) Sample 𝑗∗
$← [𝑁 ].

(2) Set pk𝑗∗ = pk∗. Implicitly, sk𝑗∗ = sk∗ because every pk has a
unique sk for a standardKeyGen. Then sample (sk𝑗 , pk𝑗 ) ←
KeyGen(1𝜆) for every 𝑗 ∈ [𝑁 ]\{ 𝑗∗} and send A (the SKR

adversary) the values
®pk[𝑁 ] .

(3) Now simulate the oracles SRO, SBack, SRec, SCor as above
in the IdealA (1𝜆, 1𝑁 ,𝔄,KeyGen,ΠSKR) with the following

conditions:

• If E 𝑗Bad happens but 𝑗 ≠ 𝑗∗ then abort. Call this event

EAbort.
• Elsewhen E 𝑗

∗

Bad happens (A queriesSRO (𝑖, sk𝑗∗ )), then
send sk𝑗∗ to thePKeyGen-challenger as the answer. Call
this event EBreak.

Now, clearly Pr[EBreak] ≥ Pr[E 𝑗
∗

Bad] ≥ (1/𝑁 ) ·Pr[EBad]. Pr[EBad]
must be negligible because Pr[EBreak] is negligible.

□

There are two differences between Real and Ideal fromA’s point

of view. (1) In Ideal,S implements the random oracle usingSRO and

𝑅sim. The second difference (2) appears when 𝑃𝑖 is corrupted after

𝑃𝑖 serves as the key owner in an execution of Π
Back

. In Real, the
values (𝜎𝑖, 𝑗 ) 𝑗∈𝐵\𝐶 are chosen randomly, and 𝜙𝑖 is computed as 𝜙𝑖 =

Share(𝑠, (𝜎𝑖, 𝑗 ) 𝑗∈[𝐵 ] ). In Ideal, 𝜙𝑖 is computed by SimShare(𝐶 ∩ 𝐵),
and (𝜎𝑖, 𝑗 ) 𝑗∈𝐵\𝐶 is computed by SimComb(sk𝑖 , (𝜎𝑖, 𝑗 ) 𝑗∈𝐵∩𝐶 , pub𝑖 ).

(1): S simulates the random oracle correctly if EBad does not

occur. For every distinct query that A makes to SRO, S samples

the response uniformly and independently at random. Furthermore,

if A queries SRO (𝑖, sk𝑗 ) for some 𝑗 ∈ [𝑁 ], the output will be the
same as 𝜎𝑖, 𝑗 , which S provides on behalf of 𝑃 𝑗 whenever 𝑃 𝑗 serves

as a guardian for 𝑃𝑖 . Finally, in SCor, S programs 𝑅sim (𝑖, 𝑗) to 𝜎𝑖, 𝑗
for every 𝑗 ∈ 𝐵\𝐶 . The adversary has not yet queried 𝑅sim on (𝑖, 𝑗),
assuming that EBad does not happen. So the adversary’s view is

the same as if 𝑅sim (𝑖, 𝑗) were set to a random initial value and were

never reprogrammed.

(2): The distribution of ((𝜎𝑖, 𝑗 ) 𝑗∈𝐵\𝐶 , 𝜙𝑖 ) is the same in Real and
Ideal due to the perfect adaptive simulation security of the secret

sharing scheme. The problem of distinguishing Real and Ideal ex-
actly corresponds to the problem of distinguishing RealSh and

IdealSh.
This concludes the proof.

□

7 EVALUATION
We present our empirical evaluations in this section.

7.1 Implementation and Setup
We implement our scheme in Rust utilizing the RustCrypto’s elliptic-

curves [13] library for cryptographic operations and tokio [27] for

network communication with ∼ 2572 lines of code. We conduct

our experiments on Google Cloud Platform (GCP) with each entity

realized as a separate GCP N2D instance, with a 2.25 GHz AMD

EPYC CPU and 16 GB of RAM. We evaluate the performance of our

scheme in both LAN and WAN settings:

LAN setting: The GCP N2D instances for all parties are co-located

within the same geographical region, achieving an average band-

width of 880.64 MB/s and a network latency of 1.3 ms.

WAN setting: The instances for all parties are geo-distributed.

This configuration yields an average bandwidth of 18.5 MB/s and a

network latency of 138.0 ms.

