
Aegis: Scalable Privacy-preserving CBDC Framework with
Dynamic Proof of Liabilities

Gweonho Jeong
Hanyang University

Seoul, Republic of Korea
kwonhojeong@hanyang.ac.kr

Jaewoong Lee
Kookmin University

Seoul, Republic of Korea
leejw1496@gmail.com

Minhae Kim
Hanyang University

Seoul, Republic of Korea
minhaekim44@hanyang.ac.kr

Byeongkyu Han
Kookmin University

Seoul, Republic of Korea
byeongkyuhan@kookmin.ac.kr

Jihye Kim
Kookmin University

Zkrypto Inc
Seoul, Republic of Korea
jihyek@kookmin.ac.kr

Hyunok Oh
Hanyang Unviersity

Zkrypto Inc
Seoul, Republic of Korea
hoh@hanyang.ac.kr

ABSTRACT
Blockchain advancements, currency digitalization, and declining
cash usage have fueled global interest in Central Bank Digital Cur-
rencies (CBDCs). The BIS states that the hybrid model, where cen-
tral banks authorize intermediaries to manage distribution, is more
suitable than the direct model. However, designing a CBDC for prac-
tical implementation requires careful consideration. First, the public
blockchain raises privacy concerns due to transparency. While zk-
SNARKs can be a solution, they can introduce significant proof
generation overhead for large-scale transactions. Second, interme-
diaries that provide user-facing services on behalf of the central
bank commonly performs Proof of Liabilities on customers’ static
liabilities. However, in real-world scenarios where user liabilities
can arbitrarily increase or decrease, the static nature poses such as
window attacks.

In this paper, we propose a new smart contract-based privacy-
preserving CBDC framework based on zk-SNARKs, called Aegis.
our framework introduces a transaction batching technique to en-
hance scalability and defines a new dynamic PoL which is near-real
time. We formally define the security models for our system and
provide rigorous security proofs to demonstrate its robustness. To
evaluate the system’s performance, we instantiate our proposed
framework and measure its efficiency. The result indicates that, the
end-to-end process, including proof generation for 512 transactions,
takes approximately 2.8 seconds, with a gas consumption of 74,726
per user.

1 INTRODUCTION
As physical cash usage declines and the digital economy accelerates,
interest in Central Bank Digital Currency (CBDC) has grown sig-
nificantly. Unlike volatile digital currencies such as Bitcoin, CBDC
is a direct liability of the central bank, ensuring a 1:1 exchange
rate with legal tender. Furthermore, compared to cash and reserves,
CBDC has digital currency characteristics, allowing it to be issued
in various forms to align with policy objectives. Many countries
are conducting research and pilot programs to better understand
CBDC design and implementation [7, 8, 31, 36]. The Bank for In-
ternational Settlements (BIS) reports that central banks worldwide
are showing strong interest in CBDC development, with over 80%
actively engaged in research and prototype testing [6].

To implement CBDC in practice, various perspectives have been
raised regarding its specific design and operational model [3, 4,
27, 33]. The BIS(2020) [3] proposed various operational models
(e.g.,direct, indirect, and hybrid) for implementing CBDCs. The
directmodel is that the central bank issues, redeems, and distributes
CBDC directly, while also managing customer services. This model
is considered attractive for its simplicity, as it removes reliance
on intermediaries such as private sector(i.e., retail banks). But in
terms of scale, speed and efficiency, the BIS(2021) [4] stated that
the customer-facing side of retail payments, which involves large
operational tasks (e.g., payment accounts, authorization, clearing,
settlement and dispute resolution), is better handled by retail banks.
Even if a central bank were to build the necessary technological
capability, they argued it could still be less attractive to consumers
than today’s retail payment systems, because of the challenges in
handling connectivity outages or offline payments. For this reason,
many countries have adopted the hybrid model, where the private
sector is delegated user-facing responsibilities by the central bank,
with the goal of providing consumers with convenient, efficient and
scalable payment services. For example, there are the Sand Dollar,
JAM-DEX, eNaira, and others [1, 42].

As authorized intermediaries distributing CBDC to customers,
private sector entities such as retail banks strive to provide cus-
tomers with confidence by safely and accurately operating the
database that records the assets and transaction information. If
retail banks fail to provide sufficient evidence of their honest op-
erational behavior, it could amplify consumer anxiety and lead to
various depositor confidence issues. The most representative exam-
ple is a bank run, which occurs when a large number of depositors
hastily withdraw their funds due to concerns about bank failure:
notable instances include Northern Rock [39] in 2007, Silicon Valley
Bank [17] in 2023, and First Republic Bank [19] in 2023.

Therefore, variousworks [14, 24, 29, 34, 36] have adopted blockchain
technology in retail banking system to enhance customer confi-
dence. They proposed publishing information on a public blockchain
that customers can verify. For example, it could be customer trans-
action information that proves the validity of their transactions,
or publishing users’ liabilities and IDs that demonstrate a retail
bank’s solvency. In this process, the immutability of the blockchain
ensures that stored information cannot be altered or deleted by

1

Gweonho Jeong, Jaewoong Lee, Minhae Kim, Byeongkyu Han, Jihye Kim, and Hyunok Oh

anyone, while its transparency allows everyone to confirm whether
transactions have been conducted accurately.

However, this transparency raises privacy concerns as it exposes
sensitive information such as user identity and transfer amounts.
Simply addressing privacy issues by publishing encrypted data (e.g.,
commitments) on a ledger is not enough, as it does not guarantee the
data’s authenticity. To solve this problem, zk-SNARKs are widely
adopted in this context [20, 23, 37, 38]. zk-SNARKs, which offer
the advantages of succinct proof sizes and fast verification times,
can prove statements about the properties of owned information
without revealing the underlying sensitive data. Thus, personal
information is published on the ledger in committed form, and its
authenticity is verified using zk-SNARKs. As a result, a privacy-
preserving banking system on a public blockchain can be effectively
designed using cryptographic tools such as commitments and zk-
SNARKs.

Despite the efforts of the above works to construct a privacy-
preserving banking system based on blockchain, there are still two
unresolved issues. First, depending on the zk-SNARK scheme used,
system performance can vary due to factors such as proof genera-
tion time, proof size, and verification time. In real-world scenarios
involving large-scale transactions, failing to use an appropriate
zk-SNARK can introduce system overhead due to significant con-
sumption of server resources, particularly proof generation time
bottlenecks. Therefore, deciding which zk-SNARK to use requires
careful and meticulous consideration. Second, a type of informa-
tion published on blockchain to build confidence with customers
regarding the retail bank’s database, most works [7, 14, 21, 29]
use customers’ static liabilities. Providing monthly independent
snapshots to prove the retail bank’s solvency is considered a simple
scheme [44], which is why it is commonly adopted in practice [9, 32].
However, this static approach does not treat the customer’s liability
as an update based on previous liabilities, but rather as an entirely
new one. As a result, users must verify the correctness of the up-
dated liabilities in every epoch to ensure that transactions are accu-
rately reflected as intended. This can lead to a type of attack known
as "window-of-opportunity attacks" [44], which exploit situations
when a user forgets to verify in an arbitrary epoch. On the other
hand, a dynamic PoL, which proves the connection between the
user’s liabilities before and after the transaction, eliminates the need
for mandatory checks in every epoch and the risk of window-of-
opportunity attacks. However, it requires a more complex scheme
compared to static PoL, making it difficult to apply into financial
system designs.

1.1 Our results
In this paper, we proposeAegis, a new smart contract-based privacy-
preserving CBDC framework that supports dynamic Proof-of-Liabilities
(PoL).

Our framework includes authorized intermediaries called dele-
gators that function similarly to a retail bank, handling user-facing
services and distributing CBDC on behalf of the central bank. This
structure makes our model compatible with the hybrid model.

In real-world scenarios requiring the efficient management of
large-scale transactions, we propose a batching mechanism to en-
hance scalability. Specifically, we adopt approaches from a branch of

zk-SNARKs, commit-and-prove SNARKs (CP-SNARKs) [2, 13, 22],
which utilize commitments to offload large computations outside
the circuit, resulting in fast proof generation. Using this method-
ology, our framework generates a single proof for multiple trans-
actions by a delegator rather than computing separate proofs for
each transaction. This design guarantees fast verification times and
a constant proof size, thereby enhancing the overall performance
of the framework.

Additionally, we provide dynamic PoL. In the process of verifying
the proof generated using the batchingmechanism described earlier,
we utilize the current user balance commitment stored in the smart
contract at the point before the transaction is reflected. The smart
contract adds the transfer amount to this balance and calculates
the updated commitment. It then includes this updated value as the
required commitment for verifying the CP-SNARK proof to check
whether it passes. Furthermore, since the smart contract publicly
"verifies" the proof for PoL before reflecting the transaction results,
in an economy with a high volume of retail transactions, which
can quickly fill the batch size, near real-time dynamic PoL can be
performed.

Our contributions are summarized as follows:
• We propose a novel smart-contract based privacy-preserving

CBDC framework that supports dynamic PoL. Making it suit-
able for practical use, we introduce a new transaction batching
technique derived from CP-SNARKs in our model, which allows
the generation of a single proof for large-scale transactions.

• Our framework supports dynamic PoL by proving that balances
are appropriately updated based on the values stored in the
smart contract. Additionally, we define an extended version of
dynamic PoL that allows flexible, near-real-time dynamic PoL
without requiring a fixed epoch.
• To evaluate the practicality and performance of our proposed

framework, we conducted experiments to measure proof gen-
eration time, verification time and gas consumption. The proof
generation time refers the time taken by the server to generate a
proof for a batch of transactions, while the verification time and
gas consumption represent the cost of verifying the proof and
updating user balances within the smart contract. Evaluation re-
sults show the efficiency of our framework in high-throughput
scenarios. Specifically, for a batch of 512 transactions, the proof
generation process required only 2.2 seconds. Verifying the
proof and updating user balances within the smart contract
took 0.6 seconds, with a total gas cost of 38.26 million. This
translates to approximately 74,726 gas per user, a significantly
low cost that demonstrates the scalability and efficiency of our
framework in real-world CBDC deployments.

