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Abstract
As artificial intelligence (AI) becomes increasingly embed-
ded in high-stakes applications such as healthcare, finance,
and autonomous systems, ensuring the verifiability of AI
computations without compromising sensitive data or pro-
prietary models is crucial. Zero-knowledge machine learning
(ZKML) leverages zero-knowledge proofs (ZKPs) to enable
the verification of AI model outputs while preserving con-
fidentiality. However, existing ZKML approaches require
specialized cryptographic expertise, making them inaccessi-
ble to traditional AI developers.
In this paper, we introduce ZKPyTorch, a compiler that

seamlessly integrates ML frameworks like PyTorch with ZKP
engines like Expander, simplifying the development of ZKML.
ZKPyTorch automates the translation of ML operations into
optimized ZKP circuits through three key components. First,
a ZKP preprocessor converts models into structured compu-
tational graphs and injects necessary auxiliary information
to facilitate proof generation. Second, a ZKP-friendly quanti-
zation module introduces an optimized quantization strategy
that reduces computation bit-widths, enabling efficient ZKP
execution within smaller finite fields such as M61. Third, a
hierarchical ZKP circuit optimizer employs a multi-level op-
timization framework at model, operation, and circuit levels
to improve proof generation efficiency.
We demonstrate ZKPyTorch effectiveness through end-

to-end case studies, successfully converting VGG-16 and
Llama-3 models from PyTorch, a leading ML framework,
into ZKP-compatible circuits recognizable by Expander, a
state-of-the-art ZKP engine. Using Expander, we generate
zero-knowledge proofs for these models, achieving proof
generation for the VGG-16 model in 2.2 seconds per CIFAR-
10 image for VGG-16 and 150 seconds per token for Llama-3
inference, improving the practical adoption of ZKML.

1 Introduction
As AI systems increasingly make high-stakes decisions in
domains like autonomous vehicles [5], healthcare [1], and
finance [14], there is a growing need to verify these compu-
tations without compromising sensitive data or proprietary

models. The challenge is particularly acute in regulated in-
dustries where model transparency is mandated but intel-
lectual property protection is essential. Traditional trans-
parency approaches [3] often necessitate revealing sensitive
information, such as proprietary model details, creating a
fundamental tension between transparency and confiden-
tiality. Consider the scenario of a hospital employing AI for
cancer diagnosis. While the hospital requires assurance of
the AI’s accuracy and consistency, the AI provider cannot
disclose proprietary model details. Similar dilemmas arise in
other domains, such as determining liability in autonomous
vehicle accidents.

Zero-knowledge machine learning (ZKML) [4, 8, 9, 13, 15,
16, 18, 23, 26] offers a promising solution to this challenge.
By leveraging advanced cryptographic techniques known as
zero-knowledge proofs (ZKPs) [10], ZKML enables the veri-
fication of AI computations without exposing sensitive data,
such as proprietary model parameters. ZKPs allow a "prover"
to demonstrate the correctness of a computation without re-
vealing the underlying model, enabling "verifiers" to confirm
the accuracy of the AI’s decisions. However, the complex
mechanism of current cryptography poses significant bar-
riers to the widespread adoption of ZKPs by traditional AI
developers, who typically workwithmachine learning frame-
works like PyTorch [20]. Achieving rigorous cryptographic
security in ZKML requires that each machine-learning op-
eration be meticulously designed using ZKP patterns. This
process demands specialized cryptographic expertise, creat-
ing a challenge for traditional AI developers and hindering
the seamless integration of ZKML into existing AI systems.

In this paper, we present ZKPyTorch, a compiler designed
to bridge the gap between machine learning frameworks like
PyTorch [20] and ZKP engines like Expander [7], streamlin-
ing the ZKML development process. Our compiler enables de-
velopers to write standard ML code without the need to learn
new ZKP-specific programming patterns. It automatically
translates ML operations, such as convolution, matrix multi-
plication, ReLU, softmax, and attention, into ZKP circuits and
applies built-in optimizations for common ZKML patterns,
ensuring efficient computational performance. ZKPyTorch
mainly consists of three modules to seamlessly integrate



with the widely adopted PyTorch framework: a ZKP prepro-
cessor for ML tasks, a ZKP-friendly ML quantization module,
and a hierarchical ZKP circuit optimizer.
ZKP preprocessor for ML tasks. Integrating ZKP into

