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Abstract. The ETSI Technical Specification 104 015 proposes a framework to build Key Encapsu-
lation Mechanisms (KEMs) with access policies and attributes, in the Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) vein. Several security guarantees and functionalities are claimed, such
as pre-quantum and post-quantum hybridization to achieve security against Chosen-Ciphertext At-
tacks (CCA), anonymity, and traceability.

In this paper, we present a formal security analysis of a more generic construction, with application
to the specific Covercrypt scheme, based on the pre-quantum ECDH and the post-quantum ML-
KEM KEMs. We additionally provide an open-source library that implements the ETSI standard,
in Rust, with high effiency.

1 Introduction

Key Encapsulation Mechanisms (KEMs) are highly efficient when used in conjunction with Data
Encryption Mechanisms (DEMs) to encrypt large volumes of data. The KEM-DEM paradigm,
introduced by Shoup in [Sho01], indeed combines a public-key scheme with a symmetric encryp-
tion scheme, resulting in ciphertexts that are similar in size to plaintexts. In essence, KEMs
facilitate the secure transmission of session keys. A user performs the encapsulation procedure
for a recipient or group of recipients, generating a session key and its encapsulation (the cipher-
text). The recipients, if intended, can derive the session key from the ciphertext. The payload is
then encrypted and decrypted using this session key with a DEM, which can be any authenti-
cated encryption mechanism. This is instrumental for non-interactive communications between
a sender and a recipient. But KEMs may also be used as Interactive Key Exchange protocols,
between two online parties.

To enhance security during the post-quantum transition, two KEMs may be hybridized,
ensuring that the scheme’s security depends on the best of both their securities. This approach
maintains the privacy of encapsulated keys even if one KEM algorithm is compromised. Hy-
bridization can involve one pre-quantum and one post-quantum secure scheme, with the latter
being presumably resistant to quantum adversaries while the former relies on more classical
security assumptions, even if insecure against potential future quantum adversaries.

For fine-grained access control, the KEM may be controlled to limit access to the payload.
Attribute-Based Encryption (ABE), allows decryption based on attributes and policies in ci-
phertexts and user’s keys [GPSW06]. Advanced ABE schemes support complex access policies
but come with high computational costs and large ciphertexts, especially for post-quantum
security.

ABE was initially introduced in [SW05], where decryption was possible if the number of
common attributes in the key and ciphertext met a threshold. The more general work [GPSW06]
introduced key-policy ABE (KP-ABE) and ciphertext-policy ABE (CP-ABE), associating a
Boolean formula (policy) with either the user’s key or the ciphertext. Decryption is possible if
the Boolean formula accepts the attributes. However, it only proposed a concrete construction
for KP-ABE, while the first CP-ABE scheme has been designed in [BSW07].

A desirable property for KP-ABE schemes (resp. CP-ABE) is for them to be attribute-
hiding [OT12] (resp. predicate-hiding), meaning that ciphertexts should not allow users to learn
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anything of the attributes or the policies they were generated with, outside of their ability
(or not) to successfully decrypt. State-of-the-art constructions for this property only do so for
the limited class of inner-product predicates on attributes, with pre-quantum [OT12], or more
recent post-quantum versions [CW24].

State-of-the-Art. For general purpose ABE, current post-quantum versions with implementable
parameters [DDP+18, Table II], implementing [BGG+14], led to encryption times in hundreds
of milliseconds and decryption times (consisting in the application of the EvalCT,EvalPK, and
Dec algorithms) of around a second on a CPU laptop, without attribute-hiding properties. A
more recent post-quantum ABE-scheme was proposed last year [CW24] with a higher security,
but incurring significantly higher costs than [BGG+14].

A first construction of ABE for polynomially-many logical attribute combinations, that can
be built from any KEM, without pairings, and supporting efficient traditional/post-quantum
hybridization, has been proposed two years ago [BdPP23], but with CPA security only. About
functionalities, it was similar to [SW05], allowing decryption if some attributes are common in
the key and ciphertext. It also attained a policy-hiding property ensuring that access policies
in the ciphertexts were not revealed to users that did not fulfil them. More recently, a CCA
construction has been standardized by ETSI [ETS25]. However, its CCA security had never
been proven nor analyzed.

Contributions. This paper first presents a formal security analysis of a generalization of the
ETSI standard [ETS25], and in particular, the CCA-secure Covercrypt scheme, based on the
pre-quantum ECDH and the post-quantum ML-KEM. It targets specific access structures with
multiple orthogonal dimensions, using a hybrid KEM for fine-grained access control, key rotation
for dynamic user rights, and a traceability mechanism to detect user abuse. It is described in
a black-box manner, allowing usage of various cryptographic algorithms. We have updated our
library in Rust, from the CPA-version [BdPP23], that implements the standard, with additional
features. The code is still open-source, and provides similar efficiency: half a millisecond for en-
crypting, and a millisecond for decrypting, for classical use, which is far better than [DDP+18].

2 Definitions

This paper targets Key Encapsulation Mechanism with Access Control (KEMAC), as introduced
in [BdPP23]. We hereafter recall some formal definitions.

2.1 Computational Assumptions

Many security notions will be characterized by the computational indistinguishability between
two distributions D0 and D1. It will be measured by the advantage an adversary A can have in
distinguishing them:

Adv(A) = Pr
D1

[A(x) = 1]− Pr
D0

[A(x) = 1] = 2× Pr
Db

[A(x) = b]− 1.

Then, we will denote Adv(τ) the maximal advantage over all the adversaries with running-time
bounded by τ . A first pair of distributions is used in the famous ElGamal encryption scheme
and the Diffie-Hellman key exchange protocol, with Diffie-Hellman tuples in G = ⟨P ⟩, a group
of prime order p, spanned by a generator P , and denoted additively.

Definition 1 (Decisional Diffie-Hellman Problem). The DDH assumption in a group G
(DDHG) of prime order p, with a generator P , states that the distributions D0 and D1 are
computationally hard to distinguish, where

D0 = {(a · P, b · P, ab · P ), a, b
$← Zp} D1 = {(a · P, b · P, c · P ), a, b, c

$← Zp}

and we will denote AdvddhG (A) the advantage of an adversary A in distinguishing D0 and D1.

2



When studying the Kyber post-quantum encryption scheme [BDK+18], also known as ML-
KEM [NIS22], we need another algebraic structure, with indistinguishable distributions. We
will denote R = Z[X]/(Xn + 1) (resp. Rq = Zq[X]/(Xn + 1)) the ring of polynomials of degree
at most n−1 with integer coefficients (resp. with coefficients in Zq, for a small prime q). We take
n as power of 2, where Xn + 1 is the n

2 -th cyclotomic polynomial. We denote Bη the centered
binomial distribution of parameter η. When a polynomial is sampled according to Bη, it means
each of its coefficients is sampled from that distribution. We will also use vectors e ∈ Rk

q and

matrices A ∈ Rm×k
q in Rq.

Definition 2 (Decisional Module Learning-with-Error Problem). The DMLWE assump-
tion in Rq (DMLWERq ,m,k,η) states that the distributions D0 and D1 are computationally hard
to distinguish, where

D0 = {(A,b),A
$← Rm×k

q , (s, e)
$← Bkη × Bmη ,b← As+ e}

D1 = {(A,b),A
$← Rm×k

q ,b
$← Bmη }

We will denote Advdmlwe
Rq ,m,k,η(A) the advantage of an adversary A in distinguishing D0 and D1.

Sometimes, the goal of the adversary A is more complex: A has to recover the exact solution
to the problem, which is called the search problem, or the one-wayness.

Definition 3 (Computational Diffie-Hellman Problem). The CDH assumption in a group

G (CDHG) of prime order p, with a generator P , states that given a ·P and b ·P for a, b
$← Zp, it

is computationally hard to compute ab ·P . We denote AdvcdhG (A) the advantage of an adversary
A in computing ab · P .

2.2 Cryptographic Primitives

Key Encapsulation Mechanism. A Key Encapsulation Mechanism KEM is defined by three
algorithms:

– KEM.KeyGen(1κ): the key generation algorithm outputs a pair of public and secret keys
(pk, sk);

– KEM.Enc(pk): the encapsulation algorithm generates a session key K and a ciphertext C of
it, and outputs the pair (C,K);

– KEM.Dec(sk, C): the decapsulation algorithm outputs the key K encapsulated in C.

Correctness. A correct KEM satisfies AdvcorKEM(κ) = 1 − PrD[KEM.Dec(sk, C) = K] = negl(κ),
for the distribution probability D = {(pk, sk) ← KEM.KeyGen(1κ), (C,K) ← KEM.Enc(pk) :
(sk, C,K)}.