Each data point presented in our results represents the average

of 10 runs. We assess the performance of our system using four

different combinations of elliptic curves and hash functions. To

evaluate the scalability of our scheme, we conduct experiments by

varying the number of parties.
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Figure 3: Compute cost comparison for creating a key backup and performing a key recovery for 𝑛 = 7 (𝑛 − 1 guardians),
considering {1, 2, 4} parallel threads.

7.2 Experimental Results
In this section, we evaluate the performance of our social key re-

covery scheme for key backup and recovery operations. Figure 3

illustrates the computation cost (excluding network time) for creat-

ing a key backup and performing a key recovery for 𝑛 = 7 parties

where 𝑡 = 3. The key-owner requires 0.5 - 3.5 ms to create a key

backup, depending on the selected elliptic curve and hash function.

With 4 parallel threads, the key backup cost is reduced to 0.2 - 1.1

ms. In the event of key loss, the key-owner can perform the key

recovery operation in 0.2 - 1.0 ms using a single thread, or 0.1 - 0.5

ms with 4 parallel threads.

We also evaluate the end-to-end performance of our key re-

covery scheme by running the key-owner and each guardian on

separate GCP instances in both LAN and WAN settings, with point-

to-point communication channels between the key-owner and each

guardian. Table 1 presents the total time for key backup and recov-

ery for different choices of elliptic curves and hash functions. As

expected, the time for both key backup and recovery operations

scales linearly with the number of parties. For instance, using K256-

SHA256 in the LAN setting, as 𝑛 increases from 3 to 11, the key

backup time rises linearly from 1.839 ms to 5.696 ms and the key

recovery time increases linearly from 0.83 ms to 1.347 ms. Sim-

ilarly, using P521-SHA512 in the WAN setting, the key backup

time increases from 146.747 ms to 149.670 ms and the key recovery

time increases from 146.625 ms to 148.371 ms as 𝑛 varies from 3

to 11. This demonstrates the scalability of our protocol in both

regional (LAN) and geo-distributed (WAN) settings.

8 EXTENSIONS
In this section we discuss a number of extensions for our concrete

construction (our generic SKR protocol Π , given in Figure 2 instan-

tiated with our BUSS scheme from Section 5.1) that maybe useful

in practice. We choose not to formalize this to keep the core ideas

simple.

Key Update. A natural question to consider is what happens

when a guardian performs a key update. To accommodate that, we

describe a simple mechanism to which can be easily incorporated

into our existing protocol as follows:

• Let us assume the old key of a guardian with identity- 𝑗 is

sk𝑗 , and the updated key is sk′𝑗 . For each key-owner with

identity-𝑖 , guardian- 𝑗 computes the difference in the share

Δ𝑖, 𝑗 := H(𝑖, sk𝑗 ) − H(𝑖, sk′𝑗 ) and send that to owner-𝑖 .

• The owner implicitly defines the updated secret polynomial

from the BUSS scheme 𝑓 ′
𝑖
(𝑥) := 𝑓𝑖 (𝑥) + Δ𝑖, 𝑗𝐿𝑗,𝐵 (𝑥). where

𝐿𝑗,𝐵 (𝑥) is the Lagrange polynomial corresponding to point

𝑗 and set 𝐵.10

• Update the public values, such as 𝑓 ′
𝑖
(−1) = 𝑓𝑖 (−1)+Δ𝑖, 𝑗𝐿𝑗,𝐵 (−1)

and so on.

10
Recall that, for each point 𝑗 ′ ∈ 𝐵 \ { 𝑗 }, 𝐿𝑗,𝐵 ( 𝑗 ′ ) = 0 and at point 𝑗 : 𝐿𝑗,𝐵 ( 𝑗 ) = 1.
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EC-Hash n LAN WAN
Backup Recovery Backup Recovery

K256-SHA256

3 1.839 0.830 138.866 138.709

5 2.718 0.879 142.550 142.476

7 3.874 0.928 146.499 146.412

9 4.981 1.284 146.581 146.381

11 5.696 1.347 147.250 146.971

P256-SHA256

3 1.905 0.805 142.959 142.848

5 2.962 0.893 146.510 146.342

7 3.671 0.978 146.897 146.634

9 4.864 1.133 146.930 146.379

11 5.941 1.220 147.369 146.844

P384-SHA384

3 2.182 1.158 143.296 143.248

5 3.408 1.164 147.041 146.685

7 4.361 1.182 147.325 146.952

9 5.184 1.367 147.930 147.175

11 6.480 1.454 148.411 147.360

P521-SHA512

3 2.110 1.165 146.747 146.625

5 3.120 1.230 148.209 146.955

7 4.448 1.377 148.560 147.477

9 5.962 1.440 149.151 147.890

11 7.215 1.525 149.670 148.371

Table 1: End-to-end time in milliseconds for performing a
key backup and recovery for 𝑛 = 2𝑡 + 1 (𝑛 − 1 guardians) in
both LAN and WAN settings.