ML frameworks poses significant challenges due to the com-
plexity of computation pipelines. To standardize and for-
malize intricate ML patterns, ZKPyTorch utilizes the Open
Neural Network Exchange (ONNX) format [19] as an in-
termediate representation, where we enable the structured
conversion of ML models into computational graphs. Addi-
tionally, ZKPyTorch enhances these graphs by adding edges
and nodes to generate auxiliary information required for
ZKP circuits. For instance, proving the correctness of a divi-
sion operation requires not only the quotient as the result
but also the remainder as auxiliary data, along with proof
that the remainder is smaller than the divisor. Similarly, non-
linear functions like ReLU, softmax, and normalization layers
require additional lookup constraints to be ZKP-compatible.
ZKPyTorch preprocesses ML models by structuring compu-
tations and generating necessary proof-related data.
ZKP-friendly ML quantization. ZKPyTorch contains

a ZKP-friendly ML quantization technique to bridge the
gap between traditional ML computations, which rely on
floating-point operations, and ZKP computations, which op-
erate over finite fields. Previous approaches [17, 23, 26] have
used fixed-point representations to emulate floating-point
arithmetic. To achieve accuracy comparable to the original
ML model, these methods require large bit-width fixed-point
numbers, necessitating operations over large finite fields,
such as the scalar field of the BN254 curve. To address this
challenge, we design novel quantization strategies tailored
to the constraints of ZKP systems while maintaining predic-
tive performance. Our optimal quantization method reduces
computation bit-widths to fit smaller finite fields like M61,
balancing ML accuracy with efficiency.
Hierarchical ZKP circuit optimizer. We introduce a

hierarchical optimization framework for translating ML com-
putation graphs into efficient proving circuits, incorporat-
ing three levels of optimization to enhance computational
efficiency and proof scalability. Model-level optimizations
preserve high-level semantics to streamline proof generation.
For instance, generating multiple tokens in traditional large
language models (LLMs) requires token-by-token computa-
tions, but proving their correctness can be optimized into a
single ZKP circuit. Primitive operation level optimizations,
targeting foundational ML operations like convolution and
softmax, embed well-established techniques such as special-
ized arithmetic circuits, and table lookup circuits to enhance
the proving process. Circuit-level optimizations focus on
parallelizing ZKP circuits, enabling multi-core execution to
significantly reduce proof generation time and efficiently
prove large-scale ML models.

End-to-end user cases.With ZKPyTorch, we have seam-
lessly integrated PyTorch [20], a leading ML framework,

Table 1. Performance of proof generation using Expander
with circuits generated by ZKPyTorch.

Model # Parameters Single-Core Performance
VGG-16 15.2 Million 2.2 sec / image
Llama-3 8 Billion 150 sec / token

with Expander [7], a state-of-the-art ZKP framework, en-
abling verifiable and privacy-preserving machine learning.
We successfully convert VGG-16 [22] and Llama-3 [12] neu-
ral networks from PyTorch into ZKP-compatible circuits
recognizable by Expander. Using Expander, we generate
zero-knowledge proofs for these models. As shown in Table
1, our solution achieves proof generation for the VGG-16
model in just 2.2 seconds per CIFAR-10 [6] image using a
single CPU core, and 150 seconds per token for Llama-3
inference. Our results demonstrate that this approach em-
powers AI developers to build cryptographically secure and
verifiable neural networks while significantly reducing de-
velopment costs. This streamlining accelerates the adoption
of ZKML across various domains. Specifically, ZKPyTorch
enables the easy deployment of verifiable Machine-Learning-
as-a-Service (MLaaS) by integrating PyTorch with Expander,
generating ZKPs to ensure inference correctness while pre-
serving model confidentiality. It also facilitates verifiable
model valuation, allowing AI stakeholders to assess model
accuracy and robustness using ZKPs, ensuring transparent
evaluation without exposing proprietary model details.