Session-Key Privacy. On the other hand, such a KEM is said to provide session-key privacy
(denoted SK-IND, for Session-Key Indistinguishability) in the key space K, if the encapsulated
key is indistinguishable from a random key in K. More formally, a KEM is SK-IND-CCA-secure
(for Session-Key Indistinguishability under Chosen-Ciphertext Attacks), if for any adversary A,
Advsk-ind-ccaKEM (A) = negl(κ), in distinguishing D0 and D1, where

Db =

{
(pk, sk)← KEM.KeyGen(1κ),

(C∗,K0)← KEM.Enc(pk),K1
$← K

: (pk, C∗,Kb)

}
with an unlimited access to a decapsulation oracle ODec(C) that outputs KEM.Dec(sk, C),
excepted on the challenge ciphertext C∗.

When the adversary is not allowed to ask decapsulation queries, the security notion is
denoted SK-IND-CPA (for Session-Key Indistinguishability under Chosen-Plaintext Attacks).
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Public-Key Privacy. One can additionally expect anonymity of the receiver, also known as
public-key privacy (denoted PK-IND, for Public-Key Indistinguishability), if the ciphertext does
not leak any information about the public key, first defined in [BBDP01]. More formally,
as above, a KEM is PK-IND-CCA-secure (for Public-Key Indistinguishability under Chosen-

Ciphertext Attacks), if for any adversary A, Advpk-ind-ccaKEM (A) = negl(κ), in distinguishing D0

and D1, where

Db =


For i = 0, 1 :

(pki, ski)← KEM.KeyGen(1κ),
(Ci,Ki)← KEM.Enc(pki)

: (pk0, pk1, Cb,Kb)


with an unlimited access to a decapsulation oracle ODec(i, C) that outputs KEM.Dec(ski, C),
for i ∈ {0, 1}, excepted on the challenge ciphertext C∗ = Cb.

When the adversary is not allowed to ask decapsulation queries, the security notion is
denoted PK-IND-CPA (for Public-Key Indistinguishability under Chosen-Plaintext Attacks).

ElGamal-based KEM. In a group G of prime order p, with a generator P :

– EG.KeyGen(1κ) samples random sk = x
$← Zp and set pk = H ← x · P ;

– EG.Enc(pk) samples a random r
$← Zp and set C ← r · P together with K ← r ·H;

– EG.Dec(sk, C) outputs K ← x · C.

Remark 4. This is a folklore result that under the DDH assumption in G, this KEM is both
SK-IND-CPA and PK-IND-CPA with K = G. By replacing the key computation by K ← H(r ·H)
during encapsulation, orK ← H(x·C) during decapsulation, for a 2κ-bit hash functionH, under
the CDH assumption in G, this KEM is both SK-IND-CPA and PK-IND-CPA with K = {0, 1}2κ.

Key Encapsulation Mechanism with Access Control. A KEM with Access Control allows
multiple users to access the encapsulated key K from C, according to a rule R applied on Y in
the user’s key usk and X in the ciphertext C. It is defined by four algorithms:

– KEMAC.Setup(R, 1κ) outputs the global public parameters MPK and the master secret key
MSK;

– KEMAC.KeyGen(MSK, Y ) outputs the user’s secret key usk according to Y ;

– KEMAC.Enc(MPK, X) generates a session key K and a ciphertext C of it according to X;

– KEMAC.Dec(usk, C) outputs the key K encapsulated in C.

Correctness. One expects KEMAC.Dec(usk, C) = K with overwhelming probability, for any X
and Y such that R(X,Y ) = 1, where usk has been honestly generated for Y and K has been
encapsulated in C for X, after an honest setup to generate (MPK,MSK).

1. b
$← {0, 1}

2. (MPK,MSK)← KEMAC.Setup(1κ)
3. b′ ← AOKeyGen(·),ODec(·),OEncChal(·)(MPK)
4. if there is a Y such that R(X∗, Y ) = 1, for X∗ asked

to OEncChal, asked either to OKeyGen or to ODec
on the challenge C∗, then output a random bit β

$←
{0, 1}, else output β ← (b′ = b)

1. b
$← {0, 1}

2. (MPK,MSK)← KEMAC.Setup(1κ)
3. b′ ← AOKeyGen(·),,ODec(·),OEncChal(·,·)(MPK)
4. if there is a Y such thatR(X0, Y ) = 1 orR(X1, Y ) =

1, for (X0, X1) asked to OEncChal, asked either to
OKeyGen or to ODec on the challenge C∗, then out-

put a random bit β
$← {0, 1}, else output β ← (b′ =

b)

Fig. 1. Security Games for SK-IND-CCA and AC-IND-CCA for a KEMAC
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Session-Key Privacy. As for the basic KEM, one may expect some privacy properties. Session-
key privacy is modeled by indistinguishability of the actual session key from the ciphertext, even
if the adversary has received some decryption keys and some decapsulations, as soon as some
associated Y are incompatible with the challenge inputX∗ (R(X∗, Y ) = 0). More precisely, such
a KEMAC is said to be SK-IND-CCA-secure in the key space K if for any adversaryA, that can ask
any key usk using oracleOKeyGen(Y ), that outputs KEMAC.KeyGen(MSK, Y ), any decapsulated
key K using oracle ODec(Y,C), that outputs KEMAC.Dec(usk, C), for an ephemeral key usk
obtained from OKeyGen(Y ), and one challenge on any X∗, using OEncChal(X∗), that runs

KEMAC.Enc(MPK, X∗) to get (C∗,K0), chooses K1
$← K, and outputs (C∗,Kb), for an initial

random bit b, the advantage Advsk-ind-ccaKEMAC (A) is negligible in the game presented on the left of
Figure 1. We stress that the bad situation where there is a Y such that R(X∗, Y ) = 1, for X∗

asked to OEncChal, asked either to OKeyGen or to ODec on the challenge ciphertext C∗ should
be avoided by the adversary: as this leads to a trivial guess, this is considered as a non-legitimate
attack, and it reduces its advantage.

As usual, we can restrict to chosen-plaintext attacks, where the adversary cannot ask for
the decapsulation oracle.

Access-Control Privacy. One can also extend the anonymity notion, by hiding the parameter
X used in the ciphertext C even if the adversary A can ask some decryption keys and some
decapsulations, as soon as some associated Y are incompatible with the challenge input X∗

(R(X,Y ) = 0). A KEMAC is said to be AC-IND-CCA-secure if for any adversary A, that can ask
any key usk using oracleOKeyGen(Y ), that outputs KEMAC.KeyGen(MSK, Y ), any decapsulated
key K using oracle ODec(Y,C), that outputs KEMAC.Dec(usk, C), for an ephemeral key usk
obtained from OKeyGen(Y ), and one ciphertext on any pair (X0, X1), using OEncChal(X0, X1),
that runs KEMAC.Enc(MPK, Xb) to get (C∗,K), for an initial random bit b, Advac-ind-ccaKEMAC (A) is
negligible in the game presented on the right of Figure 1. As above, we can restrict to chosen-
plaintext attacks, where the adversary cannot ask for the decapsulation oracle.

Traceability. In any multi-user setting, to avoid abuse of the decryption keys, one may want
to be able to trace users (or their personal keys) from the decryption mechanism, and more
generally from any useful pirate decoder, either given access to the key material in the device
(white-box tracing) or just interacting with the device (black-box tracing) [CFN94]. Without
any keys, one expects session-key privacy, but as soon as one knows a key, one can distinguish
the session-key. Then, we will call a useful pirate decoder P a good distinguisher against session-
key privacy, that behaves differently with the real and a random key. But of course, this pirate
decoder can be built from multiple user’ keys, called traitors, and one would like to be able to
trace at least one traitor from the collusion.

NIKE-based KEM. A Non-Interactive Key Exchange (NIKE) is defined by two algorithms:

– NIKE.KeyGen(1κ): on input of a security parameter κ, outputs a pair of public and secret
keys (pk, sk);

– NIKE.SessionKey(sk, pk′): on input of a secret key sk and a public key pk′, generates a session
key K.

Correctness. A correct NIKE satisfies

AdvcorNIKE(κ) = 1− Pr
D
[NIKE.SessionKey(sk1, pk0) = NIKE.SessionKey(sk0, pk1)] = negl(κ),

for the distribution probability

D = {(pk0, sk0), (pk1, sk1)← NIKE.KeyGen(1κ) : (sk0, pk0, sk1, pk1)}.
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Session-Key Privacy. We will consider a weak version of session-key privacy, in the one-wayness
vein instead of indistinguishability, as it will be enough for our purpose: such a NIKE is said to
be SK-OW-secure (for Session-Key One-Wayness) in the key space K if for any adversary A,
Advsk-owNIKE(A) = negl(κ), in extracting the session keyK from the public view (pk0, pk1), according
to the following distribution probability:

D =

{
(pk0, sk0), (pk1, sk1)← NIKE.KeyGen(1κ),
K ← NIKE.SessionKey(sk1, pk0)

: (pk0, pk1,K)

}
Then, one can derive a KEM that is both SK-IND-CPA-secure and PK-IND-CPA-secure, in the
random oracle model, for a hash function H, from the set of the keys of NIKE into K = {0, 1}2κ:

– KEM.KeyGen(1κ) runs and outputs (pk, sk)← NIKE.KeyGen(1κ);
– KEM.Enc(pk) runs (pk′, sk′)← NIKE.KeyGen(1κ), and getsK ← H(NIKE.SessionKey(sk′, pk)),

outputting (C = pk′,K);

– KEM.Dec(sk, C) runs K ′ ← NIKE.SessionKey(sk, pk′), where pk′ = C, and outputs K =
H(K ′).

