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Abstract. Over two decades since their introduction in 2005, all major verifiable pairing delegation
protocols for public inputs have been designed to ensure information-theoretic security. However, we
note that a delegation protocol involving only ephemeral secret keys in the public view can achieve
everlasting security, provided the server is unable to produce a pairing forgery within the protocol’s
execution time. Thus, computationally bounding the adversary’s capabilities during the protocol’s
execution, rather than across its entire lifespan, may be more reasonable, especially when the goal
is to achieve significant efficiency gains for the delegating party. This consideration is particularly
relevant given the continuously evolving computational costs associated with pairing computations
and their ancillary blocks, which creates an ever-changing landscape for what constitutes efficiency
in pairing delegation protocols. With the goal of fulfilling both efficiency and everlasting security, we
present AmorE, a protocol equipped with an adjustable security and efficiency parameter for sequential
pairing delegation, which achieves state-of-the-art amortized efficiency in terms of the number of pairing
computations. For example, delegating batches of 10 pairings on the BLS48-575 elliptic curve via our
protocol costs to the client, on average, less than a single scalar multiplication in G2 per delegated
pairing, while still ensuring at least 40 bits of statistical security.

1 Introduction

A cryptographic pairing is a function e that maps a pair (A,B) ∈ G1 × G2 into an element e(A,B) ∈ GT .
Here, G1, G2, and GT represent groups of prime order q. The map e enjoys special properties such as be-
ing bilinear, non-degenerate, and efficiently computable. Constructive applications of bilinear pairings for
cryptography appeared about 25 years ago by Sakai, Ohgishi, and Kasahara [51] and Joux [36]. Since then,
bilinear pairings have proven to be remarkable in cryptography, driving the development of efficient solutions
and enabling previously infeasible constructions, including three-party key agreement [36], the first crypto-
graphically secure identity-based encryption scheme by Boneh and Franklin [12], aggregate signatures [13],
short signatures [14], attribute-based encryption [50], and constant-size polynomial commitments [41]. Cryp-
tocurrencies and blockchain technologies have caused a new surge in the development of pairing-based zero-
knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs), as they provide exceptionally
compact (short) proofs, e.g., [49, 30, 41, 31, 23]. Other recent applications include compact multi-signatures
[11]; zk-SNARK aggregation [27] and threshold signatures with silent setup [28].

Pairing-based protocols typically rely on several ancillary building blocks, including membership tests,
exponentiation of group elements in GT , scalar multiplication on the elliptic curves of G1 and G2, and
the hash-to-point primitive, among others. To date, and depending on the pairing-friendly elliptic curve
selected, computing a single pairing can be between eight to forty-seven times more expensive than performing
scalar multiplications in G1 and about four times as expensive as scalar multiplications in G2 (cf. Table 2).
Additionally, specialized pairing arithmetic libraries can considerably increase the overall software footprint
of a cryptographic library.

Pairing delegation protocols offer a way to overcome this barrier [29, 16, 33, 22, 3]. In its simplest
form, a pairing delegation protocol is a single round two-party interactive protocol that empowers an entity,
referred to as client, to offload the evaluation of one or more pairings to a computationally more powerful but
untrusted entity, the server. The interaction should be designed in such a way that the client can efficiently
verify the correctness of the result. In contexts that require the computation of several pairings (referred



to as a batch), such as verifying BLS signatures or SNARKs, single pairing delegation is replaced by batch
pairing delegation protocols [56, 45, 21, 47] with the goal of improving efficiency.

Table 1 offers a brief comparison between our work and the most relevant protocols in the same setting,
i.e., two-party (client-server) protocols for delegating pairings computed on public inputs (i.e., the pairing
arguments A,B in e(A,B) are known to and possibly chosen by the adversary), where the server is untrusted
(malicious). The top rows in Table 1 present single-pairing delegation protocols, while the bottom rows
present batch delegation protocols. Negative gains indicate inefficient constructions for the client (the total
client cost of running the delegation protocol is higher than computing the delegated operation locally).

Protocol Lower bounds on client cost Gain Security

CDS14[16, Sec. 4.1] 2N(m1 +m2 +mT+ ∈T ) -40.1% unc
CKKS20 [22] N(p+m1 +m2 + m̄2 + m̄T + 2 ∈T ) -101.1% unc
LOVE [3] N(p+m1 +m2 + m̄2 + m̄T+ ∈T ) -89.8% unc
KC23 [42] - - 7

AmorE (Fig. 2, M = 1) mT +N(2m1 +m2 + m̄2 + m̄T+ ∈T ) 32.1% evr

MV19 [45, Alg. 4] N(p+M(m1 +m2 + m̄2 + m̄T + 2 ∈T )) -3.7% unc
CKC23 [21, Sec. 3.2] N(p+M(m1 + m̄1 +m2 + m̄T+ ∈T )) -6.5% unc
KST23 [38, Alg. 1] - - 7

AmorE (Fig. 2, M > 1) mT +N(m1 + 2m2 +M(m̄1 + m̄T+ ∈T )) 54.7% evr

Table 1: Comparison of recent single- (top part) and batch (lower part) pairing delegation protocols for public and
variable input in the single untrusted server model. The third column specifies the client’s concrete efficiency gain
compared to locally computing N = 10 delegations of a single pairing, or of batches of size M = 3 pairings on
BLS12-381 (see Tables 3, 4 and 6 for further details). Notation: N = number of delegations; M = size of the batch;
p = pairing; mι(m̄ι) = (short) scalar multiplication in Gι; ∈T= membership test in GT ; unc = unconditional; evr =
everlasting; 7 = proven broken in this paper.

All protocols in Table 1 rely on the fact that the client employs secret randomness to (statistically) verify
the correctness of the result returned by the server. If implemented correctly, this approach makes a one-shot
delegation information theoretically (aka unconditionally) sound, as discussed in, e.g., [20, 56]. By one-shot,
we mean that no randomness can be re-used for securely delegating the computation of a second pairing,
or a new batch of pairings. Simultaneously achieving security and efficiency is tricky, even for one-shot
protocols. Two recent proposals (KC23 [42] for single, and KST23 [38] for batch) do not require the client to
compute any element in the target group, if not as a combination of what is returned by the server. While
this design choice is attractive for efficiency, we observe that it inevitably leads to verification equations
that are malleable, and renders the protocols unsound. We generalize and formalize this observation in an
impossibility result (Theorem 1).

Introducing Sequential Pairing Delegations and Amortized Efficiency

We argue that no prior work on public-input pairing delegation in the single untrusted server model is
simultaneously secure and (significantly) efficient for the client: the client is required to compute either one
pairing, e.g., [3, 22, 56, 45, 21], or multiple full-range exponentiations in the target group (each roughly as
expensive as half a pairing), e.g., [20]; or the protocol is insecure, e.g., [42, 38]. Efficiency gains only happen
when disregarding so-called offline client costs, e.g., CKKS20 [22] and LOVE [3] (see Table 3); or for larger
batch sizes, e.g., MV19 [45], CKC23 [21] (see Table 4). This motivates the following question:

Can we design two-party delegation protocols for pairings with public variable input, that are secure
against malicious adversaries and offer significant computational savings to the delegating party?

This work answers this question affirmatively. We consider efficiency in the amortized sense: leveraging a one-
time setup to sequentially delegate the computation of multiple (single or batch) pairings. This approach
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provides a much-needed unified framework for two –otherwise artificially separated– lines of work (single
vs. batch pairing delegation); and paves the way for pairing delegation protocols that are both secure and
concretely efficient for the client: the client’s computational cost of the one-time setup is amortized over
several sequential delegations.

We notice that unconditional security seems to inherently hinder client efficiency. This is apparent in
Table 1, and also motivated by the fact that, to argue information theoretic security, the client needs to sample
some secrets from the full-range (e.g., Z∗

q or G1). Table 2 shows that a full-range exponentiation in the target
group (mT ) is roughly as costly as half of a pairing (p), while a single full-range scalar multiplication in each
of the base groups (m1 + m2) is approximately equivalent to one fourth of a pairing. To achieve significant
computational savings for the client, we consider everlasting security (introduced in [4, 25]) rather than
unconditional. Intuitively, this allows us to prove security against an adversary that is (time/computationally)
bounded only during the delegation process, and may become unbounded after the protocol execution is
completed. This setting is a relaxation of the hybrid bounded storage model introduced by Harnik and Naor
in [34], as in our case, the adversary is allowed to store as much as it can compute.

Application Scenarios: Candidate Clients. Secure and efficient pairing delegation is well-suited for non-
time-critical applications in which client devices have reliable communication channels with the server.
Examples include IoT devices, constrained Electronic Control Units (ECUs) connected via CAN bus to a
computationally more powerful unit in a car [54], and USB-C hardware wallets.

IoT devices are typically constrained by battery, processing power, and rely on communication protocols
such as Wi-Fi, Bluetooth, and Zigbee. For devices that lack sufficient memory to store pairing libraries
and/or the processing power to handle pairing computations, and where communication latency is not a
critical concern, AmorE can offer significant advantages.

Hardware wallets represent another class of suitable clients. These devices are designed to securely store
cryptocurrency private keys offline and usually connect to a computer or mobile device via a USB port, to
sign transactions. Many of these wallets support anonymity-preserving cryptocurrencies like Zcash, which
require computationally intensive zk-SNARK verifications. For instance, the popular Ledger Nano S Plus,
as of 2025, uses an ST33K1M5 chip with a Cortex-M35P processor. Due to the inherent high computational
cost of pairings, this processor may not be suitable for performing pairing computations locally.

Lastly, an interesting application scenario involves delegating pairing computations to a dedicated chip
designed by an untrusted manufacturer. In this context, Campanelli and Gennaro [15] highlighted that
defending against hardware-limited adversaries does not require the full scope of cryptographic protection.
Instead, reasonable assumptions can be made about the computational power available in a given chip area,
which can be used to design efficient solutions.

Application Scenarios: Pairing Provenance. Several pairing-based cryptographic schemes require the com-
putation of a single pairing for each message decryption, e.g., the ID-based encryption scheme by Boneh
and Franklin [12]; the public key encryption with keyword search [10]; Joux-based multi-party key agree-
ment [36, 7]; identity-based onion routing [40]; trusted computing [56]; and, last but not least, the simpler-
inner product argument in aPlonk [1]. In the aforementioned cases, the pairing arguments are progressively
disclosed, making sequential (single) pairing delegation protocols a perfect candidate to widen the range of
devices that can handle the required, but costly, pairing computation.

The vast majority of pairing-based schemes rely on products4 of several pairings. With a cheap and fast
connection to an untrusted server, sequential (batch) pairing delegation protocols can enable IoT devices,
hardware wallets and constrained ECUs to efficiently handle complex pairing-based cryptosystems such as:
BLS short signatures (2p) [14]; Groth16 (3p) [31]; aggregate signatures [13]; polynomial Commitments [41, 1];
SNARKs (21p) [8]; SnarkPack [27]; and performing secret leader election systems [17].

4 The optimization of product of pairings where the whole computation requires the calculation of a single final
exponentiation, is a well-known trick since the 2010’s [52, 59].
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1.1 Our Contributions

In this paper we present several improvements and novel ideas in the subject of pairing delegation. In
summary, the main contributions are:

1. Impossibility result. We identify a fatal security flaw in the single pairing delegation protocol by
Khodjaeva-di-Crescenzo [42] and in the batch pairing delegation protocol by Kalkar-Sertkaya-Tutdere [38].
This unfortunate discovery motivated us to distillate the cause of the attack, and led us to prove an im-
possibility result (Theorem 1) that serves as an indication to the hardness of achieving secure pairing
delegation in the single untrusted server setting, if the client does not perform any preprocessing step in
the target group.