1.1 Related Work
Zero-knowledge machine learning has evolved significantly
since early work on decision trees [26]. Based on this funda-
mental concept, many efforts [4, 8, 9, 13, 15, 16, 18, 23] have
been directed toward developing zero-knowledge proofs
(ZKPs) for neural networks, making verifiable deep learning
increasingly feasible. The academic foundations of the field
were established through several groundbreaking projects
that introduced novel constraint systems and proof tech-
niques. ZKCNN [16] pioneered the application of ZKPs to
convolutional neural networks (CNNs), demonstrating the
practicality of verifiable inference on structured deep learn-
ing models. More recent work on scaling deep neural net-
work (DNN) inference [4, 15] has pushed the boundaries
further by developing advanced constraint systems capable
of handling increasingly large and complex models while
maintaining efficiency. Recent research [13, 18, 23] has made
proving large language models (LLMs) nearly practical by
employing range proofs, lookup proofs, and other advanced
techniques to optimize proving efficiency. These efforts pri-
marily focus on enhancing the efficiency of zero-knowledge
proofs and addressing the computational bottlenecks inher-
ent in verifying large-scale inference.
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Compiler design is critical for expanding the applicability
of ZKML, enabling more AI developers to participate in the
ecosystem and lowering the barrier to adoption. ZEN [8] in-
troduced compiler optimizations tailored for neural network
circuits, focusing on efficient representation and constraint
reduction to minimize proof generation costs. Building on
this foundation, ZENO [9] further enhances zero-knowledge
proof systems by optimizing constraint representation and
proof generation, significantly reducing the overhead associ-
ated with verifying deep learning models. However, neither
of these works directly integrates with modern ML frame-
works, limiting accessibility for AI developers who rely on
established ecosystems like PyTorch [20] and TensorFlow
[24]. Additionally, their approaches are specifically designed
for CNN models, making them unsuitable for more complex
architectures, such as large language models (LLMs) that
involve extensive matrix multiplications and attention mech-
anisms. Our work introduces a more general compiler that
enables direct compilation from PyTorch code to ZKP cir-
cuits, providing seamless integration with ML frameworks
and supporting a broader range of models beyond CNNs.

2 Background
2.1 Zero-Knowledge Proofs
Zero-knowledge proofs (ZKPs) are a cryptographic primi-
tive that allows a prover to demonstrate the correctness of
a computation to a verifier without revealing any secret in-
formation [10]. Specifically, given a function 𝐹 and a target
output𝑦, the prover shows that it knows a public value 𝑥 and
a secret value𝑦 such that𝑦 = 𝐹 (𝑥,𝑤) while not revealing the
secret value𝑤 . Here, the function 𝐹 can describe an arbitrary
computation. This property makes ZKPs particularly useful
in privacy-preserving applications, such as authentication,
blockchain scalability, and confidential transactions.
The workflow of zero-knowledge proof is shown in Fig-

ure 1, where a crucial step before the proof generation is to
convert the function 𝐹 to ZKP circuit. In this process, each
addition and multiplication in the function 𝐹 is compiled
into a addition gate and a multiplication gate in the circuit,
respectively. Besides addition and multiplication, ZKP circuit
also supports non-linear operations such as maximum value
and square root operations, which are achieved by introduc-
ing table lookup gates to constrain calculation results to be
in a specific table. For large functions involving millions of
operations, the circuit may contain millions of gates. Since
proof generation latency is proportional to the number of
gates, circuits of this scale can lead to significant computa-
tional overhead. Therefore, leveraging efficient circuit com-
pile techniques becomes critical to reducing computational
overhead.

The integration of ZKPs into machine learning, known as
zero-knowledge machine learning (ZKML), enables the veri-
fication of ML model computations while preserving model

Compile

ProveVerify

accept / reject 

ZKP Circuit

encoding

polynomials

Figure 1. The workflow of zero-knowledge proof.

privacy. In ZKML, the inference process is treated as a func-
tion 𝐹 , where either the model input or the model weights
serve as the secret input. Similar to general ZKPs, proof gen-
eration first requires compiling the model function 𝐹 into a
ZKP circuit. However, the complexity of ML models makes
this compilation workflow challenging. Existing ZKML solu-
tions often demand extensive modifications to ML models
built with classical frameworks like PyTorch, posing a bar-
rier for AI developers. To overcome this, new approaches
focus on compilation frameworks that automatically convert
ML models into ZKP circuits, bridging the gap between AI
development and cryptographic proof generation.