Key-Homomorphic NIKE (KH-NIKE). A NIKE is said to be key-homomorphic, if the
secret keys are in a ring (R,+,×) and there is an internal group-law ⊗ and an external law
⊙ on the public keys that make them correspond to each other: from (pk0, sk0), (pk1, sk1) ←
NIKE.KeyGen(1κ), the secret key sk← sk0 + sk1 corresponds to the public key pk← pk0 ⊗ pk1,
and the secret key sk′ ← sk0 × sk1 corresponds to the public key pk′ ← sk0 ⊙ pk1. Furthermore,
for any (pk′′, sk′′)← NIKE.KeyGen(1κ), we have

NIKE.SessionKey(sk′′, sk0 ⊙ pk1) = NIKE.SessionKey(sk0 × sk′′, pk1).

A classical KH-NIKE is the Diffie-Hellman NIKE, with secret keys in the particular ring
R = Zp, and public keys in the group (G, P, p), where P is a generator of G, of prime order p.
The DH algorithms are

– DH.KeyGen(1κ): on input of a security parameter κ, it outputs a pair of public and secret
keys (pk, sk), where sk← Zp and pk← sk · P ;

– DH.SessionKey(sk, pk′): on input of a secret key sk and a public key pk′, it generates a session
key K = sk · pk′.

The SK-OW security relies on the Computational Diffie-Hellman (CDH) problem, and it provides
key homomorphism, in (Zp,+,×) for the secret keys, the internal group-law ⊗ being the addition
in G, and the external law ⊙ being the scalar multiplication in G.

3 Security Analysis of Covercrypt

In this section, we first present a generalization of Covercrypt, the ETSI TS 104 015 [ETS25],
that proposes to use a hybrid construction, combining a pre-quantum key-homomorphic NIKE
and a post-quantum KEM, where the KEM is instantiated by the ML-KEM [NIS22] and the
NIKE is instantiated by the Hashed-ECDH. This provides hybridization of the security, with
the best of both worlds, the post-quantum security of the KEM and the pre-quantum security
of the KH-NIKE, at least for the session-key privacy.

3.1 Hybrid Traceable KEMAC with CCA Security

We thus describe a generalization of Covercrypt, that combines any KH-NIKE with any KEM,
the former being SK-OW-secure, and the latter being SK-IND-CCA and PK-IND-CCA-secure.
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Detailled Description. Using the following notations:

– Ω = {S1, . . . , SN} is the set of rights;
– NIKE is a KH-NIKE scheme achieving SK-OW security, with secret keys in a ring R and

public keys in a group G;
– KEM is a KEM scheme achieving SK-IND-CCA and PK-IND-CCA security;
– G, H, and J are hash functions, mapping elements to R elements, 2κ-bit strings, and 3κ-bit

strings respectively,

the scheme HTKEMAC is defined as follows:

– HTKEMAC.Setup(Ω, t, 1κ): for a set Ω of rights and a threshold t for traceability:
1. the algorithm samples (P1, s1), . . . , (Pt, st)← NIKE.KeyGen(1κ);

2. the algorithm samples α1, . . . , αt
$← R, and sets s =

∑
k αk · sk and H = ⊗k(αk ⊙ Pk),

with the constraint that s is invertible in R;
3. the set of user identities ID is initialized as an empty set, the tracing secret key is then

set to tsk = (s, (sk)k, ID) and the tracing public key to tpk = (H, (Pk)k);
4. the set of users’ secret keys showing their permissions is initialized as an empty set with
UP ← ∅;

5. for each right Si of index i in Ω, the algorithm samples (pki, ski) ← KEM.KeyGen(1κ),
(Xi, xi) ← NIKE.KeyGen(1κ), computes Hi ← s ⊙ Xi, and sets pk′i ← (Hi, pki) and
sk′i ← (xi, ski);

6. finally, the global public key is set to MPK← (tpk, {pk′i}i), and the master secret key to
MSK← (tsk, {sk′i}i,UP).

The algorithm returns (MSK,MPK).
– HTKEMAC.KeyGen(MSK, U, Y ): on input a username U , along with Y a set of indices cor-

responding to U ’s rights Ω, parsing the master secret key MSK = (tsk, {sk′i}i,UP) as an
output of the Setup algorithm:
1. it draws a random tuple (βk)k such that s =

∑
k βk · sk, and sets U ’s secret identifier to

uid← (βk)k;
2. it updates the tracing secret key by setting tsk′ to be equal to tsk in which (U, uid) is

added to ID;
3. U ’s secret key is defined as usk← (uid, {sk′j}j∈Y ), and the master secret key is updated

to MSK′ equal to MSK in which usk was added to UP.
Finally, the algorithm outputs (usk,MSK′, tsk′).

– HTKEMAC.Enc(MPK, X): parsing the public key MPK = (tpk, {pk′i}i) as an output of the
Setup algorithm, and X as a set of indices of rights in Ω:
1. denoting K the key space of KEM, the encryption algorithm draws S

$← K, sets r ← G(S)
and (ck ← r ⊙ Pk)k, and c← (ck)k

2. for each index i ∈ X, the algorithm sets Ki ← NIKE.SessionKey(r,Hi), (Ei,K
′
i) ←

KEM.Enc(pki), and E ← (Eℓ)ℓ∈X ;
3. for each index i ∈ X, the algorithm sets Fi ← S ⊕H(Ki,K

′
i, c, E), and F ← (Fℓ)ℓ∈X ;

4. the algorithm then computes (K,V ) ← J (S, c, E, F ), and sets the ciphertext as C ←
(c, E, F, V ), and the encapsulated key to be K.

The algorithm outputs (K,C).
– HTKEMAC.Dec(usk, C): parsing usk as an output of the KeyGen algorithm, and C = (c =

(ck)k, E = (Eℓ)ℓ, F = (Fℓ)ℓ, V ) as an output of the Enc algorithm, for a list of pairs (Ei, Fi),
without knowing the corresponding keys. For each index i with such a pair (Ei, Fi) in C,
and for each index j ∈ Y with an element skj in usk, the decryption algorithm:
1. runs K ′

i,j ← KEM.Dec(skj , Ei);
2. computes Kj ← NIKE.SessionKey(xj ,⊗k(βk ⊙ ck));
3. computes Si,j ← Fi ⊕H(Kj ,K

′
i,j , c, E);

4. computes both r′ ← G(Si,j) and (U ′
i,j , V

′
i,j)← J (Si,j , c, E, F );

5. checks whether c = (r′ ⊙ Pk)k and V ′
i,j = V : in the positive case, it returns K ← U ′

i,j

and stops. Otherwise, it continues with the next pair (i, j).
If for all indices i and j, no key was returned, the algorithm returns ⊥.
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Correctness. First of all, let us check the correctness of the scheme, during decryption of a
ciphertext C∗ = (c∗ = (c∗k)k, E

∗ = (E∗
ℓ )ℓ, F

∗ = (F ∗
ℓ )ℓ, V

∗) with usk = ((βk)k, {(xj , skj)}j∈Y ): if
there is an acceptable index j ∈ Y , that corresponds to an index i ∈ X∗ used for ciphertext,
one

1. runs K ′
i,j ← KEM.Dec(skj , E

∗
i ), which corresponds to K ′∗

i ;
2. computes Kj ← NIKE.SessionKey(xj ,⊗k(βk⊙c∗k)). As ⊗k(βk⊙c∗k) = ⊗k((βk ·r∗)⊙Pk) = r∗⊙

(⊗k(βk⊙Pk)) = r∗⊙H, then Kj = NIKE.SessionKey(xj , r
∗⊙H) = NIKE.SessionKey(r∗, xj⊙

H) = NIKE.SessionKey(r∗, Hj) = NIKE.SessionKey(r∗, Hi) = K∗
i ;

3. computes Si,j ← F ∗
i ⊕H(Kj ,K

′
i,j , c

∗, E∗) = F ∗
i ⊕H(K∗

i ,K
′∗
i , c

∗, E∗) = S∗;

Then, r′ ← G(Si,j) = G(S∗) = r∗ and (U ′
i,j , V

′
i,j) ← J (Si,j , c

∗, E, F ) = J (S∗, c∗, E∗, F ∗) =
(K∗, V ∗). As a consequence, both verifications c∗ = (r∗ ⊙ Pk)k and V ′

i,j = V ∗ succeed, and so
one returns K ← U ′

i,j = K∗.