2. A Framework for Sequential Pairing Delegation. As a minor contribution, we introduce a syntax
that captures single, batch, one-shot, and sequential pairing delegation protocols. This syntax can be
used to express all existing proposals in a unified way. Motivated by the limited efficiency gains of existing
proposals, we set out to investigate how to amortize a one-time cost across several sequential delegations.
To formally reason about this new setting, we introduce a security model for sequential delegation of
pairing with public variable inputs in the single untrusted server model, and a definition of amortized
security. We hope this framework will serve as reference for future work in this field.

3. A Protocol for Sequential Pairing Delegation with Amortized Efficiency. We propose AmorE
(Figure 2) the first protocol in the sequential pairing delegation framework. AmorE has an efficiency
parameter φ that enables the client to tweak the desired security level. Setting φ = 2λ , where λ is the
computational security parameter for the bilinear group, yields an unconditionally secure scheme. This
sets all client’s randomness to be full-range. This design choice, however, does not lead to a significantly
efficient solution, as discussed previously. We then present a specific setting of φ that renders AmorE
concretely (amortized) efficient and provably everlasting secure in the hybrid bounded storage model,
against an algebraic adversary whose computational power does not exceed the hashrate of the entire
Bitcoin network. Notably, AmorE does not require the client to compute a pairing locally, removing the
need for storing/loading specialized libraries for this task.

4. A Novel Proof Technique. As a result of independent interest we provide a novel proof technique
for everlasting security of a pairing delegation protocol. To the best of our knowledge this is the first
time that everlasting security is considered in this line of work. Interestingly, our proof draws connection
to the original Diffie and Hellman meet-in-the-middle attack and combines known mathematical results
that range from combinatorics to mathematical optimization/programming.

5. Experimental Validation and Efficient Short Scalar Sampling. We present benchmarking results
using the cryptographic library RELIC and introduce a new technique for sampling and using short
scalars more efficiently than previous work. Through careful analysis of various trade-offs and design
choices, we have developed a software library capable of executing all the protocols presented in this
paper with high computational time efficiency. Our software is freely available at: https://github.
com/relic-toolkit/relic/tree/amore

Finally, as a byproduct of providing a fair experimental validation, we provide the first publicly available
implementations for MV19 [45] and CKC23 [21].

1.2 Overview of our Techniques and Results

In what follows we provide an overview of our results and techniques. We try to keep it intuitive and minimize
the use of notation (which can be found in subsection 2.2).

The impossibility result stems from observing that the verification equations of KC23 and KST23 are
malleable. These are of the form γ = ρr · ξu, where γ, ρ, ξ ∈ GT are given by the server, the exponents
r, u are known to the client only (client’s secret randomness), and ρ is expected to be the evaluation of
the delegated pairing. Theorem 1 states that any protocol for single- or batch pairing delegation in which
the only verification checks are membership tests in GT and equations like the above involving only GT

elements produced by the server, is malleable. The proof is constructive and presents a generic and successful
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malleability attack: first compute the honest output (γ, ρ, ξ); then modify it by exponentiating all components
to a common value x ∈ Z∗

q ∖ {1}; and finally return (γx, ρx, ξx) to the client. Clearly, γ, ρ, ξ ∈ GT ⇒
γx, ρx, ξx ∈ GT . Moreover, γ = ρr · ξu ⇔ γx = (ρx)r · (ξx)u, which would make the client accept the incorrect
pairing value ρx 6= ρ.

The AmorE protocol follows the setting of, e.g., Chevallier et al. [20] and CDS14 [16], where the public
parameters include a target group element γT = e(P,Q). This design frees the client from computing pairings
locally, and thus makes the storing of specialized pairing libraries unnecessary. The γT element is used to
generate a long term secret ξ = γsT (with s uniformly random in Z∗

q) used for all subsequent verifications.
Since ξ is unknown to the server and appears in the verification equation, AmorE does not fall into the
vulnerability class of our impossibility result. Therefore, at the overhead cost of just this one-time full-
range exponentiation in GT , AmorE can verify the correctness of a sequence of N , single or batch, pairing
delegations.

We begin by designing a protocol that is unconditionally secure by constructing n public values (besides
the pairing inputs) involving n + 1 mutually masking secrets, thereby forming an underdetermined system
of equations with a single degree of freedom. All variables come into play in the verification equation, to
reconstruct the precomputed ξ.

We then look for efficient realizations that remain secure against realistic, time-bounded adversaries.
Indeed, once the delegation process is completed, no harm can be done even if the client’s secret randomness
is leaked or revealed (after all the N rounds have concluded). To improve efficiency we adopt the well-
known strategy of allowing the client to sample some randomness from a set of bounded size J2φK ⊊ Z∗

q , see
[45, 22, 3, 21], which allows for shorter scalar group exponentiations. Besides considering amortized efficiency
in the sequential axis, we leverage the batch axis as well: our construction guarantees that the client cost
scales only with the term (m̄1 + m̄T+ ∈T ) as the batch size M grows (see Table 1), which already yields
efficient asymptotics over the cost p of computing a pairing.

Security proof technique After identifying the algebraic relation that characterizes successful forgeries
against our protocol (Lemma 1), we establish that an adversarial view consisting of an underdetermined sys-
tem of equations with one degree of freedom yields unconditional security (Theorem 2). However, additional
constraints resulting from sampling two or more secrets from a bounded set, enable secret value discardment.
Indeed, such secrets become partially masking ones, and evaluating carefully chosen public expressions in
terms of them allows an adversary to rule out solutions by intersecting their corresponding generated sets.
This fact is well described in subsection 6.2. Everlasting security is subsequently proven under the as-
sumption that the adversary’s computational resources are finite and proportional to the protocol’s execution
time (Theorem 3). Specifically, we limit the adversary in computing no more than 2κ exponentiations in any
of the bilinear groups within a pre-given timeout, and prove that setting the efficiency parameter φ to the
value d(σ − 1)/2 + κe provides a statistical security of σ bits (see section 6, Lemma 2).

Concrete parameter instantiations We upperbound the adversary’s resources to the current computa-
tional power of the entire Bitcoin network. As of 2025, the all-time high Bitcoin hashrate is 1, 077.59 EH/s,
corresponding to nearly 270 SHA256 hashes per second. Under the fair assumption that computing a single
block header hash is less expensive than performing any bilinear group exponentiation, in this work (and at
this point in time), we set κ = 70 + log(τ), where τ represents the timeout of the protocol in seconds, i.e.,
we limit the adversary to performing no more than 270 · τ scalar exponentiations across all three bilinear
groups. Our use cases in section 7 –the costliest being sequentially delegating 10 batches of 100 pairings on
the curve BLS48-575– take less than one second when run on our equipment, which is why we fixed τ = 1 .5
In short, we set κ = 70 and φ = 90 when aiming for the standard σ = 40 bits of statistical security.

5 Weak IoT devices dealing with server communication overhead may set a higher value for τ . In this case, however,
the efficiency gain is only mildly degraded due to φ increasing logarithmically with τ .
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Efficiency results We implement AmorE within the high-speed RELIC pairing library and, for the first time,
achieve savings (in clock cycles) ranging from 22.7% to 45.4% (resp. 40.8% to 83.5%) for single (resp. batch)
sequential delegation of pairings on BLS curves compared to computing them locally. Besides the protocol’s
design, a new method of efficiently sampling short scalars (see Special-form challenges in section 7) also
contributes to the overall speedup. AmorE is thus the first pairing delegation protocol providing a substantial
reduction in client computation.

1.3 Related Work

The concept of pairing delegation emerged two decades ago, in 2005, through three early works: Girault and
Lefranc [29], which focuses on single-round server-aided verification (SAV) in general; Chevallier et al. [19]
(published five years later in [20]), which addresses pairing delegation over several rounds; and Kang-Lee-
Hong [39], which builds on [19] and targets pairing delegation with at least one secret input point.

The SAV framework proposed by Girault and Lefranc in [29] aims to offload the computationally expensive
verification process of digital signatures to a powerful but untrusted server. For pairing-based signatures, such
as ZSNS [60] and Boneh-Boyen [9], Girault and Lefranc demonstrate a secure delegation technique where
the verifier’s workload is reduced to only two exponentiations in the target group. While this approach
was relevant at the time, due to the continuously evolving computational costs associated with pairing
computations and related operations have since rendered it outdated. Moreover, in contrast to [19, 39, 20],
the client in Girault-Lefranc’s SAV protocols [29] does not recover the value of the outsourced pairing.
Instead, the client probabilistically checks that the returned pairing satisfies the verification equation of the
signature scheme. Follow-up work on SAV [58, 57, 48] improves the security model and combines SAV with
delegation protocols for evaluating single pairings on public inputs.

Single pairing delegation with public inputs. This setting is relevant for signature verifications and has several
applications as we discussed in section 1. We argue that no existing work achieves concrete efficiency for the
client. For instance, Chevallier et al. [20] require the client to perform seven full-range GT exponentiations,
which is at least double the cost of computing a pairing using state-of-the-art techniques (see Table 6). To
demonstrate client efficiency, Canard-Devigne-Sanders (CDS14) [16] split the client workload into an offline
and an online phase. In a nutshell, the offline phase runs computations that are independent of the pairing
argument, while the online phase uses the pairing input. Efficiency is claimed solely for the online phase
cost, with the offline work disregarded. We implemented the public input protocol in CDS14 [16] and our
test beds show that it is slightly inefficient for the client (see Tables 1 and 3), The current state-of-the-art
pairing delegation protocol is LOVE, by Aranha et al. [3]. LOVE is a small improvement of Di Crescenzo
et al.’s [22] pairing delegation protocol in the offline/online setting. In LOVE, verification is more efficient
than in [22] and [16], however this claim holds only for the online phase (see Table 1). The latest work on
this line of research is by Khodjaeva and Di Crescenzo (KD23) [42]. In this case, the client skips the offline
phase altogether. This yields a malleable verification equation, as we show in section 3 that undermines the
soundness of the delegation. Table 1 summarizes the state of the art for the most relevant work in single
pairing delegation with public inputs and a single malicious server.

Batch pairing delegation with public inputs. A way to bypass the computational overhead of verification is
to consider delegation of several pairings at once (batch). This idea appears in 2007 due to Tsang-Chow-
Smith [56], together with a taxonomy of (batch) pairing delegation protocols based on the pairing arguments
being a combination of public/secret and variable/constant input points. Again, we argue that existing
work on batch pairing delegation with (variable) public input achieves limited (and unattractive) concrete
efficiency for the client, especially when considering small batches (N < 10) on widely adopted curves. All
protocols in [56] rely on costly exponentiations in the target group, and one pairing computation in the
pre-processing phase that render them inefficient. Mefenza-Vergnaud (MV19) [45] introduced more efficient
batch pairing delegation protocols by leveraging the endomorphism trick outlined in [33], along with reduced
exponent sizes. MV19 requires the client to compute one pairing during pre-processing and our experimental
results show that it is inefficient for small batches (see Table 4). The most recent works are from 2023, by Di
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Crescenzo-Khodjaeva-Caro (CKC23) [21] and by Kalkar-Sertkaya-Tutdere (KST23) [38]. We implemented
the “public online” protocol in CKC23 and found that its total client cost is consistently higher than in MV19
for all four BLS curves for batches of size M < 10 (see Tables 4 and 5). Moreover, despite claiming “unlimited
client lifetime” and “after the offline phase, the number of delegation protocols executable by the resource-
constrained client is an arbitrary polynomial”, [21] lacks a formal model, and the security proof is only for
one-shot protocols. Finally, similar to KD23, KST23 pursues efficiency by skipping the preprocessing and
ends up with a verification equation that is malleable, which renders the scheme insecure against a malicious
server.

