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Abstract. Digital identity wallets allow citizens to prove who they are and manage digital
documents, called credentials, such as mobile driving licenses or passports. As with physical
documents, secure and privacy-preserving management of the credential lifecycle is crucial:
a credential can change its status from issued to valid, revoked or expired. In this paper,
we focus on the analysis of cryptographic accumulators as a revocation scheme for digital
identity wallet credentials. We describe the most well-established public key accumulators, and
how zero-knowledge proofs can be used with accumulators for revocation of non-anonymous
credentials. In addition, we assess the computational and communication costs analytically
and experimentally. Our results show that they are comparable with existing schemes used in
the context of certificate revocation.
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1 Introduction

Revocation is one of the most difficult aspects of credentials to manage. In a Web PKI scenario,
credentials are X.509 certificates and the most well-known and tested methods to implement revoca-
tion for X.509 certificates are Certificate Revocation List (CRL) [11] and Online Certificate Status
Protocol (OCSP) [58]. Both are disliked for several reasons, to the extent that both are now served
through alternative protocols (CRLLite [45], CRLSets [19], OCSP with Stapling [35,61]) and OCSP
is being made entirely optional [34] and discontinued by some major providers [1].

Cryptographic accumulators – binding commitments to a set of elements – have been proposed
as an alternative, e.g., as an allow-list of unrevoked credentials. The key advantages claimed by
accumulators over CRL and OCSP are that only a short public value needs to be updated and
distributed to verifiers by a revocation authority, and membership proofs can be efficiently done in
Zero-Knowledge with a computational cost independent of the list size.

Accumulator schemes and their properties have been defined and surveyed in [5,30,25,6], to
which we refer for a complete characterization. They have been previously adopted in the context of
anonymous credentials [41,36]. Here we focus on their application to revocation of non-anonymous
credentials in digital identity wallets.

There are three key roles in a digital identity wallet ecosystem: Issuer, Holder, and Verifier.
An Issuer creates and issues Credentials to a Holder. A Verifier receives and verifies Credentials
presented by a Holder. As part of the verification process, the Verifier should check that a presented
Credential is not revoked. The main question we aim to answer is whether accumulators are a viable
alternative to more established methods for revocation of Credentials in digital identity wallets.



Outline. In Section 2 we recall well-known revocation mechanisms for X.509 certificates on the
web, CRL and OCSP, and highlight some of the issues with using them in the wallet scenario. In
Section 3 we characterize the revocation process in the digital identity wallet context, highlighting
new privacy challenges. In Section 4 we describe the most well-established public-key accumulators,
showing their relationship with digital signatures. In Section 5 we recall the Zero-Knowledge Proofs
(ZKP) for the presentation and proof of non-revocation of anonymous credentials, and consider
how they can be used in non-anonymous credentials such as the ones being considered for the
European Digital Identity (EUDI) Wallet. In Section 6 we assess the computational complexity
and experimental performance of accumulators and ZKP in management, issuing, and presentation
of credentials. Based on these observations, in Section 7 we compare accumulators with existing
revocation schemes. Finally, Section 8 draws the conclusions and future work.

2 Revocation in Web PKI

Two well-known revocation mechanisms for X.509 certificates are Certificate Revocation List (CRL)
[11] and Online Certificate Status Protocol (OCSP) [58]. In the web PKI scenario, by using the digital
identity wallet terminology we can see a X.509 certificate as a Credential, Issuers are Certificate
Authorities (CAs), Holders are websites with X.509 certificates, Verifiers are user agents connecting
to these sites via TLS. Certificate status information is provided either as a list (CRL) of serial
numbers of all currently unexpired and revoked certificates, which Verifiers download and check
against the presented certificate serial number; or as a response (OCSP) for an individual certificate,
the serial number of which must be disclosed by the Verifier to the Issuer at the time of presentation.

Note that both CRL and OCSP responses are signed by the Status Manager3, respectively called
CRL issuer and OCSP responder; the means by which a Verifier establishes trust in their public
keys are beyond the scope of this analysis. For a recent survey of these mechanisms, see [42].

CRL and OCSP have several issues and proposed mitigations, summarized below. In a clear sign
that OCSP issues are considered more significant overall, the CA/B forum has made OCSP optional
and require CRL [34], and Let’s Encrypt have announced their intent to end their OCSP service
entirely [1].

2.i. Availability. Both approaches are threatened by lack of availability. If Verifiers are unable to
retrieve either list or response in a reasonable time, browsers can either hard fail – deny access
to the site; or soft fail – allow access without even warning the user, as if the revocation check
had never even taken place.

2.ii. Size and computation. CRLs encode the serial number, revocation date, and revocation reason
code of each revoked certificate, and can grow to be relatively large. While the size of an OCSP
response is potentially much smaller than a CRL and thus seems advantageous for Verifiers,
providing a high availability service responding to status queries for frequently visited sites is
costly for Status Managers and requires a digital signature for each response, as opposed to a
single signature per CRL.

2.iii. Privacy and Information Disclosure. When the Status Manager coincides with the Issuer, an
additional concern for OCSP is that it enables tracking of Holder and Verifier activity by the
Status Manager, because the Verifier must request the status of a specific certificate. This con-
stitutes an information disclosure for the Verifier, which reveals to the Status Manager when and

3 In some cases, the Status Manager and the Status Provider, i.e. the entity responsible to issue the status
of a Credential, are played by two different entities. In this paper, for simplicity, we consider a unique
entity and we use always the term Status Manager.
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by whom its service is requested. A CRL by contrast provides so-called herd privacy because the
Status Manager cannot associate a given status request with any one credential.

2.iv. Dishonest Issuer-Status Manager. The privacy issues with OCSP are structural, because the
mechanism itself inherently reveals detailed information. Both OCSP and CRL are also subject
to manipulation by dishonest Status Managers and Issuers that collude together. It is trivial for
a Status Manager to create ad-hoc lists or OCSP responder endpoints specifically for individual
certificates, and the only way to know these exist is to examine each certificate.

The following mitigations have been implemented for CRL and OCSP.

CRLSets/CRLite. Browsers preload CRL information as CRLSets [44,19] (Chrome) or CRLite [49,45]
(Mozilla), but address the CRL size issue differently. CRLSets are a small subset of critical CRLs
and primarily a means by which browsers can quickly block critical certificates in emergency sit-
uations. CRLite is a compressed data structure based on cascading probabilistic filters, such as
Bloom [10]. While the information in CRLite is more complete, waiting for it to be updated is
an additional delay over individual CRL, and the probabilistic nature of filters introduces the
risk of false positives, potentially requiring a backup mechanism.

OCSP Stapling [28]. Websites periodically request an OCSP response, refreshing their locally
held status proof, then attaching (“stapling”) the latest copy of the response to the certificates
they present. As an additional security measure, the Issuer (CA) may specify in the certificate
itself that a stapled response must be included in the Holder’s presentation [35]. As of May 2024,
50% of sites surveyed by ssllabs support OCSP stapling [55].

Both solutions avoid latency or availability issues for Verifiers contacting Status Managers (Item 2.i.),
minimize requests and response signatures for the Status Manager (Item 2.ii.), and mitigate against
privacy issues (Item 2.iii.).

3 Revocation in Digital Identity Wallets

The wallet scenario adds a number of significant privacy concerns to the Web PKI issues, which
should be addressed to give users the same guarantees they would expect from using a physical
scheme; we note these issues here, then make our assessment of how traditional revocation mecha-
nisms compare with accumulators in addressing them in Section 7.

3.i. Status Manager monitoring Holder. Is the Status Manager able to track presentations the Holder
makes to Verifiers?

3.ii. Verifier monitoring Credential status. Is it possible to keep checking the status of a Credential
over time without the Holder’s consent after a presentation?

3.iii. Verifier linking Holder presentations. Can one or more Verifiers track the Holder’s activity? This
may be between different presentations to the same Verifier, or to multiple colluding Verifiers.
This may be due to any unique identifiers disclosed to the Verifier, such as Holder public keys
or credential serial numbers.

3.iv. Status Manager monitoring Verifier. Is the Status Manager able to track the status requests
made by a Verifier? This could leak commercially sensitive information.