3.2 Security Analysis

Let us prove the CCA security for the HTKEMAC scheme, for both session-key privacy and
access-control privacy.

Session-Key Privacy. For the session-key privacy, we consider the SK-IND-CCA-game, where
the adversary has access to the decryption oracle, excepted on the challenge ciphertext: HTKEMAC
is said to be SK-IND-CCA-secure in the key space K if for any adversary A, that can ask:

– any key usk, for access rights Y under user U , using the oracle OKeyGen(U, Y ) that outputs
HTKEMAC.KeyGen(MSK, U, Y ),

– any decryption on ciphertext C under access rights Y , using the oracle ODec(Y,C) that first
gets usk from HTKEMAC.KeyGen(MSK, U, Y ), and then outputs HTKEMAC.Dec(usk, C),

– and one ciphertext on any access rights X∗, using the oracle OEncChal(X∗) that runs

HTKEMAC.Enc(MPK, X∗) to get (C∗,K∗
0 ), chooses K∗

1
$← K, and outputs (C∗,K∗

b ), for
the initial random bit b,

Advsk-ind-ccaHTKEMAC(A) is negligible in the security game presented on the left of Figure 1, where the
4-th line is more precisely

4. if there is a Y , either asked to OKeyGen or with (Y,C∗) asked to ODec, such thatX∗∩Y ̸= ∅,
for X∗ asked to OEncChal, then output a random bit β

$← {0, 1}, else output β ← (b′ = b).

Theorem 5 (Session-Key Privacy against Chosen-Ciphertext Attacks). HTKEMAC
achieves SK-IND-CCA security under either the SK-IND-CCA security of the underlying KEM
or the SK-OW of the underlying KH-NIKE, in the random oracle model for G, H, and J .

Proof. To make the proof of HTKEMAC, we start from the initial security game:

Game G0: At setup time, it chooses all the secret keys associated to all the rights in Ω
(including s and (sk)k that will be known all along this proof, as their privacy will only be
used for tracing).

– For the OEncChal query on X∗ ⊆ Ω, we denote C∗ = (c∗ = (c∗k)k, E
∗ = (E∗

ℓ )ℓ, F
∗ =

(F ∗
ℓ )ℓ, V

∗) the challenge ciphertext, honestly generated on X∗, with S∗ $← K, r∗ ←
G(S∗), (K∗

i ← NIKE.SessionKey(r∗, Hi))i, ((E∗
i ,K

′∗
i ) ← KEM.Enc(pki))i, and (F ∗

i ←
S∗ ⊕H(K∗

i ,K
′∗
i , c

∗, E∗)i. Eventually, K
∗ will denote the claimed encapsulated key, that

is either real or random.
– For the OKeyGen queries, one first generates a random tuple (βk)k such that

∑
k βk ·sk =

s, and then concatenates the secret keys generated in the setup;
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– For a decryption query ODec(Y,C): one first generates a random tuple (βk)k such that∑
k βk · sk = s; for each j ∈ Y and every Ei in the ciphertext, it runs KEM.Dec(skj , Ei)

to get K ′
i,j or ⊥, as well as Kj = NIKE.SessionKey(xj ,⊗(βk⊙ck)) and computes the can-

didate Si,j = Fi ⊕H(Kj ,K
′
i,j , c, E). It then computes both r′ ← G(Si,j) and U ′

i,j ||V ′
i,j ←

J (Si,j , c, E, F ), and checks whether c = (r′ ⊙ Pk)k and V ′
i,j = V . In the positive case, it

returns U ′
i,j , otherwise it continues on the i, j indices.

In the end, the adversary must guess whether K∗ is real or random.
Note that from the constraints on the OKeyGen-queries and ODec-queries, for the former,
the Y ’s are disjoint from X∗, and for the latter, if the ciphertext is exactly the challenge
ciphertext C∗, then Y ∩X∗ = ∅ too.
We stress that if for a given ciphertext C, c = c∗, then under the assumption public keys of
NIKE have a huge entropy (negligible probability of collisions), and the absence of collisions
for G, S = S∗, to ensure the validity of the test c∗ = c = (r′ ⊙ Pk)k for r′ ← G(S). Without
having asked any of the challenge H queries, and thus on correct (K∗

i ,K
′∗
i), S

∗ is hidden
and the final check with J (S∗, c∗, E, F ) would fail. This will be the intuition all along this
proof.

Game G1: In this game, for decryption queries, we stop and continue looping on the i, j
indices if J (Si,j , c, E, F ) has not already been asked by the adversary. Indeed, without such
query V ′

i,j = V would likely fail, as it cannot come from the challenge ciphertext. This
makes no difference from the previous game. We stress that such J queries are specific to
each ciphertext query.

Game G2: As a consequence, for a decryption query C, we can enumerate on all the can-
didates S asked to J , with answers U ′, V ′, and S ← G(S) such that c = (r′ ⊙ Pk)k and
V ′ = V . For each of these promising candidates S, and for each j ∈ Y , one computes
Kj ← NIKE.SessionKey(r′, Hj), and for K ′

i,j ← KEM.Dec(skj , Ei). Then one eventually
checks whether S = Fi ⊕ H(Kj ,K

′
i,j , c, E). When it works for one candidate S and one

index j ∈ Y , one returns U ′ as the decapsulated key.
This makes no difference with the previous game as we were already expecting the J -queries
to be asked.

Game G3: During the challenge ciphertext, we replace H(K∗
i ,K

′∗
i , c

∗, E∗) by a random value,
for all the indices i. This can only be detected by the adversary if it asks for one of theses
H-queries. We thus denotes AskH the event that some of these H-queries is asked.
Hence, unless event AskH happens, this game is perfectly indistinguishable from the previous
one. We will now show this event is negligible.

Lemma 6. Denoting the two events following events, during the above game,
– Ev the event that some NIKE key K∗

i generated during the challenge generation has been
queried to the hash function H(K∗

i , ∗, ∗, ∗) by the adversary;
– Ev′ the event that some KEM key K ′∗

i generated during the challenge generation has been
queried to the hash function H(∗,K ′∗

i , ∗, ∗).
we can state that
– if Ev is non-negligible, one can break the SK-OW security of NIKE;
– if Ev′ is non-negligible, one can break the SK-IND-CCA security of KEM.

We postpone the proof of this lemma to the end of the proof of Theorem 5. But as we clearly
have AskH ⇒ Ev and AskH ⇒ Ev′, if AskH would be non-negligible, then one could break
both SK-OW security of NIKE and SK-IND-CCA security of KEM. Hence, AskH is negligible.

Game G4: Eventually, we can replace all the F ∗
i ’s by random strings in {0, 1}2κ, for each

index i ∈ X∗, in the challenge ciphertext. As in the previous game, they were all computed
from S∗ masked by truly independent random values, this makes no difference.

In this game, S∗ is not used anymore, and thus, the probability to ask the J -query is negligible:
K∗ is unpredictable. Hence, the advantage of the adversary in this last game is negligible, which
concludes the proof. ⊓⊔

9



Let us now prove the Lemma 6.

Proof (Proof of Lemma 6). Intuitively, for Ev to happen, the adversary must be able to break
the SK-OW security of NIKE, and for Ev′ to happen, the adversary must be able to break the
SK-IND-CCA security of KEM. We thus split the proof according to these two cases.

Case 1: if Ev is non-negligible, one can break the SK-OW security of NIKE. We thus describe
the simulation B of the challenger of the SK-IND-CCA of HTKEMAC in front of the adversary
A, using a challenger C of the SK-OW of NIKE. Eventually, the combination of B and A will be
an adversary against the SK-OW security of NIKE. It will not exploit the output guess of the
adversary A, but the occurrence of event Ev.

From the SK-OW challenger C, the simulator B receives two public keys (A,R) coming
from (A, a), (R, r) ← NIKE.KeyGen(1κ). Its goal is to find K = NIKE.SessionKey(a,R) =
NIKE.SessionKey(r,A).

First, before the setup, the simulator B guesses for which index I ∈ X∗ ⊆ Ω, the event
Ev happens (i.e., K∗

I is queried to H). As the real challenger would do, B generates all the
secret keys s, (sk)k, and (pki, ski)i, for all the rights in Ω. It also generates all the NIKE keys
honestly, as (Xi, xi) ← NIKE.KeyGen(1κ), excepted XI ← A that comes from the SK-OW
challenger C. During the generation of the challenge ciphertext, B first runs by itself (E∗

i ,K
′∗
i )←

KEM.Enc(pki). After the choice of S∗, we implicitly set r∗ ← r/s, as the output of the hash
function G(S∗). Note that this is the reason why s must be invertible in R. Then, we set
c∗k ← (sk/s)⊙R, which is the correct value, as (sk/s)⊙R = (sk ·r/s)⊙P = r∗⊙(sk ·P ) = r∗⊙Pk.
For the K∗

i ’s, we do not need to explicitly compute H(K∗
i ,K

′∗
i , c

∗, E∗), to mask S∗ in the Fi’s,
as is has been replaced by a random value.

