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Abstract

The Fiat–Shamir transformation underlies numerous non-interactive arguments, with variants that
differ in important ways. This paper addresses a gap between variants analyzed by theoreticians and
variants implemented (and deployed) by practitioners. Specifically, theoretical analyses typically assume
parties have access to random oracles with sufficiently large input and output size, while cryptographic
hash functions in practice have fixed input and output sizes (pushing practitioners towards other variants).

In this paper we propose and analyze a variant of the Fiat–Shamir transformation that is based on
an ideal permutation of fixed size. The transformation relies on the popular duplex sponge paradigm,
and minimizes the number of calls to the permutation (given the amount of information to absorb and
to squeeze). Our variant closely models deployed variants of the Fiat–Shamir transformation, and our
analysis provides concrete security bounds that can be used to set security parameters in practice.

We additionally contribute spongefish, an open-source Rust library implementing our Fiat–Shamir
transformation. The library is interoperable across multiple cryptographic frameworks, and works with
any choice of permutation. The library comes equipped with Keccak and Poseidon permutations, as well
as several “codecs” for re-mapping prover and verifier messages to the permutation’s domain.
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1 Introduction

The Fiat–Shamir transformation [FS86] is a technique that uses a hash function to convert a public-coin
interactive protocol between a prover and a verifier into a corresponding non-interactive protocol. The
beautiful idea underlying the transformation is that one can replace the verifier’s random messages with
suitable outputs of the hash function (if sufficiently “secure”), eliminating the need for interaction. This
technique, in various incarnations, has numerous and diverse applications across cryptography.

The Fiat–Shamir transformation is often studied in the random oracle model (ROM), where the hash
function is modeled as a random function (every input is mapped to a random output). This is setting is
an idealization, as any hash function that one would use in the real world would not be a random function.
Nevertheless, this idealization provides an elegant model where security can be precisely quantified and
then, in practice, one replaces the random oracle with a “random-looking” hash function such as SHA256,
making the heuristic assumption that this replacement does not compromise security. This is an example of
the random oracle methodology that, despite suffering from notable limitations,1 has had an immense impact
on the construction and analysis of highly-efficient cryptographic primitives for practical use.

In this paper we propose and analyze a variant of the Fiat–Shamir transformation, aimed at closely
modeling deployed variants of the Fiat–Shamir transformation. We motivate this in the next few paragraphs,
highlighting why prior work does not adequately capture features of practical interest.
Different shades of Fiat–Shamir. “Fiat–Shamir transformation” is an umbrella term that refers to a class of
related but distinct transformations that apply to different classes of interactive protocols. Differences arise
due to round complexity (one verifier message or multiple verifier messages), salts for zero knowledge (how
many and where they are introduced), and oracle setting (which random oracles are available to parties). We
review the main variants in Section 2.
A security gap. The motivation for this paper is a gap between variants analyzed by theoreticians and
variants implemented (and deployed) by practitioners. On the one hand, theoreticians assume access to a
random oracle (or multiple random oracles) with sufficiently large input and output size. For example, one
assumes that a prover message (or even all prover messages up to a certain round) can be an input to the
random oracle. On the other hand, cryptographic hash functions in practice act over blocks of fixed length, so
practitioners consider (more complex) variants that process sufficiently large inputs via multiple calls to the
fixed-size hash function. These variants have not been analyzed in the appropriate oracle models (where
parties have access to, say, a random oracle with fixed input size). This open security gap should be closed (or
at least reduced) in light of the widespread adoption in practice of the Fiat–Shamir transformation (e.g., in
zkSNARK constructions).
Permutation-based cryptography. Permutation-based cryptography has developed into a viable alternative
to traditional block-cipher-based cryptography, leading to simple and diverse constructions now used in
practice. These include duplex sponges for lightweight authenticated encryption [BDPVA12], eXtensible
Output Functions (XOFs) [MF21], deck functions such as Farfalle for high-speed authenticated encryp-
tion [BDHPVAVK18], compression modes such as Jive [Bou+23], and more. Most notably, the SHA-3
standard [Sha] based on Keccak is an example of a hash function designed according to this methodology: it
is a duplex sponge that enables “absorbing” arbitrary-length inputs and “squeeze” arbitrary-length outputs.

1For example, there are interactive protocols for which the Fiat–Shamir transformation yields a secure protocol if the hash function
is a random oracle but not if the hash function is any efficient function [Bar01; GK03; CGH04; BBHMR19; KRS25].
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1.1 Our results

We propose and analyze the security of a Fiat–Shamir transformation based on a duplex sponge, aimed at
closely modeling deployed variants of the Fiat–Shamir transformation. We accompany our analysis with a
flexible Rust library that enables practitioners to conveniently and efficiently use our variant. We elaborate on
our results below, and then in Section 2 we summarize the ideas for proving our results.
The ideal permutation model. We consider a setting where parties have access to a random permutation
p : Σr+c → Σr+c where Σ is a finite alphabet, c is the capacity, r is the rate, and r + c is the permutation
length.2 These parameters are fixed (independent of any specific interactive protocol). In practice, p would
be heuristically instantiated by a binary permutation (e.g., Keccak [Sha]) or an “algebraic” permutation
(e.g., MiMC [AGRRT16], Poseidon [GKRRS21], Anemoi [Bou+23]). This is the aforementioned setting
of permutation-based cryptography. In particular, p directly gives rise to a corresponding duplex sponge
construction [BDPVA12], a mode of operation that enables absorbing and squeezing strings over Σ.
Our transformation. We transform a given public-coin interactive proof IP = (P,V) for a relation R
into a corresponding non-interactive argument NARG = (P,V) for R, in the ideal permutation model
described above. The transformation additionally depends on a codec cdc that bridges the (typically different)
representation of IP’s messages and p’s alphabet Σ: cdc specifies maps (φi)i∈[k] to encode prover messages
into strings over Σ and maps (ψi)i∈[k] to decode strings over Σ into verifier messages. The transformation
hardcodes a salt size δ ∈ N used to ensure (preservation of) zero knowledge. Overall, our transformation is a
function DSFS (“duplex-sponge Fiat–Shamir”) of the following form:

NARG := DSFS[IP, cdc, δ] .

We outline the transformation in Section 2, and formally describe it in Section 4. Briefly, the permutation p
is used to absorb a random salt in Σδ and then to alternately absorb prover messages and squeeze verifier
messages (suitably relying on the encoding maps and decoding maps in the codec cdc of the given IP).

The transformation minimizes the number of calls to the given permutation p. Specifically, when using p
in a duplex sponge, each call to p absorbs r elements of Σ or squeezes r elements of Σ. For every i ∈ [k], let
ℓP(i) and ℓV(i) be the length of prover and verifier messages for round i when represented over Σ according
to the codec’s maps. Then (up to rounding effects that we ignore here):
• the minimum number of calls to p to absorb all the relevant information is 1

r · (δ +
∑

i∈[k] ℓP(i)), and
• the minimum number of calls to p to squeeze all the relevant information is 1

r ·
∑

i∈[k] ℓV(i).
This is essentially what our transformation achieves.

One can view DSFS as a “cleaned up” variant of several deployed transformation variants. These include:
(i) Trail of Bit’s Decree [Wri], internally relying on Merlin [Val] which in turn is based on the STROBE
protocol framework [Ham17]; (ii) POKSHO [Sig], the library used in Signal for the generation of credentials
in group chats; and (iii) ad-hoc, non-interoperable implementations used in the wild, such as the ones from
arkworks.rs [Ark], Aztec [Azt], Microsoft Research [Set], StarkWare [Sta], and Zcash [BLHG].
Soundness and knowledge soundness. The soundness (resp., knowledge soundness) of NARG is, as with
other Fiat–Shamir transformations, primarily determined by the state-restoration soundness (resp., knowledge
soundness) of IP; see [CY24] for discussions on why state-restoration security intuitively captures the security
of the technique underlying Fiat–Shamir transformations. Here it suffices to note that state-restoration
soundness is implied by sufficiently strong notions of soundness such as round-by-round soundness and
special soundness (and similarly for state-restoration knowledge soundness); see [CY24] (and [AFK22]).

2In security analyses, adversaries also have access to p−1, as in practice permutations are not designed to be hard to invert.
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The informal theorem below puts this in quantitative terms. The take-away is that security against t-query
adversaries is determined by: (i) the state-restoration security of IP against t-move adversaries; plus (ii) a

term 4t
2
+maxi∈[k]⌈ℓP(i)/r⌉(t+maxi∈[k] ℓP(i)/r)

|Σ|c that represents the security of a duplex sponge based on the ideal

permutation p : Σr+c → Σr+c. (There is also another additive error term, relevant in practice, that is incurred
due to decoding biases. We ignore this term in the informal theorem, and postpone its discussion till further
below.)

Theorem 1 (informal). If IP has state-restoration soundness error εsrIP then NARG has soundness error εNARG

such that

εNARG(t) ≤ ε
sr
IP (t) +

2t2

|Σ|c
.

Moreover, a similar statement holds for knowledge soundness: if IP has state-restoration knowledge soundness
error κsrIP then NARG has knowledge soundness error κNARG such that

κNARG(t) ≤ κ
sr
IP (t) +

2t2

|Σ|c
.

We outline the ideas underlying the theorem in Section 2.3, and formally state and prove it in Section 6.
Our analysis in fact shows better upper bounds than stated above: the state-restoration terms εsrIP (t)

and κsrIP (t) can be replaced by the better terms εsrIP (θ⋆(t)) and κsrIP (θ⋆(t)) with the smaller move budget
θ⋆(t) ≈ t/mini∈[k]

ℓP(i)
r . Reducing t by a multiplicative “scale-down” factor represents the (intuitive) fact

that one needs ℓP(i)
r queries to the permutation p to fully absorb an encoded prover message in ΣℓP(i).

Zero knowledge. The zero-knowledge error of NARG is, as with other Fiat–Shamir transformations,
primarily determined by the honest-verifier zero-knowledge error of IP. The main difference compared to
prior variants is the fact that we use only a single random salt in Σδ (independent of the number of rounds).
Establishing zero knowledge of NARG with this improvement demands a significantly more delicate analysis.

Specifically, the distinguishing advantage against t-query adversaries is the sum of: (i) the honest-verifier
zero-knowledge error of IP; (ii) a term t

|Σ|min(δ,c) representing the probability of guessing the salt; and (iii) a

term
t·
∑

i∈[k]⌈ℓV(i)/r⌉
|Σ|r+c representing the probability of guessing intermediate permutation states while squeezing.

(Similar to Theorem 1, there is an additional error term due to decoding biases, which we discuss later.)

Theorem 2 (informal). If IP has honest-verifier zero-knowledge error zIP then NARG has adaptive zero-
knowledge error zNARG such that

zNARG(t) ≤ zIP +
t

|Σ|min(δ,c)
+
t ·
∑

i∈[k]⌈ℓV(i)/r⌉
|Σ|r+c .

We outline the ideas underlying the theorem in Section 2.4, and formally state and prove it in Section 7.
Decoding biases. All our analyses explicitly handle an additive error term coming from a mismatch that
often arises in practice (and must be accounted for).

A codec for IP abstracts the process of encoding prover messages in IP to strings over Σ (to provide as
input to p) and decoding verifier messages in IP from strings over Σ (obtained as outputs from p). For the
decoding, the distribution matters: since IP is public coin, the verifier message for round i ∈ [k] is a uniform
random element ρi sampled from a message spaceMV,i; in contrast, in the Fiat–Shamir transformation, the
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verifier message is obtained as the decoding ρi := ψi(ρ̂i) of a uniform random string ρ̂i in ΣℓV(i) (up to bad
events that are already captured by the other error terms).

However, many decoding maps do not preserve the uniform distribution. For example, if Σ = {0, 1} and
ℓV(i) = 100 andMV,i is a 100-bit prime field then every map from ΣℓV(i) toMV,i introduces some bias
(i.e., does not map the uniform distribution on ΣℓV(i) to the uniform distribution onMV,i).

We account for this by explicitly tracking decoding biases. We say that a codec has bias εcdc if, for
every i ∈ [k], ψi : Σ

ℓV(i) →MV,i is a εcdc,i-biased map (ψi maps the uniform distribution on ΣℓV(i) to a
distribution that is εcdc,i-close to the uniform distribution onMV,i). Our analyses show that the total bias∑

i∈[k]

εcdc,i

appears as an additional additive error in Theorem 1 and Theorem 2. The takeaway is that in practice one
must ensure that the total bias (for the chosen codec) is also suitably small.

To aid practitioners, we provide basic lemmas for establishing the bias of common decoding maps.
Implementation. We implement and evaluate our transform DSFS in Rust, and make it open-source
under a BSD license. Our library, called spongefish (duplex sponge Fiat–Shamir), is freely available at
https://github.com/arkworks-rs/spongefish. Features that stand out compared to other deployed
variants of the Fiat–Shamir transformation include:
• Any permutation. The library supports arbitrary permutation functions over any alphabet. With the library,

we include two permutation functions, keccak [Sha] and poseidon [GKRRS21], plus byte challenges
with grinding (a proof of work integrated within the verifier messages).

• Built-in codecs. The library includes common encoding maps and decoding maps. We provide encoding
maps for absorbing prover messages from field and elliptic curve points. We support traits defined in
arkworks-rs/algebra and zkcrypto/group (two popular Rust frameworks for argument systems).
The non-interactive argument string is interoperable across the two frameworks. We provide decoding
maps, with negligible biases, for converting byte hash outputs into field elements, and converting field
elements hash outputs into bytes (taking into account Lemma B.1). This avoids manual (and error-prone)
conversions that are typically seen in the wild.

We elaborate on our library in Section 8. At present, our library does not target lattice-based argument systems,
which often require rejection sampling and sampling from discrete Gaussian or Bernoulli distributions.

1.2 Application: a BCS transformation from duplex sponges

The Fiat–Shamir transformation is a building block of the BCS transformation [BCS16], which transforms a
public-coin interactive oracle proof (IOP) into a corresponding non-interactive argument in the ROM. The
BCS transformation is widely used in practice, enabling the construction of highly-efficient post-quantum
zkSNARKs (e.g., zkSTARKs).

Our transformation can directly replace the relevant building block in the BCS transformation. This
modified BCS transformation inherits the efficiency advantages of our transformation, benefitting from an
efficient use of the underlying random permutation.

We elaborate on this application in Section 2.5.
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1.3 Open problems

Post-quantum security. Establishing the security of DSFS against superposition queries to the permutation
function remains a challenging open question. Such a result falls in an exciting line of work that establishes
the (unconditional) security of notable non-interactive arguments in the QROM: this includes the Fiat–Shamir
transformation for sigma protocols [DFMS19; LZ19], and the BCS transformation (which includes the
multi-round Fiat–Shamir transformation [CMS19]). Such results are especially valuable given that, in general,
security of a non-interactive argument in the ROM does not imply security in the QROM [YZ21].
UC security. In this paper we target (adaptive variants of) soundness, knowledge soundness, and zero-
knowledge for single instances; this is for simplicity and should be taken as a valuable starting point.
Applications may demand stronger variants, for example: security notions that consider multiple adaptively
chosen instances; non-malleability; simulation-secure soundness; simulation-secure knowledge soundness;
and so on. The gold standard, which in particular implies all of these security properties of “intermediate”
strength, is universally composable security (UC security) in an appropriate global model (such as the global
random oracle model [CJS14; CDGLN18]). The BCS transformation, which includes as a building block the
Fiat–Shamir transformation, does satisfy UC security [CF24]. Establishing the UC security of DSFS within
an appropriate context remains an important open question.
Other FS variants. Variants of the Fiat–Shamir transformation are typically proved secure via a security
reduction to the “basic variant” (which we happen to discuss in Section 2.1). Examples of such reductions
include those for the hash-chain variant in [CY24] and for the duplex-sponge variant in this paper. In practice
one may need to modify these variants or consider yet other variants, which would require adapting a rather
delicate argument to account for these modifications. Superficially, the notion of indifferentiability [MRH04]
may help in reducing some of this recurring work, by proving that modifications are indifferentiable from the
reference oracles. The notion of indifferentiability does not, in fact, suffice as is; nevertheless, we conjecture
that a stronger notion of indifferentiability may suffice; see the discussion in Remark 2.2.

1.4 Related work

This paper is about the security of DSFS, a variant of the Fiat–Shamir transformation, in the ideal permutation
model. In Section 2.1 we review prior variants that have been studied by theoreticians for other oracle models
(i.e., variants in oracle models with a security analysis). Below we summarize two types of other prior work:
(1) research on the Fiat–Shamir transformation in the plain model (no oracles); (2) implementations of the
Fiat–Shamir transformation (without security analyses).
(1) Fiat–Shamir in the plain model. An oracle model is merely an idealization. A concrete (efficient)
function replaces the oracle in the real world. Doing this securely is delicate, as there are examples of
interactive protocols for which no efficient function can securely replace the oracle in the Fiat–Shamir
transformation [GK03; CGH04; BBHMR19; KRS25]. On the other hand, there are classes of interactive
protocols for which there is a way to securely instantiate a random oracle. Most notably the Fiat–Shamir
transformation is secure in the plain model for IPs that are round-by-round sound when the oracle is replaced
by correlation-intractable hash functions (for a suitable relation) [CCHLRR18]. This has led to a beautiful
line of work exploring how to construct such hash functions and to understand for which IPs the Fiat–Shamir
transformation “works” [CCR16; KRR17; CCRR18; HL18; CCHLRR18; Can+19; PS19; BKM20; JKKZ21;
JJ21; HLR21; KLV23; CGJJZ23]. Separately, the Fiat–Shamir transformation can be extended with a suitable
proof-of-work, which rules out many problematic cases [AY25].
(2) Fiat–Shamir in the wild. Differing variants of the Fiat–Shamir transformation can be found in the
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wild. The STROBE [Ham17] framework is used by several implementations [Val; Ark; Wri], and internally
relies on a fixed (not changeable) duplex binary sponge. Akworks [ark] supports arbitrary sponges (to be
used in duplex mode). Some projects internally rely on compression functions, but expose an “absorb” and
“squeeze” interface mimicking duplex sponges: Signal [Sig] internally relies on SHA-2, and Halo2 from
Zcash [BLHG] internally relies on BLAKE2. Some IETF standards [DFHSW; CKGW; Hao; LKWL] perform
the Fiat–Shamir transformation, each in a slightly different way, and targeting a specific set of binary hashes;
no generalized approach or shared design structure is affirmed in the standards community.
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2 Techniques

We outline the main ideas underlying our results. In Section 2.1 we review the basic variants of the Fiat–Shamir
transformation and their limitations. In Section 2.2 we discuss our variant. In Section 2.3 we outline the proof
of Theorem 1 (soundness and knowledge soundness) and Section 2.4 we outline the proof of Theorem 2 (zero
knowledge). Finally, in Section 2.5 we discuss how our variant can be applied to the BCS transformation.

Throughout, we let IP = (P,V) be a public-coin IP for a relationR with round complexity k. We denote
by (MP,i)i∈[k] and (MV,i)i∈[k] the message spaces of prover messages and of verifier messages.

2.1 Review: starting point and the basic variant

A Fiat–Shamir transformation maps IP = (P,V) to a non-interactive argument NARG = (P,V), for the
same relationR, in a certain oracle model. Different transformation variants share a similar template.

• Oracle setting. A variant specifies the distribution D from which a list of oracles f is sampled.

• Argument prover. On input an instance x and witness w, the argument prover P queries the oracles f and
outputs an argument string π that includes IP prover messages (αi ∈MP,i)i∈[k] (as well as some salts for
the purpose of zero knowledge as we discuss in Section 2.4). Prover messages are obtained by emulating an
interaction between the IP prover P(x,w) and an imaginary IP verifier by somehow deriving each verifier
message ρi ∈MV,i via queries to the oracles f .

• Argument verifier. On input an instance x and argument string π, the argument verifier V queries the oracles
f and outputs a decision bit. The decision corresponds to whether V

(
x, (αi)i∈[k], (ρi)i∈[k]

)
accepts, where

(αi)i∈[k] are the IP prover messages in π and (ρi)i∈[k] are the IP verifier messages derived, using the oracles
f , the same way as the (honest) argument prover P .

Variants of the Fiat–Shamir transformation differ in two main features:

• the choice of oracle distribution D; and

• how IP verifier messages (ρi)i∈[k] are derived.

We summarize the main variants of the Fiat–Shamir transformation, and explain their limitations. For
simplicity, we ignore the matter of zero knowledge (and salts) until we discuss it explicitly in Section 2.4.
(1) The basic variant. The basic variant of the Fiat–Shamir transformation, which we denote as FS[IP],
derives each IP verifier message by hashing the instance and all prior IP prover messages. Specifically, for
every i ∈ [k], the i-th verifier message ρi is derived as

ρi := fi
(
x, α1, . . . , αi

)
where fi is a random oracle dedicated to round i. This variant typically appears in theory research papers, and
its security is discussed in detail in [CY24]. Briefly, the soundness (and knowledge soundness) of the resulting
non-interactive argument is determined by the state-restoration soundness (and knowledge soundness) of IP.
(2) The hash-chain variant. The hash-chain variant of the Fiat–Shamir transformation, which we denote as
HCFS[IP], derives each IP verifier message by hashing the current IP prover message and the prior hash.
Specifically, for every i ∈ [k], the i-th verifier message ρi is derived as

ρi :=

{
fi
(
x, α1

)
if i = 1

fi
(
ρi−1, αi

)
if i > 1

.
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This variant is more common in practice-oriented papers, and its security is also discussed in detail in [CY24].
Informally, this variant incurs an additive error of O( t

2

mini∈[k]|MV,i|) against t-query adversaries, representing

the (small) probability that a t-adversary can “break” the hash chain.3

Limitations in practice. Neither variant described above is used in practice due to the same limitation. Hash
functions in practice have fixed input and output sizes; instead both variants rely on oracles whose input and
output domains are not fixed. In FS[IP], for each i ∈ [k], the oracle fi receives inputs inMP,1 × · · · ×MP,i

(plus the instance x) and produces outputs inMV,i. In HCFS[IP], for each i ∈ [k], the oracle fi receives
inputs inMP,i (plus the instance x or verifier message ρi−1) and produces outputs inMV,i. These message
spaces depend on the protocol IP and instance x, so the oracles’ domains and ranges are not fixed.