3.v. Third Parties monitoring Status Manager. Can anyone analyze the information made publically
available by the Status Manager to gain information about the Status Manager’s handling of
the scenario? This could lead to collection of revocation statistics.
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Privacy risks 3.i., 3.iii. and 3.iv. are also discussed in the Architecture and Reference Framework
(ARF) [26], defining the technical specifications for the European Digital Identity (EUDI) Wallet
to be compliant with the revised eIDAS 2 regulation [29]. ARF is currently in development, some
topics need to be addressed and discussed up to end of 2025. The first topic is related to “privacy
risks and mitigations” and discusses linkability threats related to revocation checking.

ARF currently suggests the use of short-lived credentials that have a validity period of 24 hours or
less, such that revocation will never be necessary,4 or to support a list-based revocation mechanism:
a Revocation List of identifiers of revoked or suspended attestations, or a Status List publishing
status information for all valid attestations. While the ARF does not specify technologies to realize
these revocation requirements, prominent list candidates include CRL and Token Status List [47].
An alternative proposal is OAuth Status Assertions [24].

In addition, ARF discusses the possibility of using Zero-Knowledge Proofs (ZKP) referring to
the Cryptographers’ feedback on the ARF [7], which focuses on anonymous Credentials 5) through
selective disclosure signatures – see [33,9] for reviews.

The feedback suggests forgoing revocation by issuing Credentials with short-lived validity: “the
anonymous credential would contain an expiration date as dedicated attribute. When showing the
credential, the owner then either discloses the attribute or proves in zero-knowledge that his creden-
tial hasn’t expired yet.” The scenario of long-lived Credential revocation remains open.

Accumulators are currently not part of ARF as they have been mainly adopted in the con-
text of anonymous Credentials and an analysis of their efficacy and applicability in the context of
non-anonymous Credentials is currently missing. To fill this gap, in this paper we aim to answer
whether accumulators are a viable alternative to the current proposals for revocation of Credential
in the wallet scenario by assessing the computational complexity and experimental performance of
accumulators and ZKP in management, issuing, and presentation of Credentials.

4 Accumulators

Cryptographic accumulators are schemes for the concise representation as a single value α of a
finite set S of elements, and the generation of a so-called membership witness wx for each x, which
may be used to verify that x ∈ S. Depending on the scheme, it may also be possible to generate
non-membership witnesses w for elements not in the set; and the proofs may be in zero knowledge.

Accumulator schemes and their properties have been defined and surveyed in [5,30,25,6], to which
we refer for a complete characterization. Commonly used terms to categorize accumulators are:

Additive / subtractive / dynamic: elements can be efficiently [added to / removed from / both]
the accumulated set.

Positive / negative / universal: supports [membership / non-membership / both] proofs.

When elements are added to or removed from an accumulated S, the value α may change; we
denote its value after t updates as αt.

In general, accumulators may define the following functions.

4 The 24-hour period originates from the relevant ETSI specifications. These require that the process of
revocation must take at most 24 hours. Consequently, revocation makes no sense if the Credential is valid
for less than 24 hours, because it will reach the end of its validity period before it is revoked.

5 Anonymous Credentials are currently not in the ARF v1.5 (Annex 2, Topic 12) requires the support
of: mDOC as specified in ISO/IEC 18013-5 [38], SD-JWT VC as specified in SD-JWT-based Verifiable
Credentials [31] and W3C VCDM v1.1 as defined in W3C Verifiable Credentials Data Model [60].
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Gen: Given a security parameter λ and a set of elements S in a domain D, output a Status Manager
private key sk, public parameters params, an initial accumulated value α0.

GenWit, GenWit: For an element x, generate a witness wx or non-witness wx to prove membership,
resp. non-membership, of x in S.

Add, Del: Update the accumulator value α, either to include a new (not previously accumulated)
element x, or to exclude a previously accumulated one.

WitUp, WitUp: In a dynamic accumulator, membership and non-membership witnesses may need to
be updated; different update functions may be defined depending on whether the update was an
addition – WitUp+, WitUp+– or a deletion – WitUp−, WitUp−.

VerMem, VerMem: Anyone with knowledge of an element x, a (non-)witness (wx), wx, and an accu-
mulator value α may verify (non-)membership of (x ̸∈ α), x ∈ α, respectively. A trusted Status
Manager may have its own, more efficient version VerMemMan.

GenZKP, VerZKP: Zero knowledge proofs can be defined for the Holder to prove knowledge of mem-
bership or non-membership of an element – GenZKP∈, GenZKP̸∈ – without the Verifier learning
the value of that element – VerZKP∈, VerZKP̸∈.

Accumulators can be used as allow-lists or deny-lists, in principle. As allow-list, newly issued
credentials would be added, revoked credentials would be removed, Holders would present proofs
of membership – i.e., the accumulator would be positive – and Verifiers would reject presentations
without such proof. As deny-list, revoked credentials would be added, Holders would present proofs of
non-membership – i.e., the accumulator would be negative – and Verifiers would reject presentations
without such proof.

4.1 Choosing an accumulator scheme

The main limitation of accumulators in real-world applications lies in the management of witness
updates. Given a the number of additions and d the number of deletions occurred since the last time
a witness was updated, Camacho and Hevia [15] showed a theoretical lower bound for the number
of information/operations needed for updates. Universal accumulators require at least O(a + d)
operations; while, for accumulator schemes adapted to have optimal update complexity (α does not
need to be updated either on the deletion or on the addition of new members to S), the bound is
reduced to O(a), O(d) respectively for negative, positive accumulators.

In the wallet context, the best-performing choice is therefore to update only when a Credential
is revoked as it is less frequent than Credential issuance. For example, public data on the eIDAS-
notified Italian eID (CIE) – which may be considered analogous to Person Identification Data (PID)
– the ratio between revoked and issued certificates is typically low; in 2022, 7 million new ID cards
were issued [27] and 200 000 were revoked [48], resulting in a revocation rate of about 3%. This means
that the best options are either positive accumulators used as allow-lists, or negative accumulators
used as deny-lists. From now on we will consider only positive accumulators used as allow-lists.

The optimal update complexity property, not only improves update performance but also en-
ables setting the time between accumulator updates based only on revocation, not on issuance –
e.g., twice per day or once per week, as with certificates. With universal accumulators, newly issued
credentials are not presentable until the next published update; with an optimal accumulator, mem-
bership in the accumulator is immediately provable by Holders who have been issued a valid witness.

Examples of positive optimal accumulators described in Sections 4.2 and 4.3 are based on
RSA [16,46,4] and on Elliptic Curves [50,63,40,39].
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Mode of operation. As noted in [40], a Status Manager may choose to publish update messages upmsg
for Holders to update their witness at each accumulator update, or re-initialize the accumulator value
and re-compute and re-distribute each witness to each Holder. We refer to the former as update-
message mode, and to the latter as reset mode. Reset mode is more computationally expensive for
the Issuer but less so for Holders. Additionally, update-message mode reveals how many statuses were
changed at each update and requires public availability of these lists for each Holder to download,
while reset mode does not.

4.2 RSA accumulator

RSA accumulators were first proposed in [8] and later in [5]. Authors in [16] formalize the concept of
accumulator and propose a dynamic and positive accumulator that supports zero knowledge proofs,
making it applicable to the revocation of anonymous credentials. A universal accumulator based on
RSA is described in [46], and in [4, Section 4.1] the authors propose an accumulator with optimal
update cost which does not require the accumulator value to be updated on add operations. We
focus on the latter, referred to as RSA-B, and defined by the following algorithms:

Status Manager algorithms. The Status Manager samples p = 2p′+1, q = 2q′+1 two safe primes of
λ/2 bits, n = pq, g a generator for the group of quadratic residues QR(n), which is also the initial
value of the accumulator α0. The set D of elements that can be accumulated consists of all odd
primes less than p′q′.

Gen(1λ) : p, q
$←− safe primes; n← pq; sk← p′q′; params← [n, g]; (1)

α0 ← g; D = primes

GenWit(sk, αt, x) : wx|t ← α
(x)−1 mod sk
t (2)

Del(sk, αt, x) : αt+1 ← α
(x)−1 mod sk
t mod n; δ ← x (3)

Adding a value requires only to compute the associated witness executing GenWit. When an ele-
ment is deleted, the algorithm outputs the update material upmsg composed by the new accumulator
αt+1 and the value δ that a Holder will use to update its witness.