Clearly, the new share of guardian- 𝑗 is 𝑓 ′
𝑖
( 𝑗) = 𝑓𝑖 ( 𝑗) + Δ𝑖, 𝑗 , and

for all other guardians 𝑗 ′ ∈ 𝐵 \ {𝑖} we have 𝑓 ′
𝑖
( 𝑗 ′) = 𝑓𝑖 ( 𝑗 ′), that

means the share remains unchanged. So, the procedure is com-

pletely oblivious to them, as they may not be even aware of the

update, which takes place only between the guardian- 𝑗 and the

corresponding key-owner, who needs to update only the public

values. Nevertheless, guardian- 𝑗 must contact all key-owners he is

supporting. Security wise, the key-owner knows Δ𝑖, 𝑗 which is not

a sensitive information.

Risk of Exposure. A practical concern with our approachmight be

that, since each guardian needs to use their secret key for computing

each share, that makes their own key exposed in the memory for

a longer period. One simple way to mitigate this would be to use

another key just for this purpose. While this requires additional

storage, unlike our solution, still the requirement for total secret

storage is constant and independent of the number of key-owners

it supports. Note that, this will also eliminate the possibility of

so-called "domino effect" discussed in Section 1.3.

Cold wallets. While our solution is general and is also agnostic of

whether a hot or cold wallet is being used, in practice it is easier to

deploy in a hot wallet setting, where secret keys can directly used

to compute the shares. Cold wallets, instead never expose the key

to the memory, and instead just send out the computed signatures

for authorizing transactions directly. For such settings, computing

shares by hashing the secret keys would not work immediately, as

cold wallets are programmed to compute specific functions (such

as signatures). However, since most cold wallets (e.g. Ledger [15],

Trezor [29] etc.) implement RFC6979 specs [21], which specifies

deterministic signatures, we can make it work with our approach

as follows:

• The guardian- 𝑗 generates a deterministic signature 𝜁𝑖, 𝑗 on

a specific message (Rec, 𝑖, 𝑗) o help backup/recover the key

of owner 𝑖 .

• Then guardian- 𝑗 participates in the SKR protocol (Fig. 2)

using 𝜎𝑖, 𝑗 := H(𝜁𝑖, 𝑗 ), where H is a random oracle that maps

signatures to field elements.

It works because instead of the secret keys themselves it suffices

to use the deterministic signatures output by the cold-wallet on

the unique message. Each 𝜎𝑖, 𝑗 is guaranteed to be random and

unpredictable due to the unforgeability guarantees of the cold-

wallet. Nonetheless, we remark that if a cold wallet implements a

randomized signature then this will not work, because the wallet

would yield different 𝜁𝑖, 𝑗 values during backup and recovery, which

is undesirable. Further note that, this issue does not arise if the

above two-key approach is used.

9 CONCLUSION
We propose a simple and efficient protocol for socially backup and

recover keys within a community where each party holds a secret

key (and has a corresponding public key). Our solution uses a newly

introduced technique, that we formalize here as bottom-up secret

sharing, as the main underlying tool. Our design enables mutual

key backups within the community - where each party can act as a

backup guardian for multiple key owners, and no guardian needs

to store anything extra other than its own secret key.

We analyze our protocol in a formal framework, we put forward

in this work. While our framework is general enough, it does not

capture the so-called domino effect (Section 1.3). We leave formal-

izing that with a plausibly extended framework as an interesting

future work.

To the best of our knowledge, ours is the first effort to formalize

social recovery protocols. Additionally the mutual key back-up set-

ting within a community of key holders has never been considered

earlier. Our protocol is very simple and also practically efficient, as

demonstrated by our empirical results. The new concept of bottom-

up secret sharing may be of independent interest.
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