We stress that in this case, no information leaks about S∗, and whereas we do not know
the answer, we should never be asked for G(S∗). Similarly, we should never be asked for
J (S∗, c, E, F ). Thus the above simulation of decapsulation queries can be used by B, exploiting
the knowledge of the ski’s. This makes A behaving exactly as in an SK-IND-CCA game, until
event Ev happens. And we actually do not care whether the simulation is not perfect after event
Ev is raised.

As we assumed Ev to be non-negligible, in the initial game, it is still in this game: when A
stops (or after a pre-determined polynomial-time limit) we can output a random element queried
toH. If Ev happened and the guess I was correct, we output the correct valueK = K∗

I with non-
negligible probability: the success probability is Pr[Ev]/qn where n is the size of Ω (for the guess
of I) and q the number of H queries (for the guess of the query). If Ev is non-negligible, we have
built an efficient adversary (the combination of our simulator B and the adversary A) against
the SK-OW of NIKE. Indeed, K∗

I = NIKE.SessionKey(r∗, HI) = NIKE.SessionKey(r/s, s ⊙ XI),
which is equal to NIKE.SessionKey(r,XI) = NIKE.SessionKey(r,A).

Case 2: if Ev′ is non-negligible, one can break the SK-IND-CCA security of KEM. We thus
describe the simulation B of the challenger of the SK-IND-CCA of HTKEMAC in front of the
adversary A, using a challenger C of the SK-IND-CCA of KEM. Eventually, the combination of B
and A will be an adversary against the SK-IND-CCA security of KEM. Again, it will not exploit
the output guess of the adversary A, but the occurrence of event Ev′.

First, the simulator B guesses for which index I ∈ X∗ ⊆ Ω, the event Ev′ happens (K ′∗
I is

queried to H). As the real challenger would do, B generates all the secret keys s, (sk)k, and
(Xi, xi)i, for all the rights in Ω.

It also generates all the KEM keys honestly, as (pki, ski) ← KEM.KeyGen(1κ), excepted
pkI that comes from the SK-IND-CCA challenger C. During the generation of the challenge
ciphertext, B first runs by itself (E∗

i ,K
′∗
i ) ← KEM.Enc(pki), excepted for (E∗

I = E,K) that
comes from the SK-IND-CCA challenger C, if I ∈ X∗, with K that is either real or random.
After the choice of S∗, B can generate r∗ and (c∗k)k. But eventually, we can choose random
values instead of H(K∗

i ,K
′∗
i , c

∗, E∗), to mask S∗ in the Fi’s, as in the previous case.
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This simulation of the challenge ciphertext by B makes no difference to the adversary un-
less it asks for some H(K∗

i ,K
′∗
i , c

∗, E∗), for the real value K ′∗
i . Then, the above simulation of

decapsulation queries can be used by B, exploiting the knowledge of the ski’s, and K as the
decapsulation of E∗

I under unknown skI . Indeed,

– if E∗
I is not involved, the simulation is easy, as in the previous game, possibly asking the

decapsulation oracle under sk∗I from the SK-IND-CCA security game against KEM.
– If E∗

I is involved, one uses K as the decapsulation of E∗
I .

In the real case, the simulation is perfect, as we decrypt E∗
I into the correct session key, until

event Ev′ happens. And we actually do not care whether the simulation is not perfect after event
Ev′ is raised. In the random case, the probability to ask K is negligible, as K is random and
with no leakage. One may only reject a valid ciphertext if H(KI ,K

′∗
I , c, E) has been queried,

with correct K ′∗
I . When the game ends (or after a pre-determined polynomial-time limit), the

simulator B stops and outputs its answer (its guess whether K is real or random) against the
SK-IND-CCA challenge of KEM as follows:

– if K has been queried to H, then the simulator outputs 1 (meaning this is the real key)
– otherwise, it outputs a random bit.

If we are in an execution with event Ev′ for I ∈ X∗, the simulator outputs 1 in the real
case, but a random bit in the random case. In any situation, in the random case, the probability
for K to have been queried is negligible, as it is random with no leakage, and so a random
bit will be returned. So the advantage of our distinguisher (the combination of B and A) is
at least Pr[Ev′]/n, where n is the size of Ω. If Ev′ is non-negligible, we have built a successful
distinguisher against the SK-IND-CCA security of KEM.

Access-Control Privacy. In addition, we want to hide the set X∗ used in the ciphertext C∗.
More precisely, HTKEMAC is said to be AC-IND-CCA-secure if for any adversary A, that can ask
any key usk, for access rights Y , under user U , using oracle OKeyGen(U, Y ), and any decryption
on ciphertext C under access rights Y , using oracle ODec(Y,C), as above, and one ciphertext
on (X∗

0 , X
∗
1 ), using OEncChal(X∗

0 , X
∗
1 ), that runs HTKEMAC.Enc(MPK, X∗

b ) to get (C∗,K∗),
for the initial random bit b, Advac-ind-ccaHTKEMAC(A) is negligible in the security game presented on the
right of Figure 1, where the 4-th line is more precisely

4. if |X∗
0 | ̸= |X∗

1 | or there is an Y , either asked to OKeyGen or with (Y,C∗) asked to ODec,
such that X∗

0 ∩ Y ̸= ∅ or X∗
1 ∩ Y ̸= ∅, for the pair (X∗

0 , X
∗
1 ) asked to OEncChal then output

a random bit β
$← {0, 1}, else output β ← (b′ = b).

We stress that the last step excludes trivial attacks, where the adversary would be able to check
the challenge session key that helps to break privacy. As our ciphertexts are linear in X, the
sets X∗

0 and X∗
1 must be of same sizes to expect privacy.

Theorem 7 (Access-Control Privacy against Chosen-Ciphertext Attacks). HTKEMAC
achieves AC-IND-CCA-security under the PK-IND-CCA security of KEM, the SK-IND-CCA se-
curity of KEM, and the SK-OW security of NIKE, in the random oracle model for G, H, and
J .

Proof. To make the proof of HTKEMAC, we start from the initial security game:

Game G0: At setup time, the simulator of the challenger will generate all the secret keys,
including s and (sk)k that will be known all along this proof, as their privacy will only
be used for tracing. Then, we denote C∗ = (c∗ = (c∗k)k, E

∗ = (E∗
ℓ )ℓ, F

∗ = (F ∗
ℓ )ℓ, V

∗) the
challenge ciphertext, and K∗ the encapsulated key, for the random bit b.
For the OKeyGen and ODec queries, one uses the secret keys. In the end, the adversary must
guess whether X∗

0 or X∗
1 has been used to generate C∗ (the bit b).
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Game G1: As in the previous proof, under the SK-IND-CCA of KEM and/or SK-OW of NIKE,
Ev or Ev′ is negligible, and so we can replace F ∗

i ’s by random values. This makes no difference
to the adversary: S∗ is perfectly hidden.

Game G2: As S∗ is hidden, any E∗
i involved during a decapsulation query can be safely

skipped: without previous call to H(Ki,K
′∗
i , c, E), the computed S will be random and then

rejected by the J -query. So during the simulation of the decapsulation queries, we skip the
cases that involve an E∗

i . So only new ciphertexts can be queried under the keys from X∗
0

or X∗
1 .

Game G3: As |X∗
0 | = |X∗

1 |, we can define a bijection B from X∗
0 to X∗

1 , where the common
elements match with themselves, and different elements match with new elements.

Now, we can make an hybrid sequence, where we change the public keys from X∗
b by the

keys from X∗
0 : in the k-th step of the sequence, we change E∗

k (involving pkk from X∗
0

or pk′k from X∗
1 , where we have previously guessed, during the setup, the two rights that

will correspond to pkk and pk′k, so that they are provided by the PK-IND-CCA-challenger),
which is indistinguishable under the PK-IND-CCA security of KEM. Note that the difference
between Xk from X∗

0 and X ′
k from X∗

1 only impacts K∗
k which is never queried (as Ev is

negligible, under SK-OW of NIKE). Again, we can always use the decryption oracle under
pkk from X∗

0 or pk′k from X∗
1 , as E

∗
k will never be queried during the simulation.

At the end of the sequence, all the public keys are from X∗
0 .

In this last game, the challenge ciphertext does not depend on b anymore: the adversary has
zero-advantage. This concludes the proof. ⊓⊔

We can stress that the security analysis still holds even if we compute Fi ← S ⊕ H(Ki,K
′
i),

as this still raises event AskH, in the above simulations. In the next section, we detail both
implementations, with and without the ciphertext in the hash function H.