Alternative lines of work Another line of work investigates delegation of pairings with at least one secret
input, e.g., Kang-Lee-Hong [39] and Guillevic-Vergnaud [33]. Notably, Guillevic-Vergnaud’s protocols are
efficient and guarantee input secrecy, but are not verifiable, i.e., security is ensured against an honest but cu-
rious server, but not against a dishonest one. This setting has limited applications: identity based encryption
schemes.

An alternative research line considers more servers via the (one-malicious) two-untrusted-program model [18,
37, 55]. We consider this setting is somewhat artificial: in real-world use cases, the client is resource-
constrained (otherwise computing the pairing locally would not be a problem), and naturally aims to mini-
mize costly wireless communications (more servers mean more communication channels to be established).
Furthermore, the client may lack the necessary interfaces to support multiple servers, as is the case with
hardware wallets that rely on USB-C connections for data transfer.

2 Background

2.1 A Swift Introduction to Bilinear Pairings

Let G1, G2 and GT represent three possibly distinct groups of the same prime order q. In pairing-based
cryptography, it is customary to describe G1, G2 using additive notation, while GT is described using
multiplicative notation. A cryptographic pairing, denoted as e : G1 ×G2 7→ GT , is a mapping characterized
by being bilinear, i.e., e(xA, yB) = e(yA, xB) = e(A,B)xy ∈ GT , where A ∈ G1, B ∈ G2 and x, y ∈ Zq;
non-degenerate e(A,B) 6= 1GT

if A,B are generators of the respective groups; and efficiently computable. In
practical applications, cryptographic pairings are instantiated using pairing-friendly elliptic curves E defined
over carefully chosen prime fields Fp and their extensions. For the bilinear pairings studied and implemented
in this paper, the elements of the groups G1 and G2 are elliptic curve points in an order-q subgroup of E(Fp)
and E(Fpk), respectively, where k is a small integer known as the embedding degree of the elliptic curve.
The elements of GT belong to an order-q subgroup in the finite field extension F∗

pk .

The bumpy road of implementing bilinear pairings at the 128-bit security level The first proof
that bilinear pairings could be computed in polynomial time was provided by the seminal work of Victor
Miller [46] in 2004. Later, the Barreto-Naehrig (BN) family of curves [6] stood as the preferred choice for
pairing protocols, offering a 128-bit security level with primes slightly below 256 bits. However, a series
of advancements in the Tower Number Field Sieve (TNFS) algorithm for attacking the discrete logarithm
problem over prime finite field extensions, published between 2015 and 2016, diminished the security level
of BN curves to less than 110 bits [43, 5, 32]. Presently, the most widely adopted family of pairing-friendly
curves comprises the Barreto, Lynn, and Scott (BLS) curves, specifically instantiated as BLS12-381 and
BLS12-383, utilizing 381- and 383-bit primes, respectively. The primary consequence of these nearly decade-
old cryptanalysis advancements is that computing cryptographic pairings at the 128-bit security level now
requires three times the computational effort compared to pre-attack scenarios.

2.2 Notation

– Lower case greek letters (except γ, η, ρ, ξ, ϕ) denote parameter inputs: λ for security, φ for efficiency, σ
for statistical security, τ for protocol duration, and κ for computational bound.
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– In bilinear groups, P , Q, and γT = e(P,Q) are the public generators of G1, G2, and GT , respectively.
– Concrete group elements: A,C, P, U,W, Y ∈ G1, B,D,Q, V,X,Z ∈ G2, and γ, η, ρ, ξ ∈ GT .
– Lowercase Latin letters denote integers such as indexes i, j; secret exponents r, s; and discrete logarithms

of group elements, e.g., a = logP (A), b = logQ(B).
– “JNK” denotes the range {1, . . . , N}.
– Vectors are denoted by a right arrow above a symbol, e.g.,

−→
A = (A1, . . . , AN ) ∈ GN

1 , while Matrices
are denoted as bold symbols with one over right arrow, e.g., −→r = (rij)ij .

– “negl(·)” and “poly(·)” denote negligible and polynomial functions, respectively, while “Θ(·)” stands for
Big Theta notation (recall that if f ∈ Θ(g), then f grows asymptotically as fast as g).

– A denotes the adversary, modeled as an algebraic algorithm, with specific runtime details provided later.
– “ $←” denotes random sampling from a set, and “←” denotes value assignment.
– Bilinear group operations: mι (resp. m̄ι) denotes scalar multiplication, oι a group operation, ∈ι member-

ship testing, and p a pairing computation.
– “cost(f)” denotes the average computational cost of an algorithm f over a fixed number of executions

with random inputs, measured, for example, by the number of group operations or the clock cycles
required to execute the algorithm on a given device.

– N ≥ 1 represents the number of rounds (delegations), and Mi ≥ 1 is the batch size at round i ∈ JNK .
– L = 1T ·

−→
M =

∑N
i=1Mi represents the total number of delegated pairings for fixed values N and

−→
M .

2.3 Single & Batch Pairing Delegation

Models for single- and batch pairing delegation appear in a more or less formalized fashion in many works.
Here, we provide a unifying syntax that additionally covers the sequential delegation setting introduced in
this paper.

Generic Remarks Following established practice (e.g., [3, 38]), we assume that the communication channel
between the client and the server is not vulnerable to integrity or replay attacks. Additionally, we assume
that the client is always honest, while the server may be untrusted (malicious).

Syntax for Single Pairing Delegation Definition 1 recalls the framework for offline/online single pairing
delegation in the single server setting introduced in [3, Definition 1], with the following minor adaptations
to suit our work:
• For clarity, offSetup is renamed to OneTimeSetup (and off.pp to sk), onSetup to Setup, and onVerify

to Verify (and value to result). (The distinction between online/offline phase is not as prominent when
considering amortized efficiency).
• OneTimeSetup: instead of a single statistical security parameter σ, it takes as input tuple of auxiliary

security parameters aux.sec.
• Verify: in addition to the one-time inputs (sec and out) it takes as input the client’s long term sk.

Everything else is syntactically equivalent to Definition 1 in [3], since that syntax provides a good foundation
for any pairing delegation protocol.

With straightforward adaptations, the syntax in Definition 1 accommodates for describing also all public
input pairing delegation protocols in [56, 20, 16, 45, 22, 42, 21, 38], see Appendix A for two concrete examples.

Definition 1 (Single Pairing Delegation Protocol). A protocol Π for delegating pairing computations
consists of five PPT algorithms (GlobalSetup,OneTimeSetup, Setup,Compute,Verify) with the following syn-
tax:

GlobalSetup(λ)→ pp is a randomized algorithm that takes as input the computational security parameter
λ and returns the description of a bilinear map pp := (q,G1,G2,GT , P,Q, γT , e), where q is a (2λ)-bit
prime, P , Q and γT are generators of G1 , G2, and GT respectively, and e is a pairing. (We assume pp

to be readily available to all other algorithms).
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OneTimeSetup(aux.sec)→ sk is a randomized algorithm run by the client (once, during the offline phase).
It takes as input a list of auxiliary security settings aux.sec, and generates long term secret material sk
that may be accessed by other client-side algorithms. (We assume aux.sec to be readily available to all
other algorithms).

Setup(sk, A,B)→ (pub, sec) is a randomized algorithm run by the client (possibly multiple times, in the
online phase). It takes as input the client’s long term key sk and the pairing arguments (A,B) ∈ G1×G2.
It returns a public tuple pub for the server, and the client’s secret randomness sec (possibly a vector) for
the client.

Compute(pub)→ out is a deterministic algorithm run by the server (possibly multiple times, in the online
phase). It takes as input the public tuple pub, and returns a tuple of public outputs out.

Verify(sk, sec, out)→ result is a deterministic algorithm run by the client. It takes as input the client’s long
term secret sk, the secret input sec, and the server’s output out. It returns a value result ∈ {GT ∪⊥}.

Intended usage In all pairing delegation protocols, the GlobalSetup is run by a trusted party once to produce
public parameters for all entities in the system. Protocols that do not consider online efficiency merge
OneTimeSetup and Setup, e.g., [20, 16, 42]. The procedures Setup, Compute, and Verify are executed in this
sequence to perform one pairing delegation. In [3, 22, 42] this triplet of algorithm identifies the so-called
online phase, and efficiency is defined only for algorithms run in the online phase (the OneTimeSetup needs
to run once per pairing delegation, but is not accounted for online efficiency estimates).

Syntax for Batch Pairing Delegation The syntax for batch pairing delegation is a natural generalization
of Definition 1 to handle inputs and outputs as vectors.

Definition 2 (Batch Pairing Delegation Protocol). A protocol Π for delegating pairing computations
consists of five PPT algorithms (GlobalSetup,OneTimeSetup, Setup,Compute,Verify) with the following syn-
tax:

GlobalSetup(λ)→ pp is as in Definition 1.
OneTimeSetup(aux.sec)→ sk is as in Definition 1.
Setup(sk, A,B)→ (pub, sec) is as in Definition 1 with vectors of pairing arguments

−→
A,
−→
B ∈ Gn

1 ×Gn
2 .

Compute(pub)→ out is as in Definition 1.
Verify(sk, sec, out)→ result is as in Definition 1, with result ∈ {Gn

T ∪ ⊥}.

Security Models In the public input setting, pairing delegation protocols are required to be correct (aka
complete [16]) and secure (aka verifiable [16], correct [56], ϵs-result secure [21]). Defining correctness is rather
straightforward: if the server behaves honestly the result output by the verification process is the intended
(vector of) pairing(s). Security, on the other hand, states that a malicious server should be able to convince
the client of an incorrect pairing value only with a small and well-defined probability (statistical security).
For completeness, Figure 5 (in Appendix subsection A.1) reports the security experiments for single and
batch pairing delegations in our notation.

3 An impossibility result for secure pairing delegation without preprocessing

Delegating the computation of a single pairing, or a batch, to a single untrusted server in a way that is
both secure and efficient is a very challenging task, even when considering the pairing arguments as public
inputs. To improve efficiency, it might be tempting to remove any client pre-processing on GT elements. If
done naively, e.g., in KC23 [42, Section 4] and KST23 [38, Alg. 1], this leads to insecure constructions for
both single and batch pairing delegation. Theorem 1 identifies sufficient and necessary conditions to launch
malleability attacks against single and batch pairing delegation protocols.

Appendix A presents KC23 and KST23 in our notation and detailed attacks against KC23. We discuss
KST23 as a warm up to our impossibility result. In KST23, the server outputs two n long vectors of GT
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elements (n denotes the size of the batch), out = (−→γ ,−→ρ ). The client verifies the delegation by checking that
all elements belong to the target group, and that γi = ρrii , for all i ∈ JnK, with ri being the client’s secret
exponents.