Holder algorithms. The Holder who is given a witness wx|t for the value x accumulated in αt, can
verify its membership by executing VerMem.

VerMem(αt, x, wx|t) : αt
?
= wx

x|t mod n (4)

WitUp−(αt+1, x, wx|t, δ) : wx|t+1 ← wc
x|t · α

b
t+1 mod n, where {b, c | bx+ cδ = 1} (5)

When some element is deleted from S, the accumulator is updated and a Holder must update
its witness executing WitUp−. The algorithms GenZKP∈ and VerZKP∈, which are also supported by
the scheme, are recalled in Section 5.3.

Batching Updates. As noted in [16], it is possible to batch multiple updates publishing the tuple
upmsg = (α−∆, ∆); where ∆ =

∏k
i=1 δi is the product of all the removed elements since the previous

update. This benefits both the Status Manager, which does not need to compute all the intermediate
values of the accumulator, and the Holder, who does not need to download them.
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4.3 Elliptic curve accumulator

Originally proposed in [50] as a dynamic accumulator, in [23] is presented as a positive accumula-
tor with zero knowledge proofs. This accumulator was subsequently extended with proofs of non-
membership in zero knowledge in [3]. Efficient batch operations and the use of Type-III pairings
have been introduced in [63], and the algorithms to accumulate values with optimal update cost are
proposed in [40]. A combination of Type-III with batch operations and optimal update cost appears
in [39, Section 3]. The latter is defined by the following algorithms:

Status Manager algorithms. The public parameters of the scheme are given by a bilinear pairing
e : G1 ×G2 → GT , where |G1| = |G2| = |GT | = p, and g1, g2 are respectively generators of G1 and
G2.

Gen(1λ) : sk
$←− Z∗

p; (6)

params←
[
(p,G1,G2,GT , g1, g2, e) , j ← gsk2

]
p prime, |p| = λ;

u0
$←−Z∗

p; α0 ← gu0
1 ; D ← Z∗

p \ {−sk}

GenWit(sk, αt, x) : wx|t ← α
(x+sk)−1

t (7)

Del(sk, αt, x) : αt+1 ← α
(x+sk)−1

t ; δ ← x (8)

VerMemMan(sk, αt, x, wx|t) : αt
?
= wx+sk

x|t (9)

Notably this scheme allows a Status Manager to run the VerMemMan algorithm which allows him
to verify more efficiently (compared to VerMem) the membership of a value in the accumulated set.

Holder algorithms. The algorithms to update the witness upon deletion of an accumulated value,
and to verify the membership of an element in the accumulator are the following.

VerMem(αt, x, wx|t) : e(αt, g2)
?
= e(wx|t, g

x
2 j) (10)

WitUp−(αt+1, x, wx|t, δ) : wx|t+1 ← (wx|t · α−1
t+1)

(δ−x)−1

(11)

The algorithms GenZKP∈ and VerZKP∈, which are also supported by this scheme, are recalled in
Section 5.3.

Batching Updates. In this case multiplying all the elements does not work. Given the update material
at time i to be upmsgi = (αi, δi), without loss of generality we assume t = 1 to be the last value of
the accumulator to which Holder has updated; applying WitUp− sequentially m-times we obtain the
witness at time m+ 1:

wx|m+1 = ((wx|1 · α−1
2 )(δ1−x)−1

· · ·α−1
m+1)

(δm−x)−1

= w
∏m

j=1(δj−x)−1

x|1

m∏
i=1

α
−

∏m
j=i(δj−x)−1

i+1 (12)

The problem above takes the name of Multi-Scalar Exponentiation, which is efficiently solvable
adopting Pippenger’s algorithm [52], or some of its more recent iterations. The key point is that the
larger the upmsg, the more efficiently we can solve that product.
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4.4 Security notions and an advanced construction

Security notions for accumulators. There are two main security notions associated to positive dy-
namic accumulators, namely the adaptive soundness and non-adaptive soundness. Informally, an
accumulator scheme is adaptively sound if no polynomial time adversary A can win the following
experiment. A takes in input an accumulator value α, and can perform a training where it sends
a polynomial number of queries to the challenger to add or delete elements of its choice, choosing
them adaptively. Let α be the value of the accumulator after the training: we say that A wins the
experiment if can generate a pair (x,w) such that VerMem(α, x, w) = 1 and x is not accumulated.
An accumulator is non-adaptively sound if the adversary chooses in advance the set of elements S to
add and remove in its queries, before the publication of the accumulator α. Then the addition and
deletions performed during the training by the adversary are chosen adaptively but must come from
S. These security notions can be adapted to apply to additive accumulators, giving the adversary
only the ability to perform queries to add elements. For a formal security definition of adaptive and
non-adaptive soundness see [4, Section 2.2].

Notably, both the RSA and the EC accumulator presented in Sections 4.2 and 4.3 only satisfy
the security notion of non-adaptive soundness. We now recall a construction [4] that allows one to
achieve adaptive security; we will also take advantage of this in Section 5.2.

Combining accumulators. As formalized in [4, Section 3.2], it is possible to combine positive dynamic
non-adaptively sound accumulators ACCNA, as the ones we described in Sections 4.2 and 4.3 with
positive additive and adaptively sound accumulators ACCA, to obtain an adaptively sound dynamic
accumulator ACCH. This construction is referred to as Construction H in [4], so we continue to refer
to it with the same name.

We will consider a simplified version of Construction H where the role of additive adaptively
sound accumulator ACCA is covered by a digital signature scheme DS6.

Definition 1 (Construction H of [4]). Given DS a digital signature scheme and ACCNA a non-
adaptively sound dynamic accumulator for elements in D, we define the following dynamic and
adaptively sound accumulator for elements in a set D: to add an element X ∈ D in ACCH, the
manager samples uniformly at random an element x

$←− D, adds x to ACCNA and signs (X,x). To
remove X from ACCH, the manager removes x from ACCNA. A witness for X in ACCH is given by
the witness wx for x accumulated in ACCNA and the signature σ of (X,x). To prove membership of
an element X in ACCH, the prover can reveal a pair (X,x), the witnesses for x in ACCNA and the
signature σ.

For a more formal definition of the algorithms of the accumulator derived from Construction H see
[4, Figures 5,6 and 7].

Note that the set D can be defined as the set of all messages that can be signed using DS, or the
set of messages with a specific structure. In the following sections D will be the set of credentials
issued to users.

We start by describing a popular application of Construction H. Non adaptively sound accu-
mulators with optimal update, and supporting ZKP, have become the primitives to use to manage

6 Note that an UF-CMA secure digital signature scheme can be seen as a positive, additive and adaptively
sound accumulator for the set of messages. When a message x is accumulated, the manager signs the x
and the signature σ is the witness for it. To verify that x is accumulated, the prover shows the signature
σ that the verifier can check under the public key of the manager.
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Fig. 1. An accumulator generated according to Construction H (Definition 1). Given ACCNA a non-adaptively
sound dynamic accumulator, and DS an additive and adaptively sound accumulator instantiated using a
digital signature scheme, ACCH is an adaptively sound, dynamic accumulator.

the revocation of anonymous credentials. This is thanks to their efficiency, the ability to be turned
in adaptively sound accumulator for generic elements via Construction H, and the ability prove
knowledge of an accumulated element x and a witness wx in zero knowledge.

Revocation of Anonymous Credentials. If we consider Construction H of Definition 1, it is possible
to define an accumulator for anonymous credentials starting from the RSA or EC accumulators of
Section 4.2 and 4.3 as the dynamic non-adaptively sound accumulator ACCNA, and the selective dis-
closure signatures [33] like BBS [62], CL [17], or PS [53], as digital signatures DS. This combination
yields an adaptively sound accumulator ACCH for anonymous credentials, which supports ZKP of an
accumulated element and a witness for it. In fact, we observe that, as we have recalled in Sections 4.2
and 4.3, (1) the EC and RSA non-adaptively sound accumulators support ZKP to prove knowledge
of an accumulated element and a witness for it, and (2) the selective disclosure signatures [62,17,53]
used to generate anonymous credentials, support ZKP to prove knowledge of a signature and of
the messages signed in it (X,x). Therefore, if the value x accumulated in ACCNA is included as an
attribute of the anonymous credential, it is possible to combine the two ZKPs. More specifically, a
prover can prove in zero knowledge that it knows an anonymous credential (a signature of the issuer
and the signed attributes using DS), and that one of the signed attributes (the value x that the
prover never discloses) is accumulated in ACCNA. The proofs can be combined using techniques to
prove equalities of discrete logarithms [14,59,37].