Traceability. [BdPP23] already provided a traceable analysis in a black-box way, with only
confirmation of traitors, following [BF99], when R is a field F, and then Ft is a vector space of
dimension t over F.

Actually, as explained in [BF99], from n keys β⃗i = (βi,k)k ∈ Ft, that satisfy s = β⃗i · s⃗, any
new key that must satisfy the same relation can only be a convex combination, unless one can
break the hardness of finding secret keys from public keys. And in the particular case of NIKE,
this would break the SK-OW security.

Following [BF99] (and [BdPP23]), any collusion of less than t traitors can be confirmed in a
black-box way: if we have a set of possible traitors in mind, we can confirm, whether this guess
is correct or not, just by interacting with the pirate decoder.

Using multiples of codewords, from a specific linear space tracing code [BF99] for the secret
keys (βi,k)k ∈ Ft, and the Berlekamp algorithm for decoding, any collusion of less than t/2
traitors can be efficiently traced in a white-box way: from the key (γk)k ∈ Ft used by the pirate
decoder, we can find the convex combination used to build it, and then know the keys used.

3.3 Covercrypt: an Efficient HTKEMAC with Hybrid CCA Security

We thus propose an efficient instantiation with ECDH on any curve G of prime order p, spanned
by a generator P , for the KH-NIKE, whose SK-OW security relies on the CDH, and any KEM
that is both SK-IND-CCA and PK-IND-CCA-secure. In this case, the ring R is the finite field Fp.

The first version (on Figure 2) follows the ETSI standard [ETS25], with the full input to the
hash function H, while the second version (on Figure 3) is optimized with a smaller input to the
hash function H. In both cases, we use three hash functions G, H, and J , mapping elements to
Z∗
p, 2κ-bit strings, and 3κ-bit strings respectively.
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Setup(Ω, t, 1κ), for a set Ω of rights and a threshold t for traceability

1. sample sk
$← Zp and sets Pk ← sk · P , for k ∈ {1, . . . , t}

2. sample α1, . . . , αt
$← Zp, and set s =

∑
k αk ·sk and H =

∑
k αkPk, with the constraint that s ̸= 0

3. the set of user identities ID is initialized as an empty set
4. the tracing secret key is set to tsk = (s, (sk)k, ID)
5. the tracing public key is initialized to tpk = (H, (Pk)k)
6. the set of users’ secret keys showing their permissions is initialized as an empty set UP ← ∅
7. for each right Si of index i in Ω, sample (pki, ski) ← KEM.KeyGen(1κ), xi

$← Zp, compute
Xi ← xi · P , Hi ← s ·Xi, and set pk′i ← (Hi, pki) and sk′i ← (xi, ski)

The global public key is MPK← (tpk, {pk′i}i), and the master secret key is MSK← (tsk, {sk′i}i,UP)

KeyGen(MSK, U, Y ), on input a username U , the set Y of U ’s rights, and the master secret key MSK

1. parse the master secret key MSK = (tsk, {sk′i}i,UP)
2. draw a random tuple (βk)k such that s =

∑
k βk · sk, and sets U ’s secret identifier to uid← (βk)k

3. define U ’s secret key as usk← (uid, {sk′j}j∈Y )
4. update the tracing secret key tsk by appending (U, uid) to ID
5. update the master secret key MSK by appending usk to UP

Enc(MPK, X), on the set X of rights, and the public key MPK

1. parse the public key MPK = (tpk, {pk′i}i)
2. denoting K the key space of KEM, draws S

$← K
3. set r ← G(S), (ck ← r · Pk)k, and c← (ck)k
4. for each index i ∈ X, set Ki ← r ·Hi, (Ei,K

′
i)← KEM.Enc(pki)

5. compute E ← (Eℓ)ℓ∈X , T ← H(c, E)
6. for each index i ∈ X, set Fi ← S ⊕H(Ki,K

′
i, T )

7. compute F ← (Fℓ)ℓ∈X , L← H(T, F )
8. set (K,V )← J (S,L)

The ciphertext is C ← (c, E, F, V ) for the key K

Dec(usk, C): on a user’s secret key usk and (C = (c = (ck)k, E = (Eℓ)ℓ, F = (Fℓ)ℓ, V )

Parse usk ← (uid, {sk′j}j), compute E ← (Eℓ)ℓ∈X , T ← H(c, E), L ← H(T, F ), and for each index i
with a pair (Ei, Fi) in C, and for each index j with an element sk′j = (xj , skj) in usk
1. run K′

i,j ← KEM.Dec(skj , Ei);
2. compute Kj ← xj · (

∑
k βk · ck) and Si,j ← Fi ⊕H(Kj ,K

′
i,j , T )

3. compute both r′ ← G(Si,j) and (U ′
i,j , V

′
i,j)← J (Si,j , L)

4. check whether c = (r′ ⊙ Pk)k and V ′
i,j = V

5. if both checks are accepted, return K ← U ′
i,j and stop, else continues with the next pair (i, j)

If for all indices i and j, no key was returned, return ⊥.

Fig. 2. The Standardized Covercrypt Scheme.
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Setup(Ω, t, 1κ), for a set Ω of rights and a threshold t for traceability

1. sample sk
$← Zp and sets Pk ← sk · P , for k ∈ {1, . . . , t}

2. sample α1, . . . , αt
$← Zp, and set s =

∑
k αk ·sk and H =

∑
k αkPk, with the constraint that s ̸= 0

3. the set of user identities ID is initialized as an empty set
4. the tracing secret key is set to tsk = (s, (sk)k, ID)
5. the tracing public key is initialized to tpk = (H, (Pk)k)
6. the set of users’ secret keys showing their permissions is initialized as an empty set UP ← ∅
7. for each right Si of index i in Ω, sample (pki, ski) ← KEM.KeyGen(1κ), xi

$← Zp, compute
Xi ← xi · P , Hi ← s ·Xi, and set pk′i ← (Hi, pki) and sk′i ← (xi, ski)

The global public key is MPK← (tpk, {pk′i}i), and the master secret key is MSK← (tsk, {sk′i}i,UP)

KeyGen(MSK, U, Y ), on input a username U , the set Y of U ’s rights, and the master secret key MSK

1. parse the master secret key MSK = (tsk, {sk′i}i,UP)
2. draw a random tuple (βk)k such that s =

∑
k βk · sk and H =

∑
k βk · Pk, and sets U ’s secret

identifier to uid← (βk)k
3. define U ’s secret key as usk← (uid, {sk′j}j∈Y )
4. update the tracing secret key tsk by appending (U, uid) to ID
5. update the master secret key MSK by appending usk to UP

Enc(MPK, X), on the set X of rights, and the public key MPK

1. parse the public key MPK = (tpk, {pk′i}i)
2. denoting K the key space of KEM, draws S

$← K
3. set r ← G(S), (ck ← r · Pk)k, and c← (ck)k
4. for each index i ∈ X, set Ki ← r ·Hi, (Ei,K

′
i)← KEM.Enc(pki) and Fi ← S ⊕H(Ki,K

′
i)

5. compute E ← (Eℓ)ℓ∈X F ← (Fℓ)ℓ∈X , and L← H(c, E, F )
6. set (K,V )← J (S,L)

The ciphertext is C ← (c, E, F, V ) for the key K

Dec(usk, C): on a user’s secret key usk and (C = (c = (ck)k, E = (Eℓ)ℓ, F = (Fℓ)ℓ, V )

Parse usk ← (uid, {sk′j}j), compute E ← (Eℓ)ℓ∈X F ← (Fℓ)ℓ∈X , and L ← H(c, E, F ), and for each
index i with a pair (Ei, Fi) in C, and for each index j with an element sk′j = (xj , skj) in usk
1. run K′

i,j ← KEM.Dec(skj , Ei);
2. compute Kj ← xj · (

∑
k βk · ck) and Si,j ← Fi ⊕H(Kj ,K

′
i,j)

3. compute both r′ ← G(Si,j) and (U ′
i,j , V

′
i,j)← J (Si,j , L)

4. check whether c = (r′ ⊙ Pk)k and V ′
i,j = V

5. if both checks are accepted, return K ← U ′
i,j and stop, else continues with the next pair (i, j)

If for all indices i and j, no key was returned, return ⊥.

Fig. 3. The Optimized Covercrypt Scheme.
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4 Access Structure

4.1 High-Level Description

A Ciphertext-Policy Attribute-Based Encryption (CP-ABE) should handle more general poli-
cies, whereas the previous sections focused on a specific case of ABE, where both keys and
ciphertexts are associated to sets of rights, and decapsulation is possible if and only if the in-
tersection of the two sets is not empty. The ETSI standard describes a way to derive such sets
from more advances policies.