A separate, and typically ignored, issue is message encoding/decoding: there is often a mismatch between
the domains/ranges of oracles (e.g., binary strings) and message spaces (e.g., field elements or group elements).

2.2 DSFS: a Fiat–Shamir transformation based on the ideal duplex sponge

Practitioners consider variants of the Fiat–Shamir transformation that, intuitively, support sufficiently large
inputs and outputs via multiple calls to a fixed-input-size hash function. Roughly, one can divide variants
based on whether one assumes access to an ideal compression function or an ideal permutation function.

In this paper we consider the case of a permutation function, in line with the trends in symmetric
cryptography that we discussed. Let cdc be a codec for IP that specifies encoding maps (φi :MP,i →
ΣℓP(i))i∈[k] and decoding maps (ψi : Σ

ℓV(i) →MV,i)i∈[k]. We denote by DSFS[IP, cdc] the transformation
variant for the interactive proof IP and codec cdc that we outline below; see Section 4 for the formal description.
Duplex sponge. The duplex sponge construction [BDPVA12] is a well-established mode of operation for a
given permutation p : Σr+c → Σr+c, which allows absorbing and squeezing strings over Σ, with each call to
p handling at most r elements of Σ at a time. This idea has been foundational to the design of hash functions
like SHA-3 and primitives like extensible output functions [MF21].

In Section 3.3 we recall in detail the duplex sponge construction based on an ideal permutation
p : Σr+c → Σr+c (as well as an additional oracle h : {0, 1}≤n → Σc for offline preprocessing as motivated in
Remark 2.1).4 Here it suffices to summarize the main interfaces.

• st0 := DS.Startp(x). Initialize the sponge state st0 given a binary string x.
• st′ := DS.Absorbp(st,χ). Absorb the input string χ ∈ Σ∗, changing the sponge state from st to st′.
• (ρ, st′) := DS.Squeezep(st, ℓ). Squeeze an output ρ ∈ Σℓ, changing the sponge state from st to st′.

Warmup: the sigma-protocol case. For simplicity first we describe the use of the duplex sponge in the
special case of a sigma protocol, which is a particularly simple public-coin IP.

In a sigma protocol, the prover sends a first message α1 ∈ MP,1, the verifier sends a random message
ρ1 ∈ MV,1, and the prover sends a second message α2 ∈ MP,2. To bridge the gap between message
spaces and the permutation’s alphabet, the codec specifies an encoding function φ1 :MP,1 → ΣℓP(1) (that is
injective) and a decoding function ψ1 : Σ

ℓV(1) →MV,1 (that has small bias).5

3In particular, one must ensure that each
∣∣MV,i

∣∣ is super-polynomial in the security parameter λ. If not the case, one can
straightforwardly modify IP to have enough additional dummy randomness per round.

4Specifically, we consider the duplex sponge in overwrite mode rather than canonical duplex sponges “in XOR mode” as it is
simpler and suffices for us.

5An example for Schnorr’s protocol can be found in Appendix A.
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The argument proverPp(x,w) initializes the sponge state st0 := DS.Startp(x), uses P(x,w) to compute
the first IP prover message α1 ∈MP,1, and then derives the single IP verifier message as follows:
1. α̂1 := φ1(α1) ∈ ΣℓP(1) (encode the IP prover message);
2. st′1 := DS.Absorbp(st0, α̂1) (absorb the encoded IP prover message);
3. (ρ̂1, st1) := DS.Squeezep(st′1, ℓV(1)) (squeeze the encoded IP verifier message);
4. ρ1 := ψ1(ρ̂1) ∈MV,1 (decode to obtain the IP verifier message).
Finally, the argument prover gives ρ1 to P(x,w) in order to obtain the second IP prover message α2 ∈MP,2,
and outputs the argument string π := (α1, α2).

The argument verifier Vp(x, π) checks that V
(
x, (α1, α2), ρ1

)
accepts, where ρ1 is derived from x and

α1 following the same procedure used by the argument prover.
The multi-round case. The above extends to the general case where IP = (P,V) is a k-round public-coin
IP: for each round i ∈ [k], the IP prover sends a message αi ∈MP,i and then the IP verifier sends a random
message ρi ∈MV,i;

6 after the interaction, the IP verifier’s decision is computed as V
(
x, (αi)i∈[k], (ρi)i∈[k]

)
.

In this case, to bridge the gap between message spaces and the permutation’s alphabet, the IP’s codec specifies
encoding functions (φi :MP,i → ΣℓP(i))i∈[k] and decoding functions (ψi : Σ

ℓV(i) →MV,i)i∈[k].
The argument prover Pp(x,w) and argument verifier Vp(x, π) each initialize the sponge state st0 :=

DS.Startp(x) and then rely on the codec and duplex sponge to derive the relevant IP verifier messages.7

Specifically, for every i ∈ [k], the IP verifier message ρi ∈MV,i is derived according to these steps:
1. α̂i := φi(αi) ∈ ΣℓP(i) (encode the IP prover message);
2. st′i := DS.Absorbp(sti−1, α̂i) (absorb the encoded IP prover message);
3. (ρ̂i, sti) := DS.Squeezep(st′i, ℓV(i)) (squeeze the encoded IP verifier message);
4. ρi := ψi(ρ̂i) ∈MV,i (decode to obtain the IP verifier message).
Efficiency. DSFS is essentially optimal in terms of number of calls to the (fixed-size) permutation p.
Specifically, putting aside the initialization based on the instance x (typically an offline computation),
the argument prover makes

∑
i∈[k−1]

(⌈ ℓP(i)
r

⌉
+
⌈
ℓV(i)
r

⌉)
queries to p and the argument verifier makes∑

i∈[k]
(⌈ ℓP(i)

r

⌉
+
⌈
ℓV(i)
r

⌉)
queries to p. This is essentially optimal for the information that must be

absorbed/squeezed, given that p can absorb/squeeze at most r elements of Σ per query.
Unlike other Fiat–Shamir libraries used in the wild [Wri; Ark], DSFS does not hash lengths or labels of

the prover and verifier messages. Moreover, differently from HCFS, DSFS uses only a single oracle and,
after squeezing a verifier message, r symbols can be immediately absorbed without calling the permutation
function. These efficiency details save precious (and unnecessary) queries to p.

Remark 2.1 (alternative instance hashing). The argument prover P and argument verifier V initialize the
sponge state as st0 := DS.Startp(x), which is a computation that solely depends on the instance x. The
natural implementation of this step is st0 := DS.Absorbp(st∗, φ0(x)) where st∗ is a fixed sponge state and
φ0 is an encoding for binary strings. However, there are settings where initializing st0 given x can be
viewed as a distinct offline computation with possibly different priorities compared to the other duplex sponge
computations (that depend on prover messages), which may favor alternative methods to hash x, rather than

6We adopt the convention that each round consists of a prover message followed by a verifier message (in particular, the prover
moves first); other conventions can be supported with straightforward changes.

7The argument prover derives (ρi)i∈[k−1] in order to compute the IP prover messages (αi)i∈[k], and the argument verifier derives
(ρi)i∈[k] in order to compute the decision bit.
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DS.Absorbp(st∗, φ0(x)).
8 Hence, in Section 3.3 (and subsequent technical sections) we consider a more

flexible oracle setting: for instances x of size at most n, we consider an additional oracle h : {0, 1}≤n → Σc

to be used only for the sponge state initialization st0 := DS.Starth(x) via a computation that stores h(x) in
st0. Accordingly, our analysis separately keeps track of an adversary’s queries to h and to p. The analysis then
covers, as a special case, the particular choice where DS.Starth(x) = DS.Absorbp(st∗, φ0(x)) (with h = p).

2.3 Soundness and knowledge soundness

We outline the ideas behind Theorem 1, which establishes the soundness and knowledge soundness of
DSFS[IP, cdc]. The key technical lemma is a reduction that relates the security of DSFS[IP, cdc] to the
security of FS[IP] in a precise sense that we explain below. Intuitively this reduction suffices to prove
Theorem 1 because the security of FS[IP] is determined by the state-restoration security of IP (see [CY24]).

Below we let (P,V) be the argument prover and argument verifier of DSFS[IP, cdc], and (Pstd,Vstd)
be the argument prover and argument verifier of FS[IP]. The oracle model for DSFS[IP, cdc] is a random
permutation p : Σr+c → Σr+c and its inverse p−1 (we refer to this oracle distribution as D𝔖), and the oracle
model for FS[IP] is random oracles (fi)i∈[k] where each fi receives inputs inMP,1 × · · · ×MP,i (plus the
instance x) and produces outputs inMV,i (we refer to this oracle distribution asDIP). Recall that, for security,
we must consider adversaries that also have access to the inverse of p because, in practice, permutations are
typically not designed to be hard to invert.
On the security reduction. We seek a procedure D2SAlgo that converts a query-efficient malicious argument
prover P̃ for V into a query-efficient malicious argument prover P̃std for Vstd that “behaves the same” as P̃ up
to a certain additive error η⋆ (which quantifies the security loss of DSFS[IP, cdc] over FS[IP]).

The precise meaning of “behaves the same” that suffices for our goals is not obvious. Below we motivate
the specific form of our key technical lemma, which provides the desired precise meaning.

First we discuss the goal of reducing the soundness of DSFS[IP, cdc] to the soundness of FS[IP].
Informally, the (adaptive) soundness property upper bounds the probability, over the choice of oracles, that a
query-efficient argument prover outputs a pair (x, π) such that x is not in the language and the argument
verifier accepts (x, π). The key quantities in this experiment are the instance x, argument string π, and
decision bit b. Showing that the following two distributions are η⋆-close in statistical distance suffices:(x, π, b)

∣∣∣∣∣∣∣
(p, p−1)← D𝔖

(x, π)← P̃p,p
−1

b← Vp(x, π)

 and

(x, π, b)

∣∣∣∣∣∣∣
(fi)i∈[k] ← DIP

(x, π)← D2SAlgo(fi)i∈[k](P̃)
b← V(fi)i∈[k]

std (x, π)

 .

However, showing that these two distributions are close does not suffice for knowledge soundness, as we
now explain. Informally, the (adaptive) knowledge soundness property upper bounds the probability, over
the choice of oracles, that a query-efficient argument prover outputs a pair (x, π) such that (x,w) is not in
the relation and the argument verifier accepts (x, π), where w is the output of the knowledge extractor. The
knowledge extractor receives the instance x, argument string π, black-box access to the argument prover, and
the query-answer trace of the argument prover. The query-answer trace is not part of the above statement, so it
does not suffice to reduce the knowledge soundness of DSFS[IP, cdc] to the knowledge soundness of FS[IP].

8For example, in recursive composition of zkSNARKs, the recursive circuit may directly receive as input st0 (rather than having
to compute st0 from x); this means that a different, possibly convenient, hash function can be used to hash x without affecting the
recursive circuit’s efficiency.
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We fix this by following the pattern, developed in [CY24], of relying on an additional component: a
procedure D2STrace that converts a query-answer trace for the permutation function p into a corresponding
query-answer trace for the oracles (fi)i∈[k], in a way that is consistent with the prover conversion by D2SAlgo.

This leads to our key technical lemma, which considers two distributions over quadruples (x, π, b, tr).

Lemma 1. The following two distributions are η⋆-close in statistical distance:(x, π, b, tr)

∣∣∣∣∣∣∣∣∣
(p, p−1)← D𝔖

(x, π)
trP̃←−− P̃p,p

−1

b
trV←−− Vp(x, π)

tr := D2STrace(trP̃∥trV)

 and

(x, π, b, tr)

∣∣∣∣∣∣∣∣∣∣
(fi)i∈[k] ← DIP

(x, π)
trP̃←−− D2SAlgo(fi)i∈[k](P̃)

b
trVstd←−−− V(fi)i∈[k]

std (x, π)
tr := trP̃∥trVstd

 .

(1)

The formal statement is Lemma 5.1, and in Section 6 we prove that the lemma enables us to straightforwardly
establish soundness and knowledge soundness of DSFS[IP, cdc].
Establishing the key lemma. The technical core of the security reduction is establishing that the two
distributions in Equation 1 are statistically close. Specifically, we prove that if P̃ makes at most t queries then
the statistical distance is at most

η⋆(t) := O


(
t+

∑
i∈[k]

⌈
ℓV(i)
r

⌉)2
2 |Σc|

+
∑
i∈[k]

εcdc,i .

We outline the salient points of our proof, which works across several hybrids.

• First, we replace access to the random permutation p with access to the random oracles

g =
(
gi : Σ

ℓP(1) × · · · × ΣℓP(i) → ΣℓV(i)
)
i∈[k]

,

where each gi takes as input encoded prover messages and outputs an encoded verifier message. We seek a
reductionR that converts an argument prover P̃ with oracle access to p into an “equivalent” argument prover
R(P̃) with oracle access to g. Informally, R is tasked with using g to generate encoded verifier messages,
rather than the duplex sponge based on p. This entails that R must do all the necessary book-keeping: it
responds to queries in Σr+c with random answers in Σr+c and, whenever a sequence of queries to p can be
recognized to be absorbing encoded prover messages in ΣℓP(1) × · · · × ΣℓP(i), for some i ∈ [k], it queries
gi to obtain a corresponding output in ΣℓV(i) to later use when another sequence of queries to p can be
recognized as the corresponding squeezing operations. The challenge is that, in the world with p, encoded
messages are absorbed/squeezed across multiple queries whereas, in the world with g, a single query to the
relevant oracle gi with encoded prover messages yields the corresponding encoded verifier message.

Intuitively, each query to p has input (sR,in, sC,in) ∈ Σr+c and, by the duplex sponge construction, the
capacity segment sC,in “points” to a previous output in the query-answer trace (it matches a previous output
capacity segment). This allows us to recover a sequence of rate segments. We refer to this as backtracking.
If backtracking yields a list of encoded prover messages (α̂1, . . . , α̂i), R can query gi with it.

However, a malicious argument prover might attempt at make backtracking ambiguous. For instance, if a
collision in the capacity segment is found, backtracking might not find a single sequence of rate segments.
We carefully prove that this event happens with probability at most O(t2/ |Σc|).
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Even if backtracking is successful, there remains another obstacle: if ℓV(i) > r, then R cannot just return
gi’s output ρ̂i (else P̃ would trivially distinguish). The reduction R splits ρ̂i into segments of length r, and
builds a sequence of queries and answers that would the duplex sponge to yield the same squeezed output.
However, each of these ⌈ℓV(i)/r⌉ queries may have been already queried in the past and, in the unfortunate
case where this happens, R cannot respond with a different answer than before (else P̃ would trivially
distinguish). We carefully prove that this event happens with probability at most t ·

(∑
i∈[k]

⌈ℓV(i)/r⌉
|Σr+c|

)
.

• We replace access to the random oracles g = (gi)i∈[k] with access to the random oracles

f =
(
fi :MP,1 × · · · ×MP,i →MV,i

)
i∈[k]

incurring a statistical distance that is at most
∑

i∈[k] εcdc,i (the sum of the biases of (ψi)i∈[k]).

This entails showing that, for every i ∈ [k], messages can be converted from ΣℓP(i) toMP,i and from
ΣℓV(i) toMV,i. Specifically, we prove that oracle access to f is (

∑
i∈[k] εcdc,i)-close to oracle access to

ψ ◦ g ◦φ−1 :=
(
ψi ◦ gi ◦ φ

−1
i

)
i∈[k]

.

Fixing i ∈ [k], we sketch how fi is εcdc,i-close to ψi ◦ gi ◦ φ
−1
i .

The inverse encoding map φ−1
i does not “disturb” the oracle: φi is injective, so two images under φ−1

i are
different if and only if their corresponding inputs are different. We deduce that gi ◦ φ

−1
i produces random

(and consistent) outputs over ΣℓV(i). (Technical remark: the running time of φ−1 = (φ−1
i )i∈[k] ultimately

affects the running time of the security reduction, due to the need to compute φ−1 for the above translation.)

The decoding map ψi may bias the distribution but we are expecting to account for this: by definition, the
statistical distance between ψi(U(Σ

ℓV(i))) and U(MV,i) is at most εcdci .

Throughout the execution, the inverse permutation p−1 does not help the adversary and the claimed result
follows from the difference lemma, adding the error terms together.

Remark 2.2 (on indifferentiability). We do not know how to obtain Lemma 1 from the fact that the duplex
sponge construction is indifferentiable from a random oracle (in particular, our proof of Lemma 1 is from
scratch), and we suspect that this is not possible. We elaborate on this here.

Indifferentiability is a relaxation of indistinguishability that facilitates flexible security reductions between
systems [MRH04]. In particular, the duplex sponge construction is indifferentiable from the regular sponge
construction [BDPVA12, Lemma 3] and, in turn, the latter is indifferentiable from a random oracle [BDPV08].9

Lemma 1 appears stronger than indifferentiability because it also concerns the query-answer trace of the
adversary with the oracles, which has size t. Our result also tackles the problem of encoding prover
messages, re-mapping verifier messages, and re-constructing the query-answers given to the random oracles
(fi)i∈[k]. Nevertheless, we believe that a stronger notion of indifferentiability (that remains weaker than
indistinguishability) may suffice, and leave distilling such a notion to future work.

9These references focus on the sponge in XOR mode and mention that similar results hold for the sponge in overwrite mode.
Conversely, our Lemma 1 can similarly be proved for the duplex sponge in XOR mode with appropriate changes in our proof.
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2.4 Zero knowledge

The desired privacy behavior for a Fiat–Shamir transformation is the following: if the interactive proof IP is
honest-verifier zero knowledge then the corresponding non-interactive argument NARG is zero knowledge (in
the relevant oracle model). Theorem 2 says that DSFS[IP, cdc] has this desired behavior. Here we summarize
the efficiency improvement achieved over prior variants, and how this affects the proof of zero knowledge.
Programming for zero knowledge. The zero-knowledge property for a non-interactive argument considers
an adversary that chooses an instance-witness pair (in the relation) and then receives an argument string that
is either the output of the argument prover or the output of the simulator. As in other settings the simulator
must have an edge over the adversary; in this oracle setting, the simulator can program oracles (necessarily
so [Pas03; Wee09]). Briefly, in addition to a simulated argument string, the simulator outputs a list of
query-answer pairs for programming oracles, and the adversary subsequently receives query access to oracles
modified this way. (See Definition 7.4 for the definition of zero-knowledge for a non-interactive argument.)

In particular, the adversary sees oracles before programming (when it chooses the instance-witness pair)
and after programming (when it receives a simulated argument string). We deduce that any programmed
location must be unpredictable, or else an adversary could trivially distinguish programmed oracles from
non-programmed ones (and thereby distinguish the real-world and simulated-world distributions).
Programming for Fiat–Shamir. Informally, in a Fiat–Shamir transformation, the zero-knowledge simulator
samples a simulated IP transcript (by using the honest-verifier zero-knowledge simulator of the IP) and
then programs the oracles so that certain query answers match the verifier messages in the simulated IP
transcript. Details of this programming differ across variants due to the differing use of oracles to derive
verifier messages; regardless, as noted above, in all cases programmed points must be unpredictable.

In simple variants of the Fiat–Shamir transformation this unpredictability is “for free”. For example, in
many sigma protocols the first prover message α1 is uniformly sampled from a cryptographically-large group
and the (single) verifier message is derived as ρ := f(x, α1), and the simulator for the sigma protocol also
outputs a random element α1. Hence, the programmed location (x, α1) is unpredictable.

In general, however, we cannot rely on unpredictability coming from the simulated IP transcript. For
example, consider an honest-verifier zero-knowledge IP where the verifier moves first (equivalently, the first
round consists of a fixed prover message followed by a random verifier message). In this case there is no
entropy coming from a prover message prior to the verifier message.
Salts, salts, salts. The common solution is to introduce salt strings into random oracle queries in order
to make them unpredictable. For example, [CY24] analyses the variants FS[IP] and HCFS[IP] of the
Fiat–Shamir transformation where a salt string per IP round is used (i.e., a total of k rounds).

The same approach of “one salt per oracle query” would work for DSFS[IP, cdc] but, unfortunately,
would result in too many salt strings, specifically

∑
i∈[k]

(⌈ ℓP(i)
r−δ

⌉
+
⌈
ℓV(i)
r−δ

⌉)
salt strings of length δ. Indeed,

we consider a setting where the oracle has fixed size, which means that the number of oracle queries is
proportional to the communication complexity, not round complexity. Including all these salts in the final
argument string π would be unacceptable due to the significant increase in argument size.
One salt suffices. We show that, in DSFS[IP, cdc], absorbing a single salt at the beginning suffices.

The (honest) argument prover Pp(x,w) initializes the sponge state st′0 := DS.Startp(x) (as before),
samples a random salt τ ∈ Σδ, and absorbs it st0 := Absorbp(st′0, τ ) ∈ Σr+c × [0, r]× [0, r]; the rest of P
remains unchanged, except the salt is included in the argument string as π := (τ , (αi)i∈[k]). The argument
verifier Vp(x, π) similarly initializes the sponge state and absorbs the salt before proceeding as before.

Establishing zero knowledge entails showing that every absorb and squeeze query after initialization
is unpredictable (over a random τ ∈ Σδ). We do so via a direct proof (without reducing zero-knowledge
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of DSFS[IP, cdc] to zero knowledge of FS[IP]). We carefully quantify the statistical distance between the
real-world distribution and simulated-world distribution, by taking into account not only the effect of the
(single) salt, but also the biases incurred by the decoding maps.

The analysis is split in intermediate hybrids, isolating different distinguishing advantages: (i) arising from
queries that absorb the salt τ , of which there are ⌈δ/r⌉; (ii) arising from queries that squeeze verifier messages,
of which there are

∑
i∈[k]⌈ℓV(i)/r⌉; (iii) arising from decoding biases. The latter involves measuring the

statistical distance between
U(ΣℓV(i)) and (ψ−1

i ◦ ψi ◦ U)(Σ
ℓV(i)) .

This can be done in two steps: first showing that ψi(U(Σ
ℓV(i))) is εcdc,i-close to U(MV,i), and then showing

that ψ−1
i (U(MP,i)) is identically distributed to U(ΣℓV(i)).

