
(Special Session)

This paper will be presented at IEEE VLSI Test Symposium (VTS) 2025

BugWhisperer: Fine-Tuning LLMs for SoC
Hardware Vulnerability Detection

Shams Tarek, Dipayan Saha, Sujan Kumar Saha, Farimah Farahmandi
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA

{shams.tarek, dsaha, sujansaha}@ufl.edu, {farimah}@ece.ufl.edu

Abstract—The current landscape of system-on-chips (SoCs) se-
curity verification faces challenges due to manual, labor-intensive,
and inflexible methodologies. These issues limit the scalability and
effectiveness of security protocols, making bug detection at the
Register-Transfer Level (RTL) difficult. This paper proposes a
new framework named BugWhisperer that utilizes a specialized,
fine-tuned Large Language Model (LLM) to address these chal-
lenges. By enhancing the LLM’s hardware security knowledge
and leveraging its capabilities for text inference and knowledge
transfer, this approach automates and improves the adaptability
and reusability of the verification process. We introduce an
open-source, fine-tuned LLM specifically designed for detecting
security vulnerabilities in SoC designs. Our findings demonstrate
that this tailored LLM effectively enhances the efficiency and
flexibility of the security verification process. Additionally, we
introduce a comprehensive hardware vulnerability database that
supports this work and will further assist the research community
in enhancing the security verification process.

Index Terms—Large Language Model, Fine-tuning, Hardware
Security, Security Verification, Hardware Vulnerability Database

I. INTRODUCTION

Hardware vulnerabilities at the SoC level present critical
threats by potentially exposing sensitive user data, crypto-
graphic keys, and essential system configurations. Increasingly
sophisticated attacks targeting SoCs, such as information leak-
age [1], side-channel leakage [2], and violations of access
control [3], emphasize the urgent need for rigorous SoC secu-
rity verification. Addressing these vulnerabilities proactively
is essential to prevent severe financial repercussions, product
recalls, and reputational damage within the semiconductor
industry.

Traditional SoC security verification approaches primarily
concentrate on functional correctness, frequently overlooking
critical vulnerabilities during pre-silicon verification. While
methods such as information flow tracking [4], assertion-based
security verification [3], fuzz testing [5], runtime verification
monitoring, and static code analysis [6] have been developed,
these techniques often encounter significant scalability and

We thank to U.S. National Science Foundation (NSF) for their support
through CAREER Award under Grant 2339971.

adaptability limitations. Furthermore, they usually require ex-
tensive manual intervention, thereby elevating both the com-
plexity and cost of security verification. Consequently, there
is an increasing demand for automated and versatile methods
capable of efficiently handling diverse hardware architectures
and dynamic security scenarios. Detecting vulnerabilities com-
prehensively at the RTL can notably reduce the time, effort,
and expenses involved in SoC security verification.

Recently, LLMs have gained traction within hardware se-
curity and design communities due to their superior abilities
in pattern recognition, knowledge generalization, and learning
from extensive datasets [7], [8]. Consequently, researchers are
leveraging LLMs to address complex security challenges at the
SoC level [8]–[11]. For instance, prompting-based techniques
utilizing both pre-trained and proprietary LLMs have been
applied to identify security vulnerabilities within RTL designs
[12]. Nevertheless, the limited hardware-specific knowledge
inherent in pre-trained LLMs constrains their applicability in
targeted security verification tasks. A comparative analysis of
existing LLMs provides valuable insights into their effective-
ness for vulnerability detection SoCs and hardware designs.
Proprietary models, including well-known solutions such as
Gemini and GPT [13], typically demonstrate superior detection
accuracy compared to smaller open-source alternatives like
LLama [14], Mistral, and CodeLlama [15]. However, despite
their notable performance advantages, proprietary solutions
present several significant challenges. These include high oper-
ational costs, limited accessibility, scalability constraints, and
reduced operational flexibility. Such factors may substantially
limit their broader adoption and applicability across various
industries, potentially making open-source alternatives more
attractive due to their flexibility, transparency, and accessibil-
ity.