1.2 Related Work
CBDC. Before the emergence of CBDC, the initial concept for an
anonymous digital currency was proposed by Chaum [16]. This
system ensures the sender’s anonymity through blind signatures
while the recipient’s identity and the transaction amount are dis-
closed duringwithdrawals. Camenisch et al. [12] proposed an e-cash
solution that enforces regulations by limiting the amount a user
can anonymously spend with each merchant. Baldimtsi et al. [5]
introduced a transferable e-cash system that allows coins to be

2

Aegis: Scalable Privacy-preserving CBDC Framework with Dynamic Proof of Liabilities

transferred to different users without interaction with the bank.
This approach eliminates the leakage of transaction amounts to the
bank by merchants, but the size of the coins changes depending on
their usage frequency, affecting linkability.

Since the advancement of blockchain technology, several propos-
als for anonymous cryptocurrencies have been suggested [11, 20, 23,
38, 40]. While earlier systems proposedmodels for enabling privacy-
preserving transactions between individuals, models supporting
custodial transactions have also been proposed to enhance user
convenience. Solidus [14] is a distributed ledger system that hides
the transaction values and the transaction graph between bank
users, maintaining the public verifiability. It uses Publicly-Verifiable
Oblivious RAM to achieve strong confidentiality of transaction
graph. Since Solidus can only support auditing by revealing all the
keys used in the system to an auditor and revealing the transaction
details, zkLedger [29] proposed columnar ledger. In this structure,
every bank corresponding to a column is affected by all transactions.
When the bank responds to the auditor, it must total all the com-
mitments in its column, including commitments for transactions in
which it was not involved.

Finally, with the emergence of CBDC, various designs have been
proposed, especially with a focus on regulation. Wüst et al. [43]
introduced Platypus, a model that combines the transaction pro-
cessing of e-cash with an account-based fund management mode. It
ensures the anonymity of both the sender and receiver, and unlink-
ability between transactions. But Platypus relies completely on a
single authority and lacks regulatory compliance features. Focusing
on this, PEReDi [25] uses encrypted distributed ledgers to support
regulatory compliance and meet requirements for AML/CFT.
Proof of Liabilities. CONIKS [28], a key verification system for
end users that provides consistency and privacy for users’ name-to-
key bindings, uses a Merkle prefix tree to enable users to efficiently
verify the absence proof for unauthorized name-to-key bindings in
their namespace. However, CONIKS is difficult tomonitor efficiently
as each ID owner must check their data every epoch. Focusing on
this, Merkle2 [21] proposed a transparency log system that uses a
data structure consisting of several top-level chronological trees,
sorted by time, with each internal node in these trees having a
prefix tree sorted by IDs. It allows data owners to check only the
latest digest instead of checking every digest.

The applications mentioned above support only a restricted
range of queries, such as insertion, removal, and look-up. Mean-
while, DAPOL+ [24] and Dagher et al. [18] enables users to demon-
strate that the sums of certain user values are non-negative. Also,
several database scheme has been proposed that enables users to
verify the results of a wide range of SQL queries, such as sum, count,
average, min, and max. IntegriDB [46] employs an ADS, allowing
a data owner to delegate database storage to an untrusted server
while enabling anyone to execute verifiable SQL queries on the data-
base. They use an ADS to verify set operations with summation and
support range proof, insertion, and deletion. vSQL [45] supports
more general SQL queries compared to IntegriDB, while performing
similarly. FalconDB [34] is a blockchain database platform with low
hardware requirements for individual clients. Client nodes store
only the block headers, which include digests generated from ADS,

and use these digests to authenticate the results of various queries
requested from the server.

The common feature of the above systems is that their system
design is based on the static case. They provide epoch-based inde-
pendent snapshots to the users and auditors, which are not linkable.
FalconDB and IntegriDB use dynamic ADS, but they do not support
efficient updates. To address the above issue, a dynamic PoL with
the concept that the server shows the accurate update between con-
secutive epochs and their corresponding digests has been devised.
TAP [35] combines a single Merkle chronological prefix tree with
multiple sorted Merkle sum trees. Dynamic updates are possible by
adding new sum trees to the Merkle prefix tree constructed in previ-
ous epochs. They provide zk-range proofs to verify aggregates over
the data of many independent users without revealing user data.
Notus [44] proposes ZK-MultiSwap, which removes the previous
states of the transaction set from the zkRSA accumulator and inserts
the updated states, leading to a new zkRSA accumulator. It supports
dynamic PoL by showing a series of chained MultiSwaps where the
updated accumulator is derived from the original accumulator in
the subsequent epoch.

2 PRELIMINARIES
2.1 Notations
We use 𝒂 or {𝑎𝑖 } for the list of elements, which is equivalent to a
vector. We denote by 𝜆 a security parameter and by 𝜖 (·) as a negli-
gible function. LetG denote a group. Given a security parameter 1𝜆 ,
a relation generator RG returns a decidable relation R ← RG(1𝜆).
For (®𝒙; ®𝒘) ∈ R we say ®𝒘 is a witness to the statement ®𝒙 being in
the relation.

2.2 Commitment scheme
A commitment scheme is a tuple of algorithms (Setup,Com,VerCom):
(1) ck ← Setup(1𝜆) generates a commitment key ck; (2) cm ←
Com(𝑚;𝑜) takes as input a message𝑚 and an opening 𝑜 , and out-
puts a commitment cm. (3) true/false← VerCom(cm,𝑚;𝑜) takes
as input a commitment cm, a message𝑚, and an opening 𝑜 , and out-
puts true if cm = Com(𝑚;𝑜), otherwise false. The scheme satisfies
hiding and binding.

2.2.1 Pedersen vector commitment. Pedersen vector commitment
for vector𝒘 of size 𝑛 can be expressed succinctly with the following
algorithms:

• Ped.Setup(1𝜆): chooses 𝑔 $← G and 𝒉 $← G𝑛 from a domain D.
It outputs a commit key ck := (𝑔,𝒉).

• Ped.Com(ck,𝒘): chooses an opening 𝑜
$← Z∗𝑞 and returns

(cm, 𝑜) := ((𝑜,𝒘)⊤ · ck, 𝑜).
• Ped.VerCom(ck, cm,𝒘, 𝑜) : returns true if cm = (𝑜,𝒘)⊤ · ck.

Otherwise, false.
The Pedersen vector commitment is perfectly hiding and com-

putationally binding if the discrete logarithm assumption holds.

2.3 Strongly-unforgeable digital signature
A signature scheme Sig is a tuple of algorithms (Setup, KeyGen,
Sign, Verify): (1) pp ← Setup(1𝜆) takes 𝜆 as input and generates
public parameters pp. (2) (pk, sk) ← KeyGen(pp) outputs a key

3

Gweonho Jeong, Jaewoong Lee, Minhae Kim, Byeongkyu Han, Jihye Kim, and Hyunok Oh

pair (pk, sk). (3) 𝜎 ← Sign(sk,𝑚) takes a secret key and a message
as input, and returns a signature 𝜎 . (4) true/false← Verify(pk, 𝜎)
returns true if the signature 𝜎 is valid; otherwise, false. It satisfies
strong unforgeability against chosen-message attacks (SUF-CMA).

2.4 Succinct Non-interactive arguments of
knowledge

A SNARK is a succinct non-interactive argument of knowledge for a
relationR, consisting of a tuple of algorithmsΠ = (Setup, Prove,Verify).
(ek, vk) ← Setup(R) takes a relation R as input, and generates an
evaluation key ek and a verification key vk. 𝜋 ← Prove(ek, 𝒙;𝒘)
takes the evaluation key ek, a statement 𝒙 , and a witness𝒘 as in-
puts, and outputs a proof 𝜋 . true/false ← Verify(vk, 𝒙, 𝜋) takes
the verification key vk, the statement 𝒙 and the proof 𝜋 as inputs,
and outputs accept (true) or reject (false). It satisfies the following
properties:
Completeness. Given a true statement, a prover P with a witness
can convince the verifier V . For all 𝜆 ∈ N, for all R and for all
(𝒙 ;𝒘) ∈ R,

Pr
[(ek, vk) ← Π.Setup(R)
𝜋 ← Π.Prove(ek, 𝒙 ;𝒘) : Π.Verify(vk, 𝒙, 𝜋) = true

]
= 1

Knowledge Soundness. Knowledge soundness states that a prover
must know a witness and such knowledge can be efficiently ex-
tracted from 𝜋 by a knowledge extractor E. Formally, the following
is 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 for any PPT adversary A.

Pr

(ek, vk) ← Π.Setup(R) Π.Verify(vk, 𝒙∗, 𝜋∗) = 1
(𝒙∗, 𝜋∗) ← A(ek, vk) : ∧
𝒘 ← EA (𝑡𝑟𝑎𝑛𝑠A) (𝒙∗;𝒘) ∉ R

Succinctness.Π is succinct if the time ofVerify is (𝜆+|𝒙 |+log |𝒘 |)𝑝𝑜𝑙𝑦 (𝜆)
and the proof is (𝜆 + log |𝒘 |)𝑝𝑜𝑙𝑦 (𝜆).

Remark. A SNARK may also satisfy zero-knowledge. Shortly, zero-
knowledge states that the system does not leak any information
besides the truth of the statement. This is modeled by a simulator
Sim that does not know the valid witness. In this case, it is called a
zk-SNARK.