Overall, our proof of Theorem 2 is significantly more delicate than corresponding ones in [CY24]. See
Section 7 for the formal statement of Theorem 2 and its proof.

Remark 2.3 (one salt in prior variants). Our analysis leads to an efficiency improvement in FS[IP] and
HCFS[IP]. Specifically, our analysis can be adapted to show that one salt would have sufficed for zero
knowledge in both of those constructions, rather than k salts as done in [CY24].

2.5 Application: BCS transformation from a duplex sponge

The BCS transformation can be viewed as the composition of two separate transformations: (i) the iBCS
(interactive BCS) transformation, which maps a public-coin IOP into a corresponding public-coin (succinct)
interactive argument, by relying on a Merkle commitment based on a random oracle; (ii) the Fiat–Shamir
transformation, which maps the public-coin interactive argument into a corresponding non-interactive
argument, by relying on other random oracles. This can be informally summarized via the following
“transformation equation” (and is formally discussed in [CY24]):

BCS[IOP] = HCFS[iBCS[IOP]] . (2)

We can replace the inner transformation with our variant to obtain a variant of the BCS transformation that
internally relies on a (fixed-size) ideal permutation for the purpose of a Fiat–Shamir transformation. (The
compression function for the Merkle commitment remains.) This can be informally summarized as follows:

BCS[IOP] = DSFS[iBCS[IOP], cdc] . (3)

where cdc is an appropriate codec for encoding Merkle commitments (rather than IOP prover messages) and
decoding IOP verifier messages for IOP.

Upper bounds on the soundness and knowledge soundness follow as a corollary of Theorem 1, replacing
the error t

2

2
λ of HCFS with 2t

2

|Σ|c of DSFS. The multi-extraction error κMT that arises in iBCS remains.

Corollary 1 (informal). If IOP has state-restoration soundness error εsrIOP thenNARG := DSFS[iBCS[IOP], cdc]
has soundness error εNARG such that

εNARG(t) ≤ ε
sr
IOP(t) + κMT(t, l, (t+ 1) · k, k) + 2t2

|Σ|c
.

Moreover, a similar statement holds for knowledge soundness: if IOP has state-restoration knowledge
soundness error κsrIOP then NARG has knowledge soundness error κNARG such that

κNARG(t) ≤ κ
sr
IOP(t) + κMT(t, l, (t+ 1) · k, k) + 2t2

|Σ|c
.
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3 Preliminaries

Several definitions in this section (most notably related to interactive proofs, non-interactive arguments, and
the Fiat–Shamir transformation) are direct adaptations of definitions in [CY24].

3.1 Notation

With [n] we denote the range {1, . . . , n}. An alphabet Σ is a non-empty finite set10, containing an element
0 ∈ Σ denoted default value. The Kleene closure Σ∗ denotes all finite-length strings over Σ. Let A and B be
algorithms. We say that A uses B as a black-box, denoted A(B ), to emphasize that A relies only on the
input-output functionality of B, rather than also using its description. If A invokes B some number of times
(on inputs of its choice) and otherwise does not “look” at B’s description. More precisely, for every two
algorithms B1 and B2 that represent the same function, A(B1 ) = A(B2 ).

3.2 Basics

The preimage of a function f : X → Y is a map f−1 : 2Y → 2X : C 7→ {x ∈ X : f(x) ∈ C}. With a slight
abuse of notation, for x ∈ X we denote by f−1(x) the preimage of the singleton {x} under f .

A relation R is a set of instance-witness pairs (x,w). The language associated to a relation R is the
set L(R) of all instances x for which there exists a witness w such that (x,w) ∈ R. We denote by |x| the
length of the instance x (according to some length measure, e.g., the number of bits used to describe x).

We write a← D to denote that the element a is sampled according to the distribution D. We denote by
U(S) the uniform distribution over a given non-empty finite set S. We denote by X → Y the set of functions
from X to Y , so U(X → Y ) refers to the uniform distribution over all such functions. To ease notation, the
act of sampling multiple functions fi : Xi → Yi is denoted as

f = (fi)i∈[k] ← U((Xi → Yi)i∈[k]) ,

indicating that, for each i ∈ [k], fi ← U(Xi → Yi) is sampled uniformly and independently at random.
We denote Af the fact that algorithm A has query access to the function f , and Af the fact that A has

query access to the functions f = (fi)i∈[k]. We say that A is t-query if it makes at most t queries (to any
oracle), and is (ti)i∈[k]-query if, for every i ∈ [k], it makes at most ti queries to the i-th oracle. We write
a

tr← Af to denote the fact that the query-answer trace of A with respect to the oracle f is tr; we also write
a

tr← Af for the case of multiple oracles, in which case tr additionally includes for each query-answer pair
the information about which oracle it is for. When sampling from multiple oracles fi for i ∈ [k], we denote
query-answer trace as tr.

Definition 3.1. We assume the random oracle is implemented via lazy sampling, that is, via the following
stateful algorithm:
• Set the internal state tr to be the empty mapping.
• Upon receiving a query x, if x ∈ tr, return tr[x]; otherwise, sample y ← U(Y ) uniformly at random, set
tr[x] := y and return y.

The list of key-value pairs of tr is called the trace of the random oracle.
10We will generally assume that Σ has partial order. This is only needed in order to perform dichotomic search in logarithmic

time over a list of Σ-tuples (cf. Sections 5.1 and 5.2).
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3.3 Duplex sponge in overwrite mode

We describe a duplex sponge (in overwrite mode) that is directly inspired from [BDPVA12, Sec. 6.2]. The
setting is one where there are two random oracles:

• a random function h : {0, 1}≤n → Σc, and
• a random permutation p : Σr+c → Σr+c (that we sometimes view as a function p : Σr × Σc → Σr × Σc).

Here Σ is a finite (non-empty) alphabet, c is the capacity, r is the rate, and r + c is the permutation length.
Informally, the duplex sponge consists of three procedures that initialize and evolve a sponge state st,

which is a tuple
st = (s, iA, iS) ∈ Σr+c × [0, r]× [0, r]

consisting of a permutation state s = (sR, sC) ∈ Σr+c (with a rate segment sR and a capacity segment
sC), an absorbing index iA ∈ [0, r] for (over)writing parts of the permutation state, and a squeezing index
iS ∈ [0, r] for reading from parts of the permutation state; reading and writing is always to the rate segment.

• An initialization phase, given an input x, produces the initial sponge state st0 = (s, iA, iS) =
(
(0r, sC), 0, r

)
where the rate segment is initialized to 0r and the capacity segment is initialized to sC := h(x).

• An absorbing phase, where an input block χ ∈ Σ∗ is written into rate segment of the sponge state,
interleaved with applications of the permutation p. (The overwrite mode refers to the fact that we overwrite
the rate segment with the input block, rather than “xoring” the rate segment with the input block.)

• A squeezing phase where, for a desired output length ℓ ∈ N, yields an output ρ ∈ Σℓ that is obtained from
the rate segment of the permutation state, in blocks of r elements interleaved with calls to the permutation p.

In more detail, the duplex sponge is constructed as follows.

Construction 3.2. For r, c, n ∈ N, let h : {0, 1}≤n → Σc and p : Σr+c → Σr+c be oracles. The duplex
sponge (in overwrite mode) is a list of procedures DS := (Start,Absorb,Squeeze) that have query access
to the oracles (h, p, p−1) and work as follows.

• st0 := DS.Starth(x).
Given as input x ∈ {0, 1}≤n, compute sC := h(x) ∈ Σc, set the initial permutation state s := (0r, sC) ∈
Σr+c, set the initial absorbing index iA := 0, set the initial squeezing index iS := r, and output the initial
sponge state:

st0 := (s, iA, iS) =
(
(0r, sC), 0, r

)
∈ Σr+c × [0, r]× [0, r] .

• st′ := DS.Absorbp(st,χ).
Given as input st = (s, iA, iS) and χ ∈ Σ∗, output st′ computed as follows.

1. Set i′S := r.
2. If χ is the empty string, then return st′ := (s, iA, i

′
S).

3. Otherwise:
(a) If 0 ≤ iA < r then:

– Let χ be the first element of χ, and let χ′ be the remaining elements of χ.
– Let s′ be the permutation state obtained by overwriting the iA-th element of s with χ.
– Set i′A := iA + 1 (increment the absorbing index).
– Set st′ := (s′, i′A, i

′
S).

– Output DS.Absorb(st′,χ′).
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(b) If iA = r then:
– Set s′ := p(s).
– Set i′A := 0 (reset the absorbing index).
– Set st′ := (s′, i′A, i

′
S).

– Output DS.Absorb(st′,χ).

• (ρ, st′) := DS.Squeezep(st, ℓ).
Given as input st = (s, iA, iS) and ℓ ∈ N, output ρ ∈ Σℓ and st′ computed as follows.

1. Set i′A := r (the absorbing index is not used while squeezing).
2. If ℓ = 0 set ρ to the empty string, set st′ := (s, i′A, iS), and output (ρ, st′).
3. Otherwise:

(a) If 0 ≤ iS < r then:
– Set i′S := iS + 1 (increment the squeezing index).
– Set st′ := (s, i′A, i

′
S).

– Compute (ρ′, st′) := DS.Squeeze(st′, ℓ− 1).
– Output (siS∥ρ

′, st′).
(b) If iS = r then:

– Set s′ := p(s).
– Set i′S := 0 (reset the squeezing index).
– Set st′ := (s′, i′A, i

′
S).

– Output DS.Squeeze(st′, ℓ).

h

p p p p p p
· · ·

· · ·

χ1[0 : r] χ1[r : 2r] ρ1[0 : r] ρ1[r : 2r] χ2[0 : r]

x

0r

absorb squeeze absorb

/
c

/
r

Figure 1: Diagram of the duplex sponge in Construction 3.2.

3.4 Non-interactive arguments in oracle models

An oracle distribution D receives as input a security parameter λ ∈ N and an instance size bound n ∈ N,
and samples a list f of functions. A non-interactive argument (NARG) in the D-oracle model is a tuple
NARG = (P,V), where P is an oracle algorithm known as the argument prover and V is an oracle algorithm
known as the argument verifier, that works as follows. For a given security parameter λ ∈ N and instance size
bound n ∈ N, a list of functions f is sampled according to D(λ, n) and is made public; anyone, including the
argument prover P and the argument verifier V , can query any function in f . The argument prover P receives
as input an instance x and witness w, and outputs an argument string π. The argument verifier V receives as
input the instance x and argument string π, and outputs a bit denoting whether to accept (the bit is 1) or reject
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(the bit is 0). Both P and V additionally also receive as input λ and n, but we omit them for ease of notation.
We consider several properties for a non-interactive argument, stated below. The definitions are from [CY24]
(and straightforwardly adapted to any oracle model); we refer the reader to the relevant discussions there.

Definition 3.3. A non-interactive argument NARG = (P,V) for relation R in the D-oracle model has
(perfect) completeness if for every security parameter λ ∈ N, instance size boundn ∈ N, and instance-witness
pair (x,w) ∈ R such that |x| ≤ n,

Pr

[
Vf (x, π) = 1

∣∣∣∣ f ← D(λ, n)π ← Pf (x,w)

]
= 1 .

The probability is taken over f and any randomness of the argument prover P and verifier V .

Definition 3.4. A non-interactive argument NARG = (P,V) for relation R in the D-oracle model has
soundness error εNARG if for every security parameter λ ∈ N, query bound t ∈ N, t-query malicious argument
prover P̃ , and instance size bound n ∈ N,

Pr

 |x| ≤ n∧ x /∈ L(R)

∧ Vf (x, π) = 1

∣∣∣∣∣∣ f ← D(λ, n)(x, π)← P̃f

 ≤ εNARG(λ, t, n) .
The probability is taken over f and any randomness of the argument verifier V .

Definition 3.5. A non-interactive argument NARG = (P,V) for a relation R in the D-oracle model
has straightline knowledge soundness error κNARG

(
λ, t, n, δP̃(λ, n)

)
if there exists a polynomial-time

deterministic algorithm E (the extractor) such that for every security parameter λ ∈ N, query bound t ∈ N,
t-query deterministic argument prover P̃ , and instance size bound n ∈ N,

Pr

 |x| ≤ n∧ (x,w) /∈ R
∧ Vf (x, π) = 1

∣∣∣∣∣∣
f ← D(λ, n)
(x, π)

tr←− P̃f

w← E(x, π, tr)

 ≤ κNARG(λ, t, n) .

Definition 3.6. Let NARG = (P,V) be a non-interactive argument in the D-oracle model. A deterministic
argument prover P̃ has failure probability δP̃ if for every security parameter λ ∈ N and instance size bound
n ∈ N,

Pr

[
|x| > n

∨ Vf (x, π) = 0

∣∣∣∣ f ← D(λ, n)(x, π)← P̃f
]
≤ δP̃(λ, n) .

Definition 3.7. A non-interactive argument NARG = (P,V) for a relation R in the D-oracle model has
rewinding knowledge soundness error κNARG

(
λ, t, n, δP̃(λ, n)

)
with extraction time etNARG if there exists

a probabilistic algorithm E (the extractor) such that for every security parameter λ ∈ N, query bound t ∈ N,
t-query deterministic argument prover P̃ with failure probability δP̃ and running time τP̃ , and instance size
bound n ∈ N,

Pr


|x| ≤ n
∧ (x,w) /∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣
f ← D(λ, n)
(x, π)

tr←− P̃f

b
trV←− Vf (x, π)

w← E(x, π, tr, trV , P̃ )

 ≤ κNARG

(
λ, t, n, δP̃(λ, n)

)
.

Moreover, E runs in expected time etNARG
(
λ, t, n, δP̃(λ, n), τP̃(λ, n)

)
(over the given inputs and internal

randomness).
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3.5 Interactive proofs

An interactive proof (IP) for relationR is a tuple of interactive algorithms IP = (P,V) that works as follows.
The IP prover P receives as input an instance-witness pair (x,w) and the IP verifier V receives as input
an instance x. They interact across k rounds and, in each round i ∈ [k], the IP prover sends a message
αi and then the IP verifier sends a message ρi. After the interaction, the IP verifier outputs a decision bit
b ∈ {0, 1}. We denote by ⟨P,V⟩IP the random variable that equals the output of V after interacting with P
(the probability is taken over the randomness of P and of V).

Definition 3.8. IP = (P,V) for relation R is (perfectly) complete if for every instance-witness pair
(x,w) ∈ R

Pr[⟨P(x,w),V(x)⟩IP = 1] = 1 .

Definition 3.9. IP = (P,V) for relationR has soundness error εsndIP if for every x /∈ L(R) and malicious
IP prover P̃

Pr
[
⟨P̃,V(x)⟩IP = 1

]
≤ εsndIP (x) .

We additionally define εsndIP (n) := max
x̸∈L(R)

|x|≤n

εsndIP (x).

This work focuses on public-coin interactive proofs. An IP is public coin if every message sent by V is a
random string in Σ∗, each sampled independently at random, and V has no other randomness. In this case,
we can view the IP verifier as a deterministic algorithm V(x,α,ρ) that outputs a decision bit (where α is the
sequence of messages sent by the prover and ρ is the sequence of random messages sent by the verifier).
Message spaces. For every i ∈ [k], we denote byMP,i andMV,i the prover message space and verifier
message space for the i-th round. (These spaces may be functions of, e.g., the instance size.) The message
spaces induce corresponding function spaces that we use later on.

Definition 3.10. For every instance size bound n ∈ N and salt size δ ∈ N, we define the following function
spaces: for every i ∈ [k], Zi(δ, n) := {0, 1}

≤n × {0, 1}≤δ ×MP,1 × · · · ×MP,i →MV,i.

State restoration. We describe a state-restoration soundness and knowledge soundness, security notions
that (informally) allow a malicious prover to obtain (up to a query bound t) verifier messages for the same
prover input. Our formulation is more permissive than [CY24, Def. 12.1], as it allows the prover not to pick a
salt for each round. This change does not affect the soundness results given in the book.

Definition 3.11. The IP state-restoration game for IP = (P,V) with salt size δ ∈ N, random oracles
f = (fi)i∈[k] ∈ U((Zi(δ, n))i∈[k]), and IP state-restoration prover P̃sr is defined below.

SRIP,f ,P̃
sr (δ):

1. Repeat the following until P̃sr decides to exit the loop.
(a) P̃sr outputs (x, τ , (α1, . . . , αi)), where x is an instance, (α1, . . . , αi) are IP prover messages, and

τ are salt strings in {0, 1}≤i·δ.
(b) Set ρi := fi(x, τ , (α1, . . . , αi)).
(c) Send ρi to P̃sr.

2. P̃sr outputs (x, τ , (α1, . . . , αk)), where x is an instance, (α1, . . . , αk) are IP prover messages, and
τ ∈ {0, 1}≤(k−1)δ are salt strings.

3. For every i ∈ [k], set ρi := fi(x, τ , (α1, . . . , αi)).
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4. Output (x, τ , (αi)i∈[k], (ρi)i∈[k]).

We denote by trsr the list of move-response pairs of the form ((x, τ , (α1, . . . , αi)), ρi) performed in the loop.
We show trsr in an execution of the IP state-restoration game using the following notation:

(x, τ , (αi)i∈[k], (ρi)i∈[k])
tr

sr

←−− SRIP,f,P̃
sr (δ) .

P̃sr is t-move if P̃sr exits the loop after at most t iterations.

The above game directly leads to the notion of state-restoration soundness error: it is an upper bound on
the probability that any IP prover in the IP state-restoration game can find an instance not in the language and
an accepting transcript for it.

Definition 3.12. IP = (P,V) has state-restoration soundness error εsrIP if for every salt size δ ∈ N, move
budget t ∈ N, t-move malicious IP state-restoration prover P̃sr, and instance size bound n ∈ N:

Pr

 |x| ≤ n∧ x /∈ L(R)
∧ V

(
x, (αi)i∈[k], (ρi)i∈[k]

)
= 1

∣∣∣∣∣∣ f = (fi)i∈[k] ← U((Zi(δ, n))i∈[k])

(x, τ , (αi)i∈[k], (ρi)i∈[k])← SRIP,f ,P̃
sr (δ)

 ≤ εsrIP (δ, t, n) .
The straightline variant of state-restoration knowledge soundness considers a (deterministic) knowledge

extractor Esr that is tasked with finding a witness w while given the final output (x, τ , (α1, . . . , αk)) of the
state-restoration prover P̃sr and its move-response trace trsr. The knowledge extractor Esr does not receive
the randomness (ρi)i∈[k] used by the IP verifier.

Definition 3.13. IP = (P,V) has straightline state-restoration knowledge soundness error κsrIP if there
exists a polynomial-time deterministic algorithm Esr (the extractor) such that for every salt size δ ∈ N, move
budget t ∈ N, t-move deterministic IP state-restoration prover P̃sr, and instance size bound n:

Pr


|x| ≤ n
∧ (x,w) /∈ R
∧ V

(
x, (αi)i∈[k], (ρi)i∈[k]

)
= 1

∣∣∣∣∣∣∣∣∣
f = (fi)i∈[k] ← U((Zi(δ, n))i∈[k])

(x, τ , (αi)i∈[k], (ρi)i∈[k])
tr

sr

←−−
SRIP,f,P̃

sr (δ)
w← Esr(x, τ , (αi)i∈[k], tr

sr)

 ≤ κsrIP (δ, t, n) .
The rewinding variant of state-restoration knowledge soundness relaxes the prior notion by considering a

knowledge extractor that additionally receives the randomness (ρi)i∈[k] used by the IP verifier and black-box
access to the state-restoration prover P̃sr. In this case, the error may additionally depend on the failure
probability of P̃sr (an upper bound on the probability that the final output of P̃sr does not convince the IP
verifier). Intuitively, as the failure probability increases, the error of extraction increases.

Definition 3.14. Let IP = (P,V) be an IP. A deterministic IP state-restoration prover P̃sr has failure
probability δP̃sr if for every salt size δ ∈ N and instance size bound n:

Pr

 |x| ≤ n
∧ V

(
x, (αi)i∈[k], (ρi)i∈[k]

)
= 0

∣∣∣∣∣∣
f = (fi)i∈[k] ← U((Zi(δ, n))i∈[k])

(x, τ , (αi)i∈[k], (ρi)i∈[k])←
SRIP,f ,P̃

sr (δ)

 ≤ δP̃sr(δ, n) .
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Definition 3.15. IP = (P,V) has rewinding state-restoration knowledge soundness error κsrIP with
extraction time etsrIP if there exists a probabilistic algorithm Esr (the extractor) such that for every salt size
δ ∈ N, move budget t ∈ N, t-move deterministic IP state-restoration prover P̃sr with failure probability δP̃sr

and running time τP̃sr , and instance size bound n:

Pr


|x| ≤ n
∧ (x,w) /∈ R
∧ V

(
x, (αi)i∈[k], (ρi)i∈[k]

)
= 1

∣∣∣∣∣∣∣∣∣
f = (fi)i∈[k] ← U((Zi(δ, n))i∈[k])

(x, τ , (αi)i∈[k], (ρi)i∈[k])
tr

sr

←−−
SRIP,f ,P̃

sr (δ)

w← Esr(x, (αi)i∈[k], τ , (ρi)i∈[k], tr
sr, P̃sr )


≤ κrsrIP (δ, t, n, δP̃sr(δ, n)) .

Moreover, Esr runs in expected time etsrIP (δ, t, n, δP̃sr(δ, n), τP̃sr(δ, n)) (over the given inputs and internal
randomness).

3.6 Fiat–Shamir transformation

Let IP = (P,V) be a public-coin IP with round complexity k and message spaces ((MP,ii
,MV,i))i∈[k].

Define the oracle distribution DIP with salt size δ as follows: for every security parameter λ ∈ N and an
instance size bound n ∈ N,

DIP(λ, n) := U
(
(Zi(δ, n))i∈[k]

)
(4)

where (Zi(δ, n))i∈[k] are the function spaces in Definition 3.10. We present the canonical Fiat–Shamir
transformation for public-coin interactive proofs. The construction here is a simplification of [CY24,
Construction 14.1.1] that relies on a single salt rather than k salts. This simplification does not affect the
soundness (and knowledge soundness) results given in that book.