Our attack against KST23: Instead of the honest tuple (−→γ ,−→ρ ), the malicious server returns out∗ =
(−→γ ∗,−→ρ ∗) = (−→γ x,−→ρ x), where x ∈ Zq \ {0, 1}. As before, −→γ ,−→ρ ∈ Gn

T implies −→γ ∗,−→ρ ∗ ∈ Gn
T since GT is

closed under multiplication. Moreover, for every i ∈ JnK, γi = ρrii ⇔ γ∗i = (ρ∗i )
ri since γ∗i = γxi = (ρrii )x =

(ρxi )
ri = (ρ∗i )

ri . Hence, out∗ is not rejected by the verification, and the client would accept the pairing values
−→ρ ∗ 6= −→ρ .
Theorem 1. Let Π = (GlobalSetup,OneTimeSetup, Setup,Compute,Verify) be a protocol for delegating a
single pairing or a batch, in the single untrusted server model, −→γ = (γ1, . . . , γn) the values returned by the
server, and −→r a tuple of secret exponents in Zq \ {0} generated by the client. If Verify solely consists of:

1. Membership tests γi
?
∈ GT for i ∈ JnK , and

2. Equality tests of the form ϕ
(j)
−→r (−→γ ) ?

= 1 for j ∈ JmK, where m ≥ 1 and ϕ(j)−→r : Gn
T → GT is an homomor-

phism involving secret exponentiations of elements in −→r on the values −→γ ,
then Π is malleable.
Proof. Recall that a homomorphism ϕ in a multiplicative group satisfies the following property: ϕ(γ1, . . . , γn)·
ϕ(γ′1, . . . , γ

′
n) = ϕ(γ1 · γ′1, . . . , γn · γ′n). In particular, for any x ∈ Zq , ϕ(γx1 , . . . , γxn) = ϕ(γ1, . . . , γn)

x.
A malicious server choosing any value x ∈ Zq \ {0, 1} and returning out∗ = (γ∗1 , . . . , γ

∗
n) = (γx1 , . . . , γ

x
n) 6=

out bypasses the Verify phase. Indeed, the elements of out∗ belong to GT due to the group closure property,
and for every j ∈ JmK , it holds that

ϕ
(j)
−→r (γ∗1 , . . . , γ

∗
n) = ϕ

(j)
−→r (γx1 , . . . , γ

x
n) = ϕ

(j)
−→r (γ1, . . . , γn)

x = 1x = 1 .

ut

4 Modeling Sequential Pairing Delegation and Amortized Efficiency

Sequential pairing delegation can be expressed using the syntax introduced in Definition 1, though its in-
tended usage changes: OneTimeSetup is meant to be run one time throughout the life span of a protocol
instance, and the loop Setup, Compute, Verify can be run for a finite number N ≥ 1 of times, using the output
of OneTimeSetup. Sequential delegations allow us to consider amortized efficiency: the computational cost of
OneTimeSetup should be amortized over several sequential (single or batch) pairing delegations. Naturally,
the i-th delegation round is considered to be a single one when Mi = 1, and batch whenever M ≥ 1.

In the remainder of this section, we present definitions of correctness, concrete amortized efficiency, and
security for sequential pairing delegation protocols, covering both the single and batch settings.

4.1 Defining Correctness
The correctness property for a sequential pairing delegation protocol essentially states that: as long as all
the algorithms are run honestly, for each delegation (round) i ∈ JNK the verification procedure should return
resultij = e(Aij , Bij), where (Aij , Bij) ∈ G1 × G2 denote the j-th pairing arguments used for the i-th
delegation (the size of the i-th batch, Mi, may vary at every delegation round).
Definition 3 (Correctness). A protocol Π for sequential pairing delegation is said to be L-correct if, for
any number of rounds (delegations) N , and batch sizes

−→
M = {Mi}Ni=1 satisfying 1T ·

−→
M ≤ L, for any choice

of parameters λ (computational security), aux.sec (e.g., efficiency, statistical security, timeout); for any pp

output by GlobalSetup(λ), and for any sk produced by OneTimeSetup(aux.sec), it holds that:

Pr

result = {e(Aij , Bij)}j∈JMiK
∣∣∣∣∣∣
(pub, sec)← Setup(sk,

−→
A i,
−→
B i)

out← Compute(pub)
result← Verify(sk, sec, out)

 = 1 ∀i ∈ JNK.
10



4.2 Defining Amortized Efficiency

In the following, we refer to the client’s computational cost as cost(client), which is a shorthand for the
total computational cost of running all client-side algorithm of a protocol Π. Specifically, this includes
cost(OneTimeSetup); plus the cost of N delegations with batch sizes

−→
M , i.e., the N -term sum of the cost of

Setup and Verify, where the input to Verify is computed by evaluating Compute on the output of Setup, and
vectors have size Mi for i ∈ JNK.

Intuitively, amortized efficiency states that the protocol allows the client amortize the cost of OneTimeSetup
over a large enough number of delegated pairings, hence providing concrete efficiency for the client. We re-
mark that for a fixed number L of delegated pairings, cost(client) may vary depending on the number of
delegation rounds N , and the respective batch sizes

−→
M . As long as running Π with a specific choice (N,

−→
M)

(satisfying L = 1T ·
−→
M) for which cost(client) is less than the cost of evaluating L pairings locally, we say

that Π is amortized efficient.

Definition 4 (Amortized Efficiency). Let Π be a protocol for sequential pairing delegation, and L ≥ 1 a
positive integer. Π is said to be L-amortized efficient if there exists a tuple (N,

−→
M) for delegating L pairings

and a real value ϵ ∈]0, 1[ such that:
cost(client)

L · p
≤ ϵ .

where cost(client) represents the client-side cost of running Π for delegating L pairings.

From Definition 4 we can draw the notion of concrete amortized efficiency for a fixed batch sizeM ≥ 1, and
a target efficiency ratio ϵ ∈]0, 1[ by finding (if it exists) the smallest integer N ≥ 1 such that cost(client)

M ·N ·p ≤ ϵ .
We remark that for one-shot pairing delegation protocols the ratio ϵ is constant since cost(client) is linear

in N ·M (the OneTimeSetup needs to be run at every new delegation round).

4.3 Security Model

We now present the security experiment for sequential pairing delegation. Our experiment, depicted in
Figure 1, generalizes the one for one-shot pairing delegation defined, e.g., in [3, Definition 3] and reported
in subsection A.1. Intuitively, the adversary A plays the role a malicious server which controls the pairing
inputs at each delegation round.

In detail, Expseq
Π,A sets up an instance of a sequential pairing delegation protocol Π for a fixed number

L of pairings; and for every delegation round, A selects the pairing arguments (
−→
A,
−→
B ) adaptively, which are

used as inputs in Setup. The adversary wins the experiment if

1. At a given delegation round i, a forgery is produced, i.e., an out∗ for which the verification procedure
Verify returns a tuple in GT not matching {e(Aij , Bij)}Mi

j=1 .
2. All outputs returned by the adversary prior to the forgery are honest.
3. The number of delegated pairings up that point doesn’t exceed L.

This experiment aims to capture the behavior of an adversary attempting to gain knowledge during the
initial rounds of the protocol and subsequently leveraging this information to launch an attack at a later
stage of the protocol. As expected, setting L = 1 yields the same security experiment found in [3, Section 3]
(for a one-shot single pairing delegation).

We remark that a more typical and stronger security experiment can be defined by allowing the adversary
to return non successful forgeries out∗ without automatically losing the game, simply by removing line 14
in Expseq

Π,A. However, this extra requirement is not realistic in our framework: if the client rejects the server
output due to being bogus, it can as well decide to interact with another server for future delegations, and/or
refresh its secret randomness by re-running OneTimeSetup. We believe these are easy and common fixes in
the application scenarios we consider and should be leveraged, rather than discouraged.
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Expseq
Π,A(λ, aux.sec, L)

1 : pp← GlobalSetup(λ)

2 : sk← OneTimeSetup (aux.sec)

3 : ctr← 0

4 : stA ← (λ, aux.sec, pp)

5 : while true :

6 : (
−→
A,
−→
B, stA)← A(stA)

7 : ctr← ctr + len(
−→
A )

8 : if ctr ≥ L : return 0

9 : (pub, sec)← Setup(sk,
−→
A,
−→
B )

10 : (out∗, stA)← A (pub, stA)

11 : result
∗ ← Verify(sk, sec, out∗)

12 : if result
∗ /∈ {⊥, e(

−→
A,
−→
B )} :

13 : return 1

14 : if result
∗ = ⊥ : return 0

15 : return 0

Fig. 1: Security experiment for sequential pairing delegation.

Definition 5 (Security). For a given positive integer L ≥ 1 , a computational security parameter λ, and a
tuple of auxiliary security parameters aux.sec, a sequential delegation protocol Π is said to be secure against
a given family of adversaries if, for any A in the family, it holds that:

P
[
Expseq

Π,A(λ, aux.sec, L) = 1
]
≤ negl(λ) +

∑
δ∈aux.sec

negl(δ)

where Expseq
Π,A is depicted in Fig. 1.

5 The AmorE protocol

In this section we present AmorE, the first pairing delegation protocol that can be run sequentially with
(concrete) amortized efficiency.

AmorE is instantiated with the following auxiliary security parameters: (1) a timeout parameter τ , which
upperbounds the duration of the protocol in seconds, and (2) an efficient parameter φ, which balances the
trade-off between (statistical) security and efficiency.

Introducing τ stems from the observation that a malicious server cannot develop a winning strategy
before receiving the first public value from the client, or after the protocol has concluded. Hence, if it holds
that the adversary’s view pub only encodes ephemeral secret coins (which become useless, if disclosed after
the delegation is over), it is reasonable to bound the adversary’s running time in the duration of the protocol.
In particular, we assume that the number of delegated pairings is linearly dependent on τ , i.e., L ∈ Θ(τ) .
On the other hand, φ allows the client to adjust the security and efficiency of the construction, ranging
from information-theoretic (but not necessarily efficient) to everlasting security against a bounded algebraic
adversary, and significantly efficient.

AmorE is presented as pseudocode in Figure 2. In subsection 5.1, we describe the code flow while in
subsection 5.2 we prove the correctness property of Definition 3. Two security results are subsequently
presented in section 6: Theorem 2, where information-theoretic security is proven for the efficiency parameter
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φ = 2 · λ, any time parameter τ , and any number L ∈ poly(λ) of pairing delegations; and Theorem 3 where
φ� 2 ·λ allows AmorE achieve amortized efficiency, and is proven to be everlasting secure against adversaries
operating under the Algebraic Group Model [26] that are computationally bounded during the execution
time τ of the protocol.

5.1 Protocol Description

We describe AmorE in two blocks: the one time procedures and the ones for sequential delegation.

Protocol description (one-time procedures) The GlobalSetup is run once to generate the global public pa-
rameters pp, which describe a bilinear group and its generators. Specifically, pp is comprised of the field size
q, a bilinear map e, the groups Gι for ι ∈ {1, 2, T}, and their corresponding generators P,Q, γT = e(P,Q).
The global public parameters are publicly available to all algorithms. The OneTimeSetup is run once by the
client, and takes as input the auxiliary security parameters aux.sec = (τ, φ), which are set by the client.
The time parameter τ will be used as a termination flag, while the efficiency one, φ, will tune efficiency and
security (as discussed later in this section). A long term secret scalar s is uniformly sampled and the element
ξ = γ−s

T is computed. The start time tstart of the protocol is initialized, enabling time lapse checking against
the time parameter τ at the verification phase of each delegation.

Protocol description (sequential delegations) The procedures Setup, Compute, Verify can be run multiple
times in this sequence.