2.4.1 Commit-and-Prove SNARK (CP-SNARK). A commit-and-prove
SNARK is a SNARK, which can efficiently prove properties of inputs
committed through a commitment scheme. Given a commitment
cm, a CP-SNARK for a relation R(𝒙;𝒘) can prove knowledge of
𝒘 := (𝒖,𝝎, 𝑜) s.t. cm = Com(𝒖, 𝑜) and R(𝒙;𝝎), where 𝒖 (commit-
ted) and 𝝎 (free). A CP-SNARK scheme is defined as a tuple of
algorithms Πcp = (Setup, Prove,Verify).
(ek, vk) ← Πcp .Setup(R, ck) follows Π.Setup, but differs in that

a commitment key ck is provided as an input.𝜋cp←Πcp .Prove(ek, ®𝒙 ; ®𝒘)
= Πcp .Prove(ek, {𝒙, cm}; {𝑚,𝑜}, ®𝝎) is based on Π.Prove, but dif-
fers in that the commitments cm are included as inputs, and the
witness includes both the message and the opening of the com-
mitments. Here, 𝒙 and ®𝝎 represent the statement and the wit-
ness, respectively, which are independent of the commitments.
true/false ← Πcp .Verify(vk, 𝒙, cm, 𝜋) is the same as Π.Verify, ex-
cept that cm is added as an input.

By leveraging the CP approach, some works [13, 22] enable effi-
cient proving of large circuits by offloading the high-computation
parts (e.g., group exponentiation) outside the circuit. Briefly, the
prover commits a witness based on the circuit-dependent commit-
ment key ck and the commitment cm can then be directly plugged
into the verification equation. These schemes are referred to as
commit-carrying SNARKs (cc-SNARKs) and consist of three algo-
rithms: Πcc := (Setup, Prove, Verify). The algorithms are described
as follows.

• Setup(R) → (ck, ek, vk): takes a relationR as input and, unlike
CP-SNARKs, outputs a circuit-dependent commitment key ck,
along with (ek, vk).

• Prove(ek, ®𝒙; ®𝒘, �̃�): splits the witness ®𝒘 into two parts (𝒖, ®𝝎):
the committed witness 𝒖 and the non-committed witness ®𝝎.
Outputs a proof 𝜋 and a proof-dependent commitment c̃m, such
that VerCom(ck, c̃m, 𝒖, �̃�) = true.

• Verify(vk, ®𝒙, c̃m, 𝜋) → true/false: verifies the proof. Outputs
true(𝑎𝑐𝑐𝑒𝑝𝑡𝑠) if the proof is valid or false otherwise.

3 SYSTEM CONFIGURATION
In this section, we describe the system configuration of our frame-
work, including the trust model and our redefined concept of dy-
namic Proof of Liabilities (PoL). We also outline the underlying
data structure used in the framework.

3.1 Trust Model
Our CBDC framework is designed with a focus on hybrid model
structure. In the hybridmodel, the central bank exclusivelymanages
the issuance and redemption of CBDC, while delegating user-facing
services and the distribution of CBDC to retail banks. Retail banks
then provide a range of services for their customers, including
account opening, asset management, deposits, withdrawals, and
transfers. To provide these services, banks need access to the per-
sonal information. Due to the critical importance of securing user
information, banks must be entities certified by the central bank,
and they are responsible for fulfilling their obligations to prevent
misuse or leakage to other banks. In our framework, delegators
function analogously to retail banks in hybrid model.

As certified entities under the central bank certification, dele-
gator manage key escrow with robust security measures and bear
legal accountability for any misuse or leakage of users’ keys. They
process transactions solely based on user-initiated intentions, ad-
hering to regulatory requirements such as AML/CFT to prevent
illicit financial activities. This structure mirrors conventional bank-
ing procedures while ensuring compliance with modern regulatory
standards.

Even though delegators are certified by government institutions,
we assume delegators do not inherently trust each other andmay be-
have dishonestly. For instance, a delegator could attempt to transfer
less money than intended to a user managed by another delegator.

4

Aegis: Scalable Privacy-preserving CBDC Framework with Dynamic Proof of Liabilities

(a) Dynamic PoL of prior works

(b) Dynamic PoL of Aegis

Figure 1: Overview of dynamic PoL where the red arrow sig-
nifies that a transaction has processed.

3.2 Redefining Dynamic Proof of Liabilities
Proof of Liabilities (PoL) is a cryptographic mechanism designed to
enable users to verify their liabilities and allow auditors to validate
financial liabilities at regular intervals (known as epochs)1.

Dynamic PoL, as referred by [44], builds on the concept of Proof
of Liabilities by enabling the server to prove that updates between
consecutive epochs are accurate and consistent with their corre-
sponding proofs. In other words, dynamic PoL maintains continuity
by linking updates across epochs. This ensures that validating the
current epoch implicitly confirms the correctness of all preceding
states, reducing the verification burden and addressing potential
vulnerabilities such as window attacks.

We redefine the concept of dynamic PoL by introducing flexibil-
ity in the treatment of epochs while preserving the fundamental
property of update continuity across epochs. Specifically, this flexi-
bility allows the server, after publishing the proof for the current
epoch, to generate the proof for the subsequent epoch either imme-
diately or after a threshold of state changes has been reached. This
refinement broadens the applicability of dynamic PoL to scenarios
where a fixed epoch is not required.

3.3 Data structure
Entities. Our scheme identifies three key stakeholders: the issuer
I, representing the central bank responsible for manufacturing and
issuing CBDC; the user U, representing end-users who transact
with the CBDC; and the delegatorD, representing retail banks that
circulate CBDC between I andU.
Appended-only Ledger. All users have access to the ledger, de-
noted as L, which contains the data of all blocks. The ledger ex-
pands sequentially by appending new transactions to the previous

1The length of an epoch can vary, typically ranging from one month [9, 32].

blocks. Specifically, when transaction T′ precedes transaction T,
LT incorporates LT′ , ensuring continuity and order in the ledger.
Values and Commitments. We define three types of secret val-
ues, hidden through commitment, 𝑣cur: the current balance of the
entity’s account; Δ𝑣 : the transaction amount; and 𝑣new: the updated
balance of the entity’s account after the transaction. The commit-
ments corresponding to these values are: cmcur (for 𝑣cur), Δcm (for
Δ𝑣), and cmnew (for 𝑣new).
Accounts and Keys. Each entity maintains an account acct and
an associated key pair. The account acct is defined as a tuple:

acct := (cm, addr, 𝑣, 𝑜)

where cm is commitment representing the account’s state, addr
is the account address, 𝑣 denotes the current balance held in the
account, and 𝑜 refers to the opening of the commitment. The key
pair consists of a secret key sk and a corresponding public key pk,
which are used by entities to generate signatures. The purpose of
these signatures varies depending on the entity. For users, the key
pair is used to generate a signature sent to the delegator to proving
their identity.2 For delegators, as will be detailed in subsequent
sections, the key pair is additionally used to ensure the integrity
and authenticity of transaction data.

4 MAIN IDEA
4.1 Batching Technique based on CP-SNARKs
We aim to prove a single batch transaction rather than proving each
individual transaction. This section describes the structure of the
CP-SNARK used in our approach.

In our design, user assets on the ledger are represented as com-
mitments cm. User actions, such as deposits, withdrawals, and
transfers, correspond to updates to these commitments. Thus, a
technique for efficiently proving multiple commitments with a
single proof is required. To achieve this, we leverage techniques
proposed in several studies [2, 13, 22, 26]. We adopt the scheme
proposed in [22] to design our system.

In the scheme, the circuit-dependent commitment key ck, gener-
ated by the setup algorithm, is divided into two parts, ck1 and ck2:
ck1 is used for committing to user information, while ck2 acts as a
bridge, binding the knowledge of these commitments within the
SNARK. In other words, the commitments cm stored on the ledger
are generated using ck1. Then, we assume that both the prover and
verifier have the same list of commitments denoted by Listcm, rep-
resenting the multiple commitments to be proven. In the proving
algorithm, the prover commits to the messages and their openings
using the commitment key ck2. Upon receiving a challenge 𝜁 from
the verifier, the prover computes a witness, agg𝑣 and agg𝑜 , and
generates a proof 𝜋 . agg𝑣 and agg𝑜 represent the aggregate of com-
mitted values and their openings, respectively. The verifier, without
access to the messages or their openings, verifies the proof by com-
puting the aggregated commitment based on the commitment list
(Listcm) and the challenge (i.e., cmagg :=

∑𝑛
𝑖=1 𝜁

𝑖 · cm𝑖). We detail
the protocol in Figure 2. Specifically, we define the structure of
𝑣𝑖 in Figure 2 as 𝑣cur + Δ𝑣 and Δ𝑣 , where 𝑣new is represented by
𝑣cur + Δ𝑣 . This structure also applies to 𝑜𝑖 and cm𝑖 , and includes

2A delegator may act as a user in interactions with the central bank.
5

Gweonho Jeong, Jaewoong Lee, Minhae Kim, Byeongkyu Han, Jihye Kim, and Hyunok Oh

Protocol

P(ek, Listcm; {𝑣𝑖 , 𝑜𝑖 }𝑖∈ [𝑛]) V (vk, ®𝒙, Listcm)

(c̃m, 𝑜) ← Com(ck2, {𝑣𝑖 , 𝑜𝑖 }𝑖∈ [𝑛]) c̃m

𝜁
𝜁

$← Z∗𝑝

agg𝑣 =

𝑛∑︁
𝑖=1

𝜁 𝑖 · 𝑣𝑖

agg𝑜 =

𝑛∑︁
𝑖=1

𝜁 𝑖 · 𝑜𝑖

𝑢 :=
{
agg𝑣, agg𝑜 , {𝑣𝑖 , 𝑜𝑖 }𝑖∈ [𝑛]

}
𝜋 ← Πcc .Prove(ek, (𝒙, 𝜁) ; (𝑢,𝜔), 𝑜) 𝜋cc cmagg ←

𝑛∑︁
𝑖=1

𝜁 𝑖 · cm𝑖

Πcc .Verify(vk, (𝒙, 𝜁), (cmagg + c̃m), 𝜋cc)

Figure 2: Our used CP-SNARK for multiple Pedersen commitments where Listcm := {cm𝑖 }𝑖∈[𝑛]

both the sender and the receiver. Note that the scheme can become
a non-interactive scheme via the Fiat-Shamir transform and can
also be expressed in the same format as the CP-SNARK defined
in 2.4.1.

