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Abstract

Digital signatures underpin identity, authenticity, and trust in modern computer systems. Cryptography
research has shown that it is possible to prove possession of a valid message and signature for some
public key, without revealing the message or signature. These proofs of possession work only for
specially-designed signature schemes. Though these proofs of possession have many useful applications
to improving security, privacy, and anonymity, they are not currently usable for widely deployed, legacy
signature schemes—like RSA, ECDSA, and Ed25519. Unlocking practical proofs of possession for these
legacy signature schemes requires closing a huge efficiency gap.

This work brings proofs of possession for legacy signature schemes very close to practicality. Our
design strategy is to encode the signature’s verification algorithm as a rank-one constraint system (R1CS),
then use a zkSNARK to prove knowledge of a solution. To do this efficiently we (1) design and analyze
a new zkSNARK called Dorian that supports randomized computations, (2) introduce several new
techniques for encoding hashes, elliptic curve operations, and modular arithmetic, (3) give a new approach
that allows performing the most expensive parts of ECDSA and Ed25519 verifications outside R1CS, and
(4) generate a novel elliptic curve that allows expressing Ed25519 curve operations very efficiently. Our
techniques reduce R1CS sizes by up to 200× and prover times by 3-22×. We can generate a 240-byte
proof of possession of an RSA signature over a message the size of a typical TLS certificate—two
kilobytes—in only three seconds.

1 Introduction

Digital signatures are the foundation of identity, authenticity, and trust in modern computer systems. On the
web, several signatures are verified for every TLS connection; signatures also allow authenticating domain
name records through DNSSEC. Signatures underpin user identity as well, through systems like OAuth and
passkeys. Signatures secure software supply chains through code signing and are used to bootstrap trust in
trusted execution environments.

An extraordinarily useful design pattern for all these applications of signatures is proofs of possession
(PoPs): proving knowledge of a valid (but hidden) message and signature pair for some public key, and
optionally proving the message satisfies some predicate. The security, privacy, and anonymity benefits of
proofs of signature possession are huge: they can make credentials more private [32, 54], allow untraceable
anonymous payments [17], help people browse the internet anonymously [96], make X.509 certificates more
secure [45], build better blocklisting [95, 105], combat misinformation [55, 80], and more [27, 39, 46, 70].

Despite these applications, and interest from practitioners [106,107], PoPs are rarely used in practice today.
Cryptographers have built specialized signature schemes with very efficient PoPs in terms of prover/verifier
time and proof size, such as BBS, CL, or PS signatures [30, 34, 77, 89]; since these signatures are rarely
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used in practice, the usability of these PoPs for the applications described above is limited. Conversely, for
signature schemes that are widely used in practice—in particular, RSA-PKCS1v1.5, ECDSA-P256, and
Ed25519 [64, 66, 68], with the SHA-256 and SHA-512 [63] hash functions—the state of the art PoPs are
much too inefficient for practical use. For example, in the seminal Cinderella work, proving possession of a
single TLS certificate signed with RSA took 137 seconds [45].

Our results. This work dramatically improves the state of the art for PoPs for the three legacy signature
schemes mentioned above. Ours are now the fastest known PoPs for these signatures. Relative to the prior
state of the art, we improve:

• RSA-PKCS1v1.5 proving time by >3× (with similar proof size),

• ECDSA-P256-SHA256 proving time by >7× (with ≈10× smaller proofs and a faster verifier), and

• Ed25519 proving time by >7× (with ≈10× smaller proofs).

For the same problem size as the Cinderella proof of possession described before, we are about 75×
faster than their reported prover time. (Our numbers are on newer hardware, and the comparison is inexact in
other ways; however, the Cinderella authors did not respond to our repeated requests to release the code, so an
apples-to-apples comparison was unfortunately impossible.) Our techniques lead to reductions of up to 200×
in constraint costs (S2) over baselines, greatly reducing the storage overhead of metadata like structured
reference strings. We also show our techniques reduce the size of ECDSA-based ring signatures by roughly
≈300× over the state of the art [37, 54]. We describe our contributions in the technical overview below.

1.1 Technical Overview

We focus on the following concrete PoP setting: given a public key pk as public input, the prover shows they
know a hidden message/signature pair (m,σ) such that Vf(pk,m, σ) = 1. We conservatively assume that
both the message and signature must be completely hidden. (We discuss more general settings, such as partial
message disclosure, below.)

To begin, it is important to understand the state of the art approach to PoPs for legacy signatures. It has
two steps. First, express the function Vf as a rank-one constraint system (R1CS) (S2)—a generalization
of arithmetic circuits—over a finite field F. (A number of tools exist that compile programs in special
domain-specific languages, such as Z# or Circom, to R1CS.) Second, to actually generate and verify PoPs,
use a zero-knowledge proof (e.g., a zero-knowledge succinct argument of knowledge, or zkSNARK) to prove
knowledge of a satisfying assignment (pk,m, σ) of the R1CS. The pk is the public part of the assignment,
and (m,σ) are the witnesses. Further details are not yet important, but one important fact is that the atomic
unit of “cost” for this approach is the number of R1CS constraints: more constraints means (in general) that
proving and verifying is slower, and proofs are larger.

This approach for building PoPs, which we can call “R1CS+zkSNARK” for short, has a number of
advantages. With some caveats, it is agnostic to the choice of zkSNARK. Thus, applications with varying
performance requirements can choose the zkSNARK that fits their needs. (For example, backends with very
small proofs are useful for blockchain applications, whereas applications like zero-knowledge middleboxes
can tolerate somewhat larger proofs but must minimize prover time [114].) Another advantage is that it allows
very complex policies to be expressed on messages: for example, to turn a legacy ID like a passport into an
anonymous credential, one must prove that the message m satisfies formatting constraints [96]. This can be
done by representing the format checks as a program in a high-level language and compiling it to R1CS.

The important drawback of this approach comes from the first step, namely expressing Vf in R1CS. The
R1CS representation must express all the operations in Vf as additions and multiplications over a single finite
field; most commonly this field is the integers modulo a large (> 256-bit) prime p that is a parameter of
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the underlying zkSNARK. For legacy signature schemes, though, usually none of the operations actually
occur in Fp; furthermore, Vf contains operations in several different algebraic structures—bitwise operations
and shifts, arithmetic modulo powers of two, arithmetic modulo large integers q ̸= p, elliptic curve point
arithmetic, and even padding and other string manipulations. Because R1CS is an NP-complete language, all
these operation types can be emulated in Fp, but this emulation is often highly inefficient: an operation that is
nearly free on a standard CPU can translate into hundreds of constraints. The core reason why this is the case
is that, in addition to constraints representing the operation itself, the emulation must include constraints on
the inputs, outputs, and intermediate values of the operation, to guarantee the emulation is (logically) sound.

Example: R1CS for addition modulo 232. An instructive example of this phenomenon can be found
when examining an R1CS constraint representation of c = a+ b mod 232. (This computation occurs 176
times in the compression function of SHA-256.) An R1CS compiler would translate this into the constraint
a + b = o232 + c for a, b, c, o ∈ Fp (where o represents the overflow mod-232). However, and crucially,
this constraint is a sound check only if a, b, c, o are in the subset of Fp in the range [0, 232 − 1]. This is not
guaranteed by the (cryptographic) soundness of the zkSNARK. Thus, without “range checking” a, b, c, o,
the constraint gives only a single linear equation in four variables in Fp, which has many solutions, most of
which are not also correct modulo 232.

Thus, the R1CS compiler must also emit constraints that range check the four values a, b, c, o. The most
natural way to perform this range check is by adding auxiliary variables that represent the bit decomposition
of the four values, then checking that recombining the bits gives the claimed value. Each of these auxiliary
variables, however, must be correctly constrained so that it can only take bit values. This costs one constraint
per bit; thus, a single addition modulo 232 takes 129 R1CS constraints to represent. This means that
representing the 176 of these in each SHA-256 compression costs roughly twenty-two thousand constraints.
(This is of course an overestimate—optimizations are possible—but they only give small improvements.)

Similar issues arise with emulating the other operations performed in Vf for legacy signatures. A curious,
but significant, fact is that in state of the art approaches the cost of range checking auxiliary variables typically
dominates all other costs: for example, the state of the art R1CS for modular exponentiation is nearly 95%
range-checking (S5).

Our approach. Despite the efficiency challenges of the R1CS+zkSNARK approach, our PoP protocols
use it. We believe this choice is justified given our focus on building tools that different applications can
be built on. Making usable tools for different applications requires flexibility, and the R1CS+zkSNARK
approach has unparalleled flexibility. Thus, the main technical challenge we tackle in this work is improving
the efficiency of the R1CS+zkSNARK approach. At a high level, we leverage two ideas to do this. First, we
reduce emulation overhead through careful engineering and the application of lookup arguments, a new class
of technical tool in proof systems. We also eliminate emulation entirely in some cases by customizing the
backend zkSNARK algorithms to be “compatible” with the arithmetic of legacy signature schemes. The
second main idea is to avoid emulating expensive operations (e.g., elliptic curve scalar multiplications) in
R1CS, by moving the relevant part of the signature verification into a separate sidecar protocol.

Reducing emulation overhead. As discussed, emulation overhead comes mainly from checking the validity
of intermediate values, and in particular checking they are in the expected range. To address this we apply a
new technical tool: lookup arguments. Briefly, a lookup argument is an efficient way to express in R1CS
lookups in fixed, public tables. More formally, the lookup verifies that a sequence of values s1, . . . , sk in Fp

is in a public list T . Lookup arguments can naturally represent range checks by taking the list T as all the
elements in the right range, and the sis to be the elements to be range checked [25]. State of the art lookup
arguments cost as little as one R1CS constraint per si, which seems to already yield huge improvements
to range checking: for the mod-232 addition example above, replacing bit decomposition with a lookup
argument would reduce the cost from 32 constraints to just one.
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Actually using lookup arguments to reduce emulation overhead is nontrivial for a number of reasons. First,
lookup arguments require a zkSNARK with a new computational model. Most zkSNARKs support R1CS or
other deterministic, circuit-like models. Lookups require either a model with explicit lookup constraints [87]
or a model that supports interactive, randomized circuits [72] (in the language of computational complexity:
the class MA) which can be used to simulate a lookup protocol. We adopt the latter approach: we use a
zkSNARK for Interactive R1CS [83]. But, the only existing zkSNARKs for I-R1CS are Mirage [72] and
Mirage+ [83], which have very small proofs, but larger proving time and a larger SRS. No existing zkSNARK
offers better proving time and SRS size while also supporting I-R1CS.

Second, lookup arguments are only a net improvement if the high setup cost (linear in |T |) can be
amortized. This has a couple of implications: first, it is impossible to naively apply lookup arguments to (say)
the 32-bit addition problem above: the table setup would cost billions of constraints. Thus, one must split the
problem into smaller tables that can be re-used. However, this then requires careful computation-specific
planning of table sizes so smaller tables can be re-used. At the level of software, no approach to this kind of
planning exists, or has even ever been articulated or even formalized.

Third, and most subtly, replacing bit decomposition with lookups changes the performance profile of the
backend zkSNARK in a complex way. With current zkSNARK software, it is cheaper to prove constraints
involving very small witnesses, due to input-dependent and non-constant-time optimizations for these cases.
Current state of the art lookup arguments replace many constraints with small (one-bit) witnesses with a few
constraints that have large witnesses. (It is not clear this is an inherent property of lookup arguments, but it is
true for all known protocols.) Thus, it is not clear that the large reduction in constraint costs that comes from
employing lookups will necessarily lead to a reduction in prover and verifier time.

We make a number of contributions to the three issues discussed above. First, in Section 3 we design
and analyze a new zkSNARK that supports I-R1CS and can therefore prove statements that use lookup
arguments. Our new scheme, Dorian, is based on the popular Spartan zkSNARK [98] and has a similar
performance profile, which makes it attractive for applications like zero-knowledge middleboxes that can
tolerate somewhat larger proofs. Importantly, like Spartan, Dorian is agnostic to the underlying elliptic curve
group, which means (unlike Mirage) it can use customized curves. Intuitively, Dorian works by splitting the
witness commitment into several phases, to allow the verifier to send random challenges that are used to
derive subsequent witnesses. (This is of course compiled using Fiat-Shamir, with verifier challenges derived
as the hashes of partial witness commitments, but it is easier to understand in the interactive setting.)

We ensure our use of lookup arguments is concretely efficient using different strategies for different parts
of the Vf computation. For improving the R1CS representations of SHA256 and SHA512 (S4), we use them
to enhance a known encoding of bitwise operations using constraints, due to [25]. Rather than using lookups
to directly check results of bitwise operations on intermediate words of the state, that work proposes using Fp

arithmetic to compute the bitwise operations, but on a “sparse” form of the word. Sparse form is better for
bitwise operations but worse for mod-232 additions, which can be done fairly cheaply in the normal “dense”
form. We observe that lookup tables can be used to convert between sparse and dense form very cheaply;
thus, we can ensure that the better of the two forms of each word of the state is always available. We also
choose our limb representation of the 32-bit state words in an optimized way to both reuse tables and get
some bitwise rotations for free. Our final R1CS for SHA-256 is only around six thousand constraints per
block, plus a one-time setup.

For big-integer arithmetic mod q ̸= p, as described above, we use lookup arguments to drastically reduce
the cost of range-checking the intermediate limbs of a computation. In Section 5 we describe the basic
approach for RSA; our techniques generalize to ECDSA and EdDSA as well. An interesting subtlety is that
we must also range-check the carry values of limb-wise arithmetic; for efficiency we want to allow these to
slightly exceed the limb width—doing so minimizes the number of reductions mod q we must express in
R1CS—but this means we must efficiently use a fixed set of tables to range-check limbs of several different
widths. We observe for the first time that the choice of limb widths, carry widths, and table sizes can be seen

4



as a compiler optimization problem. In Section 5.2, we give the first formalization of this as the batched
flexible range check problem. We designed a planner to choose optimal sizes for our problems of interest.

In addition to these uses of lookup arguments, we apply several known ideas for accelerating elliptic
curve operations, such as preprocessing multiples of known points and (safely) using incomplete formulas
(S6). Finally, we extend the known idea of eliminating emulation entirely by changing the field of the under-
lying zkSNARK (S7). This renders our techniques less backend-agnostic, but produces huge performance
improvements (even compared to our other best techniques). Notably, we generate a new elliptic curve that
can natively prove ed25519 field operations, which we call T-25519. We run our Dorian proof system on top
of this curve.

Sidecar protocols. In aggregate, our techniques for reducing emulation overhead are hugely impactful: we
reduce constraint costs by two orders of magnitude or more in some cases. However, we still have some
extremely expensive operations left in R1CS. The main culprit is the non-fixed-base elliptic curve scalar
multiplication that is necessary to verify both ECDSA and Ed25519 signatures. Roughly, both signature
verifications involve checking a relation like pk = aG + bR where a, b, R are two scalars and an elliptic
curve point that are part of the signature, G is a fixed elliptic curve point, and pk is the signer’s public key.
In Section 6.1, we explain how we move this part of the verification outside of R1CS and into a separate
protocol run alongside the “main” zkSNARK (hence sidecar). The main advantage of doing this is that the
sidecar protocol works over group elements in the signature’s native curve group; thus, statements about
group elements can be checked directly rather than via emulation in the zkSNARK.

Instantiating our sidecar approach required tackling several challenges. First, it is not entirely straightfor-
ward to split the Vf operations between the sidecar protocol and the zkSNARK, especially for ECDSA where
a non-algebraic truncation is applied to the point R. Second, for soundness is is necessary to securely “link”
the common witnesses in the sidecar protocol and the main zkSNARK, because (e.g.) in an ECDSA PoP
the scalar a must depend on the hash of the message, which is recomputed only in the zkSNARK. The final
challenge is privacy: our proof of possession requires hiding the entire message and signature, so our sidecar
protocol cannot reveal parts of the signature.

The starting point for our sidecar protocol is Okamoto’s classic sigma protocol for proving knowledge of
a representation. In our setting, Okamoto’s protocol lets us prove we know a representation (a, b) of pk with
respect to bases G and R. We can link this with the zkSNARK using an idea due to Sigmabus: we modify the
sigma protocol so that the prover commits to the randomness and witnesses, then in the zkSNARK we prove
the responses are correctly computed. This correctness proof is only a few modular multiplications—not
elliptic-curve operations—and so is very cheap. This still leaves privacy: Okamoto’s protocol only works
if the verifier knows both bases G,R, but we cannot reveal R. We fix this by designing an extension of
Okamoto’s protocol to the case where one of the two bases is committed using Elgamal encryption. Because
this encryption preserves the group structure, we can still verify the relevant algebraic relation holds. This
transform re-introduces an elliptic curve operation into the zkSNARK; however, this is a fixed-base operation
(not variable-base) and so is ≈ 4× cheaper. We present the sidecar protocol for ECDSA, but a very similar
idea also works for Ed25519.