Let us first start with an example to illustrate the global approach, with an access structure
described by three families, later called dimensions:

– CTR={EN,FR}, to deal with the countries England and France;

– DPT={DEV,MKG}, for the Development and Marketing departments;

– SEC=(LOW,MED,HIG), for a hierarchy of security levels.

This defines the following qualified attributes along the 3 dimensions:

– along CTR, we have CTR::EN and CTR::FR

– along DPT, we have DPT::DEV and DPT::MKG

– along SEC, we have SEC::LOW, SEC::MED, and SEC::HIG

The two first dimensions CTR and DPT are defined by unordered sets (using {...}), whereas
the last security level SEC is defined by an ordered set (using (...)), meaning that a user
with the SEC::HIG attribute also possesses the SEC::LOW and SEC::MED qualified attributes,
as SEC::HIG ⇒ SEC::MED ⇒ SEC::LOW, or equivalently SEC::LOW ≤ SEC::MED ≤ SEC::HIG,
whereas attributes within the dimensions CTR and DPT are incomparable.

For backward compatibility reason, in each dimension, we introduce the empty attribute,
leading to the qualified attributes CTR::, DPT:: and SEC::. This will indeed allow to dynamically
add dimensions in the future, without having to re-encrypt all the data: new users’ keys will
remain compatible with the existing ciphertexts, as they will implicitly associate the empty
attribute to the new dimensions. In addition, the empty attribute is smaller than any attribute in
the same dimension: SEC::⇐ SEC::LOW, and CTR::⇐ CTR::EN as well as DPT::⇐ DPT::MKG.

A right is a combination of attributes. Such a right is valid when represented as a conjunc-
tion of attributes if it involves (some or none) attributes of different dimensions only. One can
then define Ω as the set of valid rights, that will be enough and necessary to define expected
monotonous access policies in the specific context. In the general case, Ω contains all the possible
combinations: this includes fully defined rights, such as CTR::FR && DPT::MKG && SEC::MED

in the 3-dimension space, but also partially defined rights, such as CTR::FR which is equivalent
to CTR::FR && DPT:: && SEC:: or SEC::HIG, equivalent to CTR:: && DPT:: && SEC::HIG.

These expansions will be used to optimize the ciphertext size: we expect a ciphertext for the
right CTR::FR to be decapsulated by users with various rights, such as CTR::FR && DPT::DEV,
CTR::FR && DPT::MKG && SEC::MED, and more. The sets X and Y will have to be carefully
derived to allow decapsulation of a ciphertext under X by a user key under Y if and only if
X ∩ Y ̸= ∅.

On the one hand, when one expresses the access policy for a given ciphertext, by any
monotonous Boolean formula F , it can be converted into its Disjunctive Normal Form (DNF),
that is a disjunction of (conjunctive) clauses. Such conjunctive clauses are exactly the above
valid rights. The ciphertext will be associated to all the rights/clauses in the DNF, whereas the
user’s key will be associated to all the rights/clauses owned by the user, and the initial universe
Ω will contain all the meaningful rights. We will define Ω to optimize the size of the ciphertext.
In particular, all the possible combinations is a good choice in the most natural cases, where
the number of clauses should be not so large.
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The ordering along each dimension can be extended to a partial ordering between the rights,
when the order is the same along each dimension. For example:

CTR::FR && SEC::MED⇐ CTR::FR && DPT::MKG && SEC::HIG

as SEC::MED ⇐ SEC::HIG and the absence of dimension DPT in the former, can be seen as
DPT::⇐ DPT::MKG. However, CTR::FR && SEC::HIG and CTR::FR && DPT::MKG && SEC::MED

are incomparable, as again SEC::HIG⇒ SEC::MED but DPT::⇐ DPT::MKG.
Rule 1, from F to X: Once the Boolean formula F associated to a ciphertext has been
converted into a list of clauses (DNF), one first removes the smaller clauses, and only keeps the
remaining greater clauses for X.

If some clause CTR::FR && SEC::MED (completed into CTR::FR && DPT:: && SEC::MED,
because of the empty dimension DPT::) is among those remaining clauses in X, for encrypting
the ciphertext, Alice should be able to decapsulate it if she owns any right that is equal or
greater than this right, which means:

CTR::FR && DPT::MKG && SEC::MED, CTR::FR && DPT::DEV && SEC::MED,
CTR::FR && DPT::MKG && SEC::HIG, CTR::FR && DPT::DEV && SEC::HIG.

Hence, on the other hand, when generating keys for Alice, if she is explicitly given any of these
4 above rights, she should also implicitly own the right CTR::FR && DPT:: && SEC::MED to
be able to decapsulate the above ciphertext without having to include more rights than the
minimal ones in the ciphertext.
Rule 2, rights in Y (first hint): A user with explicit right R should also receive all the rights
R′ that are smaller than R in the partial order.

For example, a user with explicit right CTR::FR && DPT::DEV && SEC::HIG should receive
keys for

– CTR::FR && DPT::DEV && SEC::HIG

– CTR::FR && DPT::DEV && SEC::MED

– CTR::FR && DPT::DEV && SEC::LOW

– CTR::FR && DPT::DEV && SEC::

– CTR:: && DPT::DEV && SEC::HIG

– CTR:: && DPT::DEV && SEC::MED

– CTR:: && DPT::DEV && SEC::LOW

– CTR:: && DPT::DEV && SEC::

– CTR::FR && DPT:: && SEC::HIG

– CTR::FR && DPT:: && SEC::MED

– CTR::FR && DPT:: && SEC::LOW

– CTR::FR && DPT:: && SEC::

– CTR:: && DPT:: && SEC::HIG

– CTR:: && DPT:: && SEC::MED

– CTR:: && DPT:: && SEC::LOW

– CTR:: && DPT:: && SEC::

Furthermore, a missing dimension in such an explicit user’s right R means “no restriction
along this dimension”. Then theses missing dimensions can be completed by any value: if Alice
is given explicit right CTR::FR && SEC::MED, with no DPT restriction, she should be able to de-
capsulate any ciphertext with lower security level, or no security level (as SEC::⇐ SEC::LOW⇐
SEC::MED) and CTR::FR, whatever DPT is.
Rule 2, rights in Y : A user with explicit right R should also receive all the rights R′ that are
smaller than R, and these rights R′ ⇐ R should also be completed by any value in the empty
dimensions of R.

In our above example, a user with explicit right CTR::FR && SEC::MED should receive keys
for (DPT can be filled with any value): all the rights R′ ⇐ R = CTR::FR && SEC::MED
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– CTR::FR && DPT:: && SEC::MED

– CTR::FR && DPT:: && SEC::LOW

– CTR::FR && DPT:: && SEC::

– CTR:: && DPT:: && SEC::MED

– CTR:: && DPT:: && SEC::LOW

– CTR:: && DPT:: && SEC::

– CTR:: && DPT:: && SEC::

and all these rights R′ where DPT is completed by any value

– CTR::FR && DPT::MKG && SEC::MED

– CTR::FR && DPT::MKG && SEC::LOW

– CTR::FR && DPT::MKG && SEC::

– CTR:: && DPT::MKG && SEC::MED

– CTR:: && DPT::MKG && SEC::LOW

– CTR:: && DPT::MKG && SEC::

– CTR:: && DPT::MKG && SEC::

– CTR::FR && DPT::DEV && SEC::MED

– CTR::FR && DPT::DEV && SEC::LOW

– CTR::FR && DPT::DEV && SEC::

– CTR:: && DPT::DEV && SEC::MED

– CTR:: && DPT::DEV && SEC::LOW

– CTR:: && DPT::DEV && SEC::

– CTR:: && DPT::DEV && SEC::

This is the main idea behind the optimization of the ciphertext size, and the definition of
the user-key rights, that will be formalized in the following part.

4.2 Formal Description

We can now provide some terminology: attribute will be any name, along a dimension for
each category. An attribute with a specific dimension will be a qualified attribute, and a
conjunction of such qualified attributes along different dimensions with define a right. We will
then denote Ω as the universe of the rights, with all the meaningful rights, and an access
policy will be a subset of rights.

Access Policies. Covercrypt is a subset-cover algorithm: both ciphertexts and user secret keys
are associated to a set of rights. A user’s secret key associated to a set of rights Y can then
open a ciphertext associated to a set of rights X if and only if X ∩Y ̸= ∅. In this document, we
call access policy the set of rights associated to either a user secret key or a ciphertext, and
access structure the global structure defined at setup and against which access policies are
validated: an access policy is said to be valid w.r.t. an access structure if the rights it defines
belong to this access structure.

Our goal is now to present a way to efficiently express these sets of rights and to produce
users’ secret keys and compact ciphertexts, in the ciphertext-policy vein, which means that some
attributes are provided to the users, while a Boolean formula is associated to the ciphertext.
We first introduce the notion of attribute and of dimension that can be either:

– a hierarchy, which defines a set of strictly growing attributes:

∀(A,B) ∈ H2, (A⇐ B) or (B ⇐ A) .