The delegator (i.e., the prover) must prove the following for
𝑁 commitments: cmcur+Δcm = cmnew and additional conditions
structured as follows:
• Non-negative balances: Expenditures must not exceed available

holdings, ensuring that balances remain non-negative after
transfer. This is enforced by the following constraint:

0 ≤ 𝑣new = 𝑣cur + Δ𝑣 ≤ Limit

where Limit denotes the maximum holding value. Limit is intro-
duced to prevent overflows, as all elements are treated as finite
field elements and cannot be negative within the circuit. The
holding limit Limit is defined by regulations, ensuring that all
balances remain below this limit, which represents an amount
that would be impractical to hold in reality. For example, the
holding limit may be set to 64 bits.

• Transfer validity: The summation of Δ𝑣 across all trades must
equal zero. This follows the equation

𝑁∑︁
𝑖=1

Δ𝑣𝑖 = 0

agg𝑣 =
𝑁∑︁
𝑖=1

𝜁 𝑖 · (𝑣cur,𝑖 + Δ𝑣𝑖) + 𝜁𝑁+𝑖 · Δ𝑣𝑖

agg𝑜 =

𝑁∑︁
𝑖=1

𝜁 𝑖 · (𝑜cur,𝑖 + Δ𝑜𝑖) + 𝜁𝑁+𝑖 · Δ𝑜𝑖

These conditions are handled within the circuit, while the integrity
of the commitments is efficiently proven using the previously de-
scribed method. The prover sets Listcm = Listcmnew | |ListΔcm , and
generates a proof for Listcm. Then, the prover includes the proof
and ListΔcm as elements in the transaction. In the verification, since
the current commitments cmcur,𝑖 are already pre-published, it can

compute cmnew,𝑖 from cmcur,𝑖 and Δcm on the ledger. The verifier
then uses a random, generated based on the Fiat-Shamir transform,
to compute cmagg from Listcm, enabling the verifying for multiple
commitments.

4.2 Observing on Dynamic PoL
Dynamic PoL enables a party to demonstrate that a user’s balance
at the current epoch accurately reflects all transactions-such as
deposits, withdrawals, and transfers-that occurred between previ-
ous and current epochs [44]. As an example, a server stores user-
associated transaction records and publishes proofs of this dataset
on a ledger. To ensure transparency3 and accountability, the server
must prove the correctness of updates between successive epochs,
verifying that all changes to user balances are accurately captured.

In our system, user balances are stored on a smart contract in the
form of commitments. Given user requests (e.g., sending CBDC to
others), the delegator should correctly update their balances in both
the database and the smart contract based on the users’ current
balances. In other words, the delegator must carefully handle the
transaction to maintain consistency between the two repositories.

In detail, Figure 3 illustrates the flow of dynamic PoL within our
framework, achieved by applying the proposed batching technique
and blockchain.

In this example, the delegator processes requests from two users
(marked as yellow and green in the epoch bar). In this structure,
a key feature is epoch’s flexibility, allowing it to operate without
fixed epochs. Transactions can be processed immediately when the
batch size threshold is reached or when requests are deemed to
have been pending for too long. Initially, the delegator’s database
stores user liabilities in plain form (i.e., 𝑣), and the smart contract
stores them as commitments (i.e., cm). Based on the received re-
quests, the delegator computes adjustment commitments (Δcm)
for the sender and receiver and generates a batching CP-SNARK

3Transparency means ensuring the server operates correctly, not public visibility as in
blockchain

6

Aegis: Scalable Privacy-preserving CBDC Framework with Dynamic Proof of Liabilities

Figure 3: Overview of our dynamic PoL with the batching technique

proof 𝜋cp. This proof, along with transaction data, is then submitted
to the blockchain. If the proof is verified in the smart contract, it
ensures that each user’s transactions maintain non-negative bal-
ances and transfer validity by batching technique. Additionally, our
framework guarantees membership by verifying the proof based
on commitments stored in the smart contract. The smart contract
then updates the current state (CMListcur) of commitments to the
new state (CMListnew) of commitments. Finally, the delegator’s
database is updated to synchronize with the confirmed transaction.

Note that proofs for each epoch are stored in an append-only
ledger, ensuring public accessibility for users. This design allows the
system to satisfy the core requirement of dynamic PoL: proving the
correctness of the current state while guaranteeing the integrity of
all previous epochs’ liabilities. This shows that our system supports
dynamic PoL.

5 OUR CONSTRUCTION
Prior to describing our construction, we define additional notation
for clarity. We denote a sender and a receiver as snd and rcv, respec-
tively. A bijection 𝑝: S → S on the set S satisfies the properties
𝑝 (𝑖) ≠ 𝑖 and 𝑝 (𝑝 (𝑖)) = 𝑖 . In other words, 𝑝 pairs the elements of S
with distinct elements, forming a symmetric and reversible map-
ping. Since our model requires homomorphic commitments, we
use Pedersen commitments.

5.1 System overview
Recall that each delegator can provide users with efficient and
scalable batch transfers using the mentioned batching techniques.

Figure 4: Overview of our framework

In this section, we provide an overview of the entire system, em-
phasizing the interactions between multiple delegators and the
blockchain.

For anonymity, we adopt a 𝑘-anonymity approach like [11, 41],
where 𝑘 represents the size of the batch. In our model, 𝑘-anonymity
means guaranteeing unlinkability in proportion to batch size 𝑘 ,
thereby making it difficult to identify which sender corresponds
to which receiver within a batch. Depicted in Figure 4, the actual
account values are stored in the delegators’ databases, while the
corresponding commitments are recorded in the smart contract.
The smart contract does not know the actual account values but
instead verifies the validity of transactions for these commitments.
The commitments stored in the smart contract represent the CBDC,
which holds the actual monetary value.

7

Gweonho Jeong, Jaewoong Lee, Minhae Kim, Byeongkyu Han, Jihye Kim, and Hyunok Oh

Setup(1𝜆,RD)

(ck, ek, vk) ← Πcp .Setup(R)

pp := (1𝜆, ek, vk, ck, ekcp, vkcp)
return pp

Figure 5: The issuer’s algorithm

By utilizing homomorphic commitments, when a transfer occurs
across different delegators, the smart contract updates the com-
mitments homomorphically to reflect the changes: the sender’s
commitment decreases, and the receiver’s commitment increases
by the same amount. While the smart contract manages these com-
mitment updates, each delegator is responsible for adjusting the
corresponding account balances in their local databases to ensure
consistency with the smart contract. For the sender’s delegator
(𝛼), updating the sender’s account is straightforward because the
transfer amount is known from the user request. However, the
receiver’s delegator (𝛽) needs additional information to update the
receiver’s account. Delegator 𝛼 provides delegator 𝛽 with the neces-
sary commitment details and corresponding amounts for the batch.
Delegator 𝛽 verifies that the values are non-negative and match the
commitments, then signs the list of commitments and returns the
signature to delegator 𝛼 . Once delegator 𝛼 has collected all required
signatures from the involved delegators, the transaction, complete
with signatures, is submitted to the smart contract. The transaction
is accepted and added to the ledger only if all signatures and the
transaction are verified. After approval4, each delegator updates
their databases to reflect the changes, ensuring consistency with
the commitment values in the smart contract.

5.2 Issuer algorithms
The main role of the issuer is responsible for setting up the sys-
tem. This algorithm is denoted as Setup(1𝜆,R) → pp. It takes a
security parameter and the relation R as inputs, and outputs public
parameters pp.

5.3 Delegator algorithms
A delegator processes transfers on behalf of users based on the
intentions received from users. Users freely send transfer intentions
to the delegator, defined as follows:

𝜙 = (𝜎snd, addrsnd, addrrcv, pkrcv,Δ𝑣)
where pkrcv is denoted by the public key of the delegator to which
the receiver addrrcv belongs. The term 𝜎snd refers to the signature
generated by signing the intention data with the sender’s secret key
sksnd. This signature is then used by the delegator to authenticate
the identity of the user. We refer to this sub-routine as the dele-
gated transfer request (DTR), which involves a user submitting an
intention 𝜙 to their delegator. When a delegator receives multiple
DTR requests, they aggregate them to create a single transaction,
which we denote as the delegated batch transfer (DBT). Note that
4Delegators can monitor 𝐸𝑣𝑒𝑛𝑡𝑠 emitted by the smart contract to check the confirma-
tion of transactions.

IssueKey(pp)

(pk, sk) ← Sig.KeyGen(pp)

addr← CRH(pk) ; 𝑜
$← Z∗𝑝

cm← Ped.Com(ck, 0;𝑜)
acct := (cm, addr, 0, 𝑜)
return (pk, sk, acct)

DBT(pp, pksnd, 𝑝, 𝑁){
𝜎snd, addr

snd
𝑖 , addrrcv𝑖 pkrcv𝑖 ,Δ𝑣𝑖

}
𝑖∈ [𝑁 /2]

← Pending(DTR){
{𝑣cur, 𝑗 , 𝑜cur, 𝑗 }

𝑗
$←[𝑁]

← DB.Query(addrsnd𝑖)
}
𝑖∈ [𝑁 /2]

∀ 𝑗, 𝑣cur,𝑝 (𝑗) = 0, 𝑜cur,𝑝 (𝑗) = 0

∀ 𝑗,Δ𝑜 𝑗 ,Δ𝑜𝑝 (𝑗)
$← Z∗𝑝

∀(𝑖, 𝑗),Δ𝑣𝑗 = −Δ𝑣𝑖 ,Δ𝑣𝑝 (𝑗) = Δ𝑣𝑖

∀(𝑖, 𝑗), pk𝑗 = pksnd, pk𝑝 (𝑗) = pkrcv𝑖

∀(𝑖, 𝑗), addr𝑗 = addrsnd, addr𝑝 (𝑗) = addrrcv𝑖

𝑣new, 𝑗 = 𝑣cur, 𝑗 − Δ𝑣𝑗 , 𝑜new, 𝑗 = 𝑜cur, 𝑗 + Δ𝑜 𝑗

𝑣new,𝑝 (𝑗) = 𝑣cur,𝑝 (𝑗) + Δ𝑣𝑝 (𝑗) , 𝑜new,𝑝 (𝑗) = 𝑜cur,𝑝 (𝑗) + Δ𝑜𝑝 (𝑗)
{Δcm𝑘 := Ped.Com(ck,Δ𝑣𝑘 ;Δ𝑜𝑘) }𝑘∈ [𝑁]{
cmnew,𝑘 := Ped.Com(ck, 𝑣new,𝑘 ;𝑜new,𝑘)