Note that construction H is an abstraction, which we leverage to discuss the soundness of the
construction resulting from the combination of digital signature DS and non-adaptively secure accu-
mulator ACCNA. In practice, DS is managed by the Credential Issuer and ACCNA may be managed
by a separate Status Manager; there is no need to introduce a single entity concretely managing
both, but this role is frequently played by the Issuer.

5 Accumulators for Revocation of Non-Anonymous Credentials

What has never been explicitly discussed in the literature, to the best of our knowledge, is what
are the implications of using accumulator schemes to manage the revocation of non-anonymous
Credentials like SD-JWT and mDOC. This analysis is particularly relevant to scenarios in which
verifiable Credential systems admit Issuers of both anonymous and non-anonymous Credentials. In
this case, it might be desirable to have a single mechanism to manage the revocation of Credentials,
and an accumulator scheme could play that role.
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5.1 Naive revocation of non-anonymous credentials via accumulators

Non-anonymous Credentials like SD-JWT and mDOC can be seen, in their essence, as a set of
attributes that are committed to using hash based commitments, and then signed by the Issuer7. If
we want to equip such Credentials with a revocation mechanism based on the use of accumulators,
which would allow the revocation of anonymous and non-anonymous Credentials, we can instantiate
an accumulator with the following structure, still based on Construction H, Definition 1.

A naive approach. To manage the revocation of non-anonymous credentials the Status Manager
generates a non-adaptively sound and dynamic accumulator scheme ACCNA as the one used for
anonymous Credentials, and a standard digital signature scheme DS, which is the signature scheme
used by the Issuer of the non-anonymous Credentials. The Status Manager samples a random x for
each Credential and adds it to ACCNA, then the Issuer signs X||x generating σ, so that when the
Holder presents its Credential, it can show to the Verifier the signature σ of X||x, and the witness
used to prove that x is accumulated in ACCNA. To revoke a credential X, the Status Manager removes
x from ACCNA and publishes the update message δ. Since the digital signature DS does not support
ZKP to prove knowledge of a signature, the values X and x must be revealed to let the verifier
verify σ. This approach is a straightforward application of Construction H, as done for anonymous
credentials, but it has drawbacks in terms of privacy that must be addressed.

Privacy risks. The value x, as well as the signature σ(X,x) over (X,x), are unique identifiers of
the Credential, and thus a source of correlation between presentations. This problem is intrinsic
to non-anonymous Credentials, which for this reason must be single-use Credentials and are issued
in batches. Therefore, each Credential in the batch must contain different commitments to the
same attributes, and a different element x accumulated in ACCNA to prevent Verifiers from linking
presentations of the same Holder (privacy risk 3.iii., Section 3).

Since each Credential is meant to be presented only once, it might seem safe to reveal all the
unique identifiers X,x, σ(X,x), wx during presentations. However, even if a Holder reveals x to a
Verifier only once, upon revocation of the same Credential, δ ← x will be published by a Status
Manager in an upmsg for ACCNA (see the deletion algorithms 8 and 3). This message would allow
the Verifier to know that the Credential it was presented has been revoked, allowing it to monitor
the Credential status (privacy risk 3.ii., Section 3).

Apart from the privacy risks, note that every time the accumulator is updated the Holder must
update all the witnesses associated to its credentials, and to revoke a credential the Status Manager
must remove all the elements x associated with each copy.

Although for non-anonymous Credential it is not possible to keep hidden the signature of the
Issuer on (X,x) by means of ZKP, it is still possible to hide the signed value x using commitment
schemes that support ZKP in combination with the ZKP to prove knowledge of an accumulated
element and the associated witness. We describe this approach in the next section.

5.2 Privacy preserving revocation of non-anonymous credentials

Commitment schemes are a building block for the design of signature schemes for anonymous Cre-
dentials. They are essential for the design of the ZKP to prove knowledge of a Credential, while
disclosing only a subset of the attributes included in it. We take advantage of the properties of

7 For now we can omit the public key of the Credential used to have the device binding.
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commitments and the protocols used to prove knowledge of the committed value in ZK, to design a
mechanism that allows a privacy preserving revocation of non-anonymous Credentials.

By privacy preserving revocation we mean that the Verifiers do not learn the value accumulated
in ACCNA, providing a solution to the problem of Verifiers monitoring the status of Credentials they
are presented (privacy risk 3.ii.). The other advantage of the construction we present, compared to
the naive construction described above, is that the Credentials issued in batches can be associated
to the same x accumulated in ACCNA, simplifying the revocation of all the copies of the same Cre-
dential for the Status Manager, and the update of the witness for the Holder, while keeping the
presentations unlinkable (privacy risk 3.iii.).

The mechanism for privacy preserving revocation of non-anonymous Credentials is based on the
use of a non-adaptively sound accumulator ACCNA to accumulate the randomness x, and, instead
of signing x, together with the Credential X (as Construction H instructs), the Status Manager
computes a commitment Cx to x using a commitment scheme Comm that supports ZKP, and signs
X||Cx with the signature scheme DS. When the Holder presents its Credential, it proves that the
value committed in Cx is accumulated in ACCNA combining the ZKP for Comm with the ZKP for
ACCNA. The ZKPs will be presented in Section 5.3, now we focus on the Status Manager algorithms
and the Holder algorithms to verify the membership of a credential and to update the witness.

Let ACCNA = (GenNA, GenWitNA, DelNA, VerMemNA, WitUp−,NA) be a non-adaptively sound accu-
mulator for elements in D, Comm a commitment scheme supporting ZKP8, DS = (GenDS, Sign, Verify)
a digital signature, and λ the security parameter, we define the accumulator accumulator ACCH =
(GenH, GenWitH, DelH, VerMemH, WitUp−,H) for elements in the domain D as follows.

Status Manager algorithms.

5.i. GenH(1λ):
(a) GenNA(1λ): initialization of a non-adaptively sound accumulator, Equations (1) and (6);
(b) GenComm(1

λ): initialization of a commitment scheme;
(c) GenDS(1

λ): initialization of a digital signature scheme which outputs the signature public
parameters and the key pair (skDS, pkDS).

The initial value of the accumulator ACCH is α, and the public parameters are the output of the
three algorithms above. The signing key skDS, and the manager key skNA of ACCNA are part of
the manager key skH of ACCH.

5.ii. GenWit(skH, αt, X):

(a) x
$←−D: samples uniformly one element x;

(b) (Cx,Open)← Comm(x): computes a commitment with Open being the opening information;
(c) wx|t ← GenWitNA(skNA, αt, x): includes x in ACCNA generating a witness wx|t, Equations (2)

and (7);
(d) σ ← Sign(skDS, X||Cx): signs X||Cx;
(e) return the witness wX|t = (x, (Cx,Open), wx|t, σ) to Holder.

5.iii. Del(skH, αt, X):
(a) DelNA(skNA, αt, x): removes x from ACCNA, Equations (3) and (8);
(b) return the update message δ.

8 The commitment is never opened, so we do not define the opening algorithm.
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Holder algorithms. Given the accumulator value αt, the Credential X, the witness wX|t and the
update message δ as described above, the Holder can run the following algorithms:

5.iv. VerMem(αt, X,wX|t):
(a) Verify(σ, (X||Cx), pkDS): the Holder verifies the signature on (X||Cx)

9;
(b) VerMemNA(αt, x, wx|t): checks that the value x has not been removed from ACCNA, Equa-

tions (4) and (10);
(c) return the status of X.

5.v. WitUp−(αt+1, X,wX|t, δ):
(a) WitUp−,NA(αt+1, x, wx|t, δ): updates the witness wx|t, Equations (5) and (11);
(b) return the updated witness wX|t+1 = (x, (Cx,Open), wx|t+1, σ) where Open is defined as in

Item 5.ii.b.

NO

YES

Is the Credential
anonymous?