Thus, the development of smaller, open-source LLMs ex-
plicitly fine-tuned to detect SoC-level security vulnerabilities
in RTL designs becomes critical. To our knowledge, no such
model currently exists. This paper addresses this significant
gap by investigating the feasibility and effectiveness of fine-
tuning an open-source LLM for hardware security vulnerabil-
ity detection at the SoC level. By integrating comprehensive
insights from the CWE hardware vulnerability database, our
proposed model substantially enhances its capability to detect979-8-3315-2144-8/25/$31.00 ©2025 IEEE

Fig. 1. Overview of the proposed BugWhisperer framework.

and mitigate critical security threats.
In addition, the model is trained using security vulnerability

reports, which allows it to accurately identify the presence
of security vulnerabilities. Using these task-specific datasets,
our fine-tuned model improves the precision and efficiency in
detecting 13 security vulnerabilities in SoC designs. The key
contributions are:

• We present a comprehensive SoC hardware vulnerability
database, open to the research community

• We introduce an open-source, fine-tuned LLM specifi-
cally designed for detecting hardware design bugs in the
SoC

• We demonstrate that open-source LLMs can compete
with proprietary LLMs if properly curated

In the remainder of this paper, Section II narrates the
methodology used in this work. Next, Section III describes
the training scheme and details the experimental result with
analysis. Finally, Section IV concludes the paper.

II. PROPOSED METHODOLOGY

The proposed framework “BugWhisperer” comprises two
key stages: (1) Generation of a hardware vulnerability
database, and (2) Fine-tuning of a custom LLM for hardware
vulnerability detection, as shown in Figure 1.

A. Database Generation for Vulnerable SoC Designs

To establish a high-quality database for vulnerable hard-
ware designs, this work leverages existing Golden Vulnerable
SoC design benchmarks available through the Cad4Security
platform [16]. These benchmarks comprise 13 distinct SoC
vulnerabilities introduced into the CVA6 Ariane core. Initially,
each vulnerable design module is systematically separated and
clearly labeled according to its specific vulnerability type. Sub-
sequently, a comprehensive specification file is generated for
each vulnerable module. Each specification file meticulously
documents the baseline functionality of the respective Intellec-
tual Property (IP), detailed descriptions of internal and external
registers, Input/Output (I/O) ports, and explicit vulnerability

characteristics. Such specification documentation is crucial, as
it explicitly outlines both the intended baseline functionality
and the inherent vulnerabilities within each module.

Following specification creation, the vulnerable designs are
replicated using a Replicator LLM. This replication is not
a simple duplication; rather, it involves a nuanced process
engineered to retain original module functionality while sys-
tematically diversifying code expression. To achieve this diver-
sity, various Verilog/SystemVerilog coding styles are adopted,
including parameterization, Finite State Machine (FSM) ar-
chitectures (single-process FSM and dual-process FSM), and
varying signal nomenclatures. The replication process em-
ploys carefully curated Replicator prompts, manually tailored
according to these different coding styles, to ensure each
generated design instance remains distinct.

During replication, the specification file corresponding to
each vulnerable IP is provided as context to the Replicator
LLM, thereby ensuring fidelity to the original functionality
and the embedded vulnerability. Furthermore, two pivotal
LLM parameters—“Temperature” and “Top p”—are utilized
to enhance the uniqueness and diversity of the generated
design instances. The “Temperature” parameter, adjustable
between 0 and 2, influences response creativity and diversity,
with typical optimal ranges identified as between 0.6 and 1.5.
Higher temperature values increase diversity but may compro-
mise functionality consistency due to enhanced creativity. The
“Top p” parameter controls randomness and coherence in the
output tokens, aiding in the prevention of code similarity and
token overlap among generated replicas.

B. Fine-tuning LLMs for Vulnerability Detection

In the subsequent stage, open-source LLMs are fine-tuned
for vulnerability detection tasks using the developed hardware
vulnerability database. Initially, potential open-source mod-
els are carefully analyzed for suitability. Many open-source
LLMs lack comprehensive hardware-specific domain knowl-
edge essential for the effective detection of vulnerabilities
in hardware designs. After rigorous assessment, we select

Llama-3.2-1B-instruct, Llama-3.2-3B-instruct, Llama-3.1-8B-
instruct, Mistral-7B-instruct, and Codellama-7B-it models.
These models are chosen due to their instructional adaptability,
coding proficiency, and compatibility with hardware design
tasks.