}
𝑘∈ [𝑁]

®𝒙 :=
{
{cmnew,𝑘 }𝑘∈ [𝑁] , {Δ𝑐𝑚𝑘 }𝑘∈ [𝑁]

}
®𝒘 :=

{
{ (𝑣cur,𝑘 , 𝑜cur,𝑘) }𝑘∈ [𝑁] , { (Δ𝑣𝑘 ,Δ𝑜𝑘) }𝑘∈ [𝑁]

}
for 𝑘 ∈ {1, . . . , 𝑁 } do

Listpk .append(pk𝑘)
Listaddr .append(addr𝑘)
ListΔcm .append(Δcm𝑘)

endfor

Listdata := (Listpk, Listaddr, ListΔcm)
𝜋cp ← Πcp .Prove(ek, ®𝒙 ; ®𝒘)
𝜓D𝑖

:= (𝜋cp, Listdata, {Δ𝑣,Δ𝑜 }∀addr∈ [D𝑖 .addr])
List𝜎 ←

[
GenSig(pp,𝜓D𝑖

)
]

return TxDBT := (List𝜎 , 𝜋cp, Listdata)

GenSig(pp,𝜓)

parse𝜓 := (𝜋cp, Listdata, {Δ𝑣𝑗 ,Δ𝑜 𝑗 } 𝑗 ∈D𝑖
)

parse Listdata := (Listpk, Listaddr, ListΔcm)
for (𝑗, addr) ∈ D𝑖 do

assert Δ𝑣𝑗 ≥ 0
assert Ped.VerCom(ck, ListΔcm [𝑗],Δ𝑣𝑗 ,Δ𝑜 𝑗) = true

endfor

𝜎 ← Sig.Sign(sk, 𝜋cp, Listdata)
return 𝜎

Figure 6: The delegator’s algorithms

the many DTR received by the delegator are stored in a manner
similar to a message queue, which we denote as Pending.

8

Aegis: Scalable Privacy-preserving CBDC Framework with Dynamic Proof of Liabilities

Another sub-algorithm, denoted as GenSig, is defined. Delega-
tors cannot access information about users assigned to other del-
egators and do not inherently trust one another. However, when
transferring CBDC to users under a different delegator, transaction
integrity must still be guaranteed. This requires communication be-
tween delegators and mutual verification to ensure the correctness
of the updated values. To achieve this, we use digital signature to
validate the transactions. The sending delegator sends disjoint data
𝜓 to each delegator, including partial transactions and user-specific
information like Δ𝑣 and the receiver’s address. Each delegator veri-
fies this data, signs it, and returns the signature 𝜎 .

Define the main algorithm, Delegated Batch Transfer, denoted as
DBT. The DBT algorithm aggregates multiple intentions received
by the delegator into a single transaction. For a batch size of 𝑁 , the
algorithm retrieves intentions of 𝑁 /2 users from the Pending. Each
intention includes the sender’s address, addrsnd. The delegator then
retrieves the current balance 𝑣cur, and its corresponding opening,
𝑜cur, which are associated with addrsnd from the database. Each
𝑣cur and 𝑜cur is then assigned a unique random index 𝑗 , ranging
from 1 to 𝑁 , in order to make it difficult to distinguish whether it is
the sender or the receiver. Consequently, 𝑁 /2 pairs of the current
balance 𝑣cur, 𝑗 for sender 𝑗 and its corresponding opening 𝑜cur, 𝑗 are
generated.

After preparing 𝑁 /2 pairs of 𝑣cur, 𝑗 and 𝑜cur, 𝑗 for the senders, the
algorithm also prepares 𝑣cur and 𝑜cur for 𝑁 /2 receivers in the same
way. Since the sending delegator cannot access the 𝑣cur and 𝑜cur of
users belonging to other delegators, the receiver’s 𝑣cur and 𝑜cur are
set to 0. Receivers, like senders, are also assigned an index 𝑗 . At this
point, a bijection 𝑝 is used to map each sender 𝑗 to a receiver 𝑝 (𝑗).

Next, the algorithm computes the updated balance 𝑣new for both
the sender and the receiver using the transaction amount Δ𝑣 . For
the sender, the updated balance is computed as 𝑣new = 𝑣cur − Δ𝑣 .
Similarly, the opening for the updated balance, 𝑜new is updated as
𝑜new = 𝑜cur+Δ𝑜 . In contrast, for users belonging to other delegators,
whose 𝑣cur and 𝑜cur are not accessible, the values are set as 𝑣new =

Δ𝑣 and 𝑜new = Δ𝑜 .
Then, the commitments cmnew for the updated balance 𝑣new and

the commitments Δcm for the transaction amount Δ𝑣 are computed.
These commitments are included in the statement ®𝒙 , while the
corresponding 𝑣new, 𝑜new,Δ𝑣 and Δ𝑜 are included in the witness ®𝒘 .
Using these, a proof Πcp is generated to satisfy the non-negative
and transfer validity conditions described in Section 4.1.

However, using only Πcp, the delegators participating in the
trade cannot verify the transaction amount Δ𝑣 . For example, a
malicious sender could attempt to create a transaction where they
gain +Δ𝑣 while the receiver incurs −Δ𝑣 , thereby compromising
the receiver’s account. To prevent such attacks, it is crucial to
mutually verify that the transaction information Δcm received by
the receiving delegator has been correctly derived from the Δ𝑣 sent
by the sending delegator. To achieve this, theGenSig sub-algorithm
is employed.

GenSig takes as input the delegator-specific data Δ𝑣 and its cor-
responding Δ𝑜 , as well as the transaction data, including the proof
Πcp and Listdata. It performs two key validations: first, it verifies
that the transaction amount Δ𝑣 is non-negative; second, it ensures

that the commitment of Δ𝑣 and Δ𝑜 matches ListΔcm, which is in-
cluded in Listdata. Upon successful verification, GenSig signs the
transaction data and returns the signature to the sending delegator.
Finally, the DBT algorithm outputs, as the transaction, consisting
of the list of signatures List𝜎 for the delegators participating in the
trade, the proof Πcp, and Listdata.

In summary, the delegator’s algorithm is described as follows:
• IssueKey(pp) → (pk, sk, acct): It opens a delegated account

acct along with a key pair (pk, sk).
• GenSig(pp,𝜓) → 𝜎 : It takes the public parameter pp and𝜓 as

inputs, and returns a signature 𝜎 .
• DBT(pp, pksnd, 𝑝, 𝑁) → TxDBT: It is used to process multiple

DTR requests received from users by the delegator, and outputs
a transaction TxDBT.

Remark. Our system can support interoperability with privacy-
preserving transfer systems using self-managed accounts, as pro-
posed in [20, 23, 37, 38]. These systems generally utilize commit-
ments and consist of functionalities such as Send and Receive. To
combine with such systems, our system can support interactions
between self-managed accounts and delegated accounts, enabling
value exchange between the two types of accounts.

For these exchanges to be valid, the following must hold:
• The transfer amount and the updated balance after the transfer

must both be positive.
• The new commitment, reflecting the transfer amount added to

the previous balance, must be valid.
• Both the self-managed account and the delegated account must

have valid key pairs.
Since the proof is generated by the owner of the self-managed
account, the delegator cannot know the transfer amount. Therefore,
they must inform the delegator of the transfer amount through a
secure channel to allow the delegator to update their database.

5.4 Smart Contract
In our system, various smart contract functions are defined. To
indicate the usability for each entity, subscripts are used. These
functions output either 1 or 0, representing success and failure,
respectively.5 Note thatmsg.sendermeans the address of the entity
that called the function. Additionally, CMList represents the on-
chain storage where users’ balances are stored as commitments. It
is structured as a mapping that associates each address (key) with
its corresponding commitment. The detailed smart contracts are
described in the Figure 7.
• DeployI (pp,Δ𝑣): This algorithm deploys a smart contract and

stores the keys.6 Additionally, it mints the initial supply of
CBDC, issuing the CBDC into circulation.

• GrantRoleI (pk): This algorithm grants the validator role to a
specified delegator (with the public key pk). This role signifies
that it has the authority to perform GenSig.

• MintI (Δ𝑣): This algorithm enables I to issue additional CBDC.
Thus, Δ𝑣 is added to the existing commitment of I’s account.

5If any inputs are of incorrect type, the function automatically fails.
6While the verification key vk in pp must be required, but the evaluation key ek is
optional and does not need to be included in the smart contract; it can be shared
through other channels.

9

Gweonho Jeong, Jaewoong Lee, Minhae Kim, Byeongkyu Han, Jihye Kim, and Hyunok Oh

Deploy(pp, 𝑣)

Store vk, ck

I ← msg.sender

Mint(𝑣)// issue the initial supply of CBDC

Initialize CMList

GrantRole(pk)

assert msg.sender = I
isValid[pk] ← true

Mint(Δ𝑣)

assert msg.sender = I
CMList[I] = CMList[I] + 𝑔Δ𝑣

// 𝑔 is the element of ck

DBT(TxDBT)

assert isValid[msg.sender] = true

parse TxDBT := (List𝜎 , 𝜋cp, Listdata)
for 𝑖 ∈ {1, 𝑁 }

Listcm [𝑖] = CMList[addr𝑖] + ListΔcm [𝑖]
Listcm [𝑖 + 𝑁] = ListΔcm [𝑖]

endfor

assert Πcp .Verify(vk, Listcm, 𝜋cp) = true

assert ∀𝑖 ∈ Listpk : isValid[pk𝑖] = true ∧ Sig.Verify(pk𝑖 , 𝜎𝑖) = true

for 𝑖 ∈ {1, . . . , 𝑁 }
CMList[addr𝑖] = CMList[addr𝑖] + Listcm [𝑖 + 𝑁]

endfor

Figure 7: Aegis’s smart contract

• DBTD (TxDBT): This algorithm takes TxDBT as input and allows
the delegator to update the balance commitments of each dele-
gated account. The algorithm proceeds through the following
steps: (1) check the validator’s authority; (2) make a statement
using the current user commitments CMList stored on-chain
and the commitment of the changes ListΔcm included in the
transaction; (3) verify the proof 𝜋cp; (4) verify the signatures of
the delegators involved in the transaction; and (5) update the
users’ balances accordingly.