Though it is not the main focus of this work, in Section 6.2 we show that our sidecar protocol can be
adapted to a related setting: ECDSA-based ring signatures. Prior work [37, 54, 61] has shown how to reduce
ring signature to proofs of two statements: first, prove knowledge of a valid signature for a public message
with respect to a committed public key; second, prove that the committed key is on a list of keys (without
revealing where on the list it is). We show that with a few tweaks, our sidecar protocol can prove the first
statement very cheaply; we also show it is compatible with the Groth-Kohlweiss protocol for the second.

Results. We discuss our implementation and results in Section 8. All our code is open-source and permis-
sively licensed, and available at https://github.com/pag-crypto/sigpop. We implemented all R1CS
using the Z# language with the CirC compiler toolchain [82]. We implemented all other protocols in Rust.
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We benchmark with Mirage and our Dorian zkSNARK.
Our improvements for hashing over the state of the art [25] were fairly modest—only about a 30% decrease

in constraint size per block. Compared to the Z# standard library R1CS for SHA-256, our improvements
were more substantial; roughly an 80% reduction in constraint sizes. With Mirage we can prove knowledge
of a 2048-byte hash preimage in 2.6 seconds.

For RSA-PKCS1v1.5, an apples-to-apples comparison to prior academic state of the art gives ≈ 3×
faster prover time. Compared to the most popular open-source Circom implementation we found, we have a
≈ 22× faster prover with comparable verifier times and proof sizes. Notably, our implementation has fairly
practical prover times even for messages the size of TLS certificates; a qualitative takeaway of this is that
hitherto-impractical applications [45] of ZKPs to the web PKI are now within reach.

For ECDSA P-256 and Ed25519, we benchmarked two parameter settings: one with right-field arithmetic
(via the T-256 custom curve [54]) using our new Dorian zkSNARK, and one with our sidecar protocol and
other optimizations (but without right-field) using Mirage. For ECDSA, in apples-to-apples comparisons both
provers are roughly 10× faster than the best open-source code we found. For Ed25519 in the same setting,
we improve state-of-the-art by between roughly 8–22×. Both provers achieve sub-three-second proving time
even for a two-kilobyte message. Though the Dorian prover is somewhat faster than Mirage, we found that in
both cases the cost of the algebraic part of ECDSA verification was so low that the prover costs are dominated
by hashing; thus the improvement of Dorian is fairly small. Still, we expect Dorian will be useful in settings
where potentially many elliptic curve operations must be proven in one circuit, or settings where the relatively
larger size of Mirage’s SRS is a consideration. For ECDSA-based ring signatures, we achieve an estimated
> 200× reduction in signature size vs. the state of the art; the full implementation is a work in progress.

Extensions and discussion. In aggregate, our results represent a huge improvement in the state of the art
for PoPs of legacy signature schemes. The most important qualitative takeaway of our work is that for PoPs
or related applications that involve ZKPs of signatures, large-integer algebra is no longer a performance
bottleneck—in all our experiments, the modular arithmetic and elliptic-curve operations that dominate costs
on normal CPUs are now a low-order cost for proving.

In this work we mostly focused on optimizing the core proof protocols themselves; there are more
interesting questions to answer in using our PoPs in applications. One question we did not study is integrating
our PoPs with validity policies on messages. These policies are necessary in, e.g., converting a legacy
credential to an anonymous credential [45]. We believe a feature of our approach is that the flexibility of
R1CS makes it easy for application designers to layer message policies on top of our PoPs.

Our techniques are applicable to the most widely-used signature schemes today, but with the transition to
post-quantum cryptography it is interesting to think about PoPs for the new NIST post-quantum signature
standards. Achieving efficient protocols for these would likely require very different technical ideas, since
the underlying algorithms are very different.

Finally, we do not explore the question of transferring our techniques to other computational models,
such as the popular Plonkish language [58]. We suspect our techniques will lead to a big improvement in
Plonkish and other encodings of legacy signature verifications, but leave the details to future work.

2 Preliminaries

Throughout, we will use standard cryptographic tools, such as commitment schemes and zero-knowledge
proofs, and refer to their standard security properties without explicit definition. Readers needing more
background should consult a textbook on cryptography [22, 69] or proof systems [104].

We use standard notation for sets of bitstrings (e.g., {0, 1}∗) groups (G generates G) and fields (Fp has
order p). We use additive notation for groups. We use bracket notation to denote ranges: [n] = {0, . . . , n−1}—
sometimes we will abuse notation and instead use [n] to refer {1, . . . , n}—and we use the notation | · | to
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denote the size of a string or integer in bits.

Cryptographic primitives. A signature scheme Σ = (Kg, Sign,Vf) is a triple of algorithms. We omit
explicit definitions of Kg and Sign. The algorithm Vf takes as input a public key pk, message m, and signature
σ and outputs a bit b (where b = 1 means verification succeeded).

A language L is a subset of {0, 1}∗. A relation R is a subset of {0, 1}∗ × {0, 1}∗. (Below we will
sometimes consider relations with public parameters; for notational convenience we will implicitly include
these parameters in inputs.) For an input x, we say that x ∈ L if ∃w such that (x,w) ∈ R.

Rank-one constraint systems (R1CS). Our starting point is R1CS, a popular NP-complete language that
generalizes arithmetic circuit satisfiability.

Definition 1 (Rank-1 Constraint System). A Rank-1 Constraint System (R1CS) is a tuple (F;m,n ∈
N;A,B,C ∈ Fn×m) where m ≥ ℓ. For x ∈ Fℓ, a vector w ∈ Fm−ℓ is called an R1CS witness if for
z = (x,w), (A · z) ◦ (B · z) = (C · z) where ◦ denotes element-wise multiplication.

An important fact about R1CS is that linear operations (additions and multiplications by constants) on
elements of z are “free”—they do not increase the problem size.

Interactive R1CS. Our new zkSNARK, Dorian, handles a generalization of R1CS for interactive proofs.
This I-R1CS notion was defined in [83].

Definition 2 (I-R1CS). An I-R1CS is a tuple I = (F; ρ,m, n, ℓx, ℓr1 , · · · , ℓrρ , ℓw1 , · · · , ℓwρ ∈ N;A,B,C ∈
Fn×m). It defines a ρ-round proof system over F, where in round i ∈ [ρ], P sends a message wi ∈ Fℓwi

and receives a uniformly random response ri ∈ Fℓri . The last response must be empty: ℓrρ = 0. V ’s test is
defined by three matrices A,B,C ∈ Fn×m where n is the number of constraints and m = ℓx+

∑
i(ℓwi + ℓri)

is the number of variables. V accepts if (A · z) ◦ (B · z) = (C · z) where z = (x, r1, · · · , rρ, w1, · · · , wρ).

An I-R1CS I is an arithmetization of an interactive argument between a prover P and verifier V (we
define interactive argument in App. A.1) . Thus, all properties that are defined for an interactive proof are
also defined for an I-R1CS. For example, I can be special sound for a relationR(x,w) (Def. 11; App. A.1) .

Lookup arguments. A lookup is an interactive proof to show that a sequence of elements X = (x(1), . . . , x(A))
are in a set (or table) S. Haböck gives a very efficient lookup for S = {s(1), . . . , s(N)} ⊂ (Fp)

k [62]. In this
argument, P sends counts c1, . . . , cN ∈ [A+ 1] ⊂ Fp, where c(i) is the number of occurrences of s(i) in X .
Then, V samples α, β ∈ Fp and asserts that:

N∑
i=1

c(i)

α+
∑k

j=1 β
j−1s

(i)
j

=
A∑
i=1

1

α+
∑k

j=1 β
j−1x

(i)
j

This protocol is complete and special-sound. When encoded in I-R1CS, it requires k(N + A) + O(1)
constraints. We will use instances of this protocol in our I-R1CS instances.

3 Dorian: Spartan with Verifier Randomness

Below we will make heavy use of tools like lookup arguments that require verifier randomness. To use these
tools, the proof system must support I-R1CS. Prior work constructed Mirage [72] (an extension of Groth16),
which implicitly supports 2-round I-R1CS. We use Mirage in part of our evaluation, but for technical reasons
it is incompatible with the “right-field arithmetic” technique we describe in S7.

In this section, we give Dorian, a generalization of the Spartan [98] proof system to 2-round I-R1CS that
is compatible with right-field arithmetic. As far as we know, Dorian is the first IOP-based proof system with
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DorianI = ⟨P (x, ŵ0), V (x)⟩:

P : (C0, S0)←$ PC.Commit(pp, ˜̂w0) and send C0 to V

V : r1←$ Fℓr1 and send r1 to P

P : w1 ← I.P(x,w0, r1) ; (C1, S1)←$ PC.Commit(pp, ˜̂w1) and send C1 to V

P and V define x′ = (x, r1), P defines w =
∑

i vi · ŵi

P and V complete the Spartan protocol with x′, w except that Cw is computed differently: Instead
of engaging in PCMulti.Open for w̃(ry[1 :])→ ei to get Cw, both parties engage in PCMulti.Open for
w̃i(ry[1 :]) ← ei for all i = {0, 1} to get evaluation commitments Ce0 and Ce1 . The commitment
to witness evaluation is then defined as Cvw = (ṽ0(ry[1 :]))Ce0 + (ṽ1(ry[1 :]))Ce1 , and the final
evaluation check is otherwise unchanged.

Figure 1: Dorian, our extension of Spartan that supports verifier randomness. All variables are as defined in the text.

the latter property. Spartan is a convenient starting point for us because it works for any group and has a fast
prover and verifier.

The Spartan protocol. Spartan [98] is an interactive protocol for proving R1CS satisfiability. It interprets
the R1CS matrices A,B,C as functions {0, 1}µ × {0, 1}µ → F, and similarly Z : {0, 1}µ → F, by writing
the indices as their binary representations. Their multilinear extensions Ã, B̃, C̃, Z̃ defines a polynomial
F̃x, which vanishes on {0, 1}µ if and only if the R1CS instance is satisfied. The R1CS satisfiability is then
reduced to a claim that

∑
y∈{0,1}µ F̃x(X) · ẽq(X, τ) = 0 for a random τ ∈ {0, 1}µ provided by the verifier.

The prover and verifier engage in a protocol for this claim.
One subprotocol requires the verifier to evaluate F̃x at a random point, but the verifier cannot do this

themselves since this polynomial reveals Z̃ constructed from the secret witness w. To solve this, Spartan
requires the prover to provide a commitment to the multilinear extension w̃ of the witness at the beginning.
Later, the prover sends to the verifier a commitment to the evaluation of w̃ and an opening proof to show that
the committed evaluation is correct with respect to the commitment at the beginning. Spartan can be made
non-interactive using Fiat-Shamir.

Dorian: Spartan for interactive R1CS. Our Spartan extension Dorian supports 2-round I-R1CS (S2).
Define the I-R1CS being proved as I = (F; ρ,m, n, ℓx, ℓr1 , ℓw0 , ℓw1 , A,B,C) and the I-R1CS prover as I.P.
The Z vector is (x,w0, r1, w1), where w0 ∈ Fℓw0 is P’s first message, r1 ∈ Fℓr1 is V’s random challenge,
and w1 ∈ Fℓw1 is P’s second message (which may depend on r1). Roughly, Dorian works by representing w0

and w1 with distinct multilinear extensions, using auxiliary polynomials to fuse them together in the rest of
the protocol.

More formally, let Ji be the indices of wi in Z. Let ŵi : {0, 1}µ
′ → F agree with wi on Ji, and be zero

otherwise. Let µ′ = log |Ji|. We can express w : {0, 1}µ′ → F in terms of the ŵi. To achieve this, we
express Ji as a multilinear polynomial vi : {0, 1}µ

′ → {0, 1}, where vi(x) = 1 when x ∈ Ji and 0 otherwise.
Then, we have

w(y[1..]) =

1∑
i=0

vi(y[1..]) · ŵi(y[1..]).

During the protocol, the prover commits to ŵ0 and ŵ1 in rounds. Then, both parties use w(·) =∑
i vi(·) · ŵi(·) as the witness for the rest of the protocol. The complete protocol is shown in Figure 1.

Theorem 1. Let I be an I-R1CS that is complete and special sound for witness relationR. Let PCMulti be
complete and (

√
m, (4±, . . . , 4±), 2) special-sound. Then DorianI with PCMulti is a zero-knowledge proof

of knowledge forR.
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Proof. The completeness follows from the completeness of the sum-check protocol, of the underlying
polynomial commitment scheme and of the I-R1CS I.

Zero-knowledge (ZK) can be proven by adapting the security proof from prior work [42]. Our ZK simu-
lator Sim′ is similar to theirs, with the following differences: In step 1, Sim′ samples two random multilinear
polynomials w̃0, w̃1←$ F[X1, · · · , Xµ], compute commitments Cw̃i ← PCMulti.Commit(pp, w̃i, ωw̃i) for
i ∈ {0, 1}, and append (Cw̃i)i∈{0,1} to the transcript tr. In step 10, Sim′ generates two opening proofs for Cw̃0

and Cw̃1 , obtaining the commitments Cvw0
, Cvw1

, respectively, where vwi ← w̃i(ry[1 · · · ]) for i ∈ {0, 1}.
These two proofs are appended to the transcript tr. Then, Sim′ computes vw =

∑
i∈{0,1} ṽi(ry[1 · · · ])vwi and

Cw = Πi∈{0,1}C
ṽi(ry [1··· ])
vwi

, which are used in step 11. From the construction of Sim′, the proofs produced
are accepting, and the output is indistinguishable from that of real transcripts, thereby concluding the proof
of ZK.

The knowledge soundness of the Fiat-Shamir compiled DorianFS is satisfied if its interactive version
Dorian is special sound (SS), according to the theorem of [42]. The SS property of Dorian will be proven in
Lemma 1.

Lemma 1. Let I be an I-R1CS that is n-special sound for witness relation R. Then, DorianI for R is
n̄-special sound, where n̄ is

(n, 1, (1, 2li, 2)
µ, 2, 2, 2, 1, (1, 2li, 2)

µ, (4±, · · · , 4±︸ ︷︷ ︸
µ/2

, 2)2, 2).

Proof. We present a PPT tree extractor T E that, given a public statement x and a n̄-tree of accepting
transcripts T from an EPT adversary A, can extract w such that (x,w) ∈ R. The tree extractor T E works as
follows:

For each n′ sub-tree in T , it uses a PPT tree extractor T E ′ to extract witnesses w0, w1 such that
(x, r1, w0, w1) is valid for the I-R1CS I , corresponding to the verifier’s challenge r1 labelled on the incoming
edge of the sub-tree. If w0 is the same for all n′ sub-tree, the extracted witnesses form an accepting tree of
witnesses Tw for I. The tree extractor T E then uses a SS extractor for I to extract w from Tw.

If T E ′ extracts valid witnesses for all n′ sub-trees, then they form an accepting tree of witnesses Tw for
I with overwhelming probability, due to the binding property of the underlying polynomial commitment
scheme.

The construction of T E ′ is similar to the tree extractor from the SS proof [42] for Spartan except that in
step 4 , the sub-extractor for the opening argument is run twice to extract multilinear polynomials w̃0, w̃1. As
in [42], we consider two hybrid worlds, with the additional condition that we reject if the extracted R1CS
witness is not satisfying, which happens with probability at most 7µ+1

F .

4 SHA2 with lookups

The SHA-256 hash function [63] operates on 32-bit words and performs both arithmetic and bitwise operations.
The challenge when representing SHA-256 in a zkSNARK is to encode both operation types efficiently. If a
32-bit word w is represented by a field element with the same unsigned value as w, the arithmetic operations
(the additions) are somewhat cheap. But then, the bitwise operations are expensive.

For example, consider the AND of u,w ∈ {0, . . . , 232− 1} ⊂ Fp. How can one compute u∧w? xJsnark
studies this problem; its solution is to split u and w into bits, do a bit-wise product, and recombine the bits of
the result. The splits require 32 constraints each and the bit-wise product requires another 32 constraints, for
96 constraints in total. This is very expensive: xJsnark’s SHA-256 implementation requires more than 20k
constraints per block.
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Our design (multiple forms) Baseline costs

Operation In form Out form Cost Sparse Bits Instances

n-ary + limbs, dense limbs, dual 7 2n+ 7 ≈32 176

aligned ≫ /≫ limbs, sparse 32bit, sparse 0 3 0 128

unaligned ≫ /≫ limbs, sparse 32bit, sparse 2 5 0 544

3-ary ⊕ 32bit, sparse limbs, dense 9 6 64 224

maj limbs, sparse limbs, dense 9 6 64 64

ch limbs, sparse limbs, dense 18 12 64 64

total 6064 8752 28160

Table 1: SHA primitive operation costs in different forms. For our design, we give the input and output forms we use
for each operation and the cost of applying that operation to a 32-bit word. (The cost of a shift or rotate is 0 if the offset
aligns with a limb boundary, and 2 otherwise.) We also give the cost when values are all in limb-wise sparse form or
represented as bits (as in xjSnark [73]), and the number of instances of each operation in the compression function. At
the bottom, we give the net cost of all operation instances, which is a good approximation for SHA-256’s total cost,
per-round.