2.2 Directed Acyclic Graph
Directed Acyclic Graph (DAG) is a fundamental data struc-
ture in graph theory, characterized by a finite set of vertices
and directed edges that do not form any cycles. Formally, a
DAG is a directed graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of
vertices, and 𝐸 ⊆ 𝑉 ×𝑉 is the set of directed edges, such that
there exists no sequence of edges forming a cycle, i.e., there
is no path (𝑣1, 𝑣2, . . . , 𝑣𝑘 ) where 𝑣1 = 𝑣𝑘 .

Traditional ZKML compilers, such as ZENO [9], represent
the machine learning (ML) function as a one-dimensional
list, where the output of each layer directly serves as the
input to the next layer. While this approach works for simple
deep learning models with sequential architectures, it is
insufficient for general ML models, especially those with
complex structures such as residual layers, which connect
outputs from multiple layers to the next layer.

In our compiler, we utilize a DAG to represent the compu-
tation process of ML models, where nodes 𝑉 correspond to
the primitive operations used in ML, such as matrix multipli-
cations and element-wise activations, while directed edges
𝐸 represent the data flow during model inference, indicating
dependencies between operations. This DAG-based repre-
sentation captures dependencies between different layers
more accurately, enabling support for complex network ar-
chitectures that involve non-sequential connections.

2.3 Machine Learning Quantization
Machine learning quantization is a crucial technique for re-
ducing the storage and computational complexity of deep
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Figure 2. A high-level overview of ZKPyTorch.

learning models, making them more efficient for deployment
on resource-constrained devices. Quantization approximates
high-precision floating-point representations with lower-
precision numerical formats, enabling faster inference while
maintaining acceptable model accuracy. In ZKML setting,
quantization plays a critical role in bridging the gap between
ML models, which typically operate using floating-point
arithmetic, and ZKP schemes, which perform computations
in a finite field. Therefore, directly handling floating-point
numbers is infeasible due to the high computational over-
head required for native floating-point support in ZK circuits.
To address this, previous ZKML schemes [17, 23, 26] em-

ploy fixed-point numbers to approximate floating-point val-
ues. However, due to the wide dynamic range of floating-
point numbers, fixed-point representations require a sig-
nificantly larger bit width for accurate representation. For
instance, the standard float32 format can represent positive
numbers ranging from approximately 2−126 to 2127, whereas
32-bit fixed-point numbers are limited to a range of 2−16 to
216. This disparity forces fixed-point representations to use
additional bits to emulate floating-point numbers, thereby
necessitating ZKML to operate over large finite fields, such
as the scalar field of the BN254 curve, which considerably
reduces efficiency in proof generation. Therefore, developing
a ZKP-friendly quantization scheme is crucial to improving
efficiency while maintaining model accuracy.

3 ZKPyTorch: A Hierarchical Optimized
Compiler for ZKML

In this section, we introduce ZKPyTorch, a hierarchically op-
timized compiler that seamlessly integrates with the widely
used PyTorch framework, removing traditional barriers and
streamlining the ZKML development process. With ZKPy-
Torch, developers can write standard PyTorch code [20] with-
out needing to learn ZKP-specific programming patterns.
ZKPyTorch automatically translates PyTorch operations into
ZKP circuits while applying built-in optimizations for com-
mon ML patterns, ensuring efficient memory usage and com-
putational performance.

3.1 Architecture Overview
To bridge the gap between ML frameworks like PyTorch
[20] and ZKP engines like Expander [7], our ZKML com-
piler comprises three key components. First, the preprocess-
ing module formalizes complex ML computations as a di-
rected acyclic graph (DAG) and augments it with additional
nodes and edges to generate auxiliary information for zero-
knowledge proofs, ensuring correctness and completeness.
Second, we introduce a ZKP-friendly ML quantization mod-
ule, which reconciles the differences between traditional
ML frameworks operating on floating-point numbers and
ZKP engines, which function over finite fields with modular
arithmetic constraints. This module optimizes numerical pre-
cision while preserving model accuracy. Third, we present a
hierarchical optimization framework that translates ML com-
putation graphs into efficient ZKP circuits. Figure 2 provides
a high-level overview of our ZKML compiler, with detailed
technical explanations discussed in the following sections.