Remark. Delegators must check that their private storage is up-
dated correctly only after confirming that DBT has been properly
executed and reflected in the ledger (e.g., when the status equals 1
or an event is emitted). Incorrect updates may result in mismatches
between the values stored in the private storage and those in the
ledger, causing verification failures.

Additionally, the described approach assumes a single smart
contract where the sender bank updates the receiver bank’s data
only for verified transactions. This can be extended by allowing each
bank to deploy its own smart contract, which can internally call the
smart contracts of other banks to update user balances. Furthermore,
if the sender bank records a transaction on the ledger without the
receiver bank’s involvement, it may result in discrepancies with
the receiver bank’s data, potentially leading the receiver bank to
file a formal complaint or dispute.

6 SECURITY
To ensure the robustness of our privacy-preserving CBDC system,
we show that it satisfies the completeness and security require-
ments.
Completeness. This property guarantees that the system will func-
tion correctly and transactions will always succeed when all partic-
ipating entities act honestly and generate transactions according
to protocol rules.
Security requirements. Our system satisfies two critical secu-
rity properties: update soundness and privacy. Update soundness
ensures that the sum of all transaction changes equals zero while
also guaranteeing that no user spends more money than they are
legitimately entitled to. This prevents any unauthorized increase
or decrease in transaction amounts at both the system-wide and
individual levels. Privacy ensures that no additional information
about the transfers of honest parties, beyond what is intended,
is revealed to an adversary. This is formalized through three key
aspects: hiding transferred amounts, protecting the identities of
transaction participants, and preventing the linkability of different
transactions. These security properties are designed to uphold the
system’s integrity and confidentiality while preserving its function-
ality.

6.1 Security proofs
We prioritize the discussion of security requirements and omit the
detailed proof for completeness, as it is relatively straightforward.

6.1.1 Security requirements. Before describing security games, we
define the common elements of security games. In the setup phase
of the game, entities (C,A,OSC) take the security parameter 𝜆 as
input. The oracle, OSC, adds transactions submitted by a challenger
or an adversary as pending.7 The challenger can query OSC at any
time to obtain the current state or any prior state of SC. Meanwhile,
an adversary A has full visibility of the oracle, including all trans-
actions sent by the challenger, the state transitions of SC, and the
complete transaction history, etc.
Adversary’s behavior. The adversary A can influence the state
of SC as follows.
• Indirect control via challenger (C):A can instruct C to execute

a delegator algorithmwith specific inputs and send the resulting
transaction to OSC.
(1) For IssueKey, C sends the public information related to the

generated accounts toA, excluding any secret information
such as private keys and openings.

(2) ForDBT,A specifies the sender, recipient, and the transfer
amount to C.

(3) When C receives an instruction, it utilizes the state of SC
from the last block of the previous epoch to execute the
requested operation.

(4) If C has already initiated a transfer in the current epoch
using a particular public key, any further instructions to
generate the same transaction from that key within the
same epoch will be rejected. Additionally, C will reject

7In fact, each delegator is authorized by the central bank to act as a validator and
publish transactions after undergoing strict qualification test. However, we aim to
demonstrate that the system remains secure even if this requirement is disregarded.

10

Aegis: Scalable Privacy-preserving CBDC Framework with Dynamic Proof of Liabilities

instructions to transfer involving overlapping users within
the anonymity set.

• Direct submission by A: A can directly publish arbitrary DBT
transactions to OSC (as previously mentioned, we omit the role
verification for EOAs in the smart contract).

Let ADDR be the set of addresses generated by C at A’s request.
However,A does not possess the secret information corresponding
to these addresses.
Update soundness.We formally define a game, denoted asGameUS,
involving a challenger C, an adversary A, and the oracle OSC.
First, let addr represent the addresses belonging to users in ADDR
(addr ∈ ADDR), and addr′ denote the addresses not in ADDR (i.e.,
those not generated through queries to C, addr′ ∉ ADDR). We
define the notations related to amounts in the game from the per-
spective of the adversary as follows:
• 𝛼 : The total deposits associated with addr′.
• 𝛽 : The total amount received by the adversary through transfers,

which can be broken down into the following subcomponents:
– 𝛽𝑎 : The total deposits made by users in addr.
– 𝛽𝑏 : The total balance of the smart contract held by users

in addr.
– 𝛽𝑐 : The total amount withdrawn by users in addr.

Consequently, 𝛽 = 𝛽𝑎 − 𝛽𝑏 − 𝛽𝑐 .
• 𝛾 : The total withdrawals associated with addr′.

We define the system to satisfy update soundness if, for all PPT
adversaries A, the probability that 𝛼 + 𝛽 < 𝛾 is negligible.

Proof. For transfer (i.e., DBT), let Listaddr := (addr1, addr2, . . .)
represent the anonymity set, ListΔcm := (Δcm1,Δcm2, . . . ,Δcm𝑛)
the transfer commitments, and 𝜋cp the proof for the DBT transac-
tion Tx. Also, let (𝑣cur,1, 𝑣cur,2, . . . , 𝑣cur,𝑛) denote the current hold-
ings of users included in the DBT transaction, and let (𝑣new,1,𝑣new,2,
. . .,𝑣new,𝑛) denote their updated holdings after the transaction. To
define the transfer results concisely, we introduce a bijection 𝑝 :
S → S over the set S = {1, . . . , 𝑛} such that 𝑝 (𝑖) ≠ 𝑖, 𝑝 (𝑝 (𝑖)) = 𝑖 ,
and 𝑛/2 disjoint pairs exists: {(𝑖, 𝑗) |𝑝 (𝑖) = 𝑗, 𝑝 (𝑗) = 𝑖, 𝑖 ≠ 𝑗}.
For the honest transfer, there are exactly 𝑛/2 pairs of the form
(Δ𝑣𝑝 (𝑖) ,−Δ𝑣𝑝 (𝑗)). If there exists any pair (𝑖, 𝑗) such that Δ𝑣𝑝 (𝑖) ≠
−Δ𝑣𝑝 (𝑗) , it implies that the sender and receiver are not transferring
equal but opposite values. This imbalance allows the adversary to
win the GameUS where 𝛼 + 𝛽 < 𝛾 . However, such a scenario con-
tradicts the knowledge soundness of the zk-SNARKs and binding
property of the commitment scheme. Hence, the probability is at
most negligible.
Privacy. We formally define a game, denoted asGamePV, involving
a challenger C, an adversary A, and the oracle OSC.8 In the game,
the adversary A provides two consistent instructions to the chal-
lenger C, rather than a single instruction. The challenger executes
the (𝑏 + 1)-th instruction based on a secret random bit 𝑏. At the end
of the game, the adversary outputs a bit 𝑏′ as its guess for 𝑏. Two
instructions are considered consistent if they satisfy the following
conditions for a transfer transaction:

(1) They originate from the same EOA.

8The game adopts a left-right setting commonly utilized in indistinguishability-based
definitions.

Table 1: Performance of our system

(a) zk-SNARK Performance by Batch Size

size Setup Prove Verify Constraints ek vk
(log) (s) (s) (ms) (k) (KB) (B)
3 0.048 0.031 1.264 4.1 925

296

4 0.069 0.054 1.313 8.2 1,850
5 0.128 0.099 1.336 16.4 3,698
6 0.245 0.191 1.525 32.9 7,397
7 0.472 0.316 1.821 65.9 14,793
8 0.896 0.618 2.040 131.8 29,586
9 1.781 1.150 2.900 263.6 59,171
10 3.469 2.217 4.245 527.3 118,342
11 7.046 4.557 6.646 1,054.7 236,684
12 14.169 9.571 11.796 2,109.4 473,367

(b) Smart Contract Performance by Batch Size

size(log) Time(s) TPS Gas(M)
3 0.015 64.19 0.62
4 0.021 46.62 0.90
5 0.028 35.08 1.46
6 0.047 21.41 2.59
7 0.078 12.83 4.87
8 0.152 6.57 9.46
9 0.296 3.37 18.83
10 0.626 1.59 38.26
11 1.512 0.66 79.94
12 3.102 0.33 174.48

(2) The anonymity set must be identical across both instruc-
tions (including the involved delegator)

(3) If the receiver is controlled by the adversary, both instruc-
tions must specify the same address and the same amount.

(4) The transferred amounts for all users must be valid.
The system is private if, for all PPT adversaries A, the probability
that 𝑏 = 𝑏′ is at most 1/2 + negl(𝜆).

Proof. For two consistent transfer transactions, they differ in
List𝜎 , ListΔcm, and 𝜋cp, Firstly, the adversary gains no advantage
through List𝜎 . The transferred commitments either commit to zero
or valid transferred amounts, which are indistinguishable to the
adversary due to the hiding property of the commitments. Similarly,
the proof is indistinguishable due to zero-knowledge property of
the zk-SNARK. Consequently, the adversary’s advantage in distin-
guishing between the two consistent transactions is negligible.

7 EXPERIMENT
Our implementation is based on Rust (Arkworks) and TypeScript,
using the BN254 elliptic curve for cryptographic operations. Blockchain
experiments were conducted on the Ethereum Hardhat testnet, and
the smart contracts were developed in Solidity. To reduce gas costs,
the SHA3 hash function was applied. All experiments were exe-
cuted on a MacBook Pro 16 equipped with an Apple M1 CPU and
32GB of RAM.