Despite their robust coding and instructional following
capabilities, these models initially lack specialized knowledge
regarding hardware security vulnerabilities, especially in RTL
design contexts. Therefore, fine-tuning is necessary to embed
this critical domain-specific knowledge. The fine-tuning pro-
cess enhances the LLMs’ capability to accurately recognize
and classify hardware security vulnerabilities, thereby signifi-
cantly improving their efficiency and reliability during security
bug analysis. The incorporation of domain-specific expertise
enables these models to effectively support hardware security
assessments, contributing substantially to the robustness and
security of future hardware designs. The detailed description
of the vulnerabilities will be found here [16]. The fine- tuning
and evaluation efforts discussed in this work focus on detecting
the following 13 vulnerabilities:

• CWE-1198: Improper handling of privilege issues
• CWE-269: Improper privilege level during interrupt han-

dling
• CWE-1245: Less secured FSM encoding
• CWE-1260: Overlapping between memory ranges
• CWE-506: Hardware trojan inside the decoder module
• CWE-310: Trojan in AES for information leakage
• CWE-310: Trojan in AES for denial of service
• CWE-310: Trojan in CSR module unauthorized access
• CWE-321: Use of hardcoded cryptographic key
• CWE-250: Improper trap privilege assignment
• CWE-1244: Unlocking JTAG during reset
• CWE-284: Improper direct memory access
• CWE-1271: Unauthorized access to important registers

The detailed description of the vulnerabilities will be found
here [16].

During this phase, instruction fine-tuning is utilized to
specialize the model for identifying security vulnerabilities. To
accomplish this, the original data is reformatted via a Python
script into a structured prompt-response format. Each prompt
includes either a secure or a vulnerable SoC design accom-
panied by a query prompting a security evaluation targeting
a particular security flaw. In the corresponding responses, it
is clearly stated whether the specified vulnerability is present
or not, along with explanations to support the decision. Such
detailed rationales are essential during fine-tuning, as they
assist the model in comprehending the logic underlying the
security assessments, thus significantly improving its capabil-
ity to identify and clearly articulate security issues within SoC
designs.

A major challenge in dataset creation is the lack of suffi-
ciently detailed annotations. To mitigate this limitation, GPT-
4o is employed to generate thorough explanatory annotations
across different hardware modules. These generated expla-
nations are subsequently integrated into the prompt-response
pairs, thereby enhancing the dataset with the necessary context

for effective model training. For a rigorous evaluation of the
model’s effectiveness, the dataset is partitioned into distinct
training, validation, and testing subsets based on individual
designs. Such an approach ensures that the RTL designs
allocated to the test set remain entirely unseen during the
training phase, thereby enabling an accurate assessment of
the model’s ability to generalize beyond the provided training
examples.

III. EXPERIMENTATION AND EVALUATION

A. Dataset Replication

For replicating the dataset, available open-source SoC vul-
nerability benchmarks were used. The coding and replicating
capabilities of GPT-4 and GPT-4o were leveraged as the
replicator LLMs. All datasets were replicated using GPT
API calls. To maintain consistent functionality throughout the
process, the “Temperature” value was kept between 0.6 and
1.5. Using this process, a set of 4000 vulnerable SoC hardware
designs were generated. The dataset is available here: https://
github.com/shamstarekargho/Hardware-Vulnerability-Dataset

B. Training Setup

As described in Section III-A, 4,000 Verilog codes are
used during training the open-source models. For training,
We implemented a parameter-efficient fine-tuning approach
using low-rank adaptation (LoRA) [17], enhancing training
efficiency by adding minimal additional parameters to the
open-source models. The LoRA configuration was set with a
rank size of 128, an alpha value of 256, and a dropout rate of
0.1, optimizing the balance between parameter efficiency and
model accuracy. Fine-tuning was conducted on two NVIDIA
A100 GPUs with 4-bit quantization (NF4) and a float16
compute data type to manage memory demands, leveraging the
GPUs’ computational power. To ensure stable weight updates,
we employed a low learning rate of 2× 10−6, a batch size of
4, and gradient accumulation steps of 1 across three training
epochs, mitigating overfitting risks while maintaining effective
gradient updates. The training utilized the paged adamw 32bit
optimizer with a weight decay of 0.001 for regularization,
a maximum gradient norm of 0.3 for clipping to prevent
exploding gradients, and a constant learning rate scheduler
with a warmup ratio of 0.03 to gradually increase the learning
rate. Gradient checkpointing was enabled to reduce memory
usage, and the maximum sequence length was capped at
512 tokens to balance computational efficiency and context
retention.