3.2 Preprocessing Module
This section present our preprocessing module for ZKML
compiler. Given the complexity of ML frameworks like Py-
Torch, managing the entire computation pipeline for ZKPs
integration presents substantial challenges. First, traditional
ML frameworks support a wide range of operations, allowing
users to define custom operations based on their needs. How-
ever, designing ZKP circuits for thousands of potential opera-
tions individually is impractical. Second, existing ZKML com-
pilers like ZENO [9] are designed for simple deep learning
models with sequential architectures. Their approaches are
insufficient for more complex ML models, particularly those
with intricate structures like Transformers. Third, there are
fundamental discrepancies between traditional ML computa-
tions and ZKP circuits. For instance, proving the correctness
of a division operation requires not only the quotient as
the computational result but also the remainder as auxiliary
data. These challenges lead us to introduce our preprocessing
module. Its overall workflow are shown in Figure 3.

To accommodate the diverse operations in traditional ML
frameworks, we standardize ML workflows using primitive
operations. To achieve this, we leverage the Open Neural
Network Exchange (ONNX) format [19], which formalizes
ML primitive operations into a unified representation. ONNX
acts as an intermediate representation, capturing various ML
operations in a consistent manner. Thereby, we ensure that
various ML operations, such as convolutions, activations, ma-
trix multiplications, and pooling layers, are represented uni-
formly. In addition, ONNX supports various ML platforms,
including PyTorch [20], TensorFlow [24], Scikit-Learn [21],
and Caffe2 [2]. This opens up the potential to extend our
ZKPyTorch compiler beyond PyTorch to other ML platforms.

Next, we employ directed acyclic graphs (DAGs) to repre-
sent computation processes inMLmodels. Figure 3 illustrates
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Figure 3. The preprocess procedure in ZKPyTorch.

an example of converting an ML model into a computational
graph, where DAGs represent ML computations as a series of
nodes connected by directed edges. Each node corresponds
to a primitive operation and each edge represents the flow of
data between these operations. The acyclic structure ensures
the absence of circular dependencies, facilitating efficient
computation and clear dependency tracking. This property
is crucial for preserving the integrity of the model execu-
tion flow. In addition, the connections between nodes retain
structural information. By grouping related nodes, we can
recognize the original model architecture, enabling effective
optimizations in subsequent modules.

Another key challenge lies in addressing the gap between
standard ML computations and the requirements for ZKP
circuits. Unlike traditional ML computations, which focus
solely on obtaining results, ZKP circuits require additional
auxiliary information to ensure cryptographic correctness.
To address this, we insert additional nodes into our gener-
ated DAGs to add auxiliary information required for ZKP
generation. Most operations requiring auxiliary information
are non-linear and rely on range proofs or table lookups. A
classic example is division, where we must prove that the
remainder is smaller than the divisor. Another example is the
softmax operation, where instead of using Taylor expansion
to approximate the softmax operation through addition and
multiplication, we employ a table lookup to retrieve the re-
sult directly from a precomputed table. Therefore, additional
nodes are required in DAGs to perform table lookups.

In summary, our preprocessing module of ZKML compiler
formalizes ML operations and standardizes computation pro-
cesses. By using ONNX, we standardizeML operations across
frameworks. Directed Acyclic Graphs (DAGs) represent com-
putation processes, ensuring clear data flow and operation
sequencing. To satisfy ZKP requirements, additional nodes
are inserted to capture auxiliary information, like remainders
in division operations. This approach simplifies the integra-
tion of ML models with cryptographic proofs, enhancing the
modularity and scalability of our ZKML compiler.

Table 2. Accuracy of quantized convolutional neural net-
works on the CIFAR-10 dataset.