Setup is run by the client to initiate a new pairing delegation for the arguments (
−→
A,
−→
B ). After checking

that the inputs have consistent sizes and do not contain the infinity point, a field element u is uniformly
sampled, generating the points U ∈ G1 and V ∈ G2 (lines 7-9), linked by the relation e(U, V ) = ξ . We remark
that these computations are independent of the pairing inputs, and hence can be precomputed. Next, whether
the batch (

−→
A,
−→
B ) consists of a single pair or multiple, determines the follow up logic, but essentially, a secret

scalar r is uniformly sampled from Jmin{2φ, q−1}K for each pairs of inputs (A,B) in (
−→
A,
−→
B ) and additional

group elements are computed and checked against the infinity point in order to later verify the correctness
of the server’s ouput at the end of the interaction round. The public tuple

(−→
A,
−→
B,
−→
C ,D,X, Y

)
is then sent

to the server, while the secrets −→r are kept by the client.
Compute is the only algorithm run by the server. It takes pub as input and returns to the client the

delegated pairing(s) ρj = e(Aj , Bj) for j ∈ JMK along with the check value γ.
Verify is run by the client to conclude the delegation. It first ensures the protocol has not timed out

(line 2) and then checks that the expected evaluated pairings −→ρ are GT elements (in order to avoid small
subgroup attacks, as in [53, Section 8.3]). The last check verifies the identity ξ ?

=
(∏M

j=1 ρ
rj
j

)
· γ (line 8). If

all checks pass, the algorithm returns −→ρ , else, it returns ⊥.

M = 1 vs M > 1 delegation approach The public view is constructed differently depending on whether
the delegation round consists of a single pairing or a batch of them, and the underlying reason is solely
for leveraging efficiency (see Table 2). Indeed, for M = 1, it is more efficient to perform a short scalar
multiplication on the G2 point D and a full one to the G1 point C. On the other hand, for M > 1, our
verification formula allows us to perform M short multiplications on G1 and a single full one on a G2 point.

5.2 Protocol Correctness

This follows by inspection of the pseudo code in Figure 2. In line 4 of Compute, the server computes −→ρ =
{e(Aj , Bj)}Mj=1 which is then returned in line 9 of Verify. It remains to show that the verification equation
ξ

?
=
(∏M

j=1 ρ
rj
j

)
· γ in line 8 of Verify, is satisfied when all algorithms are run honestly. We have two cases:
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GlobalSetup(λ)→ pp

// Bilinear Group parameters
pp← (q,G1,G2,GT , P,Q, γT , e)

Setup(sk,
−→
A,
−→
B )→ (pub, sec)

1 : parse sk = (s, ξ, ·, φ, ·)

2 : if len(
−→
A ) ̸= len(

−→
B ) :

3 : return ⊥

4 : if O ∈
−→
A ∪
−→
B :

5 : return ⊥

6 : M ← len(
−→
A )

7 : u
$← Z∗

q

8 : U ← [u]P

9 : V ← [s · u−1]Q

10 : if M = 1 :

11 : r
$← Jmin{2φ, q − 1}K

12 : C ←
[
−s · u−1] (U +A)

13 : D ← V − [r]B

14 : (X,Y )← (⊥,⊥)
15 : else :

16 : W
$← G1 \ {O}

17 : D ←
M∑
j=1

Bj

18 : Y ←W − U

19 : X ← [u] (D − V )

20 : for j ∈ JMK :

21 : rj
$← Jmin{2φ, q − 1}K

22 : Cj ← [rj ]Aj +W

23 : if O ∈ {
−→
C ,D,X, Y } :

24 : return ⊥

25 : pub←
(−→
A,
−→
B,
−→
C ,D,X, Y

)
26 : sec← −→r

OneTimeSetup(aux.sec)→ sk

1 : parse aux.sec = (τ, φ)

2 : s
$← Z∗

q

3 : ξ ← γ−s
T

4 : tstart ← time.now()

5 : sk← (s, ξ, τ, φ, tstart)

Compute(pub)→ out

1 : parse pub =
(−→
A,
−→
B,
−→
C ,D,X, Y

)
2 : M ← len(

−→
A )

3 : for j ∈ JMK :
4 : ρj = e(Aj , Bj)

5 : if M = 1 :

6 : γ ← e(A,D) · e(C,Q)

7 : else :

8 : γ ←

(
M∏
j=1

e(Cj ,−Bj)

)
· e(Y,D) · e(P,X)

9 : out← (γ,−→ρ )

Verify(sk, sec, out)→ result

1 : parse sk = (·, ξ, τ, ·, tstart)
2 : if time.now()− tstart > τ :
3 : return ⊥
4 : parse sec = −→r
5 : parse out = (γ,−→ρ )

6 : M ← len(−→r )

7 : if
∨

j∈JMK (ρj /∈ GT ) : return ⊥

8 : if

(
ξ =

(
M∏
j=1

ρ
rj
j

)
· γ

)
:

9 : return −→ρ
10 : return ⊥

Fig. 2: Pseudocode for the AmorE protocol. The lines in grey are not input-dependent and can be pre-
computed to prioritize online efficiency.
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1. M = 1:

ρr · γ = e(A,B)r · (e(A,D) · e(C,Q))

= e(A, [r]B) · e(A, V − [r]B) · e
(
[−s · u−1](U +A), Q

)
= e(A, V ) · e(U +A, [−s · u−1]Q)

= e(A, V ) · e(U +A,−V )

= e(U,−V ) = e(P,Q)u·(−s)·u−1

= γ−s
T = ξ

2. M > 1: M∏
j=1

ρ
rj
j

 · γ =

 M∏
j=1

e(Aj , Bj)
rj

 ·
 M∏

j=1

e(Cj ,−Bj)

 · e(Y,D) · e(P,X)

=

 M∏
j=1

e(Aj , Bj)
rj

 ·
 M∏

j=1

e([rj ]Aj +W,−Bj)

 · e(Y,D) · e(P,X)

=

 M∏
j=1

e(Aj , Bj)
rj

 ·
 M∏

j=1

e(Aj , Bj)
−rj

 · M∏
j=1

e(W,Bj)
−1 · e(Y,D) · e(P,X)

= e

W, M∑
j=1

Bj

−1

· e

W − U, M∑
j=1

Bj

 · e
P, [u]

 M∑
j=1

Bj − V



= e

−U, M∑
j=1

Bj

 · e
U, M∑

j=1

Bj − V


= e(U,−V ) = e([u]P, [−su−1]Q) = ξ

Hence, for a given number L ∈ Θ(τ) of pairing delegations, and for any choice of delegation rounds N and
corresponding batch sizes

−→
M satisfying L = 1T ·

−→
M , if all algorithms are run honestly, AmorE is L-correct

as per Definition 3.

6 Security

Proof technique overview:

– In Lemma 1 (subsection 6.1), we prove that an algebraic adversary A attempting to produce a forgery
against AmorE’s verification equation must produce, in the simplest case, a pair (η, ηrj ) for some η ∈
GT \ {1} and j ∈ JMK.

– Next, in subsection 6.2 we show that in the efficient setting φ < 2 · λ, extracting a secret scalar rj from
the public view pub reduces to finding the intersection of at least two sets of size 2φ in one of the bilinear
groups Gι.

– Moreover, in subsection 6.3 we prove that whenA is limited to computing 2κ many φ-bit group operations
for a time-dependent parameter κ ∈ Θ(log(τ)) ,6 setting φ = σ−1

2 +κ allows us to upperbound the success
probability of finding this intersection by 2−σ, where σ is the statistical security parameter.

6 In practice, κ = 70 + log(τ) (τ in seconds), which adjusts to the all-time highest hashrate of the Bitcoin network
as of 2025. This can be re-adjusted in the future.

15



– Finally, in subsection 6.4 and subsection 6.5, we provide an unconditional security result stated in
Theorem 2 and an everlasting security one stated in Theorem 3.

6.1 Bypassing the verification equation
The following lemma identifies necessary and sufficient conditions to produce a valid forgery against any
single- or batch-, one-shot or sequential pairing delegation protocol that employs a specific type of verification
checks.

Lemma 1 (Identifying forgeries). Let λ be a computational security parameter and Π a pairing delega-
tion protocol over the bilinear group parameters (q,G1,G2,GT , P,Q, γT , e) ← GlobalSetup(λ) . If the Verify
procedure of Π consists solely of checks of the form:(

ξ =

M∏
i=1

ρrii · γ

)
∧ (ρi ∈ GT )i∈JMK (1)

for some M ≥ 1, with ξ ∈ GT and −→r being the client’s secret values, and out = (−→ρ , γ) ∈ GM
T ×GT the output

of an honest server during a delegation; then, for any out∗ 6= out satisfying (1), there exists a non-empty
subset of indexes J ⊂ JMK, and elements ηj ∈ GT \ {1} for j ∈ J such that out∗ = (−→ρ ∗, γ∗) with:

ρ∗i =

{
ρi if i ∈ JMK \ J
ρi · ηi if i ∈ J

and γ∗ = γ ·
∏
i∈J

η−ri
i .

Proof. By the closure property of the multiplicative group GT , any (forgery) vector out∗ =
(−→ρ ∗

, γ∗
)
6= out

can be written as a deviation from the honest output: out · −→η , for some −→η ∈ GM
T ×GT . Since out∗ 6= out,

at least two entries of −→η must be different from 1. Let J ⊂ JMK denote the non-empty subset of indexes of
elements of out∗ of the form ρ∗j = ρj · ηj , with ηj 6= 1. It remains to prove that ηM+1 =

∏
j∈J η

−rj
j . This fact

is immediate, since any other value of ηM+1 would lead to out∗ not satisfying the verification check in (1),
indeed by the equality in (1):

ξ =

M∏
i=1

(ρ∗i )
ri · γ∗ =

(
M∏
i=1

ρrii · γ

)
·

(
M∏
i=1

ηrii · ηM+1

)
= ξ ·

(
M∏
i=1

ηrii · ηM+1

)
which implies ηM+1 =

∏M
i=1 η

−ri
i , hence γ∗ = γ ·

∏M
i=1 η

−ri
i . ut

6.2 Extracting partially-masking secret variables
In this section we illustrate how an otherwise information-theoretic secure protocol becomes susceptible to
an intersection attack when at least two of its secret variables are sampled from a reduced set, instead of the
full-range Z∗

q . In the specific case of AmorE, the reduced set is J2φK ⊂ Z∗
q with φ < 2 · λ (see lines 11 and 21

in Setup in Figure 2).

A toy example: Let (G = 〈P 〉,+) be a cyclic group of prime order q, and (r1, r2, u) a tuple of secret values
such that r1, r2, u

$← Z∗
q . Let U = [u]P ∈ G , and consider the public view

pub =

{
C = [r1]U +X

D = [r2]U + Y
, (2)

where X,Y ∈ G are public and X 6= C, Y 6= D. Note that r1, r2, u work as one time pads, effectively masking
each other. Specifically, by denoting in lowercase the discrete logarithm with respect to P of group elements,
we obtain the following system of equations:{

c = r1 · u+ x mod q

d = r2 · u+ y mod q
⇒

{
r1 = u−1 · (c− x) mod q

r2 = u−1 · (d− y) mod q
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which yields the parametrization (
r1 = u−1 · (c− x), r2 = u−1 · (d− y), u

)
in Zq. This parametrization produces q − 1 equiprobable secret tuples (r1, r2, u) that yield pub. Hence, any
protocol whose public view is pub and whose security relies on the masking of these secret variables, is
information-theoretic secure.

Now, if one of the variables were sampled from a small subset, e.g, r1
$← S ⊂ Z∗

q , parameterizing by r1
would produce |S| equiprobable secret tuples instead.

However, if r1, r2
$← S ⊂ Z∗

q , values for u can now be discarded according to the new constraint

u ∈ I =
{
[t−1
1 ](c− x) : t1 ∈ S

}
∩
{
[t−1
2 ](d− y) : t2 ∈ S

}
.