NO

YES

Fig. 2. This figure represents an accumulator generated according to Construction H (Definition 1) that
supports revocation of anonymous and non-anonymous Credentials. In the figure are depicted the operations
to carry out in the witness generation for a newly added element X. We write ACCH to refer to an adaptively
secure and dynamic accumulator, ACCNA to refer to a non-adaptively secure and dynamic accumulator, and
DS to refer to an adaptively secure and additive accumulator instantiated with a digital signature scheme. We
write ZK if the accumulator (the signature) supports ZKP to prove knowledge of an accumulated element
(signed element) and of the associated witness (the signature). When the Credential is not anonymous,
for simplicity we have omitted that the witness w actually is (x, (Cx,Open), wx|t, σ), where (Cx,Open) ←
Comm(x).

Viable options for the commitment scheme are Pedersen [51] for elliptic curves or Damgård-
Fujisaki [22] for RSA groups; hash-based commitments are not an option for this application.

Features of our construction. Our construction allows a Holder to keep the accumulated value x hid-
den, and therefore the presentations unlinkable with respect to the revocation update messages (pri-
vacy risk 3.ii.). It also allows the Status Manager of a system where anonymous and non-anonymous
Credentials coexist to use the same non-adaptively sound accumulator ACCNA, as shown in Figure 2.
9 This operation can be performed only once, since the revocation of a credential is performed by removing
x from ACCNA.
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Also, since non-anonymous Credentials must be issued in batches, given their single-use nature, the
Status Manager must generate different commitments to the attributes included in the Credentials,
and therefore different signatures, to make the presentation of different copies of Credential unlink-
able (addressing privacy risk 3.iii.). Since the value x is hidden by the commitment Cx, all the copies
of Credential in a batch can refer to the same accumulated value x as long as x is hidden in each
copy using different commitments. This approach simplifies the revocation of all the Credentials in
a batch, because removing x from the non-adaptively sound accumulator simultaneously revokes all
copies of a Credential.

5.3 Zero Knowledge Proofs of Membership for Our Construction

In this section we describe the ZKP protocols that allow a Holder to prove knowledge of an element-
witness pair (x,w) such that x is accumulated in ACCNA (and w is its witness), and being Cx the
commitment in the Credential X, Cx is a commitment to x (i.e. the Credential X has not been
revoked). We do that for both the RSA and EC accumulators described in Sections 4.2 and 4.3.
Building upon the standard proof of knowledge of an accumulated element and its witness – first
introduced in [16] and revisited in [56] 10 for RSA, and in [12] for EC – we add in fraktur font the
relations that must be added in order to bind the ZKP to X, proving that the accumulated element
x is the element committed in Cx. For convenience, we adopt the Camenisch-Stadler notation [18]11.

RSA accumulator. The Status Manager runs SetupZKP∈ generating some additional elements g, h ∈
QR(n) and g, h ∈ G12, where logg(h) and logg(h) must not be known to the Holder to ensure binding.
Let Cx = gxhl be the Damgård-Fujisaki commitment to x included in the Credential X. The Holder
can generate a proof attesting the status of its Credential X running the following algorithm:

5.vi. GenZKP∈: given as input the public parameters, the pair (x,w) and opening material l;
(a) compute three random values rx, rw, r1

$←− Z⌊n/4⌋ for the auxiliary Damgård-Fujisaki com-
mitments [22] Cx = gxhrx , Cw = whrw , Cr = hrwgr1 ;

(b) prove knowledge of the pair (x,w) computing a proof:

π′ ∈ PK

{
(x, l, rx, rw,r1, xrw, xr1) : Cx = gxhl ∧ Cx = gxhrx∧

∧Cr = hrwgr1 ∧ α = Cx
w

(
1

h

)xrw

∧ 1 = Cx
r

(
1

h

)xrw (
1

g

)xr1} (13)

(c) output the proof π = (Cx, Cw, Cr, π
′), which – combined with the Credential X, which is

signed together with the commitment Cx – allows to check its status.

Finally, a Verifier can check the status of the Credential X as follows:

5.vii. VerZKP∈: given the proof π, the pair (X,Cx) and its signature σ, the public parameters and
value of the accumulator ACCH, a Verifier checks that:
(a) the signature σ is a valid signature of (X,Cx);
(b) π is a valid ZKP that the value committed in Cx is still accumulated in ACCNA.

10 We add few additional corrections to the generation of Cr.
11 To clarify the protocol, we abuse the usual notation to include the values that are used by a honest Holder

to generate the proof.
12 A viable choice of G can be G = QR(n), and it is possible to set g← g, h← h and then Cx ← Cx included

in the Credential.
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EC accumulator. The Status Manager runs SetupZKP∈ generating some additional elements g, h, k, z ∈
G1 and g, h ∈ G. Let Cx = gxht be the Pedersen commitment included in the Credential X, and
Ez,j = e(z, j), Ez,g2 = e(z, g2), public values in GT . The Holder can generate a proof attesting the
status of X running the following algorithm:

5.viii. GenZKP∈: given as input the public parameters, the pair (x,w) and opening material l;
(a) compute two random values σ, ρ

$←− Zp for auxiliary commitments Cw = wzσ+ρ, Cσ =
hσ, Cρ = kρ;

(b) prove knowledge of the pair (x,w) computing a proof:

π′ ∈ PK

{
(x, l, σ, ρ, xσ, xρ) : Cx = gxhl ∧ Cσ = hσ ∧ Cρ = kρ∧

∧ 1 = Cx
σ

(
1

h

)xσ

∧ 1 = Cx
ρ

(
1

k

)xρ

∧ e(α, g2)

e(Cw, j)
= e(Cw, g2)

x

(
1

Ez,g2

)xσ+xρ (
1

Ez,j

)σ+ρ}
(14)

(c) output the proof π = (Cw, Cσ, Cρ, π
′), which – combined with the Credential X, which is

signed together with the commitment Cx – allows to check its status.

VerZKP∈ is done as in Item 5.vii., adopting the corresponding ZKP for the relations in Equation 14
and the commitment scheme Comm.

Note that the pairings in Equation 14 are values of GT known by Holder and Verifier; the values
g2, z, j = gskNA

2 are public parameters, hence Ez,g2 , Ez,j ∈ GT can be precomputed.

6 Experimental Evaluation

The performance of some accumulator schemes – RSA, prime- and binary-field elliptic curves, and
Bloom filter – has been measured in [43]. However, the elliptic curve schemes considered did not
include pairing-based schemes, and the work could not have taken into account any of the optimiza-
tions published in [4,63,40,39]. In the following section we compare the two Accumulator schemes
introduced in Section 4 and CRL based mechanisms in terms of Runtime and Size. About the eval-
uation of the accumulators, we evaluate both the operations for the use of accumulators with the
naive approach described in Section 5.1, which does not involve the use of ZKP, and the operations
to be executed using the construction described in Section 5.2, which involves the creation of ZKP.

6.1 Experimental Set-Up

Security level. The EC accumulator is based on the widely used BLS12-381 curve, which achieves a
security level of 128 bits with an embedding degree of 12 over a 381-bit prime field [57]. To ensure
a fair comparison, we instantiate the RSA accumulator with a 3072-bit modulus granting the same
level of security.

Libraries. We use allosaurust13, which implements both the universal [63] and positive [39] EC
accumulators. For RSA, we provide our own implementation based on unknown_order14. It supports
some of the most popular pure rust multiple-precision libraries, as well as the more mature GMP15

13 https://github.com/sam-jaques/allosaurust/tree/master
14 https://crates.io/crates/unknown_order
15 https://gmplib.org/
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and OpenSSL16. We prioritize performance adopting the latter as back-end. For CRLs we adopt
rustls-webpki17. To allow a repeatable experiment we make available the repository containing
our RSA accumulator implementation and benchmarks accumulators-bench18; the code is mainly
written in rust with the exception of a few visualization options in python. In particular, our code
does not include the CRL tests; we made use of the ones already available in the library.

Processor. All data were gathered using a Dell Latitude 7450, Intel Core Ultra 7 165H, 32GB RAM.

6.2 Runtime

Before delving into the runtime comparison, we first introduce the CRL operations and explain how
to compare them with the operations described in Section 4.