4.1 Word representations

Our efficient SHA-256 implementation begins with Bootle et al.’s sparse form [25]. Sparse form is an
alternative to the natural dense form, which we have seen already. Let bi be the bits of w, that is: w =∑31

i=0 2
ibi. Then, w’s dense form is dense32(w) =

∑31
i=0 2

ibi ∈ F. Here, dense32 is a function from
u32→ F. The sparse form of w is sparse32(w) =

∑31
i=0 4

ibi ∈ F. The sparse form’s bits are exactly the bits
of w, with extra 0 bits interleaved.

Sparse form is useful because it makes checking many bitwise operations more efficient. For instance,
one can show that for any two words u,w, the following holds, mod p:

sparse32(u) + sparse32(w) = 2sparse32(u ∧ w) + sparse32(u⊕ w)

Moreover, u ∧ w and u⊕ w are the only words that satisfy this equation. Thus, this fact gives a natural way
to check XOR and AND relations, and similar equations can be used to check other bit-wise relations too.

One challenge when dealing with sparse and dense form is converting between them. This can be done
through lookups to a table

DSb = {(denseb(w), sparseb(w)) : w of b bits}

where b is the bitwidth. For example, to convert a sparse representation x to dense form, P provides the dense
equivalent y, and then shows that (x, y) ∈ DSb using a lookup argument (S2). But, this approach is only
efficient for small b, since lookup arguments for an n-size set of k-tuples have a one-time table setup cost n,
which is 2b here. So, we usually represent a word w limb-wise. For example, a 32-bit word is a 10-bit limb
and two 11-bit limbs. This allows conversions to be done with tables of size 210 and 211.

4.2 Our design

Our design is defined by the form we choose for each intermediate value in SHA. The compression function’s
inner loop manipulates registers a, . . . , h. It performs bit-wise (rotate, xor, choice, majority) and arithmetic
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(add) operations. Between iterations, the outputs (the adds) are written to two of the registers, and the registers
are rearranged.

One of our insights is that the registers should actually be materialized in both sparse and dense form;
that is in dual form. Re-arrangement causes registers to flow into an arithmetic operation (add) add in one
iteration and into a bitwise operation (maj) in another, so having both forms makes both operation types
cheap. Materializing both forms can cost a little, but as we will see, the tradeoff is worth it.

Table 1 shows the input and output forms we choose for each operation—and the induced cost. It
also shows what the costs would be if we used only sparse form, or if we used the bit-wise encoding of
xJsnark [73]. Our mixed-form approach beats a purely sparse approach because the savings we get from
cheaper additions outweigh the marginal extra cost of materializing more values in dense form.

To optimize, we represent some values in 32-bit sparse form, instead of limb-wise. We do this for shift
and rotation outputs. Since these operations move bits across limb boundaries, re-computing the limbs would
require extra constraints. The “Sparse” column in Table 1 shows this cost. However, this limb-decomposition
is actually unnecessary, because the only dependent operation is XOR. We find that XOR can be done
efficiently encoded for 32-bit sparse inputs and a limb-wise dense output (Example 1). Thus, in our design,
we omit this limb-decomposition for shift/rotation outputs. This makes shifts and rotations free if the offset is
aligned with a limb boundary, and very cheap otherwise.

Example 1 (XOR constraints). Let u, v, w be 32-bit words. Let u′, v′, w′ ∈ Fp be their 32-bit sparse
encodings. The sum s = u′ + v′ +w′ does not overflow (assuming p ≥ 264) and thus its even bits are exactly
u⊕ v ⊕ w. P provides field variables (x0,o, x0,e), (x1,o, x1,e), (x2,o, x2,e) which should be the odd and even
bits of s, split into two 11-bit and one 10-bit limbs. P also provides the dense forms di of the xi,e. P shows
the following lookups: (d0, x0,e), (d1, x1,e) ∈ DS11 ∧ (d2, x2,e) ∈ DS10 ∧ x0,o, x1,o ∈ S11 ∧ x2,o ∈ S10
(where Sb = {sparseb(w) : w of b bits}). V asserts the following constraint in Fp: u′ + v′ + w′ =
(x0,e + 2x0,o) + (211)2(x1,e + 2x1,o) + (222)2(x2,e + 2x2,o).

Since s contains the XOR in the even bits, one can show that the constraint and lookups ensure that
(d0, d1, d2) are the limbs of the XOR in dense form. The cost of this is 9 constraints (3 for 3 lookups into
Db, 6 for 3 lookups into DSb, and one free linear constraint). Obtaining the XOR output in dense form is
important because in SHA it is an input to a subsequent add.

Our SHA-256 design is similar to the halo2 library’s SHA-256 implementation [60]. We discuss the
similarities and differences in Section 9.

Extending to SHA-512. Our design naturally extends to SHA-512, which is used in EdDSA signatures
(S7). To represent SHA-512’s 64-bit words, we use 8 limbs per word. The widths of these limbs were chosen
to maximize the number of bitwise shifts and rotations that can be performed for free (by rotating the limbs
themselves). We also encode a slightly longer compression loop, because SHA-512 uses 80 rounds instead of
SHA-256’s 64.

5 RSA Signatures

In this work we focus on the most widely-used signature algorithm based on RSA, namely RSA-PKCS1v1.5.
We depict the verification algorithm in Figure 2a. Verification consists of first computing the mod-N
exponentiation D of the signature σ to the eth power, where (N, e) is the public key. Then, the SHA-256 hash
of the message is encoded (along with DI, the DER-encoded algorithm identifier for the hash function [68])
using PKCS encoding as an integer D′ mod N , and the result of the verification is the bit D = D′.

RSA signature verification has two steps which are difficult to represent in constraints—SHA-256 and
the modular exponentiation. We can greatly reduce the cost of SHA-256 with Section 4’s techniques. In
this section we will discuss our new techniques for efficient representations of modular exponentiation, and
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RSA.Vf(pk, σ,m):

N, e← pk

t← |N |
D ← σe mod N

D′ ←
PKCSEncode(t,H(m))

Return D = D′

PKCSEncode(t, h):

ℓ← 3 + |h|+ |DI|
pad← FF · · ·t−ℓ FF

D ←
0001||pad||00||DI||h

Return D

(a) RSA-PKCS1v1.5 verification and encoding func-
tion. The value DI is a fixed string dependent on H .
We assume |N | > ℓ.

ECDSA.Vf(pk, σ,m):

r, s← σ

If r = 0 or s = 0:
Ret. false

a← H(m)/s; b← r/s

R̂← aG+ bpk

Ret. x(R̂) = r mod q

ECDSA.Vf(pk, σ,m):

R, z ← σ

r ← x(R) mod q

If r = 0 or z = 0:
Ret. false

h← H(m)

Ret. pk = (−h/r)G+ zR

(b) Two equivalent versions of the ECDSA verification al-
gorithm. The function x(·) extracts the x-coordinate from a
point (x, y) on the curve.

Figure 2: RSA-PKCS1v1.5 and ECDSA verification algorithms.

modular arithmetic more broadly, in constraints. First, we explain how prior work reduces modular arithmetic
to range checking (S5.1). Second, we explain how we reduce the costs of range checking (S5.2). Finally, we
discuss other RSA-based signatures (S5.3). While our exposition is focused on RSA, our modular arithmetic
optimizations in this section to all three signature schemes of interest.

5.1 From modular arithmetic to range checks

Using the standard square-and-multiply algorithm for modular exponentiation, we can reduce the task of
modular exponentiation to modular multiplications and squarings. (In the case of RSA, because the exponent
e is usually fixed to 65537 = 216 + 1, we even know the exact sequence of multiplications and squarings we
must perform.) In constraint form, we can express modular multiplication as the constraint ab = c mod N
on three values a, b, c. The key difficulty here is that this constraint must be checked only with additions and
multiplications mod a prime p with p < N , where p is roughly 256 bits. Since N is 2048 bits, the values
a, b, c must be expressed as ℓ = ⌈|N |/b⌉ “limbs” of b bits apiece, with multiplication done limb-wise.

Figure 3 show the architecture of a state-of-the-art limb multiplier [73] for two-limb inputs with 16 bits
per limb. The high-level idea is to combine two modules for polynomial multiplication and carry handling.
The overall inputs are a⃗ = (a0, a1) and b⃗ = (b0, b1). The overall output is c⃗ = (c0, c1, c2, c3). The output of
the first module, c⃗′ = (c′0, c

′
1, c

′
2), is the input to the second module.

The first module checks polynomial multiplication. For a limb vector e⃗ of length n, define the polynomial
fe⃗(X) =

∑n−1
i=0 eiX

i. To satisfy the first module, the c′i must be given values such that the following
polynomial identity holds:

fa⃗(X)× f⃗
b
(X) = f

c⃗′
(X)

The module checks this identity at all i ∈ {0, . . . , 2}. (Recall: two quadratic polynomials that agree at 3
points agree everywhere.)

Then, the second module handles carries. It ensures that when a carry-in oi is added to the polynomial
coefficient c′i, the result has low-bits ci and the high bits are carried out as oi+1. The initial carry-in (o0) is 0
and the final carry-out (o3) is the result limb c3. Both the carries and the ci are asserted to be in small ranges;
these assertions are called range checks. The carry ranges are slightly larger to deal with the potential size of
limb overflow.

Somewhat surprisingly, the bottleneck when this system is translated into R1CS is carry-handling, not
multiplication. Recall that linear operations are free, so the only costs are the 3 non-linear multiplications in
the polynomial component and the range checks in the carry handler. These operations are shown in red in
Figure 3.
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a0

a1

b0

b1

c′0

c′1

c′2

Polynomial multiply∧2
i=0 (a0 + ia1)× (b0 + ib1)

=
(
c′0 + ic′1 + i2c′2

)
c0

c1

c2

c3

Carry handling
o0 = 0 o1, o2 ∈ [218]∧3

i=0 ci ∈ [216]∧2
i=0 c

′
i + oi = 216oi+1 + ci

o3 = c3

o0 o1 o2 o3

Figure 3: The (high-level) constraint system for testing limb-wise multiplication. It is described in detail in the main
text. The expensive operations are in red and the range checks (set membership) are the bottleneck.

Of the two operation types, the range-checks are far more expensive in practice. We discuss the cost
of range-checking in detail in the next section. But first, we give an example from prior work: in one
state-of-the-art implementation [84] of RSA arithmetic, range checking is responsible for 94.5% of proving
cost. So, improving range checking in I-R1CS is essential to achieve better performance.

5.2 Range checks through optimized lookups

Bit-splitting: the baseline. Prior RSA signature implementations range check with bit-splitting. In
this approach, to range check x ∈ {0, . . . , 2b − 1}, one adds witnesses x′0, . . . , x

′
b−1, and constraints∑

i x
′
i2

i = x ∧
∧

i xi(xi − 1) = 0. The first of these constraints is linear (free), so the cost is b. In the
concrete case of RSA signature exponentiation (Example 2), bit-splitting costs 83555 constraints.

Example 2. In computing b65537 (mod a 2048-bit N ), the implementation of Ozdemir et al. [84] uses 32-bit
limbs. It performs 2176 32-bit range checks (for initial limbs) and 357 39-bit range checks (for carries).

Lookups: a promising theory. One tool for (theoretically) reducing the costs of range checks is a lookup
proof. A lookup proof shows that some x ∈ F is in a set V ⊆ F (V is called a table). State-of-the-art lookup
proofs [62], incur a one-time table setup cost of |V | constraints; thereafter, each membership claim (each
lookup) costs only one constraint.

At first glance, lookup proofs may seem to easily resolve the bottleneck in modular arithmetic. Simply
set V = {0, . . . , 2b − 1} and replace each cost-b bit-split with a cost-1 lookup. This approach makes each
range check cheap, but the table setup costs are astronomical. For example, setting up the table for the 32-bit
range checks in Example 2 would incur a cost of 232 constraints. Using lookups effectively requires slightly
more ingenuity.

Optimizing lookups for range checking. The first issue with lookups, is that the table setup cost is
exponential in the number of bits. We reduce this cost using the natural idea of splitting a large range into
sub-ranges: to range check an element x fits into b bits, express x in base 2b

′
for some b′ that divides b and

check that each of the smaller “sub-limbs” x[i] has b′ bits. We then combine the smaller parts (at no constraint
cost) to retrieve x. With subranges, the setup costs 2b

′
constraints and each b-bit range check costs b/b′

constraints. (If b′ ∤ b, we need only one additional constraint to range check the remaining b mod b′ bits.)
A second, confounding, issue is the need to range-check multiple different ranges in a given circuit. For

instance, in an RSA implementation (Example 2), we must range check the limbs of the inputs (32 bits)
as well as intermediate carries that arise from limb-wise operations (39 bits). Considering each limb size
separately is sub-optimal: it misses potential opportunities to share subrange setup costs between the different
sizes. Thus, choosing optimal subrange sizes is a global optimization problem, which we state in Definition 3.

A third issue is the fact some range-checks are flexible. We first explain this in the context of Example 2.
Since its carries can be as large as 39 bits, forcing them to fit in a smaller range will make the constraint
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system incomplete (unsatisfiable for some legitimate inputs). However, the soundness of the constraint system
does not strictly require the carries to fit in 39 bits. The only requirement is that certain equations involving
the carries should not overflow; which is guaranteed even if the carries fit in 50 bits.

Considering all three issues—setup costs, shared tables, and flexible bitwidths—we pose an optimization
problem:

Definition 3. Let li be a bit lower bound, ui be a bit upper bound, and ni be the number of values claimed
to be in {0, . . . , 2bi − 1}, with bi ∈ {li, . . . , ui}. A batched flexible range check problem P is a sequence
(l1, u1, n1), . . . , (lk, uk, nk). A subrange sizing scheme for P is a is a sequence of multisets S = S1, . . . , Sk

such that each Si sums to a value in {li, . . . , ui}. The (constraint) cost of S is
∑

s∈∪iset(Si)
(2s) +

∑
i |Si|ni.

To solve this problem, we design a planner to find good sizing schemes for a problem P . For our problems
of interest, a simple brute-force grid search easily finds the plan that minimizes total constraint cost.

For Example 2, expressed as (l1 = 32, u1 = 32, n1 = 2176) and (l2 = 39, u2 = 50, n2 = 357),
our planner returns S1 = {{8, 8, 8, 8}} , S2 = {{8, 8, 8, 8, 8}}, which has cost 10745. This is almost an 8×
improvement over bit-splitting. Notice that in this solution, the two kinds of ranges are sharing a single
subrange of 8 bits.

We envision that our approach of globally optimizing subrange sizes for range checks will be useful in
other uses of modular arithmetic within proof systems. Our planner does not currently consider optimizations
across the hash and modular multiplication subcircuits; doing this is an interesting direction we leave to
future work.

5.3 RSA-PSS signatures

Some applications use RSA with the PSS padding scheme instead of PKCS1v1.5 [15, 65]. PSS is more
complex but yields a scheme with a tight reduction to the hardness of inverting RSA. Our approach can be
generalized to work with PSS as well as PKCS1v1.5, but doing PSS padding verification in R1CS would
incur some additional costs, mostly stemming from the hashes done in the “mask generation function” (MGF).
Concretely, we estimate that PSS padding would cost roughly 63,000 additional R1CS constraints for a
2048-bit modulus and using SHA-256 for the MGF. We leave implementing and optimizing this approach to
future work.

6 ECDSA Signatures

The Elliptic Curve Digital Signature Algorithm, or ECDSA, is a signature scheme over an elliptic curve
group G of order q with generator G over a finite field Fp for a prime p. The most common choice of G
in applications is the NIST standard curve secp256r1 (also called P-256) [74]. We focus on this curve in
this work, but our techniques are fully general to other curve choices. We depict two mostly equivalent
verification algorithms in Figure 2b (with slightly different inputs). Our discussion below will focus on the
right-hand equation for concreteness, but it applies to both. To prove possession of an ECDSA signature
(R, z) on message m, the prover needs to prove the following relation:

RECDSA =

{
(G, pk; (r,R, z,m)) :

pk = (−H(m)/r)G+ zR ∧ r = x(R) mod q ∧ r ̸= 0 ∧ z ̸= 0

}
.

As with RSA-PKCS1v1.5 verification (S5) hashing is a bottleneck in representing ECDSA verification
in R1CS; we can apply the techniques of S4 to improve performance. The other major bottleneck is the
three elliptic curve operations that comprise the verification equation pk = (−h/r)G + zR—two scalar
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multiplications to compute (−h/r)G and zR, and a point addition to combine them. (There are techniques,
such as Straus [102], to generically reduce the cost of computing the right-hand side of the equation. Looking
ahead, our sidecar protocol, described in S6.1, will obviate the potential benefits of Straus, so we will not
discuss it further below.)