For a computationally bounded algebraic adversary, attempting to learn the secret tuple from (2) reduces
to picking an element

U∗ ∈ I =
{
[t−1
1 ](C −X) : t1 ∈ S

}
∩
{
[t−1
2 ](D − Y ) : t2 ∈ S

}
(3)

and its corresponding indexes r∗1 , r∗2 , which takes up to 2 · |S| computations. 7 In the worst case (best case
for A), when |I| = 1, finding (3) is analogous to breaking a 2-key-expansion of a block cipher (e.g., Double
DES). In such case, for a plaintext-ciphertext pair (m, c), A would need to compute{

DEC(t2, c) : t2 ∈ {0, 1}k
}
∩
{
ENC(t1,m) : t1 ∈ {0, 1}k

}
,

which is most efficiently done via Diffie-Hellman’s meet-in-the-middle attack in [24], taking up to 2k+1

operations.

In general: Consider n public elements belonging to a cyclic group G of prime order q, constructed from n+1
secret scalars that, if sampled uniformly from Z∗

q , would work as one time pads, effectively masking each
other. Suppose that at least two of these secret scalars are sampled from a small subset S ⊂ Z∗

q , turning them
into partially-masking variables. Then, it can be verified by inspection of the public view in question, that
the most time-efficient strategy for a computationally bounded algebraic adversary, attempting to extract
a secret scalar solely from the public view, is an intersection attack based on the bound constraints taking
up to 2 · |S| scalar computations in G. This also holds when the public values belong to the bilinear groups
G1 and G2 and they contain partially-masking variables. This is simply because the bilinearity of e merely
allows an adversary to produce pairs (η, ηt) in GT ×GT where t is a product or addition obtained from the
discrete logarithms of the public values with respect to P and Q . In other words, while e may enable an
intersection attack in GT , it does not give any additional advantage to A in producing a pair (η, ηr) for a
secret scalar r as long as the public view is underdetermined.

6.3 Winning probability

The advantage of A in extracting a secret value from a public view consisting of a constrained underdeter-
mined system of equations in the bilinear groups G1 and G2, can therefore be estimated by upperbounding
the probability of the event that A succeeds in finding an intersection of the type (3) containing one of the
client’s secret values, without exceeding 2κ group operations.

In our toy example from subsection 6.2, this event is equivalent to A selecting subsets S1 and S2 of J2φK
that satisfy the budget limitation |S1| + |S2| ≤ 2κ , with each subset containing the secret values r1 and r2
respectively. This is required to ensure that

U ∈ I =
{
[t−1](C −X) : t ∈ S1

}
∩
{
[t−1](D − Y ) : t ∈ S2

}
,

7 Observe that if A could extract discrete logarithms, it can simply run a membership test with a single iterator
t ∈ S, by checking t · (d− y) · (c− x)−1 mod q

?
∈ S which takes up to |S| tries.
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so that A can choose ri from a narrower set of possible secret tuples. Indeed,

P [{U ∈ I}] = P[{r1 ∈ S1} ∧ {r2 ∈ S2}] .

The following lemma upperbounds the probability of this event in the general case where the public view is
an underdetermined system involving L secret values ri, sampled from the subset J2φK ⊂ Z∗

q .

Lemma 2 (Intersection success probability). Let φ, κ, σ,M be positive integers such that

φ =
σ − 1

2
+ κ .

For all i ∈ JMK, let ri
$← J2φK. Then, for a collection of subsets Si ⊂ J2φK selected without previous

knowledge of the values −→r , and satisfying
∑M

i=1|Si| ≤ 2κ, the probability of at least two of them, say Sj and
Sk, respectively containing the values rj and rk for j, k ∈ JMK, is negligible in σ. In particular,

P

 M∨
k=2

k−1∨
j=1

{rj ∈ Sj} ∧ {rk ∈ Sk}

 ≤ 2−σ .

Proof. Let c, n ∈ N and g : Rn → R defined as g(−→x ) =
∑n

j=1 xi−c . Consider a tuple {xj}nj=1 ⊂ R+ fulfilling
the constraint g(−→x ) = 0. Then, it holds that n∑

j=1

xj

2

=

n∑
j=1

x2j + 2 ·
n∑

k=2

k−1∑
j=1

xj · xk

⇔
∑

1≤j<k≤n

xj · xk =
1

2
·


 n∑

j=1

xj

2

−
n∑

j=1

x2j

 =
1

2
·

(g(−→x ) + c)2 −
n∑

j=1

x2j

 =
1

2
·

c2 − n∑
j=1

x2j

 ,

from which we can establish that

argmax
{xj}n

j=1

 ∑
1≤j<k≤n

xj · xk

∣∣∣∣∣
g(−→x )=0

= argmin
{xj}n

j=1

 n∑
j=1

x2j

∣∣∣∣∣
g(−→x )=0

=
{ c
n

}
j∈JnK ,

where the last equality follows from using a Lagrange multiplier to include the constraint g(−→x ) = 0 in the
minimization. Under the new assignment xi ← |Si| and (c, n)← (2κ, N) , 8 we can write∑

1≤j<k≤M

|Sj | · |Sk| ≤
(
M

2

)
·
(
2κ

M

)2

=
M · (M − 1)

2
· 22κ ·M−2 < 22κ−1 .

Now,

P

 ∨
1≤j<k<M

{rj ∈ Sj} ∧ {rk ∈ Sk}

 ≤ ∑
1≤j<k<M

P [{rj ∈ Sj}] · P [{rk ∈ Sk}]

=
∑

1≤j<k<M

(
2φ − 1

|Sj | − 1

)
(
2φ

|Sj |

) ·

(
2φ − 1

|Sk| − 1

)
(

2φ

|Sk|

) = 2−2φ ·
∑

1≤j<k<M

|Sj | · |Sk| < 2−2φ+2κ−1 = 2−σ .

ut
8 ∑n

i=1 xi − c = 0⇔
∑M

i=1|Si| = 2κ .

18



In the next subsection, to indicate that a certain value relates to the i-th round and the j-th pairing at round
i, we will use the subscripts ij, e.g., Aij is the j-th G1 pairing input at round i of the protocol. For values
that are only round dependent, we will use a single subscript, e.g., the public value Xi, or the input Ai in
the case that Mi = 1 .

6.4 Unconditional security

AmorE achieves unconditional security when the efficient parameter φ is set to 2 · λ . This setting simply
implies sampling r from Z∗

q in lines 11 and 21 of Setup in Figure 2.

Theorem 2. For any λ, let q denote the (2 · λ)-bit prime order of the bilinear groups Gι output by any
execution of GlobalSetup(λ). Let aux.sec = (φ, τ), with φ = 2 · λ, τ > 0 and L := poly(λ). Then, AmorE
(Figure 2) instantiated in this way is information-theoretic secure. In particular, for any algebraic adversary
A, it holds that:

P
[
Expseq

Π,A (λ, aux.sec = (2 · λ, τ), L) = 1
]
≤ 1

q − 1− 3 · L
,

where Expseq
Π,A is depicted in Figure 1.

Proof. Consider an adversary A entering the delegation round i ∈ JNK of the experiment. From Lemma 1,
due to AmorE’s verification equation and membership tests (lines 7 and 8 of Verify in Figure 2), A wins the
experiment if and only if, it suceeds in producing in the simplest case, a triplet (η, ηr, j) ∈ G2

T × JMiK for
some secret exponent r used to verify the element ρij . By inspecting the protocol, in addition to the pairing
inputs (

−→
A,
−→
B) , the public view up to round i consists of the following values:

Ckj = [rkjakj + wk]P

Yk = [wk − uk]P
Xk =

[
uk ·

∑Mk

j=1 bkj − s
]
Q ,

Cℓ =
[
−s ·

(
1 + u−1

ℓ · aℓ
)]
P

Dℓ =
[
s · u−1

ℓ − rℓ · bℓ
]
Q

(4)

where ℓ ranges over a subset of indexes L ⊂ JiK identifying the delegation rounds consisting of a single
pairing delegation (Mℓ = 1), and (k, j) ∈ {JiK \ L} × JMkK . Now, (4) can be transformed into the following
parametrization in Zq (modulo q):


uk = (xk + s) ·

(∑Mk

j=1 bkj

)−1

wk = yk + (xk + s) ·
(∑Mk

j=1 bkj

)−1

rkj =

(
ckj − yk − (xk + s) ·

(∑Mk

j=1 bkj

)−1
)
· a−1

kj

{
uℓ =

(
−cℓ · s−1 − 1

)−1 · aℓ
rℓ =

(
(−cℓ − s) · a−1

ℓ − dℓ
)
· b−1

ℓ .

9 (5)

In (5), each value of s yields a secret tuple (s,
−→
W,−→r ,−→u ) that produces the view (4), as long as O /∈

−→
W and

0 /∈ {−→r ,−→u } 10. Hence, for any j ∈Mi, there are at least q−1−(
∑i

k=1Mk+2·i−|L|) possible and equiprobable
secret values rij that could have been sampled according to A’s view (recall that |

−→
W | = i− |L|). Since this

number decreases as the number of delegated pairings increases, we can upperbound it by q − 1− 3 · L. ut
9 Recall that AmorE rejects points at infinity (see lines 5 and 24 in Setup); this implies that in order not to lose

in the security experiment, A has to pick inputs
−→
A and

−→
B that do not contain points at infinity and such that∑Mk

j=1 Bkj ̸= O (hence all akj and
∑Mk

j=1 bkj are in Z∗
q and therefore invertible).

10 The setting φ = 2 · λ implies that rkj
$← Z∗

q in lines 11 and 21 of Setup, so no non-zero values can be discarded in
(5) for the secrets (−→w ,−→r ,−→u ).
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6.5 Everlasting security

Security for AmorE in the efficient setting φ < 2 ·λ , can be proven against an adversary operating under the
Algebraic Group Model [26], and with limited computational power during the execution of the sequential
pairing delegation protocol (recall that A can only win Expseq

Π,A between the start and the end of the protocol).
In particular, the protocol timeout parameter τ , determines an additional computational parameter κ ∈
Θ(log(τ)), such that A is limited to computing 2κ elements in any group Gι for ι ∈ {1, 2, T} .

Theorem 3. For any λ, let q denote the prime order of the groups output by any execution of GlobalSetup(λ).
Let τ, σ be positive integers, and κ ∈ Θ(log(τ)) satisfying φ = σ−1

2 +κ < 2 ·λ . Then, for any positive integer
L ∈ Θ(τ), AmorE (Figure 2) is secure according to Expseq

Π,A against an algebraic adversary A limited to
computing 2κ elements in any group Gι for ι ∈ {1, 2, T} . In particular,

P
[
Expseq

Π,A =

(
λ, aux.sec =

(
φ =

σ − 1

2
+ κ, τ

)
, L

)
= 1

]
≤ 2−σ .