6.i. GenCRL: Generate a new CRL from a list of certificates. Since this must be run each time we
want to update the status of the credentials, we can compare it with Del.

6.ii. Parsing: Given a serialized CRL, this process loads the list into memory, either by directly
de-serializing the structure or by organizing it into a Binary Search Tree (BST). The difference
can be summarized as dynamic fetching against caching. We model a Holder, who will likely
search a CRL only occasionally, to run the first type of parsing; and a Verifier, who requires
more efficient lookups, for the second.

6.iii. Search: Based on how a CRL has been parsed it is possible to run two types of searches; note
that we specifically measure the lookup time for credentials that are not revoked, i.e., elements
not in the list:
(a) Linear: This operation search for a specific serial number and measures the time required

to scan the entire list. Since the goal of this operation is for an Holder to asses the status of
its credential, we compare it to VerMem.

16 https://www.openssl.org/docs/man1.0.2/man3/bn.html
17 https://docs.rs/rustls-webpki/latest/webpki/
18 https://anonymous.4open.science/r/accumulators-bench-2C08/README.md

Table 1. Comparison restricted to the operations run by a Status Manager. Additional Cost represents the
impact of a single revocation on the operation at hand, or in the case of GenWit a single addition; Cost
represents the expected execution time on a daily basis (d = 548, a = 19178) and a CRL of size 30MB; Gen
and SetupZKP are invoked once in the lifetime of the accumulator. We use a lighter color to show the overhead
introduced by the construction presented in Section 5.3. The bar plots are presented in a logarithmical scale.

Manager Additional
Cost [ms]

Cost [ms]
RSA EC CRL

Gen 0 6.25 × 103

0 2.39 × 10−1

SetupZKP 0 1.135
0 0.833

Del 1.08 × 10−2 5.911
2.46 × 10−1 1.35 × 102

GenCRL 1.99 × 10−4 1.59 × 102

GenWit 4.3 8.24 × 104

2.42 × 10−1 4.64 × 103
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(b) BST: When the data is stored as a BST, it is possible to do serial number lookups without
scanning the whole list. Since this is the operation a Verifier is most likely to use for status
checks, we compare it to VerZKP∈.

We recognize that organizing the data in a BST is beyond the scope of the standard specification.
However, since it is common practice to use BSTs or other advanced data structures and the imple-
mentation we are testing supports it, we aim to provide a more practical perspective showing the
performance enabled by this option.

Table 1 displays the expected time for the operations performed by a Status Manager. In partic-
ular, RSA offers better performance for the Del operation, since batching is possible; batch Del for
EC is excluded due to the need for upmsg generation. In this specific daily scenario, CRL appears
to be the most time-consuming method to update the status of the credentials, this does not hold
for a bigger number of revocations, around d > 7× 102 and d > 15× 103 recomputing a CRL would
be less expensive than, respectively, updating an EC or an RSA Accumulator.

Gen and SetupZKP are only run during the initialization phase of an accumulator. GenWit must
be performed for each element added to S making it the primary computational cost for a Sta-
tus Manager. GenWit cost and scaling might seem concerning, but observe that the RSA and EC
accumulators can be viewed as a special use of RSA and BLS [13] digital signature algorithms,
respectively. In short, generating a witness wx for an element x can be compared to generating a
new signature of the same message α under the public key x, making GenWit comparable to signing
an OCSP response, both in purpose and computational cost.

Table 2 presents the run-time for the operations performed by Holder and Verifier. We can see
how the construction proposed in Section 5.2 introduces only a small overhead, which does not even
affect the RSA version since we are choosing Cx = Cx. In general, the EC Accumulator offers better
performance for ZKP-related computations, and the cost of performing a Linear Search in a CRL
is equivalent to running the EC operation VerZKP∈.

Table 2. Comparison restricted to the operations run by Holder and Verifier, where the latter only computes
the last operation. Additional Cost represents the impact of a single revocation on the operation at hand;
Cost represents the expected execution time for a single call with the exception of WitUp−which is reported
as a daily operation (d = 548); Overhead indicates, in the CRL case, the amount of time it takes to parse
a 30MB into a Binary Search Tree (BST), meanwhile for accumulators is the overhead introduced by not
batching the operations. We use a lighter color to show the overhead introduced by the construction presented
in Section 5.3. The bar plots are presented in a logarithmical scale.

Holder
Verifier

Additional
Cost [ms]

Cost [ms]
RSA EC CRL Overhead

VerMem 0 3.93 × 10−1

0 2.18
Linear Search 1.20 × 10−3 6.68

WitUp− 3.69 × 10−1 2.03 × 102

5.95 × 10−2 3.34 × 101

GenZKP∈ 0 5.09 × 101

0 5.9

VerZKP∈ 0 3.46 × 101

0 6.9
BST Search 3.27 × 10−11 8.2 × 10−5
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The heaviest computational burden falls on the Holder, particularly for the WitUp− operation;
which is assumed to be performed in epochs, as updating a witness for every individual revocation
would result in significant overhead, included only in the bar plots. We also adapted the allosaurust
implementation to use Pippenger’s algorithm, which significantly optimizes batch updates, otherwise
it would take the same time as the single updates.

If executed daily, WitUp− can be compared to parsing a CRL into a BST. From this perspective, it
shifts the computational cost from the Verifier to the Holder. However, the key difference is that while
a CRL contains all necessary revocation information, a witness depends on its most recent update.
This means that a Holder must request a new witness if their current one is too outdated. A practical
threshold can be set to determine when an update would take too long to compute; approximately
d = 104 for RSA and d = 105 for EC, beyond which updates would take several seconds to complete.
In our scenario, this threshold corresponds to a Holder being offline for approximately 1 month for
RSA or 6 months for EC.

6.3 Size

Table 3 summarizes the sizes of the private sk and public parameters params for the Status Manager,
along with the accumulator value α, the accumulated value x, the witness w, the message update after
d deletions, and the zero-knowledge proof GenZKP∈. When computing a Non-Interactive ZKP, the
Holder can either send the commitments, or their digest. We assume the latter, but include the space
complexity of the commitments in brackets. This first method is often preferred in implementations,
since it favors better error handling.

For the RSA implementation, we use 3072-bit modulus n. The hash function used to create the
accumulated element produces a 32-byte digest. It’s important to note that the responses in the
RSA ZKP are integers, so their size can vary based on the challenge and the blinded elements. To
keep things simple, we refer to multiples of the size of the digest.

The EC implementation uses the pairing-friendly curve BLS12-381. The scalars in Zp are 32
bytes, while the points in G1 are 48 bytes. The sizes for G2 and GT are respectively 2 and 12 times
larger.

None of the elements listed scale with the size of the set S. Additionally, both the computational
time and the size of a zero-knowledge proof remain constant.

However, note that the size of upmsg increases with the number of deletions. A 3% annual
revocation rate for CIE with a uniform distribution would result in about 16 000 revocations each
month. In the RSA case, this amounts to roughly 512 kB of update data, which every Holder would
need to download and process. For an EC accumulator with the same assumptions, the monthly
upmsg would be approximately 1.3 MB – more than double the size of the RSA version.

Table 3. Size comparison between RSA and EC accumulators.

RSA EC
Z∗
n digest bytes Zp G1 G2 GT bytes

sk 1 384 1 32
params 1 384 1 96
α 1 384 1 48
x 1 32 1 32
w 1 384 1 48
upmsg 1 d 32d+ 384 d d 80d
GenZKP∈ 4(+4) 13(−1) 1952 6(−1) 3(+4) (+1) 336
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For an upmsg to reach the typical size of a CRL (e.g. 30 MB) it would require an Holder to be
offline for more than two years. As discussed in Section 6.2 we will reach an usability threshold much
earlier, in a concrete scenario for EC a Status Manager will keep published at most the upmsg for
the last 6 months, leading to a constant size of around 7.8 MB of public material to handle.

6.4 Experimental Assessment Summary

The RSA accumulator is computationally more expensive than the EC accumulator in the setup
phase, in the Holder witness update, and ZKP, both generation and verification, while the EC
accumulator is more expensive in the Holder membership verification. In terms of size, the EC
accumulator is smaller (or equal) for all parameters with the important exception of upmsg.