11

Gweonho Jeong, Jaewoong Lee, Minhae Kim, Byeongkyu Han, Jihye Kim, and Hyunok Oh

7.1 Evaluations
In this section, we first clarify two key aspects of our batched trans-
action approach before delving into detailed performance results.
First, since our construction includes both senders and receivers in
each batch, the number of transactions is half the batch size. Thus,
if a batch size is 1024, the system handles 512 distinct transactions.
Second, we represent the batch size in log scale for convenience.
For example, size = 10 corresponds to a batch size of 210 = 1024.

7.1.1 Performance of zk-SNARK. We evaluate our system’s perfor-
mance for batched proofs, as shown in Table 1a. The experiment
was conducted with the number of threads fixed at 10. The setup
time ranges from 0.048 seconds at size = 3 to 14.169 seconds at
size = 12. The proving phase experiences an increase from 0.031
to 9.571 seconds over that same range, and verification time grows
from 1.264ms to 11.796ms. Notably, while the number of constraints
and the proving key (ek) size expand with the batch size, the ver-
ification key (vk) remains constant at 296 bytes. This stability in
vk size means that, regardless of how large the batch becomes, the
overhead for storing and deploying the vk on the smart contract
side does not scale. Despite this increase in resource demand, our
framework effectively accommodates higher workloads, indicating
that it is well-suited for real-world use cases where processing a
large volume of transactions in parallel is essential.

7.1.2 Performance of smart contract. From Table 1b, we observe
that as the batch size increases, both the verification time and gas
consumption rise. The verification time grows from 0.015 seconds
to 3.102 seconds, and gas consumption increases from 0.62 million
to 174.48 million. Since executing Πcc .Verify(·) involves calculating
cmagg, the computational overhead increases with larger batch
sizes, as shown in Figure 2.

7.1.3 Comparisons. Table 2 compares our system (Aegis) with two
existing solutions, zkLedger [30] and Solidus [15], on two dimen-
sions: transaction scalability (Table 2a) and threading performance
(Table 2b). In terms of total processing time for different numbers
of transactions, our system consistently outperforms the other two
schemes, demonstrating lower latency as the number of transac-
tions increases from 4 to 2,048. Specifically, Aegis shows only a
marginal increase in total processing time even when the transac-
tion count scales exponentially, while both zkLedger and Solidus
exhibit substantially higher growth rates.

Turning to the effects of multi-threading, Table 2b indicates that
increasing the number of threads dramatically reduces processing
times for all three schemes. Specifically, when the number of threads
increases from 1 to 10, the execution time of Aegis decreases from
9.88 seconds to 2.83 seconds, while zkLedger reduces from 29.81 to
9.72, and Solidus experiences the most significant drop, from 802.92
to 109.22.

Lastly, we compare the performance of Aegis with other Proof
of Liabilities (PoL) approaches, as shown in Table 2c. This exper-
iment was conducted with 1024 users. The comparison includes
SNARKedMT, Notus [44], TAP [35] and Aegis. The SNARKedMT
is a simplified version of Binance’s PoL approach [10], using the
implementation from Notus and evaluated with a Merkle tree of
depth 28. Experimentally, SNARKedMT exhibits a proving time
of 35.47 seconds and a verification time of 0.001 seconds, making

Table 2: Comparison between our work and existing works

(a) Transaction Comparison(10 threads)

Tx
Name Total Time (s)

Aegis zkLedger Solidus
4 0.05 0.09 0.89
8 0.08 0.13 1.77
16 0.13 0.36 3.53
32 0.24 0.63 6.95
64 0.39 1.22 14.02
128 0.77 2.50 27.89
256 1.45 4.93 55.57
512 2.84 9.73 111.29
1024 6.07 19.42 221.31
2048 12.67 38.71 449.64

(b) Thread Comparison(512 tx)

Thread
Name Total Time (s)

Aegis zkLedger Solidus
1 9.88 29.81 802.92
2 6.03 17.07 403.01
4 4.12 10.85 212.23
6 3.25 10.11 148.44
8 3.12 9.79 119.14
10 2.83 9.72 109.22

(c) PoL Comparison(1024 users)

Prove(s) Verify(s) Dynamic PoL
SNARKedMT 35.47 0.001 ✗

Notus 6.399 0.001 ✓
TAP 1.11 0.004 ✓
Aegis 4.56 0.006 ✓

its proving time significantly longer than other approaches. More-
over, SNARKedMT only supports static PoL and does not support
dynamic PoL, which makes it unsuitable for systems where PoL
needs to be performed frequently. Next, we evaluate the perfor-
mance of Notus, TAP and our proposed system, Aegis, all of which
support dynamic PoL. Notus demonstrates a proving time of 6.399
seconds and a verification time of 0.001 seconds. TAP achieves the
fastest proving time of 1.11 seconds and a verification time of 0.004
seconds, showing its efficiency in proof generation. Our proposed
system, Aegis, shows a proving time of 4.56 seconds, the seconds
fastest among the schemes, and a verification time of 0.006 seconds.
While Aegis provides 𝑘-anonymity corresponding to the batch size
instead of the full anonymity offered by other schemes, it offers
a unique advantage by integrating PoL directly into transaction
processing. This eliminates the need for a separate PoL algorithm,
thereby simplifying the process and enhancing system efficiency.

REFERENCES
[1] 2020. The Riksbank’s e-krona pilot. Technical Report Reg. no 2019-00291.

Sveriges Riksbank. https://www.riksbank.se/globalassets/media/rapporter/e-
krona/2019/the-riksbanks-e-krona-pilot.pdf

12

https://www.riksbank.se/globalassets/media/rapporter/e-krona/2019/the-riksbanks-e-krona-pilot.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2019/the-riksbanks-e-krona-pilot.pdf

Aegis: Scalable Privacy-preserving CBDC Framework with Dynamic Proof of Liabilities

[2] Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli, Chaya Ganesh,
Claudio Orlandi, and Akira Takahashi. 2021. ECLIPSE: Enhanced Compiling
method for Pedersen-committed zkSNARK Engines. Cryptology ePrint Archive,
Paper 2021/934. https://eprint.iacr.org/2021/934 https://eprint.iacr.org/2021/934.

[3] Raphael Auer and Rainer Böhme. 2020. The technology of retail central bank
digital currency. Technical Report March 2020. 1–16 pages. https://www.bis.
org/publ/qtrpdf/r_qt2003j.pdf

[4] Raphael Auer and Rainer Böhme. 2021. Central Bank Digital Currency: The
Quest for Minimally Invasive Technology. BIS Working Papers 948. Bank for
International Settlements. https://www.bis.org/publ/work948.htm

[5] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf Kohlweiss.
2015. Anonymous Transferable E-Cash. In Proceedings of the Public Key
Cryptography Conference. 14, 15.

[6] Bank for International Settlements. 2020. Central bank digital currencies: foun-
dational principles and core features. https://www.bis.org/publ/othp33.pdf.

[7] Bank of England. 2020. Central Bank Digital Currency: Opportunities, challenges
and design. https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/
central-bank-digital-currency-opportunities-challenges-and-design.pdf.

[8] Bank of Japan. 2024. Central Bank Digital Currency Experiments: Progress on the
Pilot Program (April 2024). https://www.boj.or.jp/en/paym/digital/index.htm
Retrieved from the Bank of Japan website.

[9] Binance. [n. d.]. Binance proof of reserves. https://www.binance.com/en/proof-
of-reserves/

[10] Binance. 2024. zkmerkle-proof-of-solvency. https://github.com/binance/
zkmerkle-proof-of-solvency

[11] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh. 2019. Zether: Towards Privacy
in a Smart Contract World. IACR Cryptology ePrint Archive (2019).

[12] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. 2006. Balancing
Accountability and Privacy Using E-Cash. In Proceedings of the International
Conference on Security and Cryptography for Networks. 2, 14.

[13] Matteo Campanelli, Dario Fiore, and Anaïs Querol. 2019. LegoSNARK: Modular
Design and Composition of Succinct Zero-Knowledge Proofs. Cryptology ePrint
Archive, Report 2019/142. https://eprint.iacr.org/2019/142.

[14] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine Shi.
2017. Solidus: Confidential Distributed Ledger Transactions via PVORM.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (Dallas, Texas, USA) (CCS ’17). Association for Com-
putingMachinery, NewYork, NY, USA, 701–717. https://doi.org/10.1145/3133956.
3134010

[15] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine Shi. 2017.
Solidus: Confidential distributed ledger transactions via PVORM. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 701–717.

[16] David Chaum. 1983. Blind signatures for untraceable payments. In Advances in
Cryptology: Proceedings of Crypto 82. Springer, 199–203.

[17] Dong Beom Choi, Paul Goldsmith-Pinkham, and Tanju Yorulmazer. 2023.
Contagion Effects of the Silicon Valley Bank Run. Technical Report Working
Paper 31772. National Bureau of Economic Research. http://www.nber.org/
papers/w31772

[18] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan
Boneh. 2015. Provisions: Privacy-preserving Proofs of Solvency for Bitcoin
Exchanges. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (Denver, Colorado, USA) (CCS ’15). Association
for Computing Machinery, New York, NY, USA, 720–731. https://doi.org/10.
1145/2810103.2813674

[19] Terry L. Gibson. 2023. Material Loss Review of First Republic Bank.
https://www.fdicoig.gov/reports-publications/bank-failures/material-loss-
review-first-republic-bank Report No. EVAL-24-03.