Scalar multiplications are, as with modular exponentiations, implemented via a double-and-add chain
that iterates over the bits of the scalar and performs a point double (if the bit is 0) and also a point addition
(if it is 1). P-256 scalars are 256 bits, and since we must pay for both branches in R1CS, a single scalar
multiplication requires 256 additions and 256 doublings. A single point addition requires several operations
in the base field Fp, including four costly reductions mod p. If doublings are implemented via addition, each
iteration of the double-and-add chain requires eight modular reductions.

A useful comparison is to the modular exponentiation circuit for RSA: this requires only one reduction
mod N per bit of the public exponent e, which is fixed to have only seventeen bits. Thus, only two iterations
of double-and-add have nearly as many modular reductions (though with a smaller modulus) as the entire
RSA modular exponentiation circuit. This points to the drastic difference in cost in the prior state of the art
for RSA vs. elliptic curves: for xJsnark, modular exponentiation only cost about 89k R1CS constraints, vs.
687k constraints for a single scalar multiplication for P-256. (xJsnark did not report an ECDSA verification
benchmark, but we estimate the cost would be at least 1.4 million constraints excluding hashing.)

Because of this, a natural first step for improving the efficiency of ECDSA is applying the lookup-table-
based improvements to modular arithmetic discussed in S5 to elliptic curve operations. This greatly improves
our performance—a naive baseline implementation of scalar multiplication costs 1.3 million constraints; the
same implementation with lookup-based range checks only costs 277k constraints.

Preprocessing and incomplete formulas. We can make more progress by exploiting the fact that scalar
multiplications for a fixed base point can be accelerated using preprocessing. The P-256 generator G is
fixed, so the computation of (−h/r)G can use preprocessing. We use a variant of the classic “window
method” [1,71] which works as follows. For scalar bit length n, pick a chunk bit length w and let ℓ = ⌈n/w⌉.
During preprocessing, compute the table Gpow such that Gpow[i][j] = j · 2wi · G for i ∈ [0, 1, · · · , ℓ]
and j ∈ [1, · · · , 2w). Then, during scalar multiplication, write the scalar x as a sequence of base-2w

chunks (chunki)i∈[0,ℓ−1], so that x =
∑

i∈[0,ℓ−1] chunki ∗ 2w∗i. The output of the scalar multiplication is∑
i∈[0,ℓ−1]Gpow[i][chunki]. This method’s cost is ℓ additions and lookups into a size ℓ · 2w table.
We further optimize this approach using the observation that because the P-256 group has prime order,

the edge cases that must be handled in the “complete” formula for adding two points P1 and P2—e.g.,
P1 = ±P2—cannot arise in scalar multiplication, with or without the window method, except possibly in the
last iteration. This is roughly because in each iteration except the last one, two distinct non-identity points of
order much less than q are added together; because no wraparounds mod q occur, the result (and input to
the next iteration) is also a non-identity point of order much less than q. This observation has been made in
other literature on optimized elliptic curve implementations [2, 26], but as far as we know we are the first
to use it to optimize R1CS representations of elliptic curve operations. (Looking ahead to S6, for Ed25519
verification, complete vs. incomplete formulas are a nonissue, since by design the curve has a complete and
branchless point addition formula [19].) For fixed base points, these improvements bring the constraint cost
down to 65k constraints (from 277k).

6.1 A “Sidecar” Protocol for ECDSA

Our optimizations for elliptic curve operations greatly reduce the constraint cost of R1CS verification.
However, the constraint cost is still quite large—around 350k constraints for full ECDSA verification,
excluding hashing. The main bottleneck is still elliptic curve operations, and in particular the non-fixed-base
scalar multiplication zR (which costs ≈277k). In a proof of possession, the base R even must be hidden
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PH(pp; pk; (R, z,m)):

((G,K), ppzk)← pp ; v, f1, f2, f3←$ Fq

C(1) ← vK +R ; U ← f1C
(1) − f2K − f3G

r ← x(R) mod q ; o, o′←$O
e1 ← z ; e2 ← e1v ; e3 ← H(m)/r

cm← HCom
(
(ei)i∈[3], o

)
cm′ ← HCom

(
(fi)i∈[3], o

′)
c← H(pk, C(1), U, cm, cm′)

si ← fi + eic ∀i ∈ [3]

x←
(
C(1), cm, cm′, c, (si)i∈[3]

)
w ←

(
(ei, fi)i∈[3], o, o

′, v,m,R
)

πzk ← Prv(ppzk; (G,K);x;w)

Return π = (U,x, πzk)

(a) The proof generation algorithm for ΠFS
ECDSA.

V H (pp; pk, π):

((G,K), ppzk)← pp

(U,x, πzk)← π

(C(1), cm, cm′, c, (si)i∈[3])← x

c← H(pk, C(1), U, cm, cm′)

Return s1C
(1) − s2K − s3G

?
= U + c · pk

∧ PVer (ppzk;x;πzk)
?
= 1

(b) The proof verification algorithm for ΠFS
ECDSA.

Figure 4: The proof generation and verification algorithms for our sidecar protocol ΠFS
ECDSA correspond to the relation

RECDSA, and the inner SNARK uses the relationRARK (both relations defined in the main text). The function H is
the hash used for Fiat-Shamir.

from the verifier. Using the other ECDSA verification still requires computing bpk; while pk is public it may
not be fixed, making it difficult to use preprocessing.

Thus, to reduce costs further, we introduce a protocol that completely eliminates the cost of the non-
fixed-base scalar multiplication. This protocol works by moving the verification check pk = (−h/r)G+ zR
outside R1CS completely, and into a separate sigma protocol that is run alongside the “main” ZKP protocol.
We depict our protocol in Figure 5, and explain it next.

Warmup: Okamoto’s protocol and Sigmabus. To understand how our protocol works, it is useful to first
think of a relaxed setting in which we can reveal the point R to the verifier. To prove possession of a signature
on message m, it would suffice to prove knowledge of a pair of scalars (x, y) so that x ̸= 0, y = H(m), and
(x, y) is a representation of pk with respect to points R and U = (−1/r)G. In other words, it would suffice
to prove the relation

Rpublic =


(pk, R, U ; (m,x, y)) :

pk = xR+ yU

∧ x ̸= 0 ∧H(m) = y


The first constraint has an efficient sigma protocol, due to Okamoto [81]; standard techniques can also prove
the second constraint. A recent work called Sigmabus [67] showed a surprisingly simple approach to “bridge”
sigma protocol executions and SNARKs. Roughly, their approach works by modifying the sigma protocol so
the prover’s commitment (i.e., its first message) includes a ZKP-friendly commitment to the witnesses, then
requiring the prover to prove (1) these witnesses were the same as witnesses given to some other ZKP prover,
and (2) that its sigma protocol response was computed correctly using these witnesses. This approach lets the
verifier check statements about these witnesses with a sigma protocol, a SNARK, or both. Applying this to
our relation would allow the prover to prove the first two constraints using cheap sigma protocols, the third
constraint H(m) = y with a SNARK, and show that the y used in both steps was the same, thus linking them
together. This would not be zero-knowledge since R is revealed.
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Hiding R. The main idea for fixing this is as follows. We can use most of the ideas from the previous protocol,
but just replace R with a commitment to R. To preserve the ability to verify the elliptic curve equation with a
sigma protocol, though, the commitment must respect the structure of the curve group. Rather than standard
schemes like Pedersen commitments, which only commit to Fp elements, we use a version of ElGamal
encryption: for a fixed generator K of G, and hash function HCom, our scheme is ComK(R, (v, o)) :=
(HCom(v, o), vK +R). The “public key” K need only have an unknown discrete log to the base G, so it can
easily be generated via hash-to-curve. Recall our original verification equation pk = (−h/r)G+ zR. If we
let (C(0), C(1)) = ComK(R, (v, o)) = (HCom(v, o), vK + R), then we can rewrite R = C(1) − vK and
plug it into our verification equation to get pk = (−h/r)G+ z(C(1)− vK) = zC(1)− zvK − (h/r)G. The
right-hand side of this is a representation of pk with scalars (e1, e2, e3) = (z, zv, h/r) and three public group
elements C(1),−K,−G as bases. We thus simply prove knowledge of this representation using a three-base
version of the same Okamoto protocol as described above. We use Sigmabus’s transform to provide the
representation as a witness to the SNARK; this is a crucial step to allow verifying that e2 = e1v for the
v committed in C(0) and e3 = h/r. Finally, to ensure the prover’s provided value of r is indeed equal to
x(R) mod q, we must compute C(1) − vK in the circuit. Thus, we must still do one scalar multiplication in
constraints; however, the base K is fixed and public, so preprocessing can reduce the cost.

Summary. Our protocol for proving possession of an ECDSA-P256 signature (R, z) on message m for
public key pk is in Figure 4. It leverages a sigma sub-protocol and a SNARK sub-protocol. The sigma
sub-protocol proves that pk represents in a specific form relative to C(1), −K and −G. The SNARK sub-
protocol proves the remaining constraints, specifically for the relation RARK defined as the set of tuples(
K;

(
C(1), cm, cm′, c, (si)i∈[3]

)
;
(
(ei, fi)i∈[3], o, o

′,m,R
))

satisfying the following constraints:

si = fi + eic ∀ i ∈ {0, 1, 2}
∧ cm′ = HCom

(
(fi)i∈[3], o

′) ∧ cm = HCom
(
(ei)i∈[3], o

)
∧ C(1) = vK +R where v = e2e

−1
1 mod q

∧ e3 = H(m)/r ∧ e1 ̸= 0

∧ r ̸= 0 where r = x(R) mod q

The protocol in Figure 4 contains some optimizations: first, we commit the representation (e1, e2, e3)
and the random scalars (e′1, e

′
2, e

′
3) in one hash apiece, instead of committing to each individually. We also

use the commitments of e1 and e2 as a commitment to v instead of C(0); these two commitments already
bind v. We describe the prover in prose here. To verify the proof U, (s1, s2, s3), πzk for statement x and pk,

the verifier first checks s1C(1) − s2K − S3G
?
= U + cpk, then checks PVer (ppzk;x;πzk) and returns the

logical AND of the two results. In Appendix A, we analyze the security of this protocol.

Theorem 2. The protocol ΠFS
ECDSA for proving possession of an ECDSA-P256 signature is complete, adap-

tively knowledge sound and non-interactive zero-knowledge if the following conditions hold:

1. HCom is a binding and hiding commitment scheme, and

2. SNARK is non-interactive zero-knowledge, with its interactive version being special sound.

6.2 ECDSA Ring Signatures

Though it is not our main focus in terms of functionality, we observe that the sidecar protocol from S6.1 leads
to an efficient protocol for proving possession of an ECDSA-P256 signature under a committed pk. This
functionality is interesting in particular because it can be used to build ring signatures. (We give more detail
on this below.)
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PH ((L,K); (E0, E1, R); (z, z′, t, o)):

f1, f2, f3, f4←$ Zq

U1 ← f1L

U2 ← f2R+ f1K

U3 ← f3E0 + f4L

U4 ← f3E1 + f4K

c← H((E0, E1, R), U1, U2, U3, U4)

s1 ← f1 + vc

s2 ← f2 + zc

s3 ← f3 + z′c

s4 ← f4 − tc

Return π = ((U1, U2, U3, U4), (s1, s2, s3, s4))

(a) The proof generation algorithm.

V H ((L,K); (E0, E1, R, π)):

((U1, U2, U3, U4), (s1, s2, s3, s4))← π

c← H((E0, E1, R), U1, U2, U3, U4)

Return s1 · L
?
= U1 + (c · E0)

∧ s2 ·R+ s1 ·K
?
= U2 + (c · E1)

∧ s3 · E0 + s4 · L
?
= U3

∧ s3 · E1 + s4 ·K
?
= U4 + c ·R

(b) The proof verification algorithm.

Figure 5: The proof generation and verification algorithms for the non-interactive variant of our sigma protocol Πrs

for relationR′
rs defined in Section 6.2. The function H is the hash used for Fiat-Shamir.

Following prior work [37, 54] on ring signatures for ECDSA, the exact relation we will target is one
where the public key is committed, the message and presignature R are known, and the scalar z is hidden. We
formally define the relationRrs as a set of tuples ((G, pp), (cmpk,m,R), (z, pk, o)) satisfying the following
constraints: (1) cmpk = Compp(pk, o), (2) pk = zR − (h/r)G where h = H(m) and r = x(R) mod q,
(3) z ̸= 0.

Our main insight, which is also used in the sidecar protocol above, is that by using ElGamal encryption
with a fixed public key as the commitment scheme we can preserve the algebraic relationship between
pk, R,G, allowing the use of cheap sigma protocols to prove that the verification equation holds. We define
the commitment scheme to pk with randomness o as Com′(pk, o) = (C

(0)
pk , C

(1)
pk ) = (oL, oK + pk) for

L,K ∈ G. (As above, we can generate L,K transparently using hash-to-curve.)
With this commitment scheme, and adding L,K to the public parameters, we can replace constraint (1)

ofRrs with C
(0)
pk = oL and transform constraint (2) to C

(1)
pk +(h/r)G = zR+ oK where h = H(m). These

two transformed equations are linear, and their base points E0 := C
(0)
pk , E1 := C

(1)
pk + (h/r)G, L,R,K

are public. We can thus prove (1) and (2) using standard sigma protocols. For the last constraint z ̸= 0,
we express it as z · z′ = 1 for some z′ ∈ Zq. This is because z ∈ Zq, and only non-zero elements in Zq

have multiplicative inverses. We transform the non-linear equation z · z′ = 1 into linear constraints by
leveraging (1) and (2). Specifically, we raise both sides of those equations by z′ to obtain the following two
new equations in a new variable t = oz′: (1) Ez′

0 = tL and (2) z′E1 = R+ tK.
The final transformed relationR′

rs is as follows:

R′
rs =

{
((L,K), (E0, E1, R), (z, z′, t, o)) :

E0 = oL ∧ E1 = zR+ oK ∧ z′E0 = tL ∧ z′E1 = R+ tK

}
.

We give a sigma protocol for this relation in Figure 5b. By leveraging our sigma protocol forR′
rs, we can

construct a proof of knowledge for the relationRrs: first, the prover and verifier locally compute r ← x(R)

mod q, E0 ← C
(0)
pk and E1 ← C

(1)
pk + (h/r)G. The prover computes z′ ← z−1 mod q and t← oz′. Then,

the prover and verifier engage in our sigma protocol with common inputs ((L,K), (E0, E1, R)) and prover
witnesses (z, z′, t, o).

18



Building ring signatures. Our proof of knowledge Πrs can be used to build an ECDSA-based ring signature
with significantly better performance than with prior work [37, 54]. Suppose that we want to prove that
the prover has a valid ECDSA signature on a public message m corresponding to one of the verification
keys on a given list S. A set of tuples ((G, pp,S), (cmpk,m,R), (z, pk, o)) is in the relation Rring if the
following constraints are satisfied: (1) cmpk = Compp(pk, o), (2) pk = zR − (h/r)G, (3) z ̸= 0, and (4)
pk ∈ S . This relation can be split into two relations: R′

rs andRmemb, whereR′
rs is the same before and the

relation Rmemb is defined as the set of tuples
(
(G, pp), (cmpk,S = (pk0, · · · , pkN−1)), (ℓ, o)

)
so that: (1)

ℓ ∈ {0, . . . , N − 1}, (2) cmpk = Compp(pkℓ, o).
To generate a proof for the relationR′

rs, the prover utilizes Πrs. For the relationRmemb, we employ the
Groth-Kohlweiss protocol [61], designed to prove that one out of many commitments can be opened to 0,
and that the prover knows such an opening. This protocol requires the underlying commitment scheme to be
additively homomorphic, but our ElGamal-like commitment scheme Com′ is not. To address this mismatch,
we observe that for every message M in the message spaceM of Com′, there must exist a scalar m such that
mG = M with G as a generator. This observation allows us to treat Com′ as an additively homomorphic
commitment scheme over the transformed message space

M′ = {m : mG = M ∀M ∈M }.

We now present a protocol Πmemb for the relation Rmemb. Given a commitment cmpk = (C0, C1) on
the public key pk, we define a list of commitments to be S ′ = (C0, C1 − p̄k)p̄k∈S . Using Groth-Kohlweiss
protocol, the prover shows that he knows how to open one of these commitments to 0. The security of Πrs

and the Groth-Kohlweiss protocol, together with the binding property of Pedersen Commitment guarantees
that, if the prover can generate valid proofs for relation Rrs and Rmemb respectively with the same cmpk,
then the prover has a valid ECDSA signature on m corresponding to one of the verification keys on the list S .
We analyze the security of our construction in Appendix B.