Concerning the performance comparison between Accumulators and CRL based revocation meth-
ods, the key distinction stands in the fact that the former vary their performance based on the number
of additions or deletions to S since the last update, whereas the latter depend on the total amount
of revocations. However, it must be noted that Accumulators have a significantly higher overhead as
the number of revocations increases, as shown under the Additional Cost column in Tables 1 and 2.

Mode of operation. If the size of upmsg to be published by the Status Manager and downloaded
by every Holder is not a concern, the EC accumulator would be computationally advantageous in
upmsg mode for all roles.

Batch issuance. Using a single element x per batch of credentials would be possible. Using a
different value per credential in a batch would be highly inefficient; if the accumulator is used in
upmsg mode, it would force every Holder to update all witnesses for unused credentials – as well as
requiring publication of revoked elements, in the same way that a list of revoked serials would have
to be published; in reset mode, it would force the Issuer to re-issue a witness for every credential
in the batch at every update, which would be more computationally expensive than re-issuing the
entire batch with fresh signatures and a short duration.

7 Comparison of accumulators with other revocation mechanisms

We compare accumulators with the two most well-known revocation mechanisms – CRL and OCSP,
with and without stapling (∡). We consider accumulators without ZKP (Section 5.1) in upmsg and
in reset mode (Section 4), in which the Status Manager generates new witnesses at each update; and
with zero-knowledge proofs (A+ZKP, Section 5.2), in either of the previous modes. We do not here
consider Status List and Status Assertions as they are still in draft stage.

Accumulators may address the availability issue (Item 2.i.) in the same manner as OCSP stapling,
i.e., by allowing the Holder to provide the Verifier an Issuer-signed copy of the public accumulator
value. None of the academic literature address this option explicitly.

Our findings from the point of view of scaling and privacy (Items 2.ii. and 2.iii.) are summarized
in Table 4. For scalability we compare Verifier request and Holder update size scaling – how much
data do the Verifier and Holder have to download to enable the revocation mechanism – and we
distinguish between none (0), constant (O(1)), scaling with the number of revocations (O(d)).

Accumulators vs. CRL. Accumulators are better than, or equal to, CRL in every privacy respect
as well as Verifier request size. CRL have the main advantage that the Holder need not ever
update their local information. This is a very significant advantage, considering that Holder
devices may be frequently offline, and wallet providers may not wish to deal with frequent
complaints. Additionally, considering the EUDI ARF requirements (Section 3), support for list-
based mechanisms is mandatory for qualified attestations, while other mechanisms appear to be
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excluded. Even changing the ARF would require supporting an additional mechanism, rather
than an alternative one. This also weighs in favor of CRL or Status List [47].

Areset vs. OCSP with stapling. Accumulators in reset mode amount to the Issuer providing the
Holder with a new witness at every update period, and revoked elements are never published
as upmsg. They are almost identical to OCSP, except that they do not allow Credential sta-
tus monitoring. In this mode, without ZKP (Section 5.1), Accumulators have a slight privacy
advantage.

Aupmsg vs. OCSP with stapling. Status Manager publishing upmsg allows monitoring of their ac-
tivity as well as the status of previously verified Credential. upmsg are also likely larger than
OCSP responses. In this mode, without ZKP (Section 5.1), Accumulators are equal to or worse
than OCSP w/ stapling in every respect.

A(mode) + ZKP vs. OCSP with stapling. With ZKP, Accumulators mitigate against every iden-
tified privacy threat, in particular presentation linking and Credential status monitoring, and
have equal Holder update size. They are better than, or equal to, OCSP w/ stapling in every
privacy and size Criterion, possibly except Verifier request size.

A(mode) + ZKP vs. A(mode). The accumulators using the ZKP described in Section 5.3, compared
with those that do not use ZKP according to the naive construction described in Section 5.1,
allow the manager to issue batches of copies of a Credential associated with the same element x
accumulated in ACCNA.

Lastly, note that none of the revocation mechanisms considered here address the dishonest Issuer
weakness (Item 2.iv.).

8 Conclusion

Wallet revocation mechanisms are the topic of active discussion and research. As underlined by
the difficulties encountered in revocation mechanisms for web PKI, revocation is a difficult goal to
achieve - and privacy-preserving revocation doubly so.

We have shown how the latest cryptographic accumulators can be integrated with (non-anonymous)
digital identity credentials to provide greater privacy guarantees than existing standards for revo-
cation, when combined with appropriate zero-knowledge proofs. We also present a mechanism that
uses existing techniques to manage the revocation of both anonymous and non-anonymous creden-
tials by adopting a single dynamic non-adaptively sound accumulator. Lastly, we show that, even
if accumulators require greater computational effort from all parties involved, particularly for the

Table 4. Comparison of revocation schemes, assuming batch issuance: exposure to privacy risks and com-
munication cost scaling with number of revocations d.

Criterion Aupmsg Areset A(mode) + ZKP CRL OCSP OCSP + ∡

Item 3.i. Status Manager monitoring Holder N N N N Y N
Item 3.ii. Verifier monitoring Credential status Y N N Y Y Y
Item 3.iii. Verifier linking Holder presentations N N N N N N
Item 3.iv. Status Manager monitoring Verifier N N N N Y N
Item 3.v. Third Parties monitoring Status Manager Y N (as mode) Y N N
Verifier request size O(1) O(1) O(1) O(d) O(1) 0
Holder update size O(d) O(1) (as mode) 0 0 O(1)
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creation and verification of ZKP, and for the management of the witnesses, the overhead introduced
may be, in some contexts, absolutely practical.

In future works we plan to extend experimental evaluation to other platforms to provide a better
comparison with mobile devices. We plan to extend the comparison of accumulators with Status List
and Status Assertion, once out of draft stage.
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A ZKP and Instantiations

We explicitly describe the ZKP algorithms introduced in Section 5.3, and how they can be instanti-
ated as revocation mechanism for non-anonymous verifiable credentials (like mDOC/SD-JWT). We
don’t describe the combination with anonymous credentials as it is widely discussed [16,4,40,56].

A.1 ZKP for RSA accumulator

To prove knowledge of an accumulated element, the Holder must execute the algorithm GenZKP∈
described in Section 5.3. In the following we describe how to compute the core proof π:

π ∈ PK

{
(x, rx, rw, r1, xrw, xr1) :

Cx = gxhrx ∧ Cr = hrwgr1 ∧ α = Cx
w

(
1

h

)xrw

∧ 1 = Cx
r

(
1

h

)xrw (
1

g

)xr1} (15)

This means that a Holder is generating a Proof of Knowledge (PoK) that keeps the values
x, rx, rw, r1, xrw, xr1 secret but assures that the given relations are satisfied. All the commitments
Cx, Cw, Cr are sent by the Holder to the Verifier as part of the proof, so they are shared knowledge.

The first two equations are used to prove that the Holder knows how to open the commitments
Cx and Cr and a proof of discrete logarithm equality, which aims to show that the value x and
the randomness rw appearing in the following equations are the same as used in the generation of
commitments. The next equation:

α = Cx
w

(
1

h

)xrw

(16)

is the core of the proof and shows that Cw is a commitment to a witness for x. The last equation:

1 = Cx
r

(
1

h

)xrw (
1

g

)xr1

(17)

is to show that the exponent of 1
h in the previous equation is indeed of the form xrw.

We describe the ZKP as a sigma-protocol [21], which is possible to turn into a non-interactive
protocol using the Fiat-Shamir transform [54,32,2]:
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1. Holder initializes a proof generating the commitments Cw, Cx and Cr and generates a random
element for each secret value:

vx ∼ 2k
′+k′′+∅ (18)

vrx , vrw , vr1 ∼ ⌊n/4⌋2k
′+∅ (19)

vxrw , vxr1 ∼ ⌊n/4⌋2k
′+k′′+∅ (20)

where k′ is the dimension of the challenge c, k′′ the accumulated element x and ∅ is an additional
security parameter [37]. Then the Holder computes the commitments

Tx = gvxhvrx

Tr = hvrwgvr1

Tw = Cvx
w

(
1

h

)vxrw

Tu = Cvx
r

(
1

h

)vxrw
(
1

g

)vxr1

and sends (Cw, Cx, Cr, Tx, Tr, Tw, Tu) to Verifier
2. the Verifier generates random challenge c

$←− {0, 1}k′
;

3. the Holder computes the responses

sx = vx − c · x
srx = vrx − c · rx
srw = vrw − c · rw
sr1 = vr1 − c · r1
sxrw = vxrw − c · xrw
sxr1 = vxr1 − c · xr1

4. Finally, the Verifier can check

Tx = Cc
xg

sxhsrx

Tr = Cc
rh

srw gsr1

Tw = αcCsx
w

(
1

h

)sxrw

Tu = Csx
r

(
1

h

)sxrw
(
1

g

)sxr1

.