Construction 3.16. Let δ ∈ N. We define NARG := FS[IP, δ] to be the non-interactive argument NARG =
(P,V) in the DIP-oracle model constructed as follows. The argument prover P receives as input an instance
x and witness w, and the argument verifier V receives as input the instance x and an argument string π.
Both receive query access to oracles f sampled from DIP(λ, n) defined in Equation 4.

• Pf (x,w):

1. Sample a random salt τ ∈ {0, 1}δ.
2. For i = 1, . . . , k:

(a) Compute the i-th message (and auxiliary state) of the IP prover:

(αi, auxi) :=

{
P(x,w) if i = 1

P(auxi−1, ρi−1) if i > 1
.

(b) If i < k, derive the i-th random message of the IP verifier:

ρi := fi
(
x, τ, α1, . . . , αi

)
.

3. Output the argument string π :=
(
τ, (αi)i∈[k]

)
.

• Vf (x, π):
1. Parse the argument string π as a tuple

(
τ, (αi)i∈[k]

)
.
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2. For i = 1, . . . , k, derive the i-th IP verifier message ρi (as P does):

ρi := fi
(
x, τ, α1, . . . , αi

)
.

3. Check that the IP verifier accepts: V
(
x, (αi)i∈[k], (ρi)i∈[k]

)
= 1.

The canonical Fiat–Shamir transformation for public-coin IPs described above satisfies soundness and
knowledge soundness, as we now explain. Theorem 3.17 below (adapted from [CY24]) links the soundness
error of NARG = (P,V) to the state-restoration soundness error of IP = (P,V); similarly, Theorem 3.18
(also adapted from [CY24]) does the same for knowledge soundness.

Theorem 3.17. If IP = (P,V) has state-restoration soundness error εsrIP (see Definition 3.13) then
NARG := FS[IP, δ] in Construction 3.16 has soundness error εNARG (see Definition 3.4) such that, for every
security parameter λ ∈ N, query bound t ∈ N, and instance size bound n ∈ N,

εNARG(λ, t, n) ≤ ε
sr
IP (δ, t, n) .

Theorem 3.18. If IP has rewinding state-restoration knowledge soundness error κsrIP with extraction time
etIP (see Definition 3.15) then NARG := FS[IP, δ] in Construction 3.16 has rewinding knowledge soundness
error κNARG

(
λ, t, n, δP̃(λ, n)

)
with extraction time etNARG (see Definition 3.7) such that, for every security

parameter λ ∈ N, query bound t ∈ N, and instance size bound n ∈ N,
• κNARG

(
λ, t, n, δP̃(λ, n)

)
≤ κsrIP

(
δ, t, n, δP̃(λ, n)

)
, and

• etNARG(λ, t, n, δP̃(λ, n), τP̃(λ, n)) ≤ etsrIP
(
δ, t, n, δP̃(λ, n), τP̃(λ, n) +O(rmax · t)

)
+O(rmax · t).

Moreover, if the IP state-restoration extractor is straightline (see Definition 3.13) then the NARG extractor is
also straightline (see Definition 3.5). In this case:
• the (straightline) knowledge soundness error is κNARG(λ, t, n) ≤ κ

sr
IP (δ, t, n); and

• the (straightline) extraction time is etNARG(λ, t, n) ≤ etsrIP (δ, t, n) +O(rmax · t).
Above rmax := maxi∈[k] log2

∣∣MV,i

∣∣ denotes the maximum verifier randomness length.
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P(x,w)

π :=
(
τ, (αi)i∈[k]

)

• Parse π as
(
τ, (αi)i∈[k]

)
• derive IP randomness:

• check IP decision

V(x, π)

V(x, (αi)i∈[k], (ρi)i∈[k])

x, τ, α1 f1 ρ1

x, τ, α1, α2 f2 ρ2

x, τ, α1, α2, α3 f3 ρ3
...

x, τ, α1, . . . , αk fk ρk

P(x,w)
x, τ, α1

f1

x, τ, α1, α2

f2

x, τ, α1, α2, α3

f3

x, τ, α1, . . . , αk−1

fk−1

αk ∈MP,k

...

π

ρ1 ∈MV,1

ρ2 ∈MV,2

ρ3 ∈MV,3

ρk−1 ∈MV,k−1

$$
α1 ∈MP,1

α2 ∈MP,2

α3 ∈MP,3

αk−1 ∈MP,k−1

Figure 2: Diagram of FS[IP, δ] as defined in Construction 3.16.
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P(x,w)

π :=
(
τ , (αi)i∈[k]

)

• Parse π as
(
τ , (αi)i∈[k]

)
• derive IP randomness:

• check IP decision

V(x, π)

V(x, (αi)i∈[k], (ρi)i∈[k])

x Starth

τ Absorbp

α1 φ1 Absorbp

Squeezep ψ1 ρ1
α2 φ2 Absorbp

Squeezep ψ2 ρ2

αk φk Absorbp

Squeezep ψk ρk
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Figure 3: Diagram of DSFS[IP, δ] as defined in Construction 4.3.
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4 Duplex-sponge Fiat–Shamir transformation

We describe the Fiat–Shamir transformation that we propose in this paper; the transformation is based on
the (ideal) duplex sponge described in Section 3.3. The main security reduction for the transformation is in
Section 5, from which in Section 6 we deduce soundness and knowledge soundness. Separately, in Section 7,
we establish the zero knowledge property for the transformation.

First we give the definition of a codec which is a way to encode prover messages and decode verifier
messages relative to a given alphabet Σ.

Definition 4.1. Let Σ be a finite alphabet and IP = (P,V) be an IP with round complexity k and message
spaces ((MP,i,MV,i))i∈[k]. A codec for IP over Σ with bias εcdc is a function cdc that maps every security
parameter λ ∈ N and instance size bound n ∈ N to a tuple

cdc(λ, n) = (ℓP, ℓV,φ,ψ)

where
• ℓP, ℓV : N→ N are length functions for each round,
• φ is a list of injective maps (φi :MP,i → ΣℓP(i))i∈[k], and
• ψ is a list of maps (ψi : Σ

ℓV(i) → MV,i)i∈[k] where, for each i ∈ [k], ψi is εcdc,i(λ, n)-biased (the
distributions ψi(U(Σ

ℓV(i))) and U(MV,i) are εcdc,i(λ, n)-close in statistical distance).11

Next we give the definition of the oracle distribution D𝔖(λ, n) that we consider.

Definition 4.2. The ideal permutation oracle distribution D𝔖 over alphabet Σ with capacity c ∈ N, and
rate r ∈ N is defined as follows: D𝔖(λ, n) outputs (h, p, p−1) where h : {0, 1}≤n → Σc is a random function,
p : Σr+c → Σr+c is a random permutation, and p−1 is the inverse of p.

Finally we describe our Fiat–Shamir transformation. (Note: p−1 will only be used by the adversary and is
not present.)

Construction 4.3. Let IP = (P,V) be a public-coin IP with round complexity k. Let Σ be a finite alphabet
and cdc a codec for IP over Σ (the codec’s bias does not matter for describing the construction). LetD𝔖 be the
ideal permutation oracle distribution over Σ with capacity c ∈ N and rate r ∈ N. For a salt size δ ∈ N, the
non-interactive argument NARG = DSFS[IP, cdc, δ] in the D𝔖-oracle model is the non-interactive argument
NARG = (P,V) constructed as follows. The argument prover P receives as input an instance x and witness
w, and the argument verifier V receives as input the instance x and an argument string π. Both receive query
access to oracles (h, p) sampled from D𝔖(λ, n) defined in Definition 4.2. Let (ℓP, ℓV,φ,ψ) := cdc(λ, n).

• Ph,p(x,w):

1. Initialize the sponge state with the instance: st′0 := DS.Starth(x) ∈ Σr+c × [0, r]× [0, r].
2. Sample a random salt τ ∈ Σδ.
3. Absorb the salt: st0 := Absorbp(st′0, τ ) ∈ Σr+c × [0, r]× [0, r].
4. For i = 1, . . . , k:

(a) Compute the i-th message (and auxiliary state) of the IP prover:

(αi, auxi) :=

{
P(x,w) ∈MP,1 if i = 1

P(auxi−1, ρi−1) ∈MP,i if i > 1
.

11I.e., ψi maps the uniform distribution on Σ
ℓV(i) to a distribution that is εcdc,i(λ, n)-close to the uniform distribution on MV,i.
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(b) If i < k, encode the prover message: α̂i := φi(αi) ∈ ΣℓP(i).
(c) If i < k, absorb the encoded prover message:

st′i := DS.Absorbp(sti−1, α̂i) ∈ Σr+c × [0, r]× [0, r] .

(d) If i < k, squeeze the encoded verifier message:

(ρ̂i, sti) := DS.Squeezep(st′i, ℓV(i)) ∈ ΣℓV(i) × Σr+c × [0, r]× [0, r] .

(e) If i < k, decode the verifier message: ρi := ψi(ρ̂i) ∈MV,i.
5. Output the argument string π := (τ , (αi)i∈[k]).

• Vh,p(x, π):
1. Parse the argument string π as a salt τ ∈ Σδ and prover messages (αi)i∈[k] ∈MP,1 × · · · ×MP,k.
2. Initialize the sponge state with the instance (as P does): st′0 := DS.Starth(x) ∈ Σr+c × [0, r]× [0, r].
3. Absorb the salt (as P does): st0 := Absorbp(st′0, τ ) ∈ Σr+c × [0, r]× [0, r].
4. For i = 1, . . . , k, derive the i-th IP verifier message ρi (as P does):

(a) Encode the prover message: α̂i := φi(αi) ∈ ΣℓP(i).
(b) Absorb the encoded prover message:

st′i := DS.Absorbp(sti−1, α̂i) ∈ Σr+c × [0, r]× [0, r] .

(c) Squeeze the encoded verifier message:

(ρ̂i, sti) := DS.Squeezep(st′i, ℓV(i)) ∈ ΣℓV(i) × Σr+c × [0, r]× [0, r] .

(d) Decode the verifier message: ρi := ψi(ρ̂i) ∈MV,i.
5. Check that the IP verifier accepts: V

(
x, (αi)i∈[k], (ρi)i∈[k]

)
= 1.

Efficiency. We discuss efficiency properties of the above constructions.

• Argument size. The argument string π contains a salt τ ∈ Σδ and all IP prover messages (and none of the
IP verifier messages). Hence the number of bits in π is

len(τ ) +
∑
i∈[k]

len(αi) = δ · log2 |Σ|+
∑
i∈[k]

log2
∣∣MP,i

∣∣ .
• Prover complexity. The cost of the argument prover P is essentially the same as that of the underlying IP

prover P. The difference is that the argument prover P additionally:
– makes 1 query of length n to the oracle h, in the call to DS.Start;
– makes

⌈
δ+ℓP(1)

r

⌉
+
∑k−1

i=2

⌈
ℓP(i)
r

⌉
queries of length r + c to the oracle p, across calls to DS.Absorb;

– makes
∑k−1

i=1

⌈
ℓV(i)
r

⌉
queries of length r + c to the oracle p, across calls to DS.Squeeze;

– invokes once each of (φi)i∈[k−1] and (ψi)i∈[k−1].

• Verifier complexity. The cost of the argument verifier V is essentially the same as that of the underlying IP
verifier V. The difference is that the argument verifier V additionally:
– makes the same queries to h and p as P does;
– makes

⌈
ℓP(k)

r

⌉
queries of length r + c to the oracle p, due to another call to DS.Absorb;

– makes
⌈
ℓV(k)

r

⌉
queries of length r + c to the oracle p, due to another call to DS.Squeeze;

– invokes once each of (φi)i∈[k] and (ψi)i∈[k].
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5 Security analysis

We provide the main security reduction in this paper: we reduce the security of the duplex-sponge Fiat–Shamir
transformation to the security of the basic Fiat–Shamir transformation. In Section 6 we show that this directly
implies the soundness and knowledge soundness of the duplex-sponge Fiat–Shamir transformation.

Let IP = (P,V) be a public-coin IP for a relationR with round complexity k. Let Σ be a finite alphabet
and cdc a codec for IP over Σ with bias εcdc (see Definition 4.1). Let D𝔖 be an ideal permutation oracle
distribution over Σ with capacity c ∈ N and rate r ∈ N (see Definition 4.2). Let δ ∈ N be a salt size (in
Σ-elements) and δ⋆ := δ log2 |Σ| be its corresponding bit-size.

Consider the following two non-interactive arguments:

• (P,V) := DSFS[IP, cdc, δ] is the non-interactive argument in the D𝔖-oracle model in Construction 4.3;

• (Pstd,Vstd) := FS[IP, δ⋆] is the non-interactive in the DIP-oracle model in Construction 3.16.

We reduce the security of (P,V) to the security of (Pstd,Vstd) via Lemma 5.1 below. Informally,
Lemma 5.1 shows that any (th, tp, tp−1)-query malicious argument prover P̃ for V can be transformed, in
a black-box way via an auxiliary procedure D2SAlgo defined in Section 5.3, into a θ⋆(th, tp, tp−1)-query
malicious argument prover P̃std for Vstd (where θ⋆(th, tp, tp−1) is defined below) that “behaves the same” as
P up to a certain additive error η⋆(λ, (th, tp, tp−1)). Specifically, the output instance, argument string, and
convincing probability are preserved, as are the query-answer traces (after an appropriate transformation by
an auxiliary procedure D2STrace to account for the differing constructions).

Lemma 5.1. There exist algorithms D2SAlgo and D2STrace such that the following holds: for every
security parameter λ ∈ N, instance size bound n ∈ N, and (th, tp, tp−1)-query argument prover P̃ , the two
distributions below

(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)

tr := D2STrace(trP̃∥trV)
return (b,x, π, tr)

f ← DIP(λ, n)

(x, π)
trP̃⋆←−−− D2SAlgof (P̃)

b
trVstd←−−− Vf

std(x, π)

tr := trP̃⋆
∥trVstd

return (b,x, π, tr)

have statistical distance at most:

η⋆(λ, (th, tp, tp−1)) :=
th(th + 3tp + 2LP + 1) + (tp + LP)(2tp + 3LP − 1) + t

p
−1(2th + 2tp + t

p
−1 − 1)

2 |Σ|c

+
∑
i∈[k]

εcdc,i(λ, n) .

(5)
Moreover, D2SAlgo(P̃) is a θ⋆(th, tp, tp−1)-query algorithm where

θ⋆(th, tp, tp−1) :=


tp + t

p
−1

mini∈[k]

⌈
ℓP(i)
r

⌉
 . (6)
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We prove the lemma in Section 5.6. Before proving it, we define the two algorithms D2SAlgo and
D2STrace in Sections 5.3 and 5.4. In turn, these rely on two other algorithms, BackTrack and LookAhead,
defined in Sections 5.1 and 5.2. After defining them, we study the probability that these procedures abort in
Section 5.5 to set the stage for the main lemma.

Throughout, we use the following notation to count number of blocks:

Lδ := ⌈δ/r⌉ , LP(i) := ⌈ℓP(i)/r⌉ , LV(i) := ⌈ℓV(i)/r⌉ . (7)

5.1 Backtracking procedure

The backtracking procedure BackTrack(trh, trp, s) takes as input query-answer traces trh and trp and a
permutation state s = (sR, sC) ∈ Σr+c, and returns a special symbol (err or none) or a tuple (i,x, τ , α̂)

with a round index i ∈ [k], an instance x ∈ {0, 1}n, a salt string τ ∈ Σδ, and a tuple (α̂j , . . . , α̂j) ∈
ΣℓP(1) × · · · × ΣℓP(i) of encoded prover messages. Informally, BackTrack uses the query-answer traces to
recover from the permutation state s the list of elements absorbed so far, returning the current round index i
and absorbed instance x, salt string τ , and encoded prover messages α̂.

BackTrack(trh, trp, s):
1. Initialize an empty list Outs := [].
2. Parse the query-answer traces trh, trp into a list

Chains :=
(
x
(j), (s

(j)
in,0, s

(j)
out,0, s

(j)
in,1, s

(j)
out,1, . . . , s

(j)
in,mj

, s
(j)
out,mj

, s
(j)
in,mj

)
)
j

(8)

where, for every j ∈ [|Chains|]:
(a) (x(j), s

(j)
C,in,0) ∈ trh (i.e., s(j)

C,in,0 = h(x(j))).

(b) s(j)in,mj
= s (i.e., the last capacity segment is the input query).

(c) ∀ ι ∈ [0,mj ], (s
(j)
in,ι, s

(j)
out,ι) ∈ trp (i.e., s(j)out,ι = p(s

(j)
in,ι)).

(d) ∀ ι ∈ [0,mj−1], s
(j)
C,out,ι = s

(j)
C,in,ι+1 (i.e., the capacity segments of s(j)out,ι and s(j)in,ι+1 equal).

Each element in Chains is a candidate sequence of absorb and squeeze operations.
3. For every j ∈ [|Chains|], assemble a candidate salt τ (j):

τ (j) := (s
(j)
R,in,0∥ · · · ∥s

(j)
R,in,Lδ

)[0 : δ] ∈ Σδ .

4. For every j ∈ [|Chains|] and every i ∈ [k], assemble a candidate list of encoded prover messages:
– Let w(i) := Lδ +

∑
ι<i LP(ι) + LV(ι) be the current “state offset”.

– If w(i) + LP(i) ̸= mj , then the j-th candidate has not yet fully absorbed the i-th input in full and the
candidate is not valid.
Discard the j-th element of Chains from the list and continue to the next element in the list (if any).

– If w(i) + LP(i) ≤ mj then we read LP(i) rate segments and interpret them as:

α̂
(j)
i := (s

(j)

R,in,w(i)∥s
(j)

R,in,w(i)
+1
∥ · · · ∥s(j)

R,in,w(i)
+LP(i)

)[0 : ℓP(i)] ∈ ΣℓP(j) . (9)

– Let z(j)i := s
(j)

R,in,w(i)
+LP(i)

[ℓP(i) mod r : r].
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– Check that the remainder of the message is equal to the previous output:

z
(j)
i = (s

(j)

R,out,w(i)
+LP(i)

)[ℓP(i) mod r : r] .

If the above does not hold, discard the j-th element from Chains from the list and continue to the next
element in the list (if any).

– If i > 1, check that the previous verifier message was squeezed correctly by checking that the rate
part is preserved across invocations of the permutation function (to match the overwrite mode of the
sponge):

s
(j)
R,out,i−1 = s

(j)
R,in,i−1 .

If the above does not hold, discard the j-th element from Chains from the list and continue to the next
element in the list (if any).

– If w(i) + LP(i) = mj , store the message read so far as (i,x, τ , α̂) into Outs, where α̂ is a collection
of i vectors, indexed in ι, such that the ι-element is a vector of length ℓP(ι) from Eq. 9. Otherwise,
discard the j-th element from Chains from the list and continue to the next element in the list (if any).

5. Final output:
– If Outs contains more than one element, return err.
– If Outs contains no element, return none.
– Else, return the only element in Outs, (i,x(1), τ (1), α̂(1)).

Time complexity. We assume that the caller of BackTrack provides sorted query-answer traces:
• trh is assumed to be sorted lexicographically by output capacity segment, and
• trp is assumed to be sorted by output capacity segment, then output rate segment, then input capacity

segment, then input rate segment.
In particular, this requires the alphabet Σ to possess an order.

The time complexity of BackTrack is dominated by the time to construct Chains in Eq. 8. Constructing
an element of Chains involves at worst

∣∣trp∣∣ ≤ tp + t
p
−1 lookups. Each lookup takes time (log(tp +

t
p
−1) + log th) · c · log |Σ| to find the element via dichotomic search. The last lookup is done over the trace

trh and takes time log th · c · log |Σ|. Once a chain is constructed, each block (of length r + c) and the
initial instance (of length n) must be checked according to step 4 to be consistent with the construction
DSFS[IP, cdc, δ]. The search can stop when it encounters two “conflicting” chains. Overall, the total running
time is O((tp + t

p
−1) · (log(tp + t

p
−1) + log th) · c · log |Σ| · (r + c+ n)).

5.2 Lookahead procedure

The procedure LookAhead(trp, s, i) takes as input a query-answer trace trp, a permutation state s =

(sR, sC) ∈ Σr+c, a round index i ∈ [k], and returns a special symbol (err or none) or a vector ρ̂i ∈ ΣℓV(i).
Informally, LookAhead recovers an encoded verifier message ρ̂i obtained from a hash chain starting at s.

LookAhead(trp, s, i):
1. Parse the query-answer list of trp into a list

Chains :=
(
(s

(j)
in,0, s

(j)
out,0), (s

(j)
in,1, s

(j)
out,1), . . . , (s

(j)
in,LV(i), s

(j)
out,LV(i))

)m
j=1

where, for every j ∈ [m]:
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– s(j)in,0 = s;

– ∀ ι ∈ [0, LV(i)−1], s
(j)
out,ι = s

(j)
in,ι+1 (i.e., the ι-th output state equals the (ι+ 1)-th input state).

2. Final output:
– If Chains is empty then return none.
– If Chains contains more than one element (m > 1) then return err.
– If Chains contains exactly one element (m = 1) then return

ρ̂i := (sR,out,0∥sR,out,1∥ · · · ∥sR,out,LV(i))[0 : ℓV(i)] ∈ ΣℓV(i) .

Time complexity. The time of LookAhead is dominated by Item 1. Producing an element in Chains
involves, at worst, LV(i) lookups in trp over elements Σr+c. Each lookup can be performed via a dichotomic
search. The caller of LookAhead will provide trp sorted: trp is a list of query-answer pairs of the form
((sR,in,i, sC,in,i), (sR,out,i, sC,out,i)) sorted lexicographically by input (capacity segment, then rate segment) and
then by output (capacity segment, then rate segment). The search stops when it encounters two “conflicting”
chains. Therefore, the overall time complexity is O(LV(i) · (r + c) · log |Σ| · log(tp + t

p
−1)).

5.3 Prover transformation

The auxiliary procedure D2SAlgo translates queries of a malicious prover P̃ for V into oracle queries of a
malicious prover P̃std for Vstd.