C. Result Analysis

The detection accuracy results for different models, includ-
ing proprietary, fine-tuned, and non-fine-tuned open-source
models, are shown in Figure 2 The results indicate a clear
distinction in performance between these categories, demon-
strating the effectiveness of fine-tuning in adapting LLMs for
hardware security vulnerability detection.

Among the fine-tuned models, Mistral-7B-instruct achieved
the highest accuracy of 84.8%, significantly outperforming

https://github.com/shamstarekargho/Hardware-Vulnerability-Dataset
https://github.com/shamstarekargho/Hardware-Vulnerability-Dataset

Fig. 2. Performance evaluation of the large proprietary models, fine-tuned and non-fine-tuned open-source models.

its non-fine-tuned counterpart, which only reached 42.5%.
This improvement of over 40 percentage points highlights
the effectiveness of fine-tuning in equipping open-source
models with domain-specific knowledge. Although Mistral-
7B-instruct does not surpass the performance of proprietary
models, its high accuracy suggests that open-source models
can be viable alternatives with sufficient domain adaptation.
Similar trends are observed for Llama-3.1-8B and Llama-3.2-
3B, where fine-tuning elevates detection accuracy to 74.4%
and 68.7%, respectively, from their significantly lower non-
fine-tuned baselines. The best-performing model (Mistral-7b-
instruct-Bug-Whisperer) has been released to the research
community for further use in the hardware security verification
domain. The model can be found here: https://huggingface.co/
shamstarek/Mistral-7B-instruct-Bug-Whisperer

The proprietary models, as expected, demonstrated superior
performance, with GPT-4o achieving the highest accuracy of
91.3%, followed by o-1 (86.9%) and o3-mini (83.8%). These
results align with expectations, as proprietary models bene-
fit from extensive pretraining on diverse datasets, including
specialized knowledge in hardware security. However, their
reliance on closed-source architectures and significant usage
costs make them less accessible for widespread deployment.

A key observation from the results is the poor performance
of non-fine-tuned open-source models, which average around
40% accuracy. This highlights a major limitation of general-
purpose LLMs when applied to domain-specific tasks without
adaptation. The lack of pretraining on hardware security
datasets renders them ineffective for vulnerability detection,
reinforcing the necessity of fine-tuning to bridge this knowl-
edge gap.

Model size is another influential factor affecting detec-

tion accuracy. The results indicate that larger open-source
models tend to achieve higher accuracy post-fine-tuning. For
instance, Llama-3.2-3B (3B parameters) reaches 68.7% accu-
racy, whereas Llama-3.1-8B (8B parameters) achieves 74.4%,
suggesting that increased model capacity contributes to bet-
ter representation of security-related patterns. However, fine-
tuning smaller models effectively can still yield competitive
performance while reducing computational overhead.

These findings suggest broader implications for AI-driven
hardware security. The substantial improvement in fine-tuned
models highlights their potential as cost-effective alternatives
to proprietary solutions. Unlike closed-source models, fine-
tuned open-source LLMs provide transparency, cost efficiency,
and flexibility for integration into security workflows. How-
ever, Despite these promising improvements, limitations re-
main. While fine-tuning enhances detection accuracy, some
vulnerabilities may still go undetected due to complex attack
patterns. Further refinements in dataset expansion, fine-tuning
methodologies, and architectural modifications could push
open-source models closer to proprietary-level performance.