When the ZKP is made non-interactive, it is given by the values

(Cx, Cw, Cr, c, sx, srx , srw , sr1 , sxrw , sxr1)

where c = H(Cx, Cw, Cr, Tx, Tr, Tw, Tu).

When we instantiate the RSA accumulator as a revocation mechanism for verifiable credentials
mDOC/SD-JWT, the value Cx is not computed by the Holder during the presentation of the cre-
dential, but it is precomputed when the credential is issued, and it is included in the credential as
an attribute. All the other operations described above remain unchanged.
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A.2 ZKP for EC accumulator

To prove knowledge of an accumulated element, the Holder must execute the algorithm GenZKP∈
described in Section 5.3. In the following we describe how to compute the core proof π:

π ∈ PK

{
(x, σ, ρ, xσ, xρ) : Cσ = hσ ∧ Cρ = kρ

∧1 = Cx
σ

(
1

h

)xσ

∧ 1 = Cx
ρ

(
1

k

)xρ

∧ e(α, g2)

e(Cw, j)
= e(Cw, g2)

x

(
1

Ez,g2

)xσ+xρ (
1

Ez,j

)σ+ρ}
(21)

where we recall that z, h, k, g2, j = gsk2 are public values, therefore Ez,g2 = e(z, g2) and Ez,j = e(z, j)
can be precomputed.

As for the RSA case, this means that a Holder is generating a Proof of Knowledge (PoK)
that keeps the values x, σ, ρ, xσ, xρ secret but assures that the given relations are satisfied. All the
commitments Cσ, Cρ, Cw are sent by the Holder to the Verifier as part of the proof, so they are
shared knowledge.

The first two equations are used to prove that the Holder knows how to open the commitments
Cσ and Cρ and a proof of discrete logarithm equality, which aims to show that the value x and the
randomnesses σ, ρ appearing in the following equations are the same as used in the generation of
commitments.

The following two equations are to show that the exponent of
1

Ez,g2

is in the form x(ρ+ σ).

The last equation is the core of the proof, indeed applying pairing properties:

e(w, gx2 j) =
e(Cw, g

x
2 j)

e(zσ+ρ, gx2 j)
=

e(Cw, g2)
xe(Cw, j)

e(z, g2)xσ+xρe(z, j)σ+ρ

Therefore, proving that the last equation holds and the commitment are correctly generated, as
granted by the previous relations, implies that (10) must hold.

We describe the ZKP as a sigma-protocol [21], which is possible to turn into a non-interactive
protocol using the Fiat-Shamir transform [54,32,2]:

1. Holder initializes a proof generating the commitments Cw, Cσ, Cρ, then it samples uniformly a

random element for each secret value vx, vσ, vρ, vxσ, vxρ
$←− Zp and computes

Tσ = hvσ

Tρ = kvρ

Tσ̄ = Cvx
σ

(
1

h

)vxσ

Tρ̄ = Cvx
ρ

(
1

k

)vxρ

Te = e(Cw, g2)
vx

(
1

Ez,g2

)vxσ+vxρ
(

1

Ez,j

)vσ+vρ

and sends (Cw, Cσ, Cρ, Tσ, Tρ, Tσ̄, Tρ̄, Te) to the Verifier

2. the Verifier samples a random challenge c
$←− Zp and sends it back to the Holder
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3. the Holder computes the responses:

sx = vx − c · x
sσ = vσ − c · σ
sρ = vρ − c · ρ
sxσ = vxσ − c · xσ
sxρ = vxρ − c · xρ

and sends it to the Verifier
4. the Verifier checks that

Tσ = Cc
σh

sσ

Tρ = Cc
ρk

sρ

Tσ̄ = Csx
σ

(
1

h

)sxσ

Tρ̄ = Csx
ρ

(
1

k

)sxρ

Te =

(
e(α, g2)

e(Cw, j)

)c

e(Cw, g2)
sx

(
1

Ez,g2

)sxσ+sxρ
(

1

Ez,j

)sσ+sρ

When the ZKP is made non-interactive, it is given by the values

(Cσ, Cw, Cρ, c, sx, sρ, sσ, sxρ, sxσ)

where c = H(Cw, Cσ, Cρ, Tσ, Tρ, Tσ̄, Tρ̄, Te).

When we instantiate the EC accumulator as a revocation mechanism for verifiable credentials
mDOC/SD-JWT, we must add a Pedersen commitment to x: Cx = gx1 z

r ∈ G1 in the Credential
which is signed by the Issuer, where g1, z ∈ G1 are the public values previously defined, for which
logg1 h is unknown. Then the Holder will execute the ZKP described above with the following
modifications in the sigma protocol execution:

1. The Holder executes the operations described above in Item 1 of the the sigma protocol above,
and additionally samples at random vr

$←− Zp, computes Tx = gvx1 zvr , and send to the Verifier
also the value Tx;

2. the Holder receives the challenge c;
3. the Holder in addition to computing the responses described in Item 3 of the sigma protocol

above, computes sr = vr − c · r, and sends it to the Verifier
4. the Verifier performs the checks described in Item 4 and also checks that Tx = Cc

xg
sx
1 zsr .

B Witnesses as digital signatures

We observe that the RSA and Elliptic Curve accumulators can be viewed as a special use of RSA and
BLS [13] digital signature algorithms, respectively. In short, generating a witness wx for an element
x can be compared to generating a new signature of the same message α under the public key x.
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As well as being of academic interest, this view can be of assistance to readers familiar with those
algorithms, and it is informative insofar as their performance and comparison with other revocation
mechanisms are concerned. Moreover, if more efficient ZKP are defined for a signature scheme than
those known in the literature for accumulators, they can be applied – as done in [20, Section 4.3].

A textbook RSA digital signature and verification for message m, with private key d and public
key e,N ← pq is:

Sign(m, d,N) : σ ← md mod N (22)

Verify(m, e,N) : bool← m
?
= σe mod N (23)

The public exponent e is fixed and known to signer and verifier, typically e = 65537; the private
exponent is d ← e−1 mod ϕ(N), the totient function ϕ(N) = (p − 1)(q − 1) = 4p′q′. One may
consider the RSA accumulator as akin to signing the same public message with different private and
public exponents for each element, in the following sense:

– from the Status Manager key sk = p′q′, the Status Manager generates a new private key dx ←
x−1 mod sk for every element x to be accumulated;

– generating a signature for the public message m = αt is equivalent to generating a new witness
wx|t ← αdx mod N

– verifying that the element x is accumulated is equivalent to verifying that the signature of the
message αt under the private key x−1 is valid under the public key x,N .

In a similar fashion, one can describe an analogy between a BLS signature and the EC accumu-
lator. Given a bilinear pairing e : G1×G2 −→ GT , with g2 generator of G2, a BLS digital signature
and verification for a message m, with private key d and public key j ← gd2 is:

Sign(d,m) : σ ← md (24)

Verify(m, j) : bool← e(σ, g)
?
= e(m, j) (25)

One may consider the EC accumulator as again signing the same public message with different
private and public exponents:

– from the Status Manager key sk, the Status Manager generates a new private key dx ← (sk+x)−1

for every element x to be accumulated;
– generating a signature for the public message m = αt with the private key dx = (sk + x)−1 is

equivalent to generating a new witness wx|t ← αdx
t ;

– verifying that the element x is accumulated follows the same steps as BLS under the public key
gsk2 .

The similarity in principle between signatures and witnesses was previously argued in [4,40],
in which digital signatures serve as positive additive accumulators, and proving membership of an
element x, is achieved by proving knowledge of a signature over x. Here we argue that also for some
positive dynamic accumulator schemes, witness generation and verification algorithms are equivalent
to signing and verification algorithms of well-known digital signatures on a common message α.
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