Model Original Accuracy Quantized Accuracy
VGG-16 94.13% 94.11%
ResNet-50 93.96% 93.94%
ResNet-101 93.83% 93.80%

3.3 ZKP-friendly ML Quantization
Machine learning quantization is a crucial technique for re-
ducing the storage and computational complexity of deep
learning models, making them more efficient for deploy-
ment on resource-constrained devices. In this context, quan-
tization serves as a bridge between traditional ML compu-
tations, which use floating-point numbers for parameter
storage and computation, and ZKP workflows, which oper-
ate within finite fields. To address this issue, most previous
ZKML schemes [9, 13, 23, 25] directly employ fixed-point
numbers to approximate floating-point values. However, due
to the wide dynamic range of floating-point numbers, fixed-
point representations require a significantly larger bit width
to maintain accuracy, as discussed in Section 2.3. This dispar-
ity forces fixed-point representations to allocate additional
bits to emulate floating-point numbers, thereby necessitat-
ing ZKML to operate over large finite fields, such as the
scalar field of the BN254 curve, which significantly reduces
efficiency in proof generation.

In this paper, we propose a ZKP-friendly ML quantization
that uses integer-based representations, which are better
suited for computations within finite fields. As part of ZKPy-
Torch’s construction, this process involves transforming a
given ML model into a ZKP-friendly form while preserv-
ing inference accuracy as much as possible. Adopting an
integer-based representation necessitates the quantization
of parameters originally represented as floating-point num-
bers. Unlike quantization techniques aimed at model com-
pression, ZKP-friendly quantization must address stricter
constraints imposed by ZKP backends. Specifically, it must
ensure that all intermediate results remain integers, avoid
computational overflow, andminimize reliance on non-linear
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Figure 4. An example of ZKP-friendly quantization compared to other quantization methods.

operations, such as exponent in the softmax layer that re-
quires costly emulation in ZKP circuits. Consequently, com-
mon quantization techniques such as dynamic quantization
and mixed-precision inference, which are widely used in
traditional transformer models, are not directly applicable.
Instead, we design static quantization methods tailored to
ZKP constraints, replacing floating-point operations with
integer-based alternatives.

Figure 4 illustrates the difference between the three quanti-
zation methods. In practice, ZKPyTorch employs symmetric
per-tensor static quantization for models evaluated in our
experiments. During the calibration phase, we estimate the
value range required to determine the quantization scale
and verify that the selected bit width adequately represents
intermediate values without incurring overflow, particularly
in operations such as matrix multiplications. The quantiza-
tion scale is shared across all elements in each layer. After
calibration, we ensure that the quantized model meets the
specified accuracy requirements.
For instance, we observed that convolutional neural net-

work models achieve high-accuracy inference with our quan-
tization. As shown in Table 2, it incurs only a slight accu-
racy loss compared to the original neural networks. How-
ever, transformer neural networks, such as Llama-3 model,
have more complex non-linear operations and thus require
further optimization. To enhance its performance, we in-
troduced temporary bit-width adjustments and piecewise
lookup tables to ensure precise summation during the ex-
ponent operation in the softmax layer and the square root
operation in RMS normalization. The lookup table stores

integers that are closest to the results of floating-point oper-
ations, ensuring that these integers can accurately simulate
floating-point calculations. These optimizations enabled our
quantized Llama-3 model to achieve a 99.32% cosine similar-
ity with the original floating-point model, demonstrating our
approach’s effectiveness in preserving inference accuracy
while ensuring ZKP compatibility.

3.4 Hierarchical ZKP circuit optimizer
This section presents our hierarchical ZKP circuit optimizer
in ZKPyTorch. Our optimization approach follows a hierar-
chical architecture, rather than focusing solely on the opti-
mization of the final ZKP circuit. This method ensures we do
not miss the chance to optimize high-level semantics, which
has a far greater impact on efficiency than the detailed op-
timization at the ZKP circuit level. In this way, we made
optimizations at the ML model level, primitive operation
level, and circuit level.

ML model level. We optimize ZKP circuits from the per-
spective of the overall ML inference process, with a primary
focus on optimizing batch processing for the inference. Un-
like the computation process in ML, proving the correctness
of ML inference leverages the fact that the output is already
known. For instance, traditional large language models need
to generate tokens sequentially using transformer neural
networks, where each token depends on the previous one,
requiring step-by-step computation. However, in a ZKML
compiler, this sequential dependency can be decoupled, as
the purpose of a ZKP circuit is not to compute the output
but to verify its correctness.
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Figure 5. Batch verification of LLMs’ computation.