Proof. Given a pair (N,
−→
M) such that L = 1T ·

−→
M , assume A enters the delegation round i ∈ JNK of

Expseq
AmorE,A . Recall from Lemma 1 that A needs to output at least a pair (η, ηr) ∈ G2

T for some secret scalar
r used in the verification equation at round i in order to win the experiment. Let L ⊂ JiK indicate the rounds
up to i which consist of delegations of a single pairing. In the AGM, given the view (4), A is restricted to
computing elliptic curve points Gι ∈ Gι for ι = 1, 2, of the general form

G1 =
∑
k,j

[
z
(1)
kj

]
Akj +

∑
ℓ∈L

[
z
(2)
ℓ

]
Cℓ +

∑
k∈JiK\L, j

[
z
(3)
kj

]
Ckj +

∑
k∈JiK\L

[
z
(4)
k

]
Yk +

[
z(5)

]
P ∈ G1

G2 =
∑
k,j

[
z̄
(1)
kj

]
Bkj +

∑
ℓ∈L

[
z̄
(2)
ℓ

]
Dℓ +

∑
k∈JiK\L

[
z̄
(3)
k

]
Xk +

[
z̄(4)

]
Q ∈ G2 ,

for adversarially chosen scalars −→z ,−→̄z ⊂ Z∗
q . Additionally, these points can be used as inputs for the bilinear

map e. Now, since A’s view (4) is based on an underdetermined system of equations with one degree
of freedom, even if the secret scalars rkj are now sampled from J2φK ⊂ Z∗

q , A cannot construct a pair
(η, ηrkj ) ∈ (GT )

2 with non-negligible probability from just e and a specific choice of scalars
−→
z∗,
−→
z̄∗ ⊂ Z∗

q . As
described in subsection 6.2, leveraging the constraints rkj ∈ J2φK in this scenario, implies value discarding
via an intersection on sets containing a common secret value. In particular, for minimal adversarial cost,
these sets need to be generated by expressions that isolate the bounded secrets from any other source of
randomness to allow a meet-in-the-middle attack. In the public view (4), the aforementioned constraints
manifest themselves in several relations, e.g.,

ξ = γsT ∈
⋂
ℓ∈L

{
ρtℓℓ · γℓ : tℓ ∈ J2φK} ⊂ GT , (6)

where ρℓ = e (Aℓ, Bℓ) and γℓ = e (Aℓ, Dℓ) · e (Cℓ, Q) for ℓ ∈ L .
Alternatively, general intersections can be established by removing the common source of randomness uℓ

from Cℓ and Dℓ in (4) by choosing scalars (z, z̄, ẑ) ∈ (Z∗
q)

3 fulfilling z̄ = z · aℓ , and computing

e([z]Cℓ, [ẑ]Q) · e([ẑ]P, [z̄]Dℓ) = e(ẑP,Q)z·cℓ · e(P, ẑQ)z̄·dℓ

= e(ẑP,Q)z·(−s·(1+u−1
ℓ ·aℓ))+z̄·(s·u−1

ℓ −rℓ·bℓ)

= e(ẑP,Q)−z·s−z̄·rℓ·bℓ

= η−z·s−z̄·rℓ·bℓ

to finally leverage the relation

γz·ẑ·sT ∈
⋂
ℓ∈L

{ηz·s−z̄·rℓ·bℓ · ηz̄·t·bℓ : t ∈ J2φK} ⊂ GT . (7)
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However, due to the sequential design of AmorE, A cannot cheat on rounds that have already passed, hence,
these approaches are only useful for A if the current round i consists of a single pairing (i.e., i ∈ L). In that
case, A can narrow down values for ri by finding subsets of J2φK that lead to non-empty intersections of
the form (6) or (7), and win Expseq

AmorE,A with non negligible probability whenever φ � 2 · λ . If we assume
that L = ∅, the only place where the relevant bounded secret exponents rij appear in the view (4), is in the
expression Cij = [rijaij + wi]P , which in turn enables the intersection

Wi ∈
M⋂
j=1

{Cij − [tj ]Aij : tj ∈ J2φK} ⊂ G1 . (8)

Now, as expected from the analysis in subsection 6.2, in all intersection attacks, the underlying sets are
obtained by ranging over the sampling space of the bounded secret values, i.e., J2φK . Let I denote any
intersection leading to value discardment of a bounded scalar r . Since |I| is the number of equiprobable
possible values for r, the probability for an unbounded A of winning Expseq

AmorE,A equals |I|−1 . However, for
the worst case |I| = 1, the winning probability of an adversary limited to computing 2κ operations in any of
the bilinear groups, is upperbounded by the adversary finding at least a pair of subsets (S, S̄) ⊂ J2φK× J2φK
such that (r ∈ S) ∧ (r̄ ∈ S̄) , for some other bounded scalar r̄, and |S|+ |S̄| ≤ 2κ . For example, succeeding
in finding such sets fulfilling (rij ∈ S)∧ (rik ∈ S̄) for j, k ∈ JMiK in (8) yields in the worst case (best case for
A)

{Wi} = {Cij − [t]Aij : t ∈ S} ∩
{
Cik − [t]Aik : t ∈ S̄

}
,

after which A extracts both rij and rik . For the setting φ = σ−1
2 +κ , Lemma 2, upperbounds the probability

of this event by 2−σ for any fixed subset selection by A . ut

7 Implementation Results

We implemented our protocols using four BLS curves at different security levels in a private fork of the
RELIC 7.0 cryptographic library, the same used to establish the previous state of the art [3]. Our code is
currently available at a branch11. We reused the implementation of LOVE already included in the library
and extended the codebase to include AmorE. In comparison to that work, we removed the curves BN-254
and BN-382 as parameter choices because BN curves are now considered obsolete, since the BN-254 curve
does not reach 128 bits of security, and BN-382 is slower than other curves at the same security level. At
128-bit security, we adopted the widely-deployed BLS12-381 curve with embedding degree k = 12 and the
GT -strong curve BLS12-383 that removes the need for subgroup membership testing in GT . We chose the
BLS24-509 curves with embedding degree k = 24 and the curve BLS48-575 with embedding degree k = 48 for
the 192- and 256-bit security levels, respectively [2, 44]. A brief summary of the curve families and concrete
parameters we use can be found in Table 6 in Appendix B.

RELIC is a strategic choice for benchmarking our protocols because it implements all the aforementioned
parameter sets with similar levels of optimization, such as assembly acceleration for Intel 64-bit platforms and
the best-known formulas for arithmetic in pairing groups, allowing for a comprehensive and fair comparison.
In the last few years, the library evolved to include slightly faster code for BLS12-381, faster membership
testing with better formulas in the literature [35], and different approaches for scalar multiplication and
exponentiation in the various groups. It was also not possible to obtain access to the same server-grade Intel
Core i7-6700K Skylake processor used in LOVE, so we settled down instead on a similar but slightly less
performant Core i7-7700 processor. For this reason, we independently benchmarked the existing LOVE imple-
mentation from scratch, noting that the timings do not deviate significantly from the original. Furthermore,
we chose σ = 40 for the statistical security parameter across all protocols (instead of 50 in [3]), because
it is a more standard choice in the literature, while noting that the performance impact of this change is
minor. We admit that the target platform is clearly not representative of the resource-constrained devices
11 https://github.com/relic-toolkit/relic/tree/amore
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envisioned in this work, but we believe it is the best choice to illustrate the performance improvement of
AmorE with respect to related work while allowing fair future comparisons.

Special-form challenges. An optimization we introduce with our AmorE implementation is a way to sample
short challenges c more efficiently than previous work [3], which samples σ-bit challenges simply as random
σ-bit scalars. By observing that G2 and GT are equipped with efficient p-power Frobenius endomorphisms,
we can exploit this property and sample c as Φ(k) subscalars ci with d σ

Φ(k)e bits as c =
∑

0≤i<Φ(k) cip
i mod q,

with k the curve’s embedding degree, and Φ(k) the dimension of the base-p scalar decompositions given by
the curve family. Because p ≡ z mod q in BLS curves, for the integer seed z defining the curve, the scalars
will be computed in as c =

∑
0≤i<Φ(k) ciz

i and no reductions modulo q are necessary. We can then use
the Frobenius map ψ to evaluate a scalar multiplication in G2 as [c]Q =

∑
0≤i<Φ(k) [ci]ψ

i(Q) in interleaved
fashion, or the analogue in GT for exponentiation, which reduces the complexity by a Φ(k)-factor. This
technique does not apply as efficiently to G1, due to the endomorphisms available in the group. The same
idea can also be ported to other pairing-friendly curves, but it will not be as efficient as BLS due to the
special relationship between p, z and q.

7.1 Timings for Operations in Pairing Groups

Timings for operations in pairing groups can be found at in Table 2, benchmarked on an Intel Core i7-
7700 Kaby Lake running at 3.6GHz with HyperThreading (HT) and TurboBoost (TB) disabled for re-
ducing measurement variability. We built the RELIC library by using the presets that come with the
library and GCC version 14.2.1 with flags -O3 -march=native -mtune=native -fomit-frame-pointer
-finline-small-functions. We included all the main operations in pairing groups required for the various
protocols, and some optimized variants for shorter scalars. Variable-based scalar multiplication in G1 and G2

was implemented using the GLV/GLS method by an interleaved w-NAF approach with window size w = 5.
Fixed-based scalar multiplication of generators P,Q in those groups was implemented using the comb method
with 32 points, resulting in approximately half the cost of a variable-based scalar multiplication. Exponen-
tiation in GT exploits the p-power Frobenius as a GLS endomorphism in a windowed NAF approach. For
shorter scalars, we benchmarked both the standard NAF approach in G2 and GT with σ-bit scalars and the
special-form challenges discussed previously. It is clear that the special-form challenges provide performance
improvements across all parameter choices, ranging from 15% for exponentiation in GT in BLS48-575 to 63%
for scalar multiplication in G2 in BLS12-381.

7.2 Timings for Delegated Single Pairing Computation

Table 3 collects timings for the related work and our proposed AmorE protocol on the same benchmarking
machine. The protocol operations include (preco) for the client precomputation, (onetime) for the client’s
OneTimeSetup, (online) for the client’s Setup and Verify, and (server) for the server-side part of the compu-
tation. We make a distinction between (preco) and (onetime) because the latter is amortized across multiple
protocol executions. We also include the total client latency (preco or amortized OneTimeSetup, together with
Setup and Verify) as client for ease of comparison. We benchmark individual pairing delegations (M = 1) for
LOVE and CDS14 [16], and N = 10 individual pairing delegations for AmorE, reporting the averaged latency
to illustrate the amortized efficiency.

From the table, it is clear that CDS14 does not provide any performance gains for the delegating client,
which motivated the introduction of a precomputation step to split the costs more favorably in offline/online
phases. While LOVE was able to achieve speedups up to 75.5% from evaluating the online phase only in
comparison with computing the pairing locally, AmorE is the first protocol able to claim speedups between
22.7% and 45.4% for the entire client computation with respect to computing the pairing locally. This is a
much better performance metric to consider, for which we mark the corresponding figures with bold in the
table, since each pairing delegation needs at least one execution of the offline step and an online phase. Note
that this was essentially impossible to achieve for LOVE, since it required a pairing evaluation during the
precomputation phase; and it comes at the cost of slightly more expensive online phase for the client and
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Cost \ Curve BLS12-381 BLS12-383 BLS24-509 BLS48-575

m1 373 428 1,008 1,468
m̄1 161 185 287 340

m2 718 748 4,187 18,052
m̄2 412 425 1,812 6,125
m̄2, special scalar 153 163 685 3,078

mT 1,074 1,160 6,478 30,547
m̄T , 427 459 1,844 7,066
m̄T , special scalar 252 277 1,139 6,008
∈T 361 35 1,294 4,461

Miller Loop 1,441 1,482 5,420 12,273
Final Exp 1,750 1,734 9,648 56,550
p (ML+FE) 3,194 3,216 15,068 68,823
Table 2: Timings from the latest release of RELIC for operations in groups G1,G2 and GT , as per the
notation in Table 1. Figures are reported in 103 cycles in a Kaby Lake processor, averaged over 104 executions
(HT/TB disabled). Full-range scalar multiplication or exponentiation take a random scalar in Z∗

q , while the
short versions sample a random σ-bit scalar with σ = 40. Performance for longer but still short scalars, i.e.
with φ > σ bits, can be estimated by linearly scaling the figures, same for special-form scalars exploiting
Frobenius. The cost p for pairing computation is split in the Miller Loop and Final Exponentiation.

server in AmorE. Moreover, LOVE originally benefited more (20%) from a GT -strong curve, but subgroup
membership testing is currently efficient enough to not make that much of a difference.