IV. CONCLUSION

This paper presents a fine-tuned LLM-based approach,
“BugWhisperer”, to SoC security verification, addressing the
limitations of manual and inflexible methodologies. The pro-
posed model significantly improves vulnerability detection
accuracy, outperforming non-fine-tuned counterparts by over
40% and demonstrating the potential of open-source LLMs as
cost-effective alternatives to proprietary solutions. Addition-
ally, the introduction of a comprehensive hardware vulnera-
bility database enhances research in automated security verifi-
cation. These findings highlight the scalability and adaptability

https://huggingface.co/shamstarek/Mistral-7B-instruct-Bug-Whisperer
https://huggingface.co/shamstarek/Mistral-7B-instruct-Bug-Whisperer

of LLMs for hardware security, with future work focusing on
further optimization and dataset expansion.

REFERENCES

[1] G. K. Contreras, A. Nahiyan, S. Bhunia, D. Forte, and M. Tehranipoor,
“Security vulnerability analysis of design-for-test exploits for asset
protection in socs,” in 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2017, pp. 617–622.

[2] P. Mishra, M. Tehranipoor, and S. Bhunia, “Security and trust vulner-
abilities in third-party ips,” Hardware IP Security and Trust, pp. 3–14,
2017.

[3] N. Farzana, F. Rahman, M. Tehranipoor, and F. Farahmandi, “Soc secu-
rity verification using property checking,” in 2019 IEEE International
Test Conference (ITC). IEEE, 2019, pp. 1–10.

[4] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017. IEEE, 2017, pp. 1691–1696.

[5] K. Z. Azar, M. M. Hossain, A. Vafaei, H. Al Shaikh, N. N. Mondol,
F. Rahman, M. Tehranipoor, and F. Farahmandi, “Fuzz, penetration,
and ai testing for soc security verification: Challenges and solutions,”
Cryptology ePrint Archive, 2022.

[6] R. Kibria, F. Farahmandi, and M. Tehranipoor, “Arc-fsm-g: Automatic
security rule checking for finite state machine at the netlist abstraction,”
Cryptology ePrint Archive, 2023.

[7] S. Tarek, D. Saha, S. K. Saha, M. Tehranipoor, and F. Farahmandi,
“Socurellm: An llm-driven approach for large-scale system-on-chip
security verification and policy generation,” Cryptology ePrint Archive,
2024.

[8] D. Saha, S. Tarek, K. Yahyaei, S. K. Saha, J. Zhou, M. Tehranipoor, and
F. Farahmandi, “Llm for soc security: A paradigm shift,” IEEE Access,
vol. 12, pp. 155 498–155 521, 2024.

[9] K. Chang, Y. Wang, H. Ren, M. Wang, S. Liang, Y. Han, H. Li, and
X. Li, “ChipGPT: How far are we from natural language hardware
design,” May 2023.

[10] R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and
J. Rajendran, “Llm-assisted generation of hardware assertions,” arXiv
preprint arXiv:2306.14027, 2023.

[11] M. Akyash and H. M. Kamali, “Self-hwdebug: Automation of llm self-
instructing for hardware security verification,” in 2024 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2024, pp. 391–396.

[12] D. Saha, K. Yahyaei, S. K. Saha, M. Tehranipoor, and F. Farahmandi,
“Empowering hardware security with llm: The development of a vul-
nerable hardware database,” in 2024 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 2024, pp. 233–
243.

[13] “Gpt-4 technical report.” [Online]. Available: https://arxiv.org/pdf/2303.
08774.pdf

[14] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan et al., “The llama 3 herd of
models,” arXiv preprint arXiv:2407.21783, 2024.

[15] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez et al., “Code llama: Open foundation
models for code,” arXiv preprint arXiv:2308.12950, 2023.

[16] S. Tarek, H. A. Shaikh, S. R. Rajendran, and F. Farahmandi, “Bench-
marking of soc-level hardware vulnerabilities: A complete walkthrough,”
in 2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
2023, pp. 1–6.

[17] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
arXiv preprint arXiv:2106.09685, 2021.

https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/pdf/2303.08774.pdf

	Introduction
	Proposed Methodology
	Database Generation for Vulnerable SoC Designs
	Fine-tuning LLMs for Vulnerability Detection

	Experimentation and Evaluation
	Dataset Replication
	Training Setup
	Result Analysis

	Conclusion
	References