As shown in Figure 5, traditional LLMs computation re-
quires generating tokens sequentially. We employ LLMs ver-
ification by collecting the output tokens in batches, thereby
ZKPs can be generated using a single proving circuit. In
this way, the existing ZKP schemes for matrix multiplication
can be fully leveraged. For example, in transformer neural
networks, there are around 𝐿 instances of 1-𝐻 -𝑊 matrix
multiplication, where model weights form a matrix of size
𝐻 ×𝑊 and the activation constitutes another matrix of size
1×𝐻 , with 𝐿 representing the token length. Using sequential
ZKP circuits for transformer matrix multiplications requires
proving 𝐿 separate operations, resulting in a total complex-
ity of 𝑂 (𝐿𝐻𝑊 ) gates. In contrast, our batch circuits enable
matrix multiplication in transformer neural networks with a
complexity of𝑂 (𝑊𝐻 + 𝐿𝐻 ) gates, significantly reducing the
overhead from multiple invocations of transformer layers.
This approach can also be extended to convolutional neural
networks for batch proving of image predictions.
Primitive operation level. ZKP circuits for primitive

operations are the most crucial components of ZKML. Con-
sequently, extensive researches [4, 13, 15, 16, 23] has focused
on optimizing these operations. For example, ZKCNN [16]
converts convolution operations into Fast Fourier Transform
(FFT) operations, which are optimized to achieve linear-time
complexity for proof generation by leveraging their inherent
structure. ZKLLM [23] converts non-linear operations, such
as softmax and GELU operations, used in large language
models into table lookup operations, which significantly im-
proves the proving efficiency for these non-linear operations.

These advancements significantly reduce the scale of ZKP
circuits for neural networks, leading to more efficient proof
generation. Unlike directly compiling the original computa-
tional process into addition and multiplication gates, these
optimizations primarily take advantage of having the output

available during proof generation to minimize gate require-
ments. Therefore, rather than introducing new optimization
approaches, ZKPyTorch integrates existing techniques for
primitive operations to enhance efficiency, ensuring com-
patibility with state-of-the-art methods while maintaining
scalability for large-scale machine learning models.
Circuit level. Our circuit-level optimizations focus on

parallelizing ZKP circuits, a target not addressed in previous
ZKML compilers [9]. Since both traditional ML computa-
tions and ZKP generation naturally benefit from parallel
processing, adapting ZKP circuits for multi-core hardware
is crucial for efficiency, as it enables faster proof generation.
To achieve this, we decompose the overall ZKP circuit into
multiple parallel sub-circuits, allowing independent execu-
tion. By leveraging parallelism at the circuit level, we make
proof generation more suitable for large-scale ML models.

The first optimization parallelizes batch execution of ML
models, allowing them to process multiple inputs simultane-
ously. For instance, in convolutional neural networks, infer-
ence on hundreds of images can be verified in parallel, with
each image’s computation assigned to an independent ZKP
sub-circuit. The second optimization focuses on parallelizing
tensor operations, distributing element-wise computations,
such as addition, multiplication, and activation functions,
across multiple processing units to enhance efficiency. By
efficiently utilizing hardware resources, this optimization
reduces bottlenecks and enables seamless scaling to handle
increasingly complex ML workloads.
During proving, certain data, such as the quantization

scale of a tensor, mentioned in Section 3.3, must be shared
across sub-circuits. To maintain their independence and
avoid synchronization overhead, we employ a broadcast-
ing approach, duplicating and distributing necessary data to
each sub-circuit to eliminate dependencies. By structuring
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computations in this parallelized manner, our strategy en-
ables the potential of efficient proof generation on multi-core
hardware, including CPUs and GPUs.

4 End-to-end User Cases
With ZKPyTorch, we can seamlessly integrate PyTorch, a
leading machine learning (ML) framework, with Expander,
a state-of-the-art ZKP engine. This integration enables AI
developers to build cryptographically secure and verifiable
neural networks while maintaining the flexibility and ease
of use provided by PyTorch. By bridging the gap between
traditional ML development and advanced cryptographic
proof generation, ZKPyTorch significantly reduces the com-
plexity of implementation while improving efficiency and
scalability. In this section, we present end-to-end user cases
about verifiable machine-learning-as-a-service and verifiable
model valuation by employing ZKPyTorch.