7 EdDSA Signatures

The Edwards-curve Digital Signature algorithm (EdDSA) is an elliptic-curve-based signature scheme,
standardized in RFC 8032. It uses a derandomized version of classic Schnorr signatures over an elliptic
curve G. The most common choice of G is Ed25519, an Edwards-type curve over the base field Fp for
p = 2255 − 19 which is birationally equivalent to Curve25519 [18,19]. The order of G is 8q for a large prime
q. An Ed25519 signature is a pair (R, s) ∈ G× Fq. To verify a signature on message m for public key pk,
the verifier first computes c← H(R, pk,m) then returns the result of the check sG = R+ cpk. (We omit
input validity checks, encoding, and cofactors here for simplicity.)

All techniques from the previous sections—efficient hashing (S4) and modular arithmetic (S5), prepro-
cessing (S6), and sidecar protocols (S6.1)—can be applied to improve the efficiency of EdDSA proofs of
possession. (We omit the details for brevity, but it is straightforward to adapt our sidecar protocol to EdDSA,
since EdDSA’s group operations are similar to ECDSA’s.)

Applying all these techniques gives a huge reduction in constraint cost. Without these techniques, our
baseline implementation for EdDSA verification of a 64-byte message required approximately 3.3 million
constraints (of which roughly 95% correspond to the algebraic portion) and about 18 seconds to produce a
proof. With all our techniques, the number becomes only 73k constraints, a 45× improvement. However,
we still have one relatively expensive operation left: namely, the fixed-based scalar multiplication needed
to obtain the group element R in R1CS. Even with preprocessing this operation is the dominant cost in the
EdDSA verification circuit. As we described above, the main bottleneck of fixed-base scalar multiplication is
emulating non-native Fp (i.e., the curve’s base field) operations in the native R1CS field Fq. To remove this
last bottleneck we employ a simple, but powerful, idea—changing the R1CS field to the “right” one, Fp.
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p = 2256 − 451024951810263391379330922557034374877

E: y2 = x(x2 + ax+ b), with:
a = 0x83D55B3EF1207CBB74ADA704E61ADF4DABAED20EAE494CC45293FDCEFDD1183D

b = 0x341B58146036CB9911638F4CF4AC3BED671E867F1B14831C1AF9CD915591B64C

Order of E/Fp is 2 ∗ (2255 − 19)

Figure 6: Parameters for our double-odd curve T-25519

7.1 “Right-field” Arithmetic

This idea is folklore and has been explored in other works. However, as we will see, applying right-field
arithmetic to improve performance for ECDSA or Ed25519 verification is nontrivial; further, the technique
has some critical limitations.

The main challenge is constructing a group (for efficiency reasons, this is always an elliptic curve group)
where discrete log is hard but whose order (or a subgroup’s order) is equal to p, the curve’s base field
modulus. This is needed to instantiate the polynomial commitment used by the most efficient ZKPs, and in
particular Mirage and our extension of Spartan (S3). These protocols work by (roughly) transforming R1CS
satisfiability into a statement about polynomials over Fp, committing to these polynomials, then convincing
the verifier some relationships between them hold.

Generating an elliptic curve group with a given order is complex, but has some known solutions. A
generic method to make a curve of order p is to find a prime r such that p = r + 1− t and t2 − 4r = DV 2

(equivalently, (t− 2)2 − 4p = DV 2) for some integers D and V with D being negative and equal to 0 or 1
modulo 4. If D’s absolute value is small enough, then the Hilbert class polynomial of discriminant D can be
computed in practice; it splits over Fr, the roots being the j-invariants of curves of order exactly p over Fr.

For P-256, prior work [54] used a version of this method to generate a curve, which they call T-256, whose
group has order equal to P-256’s base field modulus. We use their curve to implement right-field arithmetic
for ECDSA over P-256. In the case of Ed25519, no equivalent curves were previously known. Prior work [4]
used a different method to generate a pairing-friendly curve over a 574-bit field with a subgroup of order
p = 2255 − 19; the pairing-friendliness is not needed for our use case and would only hurt our performance.
Instead, we used the method above—specifically algorithm 3.2 from [97]—to generate a novel elliptic curve
of order 2p over a 256-bit field. For the sake of symmetry, we call this curve T-25519. Its parameters are listed
in Figure 6. T-25519 has discriminant D = −2330728 and is a double-odd curve, allowing the definition of a
group of order exactly p, with fast and complete formulas and canonical encoding [91]. Our T-25519 curve is
much faster than the pairing-friendly curve: on an Intel “Coffee Lake” 2.3GHz CPU, T-25519 was 5-5.7 times
faster for scalar and multi-scalar multiplication and only about one-third slower than an optimized P-256
implementation. Right-field arithmetic has a dramatic effect on constraint costs: a baseline fixed-base scalar
multiplication costs 632k constraints; with right-field arithmetic it costs only ≈3200 (a 200× reduction).

Limitations. Right-field arithmetic has a critical limitation. Because the base fields of P-256 and Ed25519
do not have points of multiplicative order a large power of two, proof systems that that assume this structure
will not be efficient with right-field arithmetic. This includes Groth16 and Mirage, one of our backend
proof systems of interest. These systems need this structure to use FFT-based polynomial algorithms (e.g.
multiplication). Other more general smoothness conditions are also not met by the P-256 and Ed25519 base
fields. (Theoretical fast polynomial algorithms, such as ECFFT, are unlikely to be concretely efficient enough
for our purposes.) Thus, right-field prover performance with these backends is likely to be very poor. This
means right-field arithmetic cannot be combined with backends like Groth16 that produce very small proofs.
In settings where larger proofs are permissible, we envision a backend like Dorian (S3) being used. Also, in
settings where compliance with government standards like FIPS is needed, using a customized elliptic curve
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Ours (Mirage) Baseline (Groth16)

|m| (B) 64 512 2048 64 512 2048

|R1CS| (k) 13 58 209 29 231 925

P time (s) 0.2 0.7 2.6 0.2 1.0 3.8

(a) Comparison between our SHA-256 implementation and Z#’s
standard library. All verifier times were less than 12 milliseconds.
Proof sizes were 240B for ours and 192B for the baseline.

Ours (Mirage) xJsnark [73] Circom [116]

|m| (B) 64 512 2048 3 0

|R1CS| (k) 40 84 235 89 536

Ptime (s) 0.7 1.3 3.0 2.3 15.9

(b) Proof of RSA-PKCS1v1.5 signature possession, with 2048-bit
keys. Our verifier times were 28 milliseconds. Our proof sizes were
240B, others were 128B.

Ours (Mirage) Ours (Dorian) halo2 [115]

|m| (B) 0 64 512 2048 0 64 512 2048 0

|R1CS| (k) 25 39 83 234 8 21 65 216 N/A

P time (s) 0.3 0.5 1.0 2.7 0.2 0.4 0.9 2.5 2.2

V time (s) .02 .03 .03 .03 0.2 0.2 0.2 0.4 .07

|π| (kB) 0.5 0.5 0.5 0.5 19 31 32 51 6.5

(c) Proof of ECDSA-P256-SHA256 signature possession.

Ours (Mirage) Ours (Dorian) halo2 [11]

0 64 512 2048 0 64 512 2048 0

30 73 128 344 9 53 107 323 N/A

0.6 0.9 1.5 4.2 0.2 1.0 1.7 4.8 4.5

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.01

0.6 0.6 0.6 0.6 15.4 29.7 46.8 81.0 5.6

(d) Proof of Ed25519 signature possession.

Figure 7: Experimental results of our proof of possession implementations. Results are on our server testbed. We show
message length, constraint count (|R1CS|, in thousands), proof size (|π|), prover time, and verifier time. We depict the
median of five trials for prover and verifier time; variance was very small in all cases.

(and therefore right-field proving) may not be possible.

8 Implementation and Evaluation

We implemented all of this paper’s sigma protocols (e.g., the sidecar protocol of S6.1) in Rust and implemented
our ZKP circuits in Z#, a variant of ZoKrates language [51]. For setup, proof generation and proof verification,
we utilized CirC [82], a compiler that translates Z# into R1CS. We extended CirC with set membership
arguments, reverse array accesses and explicit witness computation. Our server testbed for Figure 7 is an
Ubuntu 22.04 machine with a AMD Ryzen Threadripper 5995WX 1.8GHz CPU, and 256 GBs RAM. In
order to get a sense of performance on less powerful hardware, we additionally tested our ECDSA-P256 and
Ed25519 proofs of possession on a laptop running Arch Linux with an Intel Core Ultra 5 125H with 16GB of
RAM in both a multithreaded and single-threaded setting. The results of these tests will be discussed in these
schemes’ respective paragraphs below.

We implemented our Dorian ZKP in Rust by extending the reference Spartan implementation. Because
Dorian’s costs are different than Spartan’s—for example, the second sumcheck is more expensive—we
optimized further with parallelism. We instantiated the underlying group with three curves: first, Spartan’s
default (Curve25519); second, an Arkworks [6] implementation of the T-256 curve [54]; third, a custom Rust
implementation of our new T-25519 curve, based on the crrl [90] library’s arithmetic mod 2255 − 19. All our
implementations with Groth16 or Mirage ZKP are instantiated with the BLS12-381 curve.

8.1 Evaluating Proofs of Possession

Since hashing is used for all our proofs of possession, we first evaluate our optimized SHA-256 and SHA-512
circuits in isolation, then present results for full proofs of possession.

Hashing. We benchmarked our SHA-256 implementation against the baseline from the Z# standard library
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(proved with Bellman’s [47] Groth16 backend). The results are in Figure 7a. There are two phenomena to
discuss, related to constraint counts and prover time. The constraint counts highlight our implementation’s
high table setup costs (≈7k) and low per-block costs (≈6k); thus its improvement over the baseline increases
with |m|. Prover times also improve, but not by as much. For instance, at |m| = 2048, our constraint counts
are 77% smaller, but our prover time is only 32% smaller. This has basically two causes. First, the lookup
arguments transcript (which is verified in I-R1CS) contains larger field elements than the baseline’s R1CS
witness. This increases the density of the multi-scalar multiplication used in Mirage/Groth16 to commit to
these elements. However, state-of-the-art MSM implementations are optimized for sparse inputs in highly
input-dependent ways. We further discuss the effect of density on prover time in Section 8.2. The second
cause is the cost of running the lookup argument: concretely, we found that it added ≈70ms to the witness
generation phase of proving for 512B messages, and increased costs elsewhere.

RSA-PKCS1v1.5. Figure 7b shows our results for proving possession of an RSA-PKCS1v1.5 (2048-bit)
signature. We compared with the prior state-of-the-art implementation, (xJsnark [73]) and the most popular
non-academic implementation we found [116]. Note that this implementation omits the hashing computation,
biasing the comparison against us.

Our prover time was far better. For a one-block message, our prover was 3.3× faster than xJsnark,
and 22.7× faster than the Circom implementation (an underestimate because it omits hashing). Even for a
2kB message, our prover takes only three seconds. In constraint counts, our system’s costs for the modular
exponentiation and hashing were similar for the smallest message—around 22k vs. 13k—but for the 2kB
message hashing is ≈90% of the cost.

In our laptop tests, the median prover time for a 2048-byte message was 11.8 seconds when multithreaded
and 20 seconds when single-threaded. Median verifier times were 62 and 35 milliseconds respectively.

ECDSA-P256. We implemented two ECDSA-P256 proofs of possession—one with right-field arithmetic
(S7) over the T-256 curve, and one with all other optimizations (S5, 6). We use Dorian for right-field arithmetic,
and Bellman’s Mirage for our other prover. The results are in Figure 7c. We fould no peer-reviewed academic
work to compare against (xJsnark implemented one P-256 benchmark, but not an ECDSA verifier). We
compare against the most popular open-source project we found, in Halo2’s gadget language [115]. Again, it
does not hash, so the comparison is biased against us.

Both our provers perform very well and the right-field one take only 2.5 seconds for even 2kB messages.
Compared with the halo2 code which we emphasize does not hash the message inside the circuit, our Dorian
prover is ≈11× faster in an apples-to-apples comparison, and ≈ 5.5× faster when also hashing a 64-byte
message. It does, however, have a slightly slower verifier and larger proofs. Our Mirage version is strictly
better than the baselines in all metrics.

In our laptop tests, the median prover time for our Mirage implementation on a 2048-byte message was
5.0 seconds when multithreaded, while on a single thread the median prover time was 16.7 seconds. The
median verifier times were 20 and 26 milliseconds, respectively. The median prover time for our Dorian
implementation meanwhile was 2.8 seconds when multithreaded and 6.0 seconds when single-threaded. The
median verifier times were 360 and 365 milliseconds, respectively. Though prover times between Mirage and
Dorian were fairly similar on our main testbed, on this more limited hardware the Dorian prover significantly
outperforms Mirage, especially when single-threaded.

Ed25519. Finally, we evaluate our two Ed25519 proofs of possession — one using right-field arithmetic
(and thus using Dorian-T25519), and the other using all other optimizations (using Mirage). Here there was
no other academic work, but we did find implementations in Circom and Halo2 [10,11,52]. An earlier version
of this paper included comparisons against both of these implementations, however we have since found that
the former contains numerous soundness issues [108] and as such is an inappropriate comparison. The Halo2
code does not hash the message at all, so these comparisons are biased against us. Results are in Figure 7d.
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Here, our prover times are weaker than for other signatures, though they still surpass the Halo2 baseline.
In an apples-to-apples comparison without hashing our Mirage prover (resp. Dorian) takes 0.6 (resp. 0.2)
seconds, 7.5× (resp. 22.5×) faster than the Halo2 code. In an unfair comparison where our implementations
additionally hash a 64-byte message our provers still outperform the Halo2 code by 4.5× and 5× respectively.
Our Mirage proofs were roughly 10× smaller than the Halo2 baseline and did not increase with message size.
Our Dorian proofs were much larger than the Halo2 baseline, 3× larger in the apples-to-apples comparison
without hashing, and increased with the length of the message.

Our weaker prover times compared to our ECDSA-P256 implementation are primarily due to Ed25519
using SHA-512 as its hash instead of SHA-256: over 90% of the constraints of the Dorian proof are devoted to
hashing—the algebraic parts of the Dorian Ed25519 verifier only cost about eight thousand constraints—and
SHA-512 is a bit more than two times more expensive than SHA-256 in terms of constraints per byte hashed.

The results of our laptop tests were substantially similar to our ECDSA-P256 implementation, albeit with
uniformly longer times in all tests due to the more expensive hash function. The median prover time for our
Mirage implementation on a 2048-byte message was 7.7 seconds when multithreaded and 26.8 seconds when
single-threaded. The median verifier times were 93 and 87 milliseconds respectively. Meanwhile, the median
prover times for our Dorian implementation on this same statement were 3.8 and 7.1 seconds, respectively.
The median verifier times were 191 and 233 milliseconds, respectively. Just as with ECDSA-P256, Dorian
outperforms Mirage on less powerful hardware, especially in the single-threaded case.

ECDSA-based ring signatures. We compare our proof-of-possession of an ECDSA-P256 signature for
a committed public key (S6.2) with the state-of-the-art CDLS [37]. Our prover takes 1.6 ms vs. CDLS’s
502 ms; our verifier takes 1.7 ms vs. CDLS’s 380 ms; and our proof is 406B vs. CDLS’s 155 kB, achieving
312×, 215×, and 390× improvements, respectively, This huge improvement is because CDLS uses a cut-
and-choose protocol that requires linear iterations in the security parameter—usually at least 128—whereas
our implementation only requires 1 iteration for the same security.

Our scheme extends to a ring signature using the Groth-Kohlweiss protocol. Proof and statement sizes
for a ring of size 2n are 360n+ 292B and 33(3 + 2n)B, respectively. The full implementation is a work in
progress.

8.2 Density

As noted in the prior subsection, some of our techniques improve constraint count more than prover time. In
this subsection we discuss why: witness density. Informally, a witness vector is less dense when its elements
are all small integers. We will see that increasing density increases zkSNARK proving time, and while our
techniques do decrease constraint count, they also increase density.

Formally, we define the density of a field element z ∈ {0, . . . , p − 1} to be log(z + 1)/ log p and the
density of a vector to be the mean density of its elements. Note that densities lie in the interval [0, 1].

Figure 8 shows the effect of density on the runtime of SNARK provers and MSMs. MSMs, or multi-scalar
multiplications, are the bottleneck operation in many SNARK provers. We show the runtime of our two
SNARK provers (Mirage and Dorian) on random witnesses of varying density. We also show the runtime of
Mirage’s underlying MSM implementation on input field vectors of varying density. Mirage and its MSM
show a gradually increasing speedup as density falls. Mirage’s speedup is less than its MSM’s because some
of the MSMs used for Mirage have high density, regardless of the density of the Mirage witness. Dorian’s
speed is constant at intermediate densities, but also creeps up at very low densities.