[20] Zhangshuang Guan, Zhiguo Wan, Yang Yang, Yan Zhou, and Butian Huang. 2022.
BlockMaze: An Efficient Privacy-Preserving Account-Model Blockchain Based
on zk-SNARKs. IEEE Transactions on Dependable and Secure Computing 19, 3
(2022), 1446–1463. https://doi.org/10.1109/TDSC.2020.3025129

[21] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, and
Raluca Ada Popa. 2021. Merkle2: A Low-Latency Transparency Log System.
In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA,
USA, 24-27 May 2021. IEEE, 285–303. https://doi.org/10.1109/SP40001.2021.
00088

[22] Byeongjun Jang, Gweonho Jeong, Hyuktae Kwon, Hyunok Oh, and Jihye Kim.
2024. Lego-DLC: batching module for commit-carrying SNARK under Pedersen
Engines. Cryptology ePrint Archive, Paper 2024/1405. https://eprint.iacr.org/
2024/1405

[23] Gweonho Jeong, Nuri Lee, Jihye Kim, and Hyunok Oh. 2023. Azeroth: Auditable
Zero-Knowledge Transactions in Smart Contracts. IEEE Access 11 (2023), 56463–
56480. https://doi.org/10.1109/ACCESS.2023.3279408

[24] Yan Ji and Konstantinos Chalkias. 2021. Generalized Proof of Liabilities.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and

Communications Security (Virtual Event, Republic of Korea) (CCS ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 3465–3486. https:
//doi.org/10.1145/3460120.3484802

[25] Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. 2022. PEReDi:
Privacy-Enhanced, Regulated and Distributed Central Bank Digital Curren-
cies. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (Los Angeles, CA, USA) (CCS ’22). Association for
Computing Machinery, New York, NY, USA, 1739–1752. https://doi.org/10.1145/
3548606.3560707

[26] Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh. 2019. SAVER: Snark-
friendly, Additively-homomorphic, and Verifiable Encryption and decryption
with Rerandomization. IACR Cryptol. ePrint Arch. (2019), 1270. https://eprint.
iacr.org/2019/1270

[27] Stefano Leucci, Massimo Attoresi, and Xabier Lareo. 2023. TechDispatch: Central
Bank Digital Currency (CBDC). Technical Report. European Data Protection
Supervisor (EDPS). https://www.edps.europa.eu/system/files/2023-03/23-03-
29_techdispatch_cbdc_en.pdf

[28] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Fel-
ten, and Michael J. Freedman. 2015. Coniks: Bringing key transparency
to end users. In Proceedings of the 24th USENIX Security Symposium
(Proceedings of the 24th USENIX Security Symposium). USENIX Association,
383–398. Publisher Copyright: © 2015 Proceedings of the 24th USENIX Se-
curity Symposium. All rights reserved.; 24th USENIX Security Symposium ;
Conference date: 12-08-2015 Through 14-08-2015.

[29] Neha Narula, Willy Vasquez, and Madars Virza. 2018. zkLedger: Privacy-
Preserving Auditing for Distributed Ledgers. In 15th USENIX Symposium on
Networked SystemsDesign and Implementation (NSDI 18). USENIXAssociation,
Renton, WA, 65–80. https://www.usenix.org/conference/nsdi18/presentation/
narula

[30] Neha Narula, Willy Vasquez, and Madars Virza. 2018. {zkLedger}:{Privacy-
Preserving} auditing for distributed ledgers. In 15th USENIX symposium on
networked systems design and implementation (NSDI 18). 65–80.

[31] Office of Science and Technology Policy (OSTP). 2022. Technical Evaluation
for a U.S. Central Bank Digital Currency System. Retrieved from http://www.
whitehouse.gov/ostp.

[32] OKX. 2023. Proof of Reserves. https://www.okx.com/learn/proof-of-reserves
[33] BIS Consultative Group on Innovation and the Digital Economy (CGIDE). 2024.

A proposal for a retail central bank digital currency (CBDC) architecture. Tech-
nical Report December 2024. Bank for International Settlements. 1–22 pages.
https://www.bis.org/publ/othp89.htm

[34] Yanqing Peng, Min Du, Feifei Li, Raymond Cheng, and Dawn Xiaodong Song.
2020. FalconDB: Blockchain-based Collaborative Database. Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (2020).
https://api.semanticscholar.org/CorpusID:218982030

[35] Daniël Reijsbergen, Aung Maw, Zheng Yang, Tien Tuan Anh Dinh, and Jianying
Zhou. 2023. TAP: Transparent and Privacy-Preserving Data Services. In 32nd
USENIX Security Symposium (USENIX Security 23). USENIX Association, Ana-
heim, CA, 6489–6506. https://www.usenix.org/conference/usenixsecurity23/
presentation/reijsbergen

[36] Sveriges Riksbank. 2020. The Riksbank’s e-krona pilot. https://www.riksbank.se/
globalassets/media/rapporter/e-krona/2019/the-riksbanks-e-krona-pilot.pdf.

[37] A. Rondelet and M. Zajac. 2019. ZETH: On Integrating Zerocash on Ethereum.
arXiv preprint arXiv:1904.00905 (2019).

[38] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE symposium on security and privacy. IEEE,
459–474.

[39] Hyun Song Shin. 2009. Reflections on Northern Rock: The Bank Run that
Heralded the Global Financial Crisis. Journal of Economic Perspectives 23, 1
(winter 2009), 101–119.

[40] Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta,
Benny Pinkas, and Avishay Yanai. 2022. UTT: Decentralized E-Cash with Ac-
countable Privacy. Cryptology ePrint Archive (2022). Cited on p. 15.

[41] Nicolas van Saberhagen. 2013. CryptoNote v 2.0. https://cryptonote.org/
whitepaper.pdf. Accessed: [Insert Date Here].

[42] Working Group on E-CNY Research and Development of the People’s Bank of
China. 2021. Progress of Research & Development of E-CNY in China. http:
//www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/index.html

[43] Karl Wüst, Kari Kostiainen, Noah Delius, and Srdjan Capkun. 2022. Platypus:
A Central Bank Digital Currency with Unlinkable Transactions and Privacy-
Preserving Regulation. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22).
Association for Computing Machinery, New York, NY, USA, 2947–2960. https:
//doi.org/10.1145/3548606.3560617

[44] Jiajun Xin, Arman Haghighi, Xiangan Tian, and Dimitrios Papadopoulos. 2025.
Notus: dynamic proofs of liabilities from zero-knowledge RSA accumulators. In
Proceedings of the 33rd USENIX Conference on Security Symposium (Philadel-
phia, PA, USA) (SEC ’24). USENIX Association, USA, Article 82, 18 pages.

13

https://eprint.iacr.org/2021/934
https://eprint.iacr.org/2021/934
https://www.bis.org/publ/qtrpdf/r_qt2003j.pdf
https://www.bis.org/publ/qtrpdf/r_qt2003j.pdf
https://www.bis.org/publ/work948.htm
https://www.bis.org/publ/othp33.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.boj.or.jp/en/paym/digital/index.htm
https://www.binance.com/en/proof-of-reserves/
https://www.binance.com/en/proof-of-reserves/
https://github.com/binance/zkmerkle-proof-of-solvency
https://github.com/binance/zkmerkle-proof-of-solvency
https://eprint.iacr.org/2019/142
https://doi.org/10.1145/3133956.3134010
https://doi.org/10.1145/3133956.3134010
http://www.nber.org/papers/w31772
http://www.nber.org/papers/w31772
https://doi.org/10.1145/2810103.2813674
https://doi.org/10.1145/2810103.2813674
https://www.fdicoig.gov/reports-publications/bank-failures/material-loss-review-first-republic-bank
https://www.fdicoig.gov/reports-publications/bank-failures/material-loss-review-first-republic-bank
https://doi.org/10.1109/TDSC.2020.3025129
https://doi.org/10.1109/SP40001.2021.00088
https://doi.org/10.1109/SP40001.2021.00088
https://eprint.iacr.org/2024/1405
https://eprint.iacr.org/2024/1405
https://doi.org/10.1109/ACCESS.2023.3279408
https://doi.org/10.1145/3460120.3484802
https://doi.org/10.1145/3460120.3484802
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://eprint.iacr.org/2019/1270
https://eprint.iacr.org/2019/1270
https://www.edps.europa.eu/system/files/2023-03/23-03-29_techdispatch_cbdc_en.pdf
https://www.edps.europa.eu/system/files/2023-03/23-03-29_techdispatch_cbdc_en.pdf
https://www.usenix.org/conference/nsdi18/presentation/narula
https://www.usenix.org/conference/nsdi18/presentation/narula
http://www.whitehouse.gov/ostp
http://www.whitehouse.gov/ostp
https://www.okx.com/learn/proof-of-reserves
https://www.bis.org/publ/othp89.htm
https://api.semanticscholar.org/CorpusID:218982030
https://www.usenix.org/conference/usenixsecurity23/presentation/reijsbergen
https://www.usenix.org/conference/usenixsecurity23/presentation/reijsbergen
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2019/the-riksbanks-e-krona-pilot.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2019/the-riksbanks-e-krona-pilot.pdf
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/index.html
http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/index.html
https://doi.org/10.1145/3548606.3560617
https://doi.org/10.1145/3548606.3560617

Gweonho Jeong, Jaewoong Lee, Minhae Kim, Byeongkyu Han, Jihye Kim, and Hyunok Oh

[45] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over Dy-
namic Outsourced Databases. In 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 863–880.
https://doi.org/10.1109/SP.2017.43

[46] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2015. Inte-
griDB: Verifiable SQL for Outsourced Databases. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (Denver,
Colorado, USA) (CCS ’15). Association for Computing Machinery, New York, NY,
USA, 1480–1491. https://doi.org/10.1145/2810103.2813711

14

https://doi.org/10.1109/SP.2017.43
https://doi.org/10.1145/2810103.2813711

	Abstract
	1 Introduction
	1.1 Our results
	1.2 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Commitment scheme
	2.3 Strongly-unforgeable digital signature
	2.4 Succinct Non-interactive arguments of knowledge

	3 System Configuration
	3.1 Trust Model
	3.2 Redefining Dynamic Proof of Liabilities
	3.3 Data structure

	4 Main Idea
	4.1 Batching Technique based on CP-SNARKs
	4.2 Observing on Dynamic PoL

	5 Our construction
	5.1 System overview
	5.2 Issuer algorithms
	5.3 Delegator algorithms
	5.4 Smart Contract

	6 Security
	6.1 Security proofs

	7 Experiment
	7.1 Evaluations

	References