7.3 Timings for Delegated Batch Pairing Computation

We implemented the AmorE protocol for delegating a sequence of pairings. The baseline for AmorE is com-
puting a batch of M pairings locally, such that their product can also be recovered by just multiplying the
results in GT . Table 4 presents the timings. We note again that BLS12-383 does not provide a slight advan-
tage anymore, due to faster membership testing; and that MV19 performs generally better than CKC23 in
the online phase. The latter can be seen by closely inspecting the performance trade-offs in in the original
paper or Table 1. AmorE shows consistent performance improvement between 40.8% and 73.2% in compari-
son to local computation, with M ranging from 2 to 102 pairings. It also approaches a 2-factor speedup in
comparison to related works when the number of pairings increase, both in the online phase and total client
time. Table 5 presents the timings for AmorE in BLS24-509 and BLS48-575, with larger speedups ranging
from 45.9% to 83.5%, and in comparison to related work.

8 Conclusions and Remarks

This paper presents positive and negative results around pairing delegation protocols in the single untrusted
server model.

On the negative side, we presented an impossibility result for single- and batch-pairing delegation pro-
tocols in the single untrusted server model. This result affects existing work [42, 38], and we hope will serve
as a guideline for future work: while skipping the client-side preprocessing has attractive efficiency gains, it
also has drastic security consequences.

On the positive side, we present AmorE a novel protocol for delegating multiple pairings on public argu-
ments, in a sequential manner. This is a small tweak to the single pairing delegation setting and allows us
to claim the first solution that is truly efficient for the client in an amortized sense, where amortization is
achieved in two directions, one as the number of delegations grows, and the other as the size of the batch
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Prot.\Curve BLS12-381 BLS12-383 BLS24-509 BLS48-575

p 3,194 3,216 15,068 68,823

CDS14 [16] (client) 4,477 4,564 24,237 104,398
(server) 8,105 8,367 38,069 156,590

LOVE [3]

(preco) 4,624 4,808 23,687 105,552
(online) 1,440 1,224 5,362 16,863
(client) 6,064 6,032 29,049 122,415
(server) 7,198 7,385 34,178 147,563

AmorE

(onetime) 1,085 1,154 6,597 30,742
(online) 2,060 2,372 9,010 34,055
(client) 2,168 2,487 9,770 37,602

(32.1%) (22.7%) (35.2%) (45.4%)
(server) 7,184 7,410 34,297 148,116

Table 3: Timings for running various pairing delegation protocols. Figures are reported in 103 cycles in a
Kaby Lake processor, averaged over 104 executions (HT/TB disabled). In the case of AmorE, we execute
the protocol 10 times and take the average latency to illustrate the amortized efficiency property. For all
protocols, the statistical security parameter is set to σ = 40. AmorE has additional parameter κ = 70,
such that φ = 90. We highlight with bold the protocol instances where the total client time is faster than
computing the pairing locally. In such cases cases, we display between parenthesis the corresponding efficiency
gain computed as (1 - cost(client)/cost(p)). Higher percentage values imply larger efficiency gains.

grows. Our experimental results show that average total client cost for single pairing delegations of AmorE
is 22.7%-45.4% more efficient than computing the pairing locally, for reasonable parameter settings. This
may be relevant in identity-based onion routing systems, e.g., [40]; Joux’ three-party key agreement [36]; the
inner-product argument of the simpler inner product argument in aPlonk [1], and in cases where the pairing
arguments are progressively disclosed. For example, Boneh and Franklin discuss in [12, §1.1.2] a scenario
where their ID-based encryption protocol could be adapted for the Delegation of Duties use case. In this
scenario, encrypted messages mi with a subject si can only be decrypted by entities possessing the corre-
sponding private key from the authority, enabling decryption of messages with subject si, while preventing
decryption of messages with any other subject sj 6= si. It is conceivable that a constrained client wishing to
implement this variant of the ID-based encryption, will need to use our AmorE protocol for the sequential
delegation of individual pairings.

AmorE is also the most efficient and secure protocol to date for delegating multiple pairings on (potentially
different) public arguments simultaneously. Our experimental results show that average total client cost
for one round of AmorE is 40.8%-83.5% more efficient than computing the pairing locally, for reasonable
parameter settings. Hence, AmorE finally enables IoT devices and hardware wallets to handle complex pairing-
based cryptosystems provided a cheap and fast connection to an untrusted server. Applications include, but
are not limited to, efficiently verify BLS signatures [14], polynomial commitments [41, 1], SNARKs [8, 31],
SnarkPack [27], and performing secret leader election systems [17].

Our work rises the following open questions: Is restricting the adversary to an algebraic one a necessary
condition to prove security for non-unconditionally secure pairing delegation schemes? Can everlasting secu-
rity be leveraged to achieved public verifiability of the pairing computation? And finally, it would be worth
to test the feasibility of our results for boasting existing services on off-the-shelf commodity devices.
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Appendix



A Descriptions of KC23, KST23 and Concrete Attacks

Here we collect pseudo-code descriptions of KC23 [42, Section 4] and KST23 [38, Alg. 1] in our notation and
present an explicit attacks.

In KC23, the server outputs three elements out = (ρ, γ1, γ2), and the client verifies the delegation by
checking that ρ and γ1 are in GT , and that γ2 = ρr · γu1 , where r, u are the client’s secret randomness (and
r is a short exponent). We argue that a malicious server can produce a successful forgery against KC23
with probability 1, exploiting the malleability of the verification equation. Notably, the security proof in [42]
makes three claims that do not take into consideration the malleability of the verification equation.

Setup(A,B)→ (pub, sec)

1 : r
$← J2σK

2 : u
$← Z∗

q , U
$← G1

3 : W ← [u−1]U

4 : Y ← [r]A+ U

5 : pub← (A,B,W, Y )

6 : sec← r

Compute(pub)→ out

1 : parse pub = (A,B,W, Y )

2 : ρ← e(A,B)

3 : γ1 ← e(W,B)

4 : γ2 ← e(Y,B)

5 : out← (ρ, γ1, γ2)

Verify(sec, out)→ result

1 : parse sec = r

2 : if (ρ /∈ GT OR γ1 /∈ GT )

3 : return ⊥
4 : if (γ2 ̸= ρr · γu

1 )

5 : return ⊥
6 : result← ρ

Fig. 3: Khodjaeva and Di Crescenzo’s Protocol (KdC23) in [42, Sec. 4]. The GlobalSetup procedure generates
a bilinear group, and there is no OneTimeSetup.

Our attack: Let out = (ρ, γ1, γ2) denote the honest server’s output in KC23. Instead of out, a malicious
server can return out∗ = (ρ∗, γ∗1 , γ

∗
2 ) = (ρx, γx1 , γ

x
2 ) for any x ∈ Zq \ {0, 1}. Clearly out 6= out∗. It is easy to

see that out∗ is a valid forgery since: ρx and γx1 trivially belong to GT and

γ∗2 = γx2 = (ρr · γu1 )x = ρx·r · γx·u1 = (ρ∗)r · (γ∗1 )u .

Setup(
−→
A,
−→
B )→ (pub, sec)

1 : for i ∈ Jlen(−→A )K :

2 : ri
$← J22λ−1K

3 : C ← [ri]Ai

4 : pub← (
−→
A,
−→
B,
−→
C )

5 : sec← (−→r )

Compute(pub)→ out

1 : parse pub = (
−→
A,
−→
B,
−→
C )

2 : for i ∈ Jlen(−→A )K :
3 : ρi ← e(Ai, Bi)

4 : γi ← e(Ci, Bi)

5 : out← (−→ρ ,−→γ )

Verify(sec, out)→ result

1 : for i ∈ Jlen(−→A )K :
2 : if (ρi, γi /∈ GT ) :
3 : return ⊥
4 : if (γi ̸= ρrii ) :
5 : return ⊥
6 : result← −→ρ

Fig. 4: Kalkar, Sertkaya, and Tutdere batch pairing delegation protocol (KST23) with public variable inputs
[38, Algorithm 1]. The GlobalSetup procedure generates a bilinear group, and there is no OneTimeSetup.

Definition 6 (Batch Pairing Delegation Protocol). A protocol Π for delegating pairing computations
consists of five PPT algorithms (GlobalSetup,OneTimeSetup, Setup,Compute,Verify) with the following syn-
tax:



GlobalSetup(λ)→ pp is as in Definition 1.
OneTimeSetup(aux.sec)→ sk is as in Definition 1.
Setup(sk, A,B)→ (pub, sec) is as in Definition 1 with vectors of pairing arguments

−→
A,
−→
B ∈ Gn

1 ×Gn
2 .

Compute(pub)→ out is as in Definition 1.
Verify(sk, sec, out)→ result is as in Definition 1, with result ∈ {Gn

T ∪ ⊥}.

A.1 Security Models for Single and Batch Pairing Delegation

Expsingle
Π,A(λ, aux.sec)

1 : pp← GlobalSetup(λ)

2 : sk← OneTimeSetup (aux.sec)

3 : stA ← (λ, pp, aux.sec)

4 : (A,B, stA)← A(stA)

5 : (pub, sec)← Setup(sk, A,B)

6 : (out∗, stA)← A (pub, stA)

7 : result
∗ ← Verify(sk, sec, out∗)

8 : if result
∗ /∈ {⊥, e(A,B)} :

9 : return 1

10 : return 0

Expbatch
Π,A(λ, aux.sec, N)

1 : pp← GlobalSetup(λ)

2 : sk← OneTimeSetup (aux.sec)

3 : stA ← (λ, pp, aux.sec)

4 :
(−→
A,
−→
B, stA

)
← A(stA)

5 : (pub, sec)← Setup(sk,
−→
A,
−→
B )

6 : out
∗x← A (pub, stA)

7 : result
∗ ← Verify(sk, sec, out∗)

8 : if result
∗ /∈

{
⊥, {e(Ai, Bi)}Ni=1

}
:

9 : return 1

10 : return 0

Fig. 5: Security experiments for single (Expsingle
Π,A ) and batch (Expbatch

Π,A ) pairing delegation.

B Concrete Parameters

BLS12 curves BLS24 curves BLS48 curves

p(z) (z − 1)2(z4 − z2 + 1)/3 + z (z − 1)2(z8 − z4 + 1)/3 + z (z − 1)2(z16 − z8 + 1)/3 + z
q(z) z4 − z2 + 1 z8 − z4 + 1 z16 − z8 + 1
t(z) z + 1 z + 1 z + 1
h(z) (z − 1)2/3 (z − 1)2/3 (z − 1)2/3

Curve b Seed z0 ⌈log2 p⌉ ⌈log2 q⌉ k

BLS12-381 4 −(263 + 262 + 260 + 257 + 248 + 216) 381 255 12
BLS12-383 4 264 + 251 + 224 + 212 + 29 383 256 12
BLS24-509 1 −251 − 228 + 211 − 1 509 408 24
BLS48-575 4 232 − 218 − 210 − 24 575 512 48

Table 6: Families of BLS pairing-friendly curves with various embedding degree k and concrete parameters
used in our implementation. The curves BLS12-381 and BLS12-383 provide a conjectured 128-bit security
level, while BLS24-509 and BLS48-575 provide 192- and 256-bit security.
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