The procedure D2SAlgo not only has to deal with converting the queries for oracles sampled from
D𝔖(λ, n) to oracles sampled from DIP(λ, n), but also has to deal with the fact that the prover messages are
encoded differently. To reduce the complexity of this step, we first define D2SQuery (re-mapping oracle
queries for D2SAlgo) to deal with most of the complexity of translating the oracle queries, and then define
D2SAlgo as a thin wrapper around it, dealing with the encoding of the prover messages.
Oracle wrapper D2SQuery. The oracle D2SQuery responds to oracle queries for (h, p, p−1) by translating
and forwarding them to oracles of the form

g := (gi)
k
i=1 ← U

(
({0, 1}≤n × Σδ × ΣℓP(1) × · · · × ΣℓP(i) → ΣℓV(i))i∈[k]

)
.

Looking ahead, such oracles (gi)
k
i=1 will be implemented using oracles sampled fromDIP(λ, n) and the codec

maps φ, ψ. The oracle D2SQuery works as follows:

1. Initialize list Cachep, sorted lists tr, trBTh , tr
BT

p .
The lists trBTh , tr

BT

p are sorted lexicographically by output capacity segment, then output rate capacity
segment, then input segment.
The list tr will host queries to h and p, stored as triplet (‘h’,x, sC) for queries to h and as pairs (‘p’, sin, sout)
for queries to p, ordered by query time of the adversary.

2. For every query x ∈ {0, 1}≤n to the oracle h:
(a) Let sC,out ∈ Σc be the first to match (x, sC,out) ∈ trBTh , if any.
(b) Else, sample sC,out ← U(Σ

c) and add (x, sC,out) to trBTh .
(c) Add (x, sC,out) to trh.
(d) Add (‘h’,x, sC,out) to tr and return sC,out.

3. For every query sout ∈ Σr+c to the oracle p−1:
(a) If ∃ sin such that (sin, sout) ∈ trBTp , then return sin.
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(b) Else, sample sin ← U(Σ
r+c).

(c) Add (sin, sout) to trBTp .
(d) Add (‘p’, sin, sout) to tr.
(e) Return sin.

4. For every query sin = (sR,in, sC,in) ∈ Σr+c to the oracle p:
(a) If ∃ sout ∈ Σr+c such that (sin, sout) ∈ Cachep

i. Pop the first such element from Cachep,
ii. Add (sin, sout) to trBTp ,

(b) Else, if ∃ sout ∈ Σr+c such that ((sin, sout) ∈ trBTp , let the first such match be denoted sout.
(c) Else, run BackTrack(trBTh , tr

BT

p , sin), and proceed as below according to its output.
i. If BackTrack’s output is err then abort.
ii. If BackTrack’s output is none:

A. Sample a sponge state sout ← U(Σ
r+c).

B. Add (sin, sout) to trBTp .
iii. If BackTrack’s output is a tuple (i,x, τ , α̂), then:
iv. Let ρ̂i := gi(x, τ , α̂) and ℓz := r − (ℓV(i) mod r).
v. Sample random capacities s(0)C , . . . , s

(LV(i))
C ← U(Σc), and a random remainder z ← U(Σℓz).

Let (s(0)R , . . . , s
(LV(i))
R ) = (ρ̂i∥z).

vi. Append to Cachep the following pairs in Σr+c × Σr+c:(
sin, (s

(0)
C , s

(0)
R )
)
, . . . ,

(
(s

(LV(i)−1)
C , s

(LV(i)−1)
R ), (s

(LV(i))
C , s

(LV(i))
R )

)
.

vii. Let sout := (s
(0)
R , s

(0)
C ).

(d) Add (‘p’, sin, sout) to tr.
(e) Return sout.

Auxiliary procedure D2SAlgo. The algorithm D2SAlgof (A) is defined as follows:

D2SAlgof (A):
1. For every i ∈ [k], initialize an empty list tri.
2. Run AD2SQuery, answering its queries as follows.
3. For every query (x, τ , α̂1, . . . , α̂i) to oracle gi (with i ∈ [k], x ∈ {0, 1}≤n, τ ∈ Σδ, and α̂ι ∈ ΣℓP(ι)):

(a) If the query is already present in tri, respond with the corresponding answer.
Otherwise, proceed as follows.

(b) Set αι := φ−1
ι (α̂ι) for ι ∈ [i] (compute the unique preimage of αι under φι).

(c) Let τ̌ := bin(τ ) ∈ {0, 1}δ⋆ be the binary representation of τ ∈ Σδ, where δ⋆ := log |Σ| · δ.
(d) Set ρi := fi(x, τ̌ , α1, . . . , αi).
(e) Sample ρ̂i ← ψ−1

i (ρi) (sample a preimage of ρi under ψi).
(f) Add the query-answer pair ((x, τ , α̂1, . . . , α̂i), ρ̂i) to tri.
(g) Respond to A with ρ̂i.

4. Output A’s output.

To simplify notation in the analysis, we use the following shorthand when referring to D2SAlgo:

D2SAlgof (A) := AD2SQuery
ψ
−1◦f◦φ−1

. (10)
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Query complexity. Intuitively, D2SAlgo groups random oracle queries to p of length r into a single query
then forwarded to f . Therefore, assuming no collisions are found during the adversary’s execution, to trigger
a random oracle query to fi, A must perform at least LP(i) queries in order to trigger a query to fi. Given a
(th, tp, tp−1)-query adversary A making at least one query to fi (i ∈ [k]), the procedure D2SAlgo makes at
most:

θ⋆(th, tp, tp−1) :=

⌈
tp + t

p
−1

mini∈[k] LP(i)

⌉
=


tp + t

p
−1

mini∈[k]

⌈
ℓP(i)
r

⌉


queries to the oracles f .
Time complexity. D2SAlgo has an additive cost on the runtime of A.
• For each query to h, a lookup over trBTh is made and n+ log |Σ| bits are copied.
• For each query to p, BackTrack is called, and its output is re-mapped via φ−1

i , ψ−1
i , for each i ∈ [k].

Assuming tp ≥ maxi∈[k] LP(i) (for notational simplicity), D2SAlgo runs in time

O(th · log th · (n+c · log |Σ|)+(tp+ tp−1)2 · (log(tp+ tp−1)+log th) ·c · log |Σ| · (r+c+n)+ tψ−1 + t
φ

−1) ,

where
• t

φ
−1 is a bound on the time to compute each φ−1

i , and
• t

ψ
−1 is a bound on the time to compute each ψ−1

i .

5.4 Trace transformation

Similarly to Section 5.3, before defining D2STrace we introduce StdTrace, re-mapping query-answer traces
into input-output traces from Zi(δ, n) for i ∈ [k] (cf. Definition 3.10), and then define D2STrace as a thin
wrapper around it dealing with encoding and decoding of prover messages.
Auxiliary procedure StdTrace. The procedure StdTrace works as follows:

StdTrace(tr):
1. Initialize an empty list trstd and lists trh, tr

BT

p , tr
LA

p .
2. Parse the query-answer trace tr and partition its elements in h-traces trh and p-traces trBTp , tr

LA

p .
The lists trh, tr

BT

p are sorted lexicographically by output capacity segment, then output rate capacity
segment, then input segment. The list trLAp are sorted lexicographically by input capacity segment, then
input rate capacity segment, then output segment. The two lists will contain the same elements and are
kept in sync for element addition and deletion. For clarity, we will talk about trp whenever we refer to
trBTp , tr

LA

p for membership, addition, or deletion.
3. For each query-answer in tr indicating a query to p of the form (sin, sout) ∈ Σr+c:

(a) Run BackTrack(trh, tr
BT

p , sin) and LookAhead(trLAp , sin, i):
i. If any of them outputs err, then abort;
ii. If any of them outputs none, then continue to the next element in trp;
iii. Else, denote the output of BackTrack as (i,x, τ , α̂) and the output of LookAhead as ρ̂i.

(b) Add (i, (x, τ , α̂), ρ̂i) to trstd.
4. Return trstd.

Auxiliary procedure D2STrace. The algorithm D2STrace is defined as follows:
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D2STrace(tr):
1. Initialize an empty list trstd.
2. Set t̂rstd := StdTrace(tr).
3. For each (i, (x, τ , α̂), ρ̂i) in t̂rstd:

– Set α1 := φ1
−1(α̂1), . . . , αi := φi

−1(α̂i), that is, compute the (unique) preimage of α̂ under φ.
– Set ρi := ψi(ρ̂i), that is, map the output to the verifier message space via ψi.
– Let τ̌ := bin(τ ).
– Append (i, (x, τ̌ ,α), ρi) to trstd.

4. Return trstd.

With a slight abuse of notation, we indicate the above procedure with

D2STrace := (φ−1,ψ) ◦ StdTrace .

Time complexity. The time of D2STrace is dominated by the time of StdTrace, which internally runs
BackTrack and LookAhead for every query-answer pair made byA to p (Item 3). Queries to h are also sorted
and copied into trBTh , tr

LA

h (see Item 2). All prover messages recovered are mapped to the relative prover and
verifier message. For notational simplicity, we assume that LV(i) ≤ tp for every i ∈ [k]. Then, the time of
D2STrace is:

O(th · n · log th + (tp + t
p
−1)2 · (log(tp + t

p
−1) + log th) · c · ((r + c) · log |Σ|+ n) + tp · (tφ−1 + tψ)) ,

where t
φ

−1 is a bound on the time to compute φ−1
i and tψ is a bound on the time to compute ψi, for i ∈ [k].

5.5 Analysis of aborts

To help bound the abort probability of the auxiliary procedures D2SAlgo and D2STrace, we consider a
sequence of “bad events”. Let tr be the query-answer trace of an algorithmA with oracle access to (h, p, p−1).
An entry in tr is denoted as (‘h’,x, sC) if the query was made to h with input x ∈ {0, 1}≤n and output
sC ∈ Σc, or as (‘p’, sin, sout) if the query was made to p with input sin ∈ Σr+c and output sout ∈ Σr+c, or as
(‘p−1’, sin, sout) if the query was made to p−1 with input sout ∈ Σr+c and output sin ∈ Σr+c.
Tree of permutation calls. It is central for the analysis (and the sub-procedure BackTrack) to consider, for a
given permutation state (sR, sC) ∈ Σr+c, the sequence of permutation calls that led to sC. Let S =

{
σ(k)

}
k

is the set of sequences indexed in k

σ(k) := (x(k), s
(k)
in,1, s

(k)
out,1, s

(k)
in,2, s

(k)
out,2, . . . , s

(k)
in,mk

, s
(k)
out,mk

) , (11)

such that, for every k:

• (‘h’,x(k), s(k)
C,in,1) ∈ tr, that is, the first query is to h with input x outputs the capacity segment of s(k)in,1.

• (‘p’, s(k)in,j , s
(k)
out,j) ∈ tr or (‘p−1’, s(k)out,j , s

(k)
in,j) ∈ tr for j ∈ [k], that is, the input-output states are consistent

with the permutation.

• s(k)out,mk
= s, that is, the last permutation state is the one given as input.
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Let TS :=
{
∆(k)

}
be the set of indices in the query-answer trace associated to the set S above, that is

∆(k) := (j
(k)
0 , j

(k)
2 , . . . , j(k)mk

) (12)

where:

• j(k)0 is the index of the first query to h with input x(k), that is:

trj0 = (‘h’,x(k), s(k)
C,in,1) and ∀j′ < j0 : trj′ ̸= (‘h’,x(k), s(k)

C,in,1) .

• j(k)ι is the index of the first query to p with input s(k)in,ι and output s(k)out,ι (or to p−1 with input s(k)out,ι and
output s(k)in,ι), for ι ∈ [m]. That is,

tr
j
(k)
ι
∈
{
(‘p’, s(k)in,ι, s

(k)
out,ι), (‘p−1’, s(k)out,ι, s

(k)
in,ι)
}

and

∀j′ < j(k)ι : trj′ ̸∈
{
(‘p’, s(k)in,ι, s

(k)
out,ι), (‘p−1’, s(k)out,ι, s

(k)
in,ι)
}
.

Bad events. Given query-answer trace tr and permutation state s, two events make it hard to invoke D2SAlgo
and D2STrace consistently.

• Forking events, where backtracking from s using tr leads to two different sequences of query-answers
chains to h and p (cf. Eq. 8). If S has more than one element, we have a fork.

• Inconsistent answers, where backtracking will provide inconsistent answers across two different queries.
Queries are inconsistent if ∆(k) is not monotonically increasing, or if there are queries p−1 ◦ p or p ◦ p−1 is
not the identity.

We capture the above with the following predicates, whose conjunction is denoted E(tr, s):

1. Ecol(tr). Checks if a collision happened, for any of the random oracles:

∃ (‘h’,x, sC), (‘h’,x′, s′C) ∈ tr : sC = s′C ∧ x ̸= x
′, (13)

or ∃ (‘p’, sin, sout), (‘p’, s
′
in, s

′
out) ∈ tr : sC,out = s

′
C,out ∧ sin ̸= s

′
in, (14)

or ∃ (‘p−1’, sout, sin), (‘p−1’, s′out, s
′
in) ∈ tr : sC,out = s

′
C,out ∧ sin ̸= s

′
in . (15)

(While collisions over h and p lead to a fork event, collisions over p−1 do not. Instead, collisions over p−1

will inconsistencies since p will not behave like a permutation function anymore.)

2. Einv(tr, s) Checks if there exists a sequence of permutation states σ(k) ∈ S that was built using p−1. That
is, ∃∆(k) ∈ TS such that

∃∆(k) = (j
(k)
0 , j

(k)
1 , . . . , j(k)mk

) ∈ TS : trjι = (‘p−1’, sout, sin) . (16)

3. Etime(tr, s) if the indices associated to σ(k) ∈ S are not ordered. Checks if ∃∆(k) ∈ TS such that
j(k)ι > j

(k)
ι+1.
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4. Estart(tr). Checks if there is a collision between the output of h and an output of p, that is:

∃ j, j′ : trj = (‘h’,x, sC,out) ∧ trj′ = (‘p’, s′in, s
′
out) ∧ s

′
C,in = sC,out (17)

We now present a sequence of claims that bound the probability of the above events. Let h : {0, 1}≤n → Σc

be a random oracle and p : Σr+c → Σr+c be an ideal permutation with p−1 its inverse oracle. As defined
in Section 3, for (th, tp, tp−1)-query algorithm P̃ , the expression y tr←− Ah,p,p

−1

denote the execution of P̃
with random oracles h, p, whose output is denoted y. In sums, our argument is as follows: if we exclude the
presence of p−1 queries in S (that is, Eq. 16 does not hold) then:

• If a forking event happened, it means that two capacity segments collided. If the lengths of the two
reconstructed sequences mismatch, then Estart must have happened (that is, Eq. 17 holds). Otherwise, a
collision can be found in the query-answer trace (that is, one of Eqs. 13 to 15 happened).

• If inconsistent answers are found, then the adversary must have guessed an output capacity segment before
it was sampled by the oracle. This is covered by Etime.

We upper bound the probability that E(tr) = 1 via a counting argument. We index the queries to h and p
by j ∈ [th + tp + t

p
−1 ]. Let tr<j

p be the first j − 1 entries of the form (‘p’, · , ·) in tr, tr<j

p
−1 be the first j − 1

entries of the form (‘p−1’, · , ·) in tr, and, similarly, tr<j
h be the list of j − 1 entries of the form (‘h’, · , ·) in tr.

Lemma 5.2. For every (th, tp, tp−1)-query algorithm P̃ ,

Pr

∃ s : E(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)


≤
th(th + 3tp + 2LP + 1) + (tp + LP)(2tp + 2LP − 1) + t

p
−1(2th + 2tp + t

p
−1 − 1)

2 |Σ|c
.

Proof. The proof follows from Claim 5.3, Claim 5.5, Claim 5.4, Claim 5.6 (used in the penultimate inequality):

Pr

∃ s : E(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



≤ Pr

Ecol(trP̃∥trV)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



+ Pr

∃ s : Einv(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



+ Pr

∃ s : Estart(trP̃∥trV , s)
∧ Einv(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)


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+ Pr

∃ s :

Etime(trP̃∥trV , s)
∧ Einv(trP̃∥trV , s)
∧ Estart(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)


≤
th · (th + 1) + (tp + LP) · (tp + LP − 1) + t

p
−1 · (t

p
−1 − 1)

2 · |Σc|
+
t
p
−1 · (th + tp)

|Σc|
+

(tp + LP) · th
|Σc|

+
(tp + LP) · (tp + LP − 1)

2 · |Σc|
+
tpth
|Σc|

≤
th(th + 3tp + 2LP + 1) + (tp + LP)(2tp + 2LP − 1) + t

p
−1(2th + 2tp + t

p
−1 − 1)

2 |Σ|c
.

Claim 5.3. For every (th, tp, tp−1)-query algorithm P̃ ,

Pr

Ecol(trP̃∥trV)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)

 ≤ th · (th + 1) + (tp + LP) · (tp + LP − 1) + t
p
−1 · (t

p
−1 − 1)

2 · |Σc|
.

Proof. We partition Ecol into three events Ecol,h, Ecol,p, Ecol,p
−1 that correspond to collisions in the output

of h (Eq. 13), p (Eq. 14), and p−1 (Eq. 15). We write:

Pr

Ecol(trP̃∥trV)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



= Pr

Ecol,h(trP̃∥trV)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



+ Pr

Ecol,p(trP̃∥trV)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



+ Pr

Ecol,p
−1(trP̃∥trV)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)


=

th+1∑
j=1

|tr<j
h |
|Σc|

+

tp+LP∑
j=1

|tr<j
p |
|Σc|

+

t
p
−1∑

j=1

|tr<j

p
−1 |

|Σ|r+c

≤
th+1∑
j=1

j − 1

|Σc|
+

tp+LP∑
j=1

j − 1

|Σc|
+

t
p
−1∑

j=1

j − 1

|Σ|r+c

=
th · (th + 1) + (tp + LP) · (tp + LP − 1) + t

p
−1 · (t

p
−1 − 1)

2 · |Σc|
.
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Claim 5.4. For every (th, tp, tp−1)-query algorithm P̃ ,

Pr

∃ s : Einv(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)

 ≤ t
p
−1 · (th + tp)

|Σc|
.

Proof. Let ι∗ be the first index (if it exists) for which a sequence of permutation states σ(k) ∈ S has associated
timestamps TS contains ∆(k) = (j0, j1, . . . , jmk

) such that trj
ι
∗ = (‘p−1’, sout, sin) . We partition the event

in two cases: the inversion happens after a query to h (i.e., ι∗ = 1 in Eq. 16), and the inversion happens after
a query to p (i.e., ι∗ > 1 in Eq. 16). Therefore:

Pr

∃ s : Einv(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



≤ Pr

 ∃∆(k) ∈ TS
∃ j, j′ ∈ ∆(k) :

:

trj = (‘h’,x, sC,out)

∧ trj′ = (‘p−1’, s′out, s
′
in)

∧ sC,out = s
′
C,in

∧ ∀ j′′ < j′ : trj′′ ̸= (‘p’, s′in, s
′
out)

∣∣∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



+ Pr

 ∃∆(k) ∈ TS
∃ j, j′ ∈ ∆(k) :

trj = (‘p’, sin, sout)

∧ trj′ = (‘p−1’, s′out, s
′
in)

∧ s′C,out = sC,out
∧ ∀ j′′ < j′ : trj′′ ̸= (‘p’, s′in, s

′
out)

∣∣∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)


≤

t
p
−1∑

j=1

|tr<j
p |
|Σc|

+

t
p
−1∑

j=1

|tr<j
h |
|Σc|

≤
t
p
−1∑

j=1

tp
|Σc|

+

t
p
−1∑

j=1

th
|Σc|

=
t
p
−1 · (th + tp)

|Σc|
.

Claim 5.5. For every (th, tp, tp−1)-query algorithm P̃ ,

Pr

∃ s : Estart(trP̃∥trV , s)
∧ Einv(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)

 ≤ (tp + LP) · th
|Σc|

.

Proof. We have:

Pr

∃ s : Estart(trP̃∥trV , s)
∧ Einv(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



= Pr

∃ j, j′ : trj = (‘h’,x, sC,out)

∧ trj′ = (‘p’, s′in, s
′
out)

∧ s′C,in = sC,out

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)


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=

tp+LP∑
j=1

th
|Σc|

=
(tp + LP) · th
|Σc|

.

Claim 5.6. For every (th, tp, tp−1)-query algorithm P̃ ,

Pr

∃ s :

Etime(trP̃∥trV , s)
∧ Einv(trP̃∥trV , s)
∧ Estart(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)

 ≤ (tp + LP) · (tp + LP − 1)

2 · |Σc|
+
tpth
|Σc|

.

Proof. Since Estart(trP̃∥trV , s) and Einv(trP̃ , s), we have two cases:

• The case where ∃∆(k) ∈ TS with indices jι > jι+1 and trjι , trjι+1
are queries to h and p, respectively.

• The case where ∃∆(k) ∈ TS with query indices jι > jι+1 and trjι , trjι+1
are both queries to p.