VerifiableMachine-Learning-as-a-Service.Asmachine
learning models become increasingly valuable, AI developers
can build and deploy their own models on cloud platforms
like Google Cloud [11], offering them as Machine Learning-
as-a-Service (MLaaS). However, users often face challenges
in verifying the correctness of model computations, while
developers seek to protect their intellectual property by re-
stricting access to the model’s underlying details. ZKML
addresses this challenge by enabling AI developers to pro-
vide verifiable computation results without revealing sensi-
tive model information. However, traditional AI developers
may lack expertise in constructing cryptographically secure
ZKML solutions, limiting the widespread adoption of ZKML.
ZKPyTorch acts as a bridge. We use the original Llama-3

as input to construct a verifiable Machine-Learning-as-a-
Service (MLaaS) system. As shown in Figure 6, AI developers
can directly feed the Llama-3 model [12] into ZKPyTorch to
construct a verifiableMachine Learning-as-a-Service (MLaaS)
system. With ZKPyTorch integrating with the Expander en-
gine, the framework automatically generates zero-knowledge
proofs (ZKPs) that verify the correctness of inference re-
sults while safeguarding the confidentiality of the model.
This streamlined process requires minimal cryptographic
expertise, making the adoption of zero-knowledge machine
learning (ZKML)more accessible and efficient. This approach
enhances trust in cloud-based AI services, making them both
secure and transparent. This is particularly valuable in high-
security applications such as financial risk assessment, and
medical diagnostics. By optimizing the computational over-
head of ZKP generation, ZKPyTorch provides an efficient
and scalable solution for real-world ZKML deployment.

VerifiableModel Valuation.Another key use case is ver-
ifiable model valuation. As AI models become increasingly
valuable assets, ensuring their fair valuation while maintain-
ing confidentiality is a critical challenge. Traditional model
valuation relies on direct access to model parameters and

AI developer

Users

Google Cloud

Original ML model

Que
stio

n Ans
wer ZKPyTorch

ZKP engine
(Expander)

Proo
f

ZKP-friendly
quantized model ZKP Circuit

Figure 6. The use case of ZKPyTorch in variable Machine
Learning-as-a-Service (MLaaS).

performance benchmarks, which can expose proprietary
information and lead to potential misuse or replication of
intellectual property. ZKML provides a novel solution by
enabling verifiable model valuation through ZKPs, ensuring
transparency in model assessment without revealing sensi-
tive details. This approach allows stakeholders, such as AI
developers and investors, to validate a model’s worth based
on cryptographic proofs rather than direct access to its pa-
rameters, safeguarding trade secrets while maintaining trust
in the valuation process.
With ZKPyTorch, we can easily generate cryptographic

proofs that verify key valuation metrics, such as model ac-
curacy and robustness, without compromising the model’s
internal details. For example, CNNs are widely used in image
classification and object detection, making them prime can-
didates for model valuation due to their widespread adoption
and impact in real-world applications. We employ the VGG-
16 model [22] as an example to achieve verifiable model val-
uation based on its classification accuracy on the CIFAR-10
dataset [6], ensuring a fair and secure evaluation. By lever-
aging ZKPyTorch, we translate PyTorch models into circuits
compatible with Expander, enabling seamless integration
of model valuation into ZKP workflows while maintaining
computational efficiency and scalability. This methodology
ensures that AImodels can be assessed transparently without
disclosing proprietary information.

5 Conclusion
As AI becomes increasingly integrated into critical domains,
ensuring the verifiability of computations while preserv-
ing confidentiality is essential. In this paper, we propose
ZKPyTorch, a hierarchically optimized compiler for zero-
knowledge machine learning. ZKPyTorch bridges ML frame-
works like PyTorch with ZKP engines such as Expander,
enabling seamless model conversion and proof generation.

8



Through its automated preprocessing, ZKP-friendly quan-
tization, and hierarchical circuit optimization, ZKPyTorch
streamlines the development of ZKML, making it more ac-
cessible for AI developers while reducing computational
overhead. Our work also demonstrates its effectiveness in
converting and proving models like VGG-16 and Llama-
3. Furthermore, our approach enhances the practicality of
privacy-preserving AI deployments, making ZKML more
viable across domains such as verifiable machine-learning-
as-a-service and verifiable model valuation.
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