A hierarchy H therefore defines a total order relation <H (or ⇐) on its attributes.
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– an anarchy, which defines a set of independent attributes:

∀(A,B) ∈ D2, (A = B) or ¬ (A && B) .

Attributes from different dimensions are said to be orthogonal and attributes from the same
anarchical dimension are said to be mutually exclusive while attributes from the same hier-
archical dimension are said to be mutually inclusive.

An access structure is therefore described by the following grammar:

<access-structure> = [<dimension>]

<dimension> = <anarchy> | <hierarchy>

<anarchy> = <name> ‘{’ [attribute]+ ‘}’

<hierarchy> = <name> ‘(’ [attribute]+ ‘)’

<attribute> = <name>

<name> = [^ ‘&&’ ‘||’ ‘::’]

where the attributes of hierarchical dimensions are given in increasing order, and the notation
[^ ‘&&’ ‘||’ ‘::’] stands for any non-empty combination of characters in which neither &&,
||, nor :: occur, to avoid any ambiguity. An access policy is described by:

<access-policy> = <broadcast>

| <qualified-attribute>

| <access-policy> <op> <access-policy>

<qualified-attribute> = <dimension>::<attribute>

<dimension> = <name>

<attribute> = <name>

<broadcast> = ‘*’

<op> = ‘&&’ | ‘||’

Finally, we define one right per intersection of orthogonal attributes, such that the set of
expressible subset of rights is exactly the set of such intersections. That way, deriving the
set of rights expressed by an access policy is equivalent to expressing this access policy in
its Disjunctive Normal Form (DNF) as described in the previous section. In order to guard
against trivial reductions of an access policies, we add a rule to forbid parsing an empty access
policy. For example, given a pair (A,B) of exclusive attributes, their intersection is empty
which is forbidden. Parsing A && B should therefore return an error. The special <broadcast>
syntax is associated to a right given to each user secret key, thus allowing for efficient broadcast
encapsulations.

Deriving Y from an Access Policy. As we are in the ciphertext-policy setting, the access
policy of a user is a set of rights, that can simply be seen as a disjunction of clauses. Each clause
is expanded (as illustrated above): in every non-empty dimension of the clause, the attribute A is
replaced by the disjunction of A with all the B ⇐ A (including the empty one); and every empty
dimension is filled with a disjunction of all the possible attributes (including the empty one).
Hence, the initial conjunctive clause is expanded into a conjunction of disjunctions along all the
dimensions. This CNF is then developed into its DNF: with disjunctions of conjunctive clauses
that only involve orthogonal attributes along all the dimension, i.e. a disjunction of rights, in
which the empty attributes can then be removed. The right with only empty attributes is the
broadcast right “∗”. The resulting set of rights is then the set Y of rights associated to the user.

Deriving X from an Access Policy. In the ciphertext-policy setting, the ciphertext is
associated to a Boolean formula on attributes: the access policy is any monotonous Boolean
formula, that can first be converted into its DNF: a disjunction of clauses. Its smallest version
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can be found by removing the clauses that are bigger than any other clause: clauses are compared
to each-other (which is quadratic in the number of clauses), and clauses which are bigger than
any other one are removed before converting the clauses into rights. The resulting set of rights
is then the set X of rights associated to the ciphertext.

4.3 Efficiency Considerations

Running Time. It is easy to see that the running-time of a Covercrypt encapsulation is linear
in the size of the target access policy: T cc

enc = O(|X|).
However, in order to guarantee the policy-privacy and the attribute-hiding properties, in

addition to the indistinguishability of the public keys, we need to avoid leakage during decryp-
tion: in our implementation, the rights in X and Y are first randomly permuted, so that timing
attacks cannot help guessing which right has led to the decryption. However, as we stop as
soon as decryption succeeds, the decryption time is not constant, but depends on the number
of rights in X and Y , and the size of the X ∩ Y .

Let S be the random variable that counts the number of user’s rights that are tried before
a right allowing to open the encapsulation is tried. This random variable follows a negative
hypergeometric distribution of parameter N = |Y |, K = |Y |− |X ∩Y | and r = 1. The expected
number of rights drawn from Y \X ∩ Y before getting a success in X ∩ Y is therefore:

E(S) =
|Y | − |X ∩ Y |
|X ∩ Y |+ 1

.

Since each right drawn from Y is tried against each right from X, if the time of a trial is Tu,
then the expected running time E(T cc

dec) of a Covercrypt decapsulation of a ciphertext associated
to a set of rights X with a user’s secret key associated to a set of rights Y is:

E(T cc
dec) =

(
|Y | − |X ∩ Y |
|X ∩ Y |+ 1

+
1

2

)
· |X| · Tu.

In this formula, the roles of X and Y are not symmetrical, which results in the fact that
testing each elements from the smaller set against each element from the bigger one has a
smaller expected running time as soon as X ∩ Y is greater than one. Since our scheme is
expected to produce smaller sets of rights for encapsulations, the most efficient way to perform
a decapsulation is to try each encapsulation against each secret from the user’s secret key.

Storage Efficiency. Given d dimensions each of nd attributes, and since one right per intersec-
tion of orthogonal attributes is defined, the total number of rights is R =

∏
d∈D(|nd+1|), where

the +1 counts clauses that involve dimensions with an empty attribute. If U is the number
of users in the system, the size of the master secret key is thus in O(R + U). The size of the
ciphertext is linear in |X|, while the size of users’ secret is linear in |Y |.

Additional Rights. Covercrypt is inspired by the subset-cover notion, as introduced with
NNL [NNL01], for revocation in broadcast encryption. In the above description, we consider all
the subsets that are singletons, with a unique right, and users receive several of them, while
ciphertexts need a minimal covering to express the Boolean formula. For better efficiency, we
already implicitly introduced a first alias for the full space, where all the dimensions have empty
attributes. But one could introduce many other aliases, for any union of rights. For example, in
the case of a unique dimension, the complete subtree, or the subtree-difference [NNL01] could
be used.
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Dynamic Access Structure and Users. Covercrypt [ETS25] has been designed to allow a
dynamic evolution of the access structure, by adding new dimensions, or new attributes in exist-
ing dimensions, as well as new users, without having to re-encrypt all the data. The specification
precises when users’ keys have to be renewed or refreshed, after some modification of the access
structure. But in order not to loose old rights on old ciphertexts, our implementation considers
users’ secret keys as sets of keys for each right, keeping the old keys for the old rights, and
adding new keys for the new rights. For decryption, the user tries each encapsulation against
each secret for the current time period. If there is no matching, he tries again with the secrets
for the previous time period, etc. For efficiency reasons, one could truncate each set of keys for
each right.

5 Experimental Results

We have implemented the standard [ETS25] in Rust, with additional features4. It uses the
ml-kem library5) and Diffie-Hellman, as well as SHA3 for the hash function. Thanks to the
black-box design, we propose ML-KEM 512 or 768, and Diffie-Hellman on Ristretto255 (built
on top of Curve25519) or P-256. More schemes can be easily added.

Timings reported in table 1 were measured on an Intel(R) Xeon(R) CPU @ 2.30GHz and cor-
respond to a Covercrypt encapsulation and decapsulation, with ML-KEM 512 and Ristretto255,
for a 32-byte symmetric key in function of |X| and |Y |, with |X ∩ Y | growing one-by-one with
the increase in |Y | from 1 to |X|: the darker is the cell, the larger is the intersection (making
the early-aborts approach more profitable), from 1 to 5. A comparison with timings measured
using the GPSW pairing-based KEM [GPSW06] is also provided6. The CCA version is about

Size of X 1 2 3 4 5

Covercrypt 271 378 515 652 794

[BdPP23] (CPA only) 191 272 329 401 487

GPSW KEM 4793 5431 6170 6607 7245

Covercrypt encapsulation time (in µs)

|Y | ↓ \ |X| → 1 2 3 4 5

12 [BdPP23] (CPA only) 508 896 1276 1688 2062

12 1100 1922 2640 3420 4360

18 1515 1520 2429 3214 4304

24 1908 2022 1955 2780 3547

30 2380 2324 2370 2394 3484

36 2828 2891 2776 2829 2817

|X ∩ Y | 1 2 3 4 5

Covercrypt decapsulation time (in µs)

Table 1. Comparisons of Covercrypt and GPSW encapsulation/decapsulation times. For decapsulation, GPSW
has a constant runtime of approximately 3880 µs.

twice as slow as the CPA version due to reliance on the Fujisaki-Okamoto transform both on
the pre- and post-quantum encapsulations. Part of the slowdown can also be explained by the
change of the underlying Kyber library.

4 https://github.com/Cosmian/cover_crypt/releases/tag/v15.0.0
5 https://docs.rs/ml-kem/latest/ml_kem/
6 https://github.com/Cosmian/abe_gpsw
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