Therefore:

Pr

∃ s :

Etime,p(trP̃∥trV , s)
∧ Einv(trP̃∥trV , s)
∧ Estart(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



≤ Pr

∃ s :

Etime,p(trP̃∥trV , s)
∧ Einv(trP̃∥trV , s)
∧ Estart(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



+ Pr

∃ s :

Etime,h(trP̃∥trV , s)
∧ Einv(trP̃∥trV , s)
∧ Estart(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



≤ Pr

∃ j′ < j :

trj = (‘h’,x, sC,out)

∧ trj′ = (‘p’, s′in, s
′
out)

∧ s′C,in = sC,out
∧ ∀ j′′ < j : trj′′ ̸= (‘h’,x, s′C,out)

∣∣∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)



+ Pr

∃ j′ < j :

trj = (‘p’, sin, sout)

∧ trj′ = (‘p’, s′in, s
′
out)

∧ s′C,in = sC,out
∧ ∀ j′′ < j : trj′′ ̸= (‘p’, sin, s

′
in)

∣∣∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)


≤

tp+LP∑
j=1

|tr<j
p |
|Σc|

+

th∑
j=1

|tr<j
p |
|Σc|

≤
tp+LP∑
j=1

j − 1

|Σc|
+

th∑
j=1

tp
|Σc|

=
(tp + LP) · (tp + LP − 1)

2 · |Σc|
+
tpth
|Σc|

.
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5.6 Proof of Lemma 5.1

We finally prove the lemma via a hybrid argument; hybrids are summarized in Figure 4.
Hyb0. The first hybrid is the left-side experiment in the lemma statement, where the malicious argument prover
P̃ queries the oracles h : {0, 1}≤n → Σc and p, p−1 : Σr+c → Σr+c sampled from D𝔖 (cf. Definition 4.2).
Hyb1 . In this hybrid we make the following changes:
• in line 1 we sample oracles as

g := (gi)i∈[k] ← U
(
({0, 1}≤n × Σδ × ΣℓP(1) × · · · × ΣℓP(i) → ΣℓV(i))i∈[k]

)
(18)

instead of the oracles (h, p, p−1)← D𝔖 from Hyb0;
• in line 2 the argument prover is P̃D2SQuery

g

instead of P̃h,p,p
−1

from Hyb0;
• in line 3 the argument verifier is VD2SQuery

g

instead of Vh,p(x, π) from Hyb0;
• in line 4 the query-answer trace is set to (φ−1,ψ)(trP̃∥trV) instead of D2STrace(trP̃∥trV) from Hyb0.

Claim 5.7. The statistical distance between Hyb0 and Hyb1 is at most

th(th + 3tp + 2LP + 1) + (tp + LP)(2tp + 3LP − 1) + t
p
−1(2th + 2tp + t

p
−1 − 1)

2 |Σ|c
.

To prove the above, we proceed with a sequence of smaller intermediate steps.

Hyb0.1 In this hybrid, we modify line 2 adding two conditions:

• We introduce Item 4(c)i of D2SQuery (for every query of P̃ , we run BackTrack and abort if it returns
err).

• At the end of the execution of P̃ and the verifier V , we run StdTrace(trP̃∥trV) and throw away the result.

The hybrid Hyb0.1 is a strengthening of Hyb0 since we abort the experiment if BackTrack or D2STrace
returns err. In particular, the game aborts every time D2STrace aborts (since D2STrace runs BackTrack
for every permutation state). Therefore

∆(Hyb0,Hyb0.1) = Pr

 StdTrace(trP̃∥trV) aborts

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)

 .
The procedure StdTrace(tr) (Item 2) aborts in one of the following two cases (cf. Item 3(a)i).

1. BackTrack returns err. This happens only if there exists two different sequences in Chains, which in
turn means that two different input segments led to the same output capacity segment. More precisely,
BackTrack returns err if there exists two different sequences in Chains:

(x(1), τ (1), (s
(1)
R,in,0, s

(1)
R,out,0, s

(1)
R,in,1, s

(1)
R,out,1, . . . ))

(x(2), τ (2), (s
(2)
R,in,0, s

(2)
R,out,0, s

(2)
R,in,1, s

(2)
R,out,1, . . . ))

from which it is possible to read a valid sequence of prover messages α̂(1), α̂(2). Both chains are tied to
the same final capacity state sC queried to BackTrack. We have the following cases:
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• If the sequences have different length, then without loss of generality h(x(1)) is the capacity state
of a segment of a permutation state s(2)out,ι in the second chain. In this case, Einv(trP̃∥V, s

(2)
out,ι) or

Estart(trP̃∥V) hold.

• x(1) ̸= x
(2), and yet h(x(1)) = h(x(2)). This event happens when Ecol holds.

• There exist k1, k2 > 0 such that s(1)
R,in,k1

̸= s
(2)
R,in,k2

and yet s(1)
C,out,k1

= s
(2)
C,out,k2

, and all previous
elements are equal. In other words, there are two different inputs in trp for which the output capacity
is the same. This event is covered by the collision predicate Ecol(tr).

• There exist k1, k2 such that s(1)
R,out,k1

̸= s
(2)
R,out,k2

and s(1)
C,out,k1

= s
(2)
C,out,k2

, and all previous elements
are equal. In other words, two outputs share the same inputs, the same output capacity segment, but
have different output rate segments. This means that p answers queries inconsistently, and in this case
Ecol(trP̃∥trV) holds.

2. LookAhead returns err. This can happen only if the input-output queries are inconsistent. As above, in
this case Ecol(trP̃∥trV) holds.

We conclude that

∆(Hyb0,Hyb0.1)

≤ Pr

 ∃ s : E(trP̃∥trV , s)

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
trP̃←−− P̃h,p,p

−1

b
trV←−− Vh,p(x, π)


≤
th(th + 3tp + 2LP + 1) + (tp + LP)(2tp + 2LP − 1) + t

p
−1(2th + 2tp + t

p
−1 − 1)

2 |Σ|c
.

(by Lemma 5.2)

Hyb0.2 We introduce Items 4a and 4c of D2SQuery to the experiment. Before starting the experiment, we
initialize an empty list Cachep. Throughout the execution of P̃ , for each query p(sin) for some sin ∈ Σr+c,
we first check if ∃ sout ∈ Σr+c : (sin, sout) ∈ Cachep, and if so we pop the first match and return it (as
in Item 4a). Else, we run BackTrack.

• If, as in the previous hybrid, BackTrack returns err, we abort the experiment.
• If BackTrack returns none, as in Item 4(c)ii, we sample a fresh answer (sin, sout), append it to trBTp , and

return it.
• If BackTrack returns a tuple (i,x, τ , α̂), for ι ∈ [LV(i)], sample fresh s(ι) ←$ Σr+c. Then, add the

pairs ((s(1), s(2)), (s(2), s(3)), · · · , (s(LV(i)−1), s(LV(i)))) to a list Cachep.

Claim 5.8. The statistical distance between Hyb0.1 and Hyb0.2 is bounded by
∑

i∈[k]

⌈
ℓV(i)
r

⌉
·
tp+t

p
−1∣∣∣Σr+c
∣∣∣ .

Proof. Upon receiving a query p(sin) or p−1(sout), we have two cases.

• If sin is not a query stored in Cachep, then either the query was previously made (cf. Item 4b), in which
case the query is responded to consistently if E(tr) = 0. If BackTrack is called, the output is either none
or a tuple, in which case a uniformly distributed element in Σr+c is returned.
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• Else, let sout ∈ Σr+c be such that (sin, sout) ∈ Cachep. If sin was previously queried to p or sout was
queried to p−1, denote with j the first time that sin is queried to p receiving sout, and with j′ the index of
the query that received a different output s′out ̸= sout as a result of Item 4a. That is, during the j′-th query,
P̃ made a query p(sin) that matched an element in Cachep, whereas during the j-th query, a match for
sin was not found in Cachep (cf. Item 4a) nor in the oracle trace (cf. Item 4b). (Same goes for p−1.) In
this case, since E(trP̃) = 0, the response is sampled uniformly random after BackTrack’s execution.
This means that, for some query index j′′ ∈ [th + tp], j ≤ j

′′ < j′ exists, which led to adding elements
to Cachep (cf. Item 4(c)vi) and one of those sampled elements was already appearing in tr. Since the
entries of Cachep are pairs sampled uniformly at random from Σr+c × Σr+c, and since Cachep receives
at most

∑
i∈[k]

⌈
ℓV(i)
r

⌉
, the probability of this bad event happening is bounded by

∑
i∈[k]

⌈
ℓV(i)

r

⌉
·
tp + t

p
−1∣∣∣Σr+c
∣∣∣ .

Hyb0.3 We now change the way elements are added to Cachep: instead of sampling them uniformly at
random, if BackTrack responds with a tuple then we forward the queries to the oracles g (cf. Item 4(c)iv).
The capacity states and the “remainder” elements (cf. Item 4(c)v) are sampled uniformly at random. This
last hybrid is identical to Hyb1.

Claim 5.9. Hyb0.2 and Hyb0.3 are perfectly indistinguishable.

Proof. We first prove that all invocations of g are on different elements, and then argue their distributions.

If a query p(sin), for some sin ∈ Σr+c led to Item 4c, then it must have not been present in trp and therefore
not previously queried. In particular, this means that one of the following holds: the rate segment sR,in is
different from all previous queries, which implies that the output triple of BackTrack is different in the last
r elements of α̂ (cf. Item 2b), or the capacity segment sC,in is different from all previous queries, which,
since E(tr) = 0, implies that BackTrack’s output must be different.

Since g’s queries are always different throughout the execution of P̃ , then gi’s output is independently and
uniformly distributed in ΣℓV(i), for i ∈ [k], just like (sR,out,0∥sR,out,1∥ · · · ∥sR,out,LV(i))[0 : ℓV(i)].

Putting the above intermediate changes together:

∆(Hyb0,Hyb1)

≤
th(th + 3tp + 2LP + 1) + (tp + LP)(2tp + 2LP − 1) + t

p
−1(2th + 2tp + t

p
−1 − 1)

2 |Σ|c
+
tp
∑

i∈[k]⌈ℓV(i)/r⌉
|Σ|r+c

≤
th(th + 3tp + 2LP + 1) + (tp + LP)(2tp + 2LP − 1) + t

p
−1(2th + 2tp + t

p
−1 − 1)

2 |Σ|c
+
tp ·
∑

i∈[k]⌈ℓV(i)/r⌉
2 |Σ|c

≤
th(th + 3tp + 2LP + 1) + (tp + LP)(2tp + 3LP − 1) + t

p
−1(2th + 2tp + t

p
−1 − 1)

2 |Σ|c
.

Hyb2 . In this hybrid we make the following changes:
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• in line 1 we sample oracles as

e := (ei)i∈[k] ← U
(
({0, 1}≤n × Σδ × ΣℓP(1) × · · · × ΣℓP(i) →MV,i)i∈[k]

)
(19)

instead of the oracles g from Hyb1 (see Equation 18);

• in line 2 the argument prover is P̃D2SQuery
ψ
−1◦e

instead of P̃D2SQuery
g

from Hyb1;

• in line 3 the argument verifier is VD2SQuery
ψ
−1◦e

instead of VD2SQuery
g

(x, π) from Hyb1;
• in line 4 the query-answer trace is set to φ−1(trP̃∥trV) instead of (φ−1,ψ)(trP̃∥trV) from Hyb1.

Claim 5.10. The statistical distance between Hyb1 and Hyb2 is at most∑
i∈[k]

εcdc,i(λ, n) .

Proof. This is immediate from the definition of εcdc(λ, n)-biased maps, since the statistical distance between
Hyb1 and Hyb2 is bounded by the distance between (U(MV,i))i∈[k] and (ψi(U(Σ

ℓV(i))))i∈[k].

Hyb3 . In this hybrid we make the following changes:
• in line 1 we sample oracles as

f := (fi)i∈[k] ← U
(
({0, 1}≤n × {0, 1}δ⋆ ×MP,1 × · · · ×MP,i →MV,i)i∈[k]

)
(20)

instead of the oracles e from Hyb2 (see Equation 19);

• in line 2 the argument prover is P̃D2SQuery
ψ
−1◦f◦φ−1

instead of P̃D2SQuery
ψ
−1◦e

from Hyb2;

• in line 3 the argument verifier is VD2SQuery
ψ
−1◦f◦φ−1

(x, π) instead of VD2SQuery
ψ
−1◦e

(x, π) from Hyb2;
• in line 4 the query-answer trace is set to trP̃∥trV instead of φ−1(trP̃∥trV) from Hyb2.

Claim 5.11. Hyb2 and Hyb3 are identically distributed.

Proof. The difference in the two hybrids is the query-answer trace: while the oracle query-answer trace in
Hyb2 is of the form but stores mappings in {0, 1}≤n ×Σδ ×ΣℓP(1) × · · · ×ΣℓP(i) →MV,i, in hybrid Hyb3
it is of the form {0, 1}≤n × {0, 1}δ⋆ ×MP,1 × · · · ×MP,i, then composed with φ−1

i to obtain the final
output. The map φi is into and hence φ−1

i ◦ φi is the identity. A similar argument applies to bin(·), which is
used to encode the salt. Therefore, at most one element ofMP,i is associated with the malicious prover query
and the two are perfectly indistinguishable.

Hyb4 . This hybrid corresponds to the right-side experiment in Lemma 5.1:
• in line 1 we sample oracles f ← DIP(λ, n), the same as the oracles f in Hyb3 (see Equation 20);
• in line 2 the argument prover is run as D2SAlgof (P̃), which by definition (see Equation 10), equals the

argument prover P̃D2SQuery
ψ
−1◦f◦φ−1

in Hyb3;

• in line 3 the argument verifier is run as Vfstd(x, π) instead of as VD2SQuery
ψ
−1◦f◦φ−1

(x, π) in Hyb3; and
• in line 4 the query-answer trace is not translated as in Hyb3.

Claim 5.12. Hyb3 and Hyb4 are identically distributed.
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Proof. We discuss the argument verifier (line 3) as that is the only potential difference: we argue that

Vfstd(x, π) in Hyb4 behaves the same as VD2SQuery
ψ
−1◦f◦φ−1

(x, π) in Hyb3.
We are left to prove that, if D2SAlgo does not abort, then the decision bit output by Vfstd(x, π) on the left,

and by D2SAlgoD2SQuery
ψ◦f◦φ−1

(V)(x, π) on the right, are the same. Both verifiers return 1 if and only if
V(x,α,ρ) = 1, so it is sufficient to prove that the vector ρ is the same in both cases.

• In Vfstd(x, π), for each i ∈ [k] has ρi := fi(x, bin(τ ), α1, . . . , αi).

• In D2SAlgoD2SQuery
ψ◦f◦φ−1

(V)(x, π), the verifier algorithm will initialize the state st0 := DS.Start(x).
Since the oracle is queried only once, a value sC is always returned by D2SQuery when queried on x.

Then, the verifier proceeds running DS.Absorb(st0, τ∥α̂1) after encoding the prover message α̂i = φi(αi).
Internally, DS.Absorb procedure will chain calls to the random oracle wrapper D2SQuery which, since
it never aborts, will always produce different capacity states. When querying D2SQuery on the last
permutation state s1, the procedure BackTrack invoked on s1 will return (1,x, τ , α̂1). This is shown
by inspection, noting that a single chain exists since each capacity state is different and used only once.
Then, a query to f1(x, bin(τ ), φ

−1
1 (α̂1)) is made. Since φ−1

1 ◦ φ1 is the identity (φ1 being injective),
φ−1
1 (α̂1) = α1 and the output is exactly ρ1. The output is then mapped into the permutation’s alphabet

sampling a preimage via ψ−1
1 (ρ1). D2SQuery is then programmed to return blocks of it when permutation

queries are chained starting from s1, which are recovered by the verifier via DS.Squeeze and mapped into
the verifier message space via ψ1(ρ̂1). Since ψ1 ◦ ψ

−1
1 is the identity, the output is exactly ρ1 and the first

verifier message is equal to the one produced by Vfstd(x, π).
The cases for i > 1 (i ∈ [k]) proceed analogously and thus, as claimed, the two distributions are identical.

1 : (h, p, p−1)← D𝔖(λ, n)

g ← U
(
({0, 1}≤n × Σδ × ΣℓP(1) × · · · × ΣℓP(i) → ΣℓV(i))i∈[k]

)
e← U

(
({0, 1}≤n × Σδ × ΣℓP(1) × · · · × ΣℓP(i) →MV,i)i∈[k]

)
f ← U

(
({0, 1}≤n × {0, 1}δ⋆ ×MP,1 × · · · ×MP,i →MV,i)i∈[k]

)
f ← DIP(λ, n)

2 : (x, π)
trP̃ trP̃⋆←−−−−− P̃h,p,p

−1

P̃D2SQuery
g

P̃D2SQuery
ψ

−1◦e

P̃D2SQuery
ψ

−1◦f◦φ−1

D2SAlgof (P̃)

3 : b
trV trVstd←−−−−−− Vh,p(x, π) VD2SQuery

g

(x, π) VD2SQuery
ψ

−1◦e

(x, π) VD2SQuery
ψ

−1◦f◦φ−1

(x, π) Vf
std(x, π)

4 : tr := D2STrace(trP̃∥trV) (φ−1,ψ)(trP̃∥trV) φ−1(trP̃∥trV) trP̃∥trV trP̃⋆
∥trVstd

5 : return (b,x, π, tr)

Figure 4: Hybrid experiments Hyb0, Hyb1 , Hyb2 , Hyb3 , Hyb4 for Lemma 5.1.
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6 Soundness and knowledge soundness

We formally state and prove the theorems about soundness and knowledge soundness for our Fiat–Shamir
transformation (in particular, the two theorems below formally restate the two bounds in Theorem 1). Let
IP = (P,V) be a public-coin IP for a relationR. Let Σ be a finite alphabet and cdc be a codec for IP over
Σ with bias εcdc (see Definition 4.1). Let D𝔖 be an ideal permutation distribution over Σ with capacity
c ∈ N and rate r ∈ N (see Definition 4.2). For a salt size δ ∈ N, let NARG := DSFS[IP, cdc, δ] be the
non-interactive argument forR in the D𝔖-oracle model constructed in Construction 4.3.

The theorems below rely on the following expressions for a query bound θ⋆(t), an additive error η⋆(λ, t),
and a privacy parameter δ⋆:

θ⋆(t) :=

 t

mini∈[k]

⌈
ℓP(i)
r

⌉
 ≤ t ,

η⋆(λ, t) :=
4t2 +maxi∈[k]

⌈
ℓP(i)
r

⌉(
t+maxi∈[k]

ℓP(i)
r

)
|Σ|c

+
∑
i∈[k]

εcdc,i(λ, n) , and

δ⋆ := δ log |Σ| .

(21)

Theorem 6.1 (soundness). If IP has state-restoration soundness error εsrIP (see Definition 3.13) then NARG
has soundness error εNARG (see Definition 3.4) such that, for every security parameter λ ∈ N, query bound
t ∈ N, and instance size bound n ∈ N,

εNARG(λ, t, n) ≤ ε
sr
IP (δ⋆, θ⋆(t, n)) + η⋆(λ, t) .

Theorem 6.2 (knowledge soundness). If IP has rewinding state-restoration knowledge soundness error
κsrIP with extraction time etIP (see Definition 3.15) then NARG has rewinding knowledge soundness error
κNARG

(
λ, t, n, δP̃(λ, n)

)
with extraction time etNARG (see Definition 3.7) such that, for every security parameter

λ ∈ N, query bound t ∈ N, instance size bound n ∈ N,
• κNARG

(
λ, t, n, δP̃(λ, n)

)
≤ κsrIP

(
δ⋆, θ⋆(t), n, δ

′
P̃(λ, n)

)
+ η⋆(λ, t), and

• etNARG(λ, t, n, δP̃(λ, n), τP̃(λ, n)) ≤ etsrIP
(
δ⋆, θ⋆(t), n, δ

′
P̃(λ, n), τ

′
P̃(λ, n)

)
+ t2 · log t · ((r+ c2) log |Σ|+

n).
Above,

δ′P̃(λ, n) := δP̃(λ, n) + η⋆(λ, t)

τ ′P̃(λ, n) , := τP̃(λ, n) + t2 · log t · ((r + c2) log |Σ|+ n) .

Moreover, if the IP state-restoration extractor is straightline (see Definition 3.13) then the NARG extractor is
also straightline (see Definition 3.5). In this case:
• the (straightline) knowledge soundness error is κNARG(λ, t, n) ≤ κ

sr
IP (δ⋆, θ⋆(t), n) + η⋆(λ, t); and

• the (straightline) extraction time is etNARG(λ, t, n) ≤ etsrIP (δ⋆, θ⋆(t), n) + t2 · log t · ((r + c2) log |Σ|+ n).

The proof of Theorem 6.1 is in Section 6.1, and the proof of Theorem 6.2 is in Section 6.2. Both theorems
are proved by using Lemma 5.1 to reduce the security property (soundness or knowledge soundness) to the
corresponding property for the basic variant of the Fiat–Shamir transformation (Section 3.6).
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6.1 Proof of Theorem 6.1

We reduce the soundness of (P,V) := DSFS[IP, cdc, δ] (Construction 4.3) to the soundness of (Pstd,Vstd) :=
FS[IP, δ⋆] (Construction 3.16). Specifically, by Lemma 5.1, every (th, tp, tp−1)-query malicious argument
prover P̃ for DSFS[IP, cdc, δ] can be translated to a θ⋆(th, tp, tp−1)-query malicious argument prover
P̃std := D2SAlgo(P̃) for FS[IP, δ⋆] that “behaves the same” up to an additive error η⋆(λ, (th, tp, tp−1)). The
result then follows from Theorem 3.17, which states that the soundness of FS[IP, δ⋆] is determined by the
state-restoration soundness of IP. Specifically:

εNARG(λ, (th, tp, tp−1), n)

= Pr

 |x| ≤ n∧ x /∈ L(R)

∧ Vh,p(x, π) = 1

∣∣∣∣∣∣ (h, p, p−1)← D𝔖(λ, n)

(x, π)← P̃h,p,p
−1

 (by Definition 3.4)

≤ Pr

 |x| ≤ n∧ x /∈ L(R)

∧ Vfstd(x, π) = 1

∣∣∣∣∣∣ f ← DIP(λ, n)

(x, π) := D2SAlgof (P̃)

+ η⋆(λ, (th, tp, tp−1)) (by Lemma 5.1)

≤ εFS[IP,δ⋆](λ, θ⋆(th, tp, tp−1), n) + η⋆(λ, (th, tp, tp−1)) (by Definition 3.4)

≤ εsrIP (δ⋆, θ⋆(th, tp, tp−1), n) + η⋆(λ, (th, tp, tp−1)) , (by Theorem 3.17)

where δ⋆ is defined in Eq. 21. Finally, by combining the above derivation with the definition of
η⋆(λ, (th, tp, tp−1)) in Equation 5 in Lemma 5.1, we obtain the upper bound claimed in the theorem:

εNARG(λ, (th, tp, tp−1), n)

≤ εsrIP (δ⋆, θ⋆(th, tp, tp−1), n) + η⋆(λ, (th, tp, tp−1)) (by the above derivation)

= εsrIP (δ⋆, θ⋆(th, tp, tp−1), n)

+
th(th+3tp+2LP+1)+(tp+LP)(2tp+3LP−1)+t

p
−1 (2th+2tp+t

p
−1−1)

2|Σ|c

+
∑

i∈[k] εcdc,i(λ, n)

(by Equation 5)

≤ εsrIP (δ⋆, θ⋆(t), n) +
4t2 +maxi∈[k]

⌈
ℓP(i)
r

⌉(
t+maxi∈[k]

ℓP(i)
r

)
|Σ|c

+
∑
i∈[k]

εcdc,i(λ, n)

= εsrIP (δ⋆, θ⋆(t), n) + η⋆(λ, t) . (by definition of η⋆(λ, t))

6.2 Proof of Theorem 6.2

First we describe how to obtain a knowledge extractor E for V from the knowledge extractor Estd for Vstd; this
additionally relies on the two algorithms D2SAlgo and D2STrace from Lemma 5.1.