These results explain part of the slowdown observed for our lookup-based SNARKs in the previous
section. Lookups create many witness elements that are uniformly random—and therefore have high density
(w.h.p.). In contrast, many of the lookup-free baseline implementations use witness values that are mostly
0 or 1—which have very low density. More concretely, we measured the witness density of our SHA-256
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Figure 8: How the speed of SNARK provers changes with witness density. The “Dorian” and “Mirage” series shows
end-to-end proving times for a random witness of varying density. The “MSM” series shows just the time of Mirage’s
multi-scalar multiplication—a bottleneck step in proving. All operations are faster at low densities.

implementation and the baseline implementation, for 2048B of random input data. Our implementation has
witness density 52.0%, while the baseline has density 1.0%.

8.3 Summary

Overall, we believe our results are very promising: already practical in some settings, and near practicality in
others. The main takeaways of our evaluation are as follows. First, while lookup arguments were effective
in reducing constraint counts, our results also suggest there is more work to do to make them usable in
the context of real applications, instead of just in microbenchmarks. The complexity of implementing our
lookup-based circuits also suggests there are many opportunities to better integrate lookup techniques into
frontends. The other main takeaway is that, at least in the context of proofs of signature possession, the
algebraic parts of verification are no longer the bottleneck. Instead, the main source of overhead is computing
hashes. Thus, we think future work should focus on improving the efficiency of ZKPs for legacy hashing.

9 Related Work

Existing tools. We apply existing techniques for efficient lookups in signature verifications. Lookup proofs
were defined in [25], with several recent developments [5, 50, 56, 57, 92, 99, 111, 112]. We build on Haböck’s
construction (S2) [62].

Several proving systems [16,40,87] support lookups but use constraint systems different from the one we
use – rank-one constraint systems (R1CS). While our techniques can be adapted to their constraint systems,
one of our primary goals is to build a library for developers targeting R1CS, allowing them to easily integrate
our code. We show how to encode Haböck’s lookup argument into R1CS using randomized checks, but
only one R1CS-based proving system—Mirage [72], a Groth16 extension—supports randomized algorithms.
Mirage is incompatible with our right-field technique (S7), motivating us to design Dorian (S3).

Aside from the optimizations in zkSNARKs, prior work has explored proofs for composite statements.
The seminal work [38] provides a method to combine algebraic-based proof protocols, such as Sigma
protocols, with private-coin interactive proofs based on garbled circuits. Due to the use of private coins,
their protocols cannot be made non-interactive. Agrawal et al. [3] designs non-interactive zero-knowledge
proofs for composite statements, including proof of possesion for RSA signatures. This protocol uses a
commit-and-prove zkSNARKs, enabling the proof of both algebraic statements within zkSNARKs and
arithmetic representations in sigma protocols. This results in a proof containing 298 group elements, mainly
due to their zkSNARKs, compared to just 4 in our approach. A direct comparison of performance is difficult
because they only provide an estimate of prover performance in terms of group exponentiations, and they use
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a group with an order equal to the RSA modulus, which is typically 2048 bits in practice, whereas we use a
group with 255-bit order in Mirage. Applying their composite techniques to the zkSNARKs we used requires
opening the commitments in the zkSNARKs circuit, which can be more computationally expensive than the
RSA modular exponentiation. LegoSNARK [35] builds commit-and-prove zkSNARKs, allowing building
non-interactive proof systems modularly by linking small specialized “gadget” SNARKs in a lightweight
manner. However, the zkSNARKs in [3] and [35] do not support efficient lookups or randomized algorithms.
Sigmabus [67] proposes a technique to move one fixed point multiplication out of the zkSNARK circuit. As
discussed in S6.1, their technique is not directly applicable to our problem since they do not hide the base
of the scalar multiplication, which is part of the signature in our setting. This motivates us to develop our
sidecar protocol for ECDSA verification.

Our sidecar protocol uses the Elgamal cryptosystem to commit to group elements. Some threshold
cryptosystems [46, 88] and threshold ECDSA protocols [36, 76] also use Elgamal for this purpose, but
these protocols expose the encrypted or committed message at certain stages. Separately, some threshold
ECDSA [36, 48, 49, 75, 76, 109, 110] leverage zero-knowledge proofs but expose the nonce R of the signature
at some stage. In contrast, our proof of possession protocol commits to R using the Elgamal cryptosystem
while ensuring that R is never revealed throughout the protocol.

Comparison to our work. Our work focuses on proof of possessions of the most widely-deployed sig-
nature schemes, including RSA PKCS1v1.5 and ECDSA-P256 with SHA256 and Ed25519 with SHA512.
Cinderella [45] builds zero knowledge proofs for X.509 certificate validation, with focus on RSA verification
and ASN.1 parsing, and deployed case studies for TLS and e-voting. xJsnark [73], a programming framework
for verifiable computations with various optimization techniques, further improves RSA verification circuit
but do not support other signature schemes. Their prover time for RSA is at least 3x compared with our
work as shown in Table 7b. For verification of ECDSA over P256 and Ed25519, only [115] and [11] have
reproducible implementations. Both works require one fixed-point scalar multiplication and one dynamic
scalar multiplication within the circuit, each of which involves numerous costly modular reductions over the
base field. The expensive dynamic scalar multiplication can be shifted outside the circuit using our sidecar
technique (S6.1). Their fixed-point scalar multiplication is optimized using preprocessing techniques similar
to ours. To avoid adding points using the complete formula, they leverage a random point during scalar
multiplication, which assumes that the adversary does not know the discrete-logarithm relation between the
random point and the base point. However, we observe that this random point is unnecessary for avoiding
the complete formula when the base point’s order is prime (S6), which is true for both ECDSA-P256 and
Ed25519. With the same windowed size, their methods incur two additional point additions per fixed-point
multiplication due to adding and subtracting the random point. Additionally, neither of their works addresses
hashing. Our work outperforms theirs according to Table 7c and Table 7d.

A different setting for ECDSA verification is explored in CDLS [37] and zkAttest [54]. The setting is to
prove knowledge of a signature, with public message and committed signature verification key; it is known
this can be used to build ring signatures. Prior work [37, 54] provided a sigma protocol for this setting, but
their proof size is larger than 100kB, making it somewhat impractical. We propose a new protocol for this
setting, yielding huge improvements in the proof size and prover and verifier time.

Non-legacy proofs of possession. Several works [9, 28, 31, 33, 103] focus on proofs of possession for
non-legacy signature schemes. These protocols achieve high efficiency through the specialized design of the
signature schemes, but these signature schemes are not widely adopted in legacy systems. In contrast, we aim
to provide compatibility with legacy signature schemes, making these protocols not directly comparable to
ours. (We suspect they would have a faster prover and comparable proof size and verifier time.)

Our work can be easily adapted to build anonymous signature or anonymous credentials. Various
anonymous signature schemes [7,20,21,23,41,78,79,86,93,94,100] are designed with specialized protocols.
Our zkSNARK circuits for signature verification can be easily adapted to support “advanced” signature
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schemes, such as ring signatures, group signatures, multi-signatures, and threshold signatures, by leveraging
existing transformations [14] or folklore techniques. While this approach introduces some overhead compared
to custom-built anonymous signatures, it offers legacy compatibility, allowing for the conversion of regular
credentials into anonymous signatures without coordinating with the original signer (or, crucially, without
knowledge of the signing key). It also gives more flexibility in terms of the statements that can be proved—
most other works on anonymous credentials [13, 29, 44, 85, 101] only support a priori fixed criteria. (zk-
creds [96] is a notable exception—like us, they build off of zk-SNARKs.)

We note that many of these applications would require us to use a weakly simulation extractable general-
purpose zkSNARK. Neither Mirage nor Dorian are known to be (weakly) simulation extractable. Their base
schemes – Groth16 and Spartan – either are, or can easily be made, weakly-simulation extractable [12, 42].
This is an interesting open question for future work.

SHA-256 in zkSNARKs. Our SHA-256 implementation is based on the Halo2 standard library’s SHA-256
implementation [60], which also uses Bootle et al.’s sparse form [25]. Yet, there are two key differences.
First, they target halo2 [113], a zkSNARK for Plonkish constraints—not R1CS. Second, they use 16-bit limbs
and a single DS16 table. Instead, we use a variety of smaller tables (DS11,DS10,S11,D11, . . . ).

Fine-grained tables admit various cost reductions. First, their setup costs (<10k constraints) are much
lower than DS16’s (≈66k). Second, Sb and Db lookups have cost 1, compared to DSb’s cost of 2. This is
helpful, for example, in Example 1; without the Db tables, the total cost of the 3-ary XOR would be 12, not 9.
Third, smaller tables allows us to align some shift/rotation offsets with limb boundaries, which makes those
shifts/rotations free.
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A Security of Our Sidecar Protocol

A.1 Additional Preliminaries

A.1.1 Commitment Schemes

Definition 4 (Commitment Scheme). A commitment scheme Com is a pair of PPT algorithms (Setup,Com)
with the following syntax:

• Setup(1λ)→ pp: takes as input the security parameter and outputs public parameters pp,

• Compp(m, o)→ cm: takes as input the public parameters pp, a message m, and an opening o, and
outputs a commitment cm.

For most commitment schemes, verifying if cm is a commitment to a candidate message m given a public
parameter pp involves inputting cm, m and a opening o and checking if cm = Compp(m, o).

The commitment scheme mainly used in this work is Poseidon commitment [59]. Its public parameter is
empty, so this is omitted in the later sections. We define the security properties of a commitment scheme.

Definition 5 (Hiding). Com satisfies hiding if, for any adversary A, the following probability Advhide
Com(A)

is negligible in λ: ∣∣Pr[HIDEA
0,Com(λ)]− Pr[HIDEA

1,Com(λ)]
∣∣ .

For computational hiding, we further restrict A to be PPT. The hiding game is defined in Figure 9.
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Game HIDEb,Com(λ):

pp←$ Setup(1λ)

b′ ← ALRpp,b(·,·)(1λ)

return b′

LRpp,b(m0,m1):

o←$O
c← Compp(mb, o)

return c

Figure 9: Hiding game for commitment schemes.

Definition 6 (Binding). Com satisfies binding if, for any adversaryA, the following probability Advbind
Com(A)

is negligible in λ:

Pr


pp← Setup(1λ)

(cm,m0,m1, o0, o1)← A(pp)
Compp(m0, o0) = Compp(m1, o1)

∧ m0 ̸= m1

 .

For computational binding, we further restrict A to be PPT.

A.1.2 Interactive Arguments

Definition 7. An interactive argument for a relationR is a triple of PPT algorithms Π = (Setup,P, V ) with
the following syntax:

• Setup(ppG)→ pp: takes as input the description ppG of a relationR and outputs public parameters
pp,

• ⟨P(w), V ⟩(pp,x) → {0, 1}: an interactive protocol whereby the prover P, holding a witness w,
interacts with the verifier V on common input (pp,x) to convince V that (pp,x, w) ∈ R. At the end,
V outputs a bit for accept/reject.

Definition 8 (Completeness [42]). A interactive arguments is complete if for any adversary A,

Pr

[
(pp,x, w) /∈ R ∨
⟨P(w), V ⟩(pp,x) = 1

:
pp← Setup(ppG)

(x, w)← A(pp)

]
= 1.

Definition 9 (Honest-Verifier Zero-Knowledge [53]). A public-coin interactive argument Π = (Setup,P, V )
for a relationR is computational honest-verifier zero-knowledge (cHVZK) if there exists a PPT simulator
Sim such that for all pp← Setup(ppG) and (pp,x, w) ∈ R,

{ViewV ⟨P(pp,x, w), V (pp,x)⟩} ≈c {Sim(pp,x)}.

Here ViewV ⟨P(pp,x, w), V (pp,x)⟩ denotes the view of the verifier, consisting of the transcript and its own
randomness.

Special soundness is defined based on trees of transcripts.

Definition 10 (Tree of Transcripts [42]). Let Π be a (2r+ 1)-message public-coin interactive argument for a
relation R, with challenge spaces C1, · · · , Cr. Given n = (n1, · · · , nr) ∈ Nr and ϕ = (ϕ1, · · · , ϕr) with
ϕi : Cni

i → {0, 1} for i ∈ [r], we say T is a (ϕ,n)-tree of accepting transcripts for pp if:

1. T is a tree of depth r + 1,
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Game SST E,A
Π,R,(ϕ,n)(λ):

pp← Setup(ppG)

(x, T )← A(pp)
w ← T E(pp,x, T )
return (pp,x, w) /∈ R∧
IsAccepting ((ϕ, n), pp,x, T )
(a) Game for special soundness.

Game KSP
∗

0,Π(λ):

pp← Setup(ppG)

(x, π)← (P∗)H(pp)

b← V H
FS(pp,x, π)

return b

Game KSExt,P
∗

1,Π,R (λ):

pp← Setup(ppG)

(x, π)← (P∗)H(pp)

b← V H
FS(pp,x, π)

w ← ExtP
∗
(pp,x, π)

return b ∧ ((pp,x, w) ∈ R)
(b) Games for knowledge soundness.

Figure 10: Games for special soundness and knowledge soundness. The extractor Ext is given black-box access to P∗.
In particular, Ext implements H for P∗ and can rewind P∗ to any point.

2. For each i ∈ [r + 1], each vertex at depth i is labeled with a prover’s i-th message ai, and if i ≤ r,
has exactly ni outgoing edges to its children, with each edge labeled with a verifier’s i-th challenge
ci,1, · · · , ci,ni satisfying ϕi(ci,1, · · · , ci,ni) = 1. Additionally, the root’s label is prepended with x (so
the label becomes (x, a1)),

3. The labels on any root-to-leaf path form a valid input-transcript pair (x, tr).

T is accepting with respect to a input-transcript pair (x, tr) if (x, tr) corresponds to the left-most path of T .
Define IsAccepting ((ϕ,n), pp,x, (π, )T ) to be a predicate checking whether T is a (ϕ,n)-tree of accepting
transcripts for pp and x, and optionally π.

In the usual definition of a tree of accepting transcripts [8, 24], ϕi is the distinctness predicate, meaning
the i-th challenges ci,1, · · · , ci,ni from a vertex at depth i are distinct.

Definition 11 (Special Soundness [42]). Π is a (ϕ,n)-computational special sound if there exists a PPT
tree-extraction algorithm T E such that for all EPT adversary A, the following probability is negligible in λ:

AdvSS
Π,R,(ϕ,n)(T E ,A) := Pr[SST E,A

Π,R,(ϕ,n)(λ)]

The special soundness game is shown in Figure 10a. We say Π is computational special sound (SS) if it is
(ϕ,n)-computational special sound for some ϕ and n.

Next we show that the interactive version of our sidecar protocol in Figure 4 satisfies Special Soundness
and Honest-Verifier Zero-Knowledge (HVZK). We can then apply results from [42] and [53] to argue that the
F-S compiled non-interactive version is adaptive knowledge-sound (Def. 2.8, [42]) and zero-knowledge (Def.
4, [53]). The completeness of our sidecar protocol is straightforward.

A.2 Adaptive Knowledge Soundness

Let ARK be the interactive version of SNARK. Let ΠECDSA be the interactive version of the sidecar protocol
in Figure 4 obtained by undoing all F-S transformations. We first establish special soundness (SS) of ΠECDSA.
We can then get knowledge soundness of its Fiat-Shamir compiled version via a standard result.

Theorem 3. If

1. HCom satisfies binding, and

2. ARK is (ϕARK,nARK)-special sound, where ϕARK = (ϕ2, · · · , ϕr), nARK = (n2, · · · , nr),
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Relation to prove:

RECDSA =

{
(G, pk; (r,R, z,m)) :

pk = zR+ (−H(m)/r)G ∧ r = x(R) mod q ∧ r ̸= 0 ∧ z ̸= 0

}

Relation for inner SNARK:

RARK =



(
K;

(
C(1), cm, cm′, c, (si)i∈[3]

)
;
(
(ei, fi)i∈[3], o, o

′,m,R
))

:∧
i∈[3] si = fi + eic ∧ cm′ = HCom

(
(fi)i∈[3], o

′) ∧ cm = HCom
(
(ei)i∈[3], o

)
∧ C(1) = vK +R where v = e2e

−1
1 mod q ∧ e3 = H(m)/r

∧ r ̸= 0 where r = x(R) mod q ∧ e1 ̸= 0


Figure 11: Relations for our sidecar protocol ΠFS

ECDSA.

then ΠECDSA is (ϕ,n)-special sound, where

• ϕ = (ϕ1, · · · , ϕr) with ϕ1 as a distinctness predicate, and

• n = (2, n2, · · · , nr).

Concretely, let T EARK be an SS extractor for ARK. There exists an SS extractor T E for ΠECDSA running in
PPT such that, for every EPT adversary P∗, there exists a EPT adversary P∗

ARK against SS of ARK and a
PPT adversary AHCom against binding of HCom such that

AdvSS
ΠECDSA,Rpublic,(ϕ,n)

(T E ,P∗) ≤ 2·AdvSS
ARK,RARK,(ϕARK,nARK)

(T EARK,P∗
ARK)+2·Advbinding

HCom (AHCom).