Construction 6.3. Let Estd be the knowledge extractor for Vstd. The knowledge extractor E for V receives as
input an instance x, argument string π, query-answer trace tr of the argument prover P̃, query-answer trace
trV of the argument verifier, and (black-box access to) the IP prover P̃ , and works as follows.

E(x, π, tr, trV , P̃ ):
1. Compute the query-answer trace trstd := D2STrace(tr∥trV).
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2. Set trstd,V to be the suffix of trstd of length k.
3. Let P̃std := D2SAlgo(P̃).
4. Compute w := Estd(x, π, trstd, trstd,V , P̃std ).
5. Output w.

We reduce the knowledge soundness of (Pstd,Vstd) := DSFS[IP, cdc, δ] (Construction 4.3) to the
knowledge soundness of (P,V) := FS[IP, δ⋆] (Construction 3.16). Specifically, by Lemma 5.1, every
(th, tp, tp−1)-query malicious argument prover P̃ for DSFS[IP, cdc, δ] can be translated to a θ⋆(th, tp, tp−1)-
query malicious argument prover P̃std := D2SAlgo(P̃) for FS[IP, δ⋆] that “behaves the same” up to an
additive error η⋆(λ, (th, tp, tp−1)). The result then follows from Theorem 3.18, which states that the knowledge
soundness of FS[IP, δ⋆] is determined by the state-restoration knowledge soundness of IP. Specifically:

κNARG(λ, (th, tp, tp−1), n, δP̃)

= Pr


|x| ≤ n
∧ (x,w) /∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x, π)
tr←− P̃h,p,p

−1

b
trV←− Vh,p(x, π)

w← E(x, π, tr, trV , P̃ )

 (by Definition 3.7)

= Pr


|x| ≤ n
∧ (x,w) /∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(h, p, p−1)← D𝔖(λ, n)

(x, π)
tr←− P̃h,p,p

−1

b
trV←− Vh,p(x, π)

trstd := D2STrace(tr∥trV)
trstd,V is the suffix of trstd
w← Estd(x, π, trstd, trstd,V , P̃std )


(by Construction 6.3)

≤ Pr


|x| ≤ n
∧ (x,w) /∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣
f ← DIP(λ, n)

(x, π)
tr←− P̃fstd

b
trV←− Vfstd(x, π)

w← Estd(x, π, tr, trV , P̃std )

+ η⋆(λ, (th, tp, tp−1)) (by Lemma 5.1)

≤ κNARG(λ, (th, tp, tp−1), n, δP̃std
) + η⋆(λ, (th, tp, tp−1)) (by Definition 3.7)

≤ κNARG

(
λ, θ⋆(th, tp, tp−1), n, δP̃ + η⋆(λ, (th, tp, tp−1))

)
+ η⋆(λ, (th, tp, tp−1)) (by Lemma 5.1)

≤ κsrIP
(
δ⋆, θ⋆(th, tp, tp−1), n, δP̃ + η⋆(λ, (th, tp, tp−1))

)
+ η⋆(λ, (th, tp, tp−1)) . (by Theorem 3.18)

Finally, note that η⋆(λ, (th, tp, tp−1)) ≤ η⋆(λ, t) (as argued in Section 6.1).
Next, we discuss the running time of E on P̃. The extractor E runs D2SAlgo on both traces in time

th · n · log th + (tp + t
p
−1)2 · (log(tp + t

p
−1) + log th) · c · ((r + c) · log |Σ| + n) + tp · (tφ−1 + tψ), and

then emulates the execution of Estd on P̃std := P̃std(P̃ ). We deduce that

etNARG(λ, (th, tp, tp−1), n, δP̃ , τP̃)

≤ etsrIP (δ⋆, θ⋆(th, tp, tp−1), n, δP̃std
, τP̃std

)+

th · n · log th + (tp + t
p
−1)2 · (log(tp + t

p
−1) + log th) · c · ((r + c) · log |Σ|+ n) + tp · (tφ−1 + tψ) .
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Since δP̃std
≤ δP̃ + η⋆(λ, t), τP̃std

≤ τP̃ + th · n · log th + (tp + t
p
−1)2 · (log(tp + t

p
−1) + log th) · c · ((r +

c) · log |Σ|+ n) + tp · (tφ−1 + tψ), and using Theorem 3.18 we get that

etNARG(λ, (th, tp, tp−1), n, δP̃ , τP̃)

≤ etsrIP (δ⋆, θ⋆(th, tp, tp−1), n, δP̃std
, τP̃std

)

+ th · n · log th + (tp + t
p
−1)2 · (log(tp + t

p
−1) + log th) · c · ((r + c) · log |Σ|+ n) + tp · (tφ−1 + tψ) .

We can simplify the expression by using the fact that th + tp + t
p
−1 ≤ t:

etNARG(λ, t, n, δP̃ , τP̃) ≤et
sr
IP

(
δ⋆, θ⋆(t), n, δP̃ + η⋆(λ, t), τP̃ + t2 · log t · ((r + c2) log |Σ|+ n)

)
+ t2 · log t · ((r + c2) log |Σ|+ n) .

The straightline case. The above analysis directly specializes to the straightline case. Suppose that Esr is a
straightline extractor (Definition 3.13): it is a deterministic algorithm that does not need access to the IP
state-restoration prover P̃sr. Then, by Theorem 3.18, Estd is a straightline extractor (Definition 3.5): it is a
deterministic algorithm that does not need access to the argument prover P̃std. In turn, E in Construction 6.3
is a straightline extractor (Definition 3.5): it is a deterministic algorithm that does not need access to the
argument prover P̃. In this case, the knowledge soundness error bound does not depend on the failure
probability of the prover, and simplifies to

κNARG(λ, (th, tp, tp−1), n) ≤ κsrIP (δ⋆, θ⋆(th, tp, tp−1), n) + η⋆(λ, (th, tp, tp−1))

≤ κsrIP (δ⋆, θ⋆(th, tp, tp−1), n) + η⋆(λ, t) .

Similarly, the extraction time bound does not depend on the failure probability or running time of the prover,
and simplifies to

etNARG(λ, (th, tp, tp−1), n)

≤ etsrIP (δ⋆, θ⋆(th, tp, tp−1), n)

+ th · n · log th + (tp + t
p
−1)2 · (log(tp + t

p
−1) + log th) · c · ((r + c) · log |Σ|+ n) + tp · (tφ−1 + tψ) .

We simplify the expression using th + tp + t
p
−1 ≤ t:

etNARG(λ, t, n) ≤ etsrIP (δ⋆, θ⋆(t), n) + t2 · log t · ((r + c2) log |Σ|+ n) .
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7 Zero knowledge

We formally state and prove the theorem about zero knowledge for our Fiat–Shamir transformation. Let
IP = (P,V) be a public-coin IP for a relationR. Let Σ be a finite alphabet and cdc be a codec for IP over
Σ with bias εcdc (see Definition 4.1). Let D𝔖 be an ideal permutation distribution over Σ with capacity
c ∈ N and rate r ∈ N (see Definition 4.2). For a salt size δ ∈ N, let NARG := DSFS[IP, cdc, δ] be the
non-interactive argument forR in the D𝔖-oracle model constructed in Construction 4.3.

Theorem 7.1. If IP has honest-verifier zero-knowledge error zIP (see Definition 7.3) then NARG has zero-
knowledge error zNARG (see Definition 7.4) such that, for every security parameter λ ∈ N, query bound t ∈ N,
and instance size bound n ∈ N,

zNARG(λ, t, n) ≤ zIP +
t

|Σ|min(δ,c)
+
t ·
∑

i∈[k]⌈ℓV(i)/r⌉
|Σ|r+c .

The definitions of honest-verifier zero-knowledge for IPs and zero-knowledge for non-interactive arguments
are in Section 7.1. The simulator is in Section 7.2. The analysis of the simulator, establishing the theorem, is
in Section 7.3.

7.1 Definitions for zero knowledge

Definition 7.2. The IP verifier’s view in IP = (P,V) on the instance-witness pair (x,w), denoted
ViewIP(P,V,x,w), is the random variable

(
x, ρ, (αi)i∈[k]

)
where:

• ρ is a random choice of randomness for the IP verifier V; and
• (αi)i∈[k] are the prover messages received in an interaction between P(x,w) and V(x, ρ).
Note that the honest IP prover P(x,w) may use its own private randomness (and is not part of the IP verifier’s
view). If the IP is public-coin then the view shows each round’s randomness:

(
x, (ρi)i∈[k], (αi)i∈[k]

)
.

Definition 7.3. IP = (P,V) for a relationR has honest-verifier zero-knowledge error zIP if there exists a
polynomial-time probabilistic algorithm S such that for every instance-witness pair (x,w) ∈ R the following
random variables are zIP(x)-close in statistical distance:

ViewIP(P,V,x,w) and S(x) .

We additionally define zIP(n) := max(x,w)∈R
|x|≤n

zIP(x).

Definition 7.4. A non-interactive argument NARG = (P,V) for a relationR has (adaptive) zero-knowledge
error zNARG (in the EPROM) if there exists a probabilistic polynomial-time simulator S such that, for every
security parameter λ ∈ N, query bound t ∈ N, t-query admissible adversary A, and instance bound n ∈ N,
the following two distributions are zNARG(λ, t, n)-close in statistical distance:

Dreal :=

out

∣∣∣∣∣∣∣∣∣
f ← D(λ, n)
(x,w, aux)← Af

π ← Pf (x,w)

out← Af (aux, π)

 and Dsim :=

out

∣∣∣∣∣∣∣∣∣
f ← D(λ, n)
(x,w, aux)← Af

(π, µ)← Sf (x)
out← Af [µ](aux, π)

 .

Above, A is admissible if it always outputs x,w such that (x,w) ∈ R and |x| ≤ n. With f [µ], we denote the
function f modified to be consistent with the query-answer list µ.

In the simulated-world experiment (the one on the right), the simulator has access to the random oracle,
and “programs” the random oracle via a list µ of query-answer pairs.
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7.2 The simulator

We describe the simulator S that we use to establish zero knowledge for NARG.

Construction 7.5. The simulator is an algorithm Sh,p(x) that works as follows. Below we denote by S the
honest-verifier zero-knowledge simulator of IP (see Definition 7.3).

Sh,p(x):
1. Sample a simulated view of the IP verifier:

(
x, (ρi)i∈[k], (αi)i∈[k]

)
← S(x).

2. Initialize the sponge state with the instance: st′0 := DS.Starth(x).
3. Sample a random salt τ ∈ Σδ.
4. Absorb the salt: st0 := DS.Absorbp(st′0, τ ).
5. For i = 1, . . . , k:

(a) Encode the prover message: α̂i := φi(αi).
(b) Absorb the encoded prover message: st′i := DS.Absorbp(sti−1, α̂i).
(c) Sample an encoded verifier message: ρ̂i ← ψ−1

i (ρi).
(d) Sample (µp,i, µp−1

,i
, sti)← ProgramBlocks(i, st′i, ρ̂i) (see below).

6. Set the argument string π := (τ , (αi)i∈[k]).
7. Let µh be the empty list. (The oracle h is not programmed.)
8. Set µp to be the concatenation of the query-answer lists (µp,i)i∈[k].
9. Set µ

p
−1 to be the concatenation of the query-answer lists (µ

p
−1

,i
)i∈[k].

10. Set µ := (µh, µp, µp−1) to be the list of all programmed locations for the oracles.
11. Output (π, µ).

Note that S does not query the inverse permutation p−1 and does not program h.
Programming blocks. The auxiliary procedure ProgramBlocks used in Construction 7.5 outputs the
permutation blocks to be programmed: it receives as input the round index i ∈ [k], a sponge state
st ∈ Σr+c× [0, r]× [0, r], and a message ρ̂i ∈ ΣℓV(i), and outputs a query-answer list µp for the permutation
oracle p, a corresponding query-answer list µ

p
−1 for the inverse permutation oracle p−1, and a new sponge

state sti corresponding to the sponge state for the next round.

ProgramBlocks(i, st, ρ̂i):
1. Set LV(i) :=

⌈
ℓV(i)
r

⌉
.

2. Parse the sponge state st as a tuple ((sR,0, sC,0), iA, iS).
3. For every j ∈ [LV(i)], sample random sC,j ← U(Σ

c).
4. Sample random zi ← U(Σ

r−(ℓV(i) mod r)).
5. Parse ρ̂i∥zi into segments (sR,1, sR,2, . . . , sR,LV(i)), each of length r.
6. Set µp,i := ((sR,i−1, sC,i−1), (sR,i, sC,i))i∈[LV(i)] and µ

p
−1

,i
:= ((sR,i, sC,i), (sR,i−1, sC,i−1))i∈[LV(i)].

7. Set sti := ((sR,LV(i), sC,LV(i)), iA, iS) where iA := r and iS := ℓV(i) mod r.
8. Return (µp,i, µp−1

,i
, sti).

7.3 Proof of Theorem 7.1

We prove the theorem via a hybrid argument; hybrids are summarized in Figure 5. Throughout we consider an
(admissible) adversary A that makes at most th queries to h, at most tp queries to p, and at most t

p
−1 queries
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to p−1. We show that the statistical distance between Dreal and Dsim, by adding the errors across all hybrids,
is at most

zIP(n) +
tp + t

p
−1

|Σ|min(δ,c)
+

(tp + t
p
−1) ·

∑
i∈[k]⌈ℓV(i)/r⌉

|Σ|r+c +
∑
i∈[k]

εcdc,i(λ, n) .

The bound in the theorem statement follows from the fact that th + tp + t
p
−1 ≤ t.

Hyb0. This is the distribution Dreal. The argument prover is displayed in Figure 5 in the non-boxed lines.
To simplify hybrid exposition, the argument prover also computes the last verifier message ρk (even though it
does not use it).
Hyb1 . In this hybrid we program the permutation p. We alter line 11 and, instead of using DS to produce
encoded verifier messages, we sample fresh ρ̂1 ← U(Σ

ℓV(1)), . . . , ρ̂k ← U(Σ
ℓV(k)) uniformly at random

and use the procedure ProgramBlocks (see line 6) to obtain query-answer lists used to program the oracles p
and p−1. Overall, LV :=

∑
i∈[k] LV(i) =

∑
i∈[k]⌈ℓV(i)/r⌉ locations are programmed.

Claim 7.6. The statistical distance between Hyb0 and Hyb1 is at most

tp + t
p
−1

|Σ|min(δ,c)
+

(tp + t
p
−1) ·

∑
i∈[k]⌈ℓV(i)/r⌉

|Σ|r+c .

We prove the claim by showing that Hyb0 and Hyb1 are perfectly indistinguishable conditioned on a
certain bad event not happening, and and upper bounding the probability of this bad event.

Consider the following two predicates.

• Estart. For a query-answer trace tr and permutation state s0 ∈ Σr+c, we define the predicate

Estart(tr, s0) := “ ∃ s′1 ∈ Σr+c : (‘p’, s0, s
′
1) ∈ tr ∨ (‘p−1’, s′1, s0) ∈ tr ” .

• Esqueeze. For a query-answer trace tr and permutation states s1, . . . , sLV
∈ Σr+c, we define the predicate

Esqueeze(tr, (s1, . . . , sLV
)) := “ ∃ ι ∈ [LV − 1] , sout ∈ Σr+c : sout ̸= sι+1 ∧ (‘p’, sι, sout) ∈ tr ” .

Next, consider the following two events.

• In Hyb0, E0 is the (bad) event that Estart(tr, s0) ∨ Esqueeze(tr, (s1, . . . , sLV
)) holds, where:

– tr is the query-answer trace of Ah,p,p
−1

at the end of line 2;
– s0 is the permutation state in st0 after absorbing the salt τ at the end of line 5; and
– s1, . . . , sLV

are the permutations states in the encoded verifier messages ρ̂1, . . . , ρ̂k produced by
DS.Squeezep in line 11 (across all k rounds).

• In Hyb1, E1 is the (bad) event that Estart(tr, s0) ∨ Esqueeze(tr, (s1, . . . , sLV
)) holds, where:

– tr is as above (tr is the same in Hyb1 and Hyb0);
– s0 is as above (s0 is the same in Hyb1 and Hyb0);
– s1, . . . , sLV

are the permutations states contained in the query-answer lists (µp,i)i∈[k] and (µ
p
−1

,i
)i∈[k]

produced by ProgramBlocks in line 11 (across all k rounds).
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We argue that Pr[E0] ≤ Pr[E1]. This follows from observing that Estart is identical across Hyb0 and Hyb1,
and that Esqueeze never holds in Hyb0 (because there is no programming) In fact, p’s outputs are consistent
and therefore

∀ (‘p’, sι, sout), (‘p’, s
′
ι, s

′
out) ∈ tr : sι = s

′
ι =⇒ sout = s

′
out ,

which implies that Esqueeze never holds. Therefore:

Pr[E0]

≤ Pr

Estart(tr, s0)

∣∣∣∣∣∣∣∣∣∣∣

(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

st′0 := DS.Starth(x)

st0 := DS.Absorbp(st′0, τ )



+ Pr


Esqueeze(tr, (s1, . . . , sLV

))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

st′0 := DS.Starth(x)

st0 := DS.Absorbp(st′0, τ )
for i = 1, . . . , k
(αi, auxi) := P(x,w) if i = 1 else P(auxi−1, ρi−1)
α̂i := φi(αi)

st′i := DS.Absorbp(sti−1, α̂i)

(ρ̂i, st
′
i) := DS.Squeezep(st′i, ℓV(i)); ρi := ψi(ρ̂i)



= Pr

Estart(tr, s0)

∣∣∣∣∣∣∣∣∣∣∣

(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

st′0 := DS.Starth(x)

st0 := DS.Absorbp(st′0, τ )

+ 0

≤ Pr[E1] .

We argue that Hyb0 | E0 identically distributed to Hyb1 | E1:

• In Hyb0, p’s answers are uniformly and independently sampled in Σr+c, and there is no programming.

• In Hyb1, the permutation states s1, . . . , sLV
are uniformly and independently sampled in ProgramBlocks.

Since E1 does not hold,

∀ ι ∈ [0, LV−1] : (‘p’, sι, sout) ∈ tr =⇒ sout = sι+1

which implies that p’s answers are consistent.

Together with Claims 7.7 and 7.8, this implies:

∆(Hyb0,Hyb1) ≤ max(Pr[E0],Pr[E1]) + ∆
(
Hyb0

∣∣ E0,Hyb1
∣∣ E1

)
(by [CY24, Claim 1.2.10])

= Pr[E1] + 0 (argued above)

≤
tp + t

p
−1

|Σ|min(δ,c)
+

(tp + t
p
−1) ·

∑
i∈[k]⌈ℓV(i)/r⌉

|Σ|r+c . (by Claims 7.7 and 7.8)
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Claim 7.7. The following holds:

Pr

Estart(tr, s0)

∣∣∣∣∣∣∣∣∣∣∣

(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

st′0 := DS.Starth(x)

st0 := DS.Absorbp(st′0, τ )

 ≤
tp + t

p
−1

|Σ|min(δ,c)
.

Proof. LetLδ := ⌈δ/r⌉ be the number of blocks in the salt string τ . Without loss of generality, we assume that
A queries x to h and let sC,−Lδ+1 := h(x) ∈ Σc be the query answer. (Construct the (th + 1, tp, tp−1)-query
adversary A′ that internally runs A and, after A outputs (x,w, aux), queries x to h and outputs (x,w, aux).)
We distinguish two cases.

• Case 1: Lδ = 1 (i.e. δ ≤ r). The permutation state s0 is (τ∥0r−δ, h(x)) ∈ Σr+c. Therefore:

Pr

Estart(tr, s0)

∣∣∣∣∣∣∣∣∣∣∣

(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

st′0 := DS.Starth(x)

st0 := DS.Absorbp(st′0, τ )



≤ Pr

(‘p’, s0, ·) ∈ tr

∣∣∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

s0 := (τ∥0r−δ, h(x))

+ Pr

(‘p−1’, ·, s0) ∈ tr

∣∣∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

s0 := (τ∥0r−δ, h(x))


≤

tp

|Σ|δ
+
t
p
−1

|Σ|δ
.

• Case 2: Lδ > 1 (i.e. δ > r). Parse τ∥0r−(δ mod r) into the sequence of Lδ blocks (sR,−Lδ+1∥ · · · ∥sR,0)
that are to be absorbed. Either all these blocks appropriately appear in the trace, or they do not.

(a) Suppose that there exists a sequence of queries to p that match the salt, i.e., ∃ sC,−Lδ+2, . . . , sC,−1 ∈ Σc

such that

∀ j ∈ {−Lδ + 1, . . . , 0} : (‘p’, (sR,j−1, sC,i−1), (sR,j , sC,j)) ∈ tr
∨ (‘p−1’, (sR,j , sC,t), (sR,j−1, sC,j−1)) ∈ tr .

Then:

Pr

Estart(tr, s0)

∣∣∣∣∣∣∣∣∣∣∣

(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

st′0 := DS.Starth(x)

st0 := DS.Absorbp(st′0, τ )


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≤ Pr

 ∀ j ∈ {−Lδ + 1, . . . , 0} :
(‘p’, (sR,j−1, ·), (sR,j , ·)) ∈ tr

∣∣∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

(sR,−Lδ+1∥ · · · ∥sR,0) := (τ∥0r−(δ mod r))



+ Pr

 ∀ j ∈ {−Lδ + 1, . . . , 0} :
(‘p−1’, (sR,j , ·), (sR,j−1, ·)) ∈ tr

∣∣∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

(sR,−Lδ+1∥ · · · ∥sR,0) := (τ∥0r−(δ mod r))


≤

tp

|Σ|δ
+
t
p
−1

|Σ|δ
.

(b) Suppose that some blocks of the salt do not appear in the trace. Denote with j∗ the last such index:

j∗ := max
j∈{−Lδ+1,...,0}

:

∄ sC,−Lδ+2, . . . , sC,−1 ∈ Σc such that
(‘p’, (sR,j−1, sC,j−1), (sR,j , sC,j)) ̸∈ tr
∧ (‘p−1’, (sR,j , sC,j), (sR,j−1, sC,j−1)) ̸∈ tr .

(22)

In this case, while absorbing the salt in line 5, the capacity state s
C,j

∗
+1 is sampled uniformly at

random from Σc, and coincides with a query to the permutation oracle from the adversary. That is,

Pr

Estart(tr, s0)

∣∣∣∣∣∣∣∣∣∣∣

(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

st′0 := DS.Starth(x)

st0 := DS.Absorbp(st′0, τ )



≤ Pr


∃ j∗ as per Eq. 22 ∧
(‘p’, ·, (·, s

C,j
∗)) ∈ tr

∣∣∣∣∣∣∣∣∣∣∣

(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)
sC,−Lδ+1, . . . , sC,0 ← U(Σ

c)

(sR,−Lδ+1∥ · · · ∥sR,0) := (τ∥0r−(δ mod r))



+ Pr


∃ j∗as per Eq. 22 ∧
(‘p−1’, (·, s

C,j
∗), ·) ∈ tr

∣∣∣∣∣∣∣∣∣∣∣

(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)
sC,−Lδ+1, . . . , sC,0 ← U(Σ

c)

(sR,−Lδ+1∥ · · · ∥sR,0) := (τ∥0r−(δ mod r))


≤

tp
|Σ|c

+
t
p
−1

|Σ|c
.
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Putting together all above (mutually-exclusive) cases, we conclude that:

Pr

Estart(tr, s0)

∣∣∣∣∣∣∣∣∣∣∣

(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

τ ← U(Σδ)

st′0 := DS.Starth(x)

st0 := DS.Absorbp(st′0, τ )


≤ max

{
tp

|Σ|δ
+
t
p
−1

|Σ|δ
,
tp

|Σ|δ
+
t
p
−1

|Σ|δ
,
tp
|Σ|c

+
t
p
−1

|Σ|c

}
=

tp + t
p
−1

|Σ|min(δ,c)
.

Claim 7.8. The following holds:

Pr

Esqueeze(tr, (s1, . . . , sLV
))

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

s1, . . . , sLV
← U(Σr+c)

 ≤ (tp + t
p
−1) ·

LV

|Σ|r+c .

Proof. The adversaryA makes at most tp, tp−1 queries to the oracles p, p−1 respectively, and has to guess any
of the LV states that have been sampled uniformly at random. In other words:

Pr

Esqueeze(tr, (s1, . . . , sLV
))

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

s1, . . . , sLV
← U(Σr+c)


≤ Pr

∃ ι ∈ [LV − 1] : (‘p’, sι, ·) ∈ tr

∣∣∣∣∣∣∣
(h, p, p−1)← D𝔖(λ, n)

(x,w, aux)
tr←− Ah,p,p

−1

s1, . . . , sLV
← U(Σr+c)


≤ (tp + t

p
−1)

(
1−

(
1− 1

|Σ|r+c

)LV

)

≤ (tp + t
p
−1) ·

LV

|Σ|r+c .

Hyb2 . In this hybrid we modify line 11. In each round i ∈ [k], we sample ρ̂i ∈ ΣℓV(i) in a different way:
sample ρ̂′i ← U(Σ

ℓV(i)), set ρi := ψi(ρ̂
′
i), and sample ρ̂i ← ψ−1

i (ρi).

Claim 7.9. Hyb1 and Hyb2 are perfectly indistinguishable.

Proof. We argue that, for every i ∈ [k], the distributions of ρ̂i ∈ ΣℓV(i) in Hyb2 and in Hyb3 are identical.
By definition of statistical distance, we have:

∆
(
U(ΣℓV(i)), (ψ−1

i ◦ ψi ◦ U)(Σ
ℓV(i))

)
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=
∑

x∈ΣℓV(i)

∣∣∣∣∣∣∣Pr
[
x′ = x

∣∣∣ x′ ← U(ΣℓV(i))
]
− Pr

x′′ = x

∣∣∣∣∣∣∣
x′ ← U(ΣℓV(i))

y := ψi(x
′)

x′′ ← ψ−1
i (y)


∣∣∣∣∣∣∣

Let x̄ :=
{
x′ ∈ ΣℓV(i) : ψi(x) = ψi(x

′)
}

be the set of representatives of x in ΣℓV(i)/ψi. Recall that ψ−1
i (y)

samples uniformly at random a preimage of y. Then:

∆
(
U(ΣℓV(i)), (ψ−1

i ◦ ψi ◦ U)(Σ
ℓV(i))

)
=

∑
x∈ΣℓV(i)

∣∣∣∣∣ 1

|Σ|ℓV(i)
− Pr

[
x′ = x

∣∣ x′ ← U(x̄)
]
· Pr
[
ψi(x

′) = ψi(x)
∣∣∣ x′ ← U(ΣℓV(i))

]∣∣∣∣∣
=

∑
x∈ΣℓV(i)

∣∣∣∣∣ 1

|Σ|ℓV(i)
− 1

|x̄|
· Pr
[
ψi(x

′) = ψi(x)
∣∣∣ x′ ← U(ΣℓV(i))

]∣∣∣∣∣
=

∑
x∈ΣℓV(i)

∣∣∣∣∣ 1

|Σ|ℓV(i)
− 1

|x̄|
· |x̄|
|Σ|ℓV(i)

∣∣∣∣∣ = 0 .

Hyb3 . In this hybrid we modify line 11 (relative to Hyb2). Specifically, we compute the encoded verifier
message ρ̂i as follows: sample a verifier message ρi ← U(MV,i) and set ρ̂i ← ψ−1

i (ρi).

Claim 7.10. The statistical distance between Hyb3 and Hyb2 is at most
∑

i∈[k] εcdc,i(λ, n).

Proof. The IP prover uses the verifier messages (ρi)i∈[k] to compute its messages (αi)i∈[k]. (The last verifier
message ρk does not affect the prover messages.) Observe that:
• In Hyb2, (ρi)i∈[k] are decodings of random encoded verifier messages: ρi := ψi(ρ̂i) for ρ̂i ← U(Σ

ℓV(i)).
• In Hyb3, (ρi)i∈[k] are random verifier messages: ρi ← U(MV,i).
The claim follows from the fact that each ψi is εcdc,i(λ, n)-biased.

Hyb4 . In this hybrid we replace the IP prover P with the IP simulator S. Instead of computing the prover
messages (αi)i∈[k] as in hybrid Hyb4 (line 8), we compute (αi)i∈[k] using the IP simulator S (line 6); the
verifier messages sampled in line 11 are replaced with the simulated verifier messages from line 6. By
inspection, this hybrid corresponds to the distribution Dsim.

Claim 7.11. The statistical distance between Hyb4 and Hyb3 is at most zIP(n).

Proof. The statistical distance is the distance between real and simulated messages, hence is at most zIP(n) by
the definition of honest-verifier zero knowledge for IPs (Definition 7.3).
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1 : (h, p, p−1)← D𝔖(λ, n)

2 : (x,w, aux)
tr←− Ah,p,p

−1

3 : τ ← U(Σδ)

4 : st′0 := DS.Starth(x)

5 : st0 := DS.Absorbp(st′0, τ )

6 :
(
x, (ρi)i∈[k], (αi)i∈[k]

)
← S(x)

7 : for i = 1, . . . , k

8 : (αi, auxi) := P(x,w) if i = 1 else P(auxi−1, ρi−1)

9 : α̂i := φi(αi)

10 : st′i := DS.Absorbp(sti−1, α̂i)

11 : (ρ̂i, st
′
i) := DS.Squeezep(st′i, ℓV(i)); ρi := ψi(ρ̂i)

ρ̂i ← U(Σ
ℓV(i)); ρi := ψi(ρ̂i); (µp,i, µp

−1
,i
, sti) := ProgramBlocks(i, st′i, ρ̂i)

ρ̂′i ← U(Σ
ℓV(i)); ρi := ψi(ρ̂

′
i); ρ̂i ← ψ−1

i (ρi); (µp,i, µp
−1

,i
, sti) := ProgramBlocks(i, st′i, ρ̂i)

ρi ← U(MV,i); ρ̂i ← ψ−1
i (ρi); (µp,i, µp

−1
,i
, sti) := ProgramBlocks(i, st′i, ρ̂i)

ρ̂i ← ψ−1
i (ρi); (µp,i, µp

−1
,i
, sti) := ProgramBlocks(i, st′i, ρ̂i)

12 : µh := ( )

13 : µp := µp,1∥ · · · ∥µp,k

14 : µ
p
−1 := µ

p
−1

,1
∥ · · · ∥µ

p
−1

,k

15 : π := (τ , (αi)i∈[k])

16 : y ← A(h,p,p
−1

)(aux, π) A(h,p,p
−1

)[µh,µp,µp
−1 ]

(aux, π)

Figure 5: Hybrid experiments Hyb0, Hyb1 , Hyb2 , Hyb3 , Hyb4 for Theorem 7.1.
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8 Implementation

We implemented DSFS[IP, cdc, δ] (Construction 4.3) in Rust as an open-source library called spongefish
(duplex sponge Fiat–Shamir), released under a BSD-3-Clause license and available at https://github.
com/arkworks-rs/spongefish.

The library is type-safe and relies on Rust’s traits, using generics, associated types, and trait bounds to
offer a generic implementation that behaves consistently across different permutation functions.

8.1 Core library and software stack

The core of our library, illustrated as a software stack in Figure 6, consists of the following components.

• A trait Unit defines the alphabet Σ for the permutation (and hash function). We only require that a Unit
can be set to zero (via zeroize::Zeroize) and converted into bytes.

• A trait Permutation<U: Unit> defines the permutation state, of size Permutation::R (the rate) plus
Permutation::C (the capacity), in units U. The trait is publicly exposed, so that one can use arbitrary
permutation functions. As examples, we provide a Keccak implementation that replies on the existing
keccak crate, and a Poseidon implementation that relies on the arkworks library. Moreover, hash function
designers can implement their own permutation functions without having to re-implement the duplex
sponge construction and the Fiat–Shamir transformation.

• ADuplexSponge<P: Permutation> implementation is given, which implements the duplex construction
in overwrite mode as described in Construction 3.2, on the top on an arbitrary permutation P.

On the top of the duplex sponge implementation, we build two structures to implement the argument prover
and argument verifier in Construction 4.3.

• A PrivateProverState<P: Permutation> structure, which contains the NARG prover state. At its
core, this structure allows absorbing/squeezing units, and internally update the argument string. It contains:
(i) the current sponge state, (ii) the NARG string serialized so far, and (iii) the private coins of the prover.

• A VerifierState<P: Permutation> structure, which implements the NARG verifier. This structure
takes as input an argument string, and during the verifier execution, it deserializes the string into prover
messages (as units), and feeds them into the duplex sponge to generate the verifier messages.

We exploit some of Rust’s type safety features to make the library resilient against misuse. For instance, it
is not possible to clone the prover state during the execution. Another example: by design, the NARG string
contains only those prover messages that have been included in the Fiat–Shamir transformation.
Codecs. Via extension traits12 we add the ability for prover and verifier to absorb and squeeze from arbitrary
domains. In particular, a submodule codecs implements the following.

• An extension ProverMessageField<F> that provides an encoding map φ translating prover messages
from a field F into units U (the permutation alphabet). Supported field types are either in ark-ff (within
arkworks-rs/algebra) or ff (within zkcrypto/ff).

• An extension VerifierMessageField<F>, that provides a negligibly-biased map ψ that sends uniformly-
distributed units into uniformly-distributed elements of a field F following Lemma B.1. The extension
supports bytes (U = u8) and field elements (U = F). The extension is implemented for both arkworks
and zkcrypto/ff.
12Extension traits are a programming pattern that enables adding methods to an existing type outside of the crate defining that type.
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NARG

struct DuplexSponge<P: Permutation>
the duplex sponge construction

trait Permutation<U: Unit>
describes p : Σ

r+c → Σ
r+c

trait Unit
the alphabet Σ

PrivateProverState
argument prover

VerifierState
argument verifier

Codec maps

ByteProverMessage

FieldVerifierMessage

GroupProverMessage

. . .

Figure 6: Overview of the software stack developed in the library.

• An extension GroupProverMessage<G> that provides an encoding map φ that compresses and serializes
elliptic curve group elements into the unit.

• An extension ByteProverMessage that allows to map units (squeezed from the duplex sponge) into bytes.
In the case of binary units the implementation is trivial, as it relies on squeezing field native units. In the
case of algebraic permutations, we follow Lemma B.1 to make sure that the squeezed verifier messages are
indistinguishable from uniformly distributed ones.

8.2 Concrete security and ergonomics

In the following, we explore some design choices and its trade-offs in security and usability.
Byte-level interface. Cryptographic libraries typically expose cryptographic objects as “opaque” byte
payloads (e.g., see PKCS#11 and the NaCL cryptography library). We take a similar approach in our library,
and make PrivateProverState the argument string themselves, which is exposed to the user as a byte
sequence. On the other end, VerifierState reads incrementally the IP prover messages from the NARG
string recovering the IP messages and re-computes the verifier messages in the correct sequence. This is
beneficial for two reasons: (i) The argument string object is guaranteed to contain all messages that have been
provided as input to the Fiat–Shamir transformation and to include those messages in the correct round.13

(ii) serialization is internally made by the library, offloading the burden of delicately re-mapping verifier
messages without introducing noticeable biases, in a way that can be used also by other libraries.
Customization label. It is common in Fiat–Shamir implementations to provide a label that uniquely
identifies the scope where the NARG is being used. We provide a language to uniquely describe a protocol
where, in addition to familiar names, the prover will describe the coded cdc(λ, n) and the hash function used.
A concrete customization label example for Appendix A using Poseidon with rate 3 and capacity 1 for over
BLS12-381’s coordinate field is:

"example.com <A2S1A1>Poseidon-3-1"

Indicating that the proof acts over the domain example.com, the protocol will absorb 1 element, squeeze
one element, and finally absorb one element, using Poseidon-3-1 as hash function.

13In most implementations today, the prover returns a “NARG string” that contains all prover messages, but ensuring their inclusion
in the Fiat–Shamir transformation is left to the programmer.
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Private randomness of the argument prover. A common pattern in signature scheme implementations is
generating deterministically proofs seeding the prover randomness with the witness (e.g., see RFC6979 [Por13]).
Deterministic signatures have the advantage of retaining the cryptographic security features associated with
digital signatures, but can be more easily implemented in various environments, since they do not need access
to a source of high-quality randomness [Por13]. The argument prover PrivateProverState internally
holds the state of two sponges: one duplex sponge acting over a generic alphabet U that generates the verifier
messages of the IP protocol, and a (private) duplex sponge. Both sponges absorb the (public) prover’s
messages, but in addition the private duplex sponge can be re-seeded with external input (e.g., the witness)
and used to provide randomness that is dependent on the private information and the current IP protocol state.

61



A Example: codecs for Schnorr’s protocol

We review Schnorr’s protocol: we describe a codec for binary permutation functions (where the alphabet is
Σ = {0, 1}), and a codec for algebraic permutation functions (where the alphabet is a field).

Let G be an additive elliptic curve group of prime order r where DL is hard, and let G ∈ G be a generator
for G.14 Let Zp be the coordinate field of the elliptic curve. Schnorr’s protocol is a 3-message IP for the
relationR :=

{
(X,x) ∈ G× Zp : X = xG

}
. In particular, k = 2 and the second round consists of a prover

message and no verifier message. To prove knowledge of x ∈ Zr such that X = xG, the prover sends
K := kG, the verifier sends a challenge c ∈ Zr, and the prover sends s := k+ cx mod r. The verifier accepts
if sG = K + cX . In our notation:
• x = X ∈ G with n := ⌈log2 p⌉+ 1, the size of the “x” coordinate and the sign of the “y” coordinate;
• MP,1 = Z2

p is the message space of the first prover message, seen as the affine representation of an elliptic
curve point;

• MV,1 = Zr is the message space of the verifier message;
• MP,2 = Zr is the message space of the second prover message.
Binary codec. An example of a binary permutation function is Keccak-f [1600] [Sha], which has alphabet
Σ = {0, 1}, capacity 512, and rate 1088. The binary codec for Schnorr’s protocol is a tuple (ℓP, ℓV,φ,ψ)
where:

• φ1 : Z
2
p → {0, 1}

ℓP(1), with ℓP(1) := ⌈log p⌉+ 1, is the big-endian binary encoding of the “x” coordinate
and the sign of the “y” coordinate. Note that φ1 is injective, and its preimage is efficiently computable
using the elliptic curve’s equation.

• ψ1 : {0, 1}
ℓV(1) → Zr, with ℓV(1) = ⌈log r⌉ + λ, is the big-endian decoding of the given binary string

interpreted as an integer modulo r (i.e., b ∈ {0, 1}ℓV(1) is mapped to
∑ℓV(1)

i=1 bi2
i−1 mod r). The additive

term λ ensures that ψ1 has bias at most 2−λ (see Lemma B.1).
• φ2 : Zr → {0, 1}

ℓP(2), with ℓP(2) := ⌈log r⌉ is the big-endian binary encoding of the second prover
message.

Algebraic codec. Algebraic permutation functions typically have a larger alphabet. An example is
Poseidon [GKRRS21], whose alphabet can be set to be the field Zp (the elliptic curve’s field of definition),
with capacity 1 and rate 2. The algebraic codec for Schnorr’s protocol is a tuple (ℓP, ℓV,φ,ψ) where:

• φ1 : Z
2
p → Z2

p (with ℓP(1) = 2) is the identity function.
• ψ1 : Zp → Zr (with ℓV(1) = 1) maps x to x mod r. The bias of this map is 2p mod r

pr (p− (p mod r)), by
Lemma B.1. If we consider a pairing-friendly elliptic curve such as BLS12-381, the bias is at most 2−126.

• φ2 : Zr → {0, 1}
ℓP(2), with ℓP(2) = ⌈log r/ log p⌉, is the big-endian binary encoding of the response. In

typical pairing-friendly elliptic curves, such as BLS12-381, this map is the “identity” function, mapping an
element of Zr, seen as an integer [0, r−1], into Zq.

A common concern, when using algebraic hashes, is the number of invocations of the permutation function.
In this example, the permutation function is invoked only once: the construction DSFS absorbs two Zp

elements, writing two elements in the rate (see Item 3a in Construction 3.2). At the end of the execution, the
state has iA and iS equal to the rate of the sponge (and no call yet to the permutation function). Then, DSFS
squeezes one Zp element from the duplex sponge, which invokes the permutation function, sets iS = 0, and
then reads the first element of the rate segment in the permutation state.

14The group choice is merely an example, and captures, for instance, the elliptic curves in the SEC2 standards [Bro10]. Other
choices are possible (e.g., the subgroup of squares in Z∗

q , where q is a safe prime).
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B Bias of modular reduction

We state and prove a simple lemma about the bias of modular reduction, which is useful for bounding the bias
of the distribution that arises from a common decoding strategy from binary strings to prime field elements.

Consider the setting where the verifier message is a random field element in a prime field Fp, equivalently,
a random integer in [0, p−1]. Moreover, suppose that the function (or permutation) used in the Fiat–Shamir
transformation is binary, which means that one must somehow decode a field element from a (random) binary
string x in {0, 1}m, for a sufficiently large m.

A common decoding strategy [Hao] is to interpret x as a base-2 integer and outputting its remainder
modulo p, i.e., the decoding function ψ : {0, 1}m → [0, p−1] is

ψ(x) :=

(
m∑
i=1

xi2
i−1

)
mod p .

The lemma below directly implies that, for m := ⌈log p⌉ + λ, the bias of ψ is at most 2−λ. The extra
length λ ensures that U(Fp) = U([0, p−1]) and ψ(U({0, 1}m)) are close enough. More generally, for positive
integers a, b with b ≥ a, the lemma below upper bounds the statistical distance between U([0, a−1]) (the
target distribution) and the distribution arising from U([0, b−1]) reduced modulo a.

Lemma B.1. Let a, b be positive integers with b ≥ a, and set r := b (mod a). Let ψa,b : [0, b−1]→ [0, a−1]
be the function that maps x to x mod a. Then

∆
(
U([0, a−1]), ψa,b(U([0, b−1]))

)
≤ 2r

ab
(a− r) .

In particular:
• if a | b then the statistical distance is 0, and
• if ⌈log2 b⌉ ≥ ⌈log2 a⌉+ λ then the statistical distance is at most 2−λ.

Proof. Let b = q · a+ r with 0 ≤ r < a. For every y ∈ [0, a−1], the probability that ψa,b(U([0, b−1])) is
equal to y is q+1

b if 0 ≤ y < r, and q
b if r ≤ y < a. Therefore:

∆
(
U([0, a−1]), ψa,b(U([0, b−1]))

)
=

∑
k∈[0,r−1]

∣∣∣∣1a − q + 1

b

∣∣∣∣+ ∑
k∈[r,a−1]

∣∣∣∣1a − q

b

∣∣∣∣
= r

∣∣∣∣b− a(q + 1)

ab

∣∣∣∣+ (a− r)
∣∣∣∣b− qaab

∣∣∣∣
=

1

ab
· (r|b− qa− a|+ (a− r)|r|)

=
2r

ab
(a− r) .

The case where a | b is straightforward since it implies r = 0. The case where ⌈log2 b⌉ ≥ ⌈log2 a⌉ + λ
follows the fact that r(a− r) ≤ a2/2:

2r

ab
(a− r) ≤ a2

a22λ
≤ 1

2λ
.
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