Proof. Let P∗ be an EPT adversary against SS of ΠECDSA. Let (pk, T ) be the output of P∗(pp) in the SS
game. We construct the following SS extractor T E for ΠECDSA by using the SS extractor T EARK for ARK.
T E (pp, pk, T ):

1. Parse pp as ((G,K), ppzk). Parse the root of T as
(
pk, (C(1), U, cm, cm′)

)
.

2. Parse a2,1 of T as
(
(si,1)i∈[3], t1

)
, where t1 is the first prover message for ARK. Set T1 to be the left

subtree of T with root replaced by (x1, t1), where

x1 =
(
C(1), cm, cm′, c1,1, (si,1)i∈[3]

)
.

Obtain witness y1 =
(
(ei,1, fi,1)i∈[3], o1, o

′
1,m1, R1

)
from

T EARK
(
ppzk, (C

(1), cm, cm′, c1,1, (si,1)i∈[3]), T1
)
.

3. Parse a2,2 of T as
(
(si,2)i∈[3], t2

)
, where t2 is the first prover message for ARK. Set T2 to be the right

subtree of T with root replaced by (x2, t2), where

x2 =
(
C(1), cm, cm′, c1,2, (si,2)i∈[3]

)
.

Obtain witness y2 =
(
(ei,2, fi,2)i∈[3], o2, o

′
2,m2, R2

)
from

T EARK
(
ppzk, (C

(1), cm, cm′, c1,2, (si,2)i∈[3]), T2
)
.
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4. If (ei,1)i∈[3] ̸= (ei,2)i∈[3] or (fi,1)i∈[3] ̸= (fi,2)i∈[3], output ⊥. Otherwise, output (R1, e1,1,m1).

We note that (R1, e1,1) is a valid ECDSA signature for the message m1 under the public key pk if
(pp, pk, (R1, e1,1,m1)) ∈ RECDSA (defined in Figure 11).

The extractor T E we construct is PPT because T EARK is PPT. Next, we show that the advantage of the
adversary P∗ against T EARK in the SS game is negligible. We claim that, if P∗ wins in the SS game of
ΠECDSA, then at least one of the following is true:

1. The EPT adversary P∗
1 , which outputs x1 and T1, wins the SS game of ARK;

2. The EPT adversary P∗
2 , which outputs x2 and T2, wins the SS game of ARK;

3. There exists a PPT adversary winning the binding game of HCom.

Suppose P∗ wins in the SS game of ΠECDSA. Further suppose that P∗
1 and P∗

2 do not win the extractor
T EARK in the SS game of ARK. We will show that there exists a PPT adversary winning the binding game of
HCom.

Since P∗ wins, we know that (pk, T ) output by P∗ satisfies IsAccepting ((ϕ,n), pp, pk, T ). This means
that labels on the edges of T satisfy the predicates ϕ, and the labels on any root-to-leaf path form a valid
input-transcript pair (pk, tr).

We will show that IsAccepting ((ϕARK,nARK), ppzk,x1, T1) holds. Recall that T1 is a subtree of T ,
with its root prepended with some messages on vertices and edges leading to the subtree. Since the labels
on any root-to-leaf path of T form a valid input-transcript pair, so do the labels on any root-to-leaf path
of T1. Furthermore, the labels on the edges of T1 satisfy the predicates ϕARK because the labels on the
edges of T satisfy the predicates ϕ, and ϕARK is the subset of ϕ corresponding to predicates for the
subtree. Thus, we know that IsAccepting ((ϕARK,nARK), ppzk,x1, T1) holds. Similarly, we know that
IsAccepting ((ϕARK,nARK), ppzk,x2, T2) holds.

Therefore, we have

IsAccepting ((ϕARK,nARK), ppzk,x1, T1) ∧ IsAccepting ((ϕARK,nARK), ppzk,x2, T2)
=⇒

(ppzk,x1, y1) ∈ RARK ∧ (ppzk,x2, y2) ∈ RARK (1)

Note: y1, y2 are extracted witnesses forRARK (defined in Figure 11).

=⇒
cm = HCom

(
(ei,1)i∈[3], o1

)
= HCom

(
(ei,2)i∈[3], o2

)
∧ cm′ = HCom

(
(fi,1)i∈[3], o

′
1

)
= HCom

(
(fi,2)i∈[3], o

′
2

)
∧

∧
i∈[3]

si,1 = fi,1 + ei,1c1,1 ∧
∧
i∈[3]

si,2 = fi,2 + ei,2c1,2.
(2)

Due to first two lines of Equation (2), a PPT adversary that wins the binding game of HCom exists if at
least one of the following holds:

1. (ei,1)i∈[3] ̸= (ei,2)i∈[3] =⇒ A PPT adversary A(e)
HCom can use T E to obtain two pairs ((ei,1)i∈[3], o1)

and ((ei,2)i∈[3], o2) to break binding of HCom.

2. (fi,1)i∈[3] ̸= (fi,2)i∈[3] =⇒ A PPT adversary A(f)
HCom can use T E to obtain two pairs ((fi,1)i∈[3], o′1)

and ((fi,2)i∈[3], o
′
2) to break binding of HCom.
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To show that at least one of the above holds, we will use proof by contradiction.
Suppose it were true that (ei,1)i∈[3] = (ei,2)i∈[3] and (fi,1)i∈[3] = (fi,2)i∈[3]. Recall that (pk, T ) output

by P∗ satisfies IsAccepting ((ϕ,n), pp, pk, T ). Thus, we have

s1,1C
(1) − s2,1K − s3,1G = U + c1,1pk ∧ s1,2C

(1) − s2,2K − s3,2G = U + c1,2pk

=⇒
△s1C

(1) −△s2K −△s3G = △c · pk
where△si = si,1 − si,2 for all i ∈ [3] and△c = c1,1 − c1,2.

Since ϕ1 is a distinctness predicate, we have c1,1 ̸= c1,2, implying

(△s1/△c)C(1) − (△s2/△c)K − (△s3/△c)G = pk. (3)

Notice in Equation (3) that at least one of△si is non-zero since pk is not an identity point. From last line
of eq. (2) and the assumption that (ei,1)i∈[3] = (ei,2)i∈[3] and (fi,1)i∈[3] = (fi,2)i∈[3], we have, for all i ∈ [3],

△si = ei,1△c

=⇒ ei,1 = △si/△c

eq. (3)
=⇒ e1,1C

(1) − e2,1K − e3,1G = pk. (4)

From Equation (1), we know that (ppzk,x1, y1) ∈ RARK

C(1) = vK +R1 where v = e2,1e
−1
1,1 mod q ∧ e3,1 = H(m1)/r

∧ x(R1) mod q ̸= 0 ∧ e1,1 ̸= 0.

eq. (4)
=⇒

pk = e1,1R1 − (H(m1)/r)G ∧ x(R1) mod q ̸= 0 ∧ e1,1 ̸= 0.

This implies (pp, pk, (R1, e1,1,m1)) ∈ RECDSA, contradicting with the assumption that P∗ wins.
Therefore, either (ei,1)i∈[3] ̸= (ei,2)i∈[3] or (fi,1)i∈[3] ̸= (fi,2)i∈[3] holds, which implies the existence of a
PPT adversary that wins the binding game of HCom.

As a result, we know that at least one of the following is true:

1. The EPT adversary P∗
1 , which outputs x1 and T1, wins the SS game of ARK;

2. The EPT adversary P∗
2 , which outputs x2 and T2, wins the SS game of ARK;

3. A PPT adversary A(e)
HCom can use T E to obtain two pairs ((ei,1)i∈[3], o1) and ((ei,2)i∈[3], o2) to break

binding of HCom.

4. A PPT adversary A(f)
HCom can use T E to obtain two pairs ((fi,1)i∈[3], o′1) and ((fi,2)i∈[3], o

′
2) to break

binding of HCom.

To conclude, we have

AdvSS
ΠECDSA,RECDSA,(ϕ,n)(T E ,P

∗) ≤ 2·AdvSS
ARK,RARK,(ϕARK,nARK)

(T EARK,P∗
ARK)+2·Advbinding

HCom (AHCom).

Since each term in the right hand side is negligible, the advantage of P∗ is also negligible, thereby showing
that ΠECDSA is (ϕ,n)-special sound.
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Theorem 4. If ΠECDSA is (ϕ,n)-special sound, then its Fiat-Shamir transformed version ΠFS
ECDSA is adap-

tively knowledge sound.

Proof. Let C be the minimum predicate size of ϕ. From [42], there exists an EPT extractor Ext such that for
every PPT adversary P∗ againt KS making at most Q random oracle calls, there exists an EPT adversary A
against SS such that

AdvKS
ΠFS

ECDSA,RECDSA
(Ext,P∗) ≤

Q(Q− 1)/2 + (Q+ 1)(
∑r

i=1 ni − r)

C
+AdvSS

ΠECDSA,RECDSA,(ϕ,n)(T E ,A).

Since each term in the right hand side is negligible, the advantage of P∗ is also negligible, thereby showing
that ΠFS

ECDSA is adaptively knowledge sound.

Remark. For this theorem to hold, the verifier challenge in the SNARK instantiating ΠFS
ECDSA must depend on

the prover’s earlier messages before the SNARK proof is generated. In our implementation, this requirement
is met because the SNARK’s verifier challenge is derived from its statement, which includes the prover’s
earlier messages. However, arbitrarily combining a SNARK with an auxiliary protocol might not meet the
security requirement, because, to our knowledge, existing general-purpose SNARK implementations do not
support generating the verifier challenge based on an external transcript.

A.3 Zero Knowledge

Let ΠECDSA be the interactive version of the sidecar protocol in Figure 4, obtained by undoing all F-S
transformations except for the inner SNARK. We first establish Honest-Verifier Zero-Knowledge (HVZK) of
ΠECDSA. We can then get non-interactive zero-knowledge (niZK) of its Fiat-Shamir compiled version via a
standard result.

Theorem 5. The sidecar protocol ΠECDSA satisfies HVZK if

1. HCom is statistically hiding

2. SNARK for the relationRARK is niZK.

Concretely, there exists a PPT simulator Sim for ΠECDSA, constructed using a PPT simulator SimSNARK

for SNARK, such that for every PPT distinguisher D against ΠECDSA, there exists an adversary A against
statistically hiding of HCom, and a distinguisher DSNARK against niZK of SNARK such that, the success
probability of D is at most

AdvZK
SNARK,RSNARK

(SimSNARK,DSNARK) + 2 ·Advhide
HCom(A).

Proof. We begin by noting that the protocol we analyze here is interactive but also uses a NIZK in the third
message. We implicitly assume this NIZK uses a random oracle. Thus, the verifier’s view of the interactive
protocol is still relative to a random oracle. This also means the NIZK simulator SimSNARK must be given
the ability to reprogram this random oracle. We will therefore refer to the simulator as SimRePro

SNARK. However,
since the details of this do not affect our analysis, we leave the RO and the associated bookkeeping otherwise
implicit in our analysis.

Consider the following HVZK simulator Sim for ΠECDSA:
Sim (pp, pk):

1. c←$ Fq
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2. ((G,K), ppzk)← pp

3. (si)i∈[3], (êi)i∈[3], (f̂i)i∈[3]←$ F3
q

4. o, o′, γ←$ Fq

5. C(1) ← γK

6. U ← s1C
(1) − s2K − s3G− cpk

7. cm← HCom
(
(êi)i∈[3], o

)
8. cm′ ← HCom

(
(f̂i)i∈[3], o

′
)

9. πzk ← SimRePro
SNARK

(
ppzk,

(
C(1), cm, cm′, c, (si)i∈[3]

))
10. Output a simulated view consisting of (C(1), U, cm, cm′, (si)i∈[3], πzk) and (honest) verifier’s random-

ness c.

Note that f̂1, f̂2, f̂3 might not be the representation of U in terms of C(1), −K and −G, respectively, but
such representation must exist since their group E/Fq is cyclic.

We will show that the transcript generated by Sim is computationally indistinguishable with the view of a
honest verifier V running an interactive protocol ΠECDSA with the prover P holding (pp, pk, (R, z,m)) ∈
RECDSA (defined in Figure 11).

• H0 : The view of the honest verifier in the real protocol ΠECDSA is (C(1), U, cm, cm′, (si)i∈[3], πzk)
and the verifier’s randomness c generated as follows:

1. P parses pp as ((G,K), ppzk) and generates v, f1, f2, f3←$ Fq, e1 ← z, e2 ← z · v, e3 ←
H(m)/r, where r = x(R) mod q. Then, P computes and sends to V the following:

(a) C(1) ← vK +R

(b) U ← f1C
(1) − f2K − f3G

(c) cm← HCom
(
(ei)i∈[3], o

)
(d) cm′ ← HCom

(
(fi)i∈[3], o

′).

2. V generates and sends to P a challenge c←$ Fq.

3. P sends to V responses (si)i∈[3] and a SNARK proof πzk, where they are computed as follows:

(a) si ← fi + eic for all i ∈ [3]

(b) x←
(
C(1), cm, cm′, c, (si)i∈[3]

)
(c) w ←

(
(ei, fi)i∈[3], o, o

′, v,m,R
)

(d) πzk ← SNARK.Prv(ppzk,x, w)

• H1: The view is same as H0 except that the SNARK proof πzk is generated by the simulator SimRePro
SNARK

for SNARK:
πSNARK ← SimRePro

SNARK

(
ppzk,

(
C(1), cm, cm′, c, (si)i∈[3]

))
• H2: The difference from H1 is that, in H2, the commitment cm′ is generated as follows:

1. f̂1, f̂2, f̂3, ô′←$ Fq

2. cm′ ← HCom((f̂i)i∈[3], ô′)
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• H3: The difference from H2 is that, in H3, the commitment cm is generated as follows:

1. ê1, ê2, ê3, ô←$ Fq

2. cm← HCom((êi)i∈[3], ô)

• H4: The view is generated by the simulator Sim. The difference from H3 is that, in H4:

1. s1, s2, s3 are uniformly chosen by Sim from Fq.

2. C(1) ← γK for a uniformly chosen γ←$ Fq.

3. Instead of computing
U ← f1C

(1) − f2K − f3G,

Sim computes
U ← s1C

(1) − s2K − s3G− c · pk.

We will show that

∆(H0, H4) ≤
4∑

i=0

∆(Hi, Hi+1)

= ∆(H0, H1) + ∆(H1, H2) + ∆(H2, H3) + ∆(H3, H4)

≤ AdvZK
SNARK,RSNARK

(SimRePro
SNARK,DSNARK) + 2 ·Advhide

HCom(A).

We will then show that

∆(H0, H1) ≤ AdvZK
SNARK,RSNARK

(SimRePro
SNARK,DSNARK)

∆(H1, H2) ≤ Advhide
HCom(A)

∆(H2, H3) ≤ Advhide
HCom(A)

∆(H3, H4) = 0.

By leveraging a distinguisher D(0) for H0, H1, we construct a distingisher DSNARK against niZK of
SNARK:

1. DSNARK sets pp to be ((G,K), ppzk), randomly generates signing key pair (pk, sk), message m←$M
and compute a ECDSA signature (r, s) ← ECDSA.Sign(sk,m). DSNARK then computes R ←
(H(m)/s)G+ (r/s)pk and z ← s/r.

2. With (pp, pk, (R, z,m)), DSNARK generates the view by following the construction of H0 except
that πzk is generated by the oracle O provided by the niZK security game. The oracle O is either
SNARK.Prv(ppzk, ·, ·) or SNARK.SimRePro

SNARK(ppzk, ·, ·), depending on whether DSNARK is in the real
or simulated world.

3. This generated view is feeded to D(0). DSNARK outputs what D(0) returns.

Observe that (pp, pk, (R, z,m)) generated by DSNARK is in the relationRECDSA. Combining this with the
construction of DSNARK, the input-witness pair input to the oracle O by DSNARK is always in the relation
RSNARK, and thus the view generated by DSNARK is perfect indistinguishable from

• H0 when O = SNARK.Prv(ppzk, ·, ·)

• H1 when O = SNARK.SimRePro
SNARK(ppzk, ·, ·)
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Therefore, ∆(H0, H1) is smaller than or equal to AdvZK
SNARK,RSNARK

(SimRePro
SNARK,DSNARK).

We then show that there exists an adversary A against hiding such that ∆(H1, H2) ≤ Advhide
HCom(A) and

∆(H2, H3) ≤ Advhide
HCom(A).

By leveraging a distinguisher D(1) for H1, H2, we construct the following adversary A1 against the
statistically hiding property of HCom:

1. A1 generates public parameter pp, a signing key pair (pk, sk), a message m←$M and uses the signing
key to generate a ECDSA signature (R, z). (pp, pk, (R, z,m)) ∈ RECDSA.

2. Given (pp, pk, (R, z,m)), A1 generates the view by following the construction in H1 except that the
commitment cm′ in the view is generated by the oracle HCom.LR(·, ·) provided by the statistically
hiding game.

3. This generated view is feeded to D(1), and A1 simply returns what D(1) returns.

The view generated by A1 is perfect indistinguishable from:

• H1 when the oracle is HCom.LRb=0(·, ·),

• H2 when the oracle is HCom.LRb=1(·, ·).

Note that LR is defined in Figure 9.
Therefore, we have (5) ∆(H1, H2) ≤ Advhide

HCom(A1). Similarly, by leveraging a distinguisher D(2) for
H2, H3, we construct the following adversary A2 against the statistically hiding property of HCom:

1. A2 generates public parameter pp, a signing key pair (pk, sk), a message m←$M and uses the signing
key to generate a ECDSA signature (R, z).

2. Given (pp, pk, (R, z,m)),A2 generates the view by following the construction in H2. The commitment
cm in the view is generated by the oracle HCom.LR(·, ·) provided by the statistically hiding game.

3. This generated view is feeded to D(2), and A2 simply returns what D(2) returns.

The view generated by A2 is perfect indistinguishable from

• H2 when the oracle is HCom.LRb=0(·, ·)

• H3 when the oracle is HCom.LRb=1(·, ·)

Therefore, we have ∆(H2, H3) ≤ Advhide
HCom(A2). Combining this and (5), there must exist an adversary A

against hiding such that ∆(H1, H2) ≤ Advhide
HCom(A) and ∆(H2, H3) ≤ Advhide

HCom(A).
We then claim that ∆(H3, H4) = 0. The only differences between H3 and H4 are in (si)i∈[3], C(1)

and U . We will show that (si)i∈[3], C(1) and U in H3 is identically distributed to those in H4. Observe
that in H3, c, s1, s2, s3, C(1) are mutually independent, with c, s1, s2, s3 both uniformly distributed over Fq,
and C(1) uniformly distributed in G, which is because C(1) is always of the form (v + vr)K in H3 with
v←$ Fq and some vr satisfying R = vrK. Given c, s1, s2, s3, C

(1), the value U is uniquely determined by
s1C

(1) − s2K − s3G− cpk. The above implies that ∆(H3, H4) = 0.
As a result, we have ∆(H0, H4) ≤ AdvZK

SNARK,RSNARK
(SimRePro

SNARK,DSNARK)+2 ·Advhide
HCom(A), thereby

showing that ΠECDSA satisfies HVZK.

Theorem 5 above, along with the fact that the first message of ΠECDSA has min-entropy super-logarithmic
in the security parameter, implies that its Fiat-Shamir compiled protocol ΠFS

ECDSA satisfies niZK, according to
Theorem 1 of [53].
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B Security of Our Ring Signature for ECDSA

Definition 12. A ring signature is a quadruple of probabilistic polynomial time (PPT) algorithms Π =
(Setup,KGen, Sign,Vfy) for generating a common key available to all users, generating keys for users,
signing messages and verifying ring signature.

• Setup(1λ)→ pp: Generates and outputs public parameters pp p available to all use

• KGen(pp)→ (vk, sk): Generates a public verification key vk and a private signing key sk.

• Signpp,sk(M,R) → σ: Outputs a signature σ on the message M ∈ {0, 1}∗ with respect to the ring
R = (vk1, . . . , vkN ). We require that (vk, sk) is a valid key pair output by KGen(pp) and that vk ∈ R.

• Vfypp(M,R, σ)→ b: Verifies a purported ring signature σ on a message M with respect to the ring
of public keys R. It outputs 1 if accepting and 0 if rejecting the ring signature.

We adapt the perfect correctness, unforgeability and anonymity properties defined in [61].

Definition 13 (Perfect Correctness [61]). A ring signature scheme (Setup,KGen, Sign,Vfy) has perfect
correctness if for all adversaries A,

Pr

[
pp← Setup(1λ); (vk, sk)← KGen(pp)

(M,R)← A(pp, vk, sk); σ ← Signpp,sk(M,R)

∣∣∣∣∣ Vfypp(M,R, σ) = 1 ∨ vk /∈ R

]
= 1.

Definition 14 (Unforgeability [61]). A ring signature scheme (Setup,KGen,Sign,Vfy) is unforgeable (with
respect to insider corruption) if for all PPT adversaries A, the following probability is negligible in the
security parameter λ:

Pr

[
pp← Setup(1λ);

(M,R, σ)← AVKGen,Sign,Corrupt(pp) : Vfypp(M,R, σ) = 1

]
,

• VKGen on the ith query picks randomness ri, runs (vki, ski)← KGen(pp; ri), and returns vki.

• Sign(i,M,R) returns σ ← Signpp,ski(M,R), provided (vki, ski) has been generated by VKGen and
vki ∈ R.

• Corrupt(i) returns ri (from which ski can be computed), provided (vki, ski) has been generated by
VKGen.

• A outputs (M,R, σ) such that Sign has not been queried with (∗,M,R) and R only contains keys vki
generated by VKGen where i has not been corrupted.

Definition 15 (Anonymity [61]). A ring signature scheme (Setup,KGen,Sign,Vfy) has perfect anonymity if
for any PPT adversary A

Pr

[
pp← Setup(1λ); (M, i0, i1, R)← AKGen(pp)(pp)

b← {0, 1}; σ ← Signpp,skib
(M,R)

∣∣∣∣∣ A(σ) = b

]
≤ 1

2
+ negl(λ),

where A chooses i0, i1 such that (vki0 , ski0), (vki1 , ski1) have been generated by the key generation
oracle KGen(pp) and vki0 , vki1 ∈ R.
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Theorem 6. The ring signature scheme ΠRing (defined in Figure 12) satisfies perfect correctness. It is
anonymous if the commitment scheme Com is hiding. It is unforgeable in the random oracle model if Com is
computationally binding and ECDSA is unforgeable.

Proof. Our ring signature is constructed from protocols Πrs and Πmemb discussed in Section 6.2. The
associated relationsRrs andRmemb are (re)stated in Figure 12. The full ring signature relationRring is also
stated in that figure.

Our ring signature’s security follows from the security of Πrs and Πmemb. Let Π′
rs and Π′

memb denote
the pre-Fiat-Shamir-compiled versions of Πrs and Πmemb respectively. The protocol Π′

rs is a special case of
the generic linear protocol defined in [22], where its completeness, (perfect) 2-special soundness and special
Honest-Verifier Zero-Knowledge (sHVZK) are proven. The protocol Π′

memb satisfies completeness, (perfect)
(n+ 1)-special soundness, and sHVZK, as established by the security proof in [61] , where n is the base-2
logarithm of the size of the ring.

Perfect correctness follows from completeness of Πrs and Πmemb. Anonymity follows from special
Honest-Verifier Zero-Knowledge of Πrs and Πmemb and the hiding property of the commitment scheme
Com, which guarantees that it is impossible to distinguish which secret key has been used to generate the
ring signature. (Note that the hiding of Com relies on the discrete log assumption—concretely, being able
to compute the discrete log of K to the base L allows breaking hiding. This means our scheme has only
computational, and in particular non-post-quantum, anonymity.)

Now, we show that our ring signature ΠRing is unforgeable in the random oracle model if the commitment
scheme Com satisfies binding and ECDSA is unforgeable.

We will prove by contradiction. Suppose it were true that our ring signature ΠRing is not unforgeable.
Then there exists an adversary A having at least ϵ probability of creating a succcesful forgery, where 1/ϵ is a
polynomial in the security parameter λ. Let qV , qS , qH be denote upper bounds on the number of queries that
A makes to VKGen, Sign and the random oracle, respectively. These are polynomials in terms of the security
parameter. We will show that A can be used either to construct ACom against the binding property of Com or
construct A′ against the unforgeability of ECDSA.

At a high level, we rely on the special soundness of Πrs and Πmemb. By rewinding A, we obtain n+ 1
successful forgeries using a specific random oracle query, allowing us to extract the witnesses forR′

rs and
Rmemb. This either enables us to extract an ECDSA signature corresponding to a public key generated by
VKGen or to construct an adversary AHCom that breaks the binding property of HCom. We replace one such
public keys with the key targeted by the adversary A′ against the unforgeability of the ECDSA signature
scheme. With non-negligible probability, the extracted ECDSA signature is valid with respect to the key
targeted by A′.

Without loss of generality, assume A checks that it has made a successful forgery, meaning that A calls
the random oracle on a query corresponding to the forged ring signature. Let pk be the key attacked by A′

against the unforgeability of the ECDSA signature scheme. Whenever A queries VKGen, we run as in a real
ring signature scheme ΠRing, except on the j-th query, we return pk instead. If A queries Sign(j,m,S), we
pick the challenge c←$ {0, 1}λ and use special honest verifier zero-knowledge simulators of Πrs and Πmemb

to simulate the proofs. We then program the random oracle H(·) such that H outputs c when inputting x
defined to be the first-round prover messages from Πrs and Πmemb, except if x has already been queried
before in which case we abort (call this a type-one abort). Also, if the number of rewindings exceed 2n/ϵ we
abort—call this a type-two abort.

We start with running the real unforgeability experiment, i.e., instead of picking vkj = pk, we pick
vkj = VKGen(j) and answer all queries honestly (so we do not have type-one aborts).

Observe that an adversary that has probability γ of using a specific random oracle query in a successful
forgery will be rewound n = γ · n/γ times on average on this query to sample n additional forgeries using
this query. By Markov’s Inequality, the probability of the attack entering the rewinding stage and exceeding
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2n/ϵ rewindings (and thus a type-two abort) will therefore be at most ϵ/2. Therefore, we have at least
ϵ− ϵ/2 = ϵ/2 chance of getting n+ 1 successful forgeries using a specific oracle query x.

Switching to simulation of ring signatures instead of giving real ring signatures may result in a type-one
abort when the simulation accidentally results in an oracle query H(x) that has been used before, but with a
different challenge. Due to the fact that the first message of Πmemb has min-entropy super-logarithmic in the
security parameter λ, the probability of this happening is negligible (let define that as v) in λ. Recall that in
each run of A, A makes at most qS signing queries, and thus a total of qS + qH random oracle queries are
made. The probability of reaching a type-one abort is at most v · (qS + qH) · (2n/ϵ+ 1). Note that this term
is negligible in λ since v is negligible and qS , qH , ϵ are polynomials in λ. Define this term as pA.

Another problem that can arise is a collision in the n + 1 challenges we get after rewinding. With a
maximum of qS + qH queries to the random oracle in each run of A we get a total risk of p2A

2·2λ of having a
collision in any random oracle outputs. Avoiding type-one aborts and collisions of challenges leaves us with
at least ϵ

2 − pA −
p2A

2λ+1 chance of getting n + 1 successful forgeries using the same random oracle query
with different challenges. If this happens, by n+ 1-special soundness of Πmemb, there exists a PPT extractor
Extmemb that can extract the witness (ℓ, o′) for the statement (cmpk,S = (pk0, · · · , pkN−1)) such that the
following holds:

• ℓ ∈ {0, . . . , N − 1}

• cmpk = Comp̂p(pkℓ, o
′).

By 2-special soundness of Πrs, there exists a PPT extractor Extrs that can extract the witness (z, z′, t, o)
for the statement (E0, E1, R) such that the following holds:

• E0 = oL

• E1 = zR+ oK

• z′E0 = tL

• z′E1 = R+ tK.

Plugging in E0 = C(0) and E1 = C(1) + (h/r)G into the first two lines yields that

• C(0) = oL

• C(1) − oK = zR− (h/r)G.

Then for pk′ = C(1) − oK, we have

• cmpk = Comp̂p(pk
′, o) = (oL, pk′ + oK)

• pk′ = zR− (h/r)G where r = x(R) mod q and h = H(m) mod q.

We also know that z ̸= 0. This is because applying E0 = oL to z′E0 = tL yields z′oL = tL, implying
t = z′o since L is a generator of the group. Moreover, plugging in t = z′o and E1 = zR + oK into
z′E1 = R + tK yields z′(zR + oK) = R + z′oK, implying z′z = 1 in the field over which the group is
defined. Therefore, z ̸= 0. We also know that r = x(R) mod q ̸= 0 because R comes from a successful
forgery, which requires that r ̸= 0.

Therefore, we can get (z,R, o) such that

• cmpk = Comp̂p(pk
′, o)
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• pk′ = zR− (h/r)G where r = x(R) mod q and h = H(m) mod q.

• z ̸= 0 and r ̸= 0.

The last two lines implies ECDSA.Vf
(
pk′, (R, z),m

)
holds. Therefore, we have (z,R,m) such that

• pkℓ ∈ S

• cmpk = Comp̂p(pkℓ, o
′) = Comp̂p(pk

′, o)

• ECDSA.Vf
(
pk′, (R, z),m

)
.

If pkℓ ̸= pk′, the adversary ACom knows a pair of messages and openings to break the binding property of
Com. Otherwise, we have a valid ECDSA signature-message pair corresponding a verification key in S.
With 1/qv probability, this key equals the key pk targeted by the adversary A′ against the unforgeability of
ECDSA. Therefore, we know that if we obtain n + 1 successful forgeries using the same random oracle
query, then either

• ACom breaks the binding property of Com, or

• if ACom fails, then A′ breaks the unforgeability of ECDSA with a probability at least 1/qV .

This implies

Advbinding
Com (ACom) + qvAdvSign(A′)

≥Pr[Obtain n+ 1 successful forgeries using the same random oracle query]

≥ ϵ

2
− pA −

p2A
2λ+1

, where pA = v · (qS + qH) · (2n/ϵ+ 1) .

=⇒ ϵ ≤ 2Advbinding
Com (ACom) + 2qvAdvSign(A′) + 2pA +

p2A
2λ

.

Recall that we assume that the commitment scheme Com is binding and ECDSA is unforgeable, and
pA is negligible in λ. Therefore, the right hand side is negligible, and thus the left hand side is negligible,
contradicting with the assumption that 1/ϵ is polynomial in λ. Therefore, our ring signature ΠRing is
unforgeable in the random oracle model.

Remark. We conclude by noting that in our implementation we hash all public inputs in both Fiat-Shamir
hashes, to prevent weak F-S attacks [43]. We also observe that it seems nontrivial to prove this scheme
satisfies a ring-signature analogue of strong unforgeability. We believe that with the correct composition of
Πrs and Πmemb—in particular, getting the F-S hash right—our signature is strongly unforgeable, but we
leave the details to future work.
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Relation to prove:

Rring =


(pp = (G, p̂p), (S, cmpk,m,R), (z, pk, o)) :

pk ∈ S ∧ cmpk = Comp̂p(pk, o) ∧ z ̸= 0

∧ pk = zR− (h/r)G where r = x(R) mod q and h = h(m)


Relations for sub-protocols:

R′
rs =

{
((L,K), (E0, E1, R), (z, z′, t, o)) :

E0 = oL ∧ E1 = zR+ oK ∧ z′E0 = tL ∧ z′E1 = R+ tK

}
.

Rmemb =

{ (
p̂p, (cmpk,S = (pk0, · · · , pkN−1)), (ℓ, o)

)
:

ℓ ∈ {0, . . . , N − 1} ∧ cmpk = Comp̂p(pkℓ, o)

}
SignHpp,sk(m,S):

(G,L,K)← pp

(z,R)← ECDSA.Sign(sk,m)

o←$ Zq; z′ ← z−1 mod q; t← oz′ mod q

(C(0), C(1))← cmpk

r = x(R) mod q; h = h(m) mod q

E0 ← C(0); E1 ← C(1) + (h/r)G

ℓ← i : S[i] = pk

πrs ← Πrs.P
H ((L,K); (E0, E1, R); (z, z′, t, o))

πmemb ← Πmemb.P
H ((L,K); (cmpk,S); (ℓ, o))

Return σ = (R, (πrs, πmemb))

(a) The signing algorithm.

VfHpp (m,S, σ):

(R, π)← σ

(G,L,K)← pp

(C(0), C(1))← cmpk

E0 ← C(0)

r = x(R) mod q

h = h(m) mod q

E1 ← C(1) + (h/r)G

(πrs, πmemb)← π

Return r ̸= 0∧Πrs.V
H ((L,K); (E0, E1, R, πrs))

∧ Πmemb.V
H ((L,K); (cmpk,S, πmemb))

(b) The verification algorithm.

Figure 12: The signing and verification algorithms for our ring signature ΠRing for ECDSA. The protocols Πrs and
Πmemb and the relationsRring ,R′

rs andRmemb are all as defined in Section 6.2. The commitment scheme to message
M with opening o is defined as Compp(M,o) = (oL, oK +M) where pp = (L,K). The function H is the hash used
for Fiat-Shamir. We use h to denote the message hashing function used by ECDSA.
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